WorldWideScience

Sample records for sodium phosphate glasses

  1. Spectral-luminescence properties of trivalent titanium in aluminum-sodium phosphate glass

    International Nuclear Information System (INIS)

    Sukhanov, S.B.; Batyaev, I.M.

    1992-01-01

    Since development of the first crystal laser, Al 2 O 3 crystals remain the most widely used in quantum electronics. In the present work, the aluminum-sodium phosphate glass, Al 2 O 3 -Na 2 O 3 -P 2 O 5 , was studied with different proportions of components. A luminescence medium is obtained based on phosphate glass doped by Ti 3+ ions with intense emission in the 700-900-nm spectral range. This glass is a promising lasing medium for tunable solid-state lasers. 12 refs., 2 figs

  2. In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2014-09-01

    Full Text Available Borate glasses with the basic composition 0.6B2O3·0.2Na2O·0.2CaO and SrO progressively substituting CaO were prepared and characterized for their bone-bonding ability. The obtained glasses were thermally treated and converted to their glass-ceramic derivatives. In this study, FTIR spectral analyses were done for the prepared glasses and glass-ceramics before and after immersion in a sodium phosphate solution for extended times. The appearance of two IR bands within the spectral range 550–680 cm-1 after immersion confirms the formation of hydroxyapatite. X-ray diffraction studies and scanning electron microscope analysis supported the obtained infrared spectroscopy results. The solubility test (measurements of the weight loss in aqueous sodium phosphate solution was conducted for measuring the dissolution of both glassy and crystalline derivatives to find out the role of SrO. The corrosion behaviour of the glasses and glass-ceramics indicate the increase of weight loss with the increase of SrO content. Different suggested proposals were introduced to explain this abnormal behaviour.

  3. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  4. A new paramagnetic center of copper ion γ-irradiated phosphate glasses

    International Nuclear Information System (INIS)

    Bogomolova, L.D.; Fedorov, A.G.; Jachkin, V.A.; Lazukin, V.N.; Pavlushkina, T.K.

    1981-01-01

    In the present paper are shown the results of EPR and optical absorption investigations of copper ions in γ-irradiated sodium-phosphate glasses and in MO-P 2 O 5 glasses (M = MG,Ca, Sr, Zn, Ba) containing copper and comparisons are made with the data for sodium-silicate glasses. (orig./HOF)

  5. Structural and thermochemical properties of sodium magnesium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Oueslati Omrani, Refka [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Kaoutar, Abdeltif; El Jazouli, Abdelaziz [LCMS, URAC 17, Faculté des Sciences Ben M’Sik, UH2MC, Casablanca (Morocco); Krimi, Saida [LPCMI, Faculté des Sciences Aïn Chok, UH2C, Casablanca (Morocco); Khattech, Ismail, E-mail: ismail.khattech@fst.rnu.tn [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Jemal, Mohamed [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Videau, Jean-Jacques [ICMCB, Institut de Chimie de la matière condensée, Université de Bordeaux 1 (France); Couzi, Michel [Institut des Sciences Moléculaires, CNRS-Université de Bordeaux 1 (France)

    2015-05-25

    Highlights: • Phosphate glasses were prepared by met quenching technique. • Structural study is investigated using FTIR, Raman and {sup 31}PNMR spectroscopy. • A 4.5% weight of H{sub 3}PO{sub 4} solution has use for glass dissolution. • Dissolution is endothermic for lower MgO content and becomes exothermic when x rises. - Abstract: Ternary phosphate based glasses with the general formula (50−x/2)Na{sub 2}O–xMgO–(50−x/2)P{sub 2}O{sub 5} (0 ⩽ x ⩽ 42.8 mol%), where the O/P ratio was varied from 3 to 3.75, have been prepared using a conventional melt quenching technique. Samples were investigated by means of density measurements, Fourier-transformed infrared (FTIR), Raman and {sup 31}P solid state magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopies, differential scanning calorimetry (DSC), inductively coupled plasma atomic emission spectroscopy (ICP/AES) analysis and calorimetric dissolution. The depolymerization of metaphosphate chains are described by the decrease of Q{sup 2} tetrahedral sites allowing the formation of pyrophosphate groups (Q{sup 1}) revealed by spectroscopic investigations. As a result, the increase of density and glass transition temperature when x rises. Calorimetric study shows that the dissolution phenomenon is endothermic for a lower MgO content and becomes exothermic when magnesium oxide is gradually incorporated, suggesting the disruption of phosphate chains with increasing O/P ratio.

  6. Peculiarities of the diffusion of silver and sodium ions in phosphate glasses with a high content of sodium oxide

    International Nuclear Information System (INIS)

    Syutkin, V.M.; Tolkatchev, V.A.

    1996-01-01

    The phosphate glasses with a high content of alkali metal ions are good ionic conductors. Despite active studies, the mechanism of ion diffusion is not so far clear. The present work discusses the characteristics of ion diffusion in phosphate glasses with a high content of sodium oxide. An effective method to study ion transport is the investigation of relaxation processes the kinetics of which depends on ion diffusion. We use the data for two types of relaxation processes the kinetics of which is determined by ion diffusion. This is the conductivity relaxation due to sodium (host) ions and the decay of radiation-induced centers controlled by silver (guest) ion diffusion. Both of the processes being actually the first-order processes display a nonexponential kinetic behavior. The relaxation law can be interpreted either as the inherently nonexponential function or as the weighted sum of exponential decay functions with a distribution of relaxation times. It has been demonstrated that on the molecular level the relaxation function should be interpreted in the frame of the scheme of parallel first-order processes. This fact allows one to formulate a number of features of ion diffusion: (i) the mean square displacement of ions does not exceed several angstrom when transport becomes non-dispersive; (ii) the diffusion coefficient of ions is the function of coordinates. In this case, a characteristic distance at which D(r) noticeably varies is no less than a hundred of angstrom; (iii) the instantaneous concentration of mobile ions is well below the overall concentration ions

  7. Structural and luminescence studies of Ho{sup 3+}-doped zinc-aluminium-sodium-phosphate (ZANP) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Brahmachary, K.; Rajesh, D.; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati-517502 (India)

    2015-06-24

    Trivalent holmium doped zinc-aluminium-sodium-phosphate (ZANP) glasses were prepared by conventional melt-quenching technique and characterized for their structural and luminescence properties. The amorphous nature, elemental analysis and thermal stability of the glasses were studied by using X-ray diffraction, energy dispersive spectrum and differential scanning calorimetry analysis, respectively. The absorption and fluorescence spectra have been recorded at room temperature. Based on the absorption spectra, the Judd-Ofelt parameters and radiative parameters such as spontaneous transition probabilities (A{sub R}), branching ratios (β{sub R}), radiative lifetimes (τ{sub R}) were calculated and discussed. From the emission spectra emission peak positions (λ{sub P}), effective bandwidths (Δλ{sub eff}) and stimulated emission cross-sections (σ{sub P}) were calculated for the observed emission transitions,{sup 5}S{sub 2} ({sup 5}F{sub 4}→{sup 5}I{sub 8}) and {sup 5}F{sub 5}→{sup 5}I{sub 8} in all the glass samples. The stimulated emission cross-section is higher for ZANPHo10 glass matrix and so it may be useful for laser excitation.

  8. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    Science.gov (United States)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  9. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas.

    Science.gov (United States)

    Becknell, Brian; Smoyer, William E; O'Brien, Nicole F

    2014-11-01

    This study aimed to demonstrate the importance of considering hemodialysis as a treatment option in the management of sodium phosphate toxicity. This is a case report of a 4-year-old who presented to the emergency department with shock, decreased mental status, seizures, and tetany due to sodium phosphate toxicity from sodium phosphate enemas. Traditional management of hyperphosphatemia with aggressive hydration and diuretics was insufficient to reverse the hemodynamic and neurological abnormalities in this child. This is the first report of the use of hemodialysis in a child without preexisting renal failure for the successful management of near-fatal sodium phosphate toxicity. Hemodialysis can safely be used as an adjunctive therapy in sodium phosphate toxicity to rapidly reduce serum phosphate levels and increase serum calcium levels in children not responding to conventional management.

  10. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  11. Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.W. E-mail: cheol@umr.edu; Ray, C.S.; Zhu, D.; Day, D.E.; Gombert, D.; Aloy, A.; Mogus-Milankovic, A.; Karabulut, M

    2003-11-01

    A simulated sodium bearing waste (SBW) was successfully vitrified in iron phosphate glasses (IPG) at a maximum waste loading of 40 wt% using conventional and cold crucible induction melting (CCIM) techniques. No sulfate segregation or crystalline phases were detectable in the IPG when examined by SEM and XRD. The IPG wasteforms containing 40 wt% SBW satisfy current DOE requirements for aqueous chemical durability as evaluated from their bulk dissolution rate (D{sub R}), product consistency test, and vapor hydration test. The fluid IPG wasteforms can be melted at a relatively low temperature (1000 deg. C) and for short times (<6 h). These properties combined with a significantly higher waste loading, and the feasibility of CCIM melting offer considerable savings in time, energy, and cost for vitrifying the SBW stored at the Idaho National Engineering and Environmental Laboratory in iron phosphate glasses.

  12. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  13. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  14. Viscosity properties of sodium borophosphate glasses

    International Nuclear Information System (INIS)

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.

    2009-01-01

    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  15. Immobilisation of radio cesium loaded ammonium molybdo phosphate in glass matrices

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Singh, I.J.; Sathi Sasidharan, N.; Deshingkar, D.S.

    2004-11-01

    Long half life and easy availability from high level wastes make 137 Cesium most economical radiation source. High level liquid waste processing for 137 Cesium removal has become easier due to development of Cesium specific granulated ammonium molybdophosphate (AMP) composite. In such applications, resulting spent composite AMP itself represents high active solid waste and immobilization of these materials in cement may not be acceptable. Studies on immobilization of 137 Cs loaded AMP were taken up in order to achieve twin goals of increasing safety and minimizing processing costs of the final matrix. Studies indicated that phosphate modified sodium borosilicate SPNM glasses prepared under usual oxidizing conditions are not suitable for immobilization of 137 Cs loaded on AMP .Phosphate glasses containing Na 2 O, P 2 O 5 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3 and SiO 2 as major constituents are capable of incorporating 6 to 8 % AMP. The Normalized Leach rates of these glasses for sodium, cesium, boron and silica are 10 -4 to 10 -6 gm/cm 2 /day which are comparable to or better than those reported for NBS glasses incorporating HLW. Homogeneity of the final matrix was confirmed by x-ray diffraction analysis. Further studies on characterization of these glasses would establish their acceptability. (author)

  16. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions of...

  17. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b...

  18. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...

  19. Radiative properties and luminescence spectra of Sm{sup 3+} ion in zinc–aluminum–sodium-phosphate (ZANP) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Brahmachary, K.; Rajesh, D.; Ratnakaram, Y.C., E-mail: ratnakaramsvu@gmail.com

    2015-05-15

    The fluorescence properties of different concentrations of Sm{sup 3+} doped zinc–aluminum–sodium-phosphate (ZANP) glasses were studied by the XRD, SEM, FTIR, TG–DTA, optical absorption, photoluminescence and decay cure analysis. X-ray diffraction profiles and SEM images confirmed the amorphous nature of the glass samples. Structural information of these glass matrices was provided by FTIR spectrum. Judd–Ofelt (J–O) theory was applied to the experimental oscillator strengths to evaluate three phenomenological J–O intensity parameters, Ω{sub λ} (λ=2, 4 and 6). Using J–O intensity parameters and emission spectra, various radiative parameters such as radiative transition probabilities (A{sub R}), radiative lifetimes (τ{sub R}), calculated and measured branching ratios (β{sub R} and β{sub m}), effective bandwidths (Δλ{sub eff}) and stimulated emission cross-sections (σ{sub P}) were calculated for observed emission transitions. The intensity of emission transitions with the variation of Sm{sup 3+} ion concentration was studied. The nature of decay curves of {sup 4}G{sub 5/2} level for different Sm{sup 3+} ion concentrations in ZANP glass was analyzed and obtained measured lifetimes (τ{sub exp}). Quantum efficiency of {sup 4}G{sub 5/2} level was calculated based on experimental and measured radiative lifetimes (τ{sub exp} and τ{sub R}). - Highlights: • The amorphous nature of glasses was confirmed due to lack of sharp peaks in the XRD profiles. • Higher covalency and rigidity were obtained in ZANPSm05 and ZANPSm15 glass matrices respectively. • The symmetric nature present in ZANP glass matrix is confirmed from MD transition, {sup 4}G{sub 5/2}→{sup 6}H{sub 7/2} of Sm{sup 3+} ion. • The decrease of intensity of emission transitions beyond 0.5 mol% is attributed to dipole–dipole interactions. • Among all the glass matrices studied, all the spectroscopic parameters are higher in ZANPSm05 glass matrix.

  20. Effect of Ba in the glass characteristics of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Vasudeva Rao, P.R.

    2015-01-01

    Radioactive 137 Cs extracted from high level nuclear waste, when immobilized in a suitable matrix can be used as a γsource in medical industry. Iron phosphate glass (IPG) is one of a suitable matrix for the immobilization of 137 Cs prior to the immobilization of 137 Cs in IPG, it is essential to optimize the immobilization conditions using natural (inactive) cesium. Glass characteristics of inactive Cs loaded iron phosphate glasses were already explored in our earlier studies. However, the change in glass characteristics of 137 Cs loaded iron phosphate glass to 137 Ba loaded iron phosphate glass need to be studied before the immobilization of 137 Cs in iron phosphate glass as 137 Cs transforms to 137 Ba due to nuclear transmutation ( 137 Cs(β,γ) 137 Ba). This paper reports the studies on such a behaviour by incorporating inactive Ba in cesium loaded iron phosphate glasses. Cs and Ba loaded iron phosphate glasses were prepared by melt quench technique in air using appropriate amounts of Fe 2 O 3 , NH 4 H 2 PO 4 , Ba(OH) 2.8 H 2 O and Cs 2 CO 3 . The chemicals were added such that the glass formed possesses the batch composition of (a) 21.4 wt. % Fe 2 O 3 -45 wt. % Cs 2 O-5 wt % BaO-P 2 O 5 (henceforth referred as IP50Cs45Ba5); (b) 21.4 wt. % Fe 2 O 3 -25 wt. % Cs 2 O-25 wt % BaO-P 2 O5 (henceforth referred as IP50Cs25Ba25). The thermal expansion measurements were also carried out using a home-built quartz push-rod dilatometer. The data related to change in thermal expansion behaviour, glass forming ability, glass stability and structural changes in phosphate network due to the partial replacement of Cs with Ba will also be discussed. (author)

  1. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    Energy Technology Data Exchange (ETDEWEB)

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  2. Iron phosphate glasses: Bulk properties and atomic scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  3. Phosphate Framework Electrode Materials for Sodium Ion Batteries.

    Science.gov (United States)

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2017-05-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.

  4. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  5. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C), and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  6. 21 CFR 184.1697 - Riboflavin-5′-phosphate (sodium).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Riboflavin-5â²-phosphate (sodium). 184.1697 Section... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1697 Riboflavin-5′-phosphate (sodium). (a) Riboflavin-5′-phosphate (sodium) (C17H20N4O9PNa·2H2O, CAS Reg. No 130-40-5) occurs as the dihydrate in yellow...

  7. Ultraviolet optical absorptions of semiconducting copper phosphate glasses

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.

  8. Investigation of lead-iron-phosphate glass for SRP waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-10-01

    The search for a host solid for the immobilization of nuclear waste has focused on various vitreous waste forms. Recently, lead-iron-phosphate (LIP) glasses have been proposed for solidification of all types of HLLW. Investigation of this glass for vitrification of SRP waste demonstrated that the phosphate glass is incompatible with the current borosilicate glass technology. The durability of LIP glasses in deionized water was comparable to current borosilicate waste glass formulations, and the LIP glass has a low melt temperature. However, many of the defense waste constituents have low solubility in the phosphate melt, producing an inhomogeneous product. Also, the LIP melt is highly corrosive which prevents the use of current melter materials, in particular Inconel 690, and thus requires more exotic materials of construction such as platinum

  9. The electrical properties of semiconducting vanadium phosphate glasses

    International Nuclear Information System (INIS)

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.

    1984-01-01

    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  10. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  11. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  12. Radiophotoluminescence from silver-doped phosphate glass

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Takei, Y.; Nanto, H.; Kurobori, T.; Konnai, A.; Yanagida, T.; Yoshikawa, A.; Shimotsuma, Y.; Sakakura, M.

    2011-01-01

    Glass dosimeter utilizing radiophotoluminescence (RPL) is one of accumulation type solid state dosimeters, which is based on luminescence phenomenon of silver (Ag + ions)-doped phosphate glass exposed to ionizing radiation. In this study, to clarify the emission mechanism of yellow and blue RPL peaks, optical properties of Ag + -doped glass, such as optical absorption spectrum, RPL excitation spectrum before and after X-ray irradiation as well as the lifetime of both RPL peaks are measured. From the results, we discuss the emission mechanism of yellow (peaked at 2.21 eV) and blue (peaked at 2.70 eV) RPL using a proposed energy band diagram for RPL emission and excitation in Ag + -doped phosphate glass. It is found that the radiative lifetime of blue RPL is three orders of magnitude faster than that of yellow RPL.

  13. Lead-iron phosophate glass

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1988-01-01

    The lead-iron phosphate nuclear waste glasses (LIPNWG) are the subject of the present chapter. They were discovered in 1984 while the authors were attempting to find a sintering aid for certain types of crystalline monazite ceramic high-level nuclear waste forms. In the present chapter, the term waste glass is synonymous with nuclear waste glass (NWG), and the acronym LIP is often used for lead-iron phosphate. Lead-iron phosphate glasses, like many of the previously studied phosphate glasses, are corrosion resistant in aqueous solutions at temperatures below 100 degrees C, and they can be melted and poured at temperatures that are relatively low in comparison with the processing temperatures required for current silicate glass compositions. Unlike the phosphate glasses investigated previously, however, LIPNWGs do not suffer from alteration due to devitrification during realistic and readily, achievable cooling periods. Additionally, lead-iron phosphate glass melts are not nearly as corrosive as the sodium phosphate melts investigated during the 1960s; and, therefore, they can be melted and processed using crucibles made from a variety of materials

  14. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  15. Sodium Is Not Essential for High Bioactivity of Glasses

    Science.gov (United States)

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S.; Wilson, Rory M.; Law, Robert V.; Hill, Robert G.; Karpukhina, Natalia

    2017-01-01

    This study aims to demonstrate that excellent bioactivity of glass can be achieved without the presence of an alkali metal component in glass composition. In vitro bioactivity of two sodium-free glasses based on the quaternary system SiO2-P2O5-CaO-CaF2 with 0 and 4.5 mol% CaF2 content was investigated and compared with the sodium containing glasses with equivalent amount of CaF2. The formation of apatite after immersion in Tris buffer was followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 31P and 19F solid state MAS-NMR. The dissolution study was completed by ion release measurements in Tris buffer. The results show that sodium free bioactive glasses formed apatite at 3 hours of immersion in Tris buffer, which is as fast as the corresponding sodium containing composition. This signifies that sodium is not an essential component in bioactive glasses and it is possible to make equally degradable bioactive glasses with or without sodium. The results presented here also emphasize the central role of the glass compositions design which is based on understanding of structural role of components and/or predicting the network connectivity of glasses. PMID:29271977

  16. Purification of Sodium Phosphates as by Product of Rirang Ore Decomposition Process

    International Nuclear Information System (INIS)

    Sugeng-Walujo; Hafni-LN; Susilaningtyas; Mukhlis; Budi-Sarono; Widowati

    2004-01-01

    The aim of this experiment is to get purification condition of sodium phosphates from the filtration result of mixing mother liquor and filtrate of washing residue from Rirang monazite decomposition by alkaline. The method of purification which has been used is dissolved the precipitation of sodium phosphates into agitated water 5 minutes and solution settling for 12 hours until appear of sodium phosphate crystals. The variable of experiment included dissolution time and ratio of the amount precipitate sodium phosphate volume of water to solvent. Experimental data shown that the good temperature of dissolution is 70 o C with the ratio of precipitate sodium phosphate is 80 gram/ 40 ml to water. The recovery of sodium phosphate crystallisation is 87.4314 % with 54.0105 % pure of Na 3 PO 4 , U content is 0.0004%, NaOH content and other impurities is 45.9889%. (author)

  17. Optical properties of highly Er{sup 3+}-doped sodium-aluminium-phosphate glasses for broadband 1.5 {mu}m emission

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. Amarnath [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Babu, S. Surendra [Laser Instrumentation Design Centre, Instrument Research and Development Establishment, Dehradun 248008 (India); Pradeesh, K. [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Otton, C.J. [Valencia Nanophotonics Technology Center, Universidad Politecnica de Valencia, 46022 Valencia (Spain); Vijaya Prakash, G., E-mail: prakash@physics.iitd.ac.in [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2011-03-03

    Research highlights: > Highly Er{sup 3+} doped phosphate glasses for the 1.54 {mu}m laser emission were explored. > Emission from these doped glasses shows larger lifetimes and quantum efficiencies. > Optical amplifier parameters are greater than other reported phosphate glasses. > The durability and obtained results are most favourable for short-length amplifiers. - Abstract: Erbium-doped Na{sub 3}Al{sub 2}P{sub 3}O{sub 12} (NAP) glasses with compositions 92NAP-(8-x)Al{sub 2}O{sub 3}-(x)Er{sub 2}O{sub 3} (where x = 2-8) were prepared and characterized for absorption, visible and NIR emission and decay time properties. Judd-Ofelt analysis has been carried out to predict radiative properties of luminescent levels of Er{sup 3+} ions. Comparatively larger photoluminescence lifetimes (7.86 ms) and larger quantum efficiencies (74%) for the laser transition, {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} (at 1.54 {mu}m) are observed. The moisture insensitivity, large Er{sup 3+} ion doping capability and relatively high-gain and broad emission at 1.5 {mu}m are the most notable features of these glasses to realize efficient short-length optical amplifiers.

  18. Characterization of Fe -doped silver phosphate glasses

    Indian Academy of Sciences (India)

    ... to their several spe- cial properties such as large thermal expansion coefficients, ... increase the conductivity of these glasses is to increase the modifier or dopant ... phosphate glasses were measured by the a.c. impedance spectroscopic .... and Fe2O3-doped Ag2O–P2O5 glasses were determined from. DSC curves and ...

  19. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  20. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  1. Structure and properties of calcium iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Bin [School of Science, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: xfliangswust@gmail.com [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Cuiling; Yang, Shiyuan [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2013-11-15

    The structural properties of xCaO–(100 − x) (0.4Fe{sub 2}O{sub 3}–0.6P{sub 2}O{sub 5}) (x = 0, 10, 20, 30, 40, 50 mol%) glasses have been investigated by XRD, DTA, IR and Raman spectroscopy. XRD analysis has confirmed that the majority of samples are X-ray amorphous, and EDS analysis indicates that the glass matrix can accommodate ≈30 mol% CaO. IR and Raman spectra show that the glass structure consists predominantly of pyrophosphate (Q{sup 1}) units. IR spectra indicate that the phosphate network is depolymerized with the addition of CaO content. The density and glass transition temperature (T{sub g}) increase with increasing CaO content for the glasses. This behavior indicates that the addition of CaO improves the strength of the cross-links between the phosphate chains of the glass.

  2. Structure and spectroscopy of rare earth – Doped lead phosphate glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Żur, Lidia; Goryczka, Tomasz; Sołtys, Marta; Pisarska, Joanna

    2014-01-01

    Highlights: • Lead phosphate glasses doped with rare earth ions were prepared. • The local structure was examined using X-ray diffraction and spectroscopic methods. • Different structural phosphate groups are present in lead phosphate glasses. • The electron–phonon coupling strength and phonon energy of the glass host was determined. • Several observed emission bands are due to 4f–4f electronic transitions of rare earth ions. -- Abstract: Lead–gallium phosphate glasses doped with rare the earth ions (Eu 3+ , Dy 3+ , Tb 3+ , Er 3+ ) were synthesized. The structure of obtained glasses was examined by means of use: X-ray diffraction (XRD), nuclear magnetic resonance ( 207 Pb and 31 P NMR), fourier transform infrared (FT-IR) and Raman spectroscopy. In contrast to fully amorphous Ln-doped samples (Ln = Eu, Dy, Tb), in Er-doped sample the GaPO 4 crystalline phase was identified. It was found from the NMR, FT-IR and Raman spectroscopic techniques that, different structural phosphate groups were present in lead phosphate glasses. Based on absorption measurements, the UV–VIS cut-off wavelength for lead phosphate glass was determined and its value is close to 305 nm. Excitation and emission spectra of rare earths were also detected. From excitation spectra of Eu 3+ the electron–phonon coupling strength and phonon energy of the glass host were determined. Due to 4f 6 –4f 6 (Eu 3+ ), 4f 8 –4f 8 (Tb 3+ ), 4f 9 –4f 9 (Dy 3+ ) and 4f 11 –4f 11 (Er 3+ ) electronic transitions of trivalent rare earth ions several luminescence bands were stated

  3. Allergic contact dermatitis from sodium dihydroxycetyl phosphate, a new cosmetic allergen?

    DEFF Research Database (Denmark)

    Lomholt, H; Rastogi, S C; Andersen, Klaus Ejner

    2001-01-01

    Sodium dihydroxycetyl phosphate (trade name Dragophos S 2/918501) was identified as a contact allergen in a herbal moisturizing cream causing severe acute contact dermatitis on the hands and face of a 41-year-old woman. Sodium dihydroxycetyl phosphate is a complex mixture of phosphate esters of d...

  4. A comparative property investigation of lithium phosphate glass

    Indian Academy of Sciences (India)

    The present study addresses the application of microwave (MW) energy for melting lithium phosphate glass. Acomparative analysis of the properties is presented with glasses melted in conventional resistance heating adopting standardmethods of characterization. The density of the glass was found less in MW heating.

  5. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    Science.gov (United States)

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization.

  6. Oral sodium phosphate solution: a review of its use as a colorectal cleanser.

    Science.gov (United States)

    Curran, Monique P; Plosker, Greg L

    2004-01-01

    Oral sodium phosphate solution (Fleet Phospho-soda, Casen-Fleet Fosfosoda is a low-volume, hyperosmotic agent used as part of a colorectal-cleansing preparation for surgery, x-ray or endoscopic examination. The efficacy and tolerability of oral sodium phosphate solution was generally similar to, or significantly better than, that of polyethylene glycol (PEG) or other colorectal cleansing regimens in patients preparing for colonoscopy, colorectal surgery or other colorectal-related procedures. Generally, oral sodium phosphate solution was significantly more acceptable to patients than PEG or other regimens. The use of this solution should be considered in most patients (with the exception of those with contraindications) requiring colorectal cleansing. PHARMACOLOGICAL PROPERTIES: After the first and second 45 mL dose of oral sodium phosphate solution, the mean time to onset of bowel activity was 1.7 and 0.7 hours and the mean duration of activity was 4.6 and 2.9 hours. Bowel activity ceased within 4 hours of administration of the second dose in 83% of patients. Elevations in serum phosphorus and falls in serum total and ionised calcium from baseline occurred during the 24 hours after administration of oral sodium phosphate solution in seven healthy volunteers. These changes were not associated with significant changes in clinical assessments. The decrease in serum potassium levels after administration of oral sodium phosphate solution was negatively correlated with baseline intracellular potassium levels. A regimen that administered the first dose of sodium phosphate on the previous evening and a second dose on the morning of the procedure (10-12 hours apart) was significantly more effective than PEG-based regimens for colorectal cleansing in preparation for colonoscopy, sigmoidoscopy or colorectal surgery. A regimen that administered both doses of oral sodium phosphate on the day prior to the procedure offered no colorectal cleansing advantage over PEG

  7. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  8. Structure and properties of gadolinium loaded calcium phosphate glasses

    International Nuclear Information System (INIS)

    Wang, Cuiling; Liang, Xiaofeng; Li, Haijian; Yu, Huijun; Li, Zhen; Yang, Shiyuan

    2014-01-01

    The glass samples with composition xGd 2 O 3 –(50 − x)CaO–50P 2 O 5 (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd 2 O 3 containing is up to 6 mol%. Two main crystalline phases, Ca 2 P 2 O 7 and Gd 3 (P 2 O 7 ) 3 , are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q 2 ) units and the depolymerization of phosphate network with the addition of Gd 2 O 3 . Both the chemical durability and the glass transition temperature (T g ) are improved with the increase of Gd 2 O 3 , which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass

  9. Molecular Dynamics Simulation of the Structure and Properties of Lithium Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J-J; Cygan, R.T.; Alam, T.M.

    1999-07-09

    A new forcefield model was developed for the computer simulation of phosphate materials that have many important applications in the electronics and biomedical industries. The model provides a fundamental basis for the evaluation of phosphate glass structure and thermodynamics. Molecular dynamics simulations of a series of lithium phosphate glass compositions were performed using the forcefield model. A high concentration of three-membered rings (P{sub 3}O{sub 3}) occurs in the glass of intermediate composition (0.2 Li{sub 2}O {center_dot} 0.8P{sub 2}O{sub 5}) that corresponds to the minimum in the glass transition temperature curve for the compositional series. Molecular orbital calculations of various phosphate ring clusters indicate an increasing stabilization of the phosphate ring structure going from two- to four-membered rings.

  10. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    Science.gov (United States)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a

  11. Influence of sodium content on the properties of bioactive glasses for use in air abrasion

    International Nuclear Information System (INIS)

    Farooq, Imran; Brauer, Delia S; Hill, Robert G; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz

    2013-01-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO 2 –P 2 O 5 –CaO–CaF 2 –Na 2 O) with low sodium content (0 to 10 mol% Na 2 O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na 2 O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. (paper)

  12. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    Science.gov (United States)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  13. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  15. Synthesis and characterization of niobium and iron phosphate glasses for U3O8 immobilization

    International Nuclear Information System (INIS)

    Ghussn, Luciana

    2005-01-01

    Niobium and iron phosphate glasses were produced by melting inorganic compound mixtures in electric furnaces and microwave ovens. The chemical durability was compared among niobium phosphate glasses produced by both processes, and equivalent results were obtained. Leaching tests were also performed to compare the chemical durability among monolithic glass blocks and sintered glasses. The glass transition, crystallization and melting temperatures as well the Hruby parameter (K H ) and the activation energy for crystallization were determined from differential thermal analysis of niobium phosphate glasses produced in electric furnaces. Niobium phosphate glasses are thermally more stable (K H =0.82 +- 0.04) than iron phosphate glasses (K H = 0.42 +- 0.03). Sintered glasses were produced from particles with different particle size distributions and sintering temperatures in the range of 720 - 800 deg C for niobium phosphate and 530 - 680 deg C for iron phosphate glasses. The sintering process was suitable because a glass with composition 37P 2 O 5 -23K 2 O-40Nb 2 O 5 showing leaching rate of 10 -6 g.cm -2 .d -1 , 99 % of the monolithic density and none crystalline phases was obtained. This glass only crystallizes itself after re heating at temperatures above 800 deg C , showing two crystalline phases identified as KNb 3 O 8 e K 3 NbP 2 O 9 . The activation energies for crystallization are 496 +- 7 kJ/mol and 513 +- 14 kJ/mol. Niobium phosphate sintered glasses are better densified than sintered iron phosphate glasses. The leaching rate of sintered glasses that show open porosity is higher than monolithic glass blocks. This effect is related to an increase of the surface area associated to open porous and, a correction of the value of the surface area used to calculate the leaching rate is required. A model was proposed based on the surface area of spherical porous to take in account that effect. Even after correcting the surface area, the leaching rates of sintered

  16. A model for phosphate glass topology considering the modifying ion sub-network

    DEFF Research Database (Denmark)

    Hermansen, Christian; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent with availa......In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent...... with available structural data by NMR and molecular dynamics simulation and dynamic data such glass transition temperature (Tg) and liquid fragility (m). Alkali phosphate glasses are exemplary systems for developing constraint model since the modifying cation network plays an important role besides the primary...... phosphate network. The proposed topological model predicts the changing trend of the Tg and m with increasing alkali oxide content for alkali phosphate glasses, including an anomalous minimum at around 20 mol% alkali oxide content. We find that the minimum in Tg and m is caused by increased connectivity...

  17. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Science.gov (United States)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  18. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  19. Metal Oxide Decomposition In Hydrothermal Alkaline Sodium Phosphate Solutions

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Ziemniak

    2003-09-24

    Alkaline hydrothermal solutions of sodium orthophosphate (2.15 < Na/P < 2.75) are shown to decompose transition metal oxides into two families of sodium-metal ion-(hydroxy)phosphate compounds. Equilibria for these reactions are quantified by determining phosphate concentration-temperature thresholds for decomposition of five oxides in the series: Ti(IV), Cr(III), Fe(III, II), Ni(II) and Zn(II). By application of a computational chemistry method General Utility Lattice Program (GULP), it is demonstrated that the unique non-whole-number Na/P molar ratio of sodium ferric hydroxyphosphate is a consequence of its open-cage structure in which the H{sup +} and excess Na{sup +} ions are located.

  20. Third-order nonlinearity of Er3+-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Guedes Da Silva, Ilde [ORNL; Siqueira, J. P. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Misoguti, L. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Zilio, S. C. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Boatner, Lynn A [ORNL

    2010-01-01

    The third-order optical susceptibility and dispersion of the linear refractive index of Er3+-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er3+-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of E-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.

  1. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  2. Structure and properties of gadolinium loaded calcium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiling [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: XFLiang@swust.edu.cn [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Haijian; Yu, Huijun; Li, Zhen [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-10-15

    The glass samples with composition xGd{sub 2}O{sub 3}–(50 − x)CaO–50P{sub 2}O{sub 5} (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd{sub 2}O{sub 3} containing is up to 6 mol%. Two main crystalline phases, Ca{sub 2}P{sub 2}O{sub 7} and Gd{sub 3}(P{sub 2}O{sub 7}){sub 3}, are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q{sup 2}) units and the depolymerization of phosphate network with the addition of Gd{sub 2}O{sub 3}. Both the chemical durability and the glass transition temperature (T{sub g}) are improved with the increase of Gd{sub 2}O{sub 3}, which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass.

  3. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  4. Structure and Degradation Behaviour of Calcium Phosphate Glasses

    International Nuclear Information System (INIS)

    Silva, A M B; Correia, R N; Fernandes, M H V; Oliveira, J M M

    2011-01-01

    Some studies have shown a relationship between glass structure and in vitro mineralization, generally associated with the rate of glass degradation, nature of released ions and subsequent Ca-P precipitation on glass surfaces when immersed in a Simulated Body Fluid (SBF). The knowledge of the ionic species distribution in glasses and of the involved bond strengths can be used to assess the in vitro behaviour of a glass. The role of ions such as silicon or titanium is of major importance for the development of new compositions and also for the control of glass degradation behaviour. A comparative study with two calcium phosphate glasses series was performed: Both glasses series - one with Si and another with Ti - include P 2 O 5 and alkaline earth ions in their compositions. Surface reactivity of glasses from the SiO 2 -containing system have been studied in SBF showing the precipitation of a Ca-P surface layer that increases with increasing MgO/CaO ratio. In glasses from the TiO 2 -containing series it is shown that the increase of TiO 2 contributes for the stabilization of the glass network thus allowing the control of their degradation rate when immersed in SBF. The relationship between structural features of these calcium-phosphate glasses and their degradation behaviour in SBF is discussed in terms of the structural role of Si and Ti ions. It is concluded that glasses with less interconnected species favour the Ca-P surface precipitation. The understanding of this relationship in synthetic physiological fluids is expected to allow the tailoring of glass degradation rates in complex biological systems.

  5. Characterization of Fe 3 + -doped silver phosphate glasses

    Indian Academy of Sciences (India)

    The relationship among the composition, structure and selected properties for five series of silver phosphate glasses containing 0, 5, 10, 15 and 20wt% Fe 2 O 3 has been investigated. The synthesized glasses have been characterized using different experimental techniques. X-ray diffraction studies revealed that the ...

  6. Investigation of structural transformations in surface layer of phosphate glasses incorporating radiactive wastes

    International Nuclear Information System (INIS)

    Aloj, A.S.; Kolycheva, T.I.; Trofimenko, A.V.; Shashukov, E.A.

    1985-01-01

    The objective of the paper was to clarify possibilities of detection of structural transformations initial stages on the surface of phosphate glasses using the method of infrared reflection spectroscopy. Phase composition of crystalline compounds formed in surface glass layer is determined by the method of X-ray diffraction. All experiments were performed using sodium alumophosphate glass comprising the model mixture of fission product of the following compostion (mass%): Na 2 O-22.0, Al 2 O 3 -14.0, P 2 O 5 -50.0, Fe 2 O 3 -3.5, Cs 2 O-3.5, SrO-3.0, Ln 2 O 3 -4.0, where Ln 2 O 3 is a mixture of cerium, lanthanum and europium oxides. Sample preparation were carried out by molten glass deposition on platinum forms 15mm in diameter and 4mm thick. Glasses were treated within the 600-400deg.C temperature range. Fixing of processes accompanied by structural transformations was accomplished the method of rapid cooling. It has been shown that phase transformations, taking place in investigated phosphate glasses under the action of heat, result in deterioration of chemical properties. Analysis of IR spectra has revealed that emergence of structural transformations in surface layer of investigated glasses results in variation of a ratio of 1060 and 1140cm - 1 reflection band intensities. Experimental dependences of the time of beginning of variation of 1060 and 1140cm - 1 bands relative intensity on temperature are presented. Insemilogarithmic coordinates this dependence has a straight line form within the 600-400 deg C temperature range and is desc ribed by the following formular: lg r=-7.41+5.70x10 3 x1/T, where r is the time of process beginning, h. Extrapolation of established to the region of low temperature is shown. Competence of such extrapolation may be confirmed in the course of further experiments

  7. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  8. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    Science.gov (United States)

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  10. Investigation of alumino-phosphate glasses for iodine conditioning

    International Nuclear Information System (INIS)

    Lemesle, T.

    2013-01-01

    Iodine 129 is a long-lived intermediate level radioactive waste, which is currently managed by isotopic dilution. In view of an alternative management by geological disposal, we aimed at developing phosphate glasses of the AgI-Ag 2 O-P 2 O 5 -Al 2 O 3 system, elaborated at low temperature and without iodine volatilization. Alumina is expected to induce crosslinking of the phosphate network and thus to improve the thermal and chemical properties. To define a glass composition that meets the specifications, we varied the level of iodine, the Ag 2 O/P 2 O 5 ratio and alumina content. For 1 g.cm -3 of iodine, SEM-EDS observations indicate that alumina solubility is limited to 0.5% mol., independently of Ag 2 O/P 2 O 5 ratio. The structural study by 31 P, 27 Al and 109 Ag MAS NMR, shows that aluminum adopts an octahedral coordination that effectively contributes to the crosslinking of the glassy network and iodine is incorporated without clustering. 31 P- 27 Al NMR correlations confirmed the presence of an alumino-phosphate network, and 31 P- 31 P correlations indicate that iodine does not change the connectivity of the glass network. The glass composition 28,8AgI-44,2Ag 2 O-26,5P 2 O 5 -0,5Al 2 O 3 presents the best compromise between the level of incorporation of iodine and the chemical durability, has a glass transition temperature of 123 C and an initial alteration rate in pure water at 50 C of 6 g.m -2 .d -1 . The long-term behavior of this glass is controlled by a post-alteration structure based on pyrophosphate, which holds nearly 80% of the initial iodine. (author) [fr

  11. Effect of the addition of Na2O on the thermal properties and chemical durability of glasses of iron and uranium phosphates

    International Nuclear Information System (INIS)

    Arboleda Zuluaga, P.A; Rodriguez, D.S; Gonzalez Oliver, C; Rincon Lopez, J.M; Soldera, F

    2012-01-01

    A series of glass compositions including (54,6-73,5P 2 O 5 .14-22Fe 2 O 3.x Na 2 O.2,8-4,25 UO 2 ) %mol. x=0-28,4 were studied in function of sodium oxide content for the thermal properties and chemical durability. By means differential dilatometer measurements was possible establish the variation of Tg, and α Tsoft and analysis of the kinetics of sintering by means of High Temperature Microscopy (MAT) and dilatometric data of pressed pellets. The presence of modifier oxides in the structure of iron phosphate glasses causes slightly onset sintering anticipation in almost 25 o C The chemical durability was estimated performing the named Product Consistency Test (PCT-B) focused on determining the resistance of glasses for nuclear wastes. These glasses exhibit good chemical durability but it is significant impaired by the addition of x≥6wt%Na 2 O. It is aimed to achieve more stable compositions and get glass matrixes able to contain more uranium oxides allowing evaluating the potential application of these iron phosphate glasses for special, industrial and nuclear waste immobilization

  12. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  13. Structural Dependence of Physical Properties in Sodium Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    Boroaluminosilicate glasses have found applications in many fields. The extent and nature of the mixing of network formers like SiO2, B2O3, and Al2O3 play an important role in controlling the macroscopic properties. To understand the structure-property correlations in these glasses, we study...... a series of sodium boroaluminosilicate glasses with various [Al2O3]/[SiO2] ratios to access different regimes of sodium behavior. We determine dynamic properties, elastic moduli, and hardness of these glasses. The results reveal an existence of local minimum for density, fragility index, Young’s and shear...

  14. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  15. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  16. Preparation method and thermal properties of samarium and europium-doped alumino-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sava, B.A., E-mail: savabogdanalexandru@yahoo.com [National Institute of Research and Development for Optoelectronics, Department for Optospintronics, 409 Atomistilor Street, P.O. Box MG – 5, RO-77125 Magurele (Romania); Elisa, M., E-mail: astatin18@yahoo.com [National Institute of Research and Development for Optoelectronics, Department for Optospintronics, 409 Atomistilor Street, P.O. Box MG – 5, RO-77125 Magurele (Romania); Boroica, L., E-mail: boroica_lucica@yahoo.com [National Institute for Lasers, Plasma and Radiation Physics, 77125 Magurele (Romania); Monteiro, R.C.C., E-mail: rcm@fct.unl.pt [Center of Materials Research/Institute for Nanostructures, Nanomodelling and Nanofabrication, (CENIMAT/I3N), Department of Materials Sciences, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2013-12-01

    Highlights: • Improved preparation method of rare-earth-doped phosphate glasses was done. • Working and annealing temperatures were lower than for undoped phosphate glass. • Doped glass viscosity is also lower and has quasi-linear variation with temperature. • Exothermic peak appears at about 555 °C and 685 °C, due to devitrification in glass. -- Abstract: The present work investigates alumino-phosphate glasses from Li{sub 2}O–BaO–Al{sub 2}O{sub 3}–La{sub 2}O{sub 3}–P{sub 2}O{sub 5} system containing Sm{sup 3+} and Eu{sup 3+} ions, prepared by two different ways: a wet raw materials mixing route followed by evaporation and melt-quenching, and by remelting of shards. The linear thermal expansion coefficient measured by dilatometry is identical for both rare-earth-doped phosphate glasses. Comparatively to undoped phosphate glass the linear thermal expansion coefficient increases with 2 × 10{sup −7} K{sup −1} when dopants are added. The characteristic temperatures very slowly decrease but can be considered constant with atomic weight, atomic number and f electrons number of the doping ions in the case of T{sub g} (vitreous transition temperature) and T{sub sr} (high annealing temperature) but slowly increase in the case of T{sub ir} (low annealing temperature–strain point) and very slowly increase, being practically constant in the case of T{sub D} (dilatometric softening temperature). Comparatively to undoped phosphate glass the characteristic temperatures of Sm and Eu-doped glasses present lower values. The higher values of electrical conductance for both doped glasses, comparatively to usual soda-lime-silicate glass, indicate a slightly reduced stability against water. The viscosity measurements, showed a quasi-linear variation with temperature the mean square deviation (R{sup 2}) being ranged between 0.872% and 0.996%. The viscosity of doped glasses comparatively to the undoped one is lower at the same temperature. Thermogravimetric

  17. Lithium-Ion Mobility in Quaternary Boro-Germano-Phosphate Glasses.

    Science.gov (United States)

    Moguš-Milanković, Andrea; Sklepić, Kristina; Mošner, Petr; Koudelka, Ladislav; Kalenda, Petr

    2016-04-28

    Effect of the structural changes, electrical conductivity, and dielectric properties on the addition of a third glass-former, GeO2, to the borophosphate glasses, 40Li2O-10B2O3-(50 - x)P2O5-xGeO2, x = 0-25 mol %, has been studied. Introduction of GeO2 causes the structural modifications in the glass network, which results in a continuous increase in electrical conductivity. Glasses with low GeO2 content, up to 10 mol %, show a rapid increase in dc conductivity as a result of the interlinkage of slightly depolymerized phosphate chains and negatively charged [GeO4](-) units, which enhances the migration of Li(+) ions. The Li(+) ions compensate these delocalized charges connecting both phosphate and germanium units, which results in reduction of both bond effectiveness and binding energy of Li(+) ions and therefore enables their hop to the next charge-compensating site. For higher GeO2 content, the dc conductivity increases slightly, tending to approach a maximum in Li(+) ion mobility caused by the incorporation of GeO2 units into phosphate network combined with conversion of GeO4 to GeO6 units. The strong cross-linkage of germanium and phosphate units creates heteroatomic P-O-Ge bonds responsible for more effectively trapped Li(+) ions. A close correspondence between dielectric and conductivity parameters at high frequencies indicates that the increase in conductivity indeed is controlled by the modification of structure as a function of GeO2 addition.

  18. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Premila, M.; Amarendra, G.; Govindan Kutty, K.V.; Sundar, C.S.; Vasudeva Rao, P.R.

    2012-01-01

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs 2 O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  19. Effects of Inulin and Sodium Carbonate in Phosphate-Free Restructured Poultry Steaks

    Science.gov (United States)

    Öztürk, B.; Serdaroğlu, M.

    2017-09-01

    Recently inorganic phosphates used in meat product formulations have caused negative impact on consumers due to their potential health risks. Therefore, utilization of natural ingredients as phosphate replacers has come into prominence as a novel research topic to meet consumer demands for clean-label trends. In this study, we objected to investigate the effects of inulin utilization either in the powder or gelled form, alone or in combination with sodium carbonate on quality of phosphate-free restructured chicken steaks. Total moisture, protein, lipid and ash values of the trial groups were in the range of 71.54-75.46%, 22.60-24.31%, 0.94-1.70% and 1.45-2.13%, respectively. pH of the samples was between 6.18-6.39, significant increments were recorded in samples containing inulin with sodium carbonate. L*, a* and b* values were recorded as 78.92-81.05, 1.76-3.05 and 10.80-11.94, respectively, where use of gelled inulin resulted in changes of L* and a* values. Utilization of inulin in combination with sodium carbonate decreased cook loss and enhanced product yield. Sensory scores in control group with phosphate showed a similar pattern to sensory scores in groups with inulin and sodium carbonate. During storage, purge loss and lipid oxidation rate were similar in control and inulin + sodium carbonate samples. The results showed that use of inulin in combination with sodium carbonate provided equivalent physical, chemical and sensory quality to phosphates in restructured chicken steaks.

  20. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Ciceo-Lucacel, R.; Radu, T., E-mail: teodora.radu@phys.ubbcluj.ro; Ponta, O.; Simon, V.

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO{sub 2} content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P{sub 2}O{sub 7}{sup 4−} dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO{sub 3}{sup −} middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ{sub 3} or BØ{sub 2}O{sup −} units. A small contribution of BØ{sub 4}{sup −} units was also detected from the FT-IR spectra of glasses. For SeO{sub 2} content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P{sub 2}O{sub 5}-CaO-B{sub 2}O{sub 3}-SeO{sub 2} glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system.

  1. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    International Nuclear Information System (INIS)

    Ciceo-Lucacel, R.; Radu, T.; Ponta, O.; Simon, V.

    2014-01-01

    We synthesized a new boro-phosphate glass system with different %mol SeO 2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P 2 O 7 4− dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO 3 − middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ 3 or BØ 2 O − units. A small contribution of BØ 4 − units was also detected from the FT-IR spectra of glasses. For SeO 2 content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P 2 O 5 -CaO-B 2 O 3 -SeO 2 glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system

  2. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers

    International Nuclear Information System (INIS)

    Seneschal, Karine; Smektala, Frederic; Bureau, Bruno; Floch, Marie Le; Jiang Shibin; Luo, Tao; Lucas, Jacques; Peyghambarian, Nasser

    2005-01-01

    New phosphate glasses have been developed in order to incorporate high rare-earth ions concentrations. These glasses present a great chemical stability and a high optical quality. The phosphate glass network is open, very flexible, with a linkage of the tetrahedrons very disordered and contains a larger number of non-bridging oxygens (66%). The great stability and resistance against crystallization associated with the possibility to incorporate high doping concentration of rare-earth ions in these phosphate glasses make them very good candidates for the realization of ultra short single mode amplifiers with a high gain at 1.55 μm

  3. Applicability of iron phosphate glass medium for loading NaCl originated from seawater used for cooling the stricken power reactors

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Kobayashi, Hidekazu; Yokozawa, Takuma; Yamashita, Teruo; Nagai, Takayuki; Kitamura, Naoto; Takebe, Hiromichi; Mitamura, Naoki; Tsuzuki, Tatsuya

    2013-01-01

    As the part of investigation for immobilization of the sludge as one of the radioactive wastes arising from the treatment of contaminated water at Fukushima Dai-ichi nuclear power plant, applicability of vitrification method has been evaluated as a candidate technique. The aim of this study is to evaluate the influence of NaCl as one of the main constituents of sludge, on glass formation and glass properties. Two kinds of iron phosphate glass (IPG) media in the xFe 2 O 3 -(100-x)P 2 O 5 , with x=30 and 35 (mol%) were chosen and the glass formation, structure and properties including density, coefficient of thermal expansion, glass transition temperature, onset crystallization temperature and chemical durability of NaCl-loaded IPG were studied. The results are summarized as follows. Sodium chloride, NaCl could be loaded into IPG medium as Na 2 O and Cl contents and their loading ratio could be up to 19 and 15 mol%, respectively. Majority of Cl content of raw material NaCl was thought to be volatilized during glass melting. Loading NaCl into IPG induces to de-polymerize glass network of phosphate chains, leads to decrease both glass transition and onset crystallization temperatures, and to increase coefficient of thermal expansion. NaCl-loaded IPG indicated good chemical durability in case of using 35Fe 2 O 3 - 65P 2 O 5 medium. (authors)

  4. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  5. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    International Nuclear Information System (INIS)

    Vasileva, A.A.; Nazarov, I.A.; Olshin, P.K.; Povolotskiy, A.V.; Sokolov, I.A.; Manshina, A.A.

    2015-01-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag 2 O–0.4P 2 O 5 –0,1Nb 2 O 5 glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag 2 O–0.1Nb 2 O 5 –0.4P 2 O 5 and 0.55Ag 2 O–0.45P 2 O 5 glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown

  6. Alkaline resistant phosphate glasses and method of preparation and use thereof

    Science.gov (United States)

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  7. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.

    Science.gov (United States)

    Colquhoun, R; Tanner, K E

    2015-12-23

    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.

  8. Comparison of the postoperative analgesic effects of naproxen sodium and naproxen sodium-codeine phosphate for arthroscopic meniscus surgery

    Directory of Open Access Journals (Sweden)

    Cagla Bali

    2016-04-01

    Full Text Available ABSTRACT BACKGROUND AND OBJECTIVES: Nonsteroidal anti-inflammatory drugs (NSAIDs are frequently used to control arthroscopic pain. Addition of oral effective opioid "codeine" to NSAIDs may be more effective and decrease parenteral opioid consumption in the postoperative period. The aim of this study was to compare the efficacy and side effects of naproxen sodium and a new preparation naproxen sodium-codeine phosphate when administered preemptively for arthroscopic meniscectomy. METHODS: Sixty-one patients were randomized into two groups to receive either oral naproxen sodium (Group N or naproxen sodium-codeine phosphate (Group NC before surgery. The surgery was carried out under general anesthesia. Intravenous meperidine was initiated by patient-controlled analgesia (PCA for all patients. The primary outcome measure was pain score at the first postoperative hour assessed by the Visual Analogue Scale (VAS. Sedation assessed by Ramsey Sedation Scale, first demand time of PCA, postoperative meperidine consumption, side effects and hemodynamic data were also recorded. RESULTS: The groups were demographically comparable. Median VAS scores both at rest and on movement were significantly lower in Group NC compared with Group N, except 18th hour on movement (p 0.05. CONCLUSIONS: The combination of naproxen sodium-codeine phosphate provided more effective analgesia than naproxen sodium and did not increase side effects.

  9. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    OpenAIRE

    Ruengsri, Suwimon

    2014-01-01

    Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...

  10. Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited

    NARCIS (Netherlands)

    Fletcher, L.B.; Witcher, J.J.; Troy, N.; Reis, S.T.; Brow, R.K.; Martinez Vazquez, R.; Osellame, R.; Krol, D.M.

    2011-01-01

    We have studied the relationship between the initial glass composition and the structural changes associated with laser-induced refractive index modification in a series of Er-Yb doped and undoped zinc phosphate glasses. White light microscopy and waveguide experiments are used together with Raman

  11. UV-visible, Raman and E.S.R. studies of gamma-irradiated NiO-doped sodium metaphosphate glasses.

    Science.gov (United States)

    ElBatal, Fatma H; Morsi, Reham M; Ouis, Mona A; Marzouk, Samir Y

    2010-11-01

    UV-visible spectroscopic measurements of Ni-doped sodium phosphate glasses were carried out before and after successive gamma irradiation. The undoped glass reveals strong UV absorption originating from trace iron impurities. NiO-doped glasses show characteristic absorption bands due mainly to octahedral coordination of Ni(2+) ions. Gamma irradiation produces induced bands generated from intrinsic defects and extrinsic defects. The changes in the spectroscopic data are discussed in relation to the structural evolution caused by the changes in composition and coordination state of nickel ions. The change in the growth behaviour of the induced bands is related to the annihilation or approach saturation of these characteristic induced bands. Raman and E.S.R. spectroscopic measurements confirm the presence of nickel as Ni(2+) ions in octahedral state. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva, A.A., E-mail: anvsilv@gmail.com [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Nazarov, I.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg (Russian Federation); Olshin, P.K.; Povolotskiy, A.V. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Sokolov, I.A. [St.Petersburg State Polytechnical University, St.Petersburg (Russian Federation); LTD “AtomTjazhMash”, St.Petersburg (Russian Federation); Manshina, A.A. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation)

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.

  13. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    International Nuclear Information System (INIS)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-01-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg

  14. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...

  15. Simultaneous Determination of Ciprofloxacin Hydrochloride and Dexamethasone Sodium Phosphate in Eye Drops by HPLC

    Directory of Open Access Journals (Sweden)

    Prakash Katakam

    2012-01-01

    Full Text Available A liquid chromatographic method was developed and validated for the simultaneous determination of ciprofloxacin hydrochloride and dexamethasone sodium phosphate in bulk and pharmaceutical formulations. Optimum separation was achieved in less than 5 min using a C18 column (250 mmx4.6 mm i.d, 5μ particle size by isocratic elution. The mobile phase consisting of a mixture of mixed phosphate buffer (pH 4 and acetonitrile (65:35, v/v was used. Column effluents were monitored at 254 nm at a flow rate of 1ml/min. Retention times of ciprofloxacin hydrochloride and dexamethasone sodium phosphate were 2.0 and 3.16 min respectively. The linearity of ciprofloxacin hydrochloride and dexamethasone sodium phosphate was in the range of 3-18 μg/ml and 1-6 μg/ml respectively. Developed method was economical in terms of the time taken and amount of solvent consumed for each analysis. The method was validated and successfully applied to the simultaneous determination of ciprofloxacin hydrochloride and dexamethasone sodium phosphate in bulk and pharmaceutical formulations.

  16. A simple method for tuning the glass transition process in inorganic phosphate glasses

    Science.gov (United States)

    Fulchiron, René; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legaré, Véronique

    2015-02-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently.

  17. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  18. EFFECT OF SODIUM PHOSPHATES ON SELECTED FOOD GRADE BACTERIA

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2011-04-01

    Full Text Available The aim of this study was to examine the inhibitory effect in vitro of selected sodium phosphates (under the corporate names Hexa 68, Hexa 70, Trikrystal, FST, Pyro 52, KPS, Didi on selected gram-positive and gram-negative bacteria. Seven different concentrations of each phosphate were used. Sensitivity of the bacterial strains to phosphates was observed in broth supplemented with salts. In vitro was showed a negative effect of various phosphates on growth of selected gram-positive bacteria. Orthophosphates and diphosphates (pyrophosphates did not have significant inhibitory effect on tested bacteria at neutral pH. With the exception of phosphate Trikrystal has not been found in vitro significant inhibitory effects on gram-negative bacteria.doi:10.5219/141

  19. Study of multicomponent fluoro-phosphate based glasses: Ho3+ as a luminescence center

    International Nuclear Information System (INIS)

    Babu, S.; Seshadri, M.; Balakrishna, A.; Reddy Prasad, V.; Ratnakaram, Y.C.

    2015-01-01

    The multicomponent 49.5P 2 O 5 –10AlF 3 –10BaF 2 –10SrF 2 –10PbO–10M (M=Li 2 O, Na 2 O, K 2 O, ZnO and Bi 2 O 3 ) glasses doped with 0.5 mol% holmium were prepared by melt quenching technique. Their thermal behavior was examined from differential scanning calorimetry (DSC). It is found that bismuth fluoro-phosphate glass matrix has good thermal stability. Their structures were characterized by the X-ray diffraction with SEM analysis, fourier transform infrared (FTIR), Raman spectroscopy and magic angle spinning (MAS) nuclear magnetic resonance (NMR) techniques. It was found that the phosphate network of these glasses was composed mainly of Q 2 and Q 3 phosphate tetrahedral units. The Judd–Ofelt parameters (J–O) (Ω 2 , Ω 4 and Ω 6 ) were evaluated from the intensities of the energy levels through optical absorption spectra. The most intense transitions are observed in the visible region of the spectrum. It is observed that the transition 5 I 8 → 5 G 6 is the hypersensitive transition for Ho 3+ ion. With these J–O parameters, various radiative properties like the probabilities of radiative transitions, radiative lifetimes and branching ratios have been calculated for different fluoro-phosphate glasses. The luminescence kinetics from excited holmium levels have been studied upon selective excitation through photoluminescence measurements. Holmium produces two visible laser emissions i.e. one is green ( 5 F 4 ( 5 S 2 )→ 5 I 8 ) and another one is red ( 5 F 5 → 5 I 8 ). The lifetimes of these levels have been experimentally determined through decay profile studies. The above results suggest that the prepared bismuth fluoro-phosphate glass system could be a suitable candidate for using it as a green laser source ( 5 F 4 ( 5 S 2 )→ 5 I 8 ) in the visible region of the spectrum. - Highlights: • Holmium doped different fluoro-phosphate glasses were prepared and characterized. • Structural, thermal and spectroscopic properties have been studied

  20. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    Energy Technology Data Exchange (ETDEWEB)

    Garaje, Sunil N.; Apte, Sanjay K. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Kumar, Ganpathy [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Panmand, Rajendra P.; Naik, Sonali D. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Mahajan, Satish M., E-mail: smahajan@tntech.edu [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Chand, Ramesh [Ministry of Communications and Information Technology, Department of Electronics and Information Technology (DeitY), Electronics Niketan, 6, CGO Complex, New Delhi 110003 (India); Kale, Bharat B., E-mail: bbkale@cmet.gov.in [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India)

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2% ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.

  1. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up to 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.

  2. Stability of i.v. admixture containing metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate in 0.9% sodium chloride injection.

    Science.gov (United States)

    Kintzel, Polly E; Zhao, Ting; Wen, Bo; Sun, Duxin

    2014-12-01

    The chemical stability of a sterile admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was evaluated. Triplicate samples were prepared and stored at room temperature without light protection for a total of 48 hours. Aliquots from each sample were tested for chemical stability immediately after preparation and at 1, 4, 8, 24, and 48 hours using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate were selectively monitored using multiple-reaction monitoring. Samples were diluted differently for quantitation using three individual LC-MS/MS methods. To determine the drug concentration of the three compounds in the samples, three calibration curves were constructed by plotting the peak area or the peak area ratio versus the concentration of the calibration standards of each tested compound. Apixaban was used as an internal standard. Linearity of the calibration curve was evaluated by the correlation coefficient r(2). Constituents of the admixture of metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection retained more than 90% of their initial concentrations over 48 hours of storage at room temperature without protection from light. The observed variability in concentrations of these three compounds was within the limits of assay variability. An i.v. admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was chemically stable for 48 hours when stored at room temperature without light protection. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  3. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    Science.gov (United States)

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.

  4. Nanoscale mechanochemical wear of phosphate laser glass against a CeO{sub 2} particle in humid air

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiaxin, E-mail: yujiaxin@swust.edu.cn [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); He, Hongtu; Zhang, Yafeng [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); Hu, Hailong [Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-01-15

    Highlights: • Friction components of phosphate glass/CeO{sub 2} pair in humid air were quantified to understand the friction mechanism. • Severe nanoscale wear was directly observed by AFM topography on both phosphate glass and CeO{sub 2} particle in humid air. • The wearless behaviors of phosphate glass in vacuum were confirmed by the AFM phase image. • Capillary water bridge induced corrosion plays an important role in the mechanochemical wear of phosphate glass in air. - Abstract: Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO{sub 2} particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO{sub 2} pair in air was found to be 5–7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65–79%. The capillary water bridge further induced a serious material removal of glass and CeO{sub 2} particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Ce−O−P bond, accelerating the reaction between water and the glass/CeO{sub 2} pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  5. Efficacy and tolerance of sodium phosphates oral solution after diet liberalization.

    Science.gov (United States)

    Scott, Sherrie R; Raymond, Patricia L; Thompson, William O; Galt, Deborah J B

    2005-01-01

    Bowel cleansing regimens commonly require adherence to liquid diets for 24 to 48 hours before examination, which often leads to poor compliance, reduced cleansing, and ultimately inadequate examinations. The authors investigated the efficacy and tolerability of diet liberalization before bowel cleansing with sodium phosphates oral solution. Two hundred patients were randomized into two treatment groups. One group received the standard light breakfast followed by clear liquids the day before colonoscopy; the second had a normal breakfast followed by a low-residue lunch the day before colonoscopy. Both groups had the same bowel preparation with sodium phosphates oral solution (2 x 45-mL, 7 p.m./6 a.m.). There was no difference in clinical efficacy between the two diet regimens (excellent/good in 93% standard, 95% low-residue). Fewer patients receiving the low-residue diet reported hunger, and more patients receiving the low-residue regimen reported energy to perform usual activities. This study supports offering patients a regular breakfast and a low-residue lunch before bowel cleansing with sodium phosphates oral solution.

  6. Compatibility and stability of aloxi (palonosetron hydrochloride) admixed with dexamethasone sodium phosphate.

    Science.gov (United States)

    Trissel, Lawrence A; Zhang, Yanping

    2004-01-01

    The purpose of this study was to evaluate the physical and chemical stability of palonosetron hydrochloride 0.25 mg admixed with dexamethasone (as sodium phophate) 10 mg or 20 mg in 5% dextrose injection or 0.9% sodium chloride injection in polyvinylchloride minibags, and also admixed with dexamethasone (as sodium phosphate) 3.3 mg in 5% dextrose injection or 0.9% sodium chloride injection in polypropylene syringes, at 4 deg C stored in the dark for 14 days, and at 23 deg C exposed to normal laboratory fluorescent light over 48 hours. Test samples of palonosetron hydrochloride 5 micrograms/mL with dexamethasone (as sodium phosphate) 0.2 mg/mL and also 0.4 mg/mL were prepared in polyvinylchloride minibags of each infusion solution. Additionally, palonosetron hydrochloride 25 micrograms/mL with dexamethasone (as sodium phosphate) 0.33 mg/mL in each infusion solution were prepared as 10 mL of test solution in 20-mL polypropylene syringes. Evaluations for physical and chemical stability were performed on samples taken initially and after 1, 3, 7 and 14 days of storage at 4 deg C and after 1, 4, 24 and 48 hours at 23 deg C. Physical stability was assessed using visual observation in normal room light and using a high-intensity monodirectional light beam. In addition, turbidity and particle content were measured electronically. Chemical stability of the drug was evaluated by using a stability-indicating high-performance liquid chromatographic analytical technique. All samples were physically compatible throughout the study. The solutions remained clear and showed little or no change in particulate burden and haze level. Additionally, little or no loss of palonosetron hydrochloride and dexamethasone occurred in any of the samples at either temperature throughout the entire study period. Admixtures of palonosetron hydrochloride with dexamethasone sodium phosphate in 5% dextrose injection or in 0.9% sodium chloride injection packaged in polyvinylchloride minibags or in

  7. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Knowles, Jonathan Campbell

    2014-01-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds

  8. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Charu L., E-mail: dubecharu@gmail.com; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-15

    Highlights: • Alpha decay of actinides in iron phosphate glasses is simulated by employing ion irradiation technique. • FTIR and Raman spectroscopic measurements confirm modification of glass network. • The depolymerisation of glass network after irradiation is attributed to synergetic effect of nuclear and electronic losses. - Abstract: A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  9. Role of lead as modifier on the properties of lead iron phosphate nuclear waste glasses

    International Nuclear Information System (INIS)

    Hazra, G.; Mitra, P.; Das, T.

    2011-01-01

    Lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high level defence and high level commercial radioactive waste for long term disposal. Lead iron phosphate glasses have several advantages such as lower aqueous corrosion rate, lower processing temperature etc. (author)

  10. Compatibility and Stability of Rolapitant Injectable Emulsion Admixed with Dexamethasone Sodium Phosphate.

    Science.gov (United States)

    Wu, George; Yeung, Stanley; Chen, Frank

    2017-01-01

    Neurokinin-1 receptor antagonist, 5-hydroxytryptamine-3 receptor antagonist, and dexamethasone combination therapy is the standard of care for the prevention of chemotherapy-induced nausea and vomiting. Herein, we describe the physical and chemical stability of an injectable emulsion of the Neurokinin-1 receptor antagonist rolapitant 185 mg in 92.5 mL (free base, 166.5 mg in 92.5 mL) admixed with either 2.5 mL of dexamethasone sodium phosphate (10 mg) or 5 mL of dexamethasone sodium phosphate (20 mg). Admixtures were prepared and stored in two types of container closures (glass and Crystal Zenith plastic bottles) and four types of intravenous administration tubing sets (or intravenous tubing sets). The assessment of the physical and chemical stability was conducted on admixtures packaged in bottled samples stored at room temperature (20°C to 25°C under fluorescent light) and evaluated at 0, 1, and 6 hours. For admixtures in intravenous tubing sets, the assessment of physicochemical stability was performed after 0 and 7 hours of storage at 20°C to 25°C, and then after 20 hours (total 27 hours) under refrigeration (2°C to 8°C) and protected from light. Physical stability was assessed by visually examining the bottle contents under normal room light and measuring turbidity and particulate matter. Chemical stability was assessed by measuring the pH of the admixture and determining drug concentrations through high-performance liquid chromatographic analysis. Results showed that all samples were physically compatible throughout the duration of the study. The admixtures stayed within narrow and acceptable ranges in pH, turbidity, and particulate matter. Admixtures of rolapitant and dexamethasone were chemically stable when stored in glass and Crystal Zenith bottles for at least 6 hours at room temperature, as well as in the four selected intravenous tubing sets for 7 hours at 20°C to 25°C and then for 20 (total 27 hours) hours at 2°C to 8°C. No loss of potency

  11. Magnetic susceptibility of sodium disilicate glasses containing PuO2

    International Nuclear Information System (INIS)

    Aldred, A.T.

    1979-01-01

    A solubility limit of approx. 6 mol % PuO 2 in sodium disilicate (Na 2 O.2SiO 2 ) glass has been determined. Magnetic susceptibility measurements on these glasses yield approximate Curie-Weiss behavior, in contrast to the temperature-independent susceptibility of crystalline PuO 2 . This result is interpreted to indicate that the local site symmetry around the Pu ion in the sodium disilicate glass is much different than in crystalline PuO 2 . The effective paramagnetic moments determined from the temperature dependence of the susceptibility are found to be consistent with calculated free-ion values based on the most likely 5f electron configurations

  12. Studies on the synthesis and characterization of cesium-containing iron phosphate glasses

    Science.gov (United States)

    Joseph, Kitheri; Govindan Kutty, K. V.; Chandramohan, P.; Vasudeva Rao, P. R.

    2009-02-01

    Isotopes of cesium and strontium can be utilized as radiation source for various industrial and medical applications after their separation from high level nuclear waste. However, these elements need to be immobilized in a suitable matrix. In the present work, a systematic approach has been made to immobilize inactive cesium into iron phosphate glass. Up to 36 mol% of Cs 2O has been loaded successfully without crystallization. The glass transition temperature of the cesium loaded glass was found to increase initially and then decrease as a function of Cs 2O content. Mössbauer studies show that the concentration of Fe 3+ ions in the cesium loaded glasses is >95%. Volatilization experiments at 1263 K show that the weight loss is >0.5% for a period of 4 h. The 36 mol% of Cs 2O loaded iron phosphate glass with high Fe 3+ content described in this paper is reported for the first time.

  13. Unique sodium phosphosilicate glasses designed through extended topological constraint theory.

    Science.gov (United States)

    Zeng, Huidan; Jiang, Qi; Liu, Zhao; Li, Xiang; Ren, Jing; Chen, Guorong; Liu, Fude; Peng, Shou

    2014-05-15

    Sodium phosphosilicate glasses exhibit unique properties with mixed network formers, and have various potential applications. However, proper understanding on the network structures and property-oriented methodology based on compositional changes are lacking. In this study, we have developed an extended topological constraint theory and applied it successfully to analyze the composition dependence of glass transition temperature (Tg) and hardness of sodium phosphosilicate glasses. It was found that the hardness and Tg of glasses do not always increase with the content of SiO2, and there exist maximum hardness and Tg at a certain content of SiO2. In particular, a unique glass (20Na2O-17SiO2-63P2O5) exhibits a low glass transition temperature (589 K) but still has relatively high hardness (4.42 GPa) mainly due to the high fraction of highly coordinated network former Si((6)). Because of its convenient forming and manufacturing, such kind of phosphosilicate glasses has a lot of valuable applications in optical fibers, optical amplifiers, biomaterials, and fuel cells. Also, such methodology can be applied to other types of phosphosilicate glasses with similar structures.

  14. Energy transfer processes in Yb{sup 3+}-Tm{sup 3+} co-doped sodium alumino-phosphate glasses with improved 1.8 {mu}m emission

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Andrea S S de; Terra, Idelma A A; Nunes, Luiz Antonio de O; Li, M Siu [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970, Sao Carlos-SP (Brazil)], E-mail: andreasc@ifsc.usp.br

    2008-06-25

    Sodium alumino-phosphate glasses co-doped with Yb{sup 3+} and Tm{sup 3+} ions have been prepared with notably low OH{sup -} content, and characterized from the viewpoint of their spectroscopic properties. In these glasses, Yb{sup 3+} acts as an efficient sensitizer of excitation energy at 0.98 {mu}m-which can be provided by high power and low cost diode lasers, and subsequently undergoes non-resonant energy transfer to Tm{sup 3+} ions ({sup 2}F{sub 5/2}, {sup 3}H{sub 6} {yields} {sup 2}F{sub 7/2}, {sup 3}H{sub 5}). Through this process, the emitting level {sup 3}F{sub 4} is rapidly populated, generating improved emission at 1.8 {mu}m ({sup 3}F{sub 4} {yields} {sup 3}H{sub 6}). In order to guarantee the efficiency of such favorable energy transfer, energy losses via multiphonon decay, Yb-Yb radiative trapping, and non-radiative transfer to OH{sup -} groups were evaluated, and minimized when possible. The dipole-dipole energy transfer microscopic parameters corresponding to Yb{sup 3+} {yields} Tm{sup 3+}, Yb{sup 3+} {yields} Yb{sup 3+} and Tm{sup 3+} {yields} Tm{sup 3+} transfers, calculated by the Foerster-Dexter model, are C{sub Yb-Tm} = 2.9 x 10{sup -40} cm{sup 6} s{sup -1}, C{sub Yb-Yb} = 42 x 10{sup -40} cm{sup 6} s{sup -1} and C{sub Tm-Tm} = 43 x 10{sup -40} cm{sup 6} s{sup -1}, respectively.

  15. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  16. Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    We report on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr3+-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr3+-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory.

  17. The effects of uranium on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.; Karabulut, M.; Marasinghe, K.; Saboungi, M.L.; Haeffner, D.; Shastri, S.; Day, D.E.; Ray, C.S.

    1999-01-01

    Because of their high chemical durability and waste loading capacity, iron phosphate glasses are a natural candidate for a nuclear waste disposal medium. The authors have studied the effects of uranium on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction. The results of neutron scattering, which is mostly sensitive to pair correlations involving light atoms, i.e., O-O, Fe-O and P-O, indicate the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with earlier results using Raman scattering and EXAFS on the Fe-K edge, where in both cases the spectra remain similar to the base glass. The results of high-energy x-ray scattering, which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, are also consistent with the overall picture of uranium occupying interstitial sites in the relatively undisturbed base glass structure. Combining the neutron and x-ray data for a 10 mol% UO 2 glass suggests the intriguing possibility of a U 6+ uranyl ion configuration although further work is needed to establish the precise local structure and valence state of uranium in these glasses

  18. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    Science.gov (United States)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  19. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  20. Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses

    International Nuclear Information System (INIS)

    Natura, U.; Ehrt, D.

    2001-01-01

    Fluoride phosphate (FP) glasses with low phosphate content are high-transparent in the deep ultraviolet (UV) range and attractive candidates for UV-optics. Their optical properties are complementary to fluoride crystals. The anomalous partial dispersion makes them desirable for optical lens designs to reduce the secondary spectrum. Their UV transmission is limited by trace impurities introduced by raw materials and decreases when exposed to UV-radiation (lamps, lasers). The experiments of the paper published previously in this journal were used in order to separate radiation induced absorption bands in the fluoride phosphate glass FP10. In this paper the generation mechanism of the phosphorus-oxygen related hole center POHC 2 is investigated in detail in glasses of various compositions (various phosphate and impurity contents) in order to predict the transmission loss in case of long-time irradiation. Experiments were carried out using ArF- and KrF-excimer lasers (ns-pulses). POHC 2 generation strongly depends on the phosphate content and on the content of Pb 2+ . A model was developed on these terms. Rate equations are formulated, incorporating the influence of the Pb 2+ -content on the defect generation, a two-step creation term including an energy transfer process and a one-photon bleaching term. This results in a set of coupled nonlinear differential equations. Absorption coefficients and lifetimes of the excited states were calculated as well. Experimental results compared well with the numerical analysis of the theoretical rate equations

  1. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED WASTE FORMS

    International Nuclear Information System (INIS)

    Day, Delbert D.

    2000-01-01

    As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms

  2. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    Science.gov (United States)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  3. EFFECTS OF SODIUM PHOSPHATE LOADING ON AEROBIC POWER AND CAPACITY IN OFF ROAD CYCLISTS

    Directory of Open Access Journals (Sweden)

    Scott Woska

    2009-12-01

    Full Text Available The main aim of this paper was to evaluate the effects of short- term (6 days phosphate loading, as well as prolonged (21 days intake of sodium phosphate on aerobic capacity in off-road cyclists. Nineteen well-trained cyclists were randomly divided into a supplemental (S and control group (C. Group S was supplemented for 6 days with tri-sodium phosphate, in a dose of 50 mg·kg-1 of FFM/d, while a placebo was provided for the C group. Additionally, group S was further subjected to a 3-week supplementation of 25 mg·kg-1 FFM/d, while group C received 2g of glucose. The results indicate a significant (p < 0.05 increase in VO2max, VEmax, and O2/HR, due to sodium phosphate intake over 6 days. Also a significant (p < 0.05 decrease in HRrest and HRmax occurred. The supplementation procedure caused a significant increase (p < 0.05 in Pmax and a shift of VAT towards higher loads. There were no significant changes in the concentration of 2,3-DPG, acid-base balance and lactate concentration, due to phosphate salt intake

  4. Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Chen, B.J. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Pun, E.Y.B. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-15

    Highlights: • Effective near-infrared emission (1380-1525 nm) is observed in Pr{sup 3+}-doped phosphate glasses. • Effective bandwidth of {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm. • Channel waveguides have been fabricated by K{sup +}-Na{sup +} ion-exchange method. • Pr{sup 3+}-doped phosphate glasses are promising in developing integrated broadband waveguide amplifier. - Abstract: Effective near-infrared emission covering the fifth optical telecommunication window (1380-1525 nm) has been observed in Pr{sup 3+}-doped phosphate (NMAP) glasses. Judd-Ofelt parameters Ω{sub 2} (6.38 × 10{sup −20} cm{sup 2}), Ω{sub 4} (20.30 × 10{sup −20} cm{sup 2}) and Ω{sub 6} (0.40 × 10{sup −20} cm{sup 2}) indicate a high inversion asymmetrical and strong covalent environment in the optical glasses. The effective bandwidth (Δλ{sub eff}) of the corresponding {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm, and the maximum stimulated emission cross-section (σ{sub em-max}) at 1468 nm is derived to be 1.14 × 10{sup −20} cm{sup 2}. Channel waveguide was fabricated successfully by K{sup +}-Na{sup +} ion-exchange method with mode field diameter of 8.8 μm in the horizontal direction and 6.7 μm in the vertical direction. Broad effective bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Pr{sup 3+}-doped NMAP phosphate glasses are promising in developing integrated broadband waveguide amplifier, especially operating at E- and S-bands which belong to the fifth optical telecommunication window.

  5. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  6. Femtosecond laser-induced reduction in Eu-doped sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ki-Soo [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)]. E-mail: kslim@chungbuk.ac.kr; Lee, Sunkyun [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Trinh, Minh-Tuan [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Suk-Ho [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lee, Myeongkyu [Departent of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul 120-749 (Korea, Republic of); Hamilton, Douglas S. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Gibson, George N. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2007-01-15

    In this work, we report permanent reduction of Eu{sup 3+} to Eu{sup 2+} in sodium borate glasses by irradiation of near-infrared femtosecond laser. Glass composition of sodium borate was 85B{sub 2}O{sub 3}-15Na{sub 2}O. The glasses were doped with 0.05, 0.1, and 0.5 mol% Eu{sub 2}O{sub 3}. Absorption and fluorescence dynamics were studied to investigate valence state change of europium ions and the energy transfer between Eu{sup 2+} and Eu{sup 3+} ions. As the femtosecond laser intensity or exposure time increases, the emission band at 400 nm becomes stronger. However, the photoreduction efficiency decreases as the dopant concentration increases. We discuss the photoreduction mechanism under multiphoton absorption.

  7. Optical and structural characterization of rare earth doped niobium phosphate glasses

    International Nuclear Information System (INIS)

    Sene, F.F.; Martinelli, J.R.; Gomes, L.

    2004-01-01

    Phosphate glasses containing up to 45mol% of niobium were obtained. X-ray diffraction, infrared, Raman, and optical absorption spectroscopy were used to analyze those materials. The refractive index varies from 1.70 to 1.85 as the amount of Nb increases. Niobium phosphate glasses with optical transparence in the (400-2500nm) range were produced. The cut off varied from 342nm to 378nm as a function of the Nb concentration. The cut off is due to the charge transfer O 2 ->Nb 5+ . Glasses containing 10mol% of Nb 2 O 5 are the most promising materials to be used as rare-earth ions hosts because they are chemically resistant, and show optical transparency in the spectral range of visible to infrared. Doping the glasses with 1-5mol% of Er, Ho, Pr, and Yb ions does not change the glass structure, as measured by X-ray diffraction, infrared, and Raman spectroscopy. The fluorescence lifetimes were determined for Nd, Yb, and Er, and the absorption cross-section were determined for all ions. The energy transfer in co-doped Yb-Er system was measured, and the lifetime of excited states and the luminescence efficiency were determined to be 91% for the Er 4 I 11/2 level, in the Yb-Er co-doped glasses

  8. Immobilization of {sup 99}Tc (Re) using Iron-Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jong; Xu, Kai; Um, Woo Yong; Hrma, Pavel [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2012-05-15

    Technetium-99 ({sup 99}Tc) is a fission product artificially generated during the irradiation of {sup 235}U for commercial power production or {sup 239}Pu for nuclear weapons. Under oxidizing conditions, the dominant species of Tc, the pertechnetate anion (TcO{sub 4} {sup -}), is highly soluble in ground water and thus easily transports through the geologic systems. In addition, because of its high fission yield ({approx}6 %) and long half-life (2.1x10{sup 5} yr), immobilization of {sup 99}Tc has been investigated for decades. Several waste forms such as metallic alloys, sintered titanate ceramics and chemically bonded phosphate ceramics have been proposed to encapsulate {sup 99}Tc. They have not yet been realized in the industrial-scale, mostly either due to the high volatilization of {sup 99}Tc during high temperature process (>1300 .deg. C), or the low {sup 99}Tc loading. Iron-phosphate (FeP) glasses have been developed as alternative waste forms because of their chemical durability equivalent to borosilicate glasses. Additionally, vitrification of radioactive waste by FeP glasses can be done at a relatively low temperature ({approx}1000 .deg. C) and the low-temperature process can reduce the volatilization of {sup 99}Tc significantly. Thus, this work reports the immobilization of {sup 99}Tc by FeP glasses using rhenium (Re) as a surrogate. We also examine the chemical durability of Re-containing FeP glasses using product consistency test (PCT). Experimental results reveal that FeP glass can become a promising candidate for immobilizing {sup 99}Tc

  9. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    International Nuclear Information System (INIS)

    Kim, Dae-Sung; Ryu, Bong-ki

    2017-01-01

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P 2 O 5 -CaO-Na 2 O-TiO 2 system with a high TiO 2 content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO 2 enters the network as (TiO 6 ), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO 2 content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  10. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Sung; Ryu, Bong-ki [Pusan National University, Busan (Korea, Republic of)

    2017-04-15

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P{sub 2}O{sub 5}-CaO-Na{sub 2}O-TiO{sub 2} system with a high TiO{sub 2} content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO{sub 2} enters the network as (TiO{sub 6}), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO{sub 2} content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  11. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses.......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...

  12. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    Science.gov (United States)

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Recent advances in phosphate laser glasses for high power applications

    International Nuclear Information System (INIS)

    Campbell, J.H.

    1996-01-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm 3 have been made and methods for continuous melting laser glass are under development

  14. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    OpenAIRE

    Yao L. Q.; Chen G. H.; Zhong H. J.; Cui S. C.; Li F.; Gan J.Y.

    2016-01-01

    Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328) of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333). Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  15. Moessbauer effect study of oxidation and coordination states of iron in some sodium borate glasse:;

    International Nuclear Information System (INIS)

    Eissa, N.A.; Sanad, A.M.; Youssef, S.M.; El-Henawii, S.A.; Gomaa, S.Sh.; Mostafa, A.G.

    1980-01-01

    A structural study of some sodium borate glasses containing iron was carried out applying ME spectroscopy. Both oxidation and coordination states of iron were investigated under the effect of gradual replacing of sodium carbonate by sodium nitrate in the glass batches. The glasses were melted in porcelain crucibles using an electrically heated furnace at 1000+-10 deg C, then were quenched on a steel plate at room temperature (R.T.). The ME source was 20 mCi radioactive Co-57 in chromium. The obtained ME spectra indicated that at lower sodium nitrate content both Fe 2+ and Fe 3+ are present in these glasses. At moderate concentrations some Fe 3+ ions were separated in a crystalline phase and the rest of the iron ions appeared as ferric ions in glassy state. At high sodium nitrate content only Fe 3+ ions in glassy state were detected. The values of the ME parameters for all iron ions indicated that all of them are in the octahedral coordination state. The density measurements confirm the separation of a crystalline phase at moderate sodium nitrate content. (author)

  16. Structural and spectroscopic characteristics of Eu3+-doped tungsten phosphate glasses

    Science.gov (United States)

    Dousti, M. Reza; Poirier, Gael Yves; de Camargo, Andrea Simone Stucchi

    2015-07-01

    Tungsten based phosphate glasses are interesting non-crystalline materials, commonly known for photochromic and electrochromic effects, but also promising hosts for luminescent trivalent rare earth ions. Despite very few reports in the literature, association of the host´s functionalities with the efficient emissions of the dopant ions in the visible and near-infrared spectra could lead to novel applications. This work reports the preparation and characterization of glasses with the new composition 4(Sb2O3)96-x(50WO3 50NaPO3)xEu2O3 where x = 0, 0.1, 0.25, 0.5 and 1.0 mol%, obtained by the melt quenching technique. The glasses present large density (∼4.6 g cm-3), high glass transition temperature (∼480 °C) and high thermal stability against crystallization. Upon excitation at 464 nm, the characteristic emissions of Eu3+ ions in the red spectral region are observed with high intensity. The Judd-Ofelt intensity parameters Ω2 = 6.86 × 10-20, Ω4 = 3.22 × 10-20 and Ω6 = 8.2 × 10-20 cm2 were calculated from the emission spectra and found to be higher than those reported for other phosphate glass compositions. An average excited state lifetime value of 1.2 ms, was determined by fitting the luminescence decay curves with single exponential functions and it is comparable or higher than those of other oxide glasses.

  17. Stability of Diphenhydramine Hydrochloride, Lorazepam, and Dexamethasone Sodium Phosphate in 0.9% Sodium Chloride Stored in Polypropylene Syringes.

    Science.gov (United States)

    Anderson, Collin R; Halford, Zachery; MacKay, Mark

    2015-01-01

    Chemotherapy induced nausea and vomiting is problematic for many patients undergoing chemotherapy. Multiple-drug treatments have been developed to mitigate chemotherapy induced nausea and vomiting. A patient-controlled infusion of diphenhydramine hydrochloride, lorazepam, and dexamethasone sodium phosphate has been studied in patients who are refractory to first-line therapy. Unfortunately, the physical and chemical compatibility of this three-drug combination is not available in the published literature. Chemical compatibility was evaluated using high-performance liquid chromatography with ultraviolet detection. Visual observation was employed to detect change in color, clarity, or gas evolution. Turbidity and pH measurements were performed in conjunction with visual observation at hours 0, 24, and 48. Results showed that diphenhydramine hydrochloride 4 mg/mL, lorazepam 0.16 mg/mL, and dexamethasone sodium phosphate 0.27 mg/mL in 0.9% sodium chloride stored in polypropylene syringes were compatible, and components retained greater than 95% of their original concentration over 48 hours when stored at room temperature.

  18. Comprehensive thermal and structural characterization of antimony-phosphate glass

    Science.gov (United States)

    Moustafa, S. Y.; Sahar, M. R.; Ghoshal, S. K.

    For the first time, we prepare new ternary glass systems of composition (95-x)Sb2O3-xP2O5-5MgO, where x = 45, 40, 35 mol%; (85-x)Sb2O3-xP2O5-15MgO, where x = 55, 35, 25 mol%; (75-x)Sb2O3-xP2O5-25MgO, where x = 45, 35, 25 mol%; and 60Sb2O3-(40-x)P2O5-xMgO, where x = 10, 20 mol% via melt-quenching method. Synthesized glasses are characterized using XRD, FESEM, EDX, and TG/DTA measurements. The influence of varying modifier concentrations on their thermal properties is evaluated. The XRD patterns confirmed the amorphous nature of samples. SEM images demonstrated interesting phase formation with ribbons-like texture. Five crystalline phases are evidenced in the ternary diagram which are antimony phosphate and antimony orthophosphate as major phases as well as magnesium phosphate, magnesium cyclo-tetraphosphate and cervantite as minor phases. EDX spectra detected the right elemental traces. Detailed thermal analysis of these glasses revealed their high-molecular polymer character for Sb2O3 content greater than 50 mol%. Three different glass transition temperatures are achieved around 276, 380-381 and 422-470 °C depending on the composition. Furthermore, the solidus and liquidus temperature are found to decrease with increasing Sb2O3 and increases for MgO contents till 15 mol% and then decrease, where the lowest recorded solidus temperature is 426 °C. This observation may open up new research avenues for antimony based ternary glasses and an exploitation of the derived results for optoelectronics applications, photonic devices and non-linear optical devices.

  19. Mechanisms of postradiation transformations in alkaline-phosphate glasses activated by copper

    International Nuclear Information System (INIS)

    Vil'chinskaya, N.N.; Dmitryuk, A.V.; Ignat'ev, E.G.; Karapetyan, G.O.; Petrovskij, G.T.

    1984-01-01

    Lithium aluminophosphate glasses activated by copper served as the object under investigation. Copper content varied from 0 up to 0.13 mass.%. It is shown that pole redistribution among PO 4 2- and Cu(2) centers takes place in alkaline -phosphate glasses activated by Cu(1). This process prevails for copper content of above 0.1%. Therefore the possibility appears to evaluate the quantum yield of colour center formation

  20. Mechanisms of postradiation transformations in alkaline-phosphate glasses activated by copper

    Energy Technology Data Exchange (ETDEWEB)

    Vil' chinskaya, N.N.; Dmitryuk, A.V.; Ignat' ev, E.G.; Karapetyan, G.O.; Petrovskij, G.T. (Gosudarstvennyj Opticheskij Inst., Leningrad (USSR))

    1984-01-01

    Lithium aluminophosphate glasses activated by copper served as the object under investigation. Copper content varied from 0 up to 0.13 mass.%. It is shown that pole redistribution among PO/sub 4//sup 2 -/ and Cu(2) centers takes place in alkaline -phosphate glasses activated by Cu(1). This process prevails for copper content of above 0.1%. Therefore the possibility appears to evaluate the quantum yield of colour center formation.

  1. X-ray absorption spectroscopy on phosphoric-salt pellets. Determination of the geometric and electronic structure of metal-oxide doped sodium-phosphate glasses

    International Nuclear Information System (INIS)

    Brendebach, B.

    2004-02-01

    Sodium metaphosphate glasses doped with transition metal oxides show characteristic colors. X-ray absorption spectroscopy (XAS) investigations provide information whether the coloration stems from different electronic transitions or changes in the geometrical structure of the glasses. Even though the violet color of MnO y -doped glasses is considered as an evidence for Mn 3+ -ions, Mn K-XAS reveals that the majority of the manganese ions are in the oxidation state +II and have a mixed coordination of four and six oxygen atoms, respectively. The oxygen coordination around the nickel ions in NiO-doped glasses with different metall oxide concentrations is always six. The change of color from citreous to auburn with increasing nickel oxide content is attributed to a systematic change in the bonding characteristic from mainly ionic-like to a small but significant contribution of covalent-like bonding. Analysis of higher coordination shells provides no indication of the formation of metal oxide clusters. (orig.)

  2. Comparative investigation on the spectroscopic properties of Pr³⁺-doped boro-phosphate, boro-germo-silicate and tellurite glasses.

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    2012-07-01

    We report on the spectroscopic properties of Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr(3+)-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr(3+)-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Effects of Nanodiamond Abrasive Friability in Experimental MR Fluids with Phosphate Laser Glass LHG-8 and Other Optical Glasses

    Energy Technology Data Exchange (ETDEWEB)

    DeGroote, J.E.; Marino, A.E.; Wilson, J.P.; Spencer, K.E.; Jacobs, S.D.

    2005-09-22

    Research is currently being conducted to better understand the role that nanodiamond abrasives play in the removal process of Magnetorheological Finishing (MRF). The following presents removal rate data for a set of six optical glasses that were spotted (not polished out) with four different MR fluids, as well as texturing/smoothing data for phosphate laser glass LHG-8.

  4. Phosphate-based glasses: Prediction of acoustical properties

    Science.gov (United States)

    El-Moneim, Amin Abd

    2016-04-01

    In this work, a comprehensive study has been carried out to predict the composition dependence of bulk modulus and ultrasonic attenuation coefficient in the phosphate-based glass systems PbO-P2O5, Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-doped Na2O-ZnO-P2O5 at room temperature. The prediction is based on (i) Makishima-Mackenzie theory, which correlates the bulk modulus with packing density and dissociation energy per unit volume, and (ii) Our recently presented semi-empirical formulas, which correlate the ultrasonic attenuation coefficient with the oxygen density, mean atomic ring size, first-order stretching force constant and experimental bulk modulus. Results revealed that our recently presented semi-empirical formulas can be applied successfully to predict changes of ultrasonic attenuation coefficient in binary PbO-P2O5 glasses at 10 MHz frequency and in quaternary Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-Na2O-ZnO-P2O5 glasses at 5 MHz frequency. Also, Makishima-Mackenzie theory appears to be valid for the studied glasses if the effect of the basic structural units that present in the glass network is taken into account.

  5. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review

    Directory of Open Access Journals (Sweden)

    Nadia Giovanna Boetti

    2017-12-01

    Full Text Available In recent years, the exploitation of compact laser sources and amplifiers in fiber form has found extensive applications in industrial and scientific fields. The fiber format offers compactness, high beam quality through single-mode regime and excellent heat dissipation, thus leading to high laser reliability and long-term stability. The realization of devices based on this technology requires an active medium with high optical gain over a short length to increase efficiency while mitigating nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections, chemical stability and high optical damage threshold. In this paper, we review recent advances in the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing techniques. We also present the main performance achievements and outlook both in continuous wave (CW and pulsed mode regimes.

  6. The antimicrobial activity of as-prepared silver-loaded phosphate glasses and zirconium phosphate

    International Nuclear Information System (INIS)

    Jing, Wang; Jiang, Ji Zhi; Yang, Yang; Yan, Zhao Chun; Yan, Wang Xiao; He, Shui Zhong

    2016-01-01

    The antimicrobial activities of silver-loaded zirconium phosphate (JDG) and silver-loaded phosphate glasses (ZZB) against Escherichia coli were studied. Although the silver content in JDG was higher than that in ZZB, ZZB suspensions showed better antimicrobial property than JDG suspensions, especially at low concentrations. The antimicrobial activity was analyzed using minimum inhibitory concentrations, bacterial inhibition ring tests, and detection of silver ions in the suspensions. Furthermore, the amounts of silver ions in suspensions with/without bacterial cells were analyzed. Results revealed that only a portion of released silver ions could be adsorbed by E. coli cells, which are critical to cell death. The damaged microstructures of E. coli cells observed by transmission electron microscopy may further prove that the adsorbed silver ions play an important role in the antimicrobial process.

  7. Structure-topology-property correlations of sodium phosphosilicate glasses.

    Science.gov (United States)

    Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E; Mauro, John C; Smedskjaer, Morten M; Yue, Yuanzheng

    2015-08-14

    In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.

  8. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    Energy Technology Data Exchange (ETDEWEB)

    Amini, R. [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sarabi, A.A., E-mail: sarabi@aut.ac.ir [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2011-06-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  9. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    International Nuclear Information System (INIS)

    Amini, R.; Sarabi, A.A.

    2011-01-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  10. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate (Pb-Fe-P) nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate (B-Si) glass. Vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters, as is presently done with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the performance advantages of the Pb-Fe-P material in a nuclear waste form, it would be necessary to process it so that it is cooled rapidly, thus retaining its vitreous structure

  11. Optical and spectroscopic properties of neodymium doped cadmium-sodium borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Thind, Kulwant Singh

    2017-10-01

    Neodymium doped cadmium sodium borate glasses having composition xCdO-(40-x) Na2CO3-59.5H3BO3-0.5Nd2O3; x = 10, 20 and 30 mol% were prepared by conventional melt-quenching technique. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. Conventional methods were used to determine the physical properties such as density, molar volume, refractive index, and rare earth ion concentration. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The calculated intensity parameters were further used to predict the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the various fluorescent levels of Nd3+ ion in the prepared glass series. The effect of the compositional changes on the spectroscopic characteristics of Nd3+ ions have been studied and reported. The value of Ω2 is found to decrease with the decrease in the sodium content and the corresponding increase in the cadmium content. This can be ascribed to the changes in the asymmetry of the ligand field at the rare earth ion site and the change in rare earth oxygen (RE-O) covalency. Florescence spectra has been used to determine the peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) for the 4F3/2 → 4I9/2,4I11/2,4I13/2 transitions of the Nd3+ ion. The reasonably higher values of branching ratios and stimulated emission cross-section for the prepared glasses points towards the efficacy of these glasses as laser host materials. However, the glass with more sodium content is found to show better lasing properties.

  12. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  13. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  14. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    International Nuclear Information System (INIS)

    Huang, W.; Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D.

    2004-01-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr 2 O 3 , have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10 -9 g/(cm 2 . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of 2 . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr 2 O 3 in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr 2 O 3 that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr 2 O 3 which is at least three times larger than that for borosilicate glasses. (orig.)

  15. Study of Polymorphism of Borovanadate Glass of Sodium by Raman ...

    African Journals Online (AJOL)

    Study of Polymorphism of Borovanadate Glass of Sodium by Raman Spectroscopy Low Frequencies. MK Rabia, M Mayoufi, L Grosvalet, B Champagnon. Abstract. Sodium tetraborate (100 – x)(Na2B4O7.10H2O)– xV2O5, (x = 0 to 20 mole %) has been elaborated by splat cooling technique. Raman Measurements on the ...

  16. Development of novel strontium containing bioactive glass based calcium phosphate cement.

    Science.gov (United States)

    D'Onofrio, A; Kent, N W; Shahdad, S A; Hill, R G

    2016-06-01

    The aim of this study was to investigate the effect on properties of increasing strontium substitution for calcium in bioactive glasses used as precursors for novel calcium phosphate cements. Glasses were produced by progressively substituting strontium for calcium. Cements were prepared by mixing the glass powder with Ca(H2PO4)2 powder with a 2.5% solution of Na2HPO4. Setting times and compressive strength were measured after 1h, 1 day, 7 days and 28 days immersion in Tris buffer solution. X-ray diffraction (XRD), Fourier transform infrared spectroscopy and radiopacity were measured and crystal morphology was assessed using scanning electron microscopy. A correlation between the phases formed, morphology of the crystallites, setting time and compressive strength were analyzed. Setting time increased proportionally with strontium substitution in the glass up to 25%, whereas for higher substitutions it decreased. Compressive strength showed a maximum value of 12.5MPa and was strongly influenced by the interlocking of the crystals and their morphology. XRD showed that the presence of strontium influenced the crystal phases formed. Octacalcium phosphate (Ca8H2(PO4)6·5H2O, OCP) was the main phase present after 1h and 1 day whereas after 28 days OCP was completely transformed to strontium-containing hydroxyapatite (SrxCa(10-x)(PO4)6(OH)2, SrHA). Radiopacity increased proportionally to strontium substitution in the glass. A novel method to develop a bone substitute forming in vitro SrHA as a final product by using a bioactive glass as a precursor was shown. These novel injectable bioactive glass cements are promising materials for dental and orthopedic applications. Further in vivo characterizations are being conducted. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Hideout and hideout return of tri-sodium phosphate in PWR steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Feron, D.; You, D. [CEA/DEN - Laboratoire d' Etude de la Corrosion Aqueuse, Saclay (France); Turluer, G. [CEA/IPSN-Service d' Analyse des Materiels et des Structures, Fontenay-aux-Roses (France)

    2002-07-01

    Tri-sodium phosphate is used as a chemical conditioner of several sub-systems in secondary circuits of PWR. As confirmed by the international experience feedback of the secondary water chemistry, it can appear as a pollutant of the secondary water circuits, whereby it can concentrate in some areas of restricted flow or deposits in the steam generators. The issues raised by those occurrences prompted the safety French authorities (IPSN) to develop a model boiler investigation programme to assess the respective sodium/phosphate behaviour as a result of hideout and hideout return processes. Hideout and hideout return experiments have been performed with three model boilers in order to investigate the behaviour of tri-sodium phosphate pollution with three different configurations: only tube-tube support plate crevices, only sludge at the bottom of the tubes, or with only ''free'' tube surfaces. Obtained results, with discontinuous pollutions at some mg.kg{sup -1}, can be summarised as follow: low hideout on the free surface of the tubes (less than 10%), hideout is more important when tube-tube support plate crevices are present (10 to 30%), maximum hideout is obtained when there is some sludge at the bottom of the tubes (30 to 90%), Hideout return data are always very low compared to the hideout quantities, due to the formation of solid compound with alumina and silica. (authors)

  18. Hideout and hideout return of tri-sodium phosphate in PWR steam generators

    International Nuclear Information System (INIS)

    Feron, D.; You, D.; Turluer, G.

    2002-01-01

    Tri-sodium phosphate is used as a chemical conditioner of several sub-systems in secondary circuits of PWR. As confirmed by the international experience feedback of the secondary water chemistry, it can appear as a pollutant of the secondary water circuits, whereby it can concentrate in some areas of restricted flow or deposits in the steam generators. The issues raised by those occurrences prompted the safety French authorities (IPSN) to develop a model boiler investigation programme to assess the respective sodium/phosphate behaviour as a result of hideout and hideout return processes. Hideout and hideout return experiments have been performed with three model boilers in order to investigate the behaviour of tri-sodium phosphate pollution with three different configurations: only tube-tube support plate crevices, only sludge at the bottom of the tubes, or with only ''free'' tube surfaces. Obtained results, with discontinuous pollutions at some mg.kg -1 , can be summarised as follow: low hideout on the free surface of the tubes (less than 10%), hideout is more important when tube-tube support plate crevices are present (10 to 30%), maximum hideout is obtained when there is some sludge at the bottom of the tubes (30 to 90%), Hideout return data are always very low compared to the hideout quantities, due to the formation of solid compound with alumina and silica. (authors)

  19. Eu{sup 3+} emission in phosphate glasses with high UV transparency

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G.H. [Laboratório de Espectroscopia de Materiais (LEM), Departamento de Física, Universidade Federal de Juiz de Fora, CEP 36036-900 Juiz de Fora, MG (Brazil); Anjos, V., E-mail: virgilio@fisica.ufjf.br [Laboratório de Espectroscopia de Materiais (LEM), Departamento de Física, Universidade Federal de Juiz de Fora, CEP 36036-900 Juiz de Fora, MG (Brazil); Bell, M.J.V. [Laboratório de Espectroscopia de Materiais (LEM), Departamento de Física, Universidade Federal de Juiz de Fora, CEP 36036-900 Juiz de Fora, MG (Brazil); Carmo, A.P. [Instituto Federal Fluminense-Campus Cabo Frio, CP 112015, CEP 28909-971 Cabo Frio, RJ (Brazil); Pinheiro, A.S.; Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, CP 593, CEP 38400-902 Uberlândia, MG (Brazil)

    2014-10-15

    We report a study of the phosphate glass PZABP (P{sub 2}O{sub 5}–ZnO–Al{sub 2}O{sub 3}–BaO–PbO) doped with europium (Eu{sup 3+}) in different concentrations. Absorption, photoluminescence and time resolved photoluminescence were used to investigate the influence of increasing Eu{sup 3+} concentrations. The present glass exhibits Eu{sup 3+} absorption bands in the ultraviolet region (about 300 nm) due to the high transparency of the system compared to other phosphate glasses. In this way, it was possible to obtain the Judd–Ofelt parameters from the emission and absorption spectra. Moreover, a strong red emission attributed to the transition {sup 5}D{sub 0}→{sup 7}F{sub 2} of Eu{sup 3+} (611 nm) was observed. It was found that the radiative lifetime and the quantum efficiency of the Eu{sup 3+} level, {sup 5}D{sub 0}, do not suffer a significant change as the concentration of Eu{sup 3+} ions increases. - Highlights: • UV transparent glass matrix is used for Eu{sup 3+} doping. • Judd–Ofelt parameters from the emission and absorption spectra were obtained. • Red emission attributed to the transition {sup 5}D{sub 0}→{sup 7}F{sub 2} of Eu{sup 3+} (611 nm) was observed.

  20. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    International Nuclear Information System (INIS)

    Salabat, Alireza; Sadeghi, Rahmat; Moghadam, Somayeh Tiani; Jamehbozorg, Bahman

    2011-01-01

    Highlights: → Thermodynamics parameters for partitioning of L-methionine in ATPS. → Investigation of different effects on partition coefficient of the amino acid. → Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H 2 O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH 2 PO 4 ), di-sodium hydrogen phosphate (Na 2 HPO 4 ) and tri-sodium phosphate (Na 3 PO 4 ). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH o , ΔS o and ΔG o ) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na 3 PO 4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  1. Optical detection of sodium salts of fluoride, acetate and phosphate

    Indian Academy of Sciences (India)

    Optical detection of sodium salts of fluoride, acetate and phosphate by a diacylhydrazine ligand by the formation of a colour alkali metal complex. Purnandhu Bose Ranjan Dutta I ... Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S C Mullick Road, Kolkata 700032, India ...

  2. Structure and Dynamics on Superionic Conducting Phosphate Glasses By Neutron Scattering

    International Nuclear Information System (INIS)

    Kartini, E.; Kennedy, S.J.; Itoh, K.; Arai, M.; Mezei, F.; Nakamura, M.

    2005-01-01

    Full text: A series of Neutron Diffraction and Inelastic scattering experiments have been performed on superionic conducting phosphate glasses, MX-MPO 3 (M=Ag; X=I,S) and AgI-Ag 2 S-AgPO 3 . These materials are used for solid state battery, due to high conductivity up to 10 -2 S.cm -1 at ambient temperature. The conductivity of the insulator glass AgPO 3 ∼ 10 -7 S.cm -1 . Interestingly, the structure factor S(Q) exhibits a prepeak at very low Q∼0.7 Aangstroem -1 related to the IRO ∼ 10-12 Aangstroem and the Radial Distribution Function gives an extra peak ∼ 2.8 Aangstroem -1 that corresponds to Ag-I correlation. The dynamic structure factor S(Q,ω), shows a Boson peak at low energy ∼ 2.5 meV that increases with composition and temperature. These behaviors seem to be universal for the AgI doped glasses, but the origin remains not well understood. Increasing mobility of the Ag ions, due to expansion of the phosphate network plays a dominant role on raising the ionic conductivity, prepeak and Boson peak. (authors)

  3. Effect of the melting conditions on the properties of radiation color centers in lanthanum phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, G.O.; Rusan, V.V.; Yashchurzhinskaya, O.A.

    1986-01-01

    The authors investigate the spatial effects of ionizing radiation on the radiation processes in phosphate glasses to make a comparative estimate of the radiation yield from the radiation color centers (RCC) of different types. A study is made of their behavior under thermal decoloration. The results of a comparison of the integrated intensities of the ESR signal from trapping centers are given. The ESR spectrum of the glasses are presented--one differs slightly from the others. On the basis of the result of processing the ESR and optical spectra of gamma-irradiated lanthanum phosphate glasses synthesized under various conditions, the radiation yield of the RCC and the behavior of the intensity of their absorption under thermodecoloration are significantly affected by the conditions of synthesis of the glass.

  4. Structure and DC conductivity of lead sodium ultraphosphate glasses

    International Nuclear Information System (INIS)

    Abid, M.; Et-tabirou, M.; Taibi, M.

    2003-01-01

    Glasses of (0.40-x)Na 2 O-xPbO-0.60P 2 O 5 system with (0≤x≤0.40) molar fraction have been prepared with a conventional melting procedure. Their physical, thermal and spectroscopic studies such as density, molar volume, glass transition temperature, ionic conductivity and infrared spectroscopy have been investigated. The density and thermal stability of theses glasses increase with the substitution of PbO for Na 2 O. The ionic conductivity increases substantially with increasing concentration of sodium oxide and diminishes with increasing PbO content. Fourier-transform infrared spectroscopy reveals the formation of P-O-Pb bonds in theses glasses. The formation of P-O-Pb bonds which replace P-O - ...Na + bonds is in accordance with variations of glass transition temperature (T g ), molar volume (V m ) and ionic conductivity (σ). The former bonds are the origin of the partial glass-forming ability of Pb 2+

  5. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Xiang, Ye; Du, Jincheng; Smedskjær, Morten Mattrup

    2013-01-01

    the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role...

  6. Micro-Raman spectroscopy studies of the phase separation mechanisms of transition-metal phosphate glasses

    International Nuclear Information System (INIS)

    Mazali, Italo Odone; Alves, Oswaldo Luiz; Gimenez, Iara de Fatima

    2009-01-01

    Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation. (author)

  7. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  8. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method

    International Nuclear Information System (INIS)

    Jmal, Nouha; Bouaziz, Jamel

    2017-01-01

    In this work, a calcium-phosphate glass-ceramics was successfully obtained by heat treatment of a mixture of 26.52 in wt.% of fluorapatite (Fap) and 73.48 in wt.% of 77S (77 SiO 2 −14 CaO−9 P 2 O 5 in wt.%) gel. The calcium phosphate-glass-ceramics was prepared by sol-gel process with tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate and fluorapatite. The synthesized powders were characterized by some commonly used tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 31 P magic angle spinning nuclear magnetic resonance (MAS-NMR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (TF-XRD). The obtained results seemed to confirm the nucleation and growth of hydroxyapatite (Hap) nano-phase in the glass. Moreover, an in-vitro evaluation of the glass-ceramic was performed. In addition, to assess its bioactive capacity, it was soaked in simulated body fluid (SBF) at different time intervals. The SEM, EDS and TF-XRD analyses showed the deposition of hydroxyapatite on the surface of the specimens after three days of immersion in SBF solution. The mechanical properties of the obtained material such as rupture strength, Vickers hardness and elastic modulus were measured. In addition, the friction coefficient of calcium phosphate-glass-ceramics was tested. The values of the composite of rupture strength (24 MPa), Vickers hardness (214 Hv), Young's modulus (52.3 GPa), shear modulus (19 GPa) and friction coefficient (0.327) were obtained. This glass-ceramics can have useful applications in dental prostheses. Indeed, this material may have promising applications for implants because of its content of fluorine, the effective protector against dental caries. - Highlights: • A novel three phases Fap-Hap-glass-ceramics is prepared by sol–gel route. • Results showed a nucleation and growth of hydroxyapatite nano-phase in the glass. • Fap-Hap-glass

  9. Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses.

    Science.gov (United States)

    Massera, J; Petit, L; Cardinal, T; Videau, J J; Hupa, M; Hupa, L

    2013-06-01

    In this paper, we investigate the effect of SrO substitution for CaO in 50P₂O₅-10Na₂-(40-x)CaO-xSrO glass system (x from 0 to 40) on the thermal and structural properties and also on the glass reactivity in simulated body fluid (SBF) in order to find new glass candidates for biomedical glass fibers. The addition of SrO at the expense of CaO seems to restrain the leaching of phosphate ions in the solution limiting the reduction of the solution pH. We observed the formation of an apatite layer at the surface of the glasses when in contact with SBF. SrO and MgO were found in the apatite layer of the strontium ion-containing glasses, the concentration of which increases with an increase of SrO content. We think that it is the presence of MgO and SrO in the layer which limits the leaching of phosphate in the solution and thus the glass dissolution in SBF.

  10. Optical study of gamma irradiated sodium metaphosphate glasses containing divalent metal oxide MO (ZnO or CdO

    Directory of Open Access Journals (Sweden)

    E. Nabhan

    Full Text Available Sodium metaphosphate glasses containing divalent metal oxide, ZnO or CdO with composition 50 P2O5 – (50 − x Na2O – x MO (ZnO, or CdO where x = 0, 10, 20 (mol% were prepared by conventional melt method. UV/visible spectroscopy and FTIR spectroscopy are measured before and after exposing to successive gamma irradiation doses (5–80 kGy. The optical absorption spectra results of the samples before irradiation reveal a strong UV absorption band at (∼230 nm which is related to unavoided iron impurities. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. From the optical absorption spectral data, the optical band gap is evaluated. The main structural groups and the influence of both divalent metal oxide and gamma irradiation effect on the structural vibrational groups are realized through IR spectroscopy. The FTIR spectra of γ-irradiated samples are characterized by the stability of the number and position for the main characteristic band of phosphate groups. To better understood the structural changes during γ-irradiation, a deconvolution of FTIR spectra in the range 650–1450 cm−1 is made. The FTIR deconvolution results found evidence that, the changes occurring after gamma irradiation have been related to irradiation induced structural defects and compositional changes. Keywords: Sodium metaphosphate glass, UV–visible spectra, IR spectra, Deconvolution, Optical band gap, Gamma ray

  11. Preparation and characterization of phosphate glasses containing titanium and vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Kaoua, S. [Laboratoire de Chimie du Solide, Faculte des Sciences Ain Chock, Casablanca (Morocco); Krimi, S. [Laboratoire de Chimie du Solide, Faculte des Sciences Ain Chock, Casablanca (Morocco)]. E-mail: krimisaida@yahoo.fr; El Jazouli, A. [Laboratoire de Chimie des Materiaux Solides, Faculte des Sciences Ben M' Sik, Casablanca (Morocco); Hlil, E.K. [Laboratoire de Cristallographie du CNRS, Grenoble (France)]. E-mail: hlil@grenoble.cnrs.fr; Waal, D. de [Department of Chemistry, University of Pretoria, 0002 Pretoria (South Africa)

    2007-02-21

    Na{sub 5-x}Ti{sub 1-x}V {sub x}(PO{sub 4}){sub 3} (0 {<=} x {<=} 1) phosphates glasses have been obtained in air by direct fusion of Na{sub 2}CO{sub 3}, TiO{sub 2}, V{sub 2}O{sub 5} and (NH{sub 4}){sub 2}HPO{sub 4}. Vitreous Na{sub 5}Ti(PO{sub 4}){sub 3} is colourless while the glasses containing vanadium are green, due to the reduction of V{sup 5+} to V{sup 4+}. Glass transition and crystallization temperatures (T {sub g}, T {sub c}) decrease when the amount of vanadium increases. EPR, Raman and UV-vis spectra have been investigated. The results are consistent with the presence of V{sup 4+} ions in distorted octahedra with very strong V-O bond.

  12. The structure of leached sodium borosilicate glass

    International Nuclear Information System (INIS)

    Bunker, B.C.; Tallant, D.R.; Headley, T.J.; Turner, G.L.; Kirkpatrick, R.J.

    1988-01-01

    Raman spectroscopy, solid state 29 Si, 11 B, 17 O, and 23 Na nuclear magnetic resonance spectroscopy, and transmission electron microscopy have been used to investigate how the structures of sodium borosilicate glasses change during leaching in water at pH 1, 9, and 12. Results show that the random network structure present prior to leaching is transformed into a network of small condensed ring structures and/or colloidal silica particles. The restructuring of leached glass can be rationalised on the basis of simple hydrolysis (depolymerisation) and condensation (repolymerisation) reactions involving Si-O-Si and Si-O-B bonds. The structural changes that occur during leaching influence the properties of the leached layer, including leaching kinetics, crazing and spalling, and slow crack growth. (author)

  13. Characterization of iron phosphate glasses prepared by microwave heating; Obtencao de vidros fosfatos contendo ferro por meio do aquecimento em fornos de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Fabio Jesus Moreira de

    2006-07-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C), and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH{sub 4}){sub 2}HPO{sub 4} and Fe{sub 3}O{sub 4} or (NH{sub 4}){sub 2}HPO{sub 4} and Fe{sub 2}O{sub 3} were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  14. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    Energy Technology Data Exchange (ETDEWEB)

    Salabat, Alireza, E-mail: a-salabat@araku.ac.ir [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of); Moghadam, Somayeh Tiani [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > Thermodynamics parameters for partitioning of L-methionine in ATPS. > Investigation of different effects on partition coefficient of the amino acid. > Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H{sub 2}O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}), di-sodium hydrogen phosphate (Na{sub 2}HPO{sub 4}) and tri-sodium phosphate (Na{sub 3}PO{sub 4}). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters ({Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o}) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na{sub 3}PO{sub 4} are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  15. Evaluation of intestinal phosphate binding to improve the safety profile of oral sodium phosphate bowel cleansing.

    Directory of Open Access Journals (Sweden)

    Stef Robijn

    Full Text Available Prior to colonoscopy, bowel cleansing is performed for which frequently oral sodium phosphate (OSP is used. OSP results in significant hyperphosphatemia and cases of acute kidney injury (AKI referred to as acute phosphate nephropathy (APN; characterized by nephrocalcinosis are reported after OSP use, which led to a US-FDA warning. To improve the safety profile of OSP, it was evaluated whether the side-effects of OSP could be prevented with intestinal phosphate binders. Hereto a Wistar rat model of APN was developed. OSP administration (2 times 1.2 g phosphate by gavage with a 12h time interval induced bowel cleansing (severe diarrhea and significant hyperphosphatemia (21.79 ± 5.07 mg/dl 6h after the second OSP dose versus 8.44 ± 0.97 mg/dl at baseline. Concomitantly, serum PTH levels increased fivefold and FGF-23 levels showed a threefold increase, while serum calcium levels significantly decreased from 11.29 ± 0.53 mg/dl at baseline to 8.68 ± 0.79 mg/dl after OSP. OSP administration induced weaker NaPi-2a staining along the apical proximal tubular membrane. APN was induced: serum creatinine increased (1.5 times baseline and nephrocalcinosis developed (increased renal calcium and phosphate content and calcium phosphate deposits on Von Kossa stained kidney sections. Intestinal phosphate binding (lanthanum carbonate or aluminum hydroxide was not able to attenuate the OSP induced side-effects. In conclusion, a clinically relevant rat model of APN was developed. Animals showed increased serum phosphate levels similar to those reported in humans and developed APN. No evidence was found for an improved safety profile of OSP by using intestinal phosphate binders.

  16. Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite

    International Nuclear Information System (INIS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2011-01-01

    Glass-ceramics with finely dispersed zinc ferrite (ZnFe 2 O 4 ) nanocrystallites were obtained by heat treatment of x(ZnO,Fe 2 O 3 )(65-x)SiO 2 20(CaO,P 2 O 5 )15Na 2 O (6≤x≤21 mole%) glasses. X-ray diffraction patterns of the glass-ceramic samples revealed the presence of calcium sodium phosphate [NaCaPO 4 ] and zinc ferrite [ZnFe 2 O 4 ] as major crystalline phases. Zinc ferrite present in nanocrystalline form contributes to the magnetic properties of the glass-ceramic samples. Magnetic hysteresis cycles of the glass-ceramic samples were obtained with applied magnetic field sweeps of ±20 kOe and ±500 Oe, in order to evaluate the potential of these glass-ceramics for hyperthermia treatment of cancer. The evolution of magnetic properties in these samples, viz., from a partially paramagnetic to fully ferrimagnetic nature has been explored using magnetometry and X-ray diffraction studies. - Research highlights: → The glass-ceramics contain bone mineral and magnetic phases. → Calcium sodium phosphate and zinc ferrite nanocrystallites have been identified in all the sample. → With an increase in ZnO and Fe2O3 content, magnetic property of samples evolved from partially paramagnetic to fully ferrimagnetic nature. → Large magnetic hysteresis loops have been obtained for samples with high ZnO+Fe2O3 content.

  17. A randomized prospective triaI comparing oral sodium phosphate with magnesium citrate in preparing of patients for double contrast barium enema

    International Nuclear Information System (INIS)

    Lee, Eun Joo; Lee, Sung Woo; Lee, Hyeon Kyeong; Yang, Chang Hun; Kim, Soon; Oh, Yoen Hee; Kim, Seung Hyeon

    2004-01-01

    The purpose of this study was to compare two bowel preparation agents, sodium phosphate solution with magnesium citrate solution. A total of 94 subjects that underwent a double-contrast barium enema were included in this study. Bowel preparation before performing the barium study was done by using a sodium phosphate solution in 47 subjects and by using a magnesium citrate solution in the other 47 subjects. We evaluated the presence or absence of side effects when using these bowel preparation agents. Two radiologist who were blinded to the type of bowel preparation evaluated the quality of bowel preparation at the colonic segments (ascending, descending, and sigmoid colon) on the radiographs obtained by double-contrast barium enema, with regard to stool cleansing, water retention, barium coating and bubble formation. The side effects, such as abdominal clamping pain, nausea, hunger pain and chill occurred more frequently in the sodium phosphate group than in the magnesium citrate group (p< 0.001). Stool retention was more frequently found in the magnesium citrate group (p< 0.001). However, no statistical difference was noted on the status of water retention and barium coating between two groups. Gas bubble formation was more commonly seen in the sodium phosphate group (p< 0.001). The sodium phosphate solution appeared to be more effective in cleansing the right colon (p=0.001). Sodium phosphate solution appears to be more effective for colonic cleansing, with a lower incidence of side effects, than when using magnesium citrate solution

  18. Sodium isotopic exchange rate between crystalline zirconium phosphate and molten NaNO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Yamada, Y [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1975-12-01

    The isotopic exchange rate of sodium ion between crystalline zirconium phosphate and molten NaNO/sub 3/ has been measured at 312/sup 0/C and 362/sup 0/C by batch method. The equilibrium was reached within 20 minutes at either temperature, and the rate was very rapid as compared with that of sodium-potassium ion exchange.

  19. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  20. Red light emission from europium doped zinc sodium bismuth borate glasses

    Science.gov (United States)

    Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.

    2017-12-01

    Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.

  1. Optical bistability in Er-Yb codoped phosphate glass microspheres at room temperature

    NARCIS (Netherlands)

    Warda, Jonathan M.; O'Shea, Danny G.; Shortt, Brian J.; Chormaic, Sile Nic

    2007-01-01

    We experimentally demonstrate optical bistability in Er(3+)-Yb(3+) phosphate glass microspheres at 295 K. Bistability is associated with both Er(3+) fluorescence and lasing behavior, and chromatic switching. The chromatic switching results from an intrinsic mechanism exploiting the thermal coupling

  2. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method

    Energy Technology Data Exchange (ETDEWEB)

    Jmal, Nouha, E-mail: jmalnouha@gmail.com; Bouaziz, Jamel

    2017-02-01

    In this work, a calcium-phosphate glass-ceramics was successfully obtained by heat treatment of a mixture of 26.52 in wt.% of fluorapatite (Fap) and 73.48 in wt.% of 77S (77 SiO{sub 2}−14 CaO−9 P{sub 2}O{sub 5} in wt.%) gel. The calcium phosphate-glass-ceramics was prepared by sol-gel process with tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate and fluorapatite. The synthesized powders were characterized by some commonly used tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), {sup 31}P magic angle spinning nuclear magnetic resonance (MAS-NMR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (TF-XRD). The obtained results seemed to confirm the nucleation and growth of hydroxyapatite (Hap) nano-phase in the glass. Moreover, an in-vitro evaluation of the glass-ceramic was performed. In addition, to assess its bioactive capacity, it was soaked in simulated body fluid (SBF) at different time intervals. The SEM, EDS and TF-XRD analyses showed the deposition of hydroxyapatite on the surface of the specimens after three days of immersion in SBF solution. The mechanical properties of the obtained material such as rupture strength, Vickers hardness and elastic modulus were measured. In addition, the friction coefficient of calcium phosphate-glass-ceramics was tested. The values of the composite of rupture strength (24 MPa), Vickers hardness (214 Hv), Young's modulus (52.3 GPa), shear modulus (19 GPa) and friction coefficient (0.327) were obtained. This glass-ceramics can have useful applications in dental prostheses. Indeed, this material may have promising applications for implants because of its content of fluorine, the effective protector against dental caries. - Highlights: • A novel three phases Fap-Hap-glass-ceramics is prepared by sol–gel route. • Results showed a nucleation and growth of hydroxyapatite nano-phase in the glass.

  3. τ - hydrogen phosphate of zirconia in sodium salt form and some of its properties

    International Nuclear Information System (INIS)

    Fernandez V, S.M.; Ordonez R, E.

    2004-01-01

    It is reported the obtaining and characterization in the sodium salt form of the τ-hydrogen phosphate of zirconium in sodium form, this compound it was synthesized, for a new technique developed in the laboratory of Dept. of Chemistry of the ININ. The characterization was carried out for XRD, IR, Sem and EDS the thermal gravimetric analysis is also reported. (Author)

  4. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    Science.gov (United States)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  5. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings

    Science.gov (United States)

    Wagener, V.; Boccaccini, A. R.; Virtanen, S.

    2017-09-01

    In the last years, chitosan-bioactive glass (BG) composites have been developed and investigated as bioactive coatings for orthopedic applications. The increase of bioactivity occurs due to the stimulation of calcium-phosphate/hydroxyapatite formation on the surface while the coating is degrading. In the present work, protein adsorption and its influence on calcium-phosphate precipitation was studied for the first time on such composite coatings. The experiments involved coating of 316L stainless steel substrates with chitosan (Ch) and chitosan-bioactive glass (Ch-BG) and immersion of the coated samples in two different bovine serum albumin (BSA) containing solutions, namely DI H2O (with pH adjusted to about 7.2 with diluted NaOH) and simulated body fluid (SBF). In order to investigate the influence of protein adsorption on calcium-phosphate precipitation, samples were also immersed in DI H2O and in SBF without BSA. Samples were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Surface analysis revealed that adsorption of BSA takes place on all studied samples and that protein adsorption is influenced by the presence of Ca2+ and PO43- ions. Bioactivity in the form of hydroxyapatite pre-stage formation is significantly increased on Ch-BG composite coating as compared with bare stainless steel surface. However, calcium-phosphate precipitation in SBF is reduced by the presence of BSA.

  6. The effects of uranium oxide high-level waste on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.

    1998-01-01

    Because of their unusually good chemical durability, iron phosphate glasses are a natural candidate for a nuclear waste disposal glass. We have studied the effects of UO 2 high-level waste on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction using the GLAD instrument of the Intense Pulsed Neutron Source and the 1-BM bending magnet beamline of the Advanced Photon Source, respectively. The results of neutron scattering, which is mostly sensitive to correlations involving light atoms i.e. O-O, Fe-O and P-O, suggest the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with the earlier results of Raman scattering and EXAFS on the Fe-K edge wherein both cases the spectra remain similar to the base glass. High-energy x-ray scattering which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, is also consistent with uranium occupying interstitial sites in the relatively undisturbed base glass structure. However, important questions remain as to the precise local structure and oxidation state of uranium in these glasses

  7. Phosphate content influence on structural, spectroscopic, and lasing properties of Er,Yb-doped potassium-lanthanum phosphate glasses

    Czech Academy of Sciences Publication Activity Database

    Šulc, J.; Švejkar, R.; Jelínková, H.; Nejezchleb, K.; Nitsch, Karel; Cihlář, Antonín; Král, Robert; Ledinský, Martin; Fejfar, Antonín; Rodová, Miroslava; Zemenová, Petra; Nikl, Martin

    2016-01-01

    Roč. 55, č. 4 (2016), 1-10, č. článku 047102. ISSN 0091-3286 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : erbium laser s * infrared laser s * laser materials modification * phosphate glass * diode -pumped eye-safe solid state laser Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.082, year: 2016

  8. STRUCTURE FEATURES OF THE SODIUM-GERMANATE GLASSES DOPED WITH YTTERBIUM ERBIUM RETRIEVED FROM RAMAN SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    I. M. Sevastianova

    2016-09-01

    Full Text Available Subject of Research.The paper deals with study of Raman spectra and luminescence spectra in the visible region of the sodium-germanate glass: 49 GeO2 – 13 Na2O – 27 Yb2O3 – 11 La2O3 - 0,25 Er2O3 and presents research results. In addition, this glass is doped with 5 mol% of the following components MgO, BaO, Al2O3, PbO, Nb2O5, TiO2, SiO2, P2O5 in order to study the effect of these additives on the structure of the glassy matrix and the anti-Stokes luminescence spectra of erbium ions. Method. Raman scatteringspectra were recorded by Renishaw inVia Raman Microscope. Excitation source is a helium neon laser (λ= 633 nm with power equal to 50Wt. Anti-Stokes luminescence of erbium ions was registered in spectral region of 450–750 nm at room temperature (excitation laser wavelength is 975 nm, power is 1Wt. Main Results. It was shown that the structure of the initial glass does not change with the introduction of niobium as Nb2O5 in any coordination plays a role of network forming, building a single mixed grid with tetrahedrons [GeO4]. Introduction of the second glass former P2O5 leads to loosening germanate structure due to the appearance of the phosphate sublattice. This leads to a redistribution of the relative intensity of up-conversion luminescence bands with maxima at 540 and 670 nm compared with the initial glass. Introduction of additives PbO, MgO, Al2O3, TiO2 results in a multicenter structure. In case of titanium oxide addition it leads to a change in the relative intensities of the erbium luminescence.

  9. Infrared and Raman investigation of rare-earth phosphate glasses for potential use as radioactive waste forms

    International Nuclear Information System (INIS)

    Morgan, S.H.

    1989-01-01

    This project was designed to investigate the properties of the rare-earth phosphate glass systems CeO 2 -P 2 O 5 and Pr 2 O 3 -P 2 O 5 for potential use as radioactive waste glasses. The glass-forming region and optimum processing parameters of these glass systems were investigated. The structure of the host glasses and glassed loaded with simulated waste elements was investigated using Raman and infrared spectroscopy. Because of the radical differences in the spectra of the molybdenum-loaded glasses, the structure of the MoO 3 -P 2 O 5 glass system was also investigated. 29 refs., 8 figs., 2 tabs

  10. Calcium phosphate glass-ceramics for bioactive coating on a β-titanium alloy

    International Nuclear Information System (INIS)

    Kasuga, T.; Nogami, M.; Niinomi, M.

    2003-01-01

    The formation of a porous coating is the decisive feature for the bio-compatibility of silica-free calcium phosphate glass ceramics on alloy surfaces like the β-Ti structured Ti-29Nb-13Ta-4.6Zr used in this work. The ceramic composition is highly important: 50CaO-40P 2 O 5 -7Na 2 O-3TiO 2 glass powder produces a pore-free coating unable to bind hydroxyapatite, whereas 60CaO-30P 2 O 5 -7Na 2 O-3TiO 2 glass incorporates pores from which a crystalline hydroxyapatite phase can grow over the surface from simulated body fluid (see Figure). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  11. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    Science.gov (United States)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  12. Structural change of NaO1/2-WO3-NbO5/2-LaO3/2-PO5/2 glass induced by electrochemical substitution of sodium ions with protons.

    Science.gov (United States)

    Ishiyama, Tomohiro; Yamaguchi, Takuya; Nishii, Junji; Yamashita, Toshiharu; Kawazoe, Hiroshi; Kuwata, Naoaki; Kawamura, Junichi; Omata, Takahisa

    2015-05-28

    Structural changes of 35NaO1/2-1WO3-8NbO5/2-5LaO3/2-51PO5/2 glass (1W-glass) before and after the electrochemical substitution of sodium ions with protons by alkali-proton substitution (APS) are studied by Raman and (31)P magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopies. The glass before APS consists of (PO3(-))8.6(P2O7(4-)) chains on average and the terminal Q(1) units (-O-PO3(3-)) are bound to MO6 octahedra (M denotes niobium or tungsten) through P-O-M bonds. Some non-bridging oxygens (NBOs) in the MO6 octahedra are present in addition to the bridging oxygens (BOs) in P-O-M bonds. APS induces fragmentation of the phosphate chains because the average chain length decreases to (PO3(-))3.7(P2O7(4-)) after APS, despite the total number of modifier cations of sodium and lanthanum ions and protons being unaffected by APS. This fragmentation is induced by some of the NBOs in the MO6 octahedra before APS, changing to BOs of the newly formed M-O-P bonds after APS, because of the preferential formation of P-OH bonds over M-OH ones in the present glass. We show that APS under the conditions used here is not a simple substitution of sodium ions with protons, but it is accompanied by the structural relaxation of the glass to stabilize the injected protons.

  13. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  14. Effect of heat treatment duration on phase separation of sodium borosilicate glass, containing copper

    International Nuclear Information System (INIS)

    Shejnina, T.G.; Gutner, S.Kh.; Anan'in, N.I.

    1989-01-01

    The effect of heat treatment duration on phase separation of sodium borosilicate (SBS) glass, containing copper is studied. It is stated that phase separation close to equilibrium one is attained under 12 hours of heat treatment of SBS glass containing copper

  15. Application of l-ascorbic acid and its derivatives (sodium ascorbyl phosphate and magnesium ascorbyl phosphate) in topical cosmetic formulations: stability studies

    International Nuclear Information System (INIS)

    Smaoui, S.; Hilima, H.B.

    2013-01-01

    The present study aimed to formulate and subsequently evaluate a topical skin-care cream (o/w emulsion) from l-ascorbic acid and its derivatives (sodium ascorbyl phosphate and magnesium ascorbyl phosphate) at 2% versus its vehicle (Control). Formulations were developed by entrapping it in the oily phase of o/w emulsion and were stored at 8 degree C, 25 degree C and 40 degree C (in incubator) for a period of four weeks to investigate their stability. In the physical analysis, the evaluation parameters consisted of color, smell, phase separation, centrifugation, and liquefaction. Chemical stability of both derivatives was established by HPLC analysis. In the chemical analysis, the formulation with sodium ascorbyl phosphate was more stable than those with magnesium ascorbyl phosphate and l-ascorbic acid. The microbiological stability of the formulations was also evaluated. The findings indicated that the formulations with l-ascorbic acid and its derivatives were efficient against the proliferation of various spoilage microorganisms, including aerobic plate counts as well as Pseudomonas aeruginosa, Staphylococcus aureus, and yeast and mold counts. The results presented in this work showed good stability throughout the experimental period. Newly formulated emulsion proved to exhibit a number of promising properties and attributes that might open new opportunities for the construction of more efficient, safe, and cost-effective skin-care, cosmetic, and pharmaceutical products. (author)

  16. Investigations of the luminescence of phosphate glasses with respect to their application as solid dosemeters

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1977-03-01

    A comprehensive presentation of the luminescent properties of phosphate glass is worked out. The extensive investigations show an essential enlargement of the knowledge on the luminescence of phosphate glass existing hitherto. These results form the basis for a detailed discussion of the luminescence mechanism. By applying additional results of measurements concerning optical and paramagnetic absorption, enabling the access to the atomic effect, propositions were developed for models of absorption, excitation and luminous centers relevant for dosimetry for which Ag ++ was found to be the constituent determining the centers. The interpretation of the luminescence phenomena within the frame of these models leads to considerable corrections on the existing concepts. At the same time the comparability of Ag-doped phosphate glasses and alkali halogenides is shown with respect to their luminescence behaviour, and with it an argument for the existence of crystal-like short-order regions in the amorphous glass is provided. This result serves as a basis for a discussion of the centers in the band model. Further investigations dealt with the quantities of influence for the practical application of the dosemeter. By interpretation of these results explanations are given for the effect of irradiation and evaluation temperatures, of LET, the dose, and UV light on the measuring signal. The phenomenon of 'pre-dose', for which especially surface effects have been detected as cause, is discussed under the aspect of a boundary layer theory. (orig./HP) [de

  17. Development of large scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    International Nuclear Information System (INIS)

    Ficini, G.; Campbell, J.H.

    1996-01-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for Inertial Confinement Fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and at relatively low cost. To meet the requirements of the future mega-joule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large (790 x 440 x 44 mm 3 ) plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology

  18. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    Science.gov (United States)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  19. A 125Te and 23Na NMR investigation of the structure and crystallisation of sodium tellurite glasses.

    Science.gov (United States)

    Holland, D; Bailey, J; Ward, G; Turner, B; Tierney, P; Dupree, R

    2005-01-01

    125Te static nuclear magnetic resonance (NMR) and 23Na and 125Te magic angle spinning (MAS) NMR have been used, in conjunction with X-ray diffraction, to examine the structure and crystallisation behaviour of glasses of composition xNa2O.(1-x)TeO2 (0.075 x 0.4). The MAS NMR 23Na spectra from the glasses are broad and featureless but shift by approximately +5 ppm with increased x, i.e. as the system becomes more ionic. The static 125Te NMR spectra show an increase in axial symmetry with increasing x, indicating a shift from predominantly [TeO4] to [TeO3] structural units. The 23Na and 125Te spectra from the crystallised samples have been fitted to obtain information on the sites in the metastable crystal phases, which are the first to form on heating and which are therefore more closely related to the glass structure than thermodynamically stable crystal phases. New sodium tellurite phases are reported, including a sodium stabilised, face centred cubic phase related to delta-TeO2; a metastable form of Na2Te4O9 containing 3 sodium and 4 tellurium sites; and a metastable form of Na2Te2O5 containing 2 sodium sites. There is evidence of oxidation of TeIV to TeVI occurring in glasses with high values of x and, at x=0.40 and 0.50 (outside the glass forming range), some sodium metatellurate (Na2TeO4) is formed at the same time as sodium metatellurite (Na2TeO3). The 125Te shift is very sensitive to environment within the sodium tellurite system, covering more than 320 ppm, with anisotropies varying from 640 to 1540 ppm. The lack of features in the 125Te spectra of the glass phases, combined with the large shift range and high but variable anisotropy, means than it is not possible to obtain a unique fit to any presumed species present. Furthermore, the chemical shift anisotropy parameters for three of the four Te sites in the Na2Te4O9 phase are found to lie outside the range used for previous simulations of glass spectra.

  20. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    Science.gov (United States)

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique

    International Nuclear Information System (INIS)

    Mojdehi Masoumeh Shokati; Yunus Wan Mahmood Mat; Talib Zainal Abidin; Tamchek, N.; Fhan Khor Shing

    2013-01-01

    The nonlinear optical properties of a phosphate vitreous system [(ZnO) x − (MgO) 30−x − (P 2 O 5 ) 70 ], where x = 8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using the Z-scan technique. In the experiment, a continuous-wave laser with a wavelength of 405 nm was utilized to determine the sign and value of the nonlinear refractive (NLR) index and the absorption coefficient with closed and opened apertures of the Z-scan setup. The NLR index was found to increase with the ZnO concentration in the glass samples by an order of 10 −10 cm 2 ·W −1 . The real and imaginary parts of the third-order nonlinear susceptibility were calculated by referring to the NLR index (n 2 ) and absorption coefficient (β) of the samples. The value of the third-order nonlinear susceptibility was presented by nonlinear refractive or absorptive behavior of phosphate glasses for proper utilization in nonlinear optical devices. Based on the measurement, the positive sign of the NLR index shows a self-focusing phenomenon. The figures of merit for each sample were calculated to judge the potential of phosphate glasses for application in optical switching

  2. Effect of reducing conditions of synthesis on the character of the crystallization of phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, I.P.; Karapetyan, G.O.; Milyukov, E.M.; Rusan, V.V.

    1986-03-01

    The authors investigate the effect of synthesis conditions on the properties of phosphate glasses with a high concentration of rare-earth elements (REE) which are promising materials for quantum electronics. Particular attention was paid to the character of the crystallization of the glasses. A model glass of the composition La/sub 2/O/sub 3/ X 3P/sub 2/O/sub 5/ was studied which is transparent in the visible and near-IR regions of the spectrum and produced commercially.

  3. Calcium phosphate glass-ceramics for bioactive coating on a {beta}-titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kasuga, T.; Nogami, M. [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Niinomi, M. [Department of Production Systems Engineering, Toyohashi University of Technology, Tenpaku-cho, Toyohashi 441-8580 (Japan)

    2003-07-01

    The formation of a porous coating is the decisive feature for the bio-compatibility of silica-free calcium phosphate glass ceramics on alloy surfaces like the {beta}-Ti structured Ti-29Nb-13Ta-4.6Zr used in this work. The ceramic composition is highly important: 50CaO-40P{sub 2}O{sub 5}-7Na{sub 2}O-3TiO{sub 2} glass powder produces a pore-free coating unable to bind hydroxyapatite, whereas 60CaO-30P{sub 2}O{sub 5}-7Na{sub 2}O-3TiO{sub 2} glass incorporates pores from which a crystalline hydroxyapatite phase can grow over the surface from simulated body fluid (see Figure). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  4. Effect of radiative trapping on measurement of the spectroscopic properties of Yb sup 3 sup + :phosphate glasses

    CERN Document Server

    Dai Shi Xun; Wen Lei; Hu Li Li; Jiang Zhong Hon

    2003-01-01

    The effect of radiative trapping on measurement of the spectroscopic properties of Yb sup 3 sup + -doped phosphate glasses was investigated as a function of Yb sup 3 sup + concentration at different thicknesses. It was found that radiative trapping exists generally in Yb sup 3 sup + :phosphate glasses, even at low concentration. As a result, the measured lifetime of Yb sup 3 sup + in phosphate glasses is usually larger than the calculated one. The maximum discrepancies between them at high concentration are found to be <42%. The calculated lifetime should be used as a reference in determining the true value of the measured lifetime because of it being lengthened largely by radiative trapping. On the other hand, the shape of fluorescence spectrum exhibits remarkable changes due to the radiative trapping. What is more, the intensity increase of DELTA lambda sub e sub f sub f at high concentration is greater than that of low doping. The DELTA lambda sub e sub f sub f increases 36% from 53 to 72 nm with thickn...

  5. Fe++/Fe+++ concentration relationship and mechanical properties of phosphate glasses useful for wastes immobilization

    International Nuclear Information System (INIS)

    Garcia, D.A.; Prado, Miguel O.

    2007-01-01

    Under different melting conditions, glasses with different Fe(II)/Fe(III) concentration relationship were prepared within each type of glass 43Fe 2 O 3 -57P 2 O 5 and 33,33Fe 2 O 3 - 66,67P 2 O 5 . Using Moessbauer spectroscopy Fe(II)/Fe(III) concentration values were determined. Vickers and Knoop indentations were used for determining their hardness, toughness, Young modulus and brittleness. The same measurements were carried on some silicate and aluminosilicate glasses. Also Weibull statistics was done to determine the characteristics (Weibull modulus and and fracture probability) of glass fracture. We found that silicate glasses (SG) are harder than phosphate glasses (PG). Toughness values for PG, are in the same range than for SG, although for the same density exhibit larger values or smaller brittleness than silicate glasses. For one of the glasses it was found that the mechanical load P 0 needed for a fracture probability of 63% increases with the Fe(II) content. (author)

  6. Optical and structural investigation on sodium borosilicate glasses doped with Cr2O3

    Science.gov (United States)

    Ebrahimi, E.; Rezvani, M.

    2018-02-01

    In this work, Sodium borosilicate glasses with chemical composition of 60% SiO2-20% B2O3-20%Na2O doped with different contents of Cr2O3 were prepared by melting-quenching method. Physical, structural and optical properties of glasses were investigated by studying density and molar volume, Fourier Transform Infrared (FT-IR) Spectra and UV-visible absorption spectroscopy. The results showed an increase in density of glasses with the increase of Cr2O3 that can be due to addition of oxide with high molar mass. The optical absorption spectra of un-doped glass reveals UV absorption due to trace iron impurities with no visible band however Cr2O3 doped glasses shows absorption in visible range that are characteristic. Increasing of Cr3 + ions in the glassy microstructure of samples provides a semiconducting character to Sodium borosilicate glass by reducing the direct and indirect optical band gaps of glass samples from 3.79 to 2.59 (ev) and 3.36 to 2.09 (ev), respectively. These changes could be attributed to the role of Cr3 + ions as the network former which asserts improvement of semiconducting behavior in presence of Cr2O3.

  7. Two-liquid-phase boundaries and critical phenomena at 275 to 4000C for high-temperature aqueous potassium phosphate and sodium phosphate solutions. Potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1982-01-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases or liquid-liquid immisibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators

  8. Glass Formulation Development for INEEL Sodium-Bearing Waste

    International Nuclear Information System (INIS)

    Vienna, J.D.; Schweiger, M.J.; Smith, D.E.; Smith, H.D.; Crum, J.V.; Peeler, D.K.; Reamer, I.A.; Musick, C.A.; Tillotson, R.D.

    1999-01-01

    For about four decades, radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Nuclear Technology and Engineering Center (INTEC), formerly Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive wastes have also been collected and stored as liquid from decontamination, laboratory activities, and fuel-storage activities. These liquid wastes are collectively called sodium-bearing wastes (SBW). About 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as an immobilization step for SBW with a number of treatment and disposal options. A systematic study was undertaken to develop a glass composition to demonstrate direct vitrification of INEEL's SBW. The objectives of this study were to show the feasibility of SBW vitrification, not a development of an optimum formulation. The waste composition is relatively high in sodium, aluminum, and sulfur. A specific composition and glass property restrictions, discussed in Section 2, were used as a basis for the development. Calculations based on first-order expansions of selected glass properties in composition and some general tenets of glass chemistry led to an additive (fit) composition (68.69 mass % SiO 2 , 14.26 mass% B 2 O 3 , 11.31 mass% Fe 2 O 3 , 3.08 mass% TiO 2 , and 2.67 mass % Li 2 O) that meets all property restrictions when melted with 35 mass % of SBW on an oxide basis, The glass was prepared using oxides, carbonates, and boric acid and tested to confirm the acceptability of its properties. Glass was then made using waste simulant at three facilities, and limited testing was performed to test and optimize processing-related properties and confirm results of glass property testing. The measured glass properties are given in Section 4. The viscosity at 1150 C, 5 Pa·s, is nearly ideal for waste-glass processing in

  9. Physical and optical properties of calcium sulfate ultra-phosphate glass-doped Er2O3

    Science.gov (United States)

    Aliyu, Aliyu Mohammed; Hussin, R.; Deraman, Karim; Ahmad, N. E.; Danmadami, Amina M.; Yamusa, Y. A.

    2018-03-01

    The influence of erbium on physical and optical properties of calcium sulfate ultra-phosphate glass was investigated using conventional melt quench process. Selected samples of composition 20CaSO4 (80 - x) P2O5- xEr2O3 with 0.1 ≤x ≤ 0.9 mol.% were prepared and assessed. X-ray diffraction (XRD) techniques were used to confirm the amorphous nature of the said samples. The structural units of phosphate-based glass were assessed from Raman spectra as ultra-(Q3), meta-(Q2), pyro-(Q1) and orthophosphate (Q0) units. Depolymerization process of the glasses was testified for higher calcium oxide content and UV-visible for optical measurement. Thermal analysis have been investigated by means of thermogravimetric analysis. The results show the decomposition of materials in the temperature range of 25∘C-1000∘C. Er3+ absorption spectra were measured in the range of 400-1800nm. PL measurement was carried out in order to obtain the excitation and emission spectra of the samples. The emission spectra excited at 779nm comprises of 518nm, 550nm and 649nm of transition 4F9/2, 4S3/2 and 2H11/2 excited states to 4I15/2 ground state. In physical properties, the density calculated using Archimedes method is inversely proportional to molar volume with increase in Er3+ ions. Optical bandgap (Eg) were determined using Tauc’s plots for direct transitions where Eg (direct) decreases with increase in erbium content. The refractive index increases with decreasing molar volume; this may have a tendency for larger optical bandgap. The result obtained from the glass matrix indicates that erbium oxide-doped calcium sulfate ultra-phosphate may give important information for wider development of functional glasses.

  10. Development of phosphate glass microspheres containing holmium for selective internal radiotherapy

    International Nuclear Information System (INIS)

    Barros Filho, Eraldo Cordeiro

    2016-01-01

    The selective internal radiotherapy is an alternative for some kinds of cancer as the hepatocellular carcinoma (HCC) or primary liver cancer treatment. In this treatment, glass or polymer microspheres containing radionuclides inside their structure are introduced in the liver through hepatic artery and trapped at the arterioles that feed the tumor. In this work, the development of phosphate glasses containing holmium for production of microspheres and their application in Brazil are proposed. The developed glasses presented suitable chemical durability, density of 2,7(3) g/cm 3 , high thermal stability and the impurities contained therein do not preclude the treatment. The microspheres were produced by the flame method and the gravitational fall method, and were characterized by means of several techniques to evaluate shape, average particle size, activity and biocompatibility suitable for selective internal radiotherapy. Based in the main results, the submission to in vivo tests is proposed. (author)

  11. Flexible, Heat-Resistant, and Flame-Retardant Glass Fiber Nonwoven/Glass Platelet Composite Separator for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ulrich Schadeck

    2018-04-01

    Full Text Available A new type of high-temperature stable and self-supporting composite separator for lithium-ion batteries was developed consisting of custom-made ultrathin micrometer-sized glass platelets embedded in a glass fiber nonwoven together with a water-based sodium alginate binder. The physical and electrochemical properties were investigated and compared to commercial polymer-based separators. Full-cell configuration cycling tests at different current rates were performed using graphite and lithium iron phosphate as electrode materials. The glass separator was high-temperature tested and showed a stability up to at least 600 °C without significant shrinking. Furthermore, it showed an exceptional wettability for non-aqueous electrolytes. The electrochemical performance was excellent compared to commercially available polymer-based separators. The results clearly show that glass platelets integrated into a glass fiber nonwoven performs remarkably well as a separator material in lithium-ion batteries and show high-temperature stability.

  12. Effect of composition and temperature on the second harmonic generation in silver phosphate glasses

    Science.gov (United States)

    Konidakis, I.; Psilodimitrakopoulos, S.; Kosma, K.; Lemonis, A.; Stratakis, E.

    2018-01-01

    We herein employ nonlinear laser imaging microscopy to explicitly study the dynamics of second harmonic generation (SHG) in silver iodide phosphate glasses. While glasses of this family have gained extensive scientific attention over the years due to their superior conducting properties, considerably less attention has been paid to their unique nonlinear optical characteristics. In the present study, firstly, it is demonstrated that SHG signal intensity is enhanced upon increasing silver content due to the random formation of silver microstructures within the glass network. Secondly, the SHG temperature dynamics were explored near the glass transition temperature (Tg) regime, where significant glass relaxation phenomena occur. It is found that heating towards the Tg improves the SHG efficiency, whereas above Tg, the capacity of glasses to generate second harmonic radiation is drastically suppressed. The novel findings of this work are considered important in terms of the potential employment of these glasses for the realization of advanced photonic applications like optical-switches and wavelength conversion devices.

  13. Concentration dependent spectroscopic properties of Dy{sup 3+} ions doped boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mariyappan, M.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural Institute - Deemed University, Gandhigram – 624 302 (India)

    2016-05-23

    Dy{sup 3+} ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (E{sub opt}) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy{sup 3+} ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions respectively. The emission spectra were characterized through Commission International d’Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  14. Treatment of cows with parturient paresis using intravenous calcium and oral sodium phosphate.

    Science.gov (United States)

    Braun, U; Grob, D; Hässig, M

    2016-09-01

    The goal of this study was to investigate whether intravenous infusion of 1000 ml 40% calcium borogluconate combined with the oral adminstration of 500 g sodium phosphate leads to a better cure rate and longer-lasting normocalcaemia and normophosphataemia than standard intravenous treatment with 500 ml calcium borogluconate in cows with parturient paresis. Forty recumbent cows with hypocalcaemia and hypophosphataemia were alternately allocated to group A or B. Cows of both groups were treated intravenously with 500 ml 40% calcium borogluconate, and cows of group B additionally received another 500 ml calcium borogluconate via slow intravenous infusion and 500 g sodium phosphate administered via an orogastric tube. Thirty-two cows stood within 8 hours after the start of treatment and 8 did not; of the 32 cows that stood, 18 belonged to group A and 14 to group B (90% of group A vs. 70% of group B; P = 0.23). Seven cows relapsed; of these and the 8 that did not respond to initial treatment, 10 stood after two standard intravenous treatments. Downer cow syndrome occurred in 5 cows, 3 of which recovered after aggressive therapy. The overall cure rate did not differ significantly between groups A and B. Twelve (60%) cows of group A and 14 (70%) cows of group B were cured after a single treatment and of the remaining 14, 11 were cured after two or more treatments. Two downer cows were euthanized and one other died of heart failure during treatment. Serum calcium concentrations during the first eight hours after the start of treatment were significantly higher in group B than in group A, and oral sodium phosphate caused a significant and lasting increase in inorganic phosphate. More cows of group B than group A were cured after a single treatment (P > 0.05). These findings, although not statistically significant, are promising and should be verified using a larger number of cows.

  15. Selection of a glass-ceramic formulation to immobilize fluorinel- sodium calcine

    International Nuclear Information System (INIS)

    Staples, B.A.; Wood, H.C.

    1994-12-01

    One option for immobilizing calcined high level wastes produced by nuclear fuel reprocessing activities at the Idaho Chemical Processing Plant (ICPP) is conversion to a glass-ceramic form through hot isostatic pressing. Calcines exist in several different chemical compositions, and thus candidate formulations have been developed for converting each to glass-ceramic forms which are potentially resistant to aqueous corrosion and stable enough to qualify for repository storage. Fluorinel/Na, a chemically complex calcine type, is one of the types being stored at ICPP, and development efforts have identified three formulations with potential for immobilizing it. These are a glass forming additive that uses aluminum metal to enhance reactivity, a second glass forming additive that uses titanium metal to enhance reactivity and a third that uses not only a combination of silicon and titanium metals but enough phosphorous pentoxide to form a calcium phosphate host phase in the glass-ceramic product. Glass-ceramics of each formulation performed well in restricted characterization tests. However, none of the three was subjected to rigorous testing that would provide information on whether each was processable, that is able to retain favorable characteristics over a practical range of processing conditions

  16. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  17. An alternative host matrix based on iron phosphate glasses for the vitrification of specialized nuclear waste forms. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    Day, D.E.; Marasinghe, K.; Ray, C.S.

    1997-01-01

    'Objectives of this project are to: (1) investigate the glass composition and processing conditions that yield optimum properties for iron phosphate glasses for vitrifying radioactive waste, (2) determine the atomic structure of iron phosphate glasses and the structure-property relationships, (3) determine how the physical and structural properties of iron phosphate glasses are affected by the addition of simulated high level nuclear waste components, and (4) investigate the process and products of devitrification of iron phosphate waste forms. The glass forming ability of about 125 iron phosphate melts has been investigated in different oxidizing to reducing atmospheres using various iron oxide raw materials such as Fe 2 O 3 , FeO, Fe 3 O 4 , and FeC 2 O 4 2H 2 O. The chemical durability, redox equilibria between Fe(II) and Fe(III), crystallization behavior and structural features for these glasses and their crystalline forms have been investigated using a variety of techniques including Mossbauer spectroscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Extended x-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) analysis, differential thermal and thermogravimetric analysis (DTA/TGA), and X-ray and neutron diffraction.'

  18. Color tunability of Sm{sup 3+} doped antimony–phosphate glass phosphors showing broadband fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, P. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Zhang, J.J., E-mail: zhangjj@dlpu.edu.cn [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Shen, L.F. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Z.Q. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Pun, E.Y.B. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-10-15

    Sm{sup 3+} doped multicomponent antimony phosphate (MSP) luminescent glasses were prepared and tunable white fluorescence has been investigated. Broad visible emission depending on excitation wavelength is validated to be dominated by discrepant Sb{sup 3+} emitting centers. Group of narrow emissions from Sm{sup 3+} is beneficial to adding yellow and red components in Sm{sup 3+} doped MSP glasses, which is strengthened by effective energy transfer from Sb{sup 3+} to Sm{sup 3+}. Excitation wavelength selection and Sm{sup 3+} concentration adjustment are two feasible routes to optimize luminescence color in Sm{sup 3+} doped MSP glasses and the color tunability of fluorescence indicates that amorphous Sm{sup 3+} doped MSP glass phosphors possess potential for ideal white light devices.

  19. Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters - 12240

    Energy Technology Data Exchange (ETDEWEB)

    Day, Delbert E.; Brow, Richard K.; Ray, Chandra S.; Reis, Signo T. [Missouri University of Science and Technology, 1870 Miner Circle, Rolla, MO 65409 (United States); Kim, Cheol-Woon [MO-SCI Corporation, 4040 HyPoint North, Rolla, MO 65401 (United States); Vienna, John D.; Sevigny, Gary [Pacific North West National Laboratory, Battelle Blvd., Richland, WA 99352 (United States); Peeler, David; Johnson, Fabienne C.; Hansen, Eric K. [Savannah River National Laboratory, Savannah River Site, 999-W, Aiken, SC 29803 (United States); Soelberg, Nick [Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415 (United States); Pegg, Ian L.; Gan, Hao [Catholic University of America, 620 Michigan Avenue, N.E., Washington, DC 20064 (United States)

    2012-07-01

    An iron phosphate composition for vitrifying a high sulfate (∼17 wt%) and high alkali (∼80 wt%) Hanford low activity waste (LAW), known as AZ-102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ-102 which corresponded to a total alkali and sulfate (represented as SO{sub 3}) content of 21 and 4.4 wt%, respectively. A slurry (7 M Na{sup +}) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090 deg. C for 10 days in a small JHM at PNNL and for 70 hours in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their canister centerline cooled (CCC) counterparts met the requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT) responses in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract. These glass waste forms retained up to 77 % of the SO{sub 3} (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium (used as a surrogate for Tc) all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition was melted continuously in a slurry fed JHM and in the US, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste. The following conclusions are drawn from the results of the present work. (1) An iron phosphate composition, designated as MS26AZ102F-2, containing 26 wt% of the simulated high sulfate (17 wt%), high alkali (80 wt%) Hanford AZ-102 LAW meets all the criteria for processing in a JHM and CCIM. This

  20. The structure of phosphate glass biomaterials from neutron diffraction and 31P nuclear magnetic resonance data

    International Nuclear Information System (INIS)

    Pickup, D M; Ahmed, I; Guerry, P; Knowles, J C; Smith, M E; Newport, R J

    2007-01-01

    Neutron diffraction and 31 P nuclear magnetic resonance spectroscopy were used to probe the structure of phosphate glass biomaterials of general composition (CaO) 0.5-x (Na 2 O) x (P 2 O 5 ) 0.5 (x = 0, 0.1 and 0.5). The results suggest that all three glasses have structures based on chains of Q 2 phosphate groups. Clear structural differences are observed between the glasses containing Na 2 O and CaO. The P-O bonds to bridging and non-bridging oxygens are less well resolved in the neutron data from the samples containing CaO, suggesting a change in the nature of the bonding as the field strength of the cation increases Na + → Ca 2+ . In the (CaO) 0.5 (P 2 O 5 ) 0.5 glass most of the Ca 2+ ions are present in isolated CaO x polyhedra whereas in the (Na 2 O) 0.5 (P 2 O 5 ) 0.5 glass the NaO x polyhedra share edges leading to a Na-Na correlation. The results of the structural study are related to the properties of the (CaO) 0.4 (Na 2 O) 0.1 (P 2 O 5 ) 0.5 biomaterial

  1. Laser and thermal bleaching of colour centres in sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bukharaev, A A; Yafaev, N R [AN SSSR, Kazan. Fiziko-Tekhnicheskij Inst.

    1978-12-01

    The maximum of the additional absorption band in ..gamma..- or UV-irradiated sodium borate glasses shifts to higher energy when the low-energy side of the band is bleached by a helium-neon laser, ..lambda.. = 632.8 nm. Simultaneously the half-width of the additional absorption band decreases. This phenomenon is associated with the fact that because of structural disorder of glasses there is a distribution of ground-state energies of trapped electrons forming the light-sensitive absorption band. The distribution interval of the activation energy for trapped electrons is estimated using the decomposition of the initial thermal bleaching curves into components. For UV irradiated glasses it is aproximately 0.24 eV, and for ..gamma..-irradiated glasses only 0.12 eV. These values correlate with the relative shift maximum of the absorption band at laser bleaching.

  2. Quantum and dielectric confinements of sub-10 nm gold in dichroic phosphate glass nanocomposites

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Nath, Mithun; Karmakar, Basudeb

    2014-01-01

    Blue shifts of the surface plasmon resonance band of sub-10 nm gold in dichroic phosphate glass nanocomposites are observed with increase in both size of gold nanoparticles and refractive index of the medium, which are contrary to the common trends. These phenomena have been enlightened with the electrodynamics theories (Mie and Drude models) and happened due to quantum and dielectric confinements. Nanocomposites have been synthesized by in-situ thermochemical reduction technique in reducing phosphate glass matrices. The plasmon bands are characterized by the UV–vis spectrophotometer, and shape and size of the nanogold by the transmission electron microscopy. All the nanocomposites are dichroic in nature. - Highlights: • We fabricated Au 0 embedded nanocomposites in P 2 O 5 –SnO–ZnO glass matrix. • Au 0 synthesized by a single step in-situ thermochemical reduction technique. • We have reported the blue shifts of the SPR band of sub-10 nm Au 0 NPs. • The optical property has been explained on the basis of electrodynamics theories

  3. Simultaneous Determination of Ciprofloxacin Hydrochloride and Dexamethasone Sodium Phosphate in Eye Drops by HPLC

    OpenAIRE

    Katakam, Prakash; Sireesha, Karanam R.

    2012-01-01

    A liquid chromatographic method was developed and validated for the simultaneous determination of ciprofloxacin hydrochloride and dexamethasone sodium phosphate in bulk and pharmaceutical formulations. Optimum separation was achieved in less than 5 min using a C18 column (250 mmx4.6 mm i.d, 5μ particle size) by isocratic elution. The mobile phase consisting of a mixture of mixed phosphate buffer (pH 4) and acetonitrile (65:35, v/v) was used. Column effluents were monitored at 254 nm at a flow...

  4. Characterization of radiative properties of Nd{sub 2}O{sub 3} doped phosphate and silicate glasses for solid state laser

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, P., E-mail: pnandi@barc.gov.in; Shukla, R., E-mail: pnandi@barc.gov.in; Goswami, M., E-mail: pnandi@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-04-24

    Nd{sub 2}O{sub 3} doped calcium aluminium phosphate and calcium aluminium silicate glasses prepared to compare their absorption and emission properties. Radiative lifetime of the excited state {sup 4}F{sub 3/2} derived by Judd-Ofelt theory applied to the absorption spectra. Using the photoluminescence spectrometer the steady state emission and relaxation time from excited energy level recorded under green light excitation. Phosphate glass has higher emission cross-section, higher radiative lifetime but less quantum efficiency due to non-radiative quenching through hydroxyl ions compared to silicate glass for Nd{sup 3+}:{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} emission.

  5. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm

    Science.gov (United States)

    Yan, Y. C.; Faber, A. J.; de Waal, H.; Kik, P. G.; Polman, A.

    1997-11-01

    Erbium-doped multicomponent phosphate glass waveguides were deposited by rf sputtering techniques. The Er concentration was 5.3×1020cm-3. By pumping the waveguide at 980 nm with a power of ˜21 mW, a net optical gain of 4.1 dB at 1.535 μm was achieved. This high gain per unit length at low pump power could be achieved because the Er-Er cooperative upconversion interactions in this heavily Er-doped phosphate glass are very weak [the upconversion coefficient is (2.0±0.5)×10-18 cm3/s], presumably due to the homogeneous distribution of Er in the glass and due to the high optical mode confinement in the waveguide which leads to high pump power density at low pump power.

  6. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix.

    Science.gov (United States)

    Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew J; Rudd, Chris D; Walker, Gavin S; Scotchford, Colin A

    2013-09-01

    Eight different chemicals were investigated as potential candidate coupling agents for phosphate glass fibre reinforced polylactic acid composites. Evidence of reaction of the coupling agents with phosphate glass and their effect on surface wettability and glass degradation were studied along with their principle role of improving the interface between glass reinforcement and polymer matrix. It was found that, with an optimal amount of coupling agent on the surface of the glass/polymer, interfacial shear strength improved by a factor of 5. Evidence of covalent bonding between agent and glass was found for three of the coupling agents investigated, namely: 3-aminopropyltriethoxysilane; etidronic acid and hexamethylene diisocyanate. These three coupling agents also improved the interfacial shear strength and increased the hydrophobicity of the glass surface. It is expected that this would provide an improvement in the macroscopic properties of full-scale composites fabricated from the same materials which may also help to retain these properties for the desired length of time by retarding the breakdown of the fibre/matrix interface within these composites.

  7. Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest

    Energy Technology Data Exchange (ETDEWEB)

    Kilymis, D. A.; Delaye, J.-M., E-mail: jean-marc.delaye@cea.fr [CEA Marcoule, DEN/DTCD, Service d’Etude et Comportement des Matériaux de Conditionnement, BP17171 30207 Bagnols-sur-Cèze Cedex (France)

    2014-07-07

    In this paper we analyze results of Molecular Dynamics simulations of Vickers nanoindentation, performed for sodium borosilicate glasses of interest in the nuclear industry. Three glasses have been studied in their pristine form, as well as a disordered one that is analogous to the real irradiated glass. We focused in the behavior of the glass during the nanoindentation in order to reveal the mechanisms of deformation and how they are affected by microstructural characteristics. Results have shown a strong dependence on the SiO{sub 2} content of the glass, which promotes densification due to the open structure of SiO{sub 4} tetrahedra and also due to the strength of Si-O bonds. Densification for the glasses is primarily expressed by the relative decrease of the Si-O-Si and Si-O-B angles, indicating rotation of the structural units and decrease of free volume. The increase of alkali content on the other hand results to higher plasticity of the matrix and increased shear flow. The most important effect on the deformation mechanism of the disordered glasses is that of the highly depolymerized network that will also induce shear flow and, in combination with the increased free volume, will result in the decreased hardness of these glasses, as has been previously observed.

  8. Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest.

    Science.gov (United States)

    Kilymis, D A; Delaye, J-M

    2014-07-07

    In this paper we analyze results of Molecular Dynamics simulations of Vickers nanoindentation, performed for sodium borosilicate glasses of interest in the nuclear industry. Three glasses have been studied in their pristine form, as well as a disordered one that is analogous to the real irradiated glass. We focused in the behavior of the glass during the nanoindentation in order to reveal the mechanisms of deformation and how they are affected by microstructural characteristics. Results have shown a strong dependence on the SiO2 content of the glass, which promotes densification due to the open structure of SiO4 tetrahedra and also due to the strength of Si-O bonds. Densification for the glasses is primarily expressed by the relative decrease of the Si-O-Si and Si-O-B angles, indicating rotation of the structural units and decrease of free volume. The increase of alkali content on the other hand results to higher plasticity of the matrix and increased shear flow. The most important effect on the deformation mechanism of the disordered glasses is that of the highly depolymerized network that will also induce shear flow and, in combination with the increased free volume, will result in the decreased hardness of these glasses, as has been previously observed.

  9. Development, characterisation and biocompatibility testing of a cobalt-containing titanium phosphate-based glass for engineering of vascularized hard tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Ho [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Yu, Hye-sun [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Lakhkar, Nilay J. [Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Kim, Hae-Won [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Gong, Myoung-Seon [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Knowles, Jonathan C. [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Wall, Ivan B., E-mail: i.wall@ucl.ac.uk [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)

    2013-05-01

    There is a continuing need to develop scaffold materials that can promote vascularisation throughout the tissue engineered construct. This study investigated the effect of cobalt oxide (CoO) doped into titanium phosphate glasses on material properties, biocompatibility and vascular endothelial growth factor (VEGF) secretion by osteoblastic MG63 cells. Glasses composed of (P{sub 2}O{sub 5}){sub 45}(Na{sub 2}O){sub 20}(TiO{sub 2}){sub 05}(CaO){sub 30−x}(CoO){sub x}(x = 0, 5, 10, and 15 mol%) were fabricated and the effect of Co on physicochemical properties including density, glass transition temperature (T{sub g}), degradation rate, ion release, and pH changes was assessed. The results showed that incorporation of CoO into the glass system produced an increase in density with little change in T{sub g}. It was then confirmed that the pH did not change significantly when CoO was incorporated in the glass, and stayed constant at around 6.5–7.0 throughout the dissolution study period of 336 h. Ion release results followed a specific pattern with increasing amounts of CoO. In general, although incorporation of CoO into a titanium phosphate glass increased its density, other bulk and surface properties of the glass did not show any significant changes. Cell culture studies performed using MG63 cells over a 7-day period indicated that the glasses provide a stable surface for cell attachment and are biocompatible. Furthermore, VEGF secretion was significantly enhanced on all glasses compared with standard tissue culture plastic and Co doping enhanced this effect further. In conclusion, the developed Co-doped glasses are stable and biocompatible and thus offer enhanced potential for engineering vascularized tissue. - Highlights: ► Phosphate-based glasses can be successfully doped with cobalt oxide. ► The resulting glass is highly stable with low degradation rate. ► Co-doped glasses are biocompatible but do not favour cell proliferation. ► Osteoblastic MG63 cells

  10. Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses

    International Nuclear Information System (INIS)

    Kesavulu, C.R.; Almeida Silva, Anielle Christine; Dousti, M.R.; Dantas, Noelio Oliveira; Camargo, A.S.S. de; Catunda, Tomaz

    2015-01-01

    Zinc phosphate glasses (PZABPTb) in the compositional system: P 2 O 5 –ZnO–Al 2 O 3 –BaO–PbO doped with variable Tb 3+ concentrations (1–5 wt% Tb 2 O 3 ) were prepared and characterized through absorption, excitation, emission and intensity decay rate measurements. The Judd–Ofelt model has been adopted to evaluate the radiative properties of the 5 D 4 → 7 F 6–3 emission transitions. The effect of Tb 3+ ion concentration on the emissions from the 5 D 3,4 excited levels is discussed in detail. Analysis of the intensity decay curves corresponding to blue and green emissions from levels 5 D 3 and 5 D 4 , respectively, allowed determination of effective lifetimes, which confirmed the Tb 3+ ion concentration quenching of the blue emission in these glasses. The decay curves for the 5 D 3 level are found to be non-exponential in nature for all the studied concentrations due to ion–ion energy transfer through cross-relaxation. In an attempt to identify the origin of the energy transfer mechanism, the decay curves were well fitted to the Inokuti–Hirayama model for S=6, which indicates that the energy transfer process is of dipole–dipole type. The optical band gap energy (E opt ) has been evaluated taking into account the ultraviolet edge of absorption spectra. - Highlights: • Tb 3+ -doped zinc phosphate glasses have been prepared by melt quenching technique. • Spectroscopic parameters were evaluated using the Judd–Ofelt theory. • Effects of Tb 3+ concentration on luminescence of the glasses were studied. • Strong intense laser transition for Tb 3+ ion in PZABPTb glasses is 5 D 4 → 7 F 5 (0.54 μm). • PZABPTb glasses could be used in the development of green color display devices and solid state visible lasers

  11. Electron irradiation effect on bubble formation and growth in a sodium borosilicate glass

    International Nuclear Information System (INIS)

    Chen, X.; Birtcher, R. C.; Donnelly, S. E.

    2000-01-01

    In this study, the authors studied simultaneous and intermittent electron irradiation effects on bubble growth in a simple sodium borosilicate glass during Xe ion implantation at 200 C. Simultaneous electron irradiation increases the average bubble size in the glass. This enhanced diffusion is also shown by the migration of Xe from bubbles into the matrix when the sample is irradiated by an electron beam after the Xe implantation

  12. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huang, Q.Z.; Shi, J.F.; Wang, L.L.; Li, Y.J.; Zhong, L.W.; Xu, G.

    2016-01-01

    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO_2/Na_2O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO_2/Na_2O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  13. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q.Z. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shi, J.F., E-mail: shijf@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Wang, L.L.; Li, Y.J.; Zhong, L.W. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Xu, G., E-mail: xugang@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China)

    2016-07-01

    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO{sub 2}/Na{sub 2}O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO{sub 2}/Na{sub 2}O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  14. Structural relaxation dynamics and annealing effects of sodium silicate glass.

    Science.gov (United States)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann

    2013-05-09

    Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.

  15. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    Science.gov (United States)

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  16. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Devis, E-mail: devis.bellucci@unimore.it [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Sola, Antonella [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Cacciotti, Ilaria [University of Rome " Niccolò Cusano" , UdR INSTM, Via Don Carlo Gnocchi 3, 00166, Rome (Italy); Bartoli, Cristina; Gazzarri, Matteo [Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM — Pisa, Via Risorgimento 35, 56127 Pisa (Italy); Bianco, Alessandra [Department of Enterprise Engineering, INSTM RU “Rome-Tor Vergata”, Via del Politecnico 1, 00133 Roma (Italy); Chiellini, Federica [Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM — Pisa, Via Risorgimento 35, 56127 Pisa (Italy); Cannillo, Valeria [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy)

    2014-09-01

    Presently, there is an increasing interest towards the composites of calcium phosphates, especially β-tricalcium phosphate (TCP), and bioactive glasses. In the present contribution, the recently developed BG{sub C}a/Mix glass has been used because its low tendency to crystallize allows to sinter the composites at relatively low temperature (i.e. 850 °C), thus minimizing the glass devitrification and the interaction with TCP. A further improvement is the introduction of lab-produced TCP powders doped with specific ions instead of non-doped commercial powders, since the biological properties of materials for bone replacement can be modulated by doping them with certain metallic ions, such as Mg and Sr. Therefore, novel binary composites have been produced by sintering the BG{sub C}a/Mix glass with the addition of pure, Mg-substituted, Sr-substituted or Mg/Sr bisubstituted TCP powders. After an accurate characterization of the starting TCP powders and of the obtained samples, the composites have been used as three-dimensional supports for the culture of mouse calvaria-derived pre-osteoblastic cells. The samples supported cell adhesion and proliferation and induced promising mechanisms of differentiation towards an osteoblastic phenotype. In particular, the Mg/Sr bi-doped samples seemed to better promote the differentiation process thus suggesting a combined stimulatory effect of Mg{sup 2+} and Sr{sup 2+} ions.

  17. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness

    International Nuclear Information System (INIS)

    Bellucci, Devis; Sola, Antonella; Niccolò Cusano, UdR INSTM, Via Don Carlo Gnocchi 3, 00166, Rome (Italy))" data-affiliation=" (University of Rome Niccolò Cusano, UdR INSTM, Via Don Carlo Gnocchi 3, 00166, Rome (Italy))" >Cacciotti, Ilaria; Bartoli, Cristina; Gazzarri, Matteo; Bianco, Alessandra; Chiellini, Federica; Cannillo, Valeria

    2014-01-01

    Presently, there is an increasing interest towards the composites of calcium phosphates, especially β-tricalcium phosphate (TCP), and bioactive glasses. In the present contribution, the recently developed BG C a/Mix glass has been used because its low tendency to crystallize allows to sinter the composites at relatively low temperature (i.e. 850 °C), thus minimizing the glass devitrification and the interaction with TCP. A further improvement is the introduction of lab-produced TCP powders doped with specific ions instead of non-doped commercial powders, since the biological properties of materials for bone replacement can be modulated by doping them with certain metallic ions, such as Mg and Sr. Therefore, novel binary composites have been produced by sintering the BG C a/Mix glass with the addition of pure, Mg-substituted, Sr-substituted or Mg/Sr bisubstituted TCP powders. After an accurate characterization of the starting TCP powders and of the obtained samples, the composites have been used as three-dimensional supports for the culture of mouse calvaria-derived pre-osteoblastic cells. The samples supported cell adhesion and proliferation and induced promising mechanisms of differentiation towards an osteoblastic phenotype. In particular, the Mg/Sr bi-doped samples seemed to better promote the differentiation process thus suggesting a combined stimulatory effect of Mg 2+ and Sr 2+ ions

  18. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  19. Spectroscopic properties of Ho{sup 3+}-doped K-Sr-Al phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Linganna, K.; Rathaiah, M.; Venkatramu, V. [Yogi Vemana University, Department of Physics, Kadapa (India); Jayasankar, C.K. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2014-05-15

    Trivalent holmium-doped K-Sr-Al phosphate glasses (P{sub 2}O{sub 5}-K{sub 2}O-SrO-Al{sub 2}O{sub 3}-Ho{sub 2}O{sub 3}) were prepared, and their spectroscopic properties have been evaluated using absorption, emission, and excitation measurements. The Judd-Ofelt theory has been used to derive spectral intensities of various absorption bands from measured absorption spectrum of 1.0 mol% Ho{sub 2}O{sub 3}-doped K-Sr-Al phosphate glass. The Judd-Ofelt intensity parameters (Ω{sub λ}, x 10{sup -20} cm{sup 2}) have been determined of the order of Ω{sub 2} = 11.39, Ω{sub 4} = 3.59, and Ω{sub 6} = 2.92, which in turn used to derive radiative properties such as radiative transition probability, radiative lifetime, branching ratios, etc. for excited states of Ho{sup 3+} ions. The radiative lifetimes for the {sup 5}F{sub 4}, {sup 5}S{sub 2}, and {sup 5}F{sub 5} levels of Ho{sup 3+} ions are found to be 169, 296, and 317 μs, respectively. The stimulated emission cross-section for 2.05-μm emission was calculated by the McCumber theory and found to be 9.3 x 10{sup -21} cm{sup 2}. The wavelength-dependent gain coefficient with population inversion rate has been evaluated. The results obtained in the titled glasses are discussed systematically and compared with other Ho{sup 3+}-doped systems to assess the possibility for visible and infrared device applications. (orig.)

  20. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    Science.gov (United States)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  1. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage

    International Nuclear Information System (INIS)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Paleari, Alberto; Lorenzi, Roberto

    2013-01-01

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications. (paper)

  2. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage.

    Science.gov (United States)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Lorenzi, Roberto; Paleari, Alberto

    2013-06-07

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications.

  3. Fluorescence properties of Yb3+-Er3+ co-doped phosphate glasses containing silver nanoparticles

    Science.gov (United States)

    Martínez Gámez, Ma A.; Vallejo H, Miguel A.; Kiryanov, A. V.; Licea-Jiménez, L.; Lucio M, J. L.; Pérez-García, S. A.

    2018-04-01

    Er3+-Yb3+ co-doped phosphate glasses containing silver nitrate (SN), were fabricated. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analyses were used to evidence the nucleation and presence of silver nanoparticles (SNP). The basic parameters of the glasses were inspected by means of absorption and fluorescence spectra, and fluorescence lifetimes under excitation at 916 nm (in-band of Yb3+), and at 406 nm (in-band of surface plasmon resonance given by the presence of SNP). The spectra as well as estimates for the basic parameters defining the lasing/amplifying potential of the glasses were studied as a function of SN concentration. The experimental results indicate that by increasing the SN content an enhancement of Er3+/Yb3+ fluorescence takes place.

  4. Kinetics of copper nanoparticle precipitation in phosphate glass: an isothermal plasmonic approach.

    Science.gov (United States)

    Sendova, Mariana; Jiménez, José A; Smith, Robert; Rudawski, Nicholas

    2015-01-14

    The kinetics of copper nanoparticle (NP) precipitation in melt-quenched barium-phosphate glass has been studied by in situ isothermal optical micro-spectroscopy. A spectroscopically based approximation technique is proposed to obtain information about the activation energies of nucleation and growth in a narrow temperature range (530-570 °C). Pre-plasmonic and plasmonic NP precipitation stages are identified separated in time. The process as a whole is discussed employing classical nucleation/growth theory and the Kolmogorov-Johnson-Mehl-Avrami phase change model. Activation energies of 3.9(7) eV and 2.6(5) eV have been estimated for the pre-plasmonic and plasmonic spectroscopically assessed stages, respectively. High resolution transmission electron microscopy, differential scanning calorimetry, and Raman spectroscopy were used as complementary techniques for studying the nanoparticulate phase and glass host structure. An empirical linear dependence of the diffusion activation energy on the glass transition temperature with broad applicability is suggested.

  5. Investigations on optical properties of Sm3+ ion doped boro-phosphate glasses

    Science.gov (United States)

    Vijayakumar, R.; Suthanthirakumar, P.; Karthikeyan, P.; Marimuthu, K.

    2015-06-01

    The Sm3+ doped Boro-phosphate glasses with the chemical composition 60H3BO3+20Li2CO3+10ZnO+(10-x) H6NO4P+xSm2O3 (where x= 0.1, 0.5, 1 and 2 in wt%) have been prepared by melt quenching technique. The prepared glasses were characterized through optical absorption and luminescence spectral measurements. The band gap energies corresponding to the direct and indirect allowed transitions and the Urbach's energy values were estimated from the absorption spectra. Judd-Ofelt intensity parameters have been derived to predict the radiative properties of the various emission transitions. In order to identify the emission color of the prepared glasses, the emission intensities were analyzed using CIE 1931 color chromaticity diagram. The energy transfer process takes place between Sm3+-Sm3+ ions through cross-relaxation mechanism have also been investigated and the results were discussed and reported.

  6. Effects of CuO co-doping on γ-ray irradiation resistance of active ions doped phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhihuan [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); ENEA-UTTMAT, Via Anguillarese 301, 00123 Rome (Italy); Baccaro, Stefania; Cemmi, Alessia [ENEA-UTTMAT, Via Anguillarese 301, 00123 Rome (Italy); Shen, Wei [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2013-09-15

    The effect of copper ion doping on the γ-ray irradiation resistance of Mn{sup 2+} and Pr{sup 3+} doped phosphate glasses has been studied. UV–visible transmission spectra and photoluminescence spectra have been measured before and after γ-irradiation to characterize the radiation-induced defects. The electron paramagnetic resonance spectra of the irradiated samples with, and without Cu ions have been compared to show the ability of Cu ions to suppress the generation of radiation-induced color centers. The differential transmission spectra and the radiation-induced absorption coefficients have also been calculated for discussion of the observed phenomena. The much improved γ-irradiation resistance of Mn{sup 2+} and Pr{sup 3+} doped phosphate glasses has been demonstrated through CuO co-doping.

  7. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (cosmetics, but are not currently used. Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity. Ascorbic Acid and Sodium Ascorbate acted as a nitrosation inhibitor in several food and cosmetic product studies. No compound-related clinical signs or gross or

  8. Stability-Indicating HPLC Method for Simultaneous Determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in Ophthalmic Solution.

    Science.gov (United States)

    AlAani, Hashem; Alnukkary, Yasmin

    2016-03-01

    A simple stability-indicating RP-HPLC assay method was developed and validated for quantitative determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in ophthalmic solution in the presence of 2-amino-1-(4-nitrophenyl)propane-1,3-diol, a degradation product of Chloramphenicol, and Dexamethasone, a degradation product of Dexamethasone Sodium Phosphate. Effective chromatographic separation was achieved using C18 column (250 mm, 4.6 mm i.d., 5 μm) with isocratic mobile phase consisting of acetonitrile - phosphate buffer (pH 4.0; 0.05 M) (30:70, v/v) at a flow rate of 1 mL/minute. The column temperature was maintained at 40°C and the detection wavelength was 230 nm. The proposed HPLC procedure was statistically validated according to the ICH guideline, and was proved to be stability-indicating by resolution of the APIs from their forced degradation products. The developed method is suitable for the routine analysis as well as stability studies.

  9. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement.

    Science.gov (United States)

    Mazzaoui, S A; Burrow, M F; Tyas, M J; Dashper, S G; Eakins, D; Reynolds, E C

    2003-11-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) nanocomplexes have been shown to prevent demineralization and promote remineralization of enamel subsurface lesions in animal and in situ caries models. The aim of this study was to determine the effect of incorporating CPP-ACP into a self-cured glass-ionomer cement (GIC). Incorporation of 1.56% w/w CPP-ACP into the GIC significantly increased microtensile bond strength (33%) and compressive strength (23%) and significantly enhanced the release of calcium, phosphate, and fluoride ions at neutral and acidic pH. MALDI mass spectrometry also showed casein phosphopeptides from the CPP-ACP nanocomplexes to be released. The release of CPP-ACP and fluoride from the CPP-ACP-containing GIC was associated with enhanced protection of the adjacent dentin during acid challenge in vitro.

  10. Sodium Phosphate Supplementation and Time Trial Performance in Female Cyclists

    Directory of Open Access Journals (Sweden)

    Christopher L. Buck

    2014-09-01

    Full Text Available This study investigated the effects of three doses of sodium phosphate (SP supplementation on cycling 500 kJ (119.5 Kcal time trial (TT performance in female cyclists. Thirteen cyclists participated in a randomised, Latin-square design study where they completed four separate trials after ingesting either a placebo, or one of three different doses (25, 50 or 75 mg·kg-1 fat free mass: FFM of trisodium phosphate dodecahydrate which was split into four equal doses a day for six days. On the day after the loading phase, the TT was performed on a cycle ergometer. Serum phosphate blood samples were taken at rest both before and after each loading protocol, while a ~21 day washout period separated each loading phase. No significant differences in TT performance were observed between any of the supplementation protocols (p = 0.73 with average completion times for the 25, 50 or 75 mg·kg-1 FFM being, 42:21 ± 07:53, 40:55 ± 07:33 and 40:38 ± 07:20 min respectively, and 40:39 ± 07:51 min for the placebo. Likewise, average and peak power output did not significantly differ between trials (p = 0.06 and p = 0.46, respectively. Consequently, 500 kJ cycling TT performance was not different in any of the supplementation protocols in female cyclists.

  11. STUDY OF POLYMORPHISM OF BOROVANADATE GLASS OF SODIUM BY RAMAN SPECTROSCOPY LOW FREQUENCIES

    Directory of Open Access Journals (Sweden)

    M. K. Rabia

    2015-07-01

    Full Text Available Sodium tetraborate (100 – x(Na2B4O7.10H2O­­ ­­­­­– xV2O5, (x = 0 to 20 mole % has been elaborated by splat cooling technique. Raman Measurements on the doped and non polish samples reveal the presence of the of α-NaVO3 crystal on the superficial layer. After polishing, Raman spectra characteristic of glasses are obtained with two main bands located at 555 and 1097 cm-1 in the undoped glass and four bands at 241, 381, 776 and 938 cm-1 for the vanadium oxyde doped glasses. The volume devitrification of these glasses occurs at 750° C and the β-NaVO3 crystalline phase is identified by Raman scattering.

  12. Volume and structural relaxation in compressed sodium borate glass.

    Science.gov (United States)

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  13. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    Science.gov (United States)

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Influence of silver and copper doping on luminescent properties of zinc-phosphate glasses after x-ray irradiation

    Science.gov (United States)

    Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.

    2017-11-01

    It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.

  15. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  16. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns--an in vitro study.

    Science.gov (United States)

    Reddy, R; Basappa, N; Reddy, V V

    1998-03-01

    This study was conducted on 30 extracted human primary molars to assess the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements. The teeth were embedded in resin blocks and were randomly divided into 3 groups of 10 each. The occlusal surfaces of all teeth were reduced uniformly by 1.0 to 1.5 mm. All mesial, distal undercuts were removed and sharp angles rounded. This was followed by cementing pretrimmed and precontoured stainless steel crowns on each tooth with hand pressure and storing in artificial saliva at 37 degrees C for 24 hours. Retentive strength was tested using Instron Universal Testing Machine. The load was applied starting from a zero reading and gradually increased until the cemented stainless steel crowns showed signs of movement and then the readings were recorded. It was found that retentive strengths of zinc phosphate and glass ionomer cements were statistically better (P cement. Negligible difference (0. 59 kg/cm2) was however observed between zinc phosphate and glass ionomer cements.

  17. Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications.

    Science.gov (United States)

    Patel, U; Moss, R M; Hossain, K M Z; Kennedy, A R; Barney, E R; Ahmed, I; Hannon, A C

    2017-09-15

    Neutron diffraction, 23 Na and 31 P NMR, and FTIR spectroscopy have been used to investigate the structural effects of substituting CaO with SrO in a 40P 2 O 5 ·(16-x)CaO·20Na 2 O·24MgO·xSrO glass, where x is 0, 4, 8, 12 and 16mol%. The 31 P solid-state NMR results showed similar amounts of Q 1 and Q 2 units for all of the multicomponent glasses investigated, showing that the substitution of Sr for Ca has no effect on the phosphate network. The M-O coordinations (M=Mg, Ca, Sr, Na) were determined for binary alkali and alkaline earth metaphosphates using neutron diffraction and broad asymmetric distributions of bond length were observed, with coordination numbers that were smaller and bond lengths that were shorter than in corresponding crystals. The Mg-O coordination number was determined most reliably as 5.0(2). The neutron diffraction results for the multicomponent glasses are consistent with a structural model in which the coordination of Ca, Sr and Na is the same as in the binary metaphosphate glass, whereas there is a definite shift of Mg-O bonds to longer distance. There is also a small but consistent increase in the Mg-O coordination number and the width of the distribution of Mg-O bond lengths, as Sr substitutes for Ca. Functional properties, including glass transition temperatures, thermal processing windows, dissolution rates and ion release profiles were also investigated. Dissolution studies showed a decrease in dissolution rate with initial addition of 4mol% SrO, but further addition of SrO showed little change. The ion release profiles followed a similar trend to the observed dissolution rates. The limited changes in structure and dissolution rates observed for substitution of Ca with Sr in these fixed 40mol% P 2 O 5 glasses were attributed to their similarities in terms of ionic size and charge. Phosphate based glasses are extremely well suited for the delivery of therapeutic ions in biomedical applications, and in particular strontium plays an

  18. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    Science.gov (United States)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  19. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Ishu; Reddy, AlluAmarnath [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Muñoz, Francisco [Ceramics and Glass Institute (CSIC), Kelsen 5, 28049 Madrid (Spain); Choi, Seong-Jun [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330714 (Korea, Republic of); Kim, Hae-Won [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330714 (Korea, Republic of); Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330714 (Korea, Republic of); Tulyaganov, Dilshat U. [Turin Polytechnic University in Tashkent, 100095 Tashkent (Uzbekistan); Ferreira, José M.F., E-mail: jmf@ua.pt [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal)

    2014-11-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO–MgO–SiO{sub 2}–P{sub 2}O{sub 5}–CaF{sub 2} system. The {sup 29}Si and {sup 31}P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na{sub 2}O/MgO ratios exhibit a silicate glass network with the dominance of Q{sup 2}(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h and 7 days while their chemical degradation has been studied in Tris–HCl in accordance with ISO-10993-14. Increasing Na{sup +}/Mg{sup 2+} ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. - Highlights: • Na{sup +} did not induce significant structural changes in chemical Si environment. • Sodium is more prone to affect the chemical environment around P. • Increasing Na{sup +}/Mg{sup 2+} ratios hinder bio-mineralization and chemical durability. • Alkali-containing glasses confer cyto-toxicity to the cell culture medium.

  20. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses

    International Nuclear Information System (INIS)

    Kansal, Ishu; Reddy, AlluAmarnath; Muñoz, Francisco; Choi, Seong-Jun; Kim, Hae-Won; Tulyaganov, Dilshat U.; Ferreira, José M.F.

    2014-01-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO–MgO–SiO 2 –P 2 O 5 –CaF 2 system. The 29 Si and 31 P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na 2 O/MgO ratios exhibit a silicate glass network with the dominance of Q 2 (Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h and 7 days while their chemical degradation has been studied in Tris–HCl in accordance with ISO-10993-14. Increasing Na + /Mg 2+ ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. - Highlights: • Na + did not induce significant structural changes in chemical Si environment. • Sodium is more prone to affect the chemical environment around P. • Increasing Na + /Mg 2+ ratios hinder bio-mineralization and chemical durability. • Alkali-containing glasses confer cyto-toxicity to the cell culture medium

  1. High temperature oxidation and crystallization behavior of phosphate glass compositions

    International Nuclear Information System (INIS)

    Russo, Diego; Rodriguez, Diego; Grumbaum, N.; Gonzalez Oliver, Carlos

    2003-01-01

    We analyzed the thermal transformation of three iron phosphate glasses having the following nominal compositions: M4 [70% P 2 O 5 , 30% Fe 2 O 3 ], M5 [85% M4, 15% UO 2 ] y M7 [69.7% P 2 O 5 , 28.6% Fe 2 O 3 , 1,7% Al 2 O 3 ]. Thermogravimetric analysis, DTA (differential thermal analysis) and SAXS (Small Angle X-ray Scattering) were performed.It was observed that it is easily possible to produce glasses in these systems having very low crystallinity.We could determine the final stable crystalline phases [Fe 4 (P 2 O 7 ) 3 , Fe(PO 3 ) 3 and Fe 3 (P 2 O 7 ) 2 ].The presence of uranium ions affects not only the redox effects but also the crystallization of the system.SAXS data obtained during the heating in vacuum up to ∼600degC, gave some variation of scattering intensities vs. scattering vector suggesting the development of an extra phase or some kind inhomogeneities that seems to disappear on heating

  2. Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses

    International Nuclear Information System (INIS)

    Caird, J.A.; Ramponi, A.J.; Staver, P.R.

    1991-01-01

    Radiometrically calibrated spectroscopic techniques employing an integrating-sphere detection system have been used to determine the fluorescence quantum efficiencies for two commercially available Nd 3+ -doped phosphate laser glasses, LG-750 and LG-760. Quantum efficiencies and fluorescence lifetimes were measured for samples with various neodymium concentrations. It is shown that the effects of concentration quenching are accurately described when both resonant nonradiative excitation hopping (the Burshtein model) and annihilation by cross relaxation are accounted for by Foerster--Dexter dipole--dipole energy-transfer theory. The Foerster--Dexter critical range for nonradiative excitation hopping was found to be R DD =11 A, while the critical range for cross relaxation was close to R DA =4 A in these glasses. The quantum efficiency at low Nd 3+ concentrations was (92±5)%, implying a nonradiative relaxation rate of 210±150 s -1 for isolated ions. Improved values for the radiative lifetimes and the stimulated emission cross sections for these glasses were also deduced from the measurements

  3. Structural and electrical properties of iron molybdenum phosphate glasses

    International Nuclear Information System (INIS)

    De Oliveira, R.S.; Quixada-Ceara, Univ. Estadual do Ceara; De Paiva, J.A.C.; De Araujo, M.A.B.; Sombra, A. S.B.

    1998-01-01

    iron molybdenum phosphate glasses (xMoO 3 ·(0.6 - x)P 2 O 5 ·0.4Li 2 O) : yFe 2 O 2 with 0≤x≤ 0.6 and y = 0.03 (mol%) prepared in ambient atmosphere using the melt quenching technique were studied by using DC electrical conductivity, 57 Fe Moessbauer and infrared spectroscopies. The Dc conductivity depends on the MoO 3 concentration x. It was observed that, with increasing x, the ratio Fe 2+ /(Fe 3+ + Fe 2+ ) and the Dc conductivity increase. Infrared spectroscopy and X-ray powder diffraction indicate that a Li 2 MoO 4 crystalline phase is present for high MoO 3 content samples (x = 0.5, 0.6)

  4. Effects of Jerusalem Artichoke Powder and Sodium Carbonate as Phosphate Replacers on the Quality Characteristics of Emulsified Chicken Meatballs.

    Science.gov (United States)

    Öztürk, Burcu; Serdaroğlu, Meltem

    2018-02-01

    Today incorporation of natural ingredients as inorganic phosphate replacers has come into prominence as a novel research topic due to health concerns about phosphates. In this study, we aimed to investigate the quality of emulsified chicken meatballs produced with Jerusalem artichoke powder (JAP), either alone or in combination with sodium carbonate (SC) as sodium tripolyphosphate (STPP) replacers. The results showed that naturally dried JAP showed favorable technological properties in terms of water-oil binding and gelling. Emulsion batters formulated with JAP-SC mixture showed lower jelly and fat separation, higher water-holding capacity and higher emulsion stability than control samples with STPP. In final product, incorporation of JAP-SC mixture increased moisture and reduced lipid and energy values, and kept the pH value similar to control. Added JAP lead to increments in b* values whereas decreases L* values. Cook yield was similar to control in phosphate-free samples formulated with JAP-SC mix. Either low or medium ratios of JAP in combination with SC managed to protect most of the sensory parameters, while sensory scores tend to decrease in samples containing high levels of JAP. Addition of JAP to formulations presented samples that have equivalent behavior to phosphates in terms of lipid oxidation. In conclusion, our study confirms that utilization of JAP in combination with SC had promising effects as phosphate replacers by presenting natural solutions and providing equivalent quality to standard phosphate containing products.

  5. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kurobori, Toshio, E-mail: kurobori@staff.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Yanagida, Yuka [Oarai Research Center, Chiyoda Technol Corporation, Oarai-machi, Ibaraki 311-1313 (Japan); Kodaira, Satoshi [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirao, Taichi [Nikon Instech Co., Ltd., Tanakanishi, Sakyo-ku, Kyoto 606-8221 (Japan)

    2017-05-21

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  6. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    International Nuclear Information System (INIS)

    Kurobori, Toshio; Yanagida, Yuka; Kodaira, Satoshi; Shirao, Taichi

    2017-01-01

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  7. Structural and luminescence properties of Sm3+ -doped bismuth phosphate glass for orange-red photonic applications.

    Science.gov (United States)

    Damodaraiah, S; Reddy Prasad, V; Ratnakaram, Y C

    2018-05-01

    In the present study, the effect of bismuth oxide (Bi 2 O 3 ) content on the structural and optical properties of 0.5Sm 3+ -doped phosphate glass and the effect of concentration on structural and optical properties of Sm 3+ -doped bismuth phosphate (BiP) glass were studied. Structural characterization was accomplished using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and 31 P nuclear magnetic resonance (NMR) spectroscopy. Optical properties were studied using absorption, photoluminescence and decay measurements. Using optical absorption spectra, Judd-Ofelt parameters were derived to determine the local structure and bonding in the vicinity of Sm 3+ ions. The emission spectra of Sm 3+ -doped BiP glass showed two intense emission bands, 4 G 5/2 → 6 H 7/2 (orange) and 4 G 5/2 → 6 H 9/2 (red) for which the stimulated emission cross-sections (σ e ) and branching ratios (β) were found to be higher. The quantum efficiencies were also calculated from decay measurements recorded for the 4 G 5/2 level of Sm 3+ ions. The suitable combination of Bi 2 O 3 (10 mol%) and Sm 3+ (0.5 mol%) ions in these glasses acted as an efficient lasing material and might be suitable for the development of visible orange-red photonic materials. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices

    Directory of Open Access Journals (Sweden)

    Xiaoling Liu

    2013-01-01

    Full Text Available Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM. The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM and X-ray diffraction (XRD analysis, respectively. The roughness of the coatings was seen to increase from 40±1 nm to 80±1 nm. The mechanical properties (tensile strength and modulus of fibre with coatings decreased with increased magnesium coating thickness.

  9. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses.

    Science.gov (United States)

    Kansal, Ishu; Reddy, AlluAmarnath; Muñoz, Francisco; Choi, Seong-Jun; Kim, Hae-Won; Tulyaganov, Dilshat U; Ferreira, José M F

    2014-11-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO-MgO-SiO2-P2O5-CaF2 system. The (29)Si and (31)P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na2O/MgO ratios exhibit a silicate glass network with the dominance of Q(2)(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1h and 7 days while their chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Increasing Na(+)/Mg(2+) ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Spectroscopic and radiative properties study of Nd3+ doped cadmium-phosphate glasses

    International Nuclear Information System (INIS)

    Mahmoud, K.H.

    2010-01-01

    A spectroscopic investigation is performed on Nd 3+ doped cadmium-phosphate glasses. The Judd-Ofelt analysis is applied to the glass system in order to evaluate their potential as both glass laser and amplifier materials. The phenomenological Judd-Ofelt parameters Ω (2) , Ω (4) , and Ω (6) are determined, their values are 4.80x10 -20 , 6.18x10 -20 , and 7.14x10 -20 cm -2 , respectively. The quality factor for glass system is 0.86. Predicted radiative decay rates and branching ratios of transitions from Nd 3+4 F 3/2 state to the 4 I J manifolds are determined and analyzed. The calculated lifetime of the 4 F 3/2 metastable state of Nd 3+ is 31 μs. The results showed that 4 F 3/2 to 4 I 11/2 transition, with fluorescence at 1056 nm, has the most potential for laser application. Photoluminescence up-conversion under excitation at 488 nm laser light exhibits three emission bands of Nd 3+ ions at 541 (green), 601 (orange), and 677 nm (red). These emission bands are assigned to 4 G 7/2 → 4 I 9/2 , 4 G 7/2 → 4 I 11/2 , and 4 G 7/2 → 4 I 13/2 transitions, respectively. Analysis of luminescence spectra enhances the use of glass system in optical displays, lasers, and optical memory devices.

  11. Concentration effect on the spectroscopic behavior of Tb{sup 3+} ions in zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kesavulu, C.R., E-mail: crkesavulu2005@gmail.com [Instituto de Fisica de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, São Carlos, SP (Brazil); Almeida Silva, Anielle Christine [Laboratorio de Novos Materials Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberândia, MG (Brazil); Dousti, M.R. [Instituto de Fisica de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, São Carlos, SP (Brazil); Dantas, Noelio Oliveira [Laboratorio de Novos Materials Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberândia, MG (Brazil); Camargo, A.S.S. de; Catunda, Tomaz [Instituto de Fisica de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, São Carlos, SP (Brazil)

    2015-09-15

    Zinc phosphate glasses (PZABPTb) in the compositional system: P{sub 2}O{sub 5}–ZnO–Al{sub 2}O{sub 3}–BaO–PbO doped with variable Tb{sup 3+} concentrations (1–5 wt% Tb{sub 2}O{sub 3}) were prepared and characterized through absorption, excitation, emission and intensity decay rate measurements. The Judd–Ofelt model has been adopted to evaluate the radiative properties of the {sup 5}D{sub 4}→{sup 7}F{sub 6–3} emission transitions. The effect of Tb{sup 3+} ion concentration on the emissions from the {sup 5}D{sub 3,4} excited levels is discussed in detail. Analysis of the intensity decay curves corresponding to blue and green emissions from levels {sup 5}D{sub 3} and {sup 5}D{sub 4}, respectively, allowed determination of effective lifetimes, which confirmed the Tb{sup 3+} ion concentration quenching of the blue emission in these glasses. The decay curves for the {sup 5}D{sub 3} level are found to be non-exponential in nature for all the studied concentrations due to ion–ion energy transfer through cross-relaxation. In an attempt to identify the origin of the energy transfer mechanism, the decay curves were well fitted to the Inokuti–Hirayama model for S=6, which indicates that the energy transfer process is of dipole–dipole type. The optical band gap energy (E{sub opt}) has been evaluated taking into account the ultraviolet edge of absorption spectra. - Highlights: • Tb{sup 3+}-doped zinc phosphate glasses have been prepared by melt quenching technique. • Spectroscopic parameters were evaluated using the Judd–Ofelt theory. • Effects of Tb{sup 3+} concentration on luminescence of the glasses were studied. • Strong intense laser transition for Tb{sup 3+} ion in PZABPTb glasses is {sup 5}D{sub 4}→{sup 7}F{sub 5} (0.54 μm). • PZABPTb glasses could be used in the development of green color display devices and solid state visible lasers.

  12. Potassium/sodium ion exchange of sodium aluminosilicate and soda-lime glasses with potassium nitrate melts

    International Nuclear Information System (INIS)

    Richter, E.

    1983-08-01

    The alkali self-diffusion coefficients, the concentration-dependent interdiffusion coefficients, and the actual equilibrium constants of the ion exchange process were determinated for model glasses of the Na 2 O-Al 2 O 3 -SiO 2 type and the Na 2 O-CaO-SiO 2 type by nuclear techniques. The measured self-diffusion data and interdiffusion coefficients were used to estimate the stress profiles initiated by the K/Na exchange below the transformation temperature in the surface region. The activation volume of the sodium and potassium ions for diffusion through the surface zone stressed by ion exchange was determined. The disturbing influence of small concentrations of determined divalent cations in KNO 3 (especially Ca 2+ ) was investigated and thermodynamically described. Possibilities were demonstrated to remove these disturbances by anionic admixtures to the KNO 3 melt. Conclusions were drawn for the technical process of the chemical strengthening of glass by K/Na ion exchange at lower temperatures. (author)

  13. Novel resorbable glass-ceramic scaffolds for hard tissue engineering: from the parent phosphate glass to its bone-like macroporous derivatives.

    Science.gov (United States)

    Bretcanu, Oana; Baino, Francesco; Verné, Enrica; Vitale-Brovarone, Chiara

    2014-05-01

    One of the major challenges of hard tissue engineering research focuses on the development of scaffolds that can match the mechanical properties of the host bone and resorb at the same rate as the bone is repaired. The aim of this work was the synthesis and characterization of a resorbable phosphate glass, as well as its application for the fabrication of three dimensional (3-D) scaffolds for bone regeneration. The glass microstructure and behaviour upon heating were analysed by X-ray diffraction, differential scanning calorimetry and hot stage microscopy. The glass solubility was investigated according to relevant ISO standards using distilled water, simulated body fluid (SBF) and Tris-HCl as testing media. The glass underwent progressive dissolution over time in all three media but the formation of a hydroxyapatite-like layer was also observed on the samples soaked in SBF and Tris-HCl, which demonstrated the bioactivity of the material. The glass powder was used to fabricate 3-D macroporous bone-like glass-ceramic scaffolds by adopting polyethylene particles as pore formers: during thermal treatment, the polymer additive was removed and the sintering of glass particles was allowed. The obtained scaffolds exhibited high porosity (87 vol.%) and compressive strength around 1.5 MPa. After soaking for 4 months in SBF, the scaffolds mass loss was 76 wt.% and the pH of the solution did not exceed the 7.55 value, thereby remaining in a physiological range. The produced scaffolds, being resorbable, bioactive, architecturally similar to trabecular bone and exhibiting interesting mechanical properties, can be proposed as promising candidates for bone repair applications.

  14. Iron phosphate glass: a promising matrix for the immobilization of Cs and Mo

    International Nuclear Information System (INIS)

    Hemadevi, V.; Joseph, Kitheri

    2015-01-01

    Presently, borosilicate glass (BSG) is the acceptable vitrification matrix for the immobilization of high level waste. The solubility of Mo in BSG is limited in the presence of Cs. As per the literature, solubility of Mo in BSG is about 2.5 wt. % in the presence of Cs. Hence it is difficult to immobilize nuclear waste rich in Cs and Mo in borosilicate glass. It is observed that the composition of Cs and Mo expressed as oxides are 10.4 and 14.7 wt. % respectively in simulated fast reactor waste. Iron phosphate glass containing 20 wt. % simulated fast reactor waste (referred as IP20FRW) was synthesized and characterized. IP20FRW contains ~ 3 wt. % of molybdenum oxide along with 2 wt. % cesium oxide. IPG is a suitable matrix for the immobilization of Cs and Mo separately. Hence it is essential to understand the glass characteristics of IPG containing both Cs and Mo. This paper explores systematic loading of both Cs and Mo such that the final composition corresponds to 10.5 wt. % Cs 2 O-15 wt. % MoO 3 -31.9 wt. % Fe 2 O 3 -42.6 wt. % P 2 O 5 . In addition to synthesis, the present study also includes understanding the change in glass characteristics of IPG containing both Cs and Mo. The possibility of higher percent loading of both Cs and Mo in IPG demonstrates the better glass forming characteristics of IPG. The synthesis and characterization of Cs-Mo loaded glasses will be discussed in this paper. (author)

  15. Optical and physical properties of sodium lead barium borate glasses doped with praseodymium ion

    Science.gov (United States)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    Praseodymium doped sodium lead barium borate glasses have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses using PekinElemer Lambda-35 Uv-Vis spectrometer in the range of 200 -1100 nm. The optical direct band gap energies were found to be in the range of 3.62 eV to 3.69 eV and indirect band gap energies were found to be in the range of 3.57 eV to 3.62eV. The refractive indices were measured by using Abbe refractometer the values are in the range of 1.620 to 1.625.

  16. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns - an in vitro study.

    Science.gov (United States)

    Raghunath Reddy, M H; Subba Reddy, V V; Basappa, N

    2010-01-01

    An in vitro study was conducted to compare the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements using Instron universal testing machine. Thirty preformed and pretrimmed stainless steel crowns were used for cementation on 30 extracted human primary molars which were divided into three groups of 10 teeth in each group. Then the teeth were stored in artificial saliva and incubated at 37°C for 24 h. A load was applied on to the crown and was gradually increased till the crown showed dislodgement, and then the readings were recorded using Instron recorder and analyzed for statistical significance. The surface area of crown was measured by graphical method. The retentive strength was expressed in terms of kg/cm 2 , which was calculated by the equation load divided by area. Retentive strengths of zinc phosphate (ranged from a minimum of 16.93 to amaximum of 28.13 kg/cm 2 with mean of 21.28 kg/cm 2 ) and glass ionomer cement (minimum of 13.69 - 28.15 kg/cm 2 with mean of 20.69 kg/cm 2 ) were greater than that of polycarboxylate cement (minimum of 13.26 - 22.69 kg/cm 2 with mean of 16.79 kg/cm 2 ). Negligible difference (0.59 kg/cm 2 ) of retentive strength was observed between zinc phosphate (21.28 kg/cm 2 ) and glass ionomer cements (20.69 kg/cm 2 ). Glass ionomer cements can be recommended for cementation of stainless steel crowns because of its advantages and the retentive strength was almost similar to that of zinc phosphate cement.

  17. Application of Cu{sub 2}O-doped phosphate glasses for bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Elhaes, H. [Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo (Egypt); Attallah, M., E-mail: m_atallah94@yahoo.com [Basic Science Department, Higher Technological Institute, 10th of Ramadan City (Egypt); Elbashar, Y.; El-Okr, M. [Physics Department, Faculty of Science, Al Azhar University, Cairo (Egypt); Ibrahim, M. [Spectroscopy Department, National Research Centre, 12311 Dokki, Cairo (Egypt)

    2014-09-15

    Phosphate glasses doped with copper ions having general composition 42P{sub 2}O{sub 5}–39ZnO–(18−x) Na{sub 2}O–1CaO–xCu{sub 2}O [x=2, 4, 6, 8, 10 mol%] were prepared using a conventional melt-quench technique. Physical and chemical properties of the glasses were investigated using X-ray diffraction technique and UV–visible optical absorption. The density was measured by Archimedes' method, and molar volume (V{sub M}) was calculated. It is found that density and molar volume show opposite trend by increasing Cu{sub 2}O content. Absorbance and transmittance at the normal incidence are measured by a spectrophotometer in the spectral range of 190–1100 nm. Analyses of the obtained results were considered in the frame of current theories. Absorption data were used for absorption coefficient, the optical band gap (E{sub opt}), the cutoff in UV and IR bands to the bandpass filter, which confirmed the optical properties of this type of filter. E{sub opt} values for different glass samples are found to decrease with increasing Cu{sub 2}O content.

  18. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    Science.gov (United States)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  19. Investigations on optical properties of Sm{sup 3+} ion doped boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, R.; Suthanthirakumar, P.; Karthikeyan, P.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural Institute – Deemed University, Gandhigram – 624302 (India)

    2015-06-24

    The Sm{sup 3+} doped Boro-phosphate glasses with the chemical composition 60H{sub 3}BO{sub 3}+20Li{sub 2}CO{sub 3}+10ZnO+(10−x) H{sub 6}NO{sub 4}P+xSm{sub 2}O{sub 3} (where x= 0.1, 0.5, 1 and 2 in wt%) have been prepared by melt quenching technique. The prepared glasses were characterized through optical absorption and luminescence spectral measurements. The band gap energies corresponding to the direct and indirect allowed transitions and the Urbach’s energy values were estimated from the absorption spectra. Judd-Ofelt intensity parameters have been derived to predict the radiative properties of the various emission transitions. In order to identify the emission color of the prepared glasses, the emission intensities were analyzed using CIE 1931 color chromaticity diagram. The energy transfer process takes place between Sm{sup 3+}−Sm{sup 3+} ions through cross-relaxation mechanism have also been investigated and the results were discussed and reported.

  20. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    International Nuclear Information System (INIS)

    Demirkiran, Hande; Hu Yongfeng; Zuin, Lucia; Appathurai, Narayana; Aswath, Pranesh B.

    2011-01-01

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts ( 5 (PO 4 ) 2 SiO 4 and Na 3 Ca 6 (PO 4 ) 5 in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L 2,3 -edge and calcium (Ca) K-edge XANES. Si L 2,3 -edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L 2,3 -edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and β-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na 3 Ca 6 (PO 4 ) 5 in a silicate matrix indicating that it is more soluble compared to the other compositions.

  1. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles.

    Science.gov (United States)

    Novajra, G; Boetti, N G; Lousteau, J; Fiorilli, S; Milanese, D; Vitale-Brovarone, C

    2016-10-01

    Novel bone glass fibre scaffolds were developed by thermally bonding phosphate glass fibres belonging to the P2O5-CaO-Na2O-SiO2-MgO-K2O-TiO2 system (TiPS2.5 glass). Scaffolds with fibres of 85 or 110μm diameter were fabricated, showing compressive strength in the range of 2-3.5MPa, comparable to that of the trabecular bone. The effect of different thermal treatments and fibre diameters and length on the final scaffold structure was investigated by means of micro-CT analysis. The change of the sintering time from 30 to 60min led to a decrease in the scaffold overall porosity from 58 to 21vol.% for the 85μm fibre scaffold and from 50 to 40vol.% when increasing the sintering temperature from 490 to 500°C for the 110μm fibre scaffold. The 85μm fibres resulted in an increase of the scaffold overall porosity, increased pore size and lower trabecular thickness; the use of different fibre diameters allowed the fabrication of a scaffold showing a porosity gradient. In order to impart bioactive properties to the scaffold, for the first time in the literature the introduction in these fibre scaffolds of a bioactive phase, a melt-derived bioactive glass (CEL2) powder or spray-dried mesoporous bioactive glass particles (SD-MBG) was investigated. The scaffold bioactivity was assessed through soaking in simulated body fluid. CEL2/glass fibre scaffold did not show promising results due to particle detachment from the fibres during soaking in simulated body fluid. Instead the use of mesoporous bioactive powders showed to be an effective way to impart bioactivity to the scaffold and could be further exploited in the future through the ability of mesoporous particles to act as systems for the controlled release of drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Preparation and nonlinear optical properties of indium nanocrystals in sodium borosilicate glass by the sol–gel route

    International Nuclear Information System (INIS)

    Zhong, Jiasong; Xiang, Weidong; Zhao, Haijun; Chen, Zhaoping; Liang, Xiaojuan; Zhao, Wenguang; Chen, Guoxin

    2012-01-01

    Graphical abstract: The sodium borosilicate glass doped with indium nanocrystals have been successfully prepared by sol–gel methods. And the indium nanocrystals in tetragonal crystal system have formed uniformly in the glass, and the average diameter of indium nanocrystals is about 30 nm. The third-order optical nonlinear refractive index γ, absorption coefficient β, and susceptibility χ (3) of the glass are determined to be −4.77 × 10 −16 m 2 /W, 2.67 × 10 −9 m/W, and 2.81 × 10 −10 esu, respectively. Highlights: ► Indium nanocrystals embedded in glass matrix have been prepared by sol–gel route. ► The crystal structure and composition are investigated by XRD and XPS. ► Size and distribution of indium nanocrystals is determined by TEM. ► The third-order optical nonlinearity is investigated by using Z-scan technique. -- Abstract: The sodium borosilicate glass doped with indium nanocrystals have been successfully prepared by sol–gel route. The thermal stability behavior of the stiff gel is investigated by thermogravimetric (TG) and differential thermal (DTA) analysis. The crystal structure of the glass is characterized by X-ray powder diffraction (XRD). Particle composition is determined by X-ray photoelectron spectroscopy (XPS). Size and distribution of the nanocrystals are characterized by transmission electron microscopy (TEM) as well as high-resolution transmission electron microscopy (HRTEM). Results show that the indium nanocrystals in tetragonal crystal structure have formed in glass, and the average diameter is about 30 nm. Further, the glass is measured by Z-scan technique to investigate the nonlinear optical (NLO) properties. The third-order NLO coefficient χ (3) of the glass is determined to be 2.81 × 10 −10 esu. The glass with large third-order NLO coefficient is promising materials for applications in optical devices.

  3. Structural characterizations and optical properties of new Li–Sr–Nb-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yi-Mu [Department of Electronic Engineering, National United University, Miao-Li 36003, Taiwan, ROC (China); Hsu, S.M. [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 11221, Taiwan, ROC (China); Yung, S.W., E-mail: hwyang@nuu.edu.tw [Department of Material Science and Engineering, National United University, Miao-Li 36003, Taiwan, ROC (China); Zhang, T. [Institute for Materials Research, Fuzhou University, Fujian (China); Huang, Y.S.; Wu, J.J. [Department of Material Science and Engineering, National United University, Miao-Li 36003, Taiwan, ROC (China); Hsu, C.H. [Department of Electrical Engineering, National United University, Miao-Li 36003, Taiwan, ROC (China); Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan, ROC (China)

    2014-04-01

    A new Li{sub 2}O–SrO–Nb{sub 2}O{sub 5}–P{sub 2}O{sub 5} glass system was prepared by a high-temperature alumina crucible, and structural characterization and optical properties were investigated. Proper content of Li{sub 2}O and Nb{sub 2}O{sub 5} was employed to replace partial SrO and P{sub 2}O{sub 5} to improve the optical properties. It was observed that the enhancement of the refractive index from 1.75 to 1.85 is mainly due to the Nb{sub 2}O{sub 5} content. An addition of Li{sub 2}O significantly increases the optical transmittance; optical transparency can be enhanced from 60% to higher than 85% in the UV–visible region with addition of 20–40 mol% Li{sub 2}O species. However, optical transmittance is monotonically decreased from about 90% to 80% under 10–30 mol% Nb{sub 2}O{sub 5} addition. The 40P{sub 2}O{sub 5}–20Nb{sub 2}O{sub 5}–20SrO–20Li{sub 2}O glasses demonstrate the optimum refractive index (n > 1.75) and high optical transparency (>80%) in the UV–visible region. Furthermore, the effect of Nb{sub 2}O{sub 5} on the structural transition was focused on the (60 − y)P{sub 2}O{sub 5}–yNb{sub 2}O{sub 5}–20SrO–20Li{sub 2}O vitreous system since the transition of FTIR spectra reveals that the Nb{sub 2}O{sub 5} has more pronounced effect than Li{sub 2}O in the glass network due to the higher covalent extent and electronegativity. Addition of Nb{sub 2}O{sub 5} generates Nb–O bonds by dissociating P–O chains and results in the decrease in the intensity of the (PO{sub 2}), (POP), and (PO{sub 3}) absorption bands. The O1s-XPS analysis shows that Nb{sub 2}O{sub 5} addition dissociates symmetric bridging oxygens in P–O–P bonding and forms asymmetric bridging oxygens in P–O–Nb and non-bridging Nb–O{sup -} bonds, in which octahedral [NbO{sub 6}] unit is eventually substituted by [NbO{sub 4}] tetrahedral unit in the Li–Sr–Nb phosphate glasses. - Highlights: • The prepared glasses demonstrate great optical properties

  4. Glass formation and structure of calcium antimony phosphate glasses and those doped with tellurium oxide

    Science.gov (United States)

    Li, Jun; Zhang, Yin; Nian, Shangjiu; Wu, Zhenning; Cao, Weijing; Zhou, Nianying; Wang, Danian

    2017-03-01

    An approximate glass-forming region in the P2O5-Sb2O3-CaO ternary system was determined. The properties and structure of two compositional series of (A) (75- x)P2O5- xSb2O3-25CaO ( x = 20, 25, 30, 35 mol%) and (B) 45P2O5-30Sb2O3-(25- x)CaO- xTeO2 ( x = 5, 10, 15, 20 mol%) were studied systematically. Thermal properties were investigated by means of differential scanning calorimetry (DSC). The densities of all samples were measured by Archimedes' method using distilled water as the immersion liquid. The water durability of the glasses was described by their dissolution rate (DR) in the distilled water at 90 °C for some time periods. Density, thermal stability and water durability were improved with the addition of Sb2O3 and TeO2. Structural studies were carried out by X-ray diffraction (XRD), infrared spectroscopy and Raman spectroscopy. The phosphate chain depolymerization occurred with the increase of Sb2O3 and the Q2 structural units transformed to the Q1 and Q0 structural units with the addition of TeO2.

  5. High temperature aqueous potassium and sodium phosphate solutions: two-liquid-phase boundaries and critical phenomena, 275-4000C; potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1981-12-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases nor liquid-liquid immiscibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators. 16 refs

  6. Nephrotic syndrome induced by dibasic sodium phosphate injections for twenty-eight days in rats.

    Science.gov (United States)

    Tsuchiya, Noriko; Torii, Mikinori; Narama, Isao; Matsui, Takane

    2009-04-01

    Sprague-Dawley rats received once daily tail-vein injections of 360 mM dibasic sodium phosphate solution at 8 mL/kg for fourteen or twenty-eight days. Clinical examination revealed persistent proteinuria from three days after the first dosing and thereafter severe proteinuria from eight days or later in the phosphate-treated groups. Proteinuria developed without remission even after fourteen-day withdrawal in the fourteen-day dosed group. Phosphate-treated animals developed lipemia, hypercholesterolemia, anemia, higher serum fibrinogen levels, and lower serum albumin/globulin ratios on day 29. Renal weight increased significantly compared with control animals, and the kidneys appeared pale and enlarged with a rough surface. Histopathologically, glomerular changes consisted of mineralization in whole glomeruli, glomerular capillary dilatation, partial adhesion of glomerular tufts to Bowman's capsule, and mesangiolysis. Ultrastructural lesions such as an increased number of microvilli, effacement of foot processes, and thickening of the glomerular basement membrane, and immunocytochemical changes in podocytes, mainly decreased podoplanin-positive cells and increased desmin expression, were also conspicuous in the phosphate-treated rats for twenty-eight days. Marked tubulointerstitial lesions were tubular regeneration and dilatation, protein casts, mineralization in the basement membrane, focal interstitial inflammation, and fibrosis in the cortex. These clinical and morphological changes were similar to features of human nephrotic syndrome.

  7. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns - An in vitro study

    Directory of Open Access Journals (Sweden)

    Raghunath Reddy M

    2010-01-01

    Full Text Available An in vitro study was conducted to compare the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements using Instron universal testing machine. Thirty preformed and pretrimmed stainless steel crowns were used for cementation on 30 extracted human primary molars which were divided into three groups of 10 teeth in each group. Then the teeth were stored in artificial saliva and incubated at 37°C for 24 h. A load was applied on to the crown and was gradually increased till the crown showed dislodgement, and then the readings were recorded using Instron recorder and analyzed for statistical significance. The surface area of crown was measured by graphical method. The retentive strength was expressed in terms of kg/cm 2 , which was calculated by the equation load divided by area. Retentive strengths of zinc phosphate (ranged from a minimum of 16.93 to amaximum of 28.13 kg/cm 2 with mean of 21.28 kg/cm 2 and glass ionomer cement (minimum of 13.69 - 28.15 kg/cm 2 with mean of 20.69 kg/cm 2 were greater than that of polycarboxylate cement (minimum of 13.26 - 22.69 kg/cm 2 with mean of 16.79 kg/cm 2 . Negligible difference (0.59 kg/cm 2 of retentive strength was observed between zinc phosphate (21.28 kg/cm 2 and glass ionomer cements (20.69 kg/cm 2 . Glass ionomer cements can be recommended for cementation of stainless steel crowns because of its advantages and the retentive strength was almost similar to that of zinc phosphate cement.

  8. Towards modular bone tissue engineering using Ti-Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies.

    Science.gov (United States)

    Peticone, Carlotta; De Silva Thompson, David; Owens, Gareth J; Kim, Hae-Won; Micheletti, Martina; Knowles, Jonathan C; Wall, Ivan

    2017-09-01

    The production of large quantities of functional vascularized bone tissue ex vivo still represent an unmet clinical challenge. Microcarriers offer a potential solution to scalable manufacture of bone tissue due to their high surface area-to-volume ratio and the capacity to be assembled using a modular approach. Microcarriers made of phosphate bioactive glass doped with titanium dioxide have been previously shown to enhance proliferation of osteoblast progenitors and maturation towards functional osteoblasts. Furthemore, doping with cobalt appears to mimic hypoxic conditions that have a key role in promoting angiogenesis. This characteristic could be exploited to meet the clinical requirement of producing vascularized units of bone tissue. In the current study, the human osteosarcoma cell line MG-63 was cultured on phosphate glass microspheres doped with 5% mol titanium dioxide and different concentrations of cobalt oxide (0%, 2% and 5% mol), under static and dynamic conditions (150 and 300 rpm on an orbital shaker). Cell proliferation and the formation of aggregates of cells and microspheres were observed over a period of two weeks in all glass compositions, thus confirming the biocompatibility of the substrate and the suitability of this system for the formation of compact micro-units of tissue. At the concentrations tested, cobalt was not found to be cytotoxic and did not alter cell metabolism. On the other hand, the dynamic environment played a key role, with moderate agitation having a positive effect on cell proliferation while higher agitation resulting in impaired cell growth. Finally, in static culture assays, the capacity of cobalt doping to induce vascular endothelial growth factor (VEGF) upregulation by osteoblastic cells was observed, but was not found to increase linearly with cobalt oxide content. In conclusion, Ti-Co phosphate glasses were found to support osteoblastic cell growth and aggregate formation that is a necessary precursor to tissue

  9. The effect of electron irradiation on the structure and iron speciation in sodium aluminum (iron) phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V., E-mail: serge.stefanovsky@yandex.ru [Frumkin Institute of Physical Chemistry and Electrochemistry RAS (Russian Federation); Presniakov, I.A.; Sobolev, A.V.; Glazkova, I.S. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Kadyko, M.I.; Stefanovsky, O.I. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS (Russian Federation)

    2016-08-01

    The effect of 8 MeV electron irradiation on the structure of glasses in the series 40 Na{sub 2}O, (20-x) Al{sub 2}O{sub 3}, x Fe{sub 2}O{sub 3}, 40 P{sub 2}O{sub 5} (mol.%) and on the iron speciation in these samples was studied by FTIR and Mössbauer spectroscopic techniques. Irradiation up to a dose of 1.0 MGy has no appreciable effects on the character of the bonds within anionic motif of the glass network. Electron irradiation increases the fraction of aluminum in octahedral coordination. Iron in both unirradiated and irradiated glasses is present mainly as Fe(III) (60–75% of the total amount) in the glasses and partly as Fe(II) and the ratio of two forms remains constant up to a dose of 1.0 MGy.

  10. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)

    2011-03-12

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  11. Raman and optical absorption spectroscopic investigation of Yb-Er codoped phosphate glasses containing SiO2

    Institute of Scientific and Technical Information of China (English)

    Youkuo Chen; Lei Wen; Lili Hu; Wei Chen; Y. Guyot; G. Boulon

    2009-01-01

    Yb-Er codoped Na2O-Al2O3-P2Os-xSiO2 glasses containing 0 鈥? 20 mol% SiO2 were prepared successfully. The addition of SiO2 to the phosphate glass not only lengthens the bond between P5+ and non-bridging oxygen but also reduces the number of P=O bond. In contrast with silicate glass in which there is only four-fold coordinated Si4+, most probably there coexist [SiO4] tetrahedron and [SiO6] octahedron in our glasses. Within the range of 0 鈥? 20 mol% SiO2 addition, the stimulated emission cross-section of Er3+ ion only decreases no more than 10%. The Judd-Ofelt intensity parameters of Er3+, 惟.2 does not change greatly, but 惟74 and 惟6 decrease obviously with increasing SiO2 addition, because the bond between Er + and O2- is more strongly covalently bonded.

  12. Optical properties of 3d transition metal ion-doped sodium borosilicate glass

    International Nuclear Information System (INIS)

    Wen, Hongli; Tanner, Peter A.

    2015-01-01

    Graphical abstract: Photographs of undoped (SiO 2 ) 50 (Na 2 O) 25 (B 2 O 3 ) 25 (SiNaB) glass and transition metal ion-doped (TM) 0.5 (SiO 2 ) 49.5 (Na 2 O) 25 (B 2 O 3 ) 25 glass samples. - Highlights: • 3d transition metal ion (from Ti to Zn) doped SiO 2 -Na 2 O-B 2 O 3 glasses. • Optical properties of doped glasses investigated. • V(IV,V); Cr(III, VI); Mn(II,III); Fe(II,III); Co(II); Ni(II); Cu(II) by XANES, DRS. • Strong visible absorption but only vanadium ion gives strong emission in glass. - Abstract: SiO 2 -Na 2 O-B 2 O 3 glasses doped with 3d-transition metal species from Ti to Zn were prepared by the melting-quenching technique and their optical properties were investigated. The X-ray absorption near edge spectra of V, Cr, and Mn-doped glasses indicate that the oxidation states of V(IV, V), Cr(III, VI) and Mn(II, III) exist in the studied glasses. The oxidation states revealed from the diffuse reflectance spectra of the glasses are V(IV, V), Cr(III, VI), Mn(III), Fe(II, III), Co(II), Ni(II), and Cu(II). Most of the 3d transition element ions exhibit strong absorption in the visible spectral region in the glass. Under ultraviolet excitation, the undoped sodium borosilicate glass produces weak and broad emission, while doping of vanadium introduces strong and broad emission due to the V(V) charge transfer transition. Only weak emission is observed from Ti(IV), Mn(II), Fe(III) and Cu(II), partly resulting from the strong electron–phonon coupling of the 3d-electrons and the relatively high phonon energy of the studied glass host, with the former leading to dominant nonradiative relaxation based on multiphonon processes for most of the 3d excited states

  13. Infrared and x-ray photoelectron spectroscopic studies on sodium borosilicate glass interacted with thermally oxidized aluminides formed on alloy 690

    International Nuclear Information System (INIS)

    Yusufali, C.; Dutta, R.S.; Dey, G.K.; Kshirsagar, R.J.; Jagannath; Mishra, R.K.

    2012-01-01

    Thermally oxidized aluminides formed on Ni-Cr-Fe based superalloy 690 substrates were subjected to interaction with sodium borosilicate melt (used as matrices for immobilization of high-level radioactive liquid waste) at 1248 K for 192 hours. After the interaction, Fourier-transform infrared (FT-IR) spectroscopy analysis of glass samples indicated the incorporation of Al in the glass network. X-ray photoelectron spectroscopy (XPS) of glass specimens revealed modified glass structure. (author)

  14. Comparison of radiation and quenching rate effects on the structure of a sodium borosilicate glass

    International Nuclear Information System (INIS)

    Peuget, Sylvain; Maugeri, Emilio-Andrea; Mendoza, Clement; Fares, Toby; Bouty, Olivier; Jegou, Christophe; Charpentier, Thibault; Moskura, Melanie

    2013-01-01

    The effects of quenching rate and irradiation on the structure of a sodium borosilicate glass were compared using 29 Si, 11 B, and 23 Na nuclear magnetic resonance and Raman spectroscopy. Quenching rate ranging from 0.1 to 3 * 10 4 K min -1 was studied. Various irradiation conditions were performed, i.e. gold-ion irradiation in a multi-energy mode (from 1 to 6.75 MeV), and Kr and Xe ion irradiations with energy of 74 and 92 MeV, respectively. In pile irradiation with thermal neutron flux was performed as well, to study the effect of alpha radiation from the nuclear reaction 10 B(n,α) 7 Li. Both irradiation and high quenching rate induce similar local order modification of the glass structure, mainly a decrease of the mean boron coordination and an increase of Q 3 units. Nevertheless, the variations observed under irradiation are more pronounced than the ones induced by the quenching rate. Moreover, some important modifications of the glass medium range order, i.e. the emergence of the D2 band associated to three members silica rings and a modification of the Si-O-Si angle distribution were only noticed after irradiation. These results suggest that the irradiated structure is certainly not exactly the one obtained by a rapidly quenched equilibrated melt, but rather a more disordered structure that was weakly relaxed during the very rapid quenching phase following the energy deposition step. Raman spectroscopy showed a similar irradiated structure whereas the glass evolutions were controlled by the electronic energy loss in the ion track formation regime for Kr-ion irradiation or by the nuclear energy loss for Au and OSIRIS irradiation. The similar irradiated structure despite different irradiation routes, suggests that the final structural state of this sodium borosilicate glass is mainly controlled by the glass reconstruction after the energy deposition step. (authors)

  15. Investigating the effect of V{sub 2}O{sub 5} addition on sodium barium borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Rumu, E-mail: rumuhalder24feb@gmail.com; Sengupta, Pranesh; Dey, G. K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai-700 085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai-700 085 (India); Kaushik, C. P. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai-700 085 (India)

    2016-05-23

    V{sub 2}O{sub 5} doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V{sub 2}O{sub 5} but a phase separation is observed when V{sub 2}O{sub 5} doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O{sup −} Na{sup +}/Ba{sup 2+} linkages are formed.

  16. Modifications on the properties of a calcium phosphate cement by additions of sodium alginate

    International Nuclear Information System (INIS)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A.

    2012-01-01

    The Calcium Phosphate Cement (CPC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry due to its biocompatibility, bioactivity and osteoconductivity, and form a paste that can be easily shaped and placed into the surgical site. However, CPCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. In order to assess the strength and time to handle a CPC composed primarily of alpha phase, were added sodium alginate (1%, 2% and 3% wt) and an accelerator in an aqueous solution. The cement powder was mixed with liquid of setting, shaped into specimens and evaluated for apparent density and porosity by Archimedes method, X-ray diffraction and compressive strength. A significant increase in compressive strength by adding sodium alginate was verified. (author)

  17. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal wherein the metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface thereof. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 0 7 . (author)

  18. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal is described. The metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 O 7 . (author)

  19. Study on the water durability of zinc boro-phosphate glasses doped with MgO, Fe2O3, and TiO2

    Science.gov (United States)

    Hwang, Moon Kyung; Ryu, Bong Ki

    2016-07-01

    The water durability of zinc boro-phosphate (PZB) glasses with the composition 60P2O5-20ZnO-20B2O3- xMeO ( x = 0, 2, 4, 6 and MeO = MgO, Fe2O3, or TiO2) (mol%) was measured, and PZB glass was studied in terms of its thermal properties, density, and FTIR characteristics. The surface conditions and corrosion byproducts were analyzed using scanning electron microscopy. When MgO, Fe2O3, and TiO2 were doped into the PZB glass, Q2 was decreased and Q1 was increased in the phosphate structure, while the number of BO4 structures increased with increasing MeO content. The density of the PZB glass was increased by the addition of Fe2O3 and TiO2, while the glass transition temperature ( T g ) and dilatometric softening temperature ( T d ) were increased when additional MgO, Fe2O3, and TiO2 were added. From the weight loss analysis (95 ◦ C, 96 h), TiO2 doped glass showed the lowest weight loss (1.70 × 10 -3 g/cm2) while MgO doped glass showed the highest value (2.44 × 10 -3 g/cm2), compared with PZB glass (3.07 × 10 -3 g/cm2). These results were discussed in terms of the Me n+ ions in the glass structure, and their different coordination numbers and bonding strengths.

  20. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses

    Science.gov (United States)

    Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant

    2016-03-01

    Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.

  1. Copper(II) oxide solubility behavior in aqueous sodium phosphate solutions at elevated temperatures

    International Nuclear Information System (INIS)

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    1990-02-01

    A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of copper(II) oxide (CuO) in aqueous sodium phosphate solutions at temperatures between 292 and 535 K. Copper solubilities are observed to increase continuously with temperature and phosphate concentration. The measured solubility is examined via a Cu(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reactions are obtained from a least- squares analysis of the data. Altogether, thermochemical properties are established for five anionic complexes: Cu(OH) 3 - , Cu(OH) 4 = , Cu(OH) 2 (HPO 4 ) = , Cu(OH) 3 (H 2 PO 4 ) = , and Cu(OH) 2 (PO 4 ) ≡ . Precise thermochemical parameters are also derived for the Cu(OH) + hydroxocomplex based on CuO solubility behavior previously observed in pure water (*) at elevated temperatures. The relative ease of Cu(II) ion hydrolysis is such that Cu(OH) 3 - species become the preferred hydroxocomplex for pH ≥ 9.4. 20 refs., 8 figs., 6 tabs

  2. Influence of silver nanoparticles on the spectroscopic properties of Sm3+ doped boro-phosphate glasses

    Science.gov (United States)

    Suthanthirakumar, P.; Marimuthu, K.

    2016-05-01

    The Sm3+ doped novel boro-phosphate glasses containing silver nanoparticles (NPs) (SmBPxA) have been prepared following the melt quenching technique and their structural and spectroscopic behavior were studied through HR-TEM, optical absorption and photoluminescence spectral measurements. The TEM analysis validates the existence of Ag NPs with an average diameter of ~8 nm. The Surface plasmon resonance (SPR) band of silver NPs was found at around 600 nm from the absorption spectrum of the Sm3+ ions free glass sample. The optical band gap energy (Eopt) corresponding to the direct and indirect allowed transitions and the Urbach energy (ΔE) values were determined from the absorption spectral measurements. The luminescence intensity is found to get enhance when the Ag NPs were embedded along with the Sm3+ ions in the prepared glasses due to the local electric field effect around the rare earth (RE) ion site produced by the SPR of Ag NPs.

  3. Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses

    Science.gov (United States)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2018-03-01

    Seven rare earth (Sm3+, Eu3+ and Nd3+) doped lead alumino phosphate glasses were prepared. The protective and sensing measures from gamma rays were analysed in terms of parameters viz. density (ρ), refractive index, energy band gap (Eg), mean free path (mfp), effective atomic number (Zeff) and buildup factors (energy absorption EABF as well as exposure buildup factor EBF). The energy dependent parameters (mfp, Zeff, EABF and EBF) were investigated in the energy region from 15 keV to 15 MeV. EABF and EBF values were observed to be maximum in the intermediate energy region. Besides, the EABF and EBF values for the prepared samples are shown to have strong dependence on chemical composition of the glass at lower energy, whereas, it is almost independent of chemical composition in higher energy region. The prepared glass samples are found to have potential applications in radiation shielding as well as radiation sensing, which further find numerous applications in the field of medicine and industry.

  4. Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses

    Science.gov (United States)

    Selvi, S.; Venkataiah, G.; Arunkumar, S.; Muralidharan, G.; Marimuthu, K.

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy3+doped lead boro-telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B-O vibrations, P-O-P symmetric vibrations and Te-O stretching modes of TeO3 and TeO6 units. The metal-ligand bond was identified through UV-vis-NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σPE) and branching ratio (βR) for the transitions that include 4F9/2→6H11/2, 6H13/2 and 6H15/2 bands. The effect of Dy3+ ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the 4F9/2 level of the title glasses has been found to decrease with the increase in Dy3+ ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  5. Application and Mechanism of Anionic Collector Sodium Dodecyl Sulfate (SDS in Phosphate Beneficiation

    Directory of Open Access Journals (Sweden)

    Kun Sun

    2017-02-01

    Full Text Available Phosphate ore is a valuable strategic resource. Most phosphate ore in China is collophane. Utilization of mid-low grade collophane is necessary to maintain social sustainable development. The gravity-flotation combination separation process can be utilized to separate mid-low grade collophane, but the process consumes a large quantity of acid in the reverse stage. Sodium dodecyl sulfate (SDS was used as a dolomite collector in this study to reduce the acid consumption of collophane flotation. SDS effectively removed dolomite from the gravity concentrate when no other reagents were present. Flotation test results showed that, compared to the conventional gravity-flotation process, the proposed SDS-based process reduced phosphoric acid dosage from 6.1 kg/t to 3.9 kg/t with similar separation results. The SDS action mechanisms on dolomite were further investigated by zeta potential analysis, single mineral flotation tests, infrared spectrum detection, and theoretical analysis. The results indicate that the SDS adsorption on dolomite is mainly physical adsorption, and that favorable separation effects between collophane and dolomite may be attributed to physical adsorption and entrainment. In addition, it also indicates that the physical adsorption can be utilized to remove dolomite from phosphate on account of zeta potential differences when the separate feed is coarse.

  6. Single-step fabrication of stressed waveguides with tubular depressed-cladding in phosphate glasses using ultrafast vortex laser beams

    Directory of Open Access Journals (Sweden)

    Cheng Guanghua

    2013-11-01

    Full Text Available We report on the fabrication of the stressed optical waveguide with tubular depressed-refractive-index cladding in phosphate glasses by use of femtosecond vortex beam. Strained regions were emerged in domains surrounding the tubular track. Waveguiding occurs mainly within the tube induced by femtosecond laser.

  7. Sodium phosphate as a solid catalyst for biodiesel preparation

    Directory of Open Access Journals (Sweden)

    S. T. Jiang

    2010-03-01

    Full Text Available Sodium phosphate (Na3PO4 was chosen as catalyst for biodiesel preparation from rapeseed oil. The effects of mass ratio of catalyst to oil, molar ratio of methanol to oil, reaction temperature and rotation speed on biodiesel yield were investigated. For a mass ratio of catalyst to oil of 3%, molar ratio of methanol to oil of 9:1, reaction temperature of 343K and rotation speed of 600rpm, the transesterification was nearly completed within 20 minutes. Na3PO4 has a similar activity to homogeneous catalysts. Na3PO4 could be used repeatedly for 8 runs without any activation treatment and no obvious activity loss was observed. The concentrations of catalyst in biodiesel ranged from 0.6 to 0.7 mg/g. Compared to Na3PO4, Na3PO4.10H2O was cheaper, but the final yield was 71.3%, much lower than that of Na3PO4 at 99.7%.

  8. Near-UV sensitized 1.06 μm emission of Nd{sup 3+} ions via monovalent copper in phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, José A., E-mail: jose.jimenez@unf.edu [Department of Chemistry, University of North Florida, Jacksonville, FL 32224 (United States); Sendova, Mariana [Optical Spectroscopy & Nano-Materials Lab, New College of Florida, Sarasota, FL 34243 (United States)

    2015-07-15

    Monovalent copper ions effectively incorporated in Nd-containing phosphate glass by a single-step melt-quench method have been established as near-ultraviolet (UV) sensitizers of Nd{sup 3+} ions, resulting in a remarkable {sup 4}F{sub 3/2} → {sup 4}I{sub 11/2} emission at 1.06 μm. The spectroscopic data indicates an efficient energy conversion process. The Cu{sup +} ions first absorb photons broadly around 360 nm, and subsequently transfer the energy from the Stokes-shifted emitting states to resonant Nd{sup 3+} energy levels in the visible. Ultimately, the Nd{sup 3+} electronic excited states decay and the upper lasing state {sup 4}F{sub 3/2} is populated, leading to the enhanced emission at 1.06 μm. The characteristic features of the Cu{sup +} visible emission spectra and the reduced lifetime of the corresponding Cu{sup +} donor states indicate an efficient non-radiative transfer. The Cu{sup +}/Nd{sup 3+} co-doped phosphate glass appears suitable as solid-state laser material with enhanced pump range in the near-UV part of the spectrum and for solar spectral conversion in photovoltaic cells. - Graphical abstract: Display Omitted - Highlights: • Monovalent copper ions effectively stabilized in Nd{sup 3+}-containing phosphate glass. • Enhanced Nd{sup 3+} near-infrared emission observed upon the Cu{sup +} ions incorporation. • Cu{sup +} → Nd{sup 3+} non-radiative energy transfer efficiencies and likely energy transfer pathways evaluated. • Potential for solid-state lasers and solar spectral conversion suggested.

  9. Thermal lens and interferometric method for glass transition and thermo physical properties measurements in Nd2O3 doped sodium zincborate glass.

    Science.gov (United States)

    Astrath, N G C; Steimacher, A; Rohling, J H; Medina, A N; Bento, A C; Baesso, M L; Jacinto, C; Catunda, T; Lima, S M; Karthikeyan, B

    2008-12-22

    In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required.

  10. Electronic polarizability, optical basicity and interaction parameter for Nd{sub 2}O{sub 3} doped lithium-zinc-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Algradee, M.A.; Sultan, M.; Samir, O.M.; Alwany, A.E.B. [Ibb University, Department of Physics, Faculty of Science, Ibb (Yemen)

    2017-08-15

    The Nd{sup 3+}-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd{sub 2}O{sub 3} content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system. (orig.)

  11. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  12. Silver aggregates and twofold-coordinated tin centers in phosphate glass: A photoluminescence study

    International Nuclear Information System (INIS)

    Jimenez, J.A.; Lysenko, S.; Liu, H.; Fachini, E.; Resto, O.; Cabrera, C.R.

    2009-01-01

    The optical properties of silver species in various oxidation and aggregation states and of tin centers in melt-quenched phosphate glasses have been assessed by optical absorption and photoluminescence (PL) spectroscopy. Glasses containing silver and tin, or either dopant, were studied. Emission and excitation spectra along with time-resolved and temperature-dependent PL measurements were employed in elucidating the different emitting centers observed and investigating on their interactions. In regard to silver, the data suggests the presence of luminescent single Ag + ions, Ag + -Ag + and Ag + -Ag 0 pairs, and nonluminescent Ag nanoparticles (NPs), where Ag + -Ag 0 →Ag + -Ag + energy transfer is indicated. Tin optical centers appear as twofold-coordinated Sn centers displaying PL around 400 nm ascribed to triplet-to-singlet electronic transitions. The optically active silver centers were observed in glasses where 8 mol% of both Ag 2 O and SnO, and 4 mol% of Ag 2 O were added. Heat treatment (HT) of the glass with the high concentration of silver and tin leads to chemical reduction of ionic silver species resulting in a large volume fraction of silver NPs and the vanishing of silver PL features. Further characterization of such heat-treated glass by transmission electron microscopy and X-ray photoelectron spectroscopy appears consistent with silver being present mainly in nonoxidized form after HT. On the other hand, HT of the glass containing only silver results in the quenching of Ag + -Ag 0 pairs emission that is ascribed to nonradiative energy transfer to Ag NPs due to the positioning of the pairs near the surface of NPs during HT. In this context, an important finding is that a faster relaxation was observed for this nanocomposite in relation to a heat-treated glass containing both silver and tin (no silver pairs) as revealed by degenerate four-wave mixing spectroscopy. Such result is attributed to Ag NP→Ag + -Ag 0 plasmon resonance energy transfer. The

  13. Addition of 1, 2 and 3% in mass of sodium alginate in calcium phosphate cement

    International Nuclear Information System (INIS)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A.

    2011-01-01

    The calcium phosphate cement (CFC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry because of their biocompatibility, bioactivity, osteoconductivity and osteotransdutivity, and a paste that can be easily molded and placed into the surgical site. However, CFCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. Aiming to evaluate the strength and time to handle a CFC phase composed mainly of alpha were added to sodium alginate (1%, 2% and 3% wt) and an accelerator handle in an aqueous medium. The cement powder was mixed with liquid takes 2 minutes and resigned in specimens and assessed for apparent density and porosity by the Archimedes method, X-ray diffraction and mechanical strength. We noticed a significant increase in mechanical properties of cement added sodium alginate. (author)

  14. Thermal inactivation of Salmonella Enteritidis on chicken skin previously exposed to acidified Sodium chlorite or tri-sodium phosphate.

    Science.gov (United States)

    Karuppasamy, K; Yadav, Ajit S; Saxena, Gaurav K

    2015-12-01

    Thermal inactivation of normal and starved cells of Salmonella Enteritidis on chicken skin previously exposed to different concentrations of acidified sodium chlorite (ASC) or tri-sodium phosphate (TSP) was investigated. Inoculated skin was pretreated with different concentration of ASC or TSP, packaged in bags, and then immersed in a circulating water bath at 60 to 68 °C. The recovery medium was Hektoen enteric agar. D-values, determined by linear regression, for normal cells on chicken skin, were 2.79, 1.17 and 0.53 min whereas D-values for starved cells were 4.15, 1.83 and 0.66 at 60, 64 and 68 °C, respectively. z-values for normal cells were 3.54 and for starved cells were 2.29. Pretreatment of Salmonella Enteritidis cells with 0 to 200 ppm of ASC or 0 to 1.0 % TSP resulted in lower D-values at all temperatures. Sensory results indicated no significance differences for control and treatments. Thus, results of this study indicated that pretreatment of chicken skin with ASC or TSP increased sensitivity of Salmonella Enteritidis to heat without affecting organoleptic quality of chicken meat.

  15. Hafnium in peralkaline and peraluminous boro-aluminosilicate glass, and glass subcomponents: a solubility study

    International Nuclear Information System (INIS)

    Davis, Linda L.; Darab, John G.; Qian, Maoxu; Zhao, Donggao; Palenik, Christopher S.; Li, Hong; Strachan, Denis M.; Li, Liyu

    2003-01-01

    A relationship between the solubility of hafnia (HfO2) and the host glass composition was explored by determining the solubility limits of HfO2 in peralkaline and peraluminous borosilicate glasses in the system SiO2-Al2O3-B2O3-Na2O, and in glasses in the system SiO2-Na2O-Al2O3 in air at 1450 C. The only Hf-bearing phase to crystallize in the peralkaline borosilicate melts is hafnia, while in the boron-free melts sodium-hafnium silicates crystallize. All peraluminous borosilicate melts crystallize hafnia, but the slightly peraluminous glasses also have sector-zoned hafnia crystals that contain Al and Si. The more peraluminous borosilicate glasses also crystallize a B-containing mullite. The general morphology of the hafnia crystals changes as peralkalinity (Na2O/(Na2O+Al2O3)) decreases, as expected in melts with increasing viscosity. In all of the glasses with Na2O > Al2O3, the solubility of hafnia is linearly and positively correlated with Na2O/(Na2O + Al2O3) or Na2O - Al2O3 (excess sodium), despite the presence of 5 to 16 mol% B2O3. The solubility of hafnia is higher in the sodium-aluminum borosilicate glasses than in the sodium-aluminosilicate glasses, suggesting that the boron is enhancing the effect that excess sodium has on the incorporation of Hf into the glass structure. The results of this solubility study are compared to other studies of high-valence cation solubility in B-free silicate melts. From this, for peralkaline B-bearing glasses, it is shown that, although the solubility limits are higher, the solution behavior of hafnia is the same as in B-free silicate melts previously studied. By comparison, also, it is shown that in peraluminous melts, there must be a different solution mechanism for hafnia: different than for peralkaline sodium-aluminum borosilicate glasses and different than for B-free silicate melts studied by others

  16. Optical properties and energy transfer behavior from Tb{sup 3+} to Mn{sup 2+} ions in co-doped zinc strontium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xiaoluan [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xing Zhongwen [Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Liu Yinyao; Xu Weina; Yang Yunxia [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-10-17

    Highlights: {yields} We choose Tb{sup 3+} as the sensitizer to enhance the emission of Mn{sup 2+} ions in ZSP glasses. {yields} We make a serious of characterization on the optical properties of the glasses. {yields} Tb{sup 3+} can transfer its energy to the neighbor Mn{sup 2+} during excitation process. {yields} The energy transfer mechanism is dipolar-quadrupole interaction in phosphate glasses. {yields} Meanwhile, this process is taken by two modes: cross-relaxation and resonant transfer. - Abstract: In this paper, we report optical properties and energy transfer behavior between Tb and Mn in zinc strontium phosphate glasses. Electron Paramagnetic Resonance spectra indicate a stronger hyperfine interaction of Mn{sup 2+}-Mn{sup 2+} pairs with higher MnO concentrations. The co-existence of Tb{sup 3+} and Mn{sup 2+} ions in glasses is clearly evident in the transmittance spectra. Emission spectra show an obvious energy transfer from Tb{sup 3+} to Mn{sup 2+} ions in glasses. Based on Dexter's energy transfer formula and Reisfeld's approximation, the energy transfer mechanism was postulated to proceed via a dipolar-quadrupole interaction. The energy transfer carries out with resonant and cross-relaxation transfer modes with the understanding of Tb{sup 3+} and Mn{sup 2+} energy level diagrams. The decreasing in mean-duration time ({tau}{sub mean}) of Tb{sup 3+} ions obtained from the decay curves make a further evidence of energy transfer from Tb{sup 3+} to Mn{sup 2+} ions in glasses.

  17. Glasses Containing Iron (II, III) Oxides For Immobilization Of Radioactive Technetium

    International Nuclear Information System (INIS)

    Kruger, A.A.; Heo, J.; Xu, K.; Choi, J.K.; Hrma, P.R.; Um, W.

    2011-01-01

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as ∼ 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to ∼50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  18. Kidney injury after sodium phosphate solution beyond the acute renal failure.

    Science.gov (United States)

    Fernández-Juárez, Gema; Parejo, Leticia; Villacorta, Javier; Tato, Ana; Cazar, Ramiro; Guerrero, Carmen; Marin, Isabel Martinez; Ocaña, Javier; Mendez-Abreu, Angel; López, Katia; Gruss, Enrique; Gallego, Eduardo

    2016-01-01

    Screening colonoscopy with polipectomy reduces colonorectal cancer incidence and mortality. An adequate bowel cleansing is one of the keys to achieving best results with this technique. Oral sodium phosphate solution (OSP) had a widespread use in the 90s decade. Its efficacy was similar to polyethylene glycol (PEG) solution, but with less cost and convenient administration. Series of patients with acute renal failure due to OSP use have been reported. However, large cohorts of patients found no difference in the incidence of renal damage between these two solutions. From 2006 to 2009 we identified twelve cases of phosphate nephropathy after colonoscopy prepared with OSP. All patients were followed up to six months. All patients had received just a single dose. We analyzed 12 cases with phosphate nephropathy; three patients debuted with AKI and nine patients had chronic renal injury. Four cases were confirmed with renal biopsy. One patient with AKI needed hemodialysis at diagnosis without subsequent recovery. Two patients (both with chronic damage) fully recovered their previous renal function. The remaining patients (nine) had an average loss of estimated glomerular filtration rate of 24ml/min/1.73m(2). The use of OSP can lead to both acute and chronic renal damage. However, chronic injury was the most common pattern. Both forms of presentation imply a significant and irreversible loss of renal function. Further studies analyzing renal damage secondary to bowel cleaning should consider these two different patterns of injury. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Comparison of the Remineralizing Effects of Sodium Fluoride and Bioactive Glass Using Bioerodible Gel Systems

    Directory of Open Access Journals (Sweden)

    Attiguppe Ramashetty Prabhakar

    2009-12-01

    Full Text Available Background and aims. A carious lesion is the accumulation of numerous episodes of de- and remineralization, rather than a unidirectional demineralization process. Tooth destruction can be arrested or reversed by the frequent delivery of fluoride or calcium/phosphorous ions to the tooth surface. The present study compared and evaluated the remineralization potential of sodium fluoride and bioactive glass delivered through a bioerodible gel system. Materials and methods. Longitudinal sections of artificial carious lesions, created at the gingivofacial surface of 64 primary maxillary incisors were photographed under a polarized light microscope and quantified for demineralization. The sections were repositioned into the tooth form and randomly mounted in sets of four that simulated an arch form. The teeth were divided into 4 groups: 1 sodium fluoride films, 2 bioactive glass films, 3 control films placed interproximally and 4 nontreatment group. Following exposure to artificial saliva for 30 days, the lesions were again photographed and quantified as above. The recorded values were statistically analyzed using Student’s paired t-test for intragroup comparison, one-way ANOVA and Post-Hoc Tukey’s test for pairwise comparison. Results. The sodium fluoride and bioactive gel groups showed significant remineralization compared with the control groups (P < 0.001. Conclusion. Bioerodible gel films can be used to deliver remineralizing agents to enhance remineralization.

  20. Heat accumulation regime of femtosecond laser writing in fused silica and Nd:phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Bukharin, M.A. [Moscow Institute of Physics and Technology, Moscow Region (Russian Federation); Optosystems Ltd., Troitsk, Moscow (Russian Federation); Khudyakov, D.V. [Optosystems Ltd., Troitsk, Moscow (Russian Federation); Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation); Vartapetov, S.K. [Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation)

    2015-04-01

    We investigated refractive index induced by direct femtosecond laser writing inside fused silica and Nd:phosphate glass in heat accumulation regime. Spatial profile and magnitude of induced refractive index were investigated at various pulse repetition rates and translation velocities. It was shown that the magnitude of induced refractive index significantly rises with decreasing in time interval between successive laser pulses below the time for thermal diffusion. Going from nonthermal regime to heat accumulation regime, we achieved induced refractive index growth from 4 x 10{sup -3} up to 6.5 x 10{sup -3} in fused silica and from -6 x 10{sup -3} to -9 x 10{sup -3} in Nd:phosphate glass. Aspect ratio of treated area decreased from 2.1 down to less than 1.5 without correcting optical elements. It was shown that in heat accumulation regime, the treated area was surrounded by region of alternatively changed refractive index with significant magnitude up to -2 x 10{sup -3}. Wide regions of decreased refractive index enable fabrication of depressed cladding waveguides. We demonstrated low-loss (0.3 dB/cm) tubular waveguide inside fused silica. For orthogonal polarizations of guiding light, we achieved a small difference between losses as 0.1 dB/cm using highly symmetric written tracks forming the cladding. The desired structure was simulated with the beam propagation method, and the results were in good agreement with experiment data. (orig.)

  1. Autosomal recessive hypophosphataemic rickets with hypercalciuria is not caused by mutations in the type II renal sodium/phosphate cotransporter gene.

    NARCIS (Netherlands)

    Heuvel, L.P.W.J. van den; Koul, K. Op de; Knots, E.; Knoers, N.V.A.M.; Monnens, L.A.H.

    2001-01-01

    BACKGROUND: At present the genetic defect for autosomal recessive and autosomal dominant hypophosphataemic rickets with hypercalciuria (HHRH) is unknown. Type II sodium/phosphate cotransporter (NPT2) gene is a serious candidate for being the causative gene in either or both autosomal recessive and

  2. Study of the surface crystallization and resistance to dissolution of niobium phosphate glasses for nuclear waste immobilization

    International Nuclear Information System (INIS)

    Vieira, Heveline

    2008-01-01

    The surface crystallization and the dissolution rate of three phosphate glass compositions containing different amounts of niobium oxide were studied. The glasses were named Nb30, Nb37, and Nb44 according to the nominal content of niobium oxide in the glass composition. The three compositions were evaluated keeping the P 2 O 5 /K 2 O ratio constant and varying the amount of Nb 2 O 5 . These glasses were produced by melting appropriate chemical compounds at 1500 deg C for 0.5 hour. The crystalline phases which were nucleated on the glass surface after heat treatment were determined by X-ray diffraction. The crystalline structures depend on the amount of niobium oxide in the glass composition. The crystal morphologies were observed by using an optical microscope, and their characteristics are specific for each kind of crystalline phase. The crystal growth rate and the surface nuclei density were determined for each glass composition, and they depend on each crystalline phase nucleated on the surface. From the differential thermal analysis curves it was determined that the Nb44 glass containing 46.5 mol por cent of niobium oxide is the most thermally stable against crystallization when compared to the Nb30 and Nb37 glasses. According to the activation energies determined for crystal growth on the surface of each glass type, the Nb44 glass can also be considered the most resistant one against crystallization. The dissolution rate for the Nb44 glass after 14 days immersed in an aqueous solution with pH equals to 7 at 90 deg C is the lowest (9.0 x 10 -7 g. cm -2 . day -1 ) when compared to the other two glass compositions. The dissolution rates in acidic and neutral solutions of all studied glasses meet the international standards for materials which can be used in the immobilization of nuclear wastes. (author)

  3. Influence of silver nanoparticles on the spectroscopic properties of Sm{sup 3+} doped boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Suthanthirakumar, P.; Marimuthu, K., E-mail: emari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India)

    2016-05-23

    The Sm{sup 3+} doped novel boro-phosphate glasses containing silver nanoparticles (NPs) (SmBPxA) have been prepared following the melt quenching technique and their structural and spectroscopic behavior were studied through HR-TEM, optical absorption and photoluminescence spectral measurements. The TEM analysis validates the existence of Ag NPs with an average diameter of ~8 nm. The Surface plasmon resonance (SPR) band of silver NPs was found at around 600 nm from the absorption spectrum of the Sm{sup 3+} ions free glass sample. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions and the Urbach energy (ΔE) values were determined from the absorption spectral measurements. The luminescence intensity is found to get enhance when the Ag NPs were embedded along with the Sm{sup 3+} ions in the prepared glasses due to the local electric field effect around the rare earth (RE) ion site produced by the SPR of Ag NPs.

  4. A Glass-Ceramic Waste Forms for the Immobilization of Rare Earth Oxides from the Pyroprocessing Waste salt

    International Nuclear Information System (INIS)

    Ahn, Byung-Gil; Park, Hwan-Seo; Kim, Hwan-Young; Kim, In-Tae

    2008-01-01

    The fission product of rare earth (RE) oxide wastes are generates during the pyroprocess . Borosilicate glass or some ceramic materials such as monazite, apatite or sodium zirconium phosphate (NZP) have been a prospective host matrix through lots of experimental results. Silicate glasses have long been the preferred waste form for the immobilization of HLW. In immobilization of the RE oxides, the developed process on an industrial scale involves their incorporation into a glass matrix, by melting under 1200 ∼ 1300 .deg. C. Instead of the melting process, glass powder sintering is lower temperature (∼ 900 .deg. C) required for the process which implies less demanding conditions for the equipment and a less evaporation of volatile radionuclides. This study reports the behaviors, direct vitrification of RE oxides with glass frit, glass powder sintering of REceramic with glass frit, formation of RE-apatite (or REmonazite) ceramic according to reaction temperature, and the leach resistance of the solidified waste forms

  5. Elaboration and test of the method of separation of alkaline metals ions with tin phosphate

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Chernyak, A.S.; Kostromina, O.N.; Kachur, N.Ya.; Shpeyzer, B.G.

    1986-01-01

    Present work is devoted to elaboration and test of the method of separation of alkaline metals ions with tin phosphate. Thus, the isotherms of sorption of lithium, sodium, potassium, rubidium and cesium ions with amorphous tin phosphate depending on their concentration, ph of solution, sorbent quantity are obtained. The parameters of extraction of potassium microquantities from sodium salts are defined. Ultra pure sodium chloride, sodium iodide, sodium sulphate, sodium nitrate, sodium nitrite, sodium phosphate are synthesized.

  6. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    Science.gov (United States)

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  7. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  8. X-ray absorption spectroscopy on phosphoric-salt pellets. Determination of the geometric and electronic structure of metal-oxide doped sodium-phosphate glasses; Roentgenabsorptionsspektroskopie an Phosphorsalzperlen. Bestimmung der geometrischen und elektronischen Struktur von metalloxid-dotierten Natriumphosphatglaesern

    Energy Technology Data Exchange (ETDEWEB)

    Brendebach, B.

    2004-02-01

    Sodium metaphosphate glasses doped with transition metal oxides show characteristic colors. X-ray absorption spectroscopy (XAS) investigations provide information whether the coloration stems from different electronic transitions or changes in the geometrical structure of the glasses. Even though the violet color of MnO{sub y}-doped glasses is considered as an evidence for Mn{sup 3+}-ions, Mn K-XAS reveals that the majority of the manganese ions are in the oxidation state +II and have a mixed coordination of four and six oxygen atoms, respectively. The oxygen coordination around the nickel ions in NiO-doped glasses with different metall oxide concentrations is always six. The change of color from citreous to auburn with increasing nickel oxide content is attributed to a systematic change in the bonding characteristic from mainly ionic-like to a small but significant contribution of covalent-like bonding. Analysis of higher coordination shells provides no indication of the formation of metal oxide clusters. (orig.)

  9. Oriented color centres being formed in anisotropic action of optical radiation on sodium-silicate glass

    International Nuclear Information System (INIS)

    Barinova, N.A.; Glebov, L.B.; Dokuchaev, V.G.; Savel'ev, V.L.

    1992-01-01

    A study was made of anisotropy of absorption of hole colour centres appearing in sodium-silicate glass due to anisotropic action of UV radiation. In case of such action in the field of long-wave edge of their fundamental absorption oriented hole colour centres occurs with maximum of absorption bands to 2.0, 2.8, 4.1 eV. Principal direction of hole colour centres orientation in this case coincides with orientation of ionized glass matrix centres. Orientation of such kind is connected with selective ionization of disorderedly oriented centres forming edge of fundamental absorption. Value of guided dichroism of colour centres absorption is determined by hole migration

  10. Manganese activated phosphate glass for dosimetry

    International Nuclear Information System (INIS)

    Regulla, D.

    1975-01-01

    A measuring element comprises a metaphosphate glass doped with manganese as an activator. The manganese activated metaphosphate glass can detect and determine radiation doses in the range between milliroentgens and more than 10 megaroentgens. (auth)

  11. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    Science.gov (United States)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium

  12. Red light generation through the lead boro-telluro-phosphate glasses activated by Eu3+ ions

    Science.gov (United States)

    Selvi, S.; Marimuthu, K.; Suriya Murthy, N.; Muralidharan, G.

    2016-09-01

    Lead boro-telluro-phosphate glasses containing 0.05 to 2.0 wt% of Eu3+ ions were prepared through melt quenching technique. Structural characteristics of title glasses were identified through XRD, FTIR and Raman studies. The optical properties of the prepared glasses were studied using UV-Vis-NIR absorption and photoluminescence spectra. From the resultant spectra, we have obtained the bonding parameters (δ), nephelauxetic ratio (β), direct and indirect band gaps and Urbach energy (ΔE) values. A deep red luminescence due to 5D0 → 7F2 transition of Eu3+ ions could be observed for the title glasses. The local site symmetry around the Eu3+ ions and the degree of Eu3+-O2- covalence were assessed from the luminescence intensity ratio of 5D0 → 7F2/5D0 → 7F1 transitions. Judd-Ofelt intensity parameters, calculated from the luminescence spectra, were used to estimate the radiative parameters like transition probability (A), branching ratio (βexp, βcal) and stimulated emission cross-section (σPE) concerning the 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) transitions. The important laser parameters, gain bandwidth and optical gain are also estimated. The decay curves associated with the transition from 5D0 state was found to be single-exponential at all Eu3+ ion concentrations. CIE colour coordinates and colour purity of the prepared glasses were estimated from the CIE chromaticity diagram.

  13. The structure of phosphate and borosilicate glasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: Phase separation, crystallisation and dynamic species exchange

    International Nuclear Information System (INIS)

    Wegner, S.; Van Wullen, L.; Tricot, G.; Tricot, G.

    2010-01-01

    In this contribution we present an in-depth study of the network structure of different phosphate based and borosilicate glasses and its evolution at high temperatures. Employing a range of advanced solid state NMR methodologies, complemented by the results of XPS, the structural motifs on short and intermediate length scales are identified. For the phosphate based glasses, at temperatures above the glass transition temperature Tg, structural relaxation processes and the devitrification of the glasses were monitored in situ employing MAS NMR spectroscopy and X-ray diffraction. Dynamic species exchange involving rapid P-O-P and P-O-Al bond breaking and reforming was observed employing in situ 27 Al and 31 P MAS NMR spectroscopy and could be linked to viscous flow. For the borosilicate glasses, an atomic scale investigation of the phase separation processes was possible in a combined effort of ex situ NMR studies on glass samples with different thermal histories and in situ NMR studies using high temperature MAS NMR spectroscopy including 11 B MAS, 29 Si MAS and in situ 29 Si{ 11 B} REAPDOR NMR spectroscopy. (authors)

  14. Development and evaluation of holmium doped phosphate glass microspheres for selective internal radiotherapy

    International Nuclear Information System (INIS)

    Barros Filho, Eraldo C.; Martinelli, Jose Roberto; Squair, Peterson L; Osso Junior, Joao A.; Sene, Frank Ferrer

    2013-01-01

    Selective Internal Radiotherapy is used to treat hepatocellular carcinoma. In this treatment 90 Y -doped aluminosilicate glass microspheres are introduced in the hepatic artery and they migrate to the liver near to the tumor where they are trapped in the arterioles. The radiation β- emitted by the decay of 90 Y annihilates the cancer cells. A macroaggregate of albumin containing technetium is previously used to monitor the lung shunt and to prevent the spreading of 90 Y during the treatment. In the present work, 165 Ho- doped phosphate glass microspheres were developed aiming that application. 165 Ho has high cross section for neutron capture (64 bars) and 166 Ho decays emitting β- radiation with appropriate energy for killing cancer cells, and gamma rays with low energy which can be used to obtain images of the microspheres location and to check possible occurrence of lung shunt. Holmium also is highly paramagnetic and can be used to obtain images whereby NMR. The glass matrix consists of (P 2 O 5 ) tetrahedrons and can be produced by a relatively lower melting temperature of chemical compounds. The 31 P decays by emitting β- radiation and contributes to the absorbed dose, helping to annihilate the cancer cells. The microspheres were produced by using two methods: the flame and the gravitation falling methods to obtain microspheres with appropriate properties. (author)

  15. New reddish-orange and greenish-yellow light emitting phosphors: Eu3+ and Tb3+/Eu3+ in sodium germanate glass

    International Nuclear Information System (INIS)

    Álvarez, E.; Zayas, Ma. E.; Alvarado-Rivera, J.; Félix-Domínguez, F.; Duarte-Zamorano, R.P.; Caldiño, U.

    2014-01-01

    A spectroscopic analysis of sodium germanate glasses activated with Eu 3+ , Tb 3+ and Eu 3+ /Tb 3+ is performed from their photoluminescence spectra and decay times. In the Eu 3+ -singly doped glass reddish-orange light emission, with x=0.64 and y=0.35 CIE1931 chromaticity coordinates, is obtained upon Eu 3+ excitation at 393 nm. Such chromaticity coordinates are close to those (0.67, 0.33) proposed by the National Television Standard Committee for the red phosphor. When the sodium germanate glass is co-doped with Tb 3+ and Eu 3+ greenish-yellow light emission, with (0.41, 0.46) CIE1931 chromaticity coordinates, is obtained upon Tb 3+ excitation at 344 nm. Such greenish-yellow luminescence is due mainly to the terbium 5 D 4 → 7 F 6,5 and europium 5 D 0 → 7 F 1,2 emissions, Eu 3+ being sensitized by Tb 3+ through a non-radiative energy transfer. The non-radiative nature of this energy transfer is inferred from the increase in the decay rate of the Tb 3+ emission when the glass is co-doped with Eu 3+ . From an analysis of the Tb 3+ emission decay time curves it is inferred that such energy transfer might take place between Tb 3+ and Eu 3+ clusters through a short-range interaction mechanism. - Highlights: • Sodium germanate glasses are optically activated with Eu 3+ (GNE) and Tb 3+ /Eu 3+ (GNTE). • Reddish-orange light (0.64, 0.35) is generated by GNE pumped with 393 nm light. • Greenish-yellow light (0.41, 0.46) is generated by GNTE pumped with 344 nm light. • Non-radiative energy transfer Tb 3+ →Eu 3+ takes place in GNTE

  16. Structural and luminescence studies on Dy{sup 3+} doped lead boro–telluro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvi, S. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Arunkumar, S.; Muralidharan, G. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India)

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy{sup 3+}doped lead boro−telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B−O vibrations, P−O−P symmetric vibrations and Te−O stretching modes of TeO{sub 3} and TeO{sub 6} units. The metal–ligand bond was identified through UV−vis−NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd−Ofelt (JO) intensity parameters (Ω{sub 2}, Ω{sub 4} and Ω{sub 6}), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σ{sub P}{sup E}) and branching ratio (β{sub R}) for the transitions that include {sup 4}F{sub 9/2}→{sup 6}H{sub 11/2}, {sup 6}H{sub 13/2} and {sup 6}H{sub 15/2} bands. The effect of Dy{sup 3+} ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the {sup 4}F{sub 9/2} level of the title glasses has been found to decrease with the increase in Dy{sup 3+} ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  17. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    Science.gov (United States)

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  18. Investigation of possible delocalization of long-lived radionuclides from phosphate materials used for radioactive waste fixation into water of granite formations

    International Nuclear Information System (INIS)

    Krylova, N.V.; Salamatina, R.N.; Shavruk, V.V.; Yuzvikova, M.A.

    1990-01-01

    Study results of chemical stability of phosphate glass materials containing high-level waste imitators by their contact with imitators of strata waters of gratine formations within the interval 20-150 deg C, are presented. It is shown that above 100 deg C strontium, cesium and sodium discharge from vitrified high-level wastes is complicated because of deposition of difficulty soluble compounds of contact waters and leaching (solution) products of glass matrix on the surface of vitrified wastes. Layer thickness and element discharge into the water are determined by qualitative and quantative composition of the strata water, temperature interaction of materials with water and chemical stability of materials at the given temperature

  19. Characterization of aqueous interactions of copper-doped phosphate-based glasses by vapour sorption.

    Science.gov (United States)

    Stähli, Christoph; Shah Mohammadi, Maziar; Waters, Kristian E; Nazhat, Showan N

    2014-07-01

    Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Preparation of calcium phosphate paste

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Norzita Yaacob; Idris Besar; Che Seman Mahmood; Rusnah Mustafa

    2010-01-01

    Calcium phosphate paste were prepared by mixing between calcium sodium potassium phosphate, Ca 2 NaK (PO 4 ) 2 (CSPP) and monocalcium phosphate monohydrate, Ca(H 2 PO 4 ) 2 .H 2 O (MCPM). CSPP were obtained by reaction between calcium hydrogen phosphate (CaHPO 4 ), potassium carbonate (K 2 CO 3 ) and sodium carbonate (Na 2 CO 3 ) in solid state sintering process followed by quenching in air at 1000 degree Celsius. The paste was aging in simulated body fluid (SBF) for 0.5, 1, 3, 6, 12, 24, 48 hrs, 3, 7 and 14 days. The morphological investigation indicated the formation of apatite crystal were first growth after 24 hours. The obvious growth of apatite crystal was shown at 3 days. The obvious growth of apatite crystal was shown in 7 and 14 days indicated the prediction of paste would have rapid reaction with bone after implantation. (author)

  1. The phosphaturic effect of sodium bicarbonate and acetazolamide in dogs

    Science.gov (United States)

    Fulop, Milford; Brazeau, Paul

    1968-01-01

    Urinary inorganic phosphate excretion was studied before and during the administration of sodium bicarbonate and acetazolamide in dogs that were not given infusions of phosphate. The excretion fraction of filtered phosphate increased after sodium bicarbonate or acetazolamide was given. This phosphaturia was attributed to decreased tubular reabsorption of phosphate consequent to alkalinization of either tubular urine or cells. PMID:5645865

  2. Effects of neutral sodium hydrogen phosphate on setting reaction and mechanical strength of hydroxyapatite putty.

    Science.gov (United States)

    Ishikawa, K; Miyamoto, Y; Takechi, M; Ueyama, Y; Suzuki, K; Nagayama, M; Matsumura, T

    1999-03-05

    The setting reaction and mechanical strength in terms of diametral tensile strength (DTS) of hydroxyapatite (HAP) putty made of tetracalcium phosphate, dicalcium phosphate anhydrous, and neutral sodium hydrogen phosphate (Na1.8H1.2PO4) solution containing 8 wt % sodium alginate were evaluated as a function of the Na1.8H1.2PO4 concentration. In one condition, HAP putty was placed in an incubator kept at 37 degrees C and 100% relative humidity. In the other condition, immediately after mixing HAP putty was immersed in serum kept at 37 degrees C. Longer setting times and lower DTS values were observed when HAP putty was immersed in serum regardless of the Na1.8H1.2PO4 concentration. The setting times of the HAP putty in both conditions became shorter with an increase in the Na1. 8H1.2PO4 concentration, reaching approximately 7-13 min when the Na1. 8H1.2PO4 concentration was 0.6 mol/L or higher. The DTS value of HAP putty was relatively constant (10 MPa) regardless of the Na1.8H1. 2PO4 concentration (0.2-1.0 mol/L) when HAP putty was kept in an incubator. In contrast, when HAP putty was immersed in serum, the DTS value was dependent on the Na1.8H1.2PO4 concentration. It increased with the Na1.8H1.2PO4 concentration and reached approximately 5 MPa when the Na1.8H1.2PO4 concentration was 0.6 mol/L, after which it showed a relatively constant DTS value. We therefore would recommend a HAP putty that uses 0.6 mol/L Na1.8H1. 2PO4 since at that concentration the putty's setting time (approximately 10 min) is proper for clinical use and it shows good DTS value (approximately 5 MPa) even when it is immersed in serum immediately after mixing. Copyright 1999 John Wiley & Sons, Inc.

  3. Oral peptide specific egg antibody to intestinal sodium-dependent phosphate co-transporter-2b is effective at altering phosphate transport in vitro and in vivo.

    Science.gov (United States)

    Bobeck, Elizabeth A; Hellestad, Erica M; Sand, Jordan M; Piccione, Michelle L; Bishop, Jeff W; Helvig, Christian; Petkovich, Martin; Cook, Mark E

    2015-06-01

    Hyperimmunized hens are an effective means of generating large quantities of antigen specific egg antibodies that have use as oral supplements. In this study, we attempted to create a peptide specific antibody that produced outcomes similar to those of the human pharmaceutical, sevelamer HCl, used in the treatment of hyperphosphatemia (a sequela of chronic renal disease). Egg antibodies were generated against 8 different human intestinal sodium-dependent phosphate cotransporter 2b (NaPi2b) peptides, and hNaPi2b peptide egg antibodies were screened for their ability to inhibit phosphate transport in human intestinal Caco-2 cell line. Antibody produced against human peptide sequence TSPSLCWT (anti-h16) was specific for its peptide sequence, and significantly reduced phosphate transport in human Caco-2 cells to 25.3±11.5% of control nonspecific antibody, when compared to nicotinamide, a known inhibitor of phosphate transport (P≤0.05). Antibody was then produced against the mouse-specific peptide h16 counterpart (mouse sequence TSPSYCWT, anti-m16) for further analysis in a murine model. When anti-m16 was fed to mice (1% of diet as dried egg yolk powder), egg yolk immunoglobulin (IgY) was detected using immunohistochemical staining in mouse ileum, and egg anti-m16 IgY colocalized with a commercial goat anti-NaPi2b antibody. The effectiveness of anti-m16 egg antibody in reducing serum phosphate, when compared to sevelamer HCl, was determined in a mouse feeding study. Serum phosphate was reduced 18% (Pegg yolk powder) and 30% (Pegg immunoglobulin. The methods described and the findings reported show that oral egg antibodies are useful and easy to prepare reagents for the study and possible treatment of select diseases. © 2015 Poultry Science Association Inc.

  4. Photoluminescence properties of Er{sup 3+}-doped alkaline earth titanium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, D.V.R.; Babu, A. Mohan [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Jamalaiah, B.C. [Department of Physics, Sree Vidyanikethan Engineering College, Tirupati, 517 102 (India); Moorthy, L. Rama, E-mail: lrmphysics@yahoo.co.i [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung Soo [Department of Photonics, Silla University, Pusan 617-736 (Korea, Republic of); Jeong, Jung Hyun [Department of Physics, Pukyong National University, Pusan 608-737 (Korea, Republic of)

    2010-02-18

    Er{sup 3+}-doped alkaline earth titanium phosphate (RTP) glasses with molar composition of 24 (NaPO{sub 3}){sub 6} + 30 KH{sub 2}PO{sub 4} + 25 TiO{sub 2} + 20 RCl{sub 2} + 1 Er{sub 2}O{sub 3} were prepared by melt quenching technique. Judd-Ofelt intensity parameters ({Omega}{sub 2,4,6}) were determined from the experimental oscillator strengths (f{sub exp}) of absorption bands. From these parameters spontaneous emission probabilities (A{sub R}), luminescence branching ratios ({beta}{sub R}) and radiative lifetimes ({tau}{sub R}) have been calculated. Visible and near infrared photoluminescence spectra has been recorded by exciting the samples at 380 and 970 nm respectively. An intense broad emission band at 1.53 {mu}m was observed corresponding to {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition. McCumber theory has been applied to determine the emission cross-sections ({sigma}{sub e}) of the {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition using the absorption cross-sections ({sigma}{sub a}). The lifetimes of {sup 4}S{sub 3/2} level were measured for the glasses by exciting the samples at 540 nm wavelength and the quantum efficiencies were also determined.

  5. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  6. Micropatterning of nanocomposite polymer scaffolds using sacrificial phosphate glass fibers for tendon tissue engineering applications.

    Science.gov (United States)

    Alshomer, Feras; Chaves, Camilo; Serra, Tiziano; Ahmed, Ifty; Kalaskar, Deepak M

    2017-04-01

    This study presents a simple and reproducible method of micropatterning the novel nanocomposite polymer (POSS-PCU) using a sacrificial phosphate glass fiber template for tendon tissue engineering applications. The diameters of the patterned scaffolds produced were dependent on the diameter of the glass fibers (15 μm) used. Scaffolds were tested for their physical properties and reproducibility using various microscopy techniques. For the first time, we show that POSS-PCU supports growth of human tenocytes cells. Furthermore, we show that cellular alignment, their biological function and expression of various tendon related proteins such as scleraxis, collagen I and III, tenascin-C are significantly elevated on the micropatterned polymer surfaces compared to flat samples. This study demonstrated a simple, reproducible method of micropatterning POSS-PCU nanocomposite polymer for novel tendon repair applications, which when provided with physical cues could help mimic the microenvironment of tenocytes cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Raman and FTIR spectra of CeO{sub 2} and Gd{sub 2}O{sub 3} in iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yuanming, E-mail: laiyuanming@ipm.com.cn [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng; Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liu, Pei; Zeng, Yiming; Hu, Changyi [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2014-12-25

    Highlights: • The structure of the studied samples has been investigated by Raman and FTIR spectroscopy. • The structure for the all samples has similar features. • The structure consists of predominantly Q{sup 1} with a fraction of Q{sup 0} and Q{sup 2} units. • The Ce and Gd enters in the structure of studied glasses as a network modifier. - Abstract: In the present work, multicomponent oxide samples of composition x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} (0 ⩽ x ⩽ 8 mol%) were produced by conventional melting method. The samples were investigated to examine the effect of the CeO{sub 2} and Gd{sub 2}O{sub 3} composition on the structure of the iron phosphate glasses system. The X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) for the x ⩽ 6 mol% samples show all the samples formed homogeneous glass, but for the x = 8 mol% samples show the presence of randomly distributed crystalline phase embedded in an amorphous matrix. The x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} glass containing 8 mol% CeO{sub 2} and Gd{sub 2}O{sub 3} partially crystallized during annealing and Ce/Gd-rich were identified by EDS in the crystalline phase. The structure of the studied samples has been investigated using Raman and Fourier transform infrared spectroscopy (FTIR). The Raman and FTIR spectra for the samples have analogous spectral features. The Raman and FTIR spectra suggest that the structure is mainly constituted by the pyrophosphate glass based structure, with a part proportion of metaphosphate and orthophosphate structure. Raman and FTIR spectra allowed us to identify the structural units which appear in the structural network of these phosphate glasses and also the network modifier role of cerium and gadolinium ions.

  8. A simple method for tuning the glass transition process in inorganic phosphate glasses

    OpenAIRE

    Fulchiron, Ren?; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legar?, V?ronique

    2015-01-01

    The physical modification of glass transition temperature (Tg ) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of ap...

  9. Thermo-physical and structural studies of sodium zinc borovanadate glasses in the region of high concentration of modifier oxides

    Energy Technology Data Exchange (ETDEWEB)

    Chethana, B.K. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Reddy, C. Narayana [Maharani' s Science College for Women, Bangalore 560 001 (India); Rao, K.J., E-mail: kalyajrao@yahoo.co.in [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2012-07-15

    Highlights: ► Highly modified sodium zinc borovanadate glasses. ► Structural model for borovanadate glasses. ► Network forming tendency of ZnO in borovanadate glasses. ► Fragility can be limited to NBO concentration in borovanadate glasses. -- Abstract: This paper reports investigation of Na{sub 2}O and ZnO modified borovanadate glasses in the highly modified regime of compositions. These glasses have been prepared by microwave route. Ultraviolet (UV) and visible, infrared (IR), Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies have been used to characterize the speciation in the glasses. Together with the variation of properties such as molar volume and glass transition temperatures, spectroscopic data indicate that at high levels of modification, ZnO tends to behave like network former. It is proposed that the observed variation of all the properties can be reasonably well understood with a structural model. The model considers that the modification and speciation in glasses are strongly determined by the hierarchy of group electronegativities. Further, it is proposed that the width of the transitions of glasses obtained under same condition reflects the fragility of the glasses. An empirical expression has been suggested to quantify fragility on the basis of width of the transition regions.

  10. Luminescence studies on Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses for WLED applications

    Science.gov (United States)

    Vijayakumar, M.; Uma, V.; Arunkumar, S.; Marimuthu, K.

    2015-06-01

    Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses have been prepared and optically characterized using absorption, luminescence and decay measurements. The Nephelauxetic ratios (β), Bonding parameters (δ) and Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6) were calculated to study the nature of the environment around the RE3+ ions in the prepared glasses. The yellow to blue (Y/B) intensity ratio and the chromaticity color coordinates were calculated from the luminescence measurements. The lifetimes of the 4F9/2 excited level were measured using decay curves and is found to decrease in the Dy3+:Eu3+ co-doped glass due to the occurrence of resonant energy transfer between Dy3+-Eu3+ ions and the non-exponential decay rates have been fitted with Inokuti-Hirayama (IH) model. The decay curves are well fitted for S= 6 suggesting that the interaction between active ions for the energy transfer is of dipole-dipole nature.

  11. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    Science.gov (United States)

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF

  12. {tau} - hydrogen phosphate of zirconia in sodium salt form and some of its properties; {tau} - hidrogenofosfato de zirconio en forma sodica y algunas de sus propiedades

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez V, S.M.; Ordonez R, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    It is reported the obtaining and characterization in the sodium salt form of the {tau}-hydrogen phosphate of zirconium in sodium form, this compound it was synthesized, for a new technique developed in the laboratory of Dept. of Chemistry of the ININ. The characterization was carried out for XRD, IR, Sem and EDS the thermal gravimetric analysis is also reported. (Author)

  13. UV-assisted selective chemical etching of relief gratings in Er/Yb-codoped IOG1 phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, C; Pissadakis, S [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, Vasilika Vouton, PO Box 1527, Heraklion 71 110, GREECE (Greece)

    2007-04-15

    The patterning of sub-micron periodicity Bragg reflectors in Er/Yb-codoped IOG1, phosphate glass is demonstrated. A high yield patterning technique is presented, wherein high volume damage is induced into the glass matrix by exposure to intense UV radiation, and subsequently a chemical development in a strong acid selectively etches the exposed areas. The grating reflectors were fabricated by employing an elliptical Talbot interferometer and the output of a 213nm, 150ps frequency quintupled Nd:YAG laser. The grating depth of the etched relief pattern in time was measured at fixed time intervals and the dependence is presented in upon the etching time and exposure conditions. The gratings fabricated are examined by atomic and scanning electron microscopy for revealing the topology of the relief structure. Gratings with period of the order of 500nm were fabricated, having a maximum depth of 60nm.

  14. PHYSICAL AND CHEMICAL STABILITY ANALYSIS OF COSMETIC MULTI- PLE EMULSIONS LOADED WITH ASCORBYL PALMITATE AND SODIUM ASCORBYL PHOSPHATE SALTS.

    Science.gov (United States)

    Khan, Hira; Akhtar, Naveed; Ali, Atif; Khan, Haji M Shoaib; Sohail, Muhammad; Naeem, Muhammad; Nawaz, Zarqa

    2016-09-01

    Stability of hydrophilic and lipophilic vitamin C derivatives for quenching synergistic antioxidant activities and to treat oxidative related diseases is a major issue. This study was aimed to encapsulate hydrophilic and lipophilic vitamin C derivatives (ascorbyl palmitate and sodium ascorbyl phosphate) as functional ingredients in a newly formulated multiple emulsion of the W//W type to attain the synergistic antioxidant effects and the resultant system's long term physical and chemical stability. Several multiple emulsions using the same concentration of emulsifiers but different concentrations of ascorbyl palmitate and sodium ascorbyl phosphate were developed. Three finally selected multiple emulsions (ME₁, ME₂ and ME₃) were evaluated for physical stability in terms of rheology, microscopy, conductivity, pH, and organoleptic characteristics under different storage conditions for 3 months. Chemical stability was determined by HPLC on Sykam GmbH HPLC system (Germany), equipped with a variable UV detector. Results showed that at accelerated storage conditions all the three multiple emulsions had shear thinning behavior of varying shear stress with no influence of location of functional ingredients in a carrier system. Conductivity values increased and pH values remained within the skin pH range for 3 months. Microscopic analysis showed an increase in globule size with the passage of time, especially at higher temperatures while decreased at low temperatures. Centrifugation test did not cause phase separation till the 45th day, but little effects after 2 months. Chemical stability analysis by HPLC at the end of 3 months showed that ascorbyl palmitate and sodium ascorbyl phosphate were almost stable in all multiple emulsions with no influence of their location in a carrier system. Multiple emulsions were found a stable carrier for hydrophilic and lipophilic vitamin C derivatives to enhance their desired effects. Considering that many topical formulations

  15. The local structure and magnetic interactions between Fe3+ and V4+ ions in lithium–phosphate glasses

    International Nuclear Information System (INIS)

    Andronache, Constantin I.

    2012-01-01

    Electron Paramagnetic Resonance (EPR) provides a useful tool not only as a probe of local structure and short range order in glasses, but also of magnetic interactions in the glasses containing suitable magnetic ions. We have analyzed the spectra of xFe 2 O 3 ·(100 − x)[P 2 O 5 ·Li 2 O] and x(Fe 2 O 3 ·V 2 O 5 )·(100 − x)[P 2 O 5 ·Li 2 O] glass systems, with 0 2 O 5 ·Li 2 O] stands for 50Li 2 O·50P 2 O 5 glass composition. For samples x > 50 mol % a study indicates the presence of crystalline α Fe 2 O 3 in the glasses. Observed spectra have resonance lines centered at g ∼ 4.3 and g ∼ 2.0 typical for Fe 3+ and V 4+ ions present in the oxide glasses. For low contend of transition metal (TM) oxides (Fe 2 O 3 or V 2 O 5 ·Fe 2 O 3 ) the spectra present a hyperfine structure typical for isolated V 4+ ions. With the increasing of TM content, the EPR absorption signal showing hyperfine structure superposed by a broad line without hyperfine structure characteristic for clustered ions. At high TM content, the vanadium hyperfine structure disappears and only the broad line can be observed in the spectra. -- Highlights: ► Lithium phosphate glass with Fe and V ions were investigated by means of EPR. ► The composition dependence of line intensity were investigated. ► The spin Hamiltonian parameters for VO 2+ were evaluated.

  16. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    International Nuclear Information System (INIS)

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  17. Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses

    International Nuclear Information System (INIS)

    Spector, N.; Reisfeld, R.; Boehm, L.

    1977-01-01

    Electronic wavefunctions of Tm 3+ in intermediate coupling were obtained and used to calculate the Usup((lambda)) matrix elements between all possible states of the 4f 12 configuration. The Judd-Ofelt intensity parameters Ωsub(lambda) obtained for Tm 3+ in phosphate and tellurite glasses were used in conjunction with the Usup((lambda))'s to calculate the forced electric dipole line strengths. The total electric and magnetic radiative transition probabilities are calculated. The entire theoretical spectrum involving the ground and excited levels (from 129 nm to 16447 nm) is given. (Auth.)

  18. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    Science.gov (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  19. Glass composition development for plasma processing of Hanford high sodium content low-level radioactive liquid waste

    International Nuclear Information System (INIS)

    Marra, J.C.

    1995-02-01

    To assess the acceptability of prospective compositions, response criteria based on durability, homogeneity, viscosity and volatility were defined. Response variables were weighted: durability 35%, homogeneity 25%, viscosity 25%, volatility 15%. A Plackett-Burman experimental design was used to define the first twelve glass formulations. Glass former additives included Al2O3, B2O3, CaO, Li2O, ZrO2 and SiO2. Lithia was added to facilitate fritting of the additives. The additives were normalized to silica content to ease experimental matrix definition and glass formulation. Preset high and low values of these ratios were determined for the initial twelve melts. Based on rankings of initial compositions, new formulations for testing were developed based on a simplex algorithm. Rating and ranking of subsequent compositions continued until no apparent improvement in glass quality was achieved in newly developed formulations. An optimized composition was determined by averaging the additive component values of the final best performing compositions. The glass former contents to form the optimized glass were: 16.1 wt % Al2O3, 12.3 wt % B2O3, 5.5 wt % CaO, 1.7 wt % Li2O, 3.3 wt % ZrO2, 61.1 wt % SiO2. An optimized composition resulted after only 25 trials despite studying six glass additives. A vitrification campaign was completed using a small-scale Joule heated melter. 80 lbs of glass was produced over 96 hours of continuous operation. Several salt compounds formed and deposited on melter components during the run and likely caused the failure of several pour chamber heaters. In an attempt to minimize sodium volatility, several low or no boron glasses were formulated. One composition containing no boron produced a homogeneous glass worthy of additional testing

  20. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Agrawal, D.K.; Breval, E.; Roy, R.

    1994-01-01

    Sodium zirconium phosphate [NZP] structural family, of which NaZr 2 P 3 O 12 is the parent composition, has been reviewed as a host ceramic waste form for nuclear waste immobilization. NZP compounds are characterized for their ionic conductivity, low thermal expansion and structural flexibility to accommodate a large number of multivalent ions. This latter property of the [NZP] structure allows the incorporation of almost all 42 nuclides present in a typical commercial nuclear waste. The leach studies of simulated waste forms based on NZP have shown reasonable resistance for the release of its constituents. The calculation of dissolution rates of NZP structure has demonstrated that it would take 20,000 times longer to dissolved NZP than quartz

  1. Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility

    International Nuclear Information System (INIS)

    Herting, Daniel L.

    2014-01-01

    Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40 deg C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodium phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction

  2. Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses

    Science.gov (United States)

    Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar

    2017-06-01

    A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.

  3. SODIUM DI-N-DODECYL PHOSPHATE VESICLES IN AQUEOUS-SOLUTION - EFFECTS OF ETHANOL, PROPANOL, AND TETRAHYDROFURAN ON THE GEL TO LIQUID-PHASE TRANSITION

    NARCIS (Netherlands)

    BLANDAMER, MJ; BRIGGS, B; BUTT, MD; WATERS, M; CULLIS, PM; ENGBERTS, JBFN; HOEKSTRA, D; MOHANTY, RK

    1994-01-01

    For aqueous solutions containing vesicles formed by sodium di-n-dodecyl phosphate, the gel to liquid-crystal transition occurs near 35 degrees C, the temperature T-m. When ethanol is added, T-m decreases, but the scan shows evidence of several transitions as more alcohol is added. The effect of

  4. Investigation of the benzotriazole as addictive for carbon steel phosphating

    International Nuclear Information System (INIS)

    Annies, V.; Cunha, M.T.; Rodrigues, P.R.P.; Banczek, E.P.; Terada, M.

    2010-01-01

    This work studied the viability of substitution of sodium nitrite (NaNO 2 ) for benzotriazole (BTAH) in the zinc phosphate bath (PZn+NaNO 2 ) for phosphating of carbon steel (SAE 1010). The characterization of the samples was carried out by Scanning Electron Microscopy, Optical Microscopy and X-ray diffraction. The chemical composition was evaluated by Energy Dispersive Spectroscopy. The corrosion behavior of the samples was investigated by Open Circuit Potential, Electrochemical Impedance Spectroscopy and Anodic Potentiodynamic Polarization Curves in a 0.5 mol L -1 NaCl electrolyte. The experimental results showed that the phosphate layer obtained in the solution with benzotriazole (PZn+BTAH) presented better corrosion resistance properties than that obtained in sodium nitrite. The results demonstrated that the sodium nitrite NaNO 2 can be replaced by benzotriazole (BTAH) in zinc phosphate baths. (author)

  5. Partitioning and structural role of Mn and Fe ions in ionic sulfophosphate glasses

    International Nuclear Information System (INIS)

    Möncke, Doris; Wondraczek, Lothar; Sirotkin, Sergey; Stavrou, Elissaios; Kamitsos, Efstratios I.

    2014-01-01

    Ionic sulfophosphate liquids of the type ZnO-Na 2 O-Na 2 SO 4 -P 2 O 5 exhibit surprising glass forming ability, even at slow or moderate cooling rate. As a concept, they also provide high solubility of transition metal ions which could act as cross-linking sites between the sulfate and phosphate entities. It is therefore investigated how the replacement of ZnO by MnO and/or FeO affects the glass structure and the glass properties. Increasing manganese levels are found to result in a monotonic increase of the transition temperature T g and most of the mechanical properties. This trend is attributed to the change of metal-ion coordination from four-fold around Zn 2+ to six-fold around Mn 2+ ions. The higher coordination facilitates cross-linking of the ionic structural entities and subsequently increases T g . Raman and infrared spectroscopy show that the structure of these glasses involves only SO 4 2− and PO 4 3− monomers as well as P 2 O 7 4- dimers. Replacement of ZnO by MnO is found to favour PO 4 3− over P 2 O 7 4- species, a trend which is enhanced by co-doping with FeO. Both transition metal ions show, like Zn 2+ , a preference to selectively coordinate to phosphate anionic species, as opposed to sodium ions which coordinate mainly to sulfate anions. EPR spectroscopy finally shows that divalent Mn 2+ ions are present primarily in MnO 6 -clusters, which, in the studied sulfophosphate glasses, convert upon increasing MnO content from corner-sharing to edge-sharing entities

  6. Photosensitivity of the Er/Yb-Codoped Schott IOG1 Phosphate Glass Using 248 nm, Femtosecond, and Picosecond Laser Radiation

    International Nuclear Information System (INIS)

    Pissadakis, S.; Michelakaki, I.

    2009-01-01

    The effect of 248 nm laser radiation, with pulse duration of 5 picoseconds, 500 femtosecond, and 120 femtosecond, on the optical properties and the Knoop hardness of a commercial Er/Yb-codoped phosphate glass is presented here. Refractive index changes of the order of few parts of 10-4 are correlated with optical absorption centers induced in the glass volume, using Kramers-Kroning relationship. Accordingly, substantially lower refractive index changes are measured in volume Bragg gratings inscribed in the glass, indicating that, in addition to the optical density changes, volume dilation changes of negative sign may also be associated with the 248 nm ultrafast irradiation. The Knoop hardness experimental results reveal that the glass matrix undergoes an observable initial hardening and then a reversing softening and volume dilation process for modest accumulated energy doses, where the Knoop hardness follows a nonmonotonic trend. Comparative results on the Knoop hardness trend are also presented for the case of 193 nm excimer laser radiation. The above findings denote that the positive or negative evolution of refractive index changes induced by the 248 0nm ultrafast radiation in the glass is dominated by the counteraction of the color center formation and the volume modification effects.

  7. Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Pierce, Eric M.; Burton, Sarah D.; Bovaird, Chase C.

    2011-03-24

    As part of ongoing studies to evaluate the relationships between structural variations in silicate glasses and rates of glass dissolution in aqueous media, molecular structures present in sodium borosilicate glasses of composition Na2O.xB2O3.(3-x)SiO2, with x 1 (Na2O/B2O3 ratio 1), were analyzed using deep-UV Raman spectroscopy. The results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. Increasing Na2O was found to raise the fraction of Q3 units in the glasses systematically, in agreement with studies on related glasses, and, as long as the value of x was not too high, contribute to higher rates of dissolution in single pass flow-through testing. The finding was obtained across more than one series of silica-rich glasses prepared for independent dissolution studies. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity and appeared to grow larger upon further reduction of the Q3 fraction. The results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.

  8. Effects of titanium nanoparticles on self-cleaning and structural features of zinc-magnesium-phosphate glass

    International Nuclear Information System (INIS)

    Ismail, S.F.; Sahar, M.R.; Ghoshal, S.K.

    2016-01-01

    Graphical abstract: Water contact angle for sample S2, S3, S4 and S5. The water contact angle increased with increased the titanium NPs content (mol%). - Highlights: • ZnO–MgO–P_2O_5 embedded TiO_2 NPs prepared by conventional melt-quenching method. • The amorphous nature is confirmed by X-ray diffraction spectroscopy. • The structural characteristics of glasses is investigated using FTIR and Raman. • Wettability of the glasses surface by water contact angle. - Abstract: The loss of glass transparency on surface pollutants contamination unless inhibited not only causes vision obscurity but also responsible for major aesthetic damages of cultural heritage. It is due to the sticking of fine dirt particles on wetting layers, a complex process with several possible ramifications still to be clarified. We report the influence of titanium dioxide or titania (TiO_2) nanoparticles (NPs) on the structural and self-cleaning properties of zinc–magnesium–phosphate glasses. Following melt-quenching method glass samples of optimized composition (42 − x)P_2O_5–8MgO–50ZnO–xTiO_2 with x = 0, 1, 2, 3 and 4 mol% are prepared. XRD patterns verified their amorphous nature and TEM images revealed the nucleation of TiO_2 NPs of average diameter ≈4.05 ± 0.01 nm. Fourier transform infrared (FTIR) spectra displayed four absorption band centred at 1618–3438 cm"−"1, 902– 931 cm"−"1, 757–762 cm"−"1 and 531–560 cm"−"1. Raman spectra exhibited four peaks each accompanied by a blue-shift. Water contact angle is found to increase with the increase of titanium NPs concentration into the amorphous matrix. This knowledge can be used to set up strategies and selective treatments to preventing glass transparency loss via the modification of self-cleaning attributes.

  9. Effects of titanium nanoparticles on self-cleaning and structural features of zinc-magnesium-phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, S.F.; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    2016-02-15

    Graphical abstract: Water contact angle for sample S2, S3, S4 and S5. The water contact angle increased with increased the titanium NPs content (mol%). - Highlights: • ZnO–MgO–P{sub 2}O{sub 5} embedded TiO{sub 2} NPs prepared by conventional melt-quenching method. • The amorphous nature is confirmed by X-ray diffraction spectroscopy. • The structural characteristics of glasses is investigated using FTIR and Raman. • Wettability of the glasses surface by water contact angle. - Abstract: The loss of glass transparency on surface pollutants contamination unless inhibited not only causes vision obscurity but also responsible for major aesthetic damages of cultural heritage. It is due to the sticking of fine dirt particles on wetting layers, a complex process with several possible ramifications still to be clarified. We report the influence of titanium dioxide or titania (TiO{sub 2}) nanoparticles (NPs) on the structural and self-cleaning properties of zinc–magnesium–phosphate glasses. Following melt-quenching method glass samples of optimized composition (42 − x)P{sub 2}O{sub 5}–8MgO–50ZnO–xTiO{sub 2} with x = 0, 1, 2, 3 and 4 mol% are prepared. XRD patterns verified their amorphous nature and TEM images revealed the nucleation of TiO{sub 2} NPs of average diameter ≈4.05 ± 0.01 nm. Fourier transform infrared (FTIR) spectra displayed four absorption band centred at 1618–3438 cm{sup −1}, 902– 931 cm{sup −1}, 757–762 cm{sup −1} and 531–560 cm{sup −1}. Raman spectra exhibited four peaks each accompanied by a blue-shift. Water contact angle is found to increase with the increase of titanium NPs concentration into the amorphous matrix. This knowledge can be used to set up strategies and selective treatments to preventing glass transparency loss via the modification of self-cleaning attributes.

  10. Second trimester amniotic fluid glucose, uric acid, phosphate, potassium, and sodium concentrations in relation to maternal pre-pregnancy BMI and birth weight centiles.

    Science.gov (United States)

    Fotiou, Maria; Michaelidou, Alexandra Maria; Athanasiadis, Apostolos P; Menexes, Georgios; Symeonidou, Maria; Koulourida, Vasiliki; Ganidou, Maria; Theodoridis, Theodoros D; Tarlatzis, Basil C

    2015-05-01

    To study the evolution profile of amniotic fluid (AF) glucose, uric acid, phosphate, potassium, and sodium, in the second trimester of pregnancy, and explore the possible relations between the concentration of these components and maternal, as well as neonatal characteristics. AF of 52 pregnant women was analyzed using an automatic multichannel analyzer. Maternal age, pre-pregnancy Body Mass Index (BMI), inter-pregnancy intervals, and smoking status were derived from questionnaires. Information on pregnancy and delivery was collected from medical records. Uric acid increased (r = 0.423, p pregnancy (r = -0.590, p pregnancy BMI was significantly correlated with AF uric acid concentration (r = 0.460, p sodium (r = 0.254, p = 0.070) levels. Multiple linear regression indicated that mid-trimester AF uric acid and phosphate levels were significantly related to birth weight centiles (R(2)( )= 0.345, p pregnancy BMI is significantly correlated with AF uric acid concentration, and (c) in appropriate for gestational age infants, AF phosphate and uric acid levels may serve as potential biomarkers of birth weight centiles. Further studies on AF composition may help to unravel the biochemical pathways underlying fetal development and could offer insight on the potential impact of maternal nutritional management on fetal growth regulation.

  11. Quantum efficiency of Yb{sup 3+}–ZnTe co-doped phosphate glass system

    Energy Technology Data Exchange (ETDEWEB)

    Falci, R.F.; Freitas, A.M.; Silva, G.H. [Laboratório de Espectroscopia de Materiais, Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil); Pinheiro, A.S. [Centro Federal de EducaçãoTecnológica Celso Suckow da Fonseca (CEFET/RJ) - Campus Petrópolis, CEP 25620-003, Petrópolis - RJ (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física da Universidade Federal de Uberlândia, CP 593, CEP 38400-902, Uberlândia, MG (Brazil); Anjos, V., E-mail: virgilio@fisica.ufjf.br [Laboratório de Espectroscopia de Materiais, Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil); Bell, M.J.V. [Laboratório de Espectroscopia de Materiais, Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil)

    2016-08-15

    The present paper deals with optical properties of a highly transparent phosphate glass co-doped with Yb{sup 3+} and ZnTe nanocrystals. The presence of ZnTe nanocrystals is due to a sequential melting–nucleation procedure evidenced by optical absorption and Atomic Force Microscopy. From the perspective of compositional variation of the dopants, photoluminescence and lifetime measurements were performed. As a result, it was demonstrated that the ZnTe nanocrystals increase the Yb{sup 3+} emission by a factor up to five, when the pumping wavelength is resonant with the ZnTe absorption. It was also verified that the ZnTe nanocrystals inhibit the self-trapping of the rare earth luminescence. As a consequence, the quantum efficiency of the {sup 5}F{sub 7/2}→{sup 5}F{sub 5/2} transitions of the Yb{sup 3+} is considerably increased. Finally, we have found that the glass thermal diffusivity is not sensitive to temperature variations comprising the interval from room temperature to cryogenic temperatures. This can be an important property when considering this material to future applications in high-power photonic devices.

  12. Effect of poly(lactide-co-glycolide) molecular weight on the release of dexamethasone sodium phosphate from microparticles.

    Science.gov (United States)

    Jaraswekin, Saowanee; Prakongpan, Sompol; Bodmeier, Roland

    2007-03-01

    The objective of this study was to investigate the effect of poly(lactide-co-glycolide) (PLGA) molecular weight (Resomer RG 502H, RG 503H, and RG 504H) on the release behavior of dexamethasone sodium phosphate-loaded microparticles. The microparticles were prepared by three modifications of the solvent evaporation method (O/W-cosolvent, O/W-dispersion, and W/O/W-methods). The encapsulation efficiency of microparticles prepared by the cosolvent- and W/O/W-methods increased from approximately 50% to >90% upon addition of NaCl to the external aqueous phase, while the dispersion method resulted in lower encapsulation efficiencies. The release of dexamethasone sodium phosphate from PLGA microparticles (>50 microm) was biphasic. The initial burst release correlated well with the porosity of the microparticles, both of which increased with increasing polymer molecular weight (RG 504H > 503H > 502H). The burst was also dependent on the method of preparation and was in the order of dispersion method > WOW method > consolvent method. In contrast to the higher molecular weight PLGA microparticles, the release from RG 502H microparticles prepared by cosolvent method was not affected by volume of organic solvent (1.5-3.0 ml) and drug loading (4-13%). An initial burst of approximately 10% followed by a 5-week sustained release phase was obtained. Microparticles with a size <50 microm released in a triphasic manner; an initial burst was followed by a slow release phase and then by a second burst.

  13. X-ray absorption spectroscopy and high-energy XRD study of the local environment of copper in antibacterial copper-releasing degradable phosphate glasses

    OpenAIRE

    Pickup, David M.; Ahmed, Ifty; Fitzgerald, Victoria; Moss, Rob M.; Wetherall, Karen; Knowles, Jonathan C.; Smith, Mark E.; Newport, Robert J.

    2006-01-01

    Phosphate-based glasses of the general formula Na2O-CaO-P2O5 are degradable in an aqueous environment, and therefore can act as antibacterial materials through the inclusion of ions such as copper. In this study, CuO and Cu2O were added to Na2O-CaO-P2O5 glasses (1-20 mol% Cu) and X-ray absorption spectroscopy (XAS) and high-energy X-ray diffraction (HEXRD) used to probe the local environment of the copper ions. Copper K-edge X-ray absorption near-edge structure (XANES) spectra confirm the oxi...

  14. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    Science.gov (United States)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  15. Long-term conversion of 45S5 bioactive glass-ceramic microspheres in aqueous phosphate solution.

    Science.gov (United States)

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2012-05-01

    The conversion of 45S5 glass and glass-ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically glass-ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75-150 μm) were immersed for 10 years at room temperature (~25 °C) in K(2)HPO(4) solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25-45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K(2)HPO(4) concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K(2)HPO(4) solution but a calcium pyrophosphate product, Ca(10)K(4)(P(2)O(7))(6).9H(2)O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass-ceramics in biomedical applications are discussed.

  16. Ridge optical waveguide in an Er3+/Yb3+ co-doped phosphate glass produced by He+ ion implantation combined with Ar+ ion beam etching

    International Nuclear Information System (INIS)

    Tan Yang; Chen Feng; Hu Lili; Xing Pengfei; Chen Yanxue; Wang Xuelin; Wang Keming

    2007-01-01

    This paper reports on the fabrication and characterization of a ridge optical waveguide in an Er 3+ /Yb 3+ co-doped phosphate glass. The He + ion implantation (at energy of 2.8 MeV) is first applied onto the sample to produce a planar waveguide substrate, and then Ar + ion beam etching (at energy of 500 eV) is carried out to construct rib stripes on the sample surface that has been deposited by a specially designed photoresist mask. According to a reconstructed refractive index profile of the waveguide cross section, the modal distribution of the waveguide is simulated by applying a computer code based on the beam propagation method, which shows reasonable agreement with the experimentally observed waveguide mode by using the end-face coupling method. Simulation of the incident He ions at 2.8 MeV penetrating into the Er 3+ /Yb 3+ co-doped phosphate glass substrate is also performed to provide helpful information on waveguide formation

  17. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation

    Directory of Open Access Journals (Sweden)

    Indu Bajpai

    2016-01-01

    Full Text Available Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass was coated on sintered hydroxyapatite (HA and HA-TCP (TCP stands for tricalcium phosphate samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs. Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs.

  18. Tricalcium Phosphate Containing Sodium Hexametaphosphate as Polymer Suspension Stabilizer

    Directory of Open Access Journals (Sweden)

    K. Rahbar Shamskar

    2008-12-01

    Full Text Available Tricalcium phosphate as hydroxyapatite is used as a suspension stabilizer in styrene polymerization process. Particle size of TCP plays an essential role in the particles’ size distribution and geometrical form of polystyrene products. As the particle size of TCP is reduced, there will be much better chance to engulf the styrene particles. The higher the number of TCP particles surrounding each styrene particle, the lesser will be their tendency to form a large particle after collision. Therefore, there will be higher percentages of spherical polystyrene with small particle size and narrower size distribution in the product. Experimental results have indicated that the addition of sodium hexametaphosphate (SHMP to the reaction mixture of lime and phosphoric acid, after drying the product by spray dryer, lead to decrease the size of TCP particles from ca. 5 μm (without SHMP to ca. 1.5 μm (with SHMP. In this study, the role of TCP containing SHMP as polymer suspension stabilizer and consequently the beads size of polystyrene is investigated in laboratory scale. The results show that despite addition of SHMP to the reaction mixture of lime and phosphoric acid decreases the TCP particles size and the mean bead size of the product of polystyrene become larger than the product prepared by TCP without SHMP.

  19. Microwave assisted low temperature synthesis of sodium zirconium phosphate (NZP) and the leachability of some selected fission products incorporated in its structure

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.

    2008-01-01

    Full text: Microwave assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Four selected fission products, namely cesium, strontium, tellurium and ruthenium were introduced (substituted) in the NZP matrix during its synthesis at 450 deg C. More than 85% of these elements incorporated at this temperature could be retained in the NZP compacts, sintered in air at 1000 deg C to nearly 90% of the theoretical density of pure sodium zirconium phosphate. Leaching studies were carried out on the fission product substituted sintered NZP compacts in pure de-ionized water and 80% saturated brine solution at the ambient temperatures of 30 deg C and 90 deg C for four weeks. The major part of leaching in all the cases was observed in the first week. The maximum amount of the substituted element leached in the liquid media after four weeks, however did not exceed 12% of the total amount originally present in the sample before leaching. No significant leaching was observed for any of the dopant elements after four weeks. Among the substituted elements maximum leaching was observed for tellurium followed by cesium and strontium. Ruthenium showed virtually no leaching under the conditions employed. Leaching was found to decrease considerably in multiple element substituted NZP. The effect of temperature on the leaching rate was marginal but substantial difference was observed when the leachant was changed from pure de-ionized water to brine solution. Tellurium and strontium exhibited three and two fold decrease in the leaching rate respectively on changing the leachant from pure de-ionized water to 80% saturated brine solution. The leach rate of Cs however remained virtually unaffected by this change. The SEM and EDX analysis of the surfaces of the leached pellets showed virtual absence of the dopants introduced in the NZP matrix

  20. Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5.

    Science.gov (United States)

    Sharmin, Nusrat; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Previous studies investigating manufacture of phosphate-based glass fibres from glasses fixed with P2O5 content less than 50 mol% showed that continuous manufacture without breakage was very difficult. In this study, nine phosphate-based glass formulations from the system P2O5-CaO-Na2O-MgO-B2O3 were prepared with P2O5 contents fixed at 40, 45 and 50 mol%, where Na2O was replaced by 5 and 10 mol% B2O3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B2O3 addition on the fibre drawing, fibre mechanical properties and dissolution behaviour was investigated. It was found that addition of 5 and 10 mol% B2O3 enabled successful drawing of continuous fibres from glasses with phosphate (P2O5) contents fixed at 40, 45 and 50 mol%. The mechanical properties of the fibres were found to significantly increase with increasing B2O3 content. The highest tensile strength (1200 ± 130 MPa) was recorded for 45P2O5-16CaO-5Na2O-24MgO-10B2O3 glass fibres. The fibres were annealed, and a comparison of the mechanical properties and mode of degradation of annealed and non-annealed fibres were investigated. A decrease in tensile strength and an increase in tensile modulus were observed for the annealed fibres. An assessment of the change in mechanical properties of both the annealed and non-annealed fibres was performed in phosphate-buffered saline (PBS) at 37℃ for 28 and 60 days, respectively. Initial loss of mechanical properties due to annealing was found to be recovered with degradation. The B2O3-containing glass fibres were found to degrade at a much slower rate as compared to the non-B2O3-containing fibres. Both annealed and non-annealed fibres exhibited a peeling effect of the fibre's outer layer during degradation. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Partitioning and structural role of Mn and Fe ions in ionic sulfophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Möncke, Doris; Wondraczek, Lothar, E-mail: lothar.wondraczek@uni-jena.de [Otto-Schott-Institute of Materials Research, Friedrich-Schiller-University Jena, Fraunhoferstr. 6, 07743 Jena (Germany); Sirotkin, Sergey [Institut des Sciences Moléculaires - CNRS UMR 5255, Université de Bordeaux, 33405 Talence (France); Stavrou, Elissaios; Kamitsos, Efstratios I. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constaniou Ave., 116 35 Athens (Greece)

    2014-12-14

    Ionic sulfophosphate liquids of the type ZnO-Na{sub 2}O-Na{sub 2}SO{sub 4}-P{sub 2}O{sub 5} exhibit surprising glass forming ability, even at slow or moderate cooling rate. As a concept, they also provide high solubility of transition metal ions which could act as cross-linking sites between the sulfate and phosphate entities. It is therefore investigated how the replacement of ZnO by MnO and/or FeO affects the glass structure and the glass properties. Increasing manganese levels are found to result in a monotonic increase of the transition temperature T{sub g} and most of the mechanical properties. This trend is attributed to the change of metal-ion coordination from four-fold around Zn{sup 2+} to six-fold around Mn{sup 2+} ions. The higher coordination facilitates cross-linking of the ionic structural entities and subsequently increases T{sub g}. Raman and infrared spectroscopy show that the structure of these glasses involves only SO{sub 4}{sup 2−} and PO{sub 4}{sup 3−} monomers as well as P{sub 2}O{sub 7}{sup 4-} dimers. Replacement of ZnO by MnO is found to favour PO{sub 4}{sup 3−} over P{sub 2}O{sub 7}{sup 4-} species, a trend which is enhanced by co-doping with FeO. Both transition metal ions show, like Zn{sup 2+}, a preference to selectively coordinate to phosphate anionic species, as opposed to sodium ions which coordinate mainly to sulfate anions. EPR spectroscopy finally shows that divalent Mn{sup 2+} ions are present primarily in MnO{sub 6}-clusters, which, in the studied sulfophosphate glasses, convert upon increasing MnO content from corner-sharing to edge-sharing entities.

  2. Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL; WindischJr., Charles F. [Pacific Northwest National Laboratory (PNNL); Burton, Sarah D. [Pacific Northwest National Laboratory (PNNL); Bovaird, Chase C. [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    As part of ongoing studies to evaluate relationships between structure and rates of dissolution of silicate glasses in aqueous media, sodium borosilicate glasses of composition Na2O xB2O3 (3 x)SiO2, with x 1 (Na2O/B2O3 ratio 1), were analyzed using deep-UV Raman spectroscopy. Results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. The Q3 fractionwas found to increase with increasing Na2O content, in agreement with studies on related glasses, and, as long as the value of x was not too high, this contributed to higher rates of dissolution in single pass flow-through testing. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity, and appeared to grow larger upon further reduction of the Q3 fraction. Results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.

  3. Analysis of viscoelastic flow in tin phosphate glass

    International Nuclear Information System (INIS)

    Cha, Jaemin; Asida, Yuto; Takebe, Hiromichi

    2011-01-01

    The change of the viscoelastic flow near the imprinting temperature was analyzed by a penetration method with a commercial TMA and the result was compared with thermally-imprinted SnO-P 2 O 5 (SP) and SnO-B 2 O 3 -P 2 O 5 (SBP) glass samples by an imprint apparatus. The viscosity of SP glass increases monotonically with increasing SnO content and the specific movement is shown in viscoelastic flow under the optimized thermal imprinting temperature for SP glasses.

  4. Gibbs free energy of transfer of a methylene group on {UCON + (sodium or potassium) phosphate salts} aqueous two-phase systems: Hydrophobicity effects

    International Nuclear Information System (INIS)

    Silverio, Sara C.; Rodriguez, Oscar; Teixeira, Jose A.; Macedo, Eugenia A.

    2010-01-01

    The Gibbs free energy of transfer of a suitable hydrophobic probe can be regarded as a measure of the relative hydrophobicity of the different phases. The methylene group (CH 2 ) can be considered hydrophobic, and thus be a suitable probe for hydrophobicity. In this work, the partition coefficients of a series of five dinitrophenylated-amino acids were experimentally determined, at 23 o C, in three different tie-lines of the biphasic systems: (UCON + K 2 HPO 4 ), (UCON + potassium phosphate buffer, pH 7), (UCON + KH 2 PO 4 ), (UCON + Na 2 HPO 4 ), (UCON + sodium phosphate buffer, pH 7), and (UCON + NaH 2 PO 4 ). The Gibbs free energy of transfer of CH 2 units were calculated from the partition coefficients and used to compare the relative hydrophobicity of the equilibrium phases. The largest relative hydrophobicity was found for the ATPS formed by dihydrogen phosphate salts.

  5. SIMULTANEOUS ESTIMATION OF MOXIFLOXACIN HYDROCHLORIDE AND DEXAMETHASONE SODIUM PHOSPHATE IN BULK AND IN OPHTHALMIC SOLUTION BY RP- HPLC

    OpenAIRE

    DHUMAL, D. M; SHIRKHEDKAR, A. A; NERKAR, P. P; SURANA, S. J

    2012-01-01

    A new simple, precise, accurate and selective RP-HPLC method has been developed and validated for simultaneous estimation of Moxifloxacin Hydrochloride (MOX) and Dexamethasone Sodium Phosphate (DSP) in Ophthalmic Solution. The method was carried out on a Qualisil RP C-8 (250 mm x 4.6 mm, 5 µm) column with a mobile phase consisting of Methanol: Water (75:25 v/v) pH adjusted to 3.0 with ortho-phosphoric acid of aqueous phase and flow rate of 1.0 mL min¹. Detection was carried out at 240 nm. The...

  6. Identification of glass compositions suitable for disposal of waste reactive metal

    International Nuclear Information System (INIS)

    Varma, R.; Brown, A.P.; Kumar, R.; San-Pedro, R.; Freeman, C.J.; Helt, J.E.

    1988-09-01

    This study was conducted in support of a project to convert waste sodium to a form that is amenable to easy disposal in ordinary landfills. This waste sodium will be from reactor and other operations at the US Department of Energy and will contain small amounts of radioactive species that must not be released to the environment in an uncontrolled manner. The sodium will be converted into a glass that will contain and isolate the radionuclides present in it. This study was conducted to define acceptable glass compositions that (1) are resistant to leaching of sodium by groundwater and rainwater, (2) contain a relatively large proportion of sodium so that unreasonably large volumes of the glass for disposal will not be produced, and (3) are conveniently prepared from the waste sodium. For this purpose, glass samples containing varying amounts of the oxides of sodium, calcium, boron, aluminum, and silicon were prepared in the laboratory. The samples were subjected to the accelerated MCC-1 test to determine resistance to leaching by water at 60/degree/C. Soda-silica glasses were observed to dissolve in the water rather quickly. Addition of the other ingredients was found to impart significant leach resistance to the glasses. Among the high-Na 2 O glasses, those containing alumina (3% Al 2 O 3 -10% CaO-30% Na 2 O and 6% Al 2 O 3 -10% B 2 O 3 -30% Na 2 O) were found to be most resistant to leaching. Lowering the Na 2 O content to 20% made these glasses even more leach resistant. 8 refs., 6 figs., 2 tabs

  7. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    Science.gov (United States)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A comparative property investigation of lithium phosphate glass ...

    Indian Academy of Sciences (India)

    2017-08-16

    Aug 16, 2017 ... However, MW processing of bulk glass is a relatively recent development and a ... candidates for nuclear waste immobilization [19]. Low refrac- ... one of the basic prototype glasses in solid-state electrolyte, because of its high ...

  9. Near net-shape fabrication of hydroxyapatite glass composites

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.; Dortmans, L.; Feenstra, F.

    2004-01-01

    Near net-shape fabrication of hydroxyapatite (HA) glass composites has been attempted by infiltrating a glass into porous HA performs. Main efforts were put to develop glasses that are chemically compatible with HA at elevated temperatures. After extensive investigations in the phosphate and

  10. New reddish-orange and greenish-yellow light emitting phosphors: Eu{sup 3+} and Tb{sup 3+}/Eu{sup 3+} in sodium germanate glass

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez, E. [Departamento de Física, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo 83000, Sonora (Mexico); Zayas, Ma. E. [Departamento de Investigación en Física, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo 83000, Sonora (Mexico); Alvarado-Rivera, J. [Departamento de Física, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo 83000, Sonora (Mexico); Félix-Domínguez, F. [Departamento de Física, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo 83000, Sonora (Mexico); Centro de investigación en Materiales Avanzados, S.C. Miguel de Cervantes 120, Complejo industrial Chihuahua, Chihuahua 31109, Chihuahua (Mexico); Duarte-Zamorano, R.P. [Departamento de Física, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo 83000, Sonora (Mexico); Caldiño, U., E-mail: cald@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, México City 09340, Distrito Federal (Mexico)

    2014-09-15

    A spectroscopic analysis of sodium germanate glasses activated with Eu{sup 3+}, Tb{sup 3+} and Eu{sup 3+}/Tb{sup 3+} is performed from their photoluminescence spectra and decay times. In the Eu{sup 3+}-singly doped glass reddish-orange light emission, with x=0.64 and y=0.35 CIE1931 chromaticity coordinates, is obtained upon Eu{sup 3+} excitation at 393 nm. Such chromaticity coordinates are close to those (0.67, 0.33) proposed by the National Television Standard Committee for the red phosphor. When the sodium germanate glass is co-doped with Tb{sup 3+} and Eu{sup 3+} greenish-yellow light emission, with (0.41, 0.46) CIE1931 chromaticity coordinates, is obtained upon Tb{sup 3+} excitation at 344 nm. Such greenish-yellow luminescence is due mainly to the terbium {sup 5}D{sub 4}→{sup 7}F{sub 6,5} and europium {sup 5}D{sub 0}→{sup 7}F{sub 1,2} emissions, Eu{sup 3+} being sensitized by Tb{sup 3+} through a non-radiative energy transfer. The non-radiative nature of this energy transfer is inferred from the increase in the decay rate of the Tb{sup 3+} emission when the glass is co-doped with Eu{sup 3+}. From an analysis of the Tb{sup 3+} emission decay time curves it is inferred that such energy transfer might take place between Tb{sup 3+} and Eu{sup 3+} clusters through a short-range interaction mechanism. - Highlights: • Sodium germanate glasses are optically activated with Eu{sup 3+} (GNE) and Tb{sup 3+}/Eu{sup 3+} (GNTE). • Reddish-orange light (0.64, 0.35) is generated by GNE pumped with 393 nm light. • Greenish-yellow light (0.41, 0.46) is generated by GNTE pumped with 344 nm light. • Non-radiative energy transfer Tb{sup 3+}→Eu{sup 3+} takes place in GNTE.

  11. Corrosion of K-3 glass-contact refractory in sodium-rich aluminosilicate melts

    International Nuclear Information System (INIS)

    Lu, X.D.; Gan, H.; Buechele, A.C.; Pegg, I.L.

    1999-01-01

    The corrosion of the glass-contact refractory Monofrax K-3 in two sodium-rich aluminosilicate melts has been studied at 1,208 and 1,283 C using a modified ASTM procedure with constant agitation of the melt by air bubbling. The results for the monolithic refractory indicate a fast initial stage involving phase dissolution and transformation and a later passivated stage in which the surface of the refractory has been substantially modified. The composition of the stable spinel phase in the altered layer on monolithic coupons of K-3 is almost identical to the equilibrium composition bracketed by the dissolution of powdered K-3 into under-saturated melts on the other. The temperature and melt shear viscosity were found to have significant effects on the rates of K-3 dissolution and transformation

  12. FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste

    International Nuclear Information System (INIS)

    Musick, C.A.

    1997-11-01

    A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997

  13. Aggregation and adhesion of gold nanoparticles in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Du Shangfeng, E-mail: s.du@bham.ac.uk; Kendall, Kevin; Toloueinia, Panteha; Mehrabadi, Yasamin; Gupta, Gaurav; Newton, Jill [University of Birmingham, School of Chemical Engineering (United Kingdom)

    2012-03-15

    In applications in medicine and more specifically drug delivery, the dispersion stability of nanoparticles plays a significant role on their final performances. In this study, with the use of two laser technologies, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), we report a simple method to estimate the stability of nanoparticles dispersed in phosphate buffered saline (PBS). Stability has two features: (1) self-aggregation as the particles tend to stick to each other; (2) disappearance of particles as they adhere to surrounding substrate surfaces such as glass, metal, or polymer. By investigating the effects of sonication treatment and surface modification by five types of surfactants, including nonylphenol ethoxylate (NP9), polyvinyl pyrrolidone (PVP), human serum albumin (HSA), sodium dodecyl sulfate (SDS) and citrate ions on the dispersion stability, the varying self-aggregation and adhesion of gold nanoparticles dispersed in PBS are demonstrated. The results showed that PVP effectively prevented aggregation, while HSA exhibited the best performance in avoiding the adhesion of gold nanoparticle in PBS onto glass and metal. The simple principle of this method makes it a high potential to be applied to other nanoparticles, including virus particles, used in dispersing and processing.

  14. Structural and luminescence behavior of Sm{sup 3+} ions doped lead boro-telluro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvi, S.; Marimuthu, K.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-03-15

    The Sm{sup 3+} ions doped lead boro-telluro-phosphate glasses with the chemical composition 30H{sub 3}O{sub 3}+(20–x)PbO+15TeO{sub 2}+10P{sub 2}O{sub 5}+10ZnO+15BaCO{sub 3}+xSm{sub 2}O{sub 3} (x=0.05, 0.1, 0.25, 0.5, 1.0 and 2.0 in wt%) have been prepared by a melt quenching technique and their structural and optical behavior were studied and reported. The physical properties like, refractive index, density and dielectric constant etc., have been estimated. FTIR and Raman spectral studies have been made to explore the presence of functional groups and various structural units in the prepared glasses. The formation of bridging and non-bridging oxygens of BO{sub 4}, BO{sub 3}, TeO{sub 3}, TeO{sub 6} and PbO{sub 4} structural units have been investigated. From the absorption spectra, the direct (n=1/2), indirect (n=2) band gap, band tailing parameter (B) and Urbach energy (ΔE) values were estimated. The ionic nature of the metal–ligand bond in the title glasses has been discussed. The Judd–Ofelt intensity parameters (Ω{sub λ,}λ=2, 4, and 6), oscillator strength of ƒ−ƒ electric dipole transitions and transition probability (A) have been evaluated. The predicted radiative lifetime (τ{sub rad}) and branching ratio (β{sub R}) values of the {sup 4}G{sub 5/2} excited level of the Sm{sup 3+} ions to the lower energy levels were determined and compared with the experimentally measured values. From the recorded fluorescence spectra, the strong transitions of Sm{sup 3+} ions {sup 4}G{sub 5/2}→{sup 6}H{sub 5/2} (565 nm), {sup 4}G{sub 5/2}→{sup 6}H{sub 7/2} (602 nm), {sup 4}G{sub 5/2}→{sup 6}H{sub 9/2} (648 nm) and a weak transition, {sup 4}G{sub 5/2}→{sup 6}H{sub 11/2} (709 nm) have been observed. The significant laser parameters like, gain bandwidth (σ{sub p}{sup E}×λ{sub eff}), optical gain (σ{sub p}{sup E}×τ{sub rad}) and stimulated emission cross-section (σ{sub p}{sup E}) values were estimated for the {sup 4}G{sub 5/2}→{sup 6}H{sub J} (J=5

  15. The chemistry of high temperature phosphate solutions in relation to steam generation

    International Nuclear Information System (INIS)

    Broadbent, D.; Lewis, G.G.; Wetton, E.A.M.

    1978-01-01

    The problems associated with the use of phosphate for chemical treatment of the P.W.R. secondary circuit have prompted renewed interest in the physical chemistry of these solutions. Solubility and phase studies have been carried out at 250, 300 and 350 0 C with solutions having sodium to phosphate ratios from 1.0 to above 3.0. A solid phase of ratio about 2.8 exists in equilibrium with a wide range of saturated solution compositions at each temperature. Invariant points at which three phases are in equilibrium have been identified and at the two higher temperatures a region of liquid-liquid immiscibility occurs. Phase diagrams have been constructed for each temperature from which it is possible to predict the compositional changes occurring during the isothermal evaporation process. The corrosivity of these phosphate solutions to a range of steel alloys is being studied, the results reported in the present work, however, are confined to mild steel in the temperature and phosphate composition ranges of the phase studies. The corrosion of mild steel is generally considerably less than in sodium hydroxide solutions of equivalent concentration. The dependence of corrosion rate on sodium and phosphate concentrations in not readily explicable in terms of the solubility and phase studies and it is thought that the solubility of iron in the phosphate solutions is an important rate-determining factor since several complex compounds containing sodium, phosphorus and ferrous iron are present in the corrosion films. (author)

  16. Effect of alkaline earth modifier on the optical and structural properties of Cu2+ doped phosphate glasses as a bandpass filter

    Science.gov (United States)

    Farouk, M.; Samir, A.; El Okr, M.

    2018-02-01

    Glasses of composition [16RO-3Al2O3sbnd 6CuOsbnd 20Na2Osbnd 55P2O5], where R is the alkaline earth (R = Mg, Ca, Sr and Ba mol. %), were prepared by conventional melt quenching technique. The glass samples were characterized by X-ray diffraction, infrared spectroscopy, and spectrophotometer. XRD patterns show no sharp peaks indicating the non-crystalline nature of the prepared glasses. The density and molar volume of the glass systems were determined in order to study their structures. These results revealed that addition of alkaline earth elements leads to the formation of non-bridging oxygens (NBOs) and expands (opens up) the structure. The infrared spectra were analyzed to quantify the present phosphate groups. The optical absorption spectra of Cu2+ ions show the characteristic broadband single of Cu2+ ions in octahedral symmetry. The band gap was estimated following two methodologies. The first method considers the band edge of the transmission, while the second approach relays on the estimated values of the optical constants. A decent agreement for the band gap values using the two methods was obtained.

  17. Gold nanoparticles assisted surface enhanced Raman scattering and luminescence of Er{sup 3+} doped zinc–sodium tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, S.K.; Awang, Asmahani, E-mail: asmahani_awang@yahoo.com; Sahar, M.R.; Arifin, R.

    2015-03-15

    Significant enhancements in Er{sup 3+} luminescence and Raman intensity mediated via surface plasmon resonance (SPR) of gold (Au) nanoparticles (NPs) embedded zinc–sodium tellurite glass are reported. The observed modifications in the physical and spectroscopic properties are ascribed to the alterations in the glass network. XRD pattern confirms the amorphous nature of prepared glass sample. UV–vis-NIR spectra reveal seven absorption bands. Surface plasmon band is evidenced around 626–630 nm. TEM images manifest the growth of non-spherical Au NPs with average diameter between ∼7.2 nm and 8.6 nm. The visible up-conversion (UC) emission for all samples under 779 nm excitation exhibits three bands centered at 503 nm (green), 546 (green) and 637 nm (red) ascribed to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions. Glass sample with 0.4 mol% Au displaying the highest luminescence intensity with enhancement factor of 3.85 and 3.56 for green bands, and 7.61 for the red band is ascribed to the NPs local field enhancement and energy transfer between rare earth (RE) ions and NPs. FTIR spectra show the vibration of ZnO{sub 4} bonds, Te-O bond in TeO{sub 3} (tp) and TeO{sub 4} (tbp) units and the hydroxyl groups. Raman spectra demonstrate the presence of Er-O and Zn-O bond, anti-symmetric vibrations of Te-O-Te bonds and stretching modes of non-bonded oxygen exists in TeO{sub 3} and TeO{sub 3+1} unit. The amplifications in Raman signals by a factor of 1.62, 1.58, 1.64, 1.68 and 1.69 corresponding to the peak centered at 262 cm{sup −1}, 382 cm{sup −1}, 521 cm{sup −1}, 670 cm{sup −1} and 725 cm{sup −1} are attributed to the contribution of a surface plasmon generating a strong, localized and secondary field. We assert that our glass compositions offer favorable potential to develop solid state lasers and other versatile nanophotonic devices. - Highlights: • Gold

  18. Phosphate analysis of natural sausage casings preserved in brines with phosphate additives as inactivating agent - Method validation.

    Science.gov (United States)

    Wijnker, J J; Tjeerdsma-van Bokhoven, J L M; Veldhuizen, E J A

    2009-01-01

    Certain phosphates have been identified as suitable additives for the improvement of the microbial and mechanical properties of processed natural sausage casings. When mixed with NaCl (sodium chloride) and used under specific treatment and storage conditions, these phosphates are found to prevent the spread of foot-and-mouth disease and classical swine fever via treated casings. The commercially available Quantichrom™ phosphate assay kit has been evaluated as to whether it can serve as a reliable and low-tech method for routine analysis of casings treated with phosphate. The outcome of this study indicates that this particular assay kit has sufficient sensitivity to qualitatively determine the presence of phosphate in treated casings without interference of naturally occurring phosphate in salt used for brines in which casings are preserved.

  19. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction.

    Science.gov (United States)

    Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J

    2009-04-01

    Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

  20. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    Science.gov (United States)

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.

  1. Citrate increases glass transition temperature of vitrified sucrose preparations

    NARCIS (Netherlands)

    Kets, E.P.W.; Lipelaar, P.J.; Hoekstra, F.A.; Vromans, H.

    2004-01-01

    The aim of this study was to investigate the effect of sodium citrate on the properties of dried amorphous sucrose glasses. Addition of sodium citrate to a sucrose solution followed by freeze-drying or convective drying resulted in a glass transition temperature (T-g) that was higher than the

  2. Study on Modified Water Glass Used in High Temperature Protective Glass Coating for Ti-6Al-4V Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Shuang Yang

    2018-04-01

    Full Text Available Sodium silicate water glass was modified with sodium polyacrylate as the binder, the composite slurry used for high-temperature oxidation-resistant coating was prepared by mixing glass powder with good lubrication properties in the binder. The properties of the modified binder and high-temperature oxidation resistance of Ti-6Al-4V titanium alloy coated with composite glass coating were studied by XRD, SEM, EDS, TG-DSC and so on. Results showed that sodium polyacrylate modified water glass could obviously improve the suspension stability of the binder, the pyrolytic carbon in the binder at high temperature could increase the surface tension in the molten glass system, and the composite glass coating could be smooth and dense after heating. Pyrolytic carbon diffused and combined with oxygen in the coating under the heating process to protect the titanium alloy from oxidation. The thickness of the oxide layer was reduced 51% after applying the high-temperature oxidation-resistant coating. The coating also showed a nearly 30% reduction in friction coefficient due to the boundary lubricant regime. During cooling, the coating could be peeled off easily because of the mismatched CTE between the coating and substrate.

  3. Effects of phosphate environments on turbine materials: preliminary results

    International Nuclear Information System (INIS)

    Chen, M.C.; Shalvoy, R.S.; Gould, G.C.

    1985-01-01

    Stress corrosion cracking (SCC) is a serious hazard to large steam turbines. In many cases, this cracking is thought caused by concentrated deposits of caustics or chlorides, formed from the steam by concentrating mechanisms. To minimize the likelihood of forming these corrosive deposits, turbine manufacturers recommend that the levels of contaminants in the steam be maintained at low levels. The steam purity needed to prevent the formation of corrosive deposits is at present uncertain. As an aid in judging the steam purity needed to avoid corrosive deposits, the General Electric Company surveyed the utility industry to determine current feedwater practices, the levels of steam purity attained, and the nature of the corrosion problems encountered. One hypothesis to explain the lower corrosivity of steam from drum boilers concerns the sodium phosphate to compounds commonly added to drum boiler water for pH control. To test this hypothesis, the present program was undertaken to study the effect of sodium phosphate on the corrosivity of the two most common corrosive turbine deposits, sodium chloride and sodium hydroxide. Four turbine materials - a rotor steel, a disc steel, and two turbine blade steels - were chosen for this study. The results from the first half of a two-year project are described. So far the corrosivity of the deposits without phosphate has been determined. Work to determine the corrosivity of deposits with phosphate is presently under way and only the electrochemical test results are discussed

  4. [Quantitative determination of glass content in monazite glass-ceramics by IR technique].

    Science.gov (United States)

    He, Yong; Zhang, Bao-min

    2003-04-01

    Monazite glass-ceramics consist of both monazite and metaphoshate glass phases. The absorption bands of both phases do not overlap each other, and the absorption intensities of bands 1,275 and 616 cm-1 vary with the glass contents. The correlation coefficient between logarithmic absorbance ratio of the two bands and glass contents was r = 0.9975 and its regression equation was y = 48.356 + 25.93x. The absorbance ratio of bands 952 and 616 cm-1 also varied with different ratios of Ce2O3/La2O3 in synthetic monazites, with r = 0.9917 and a regression equation y = 0.2211 exp (0.0221x). High correlation coefficients show that the IR technique could find new application in the quantitative analysis of glass content in phosphate glass-ceramics.

  5. Preparation and Characterization of Porous Calcium Phosphate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    Honglian Dai; Xinyu Wang; Yinchao Han; Xin Jiang; Shipu Li

    2011-01-01

    β-tricalcium phosphate (β-TCP) powder and Na2O-CaO-MgO-P2O5 glass binder were synthesized and mixed, and then the biodegradable porous calcium phosphate ceramics were successfully prepared by foaming and sintering at 850℃. The as-prepared ceramics possess a high porosity with partial three-dimension interconnected macro- and micro-pores. As in vitro experiment testified, the calcium phosphate ceramics (CPCs) has good degradability.

  6. Compatibility of butorphanol with granisetron in 0.9% sodium chloride injection packaged in glass bottles or polyolefin bags.

    Science.gov (United States)

    Chen, Fu-Chao; Xiong, Hui; Liu, Hui-Min; Fang, Bao-Xia; Li, Peng

    2015-08-15

    The stability of admixtures containing butorphanol and granisetron in polyolefin bags and glass bottles stored at 4 and 25 °C was studied. Commercial solutions of butorphanol tartrate and granisetron hydrochloride were combined and further diluted with 0.9% sodium chloride injection to final concentrations of butorphanol tartrate 0.08 mg/mL and granisetron 0.03 or 0.06 mg/mL; the resulting mixtures were packaged in polyolefin bags and glass bottles. The admixtures were assessed for periods of up to 48 hours after storage at 25 °C without protection from room light and up to 14 days at 4 °C with protection from room light. The chemical stability of the admixtures was evaluated by a validated high-performance liquid chromatography (HPLC) method and by measurement of pH values. Solution appearance and color were assessed by observing the samples against room light and dark backgrounds. HPLC analysis demonstrated that the percentages of the initial concentrations of butorphanol and granisetron in the various solutions remained above 97% during the testing period. No changes in color or turbidity were observed in any of the prepared solutions. Throughout this period, pH values remained stable. Admixtures of butorphanol tartrate 0.08 mg/mL and granisetron 0.03 or 0.06 mg/mL in 0.9% sodium chloride injection in polyolefin bags or glass bottles remained stable for 48 hours when stored at 25 °C exposed to room light and for 14 days when stored at 4 °C protected from room light. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  7. Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses

    International Nuclear Information System (INIS)

    Menaa, Bouzid; Mizuno, Megumi; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu

    2006-01-01

    We investigated the water durability of the inorganic-organic hybrid tin-silico-phosphate glasses Me 2 SiO-SnO-P 2 O 5 (Me designs the organic methyl group) doped with organic acids (salicylic acid (SA), tartaric acid (TA), citric acid (Canada) and butane tetracarboxylic acid (BTCA)) containing one or more of carboxylic groups per molecule. The structure, thermal properties and durability of the final glasses obtained via a non-aqueous acid-base reaction were discussed owing to the nature and the concentration of the acid added. 29 Si magic angle spinning (MAS) NMR and 31 P MAS NMR spectra, respectively, showed clearly a modification of the network in the host glass matrix of the Me 2 SiO-SnO-P 2 O 5 system. The polycondensation enhancement to form -P-O-Si-O-P- linkages (PSP) and the increase of the Q 2 unit (two bridging oxygens per phosphorus atom) over the Q 3 unit (three bridging oxygens per phosphorus atom) as a function of the acid in the order SA 2 SiO-SnO-P 2 O 5 matrix. In addition, this structural change is accompanied by a decrease of the coefficient of thermal expansion and an increase of the water durability of the glasses with the acids containing a large number of carboxylic groups per molecule. The presence of carboxylic groups of the acid acting as network modifier may retard the movement of water molecules through the glasses due to the steric hindrance strengthening the PSP connections in a chain-like structure

  8. [In vitro drug release behavior of carrier made of porous glass ceramics].

    Science.gov (United States)

    Wang, De-ping; Huang, Wen-hai; Zhou, Nai

    2002-09-01

    To conduct the in vitro test on drug release of rifampin encapsulated in a carrier made of porous phosphate glass ceramics and to analyze main factors which affect the drug release rate. A certain quantitative of rifampin was sealed in a hollow cylindrical capsule which consisted of chopped calcium phosphate crystal fiber obtained from glass crystallization. The rifampin concentration was measured in the simulated physiological solution in which the capsule soaked. Rifampin could be released in a constant rate from the porous glass ceramic carrier in a long time. The release rate was dependent on the size of crystal fiber and the wall thickness of the capsule. This kind of calcium phosphate glass ceramics can be a candidate of the carrier materials used as long term drug therapy after osteotomy surgery.

  9. Effect of TeO2 on the elastic moduli of sodium borate glasses

    International Nuclear Information System (INIS)

    Saddeek, Y.B.; Abd El Latif, Lamia

    2004-01-01

    Sodium borate glass containing tellurite as Te x Na 2-2x B 4-4x O 7-5x with x=0, 0.05, 0.15, 0.25 and 0.35 have been prepared by rapid quenching. Ultrasonic velocity (both longitudinal and shear) measurements have been made using a transducer operated at the fundamental frequency of 4 MHz at room temperature. The density was measured by the conventional Archimedes method. The elastic moduli, the Debye temperature, Poisson's ratio, and the parameters derived from the Makishima-Mackenzie model and the bond compression model have been obtained as a function of TeO 2 content. The monotonic decrease in the velocities and the elastic moduli, and the increase in the ring diameter and the ratio K bc /K e as a function of TeO 2 modifier content reveals the loose packing structure, which is attributed to the increase in the molar volume and the reduction in the vibrations of the borate lattice. The observed results confirm that the addition of TeO 2 changes the rigid character of Na 2 B 4 O 7 to a matrix of ionic behaviour bonds (NBOs). This is due to the creation of more and more discontinuities and defects in the glasses, thus breaking down the borax structure

  10. Removal of phosphate and nitrate from aqueous solution using ...

    African Journals Online (AJOL)

    The aim of the present study was the removal of phosphate and nitrate by sodium alginate seagrass (Cymodocea rotundata) beads from aqueous solutions. The adsorption characteristics of phosphate and nitrate on the seagrass beads were optimized under different operational parameters like adsorbent dosage, initial ...

  11. Spectrophotometric and chemometric methods for determination of imipenem, ciprofloxacin hydrochloride, dexamethasone sodium phosphate, paracetamol and cilastatin sodium in human urine

    Science.gov (United States)

    El-Kosasy, A. M.; Abdel-Aziz, Omar; Magdy, N.; El Zahar, N. M.

    2016-03-01

    New accurate, sensitive and selective spectrophotometric and chemometric methods were developed and subsequently validated for determination of Imipenem (IMP), ciprofloxacin hydrochloride (CIPRO), dexamethasone sodium phosphate (DEX), paracetamol (PAR) and cilastatin sodium (CIL) in human urine. These methods include a new derivative ratio method, namely extended derivative ratio (EDR), principal component regression (PCR) and partial least-squares (PLS) methods. A novel EDR method was developed for the determination of these drugs, where each component in the mixture was determined by using a mixture of the other four components as divisor. Peak amplitudes were recorded at 293.0 nm, 284.0 nm, 276.0 nm, 257.0 nm and 221.0 nm within linear concentration ranges 3.00-45.00, 1.00-15.00, 4.00-40.00, 1.50-25.00 and 4.00-50.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively. PCR and PLS-2 models were established for simultaneous determination of the studied drugs in the range of 3.00-15.00, 1.00-13.00, 4.00-12.00, 1.50-9.50, and 4.00-12.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively, by using eighteen mixtures as calibration set and seven mixtures as validation set. The suggested methods were validated according to the International Conference of Harmonization (ICH) guidelines and the results revealed that they were accurate, precise and reproducible. The obtained results were statistically compared with those of the published methods and there was no significant difference.

  12. A novel disk-type X-ray area imaging detector using radiophotoluminescence in silver-activated phosphate glass

    International Nuclear Information System (INIS)

    Kurobori, Toshio; Nakamura, Shoichi

    2012-01-01

    We report a novel two- and three-dimensional (2-D, 3-D) imaging detector based on the radiophotoluminescence (RPL) phenomenon in silver-activated phosphate glass (PG:Ag) and evaluate its dosimetric characteristics. A compact disk-type PG:Ag detector with a diameter of 80 mm was rotated at a rate of 400 rpm to read out the accumulated dose information and then remove the images for reuse. After X-ray exposure, three RPL dosimeter processes, i.e., preheating, reading, and erasing, were carried out with only a UV laser at 375 nm by adjusting the stepwise output levels. The 3-D images and dose distributions were rapidly reconstructed with a high spatial resolution of 1 μm and a sensitivity of 1 mGy.

  13. Optical absorption and photoluminescence properties of chromium in different host glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lachheb, R., E-mail: raouialach66@gmail.com [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Herrmann, A. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Damak, K. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Rüssel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Maâlej, R. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia)

    2017-06-15

    The optical absorption, excitation and fluorescence spectra, and emission lifetimes of chromium (III) were investigated in a wide variety of oxide glasses (aluminosilicate, aluminate and phosphate). For all glasses, weak crystal field strengths were deduced from the absorption spectra. The effect of the glass matrix and the Cr{sup 3+} concentration on the fluorescence properties of Cr{sup 3+} ions were investigated. An increased fluorescence intensity of Cr{sup 3+}was found for glasses of low optical basicity, the spectral position of the Cr{sup 3+} absorption and emission, however, was hardly influenced by the glass composition. The optical absorption spectra of the chromium doped aluminosilicate and aluminate glasses showed the presence of Cr{sup VI}, while in phosphate glasses most chromium occurred as Cr{sup 3+} ions. Furthermore, for the glass with the lowest basicity, the Cr{sup 3+}concentration was optimized in order to achieve maximum fluorescence emission intensity.

  14. Ce+3-and Tb+3-luminescence in glasses. Ce+3-activated bulk silica and silica thin films. An α-particle detector based on a Ce+3-activated silica thin film. A Ce+3-Tb+3-energy transfer in a high melting point phosphate glass

    International Nuclear Information System (INIS)

    Heindl, R.; Loriers, J.; Sella, J.C.; Robert, A.

    1984-07-01

    While many Ce +3 -activated glasses of different type emit strongly under UV (253,7 nm) and β-ray excitation, only the commercial silicate glass NE 905 shows an useful emission when exposed to α-particles. Only phosphate glasses have give the green Tb +3 -emission, when doped by it, under UV and α and β radiation. Sputtered films of Ce +3 -activated silica have appropriate luminescence properties, adherence to the substrate and a perfect chemical resistance to hot nitric acid. An α-particle detector has been built which has permitted the quantitative detection of plutonium in the presence of other radiative ions

  15. Phase boundary effects in metal matrix embedded glasses

    International Nuclear Information System (INIS)

    Schiewer, E.

    1979-01-01

    An investigation was performed to study reactions at the phase boundaries of glass-lead composites at temperatures up to the softening point of the glass. Some metal was oxidized at the boundary and penetrated into the glass. Solid-state diffusion was rate controlling. In the case of a phosphate glass, fission products were depleted in the boundary area. Molybdenum migrated into the lead, and cesium migrated into the glass core. 2 figures, 3 tables

  16. Technical Status Report on the Effect of Phosphate and Aluminum on the Development of Amorphous Phase Separation in Sodium

    International Nuclear Information System (INIS)

    Cozzi, A.D.

    1998-01-01

    The objective of the Tank Focus Area ''Optimize Waste Loading'' task is to enhance the definition of the acceptable processing window for high-level waste vitrification plants. One possible manner in which the acceptable processing window may be enhanced is by reducing the uncertainty of various compositional/property models through a specifically defined experimental plan. A reduction in model uncertainty can reduce limitations on current acceptance constraints and may allow for a larger processing or operational window. Enhanced composition/property model predictions coupled with an increased waste loading may decrease the processing time and waste glass disposal costs (i.e., overall lifecycle costs). One of the compositional/property models currently being evaluated by the Tanks Focus Area is related to the development of amorphous phase separation in multi-component borosilicate glasses.Described in this report is the current status for evaluating the effect of phosphorus and alumina on both simple sodium borosilicate and high-level waste glasses on the formation of amorphous phase separation. The goal of this subtask is to increase the understanding of the formation of phase separation by adding significant amounts (3-5 wt. percent) of phosphorus and alumina to well-characterized glasses. Additional scope includes evaluating the effects of thermal history on the formation of amorphous phase separation and durability of select glasses.The development of data, understanding, and quantitative description for composition and kinetic effects on the development of amorphous phase separation will continue in FY99. This effort will provide insight into the compositional and thermal effects on phase stability and will lead to a better understanding of the methods used to predict the development of amorphous phase separation in HLW glasses

  17. Long-term progress prediction for the carbon steel corrosion in diluted artificial seawater with and without zinc / sodium carbonate mixed phosphate

    International Nuclear Information System (INIS)

    Fujii, Kazumi; Ishioka, Shinichi; Iwanami, Masaru; Kaneko, Tetsuji; Tanaka, Norihiko; Kawaharada, Yoshiyuki; Yokoyama, Yutaka; Umehara, Ryuji; Kato, Chiaki; Ueno, Fumiyoshi; Fukaya, Yuichi; Kumaga, Katsuhiko

    2017-01-01

    The Fukushima Daiichi Nuclear Power Plants (1F) were damaged by an unprecedented severe accident in the great east Japan earthquake on 11th, March, 2011, and seawater and fresh water were injected as an emergency countermeasure for the core cooling. The primary containment vessels (PCVs), made of carbon steel, were exposed to seawater and fresh water, and have had the possibility of corrosion. The PCVs of 1F are the most important equipment for the core cooling and removal of the fuel debris, the structural integrity of the PCV must be maintained until decommissioning. Therefore, evaluation of PCV carbon steel corrosion behavior is important, as well as evaluation of corrosion inhibitors as one of the corrosion protection methods. In this study, long-term immersion corrosion tests for up to 10000 hours were performed in diluted artificial seawater simulating 1F with and without zinc / sodium carbonate mixed phosphate. Based on the long-term immersion corrosion test results, diagnosis method of the reduction in plate thickness of the nuclear vessel was examined. The validity of the existing corrosion progress models following parabolic rate law was confirmed. The corrosion progress models were also applicable to the corrosion inhibited condition adding zinc / sodium carbonate mixed phosphate. It was found that the corrosion rate of carbon steel drastically fell down by adding this corrosion inhibitor. (author)

  18. Comparison of Clinical Efficacies of Preoperatively Initiated Naproxen Sodium-Codeine Phosphate in Combination, Diclofenac Potassium, and Benzydamine Hydrochloride for Pain, Edema, and Trismus After Extraction of Impacted Lower Third Molar: A Randomized Double-Blind Study.

    Science.gov (United States)

    Cigerim, Levent; Eroglu, Cennet Neslihan

    2018-03-01

    The aim of this study was to compare the clinical efficacies of naproxen sodium-codeine phosphate in combination, benzydamine hydrochloride, and diclofenac potassium for pain, edema, and trismus after lower third molar extraction. Ninety healthy volunteers in whom impacted third molar extraction was indicated were randomly distributed into 3 groups. One hour before the tooth-extraction process, patients were administered one of the following drugs: naproxen sodium, 550 mg, and codeine phosphate, 30 mg, in a tablet; diclofenac potassium, 50 mg, in a coated pill; or benzydamine hydrochloride, 50 mg, in a coated pill. Pain assessment was conducted via a visual analog scale; edema assessment, by measuring the distances between predetermined facial landmarks; and trismus assessment, by measuring interincisal distance. Regarding rescue analgesics (paracetamol, 500 mg), the number and time of use by patients were recorded. Naproxen sodium-codeine phosphate was more effective for pain, edema, and trismus than diclofenac potassium and benzydamine hydrochloride (P hydrochloride yielded similar clinical responses to diclofenac potassium (P > .05). No drug-related side effects were observed. Naproxen sodium-codeine phosphate constitutes the drug of choice after the extraction of a patient's impacted lower third molar. Benzydamine hydrochloride has similar efficacy to diclofenac potassium, and it can be used as a nonsteroidal anti-inflammatory analgesic drug. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Glass badge dosimetry system for large scale personal monitoring

    International Nuclear Information System (INIS)

    Norimichi Juto

    2002-01-01

    Glass Badge using silver activated phosphate glass dosemeter was specially developed for large scale personal monitoring. And dosimetry systems such as an automatic leader and a dose equipment calculation algorithm were developed at once to achieve reasonable personal monitoring. In large scale personal monitoring, both of precision for dosimetry and confidence for lot of personal data handling become very important. The silver activated phosphate glass dosemeter has basically excellent characteristics for dosimetry such as homogeneous and stable sensitivity, negligible fading and so on. Glass Badge was designed to measure 10 keV - 10 MeV range of photon. 300 keV - 3 MeV range of beta, and 0.025 eV - 15 MeV range of neutron by included SSNTD. And developed Glass Badge dosimetry system has not only these basic characteristics but also lot of features to keep good precision for dosimetry and data handling. In this presentation, features of Glass Badge dosimetry systems and examples for practical personal monitoring systems will be presented. (Author)

  20. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles.

    Science.gov (United States)

    Chiari, Marina D S; Rodrigues, Marcela C; Xavier, Tathy A; de Souza, Eugen M N; Arana-Chavez, Victor E; Braga, Roberto R

    2015-06-01

    To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Spent fuel from nuclear research reactors immobilized in sintered glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Rodriguez, D.; Heredia, A.; Sanfilippo, M.; Sterba, M.

    2002-01-01

    Different kinds of glasses, borosilicates, Iron borosilicates and Iron phosphates, were tested in order to determine its capability to immobilize calcined uranium silicide in a sintering process. Iron phosphate glass developed in our laboratory showed the best results in SEM analysis. Also its gravimetric leaching rate is less than 0.45 g.m -2 .day -1 for 7 and 10% loading which is lower than any previously studied for us. (author)

  2. Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by XPS studies

    International Nuclear Information System (INIS)

    Khattak, G.D.; Mekki, A.; Gondal, M.A.

    2010-01-01

    The effect of laser irradiation using three different wavelengths (IR, visible and UV) generated from Nd:YAG laser on the local glass structure as well as on the valence state of the copper ions in copper phosphate glass containing CuO with the nominal composition 0.30(CuO)-(0.70)(P 2 O 5 ), has been investigated by X-ray photoelectron spectroscopy (XPS). The presence of asymmetry and satellite peaks in the Cu 2p spectrum for the unirradiated sample is an indication of the presence of two different valence states, Cu 2+ and Cu + . Hence, the Cu 2p 3/2 spectrum was fitted to two Gaussian-Lorentzian peaks and the corresponding ratio, Cu 2+ /Cu total , determined from these relative areas clearly shows that copper ions exist predominately (>86%) in the Cu 2+ state for the unirradiated glass sample under investigation. For the irradiated samples the symmetry and the absence of satellite peaks in the Cu 2p spectra indicate the existence of the copper ions mostly in Cu + state. The O 1s spectra show slight asymmetry for the irradiated as well as unirradiated glass samples which result from two contributions, one from the presence of oxygen atoms in the P-O-P environment (bridging oxygen BO) and the other from oxygen in an P-O-Cu and P=O environment (non-bridging oxygen NBO). The ratio of NBO to total oxygen was found to increase with laser power.

  3. Orange and reddish-orange light emitting phosphors: Sm{sup 3+} and Sm{sup 3+}/Eu{sup 3+} doped zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meza-Rocha, A.N., E-mail: ameza@fis.cinvestav.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F., México (Mexico); Speghini, A. [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); IFAC CNR, Nello Carrara Institute of Applied Physics, MDF Lab, I-50019 Sesto Fiorentino, FI (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Caldiño, U. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F., México (Mexico)

    2015-11-15

    A spectroscopy study of Sm{sup 3+} and Sm{sup 3+}/Eu{sup 3+} doped zinc phosphate glasses is performed through photoluminescence spectra and decay time profile measurements. Under Sm{sup 3+} excitation at 344 nm, the Sm{sup 3+} singly doped glass shows an orange global emission with x=0.579 and y=0.414 CIE1931 chromaticity coordinates, whereas the Sm{sup 3+}/Eu{sup 3+} co-doped sample exhibits orange overall emissions (x=0.581 and y=0.398, and x=0.595 and y=0.387) and reddish-orange overall emission (x=0.634 and y=0.355) upon excitations at 344, 360 and 393 nm, respectively. Such luminescence from the co-doped sample is originated by the simultaneous emission of Sm{sup 3+} and Eu{sup 3+}. Under Sm{sup 3+} excitation at 344 and 360 nm, the Eu{sup 3+} emission is sensitized and enhanced by Sm{sup 3+} through a non-radiative energy transfer process. The non-radiative nature was inferred from the shortening of the Sm{sup 3+} lifetime observed in the Sm{sup 3+}/Eu{sup 3+} co-doped sample. An analysis of the Sm{sup 3+} emission decay time profiles using the Inokuti–Hirayama model suggests that an electric quadrupole–quadrupole interaction into Sm–Eu clusters might dominate the energy transfer process, with an efficiency of 0.17. - Highlights: • Zinc phosphate glasses are optically activated with Sm{sup 3+}/Eu{sup 3+} (ZPOSmEu). • Non-radiative energy transfer Sm{sup 3+}→Eu{sup 3+} takes place in ZPOSmEu. • ZPOSmEu overall emission can be modulated with the excitation wavelength. • ZPOSmEu might be useful as orange/reddish-orange phosphor for UV-white LEDs.

  4. Complexing agents and pH influence on chemical durability of type I moulded glass containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-06-16

    Among the factors that affect the glass surface chemical durability, pH and complexing agents presence in aqueous solution have the main role (1). Glass surface attack can be also related to the delamination issue with glass particles appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed (2,3). The present study emphasizes the possible synergy between a few complexing agents with pH on the borosilicate glass chemical durability. Hydrolytic attack was performed in small volume 23 ml type I glass containers autoclaved according to EP or USP for 1 hour at 121°C, in order to enhance the chemical attack due to time, temperature and the unfavourable surface/volume ratio. 0,048 M or 0.024 M (moles/liter) solutions of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid) and sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ± 0,05 units at fixed values 5,5-6,6-7-7,4-8-9 by LiOH diluted solution. Since silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by ICPAES. The work was completed by the analysis of the silicon release in the worst attack conditions, of moulded glass, soda lime type II and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by SEM was finally performed to check for the surface status after the worst chemical attack condition by citric acid. Copyright © 2017, Parenteral Drug Association.

  5. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  6. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    International Nuclear Information System (INIS)

    Day, Delbert E.; Ray, Chandra S.; Cheol-Woon Kim

    2004-01-01

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost

  7. Properties of concretes and wood composites using a phosphate-based binder

    Science.gov (United States)

    Hong, Luong Thanh

    Magnesium potassium phosphate ceramics are from the family of phosphate-based cements which can be used as alternatives to Portland cements. In this study, concretes and wood composites were produced using magnesium potassium phosphate ceramic binders and supplementary materials including fly ash, sand, silica fume and sawdust. Bentonite, Delvo Stabilizer and baking soda were used as additives to increase the workability and the setting time of the fresh mixutres and decrease the density of the hardened products. The materials were then reinforced with chopped glass-fibers or textile glass-fabrics to increase their hardened properties. At 50% fly ash by total mass of the binder, the concretes had compressive strength and density of 33 MPa and 2170 kg/m3, respectively, after 90 days of simple curing. At 20% fly ash by total mass of the binder, the wood composites had compressive strength and density of 13 MPa and 1320 kg/m3, respectively, after 90 days. The flexural strengths were about 10% to 47% of the corresponding cylinder compressive strengths for these mixes. Increases in both compressive and flexural strengths for these mixes were observed with the addition of chopped glass-fibers or textile glass-fabrics.

  8. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  9. In Situ Wire Drawing of Phosphate Glass in Polymer Matrices for Material Extrusion 3D Printing

    Directory of Open Access Journals (Sweden)

    J. Gilberto Siqueiros

    2017-01-01

    Full Text Available A strategy to increase the amount of materials available for additive manufacturing platforms such as material extrusion 3D printing (ME3DP is the creation of printable thermoplastic composites. Potential limiters to the incorporation of filler materials into a thermoplastic resin include agglomeration of the filler materials, which can compromise the mechanical properties of the material system and a static morphology of the filler material. A potential solution to these issues is the use of filler materials with low glass transition temperatures allowing for a change in morphology during the extrusion process. Here, we successfully demonstrate the drawing of phosphate glass particles into a wire-like morphology within two polymeric systems: (1 a rubberized acrylonitrile butadiene styrene (ABS blend and (2 polylactic acid (PLA. After applying a normalization process to account for the effect of air gap within the 3D printed test specimens, an enhancement in the mechanical properties was demonstrated where an increase in strength was as high as 21% over baseline specimens. Scanning electron microanalysis was used to characterize the fracture surface and wire drawing efficacy. Factors affecting the ability to achieve wire drawing such as polymer viscosity and print temperature are also highlighted.

  10. Er3+ phosphate glass optical waveguide amplifiers at 1.5 μm on silicon

    Science.gov (United States)

    Yan, Yingchao; Faber, Anne J.; de Waal, Henk

    1996-01-01

    RF-sputtering techniques were employed to produce Er-doped phosphate glass films on thermally oxidized silicon wafers. Film compositions were characterized by X-ray photoelectron spectroscopy. As-deposited films showed very low Er luminescence lifetimes. By postannealing of deposited films in pure oxygen, Er photoluminescence emission lifetime of the 4I13/2 - 4I15/2 transition could be increased from 1 - 2 ms to 8 - 9 ms. The long Er lifetime of the deposited films is very promising for achieving an optical gain. A dependence of measured lifetimes on pump power was observed which are related to a up-conversion quenching process. After postannealing, the sputtered waveguides showed relatively low attenuation loss at the potential pumping and signaling wavelengths. The loss spectrum from 700 nm to 1600 nm was measured by two-prism coupling. The films were easy to be patterned by lithography and ridge channel waveguides were developed by argon plasma etching.

  11. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    International Nuclear Information System (INIS)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K.; Liu, Kun; Brow, Katherine A.; Ma, Yinfa

    2017-01-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  12. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Richard K. [Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Kun [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Katherine A. [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Ma, Yinfa [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); and others

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  13. Modeling of evaporation processes in glass melting furnaces

    NARCIS (Netherlands)

    Limpt, van J.A.C.

    2007-01-01

    The majority of glass furnaces worldwide, apply fossil fuel combustion to transfer heat directly by radiation from the combustion processes to the melting batch and glass melt. During these high temperature melting processes, some glass components, such as: sodium, potassium, boron and lead species

  14. Effect of aluminum and silicon reactants and process parameters on glass-ceramic waste form characteristics for immobilization of high-level fluorinel-sodium calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    In this report, the effects of aluminum and silicon reactants, process soak time and the initial calcine particle size on glass-ceramic waste form characteristics for immobilization of the high-level fluorinel-sodium calcined waste stored at the Idaho Chemical Processing Plant (ICPP) are investigated. The waste form characteristics include density, total and normalized elemental leach rates, and microstructure. Glass-ceramic waste forms were prepared by hot isostatically pressing (HIPing) a pre-compacted mixture of pilot plant fluorinel-sodium calcine, Al, and Si metal powders at 1050 degrees C, 20,000 psi for 4 hours. One of the formulations with 2 wt % Al was HIPed for 4, 8, 16 and 24 hours at the same temperature and pressure. The calcine particle size range include as calcined particle size smaller than 600 μm (finer than -30 mesh, or 215 μm Mass Median Diameter, MMD) and 180 μm (finer than 80 mesh, or 49 μm MMD)

  15. Study of mechanical properties of calcium phosphate cement with addition of sodium alginate and dispersant; Estudo das propriedades mecanicas de cimento de fosfato de calcio com adicao de alginato de sodio e defloculante

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.M.; Coelho, W.T.; Thurmer, M.B.; Vieira, P.S.; Santos, L.A., E-mail: julianafernandes2@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), RS (Brazil)

    2011-07-01

    Several studies in literature have shown that the addition of polymer additives and deflocculant has a strong influence on the mechanical properties of cements in general.The low mechanical strength is the main impediment to wider use of bone cement of calcium phosphate (CFCs) as the implant material, since they have mechanical strength which equals the maximum of trabecular bone.In order to evaluate the strength of a CFC compound alpha-tricalcium phosphate, sodium alginate were added (1%, 2% and 3% by weight) and dispersant ammonium polyacrylate (3%) in aqueous solution.Specimens were made and evaluated for density, porosity, crystalline phases and mechanical strength.The results show the increase of the mechanical properties of cement when added sodium alginate and dispersant. (author)

  16. 3D printing of mineral-polymer bone substitutes based on sodium alginate and calcium phosphate.

    Science.gov (United States)

    Egorov, Aleksey A; Fedotov, Alexander Yu; Mironov, Anton V; Komlev, Vladimir S; Popov, Vladimir K; Zobkov, Yury V

    2016-01-01

    We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the "ink"). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.

  17. Effect of Er{sub 2}O{sub 3} dopant on electrical and optical properties of potassium sodium niobate silicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yongsiri, Ploypailin [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sirisoonthorn, Somnuk [National Metal and Materials Technology Center, Pathumthani 12120 (Thailand); Pengpat, Kamonpan, E-mail: kamonpan.p@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-09-15

    Highlights: • The KNN–SiO{sub 2} doped Er{sub 2}O{sub 3} glass-ceramics was prepared by incorporation method. • High dielectric constant (458.41 at 100 kHz) and low loss (0.0005) could be obtained. • TEM and SEM confirmed the existence of KNN crystals embedded in glass matrix. • The Er{sub 2}O{sub 3} dopant causes insignificant effect on modifying E{sub g} value. - Abstract: In this study, transparent glass-ceramics from potassium sodium niobate (KNN)-silicate glass system doped with erbium oxide (Er{sub 2}O{sub 3}) were successfully prepared by incorporation method. KNN was added in glass batches as heterogeneous nucleating agent. The KNN powder was mixed with SiO{sub 2} and Er{sub 2}O{sub 3} dopant with KNN and Er{sub 2}O{sub 3} content varied between 70–80 and 0.5–1.0 mol%, respectively. Each batch was subsequently melted at 1300 °C for 15 min in a platinum crucible using an electric furnace. The quenched glasses were then subjected to heat treatment at various temperatures for 4 h. XRD results showed that the prepared glass ceramics contained crystals of KNN solid solution. In contrary, dielectric constant (ϵ{sub r}) and dielectric loss (tan δ) were found to increase with increasing heat treatment temperature. Additionally, optical properties such as absorbance and energy band gap have been investigated.

  18. Recovery of uranium from the Syrian phosphate by solid-liquid method using alkaline solutions

    International Nuclear Information System (INIS)

    Shlewit, H.; Alibrahim, M.

    2007-01-01

    Uranium concentrations were analyzed in the Syrian phosphate deposits. Mean concentrations were found between 50 and 110 ppm. As a consequence, an average phosphate dressing of 22 kg/ha phosphate would charge the soil with 5-20 g/ha uranium when added as a mineral fertilizer. Fine grinding phosphate produced at the Syrian mines was used for uranium recovery by carbonate leaching. The formation of the soluble uranyl tricarbonate anion UO 2 (CO 3 ) 3 4- permits use of alkali solutions of sodium carbonate and sodium bicarbonate salts for the nearly selective dissolution of uranium from phosphate. Separation of iron, aluminum, titanium, etc., from the uranium during leaching was carried out. Formation of some small amounts of molybdates, vanadates, phosphates, aluminates, and some complexes metal was investigated. This process could be used before the manufacture of TSP fertilizer, and the final products would contain smaller uranium quantities. (author)

  19. On the mechanism of ion exchange in zirconium phosphates

    International Nuclear Information System (INIS)

    Clearfield, A.; Frianeza, T.N.

    1978-01-01

    α-titanium phosphate, Ti(HPO 4 ) 2 .H 2 O, was found to form two sodium ion exchanged phases. A half exchanged phase of ideal composition TiNaH(PO 4 ) 2 .4H 2 O formed first. However, before all of the titanium phosphate was converted to this phase a second phase of higher Na + content formed. Thus, a three phase solid existed until sufficient sodium ion uptake (approximately 5.5 meq/g) produced only the two exchanged phases. Finally, the half exchanged phase was converted to the more highly loaded one and this latter phase existed from 6 to 8 meq/g of Na + uptake. Severe disordering of the crystal lattice during exchange is proposed to explain this unusual exchange behavior. A broad range of titanium phosphate-zirconium phosphate solid solutions was found to form. Their behavior towards Na + -H + exchange was determined and interpreted on the basis of the known behavior of the pure phases. Mixed Ti-Zr solid solutions of their pyrophosphates were obtained at elevated temperatures. (author)

  20. Phase separation of cesium from lead borosilicate glass by heat treatment under a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Nishimura, Fumihiro; Yonezawa, Susumu

    2016-11-05

    Highlights: • Cesium was phase separated from lead borosilicate glass under a reductive atmosphere. • The phase separation occurred on the glass surface that was in contact with the gas. • The leachability of cesium was enhanced by the phase separation. • The degree of such enhancement varied depending on the heat treatment conditions. - Abstract: A phase-separation technique for removing sodium from glass using a heat-treatment method under a reducing atmosphere was previously developed for sodium recovery from waste glass. In this study, this technique was applied to cesium-containing lead borosilicate glass to concentrate the cesium in phase-separated sodium-rich materials for efficient cesium extraction. The theoretical phase-separation temperature of the sodium-rich phase was simulated by thermodynamic equilibrium calculations and was predicted to occur below 700 °C for lead borosilicate glass. Experimentally, a simulated lead borosilicate glass was melted at 1000 °C and subsequently annealed below 700 °C under a CO-containing reducing atmosphere. The phase separation of cesium was found to occur with sodium enrichment on the glass surface that was in contact with the gas phase, promoting cesium extraction from the treated glass using water. The cesium extraction efficiency was affected by the surface area of the treated glass that was in contact with water, and under the examined conditions, the cesium extraction efficiency was up to 66%. Phase separation using reductive heat treatment, combined with a water leaching technique, is suggested to be effective for extracting cesium incorporated in borosilicate glass waste.

  1. Structure-Property Relationships and the Mixed Network Former Effect in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    compositions by substituting Al2O3 for SiO2. We also investigate the various roles of sodium in the glasses including charge compensation of tetrahedral aluminum and boron atoms and formation of non-bridging oxygen. We find that mechanical properties (density, elastic moduli, and hardness), glass transition......Boroaluminosilicate glasses are important materials for various applications, e.g., liquid crystal display substrates, glass fibers for reinforcement, and thermal shock-resistant glass containers. The complicated structural speciation in these glasses leads to a mixed network former effect yielding...... nonlinear variation in many macroscopic properties. It is therefore crucial to investigate and understand structure-property correlations in boroaluminosilicate glasses. Here we study the structure-property relationships of a range of sodium boroaluminosilicate glasses from peralkaline to peraluminous...

  2. Effect of antimony-oxide on the shielding properties of some sodium-boro-silicate glasses.

    Science.gov (United States)

    Zoulfakar, A M; Abdel-Ghany, A M; Abou-Elnasr, T Z; Mostafa, A G; Salem, S M; El-Bahnaswy, H H

    2017-09-01

    Some sodium-silicate-boro-antimonate glasses having the molecular composition [(20) Na 2 O - (20) SiO 2 - (60-x) B 2 O 3 - (x) Sb 2 O 3 (where x takes the values 0, 5 … or 20)] have been prepared by the melt quenching method. The melting and annealing temperatures were 1500 and 650K respectively. The amorphous nature of the prepared samples was confirmed by using X-ray diffraction analysis. Both the experimental and empirical density and molar volume values showed gradual increase with increasing Sb 2 O 3 content. The empirical densities showed higher values than those obtained experimentally, while the empirical molar volume values appeared lower than those obtained experimentally, which confirm the amorphous nature and randomness character of the studied samples. The experimentally obtained shielding parameters were approximately coincident with those obtained theoretically by applying WinXCom program. At low gamma-ray energies (0.356 and 0.662MeV) Sb 2 O 3 has approximately no effect on the total Mass Attenuation Coefficient, while at high energies it acts to increase the total Mass Attenuation Coefficient gradually. The obtained Half Value Layer and Mean Free Path values showed gradual decrease as Sb 2 O 3 was gradually increased. Also, the Total Mass Attenuation Coefficient values obtained between about 0.8 and 3.0MeV gamma-ray energy showed a slight decrease, as gamma-ray photon energy increased. This may be due to the differences between the Attenuation Coefficients of both antimony and boron oxides at various gamma-ray photon energies. However, it can be stated that the addition of Sb 2 O 3 into sodium-boro-silicate glasses increases the gamma-ray Attenuation Coefficient and the best sample is that contains 20 mol% of Sb 2 O 3 , which is operating well at 0.356 and 0.662MeV gamma-ray. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hanford phosphate precipitation filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. A proposed Hanford waste pre-treatment process uses sodium hydroxide at high temperature to remove aluminum from sludge. This process also dissolves phosphates. Upon cooling to 40 degrees centigrade the phosphates form a Na7(PO4)2F9H2O precipitate which must be removed prior to further treatment. Filter studies were conducted with a phosphate slurry simulant to evaluate whether 0.5 micron cross-flow sintered metal Mott filters can separate the phosphate precipitate from the wash solutions. The simulant was recirculated through the filters at room temperature and filtration performance data was collected

  4. Ionic conductivity of sodium silicate glasses grown within confined volume of mesoporous silica template

    Science.gov (United States)

    Chatterjee, Soumi; Saha, Shyamal Kumar; Chakravorty, Dipankar

    2018-04-01

    Nanodimensional sodium silicate glasses of composition 30Na2O.70SiO2 has been prepared within the pores of 5.5 nm of mesoporous silica as a template using the surfactant P123. The nanocomposite was characterized by X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. Electrical conductivity of the sample was studied by ac impedance spectroscopy. The activation energy for ionic conduction was found to be 0.13 eV with dc conductivity at room temperature of 10-6 S-cm-1. This is attributed to the creation of oxygen ion vacancies at the interface of mesoporous silica and nanoglass arising out of the presence of Si2+ species in the system. These nanocomposites are expected to be useful for applications in sodiumion battery for storage of renewable energy.

  5. Effect of Sodium bicarbonate on Fire behaviour of tilled E- Glass Reinforced Epoxy Composites

    Science.gov (United States)

    Girish, S.; Devendra, K.; Bharath, K. N.

    2016-09-01

    Composites such as fibre reinforced polymers give us the good mechanical properties, but their fire behaviour is not appreciable and needs to be improved. In this work, E- glass fiber is used as a reinforcement material and Epoxy resin is used as a matrix with particulate sodium bi-carbonate (NaHCO3) is used as additive. The hand lay-up technique is adopted for the development of composites by varying percentage of additive. All the tests were conducted according to ASTM standards to study the Fire behaviour of the developed composites. The different fire properties like Ignition time, mass loss rate and flame propagation rate of Fiber Reinforced Polymers (FRP) with NaHCO3 are compared with neat FRPs. It is found that the ignition time increases as the percentage of additive is increased.

  6. Synthesis and ultrasonic characterisation of vitreous holmium phosphates

    International Nuclear Information System (INIS)

    Senin Hassan; Sidek Hj, Abdul Aziz; Abdul Halim Shaari

    1996-01-01

    The ultrasonic properties of holmium metaphosphate glasses (Ho sub 2 O sub 3) sub x (P sub 2 O sub 5) sub 1-x, with the mole fraction of x of holmium oxide equal to 0.208, 0.22 and 0.231 respectively, have been determined from measurements of the effects of temperature and hydrostatic pressure on ultrasonic wave velocities. At temperature below about 100K, the ultrasonic wave velocity of this type of rare earth phosphate glasses become anomalously dependent upon temperature; a behaviour associated with the interaction between acoustic phonons and two level systems. The hydrostatic pressure derivatives (∂ C sup S sub IJ / ∂ P) sub p=0 of the elastic stiffnesses C sub IJ and also (∂ C sup S sub IJ / ∂ P) sub p=0 of the bulk modulus B sup S of these glasses are anomalously negative. Both longitudinal γ sub L and shear γ sub S acoustic mode Gruneisen parameters are small and negative : the application of pressure softens the long-wavelength acoustic phonon mode frequencies. The results confirmed that the holmium phosphate glasses show an extraordinary elastic behaviour under high pressures

  7. Development of phosphate glass microspheres containing holmium for selective internal radiotherapy; Desenvolvimento de microesferas de vidro fosfato contendo holmio para uso em radioterapia interna seletiva

    Energy Technology Data Exchange (ETDEWEB)

    Barros Filho, Eraldo Cordeiro

    2016-11-01

    The selective internal radiotherapy is an alternative for some kinds of cancer as the hepatocellular carcinoma (HCC) or primary liver cancer treatment. In this treatment, glass or polymer microspheres containing radionuclides inside their structure are introduced in the liver through hepatic artery and trapped at the arterioles that feed the tumor. In this work, the development of phosphate glasses containing holmium for production of microspheres and their application in Brazil are proposed. The developed glasses presented suitable chemical durability, density of 2,7(3) g/cm{sup 3}, high thermal stability and the impurities contained therein do not preclude the treatment. The microspheres were produced by the flame method and the gravitational fall method, and were characterized by means of several techniques to evaluate shape, average particle size, activity and biocompatibility suitable for selective internal radiotherapy. Based in the main results, the submission to in vivo tests is proposed. (author)

  8. Unique crystallization behavior of sodium manganese pyrophosphate Na2MnP2O7 glass and its electrochemical properties

    Directory of Open Access Journals (Sweden)

    Morito Tanabe

    2017-06-01

    Full Text Available Crystallization behavior of Na2MnP2O7 precursor glass was examined. Layered type Na2MnP2O7 was formed at 461 °C for 3 h in N2 filled electric furnace. Irreversible phase change was confirmed from layered Na2MnP2O7 to β-Na2MnP2O7 over 600 °C. At 650 °C crystallized phase was completely changed to β-phase. By means of charge and discharge testing it is found that layered Na2MnP2O7 is also active as cathode in sodium ion batteries. We found glass-ceramics technology is one of the suitable process for the synthesis of layered Na2MnP2O7 cathode without any complicate process.

  9. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    Science.gov (United States)

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  10. Facing slag glass and slag glass ceramic produced from thermal power plant ash

    Energy Technology Data Exchange (ETDEWEB)

    Buruchenko, A.E.; Kolesnikov, A.A.; Lukoyanov, A.G.

    1990-10-01

    Evaluates properties of fly ash and slags from the Krasnoyarsk coal-fired power plants and their utilization for glass and ceramic glass production. Composition of a mixture of fly ash and slag was: silica 40-55%, aluminium oxides 10-40%, ferric trioxide 6-14%, calcium oxides 20-35%, magnesium oxides 3-6%, potassium oxides 0.3-1.5%, sodium oxides 0.2-05%, sulfur trioxide 0.9-5.0%. The analyzed fly ash and slags from the Krasnoyarsk plant were an economic waste material for glass production. Properties of sand, clay and other materials used in glass production and properties of glass and ceramic glass produced on the basis of fly ash and slags are analyzed. Economic aspects of fly ash and slag utilization are also evaluated. 3 refs.

  11. Novel method for early investigation of bioactivity in different borate bio-glasses

    Science.gov (United States)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  12. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    Science.gov (United States)

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  13. 3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate

    Directory of Open Access Journals (Sweden)

    Aleksey A. Egorov

    2016-11-01

    Full Text Available We demonstrate a relatively simple route for three-dimensional (3D printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the “ink”. The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.

  14. Comparison of colon-cleansing methods in preparation for colonoscopy - Comparative efficacy of solutions of mannitol, sodium picosulfate and monobasic and dibasic sodium phosphates Estudo comparativo entre as soluções de manitol, picossulfato de sódio e fosfato monobásico e dibásico de sódio no preparo de cólon para colonoscopia

    Directory of Open Access Journals (Sweden)

    Paulo Miki Jr

    2008-01-01

    Full Text Available PURPOSE: Colonoscopy plays an essential role in the therapeutic and diagnostic approach in various colonic pathologies, the aim of the present study was to compare three solutions and their efficacy for the bowel preparation in adult patients submitted to elective colonoscopy. METHODS: Sixty patients were randomly divided into three groups of 20 each. Each group was submitted to a bowel preparation with one of the following solutions: 10% manitol, sodium picosulphate or sodium phosphate. The parameters evaluated were: taste, tolerance, associated side effects and quality of cleansing. Postural blood pressure and pulse rate as well as serum sodium, potassium, calcium and phosphate were compared. RESULTS: Sodium phosphate and 10% manitol solutions provided superior results in terms of colon cleansing compared to sodium picosulphate solution. All serum electrolytes evaluated were significantly altered in the three groups, without important clinical signs. DISCUSSION: High levels of serum phosphate were the most striking alteration in patients prepared with sodium phosphate solution, again with no clinical signs. Variations related to blood pressure and pulse rate suggested contraction of intravascular volume, with no clinical effects. CONCLUSION: Sodium phosphate and 10% manitol solutions are equivalent in providing good quality colon cleansing, with no significant side effects that could compromise the procedure.INTRODUÇÃO: A colonoscopia é exame fundamental na avaliação das doenças do cólon e na abordagem terapêutica de determinado grupo de patologias. O preparo intestinal é obrigatório para a realização das colonoscopias eletivas, e a qualidade encontra-se relacionada ao sucesso do procedimento. Comparou-se três soluções para limpeza anterógrada do cólon em pacientes adultos, submetidos à colonoscopia. METODOS: Sessenta pacientes foram distribuídos em três grupos de vinte. Cada grupo realizou o preparo do cólon com uma das

  15. Research on preparation of phosphate-modified animal glue binder for foundry use

    Science.gov (United States)

    Wang, Tian-Shu; Liu, Wei-Hua; Li, Ying-Min

    2018-03-01

    In this paper, three phosphates were used as modifiers to modify animal glue binder. The structural characteristics and thermal properties of animal glue binder treated with phosphates were studied by Fourier transform-infrared spectroscopy, gel permeation chromatography and derivative thermogravimetric analysis. The results showed that the modified animal glue binder had better sand tensile strength and lower viscosity than untreated animal glue binder. The best modification process was as follows: the optimal amount of sodium carbonate was 4 wt% to animal glue; the optimal weight ratio of the modifiers was sodium pyrophosphate : sodium tripolyphosphate : sodium hexametaphosphate : animal glue = 3 : 3 : 4 : 100, and the optimal reaction should be performed at 80°C for a reaction time of 120 min. A final tensile strength of approximately 3.20 MPa was achieved and the viscosity value was approximately 880 mPa s.

  16. Phosphate Reduction in Emulsified Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics.

    Science.gov (United States)

    Glorieux, Seline; Goemaere, Olivier; Steen, Liselot; Fraeye, Ilse

    2017-09-01

    Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality.

  17. In vitro behaviour of three biocompatible glasses in composite implants.

    Science.gov (United States)

    Varila, Leena; Lehtonen, Timo; Tuominen, Jukka; Hupa, Mikko; Hupa, Leena

    2012-10-01

    Poly(L,DL-lactide) composites containing filler particles of bioactive glasses 45S5 and S53P4 were compared with a composite containing a slowly dissolving glass S68. The in vitro reactivity of the composites was studied in simulated body fluid, Tris-buffered solution, and phosphate buffered saline. The high processing temperature induced thermal degradation giving cavities in the composites containing 45S5 and S53P4, while good adhesion of S68 to the polymer was observed. The cavities partly affected the in vitro reactivity of the composites. The degradation of the composites containing the bioactive glasses was faster in phosphate buffered saline than in the two other solutions. Hydroxyapatite precipitation suggesting bone tissue bonding capability was observed on these two composites in all three solutions. The slower dissolution of S68 glass particles and the limited hydroxyapatite precipitation suggested that this glass has potential as a reinforcing composition with the capability to guide bone tissue growth in biodegradable polymer composites.

  18. New greenish-yellow and yellowish-green emitting glass phosphors: Tb{sup 3+}/Eu{sup 3+} and Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} in zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Caldino, U., E-mail: cald@xanum.uam.mx [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico); Alvarez, E. [Departamento de Fisica, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, Mexico (Mexico); Speghini, A. [Dipartimento di Biotecnologie, Universita di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); IFAC CNR, Nello Carrara Institute of Applied Physics, MDF Lab, I-50019 Sesto Fiorentino, FI (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Universita di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy)

    2013-03-15

    A spectroscopic investigation of zinc phosphate glasses activated with Eu{sup 3+}, Tb{sup 3+}/Eu{sup 3+} and Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} ions is performed through photoluminescence spectra and decay time measurements. Greenish-yellow light emission, with x=0.42 and y=0.50 CIE1931 chromaticity coordinates, is obtained in the 5.0% Tb(PO{sub 3}){sub 3}-2.0% Eu(PO{sub 3}){sub 3} codoped zinc phosphate glass upon Tb{sup 3+} excitation at 340 nm. Such greenish-yellow luminescence is generated mainly by the {sup 5}D{sub 4}{yields}{sup 7}F{sub 6,5} and {sup 5}D{sub 0}{yields}{sup 7}F{sub 1,2} emissions of Tb{sup 3+} and Eu{sup 3+}, respectively, europium being sensitized by terbium through a non-radiative energy transfer. By codoping with 0.1 Ce(PO{sub 3}){sub 3} in addition to Tb{sup 3+}/Eu{sup 3+} yellowish-green light emission with CIE1931 chromaticity coordinates, x=0.33 and y=0.48, is achieved through non-radiative energy transfer from Ce{sup 3+} to Tb{sup 3+} and from Ce{sup 3+} via Tb{sup 3+} to Eu{sup 3+} upon 280 nm excitation (peak emission wavelength of AlGaN-based LEDs). - Highlights: Black-Right-Pointing-Pointer Zn(PO{sub 3}){sub 2} glasses are optically activated with Tb{sup 3+}/Eu{sup 3+} (ZPO5Tb2Eu) and Ce{sup 3+}/Eu{sup 3+}/Tb{sup 3+} (ZPOCe5Tb2Eu). Black-Right-Pointing-Pointer Non-radiative energy transfer Tb{sup 3+}{yields}Eu{sup 3+} takes place in ZPO5Tb2Eu. Black-Right-Pointing-Pointer Greenish-yellow light is generated by ZPO5Tb2Eu pumped with 340 nm-UV light. Black-Right-Pointing-Pointer Non-radiative energy transfer Ce{sup 3+}{yields}Tb{sup 3+} and Ce{sup 3+}{yields}Eu{sup 3+} via Tb{sup 3+} takes place in ZPOCe5Tb2Eu. Black-Right-Pointing-Pointer Yellowish-green light is generated by ZPOCe5Tb2Eu pumped with 280 nm-UV light (AlGaN-LEDs).

  19. Optical spectroscopy, 1.06μm emission properties of Nd3+-doped phosphate based glasses.

    Science.gov (United States)

    Sk Nayab, Rasool; T, Sasikala; A, Mohan Babu; L, Rama Moorthy; C K, Jayasankar

    2017-06-05

    Neodymium doped phosphate based glasses with composition of (P 2 O 5 +K 2 O+Al 2 O 3 +CaF 2 ) were prepared. The samples were analysed through differential thermal analysis (DTA), Fourier transform infrared (FTIR), absorption, emission and decay measurements. Judd-Ofelt parameters (Ω λ ) have been determined from the spectral intensities of absorption bands in order to calculate the radiative parameters like radiative transition probabilities (A R ), radiative lifetime (τ R ) and branching ratios (β R ) for the 4 F 3/2 → 4 I 11/2 laser transition of Nd 3+ ion. The effective emission bandwidths (Δλ eff ), experimental branching ratios (β exp ) and stimulated emission cross-sections (σ e ) have been determined from the emission spectrum. The decay curves of the 4 F 3/2 level exhibited almost single exponential nature for all the Nd 3+ ion concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Extreme hyperphosphatemia and hypocalcemic coma associated with phosphate enema.

    Science.gov (United States)

    Hsu, Heng Jung; Wu, Mai-Szu

    2008-01-01

    Fleet enema (sodium phosphate, C.B. Fleet Co., Inc., Lynchburg, Virginia) is widely used for bowel preparation or constipation relief in the hospital and over the counter. The potential risks, including hyperphosphatemia and hypocalcemic coma should be kept in mind of primary care physician. The patients with older age, bowel obstruction, small intestinal disorders, poor gut motility, and renal disease are contraindicated or should be administered with caution. We present a patient with old age and chronic renal failure who developed severe hyperphosphatemia and hypocalcemic tetany with coma after sodium phosphate enema. We recommend the use of alternative enema preparations, such as simple tap water or saline solution enemas, which can prevent fatal complications in high risk patients.

  1. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  2. Theoretical and practical aspects of aqueous solution sodium silicate modifying

    Directory of Open Access Journals (Sweden)

    Mizuryaev Sergey

    2016-01-01

    Full Text Available This research deals with the use of liquid glass in industry particularly for porous filler production. The aim of this paper is to show the necessity liquid glass modification for the purpose of its rheological characteristics change for raw granules formation and providing given structure after porization. Data on chemical liquid glass modification are provided by adding sodium chloride. Moreover, inert mineral additives influence on porous filler properties are shown in this paper. The basic principles of light concrete composition selection are specified. Test results of light concrete on the developed porous sodium silicate filler are given.

  3. SEALING ABILITY OF MINERAL TRIOXIDE AGGREGATE, CALCIUM PHOSPHATE CEMENT, AND GLASS IONOMER CEMENT IN THE REPAIR OF FURCATION PERFORATIONS

    Directory of Open Access Journals (Sweden)

    Prabath Singh

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the in vitro sealing ability of three repair materials. Mineral trioxide aggregate (MTA; Group A, calcium phosphate cement (CPC; Group B, and light cured glass ionomer cement (GIC; Group C when used to repair the perforation created in the pulpal floor of fifty extracted human permanent molars. Materials and methods: Preparation of access openings and furcation perforations were done, and the teeth divided into five experimental groups (A, B, C including two controls (D, E with ten samples in each group randomly. Following the repair procedure, the pulp chambers and access openings were filled with composite resin and immersed in 2% methylene blue solution for 48 hours. The teeth were sectioned longitudinally and the linear dye penetration measured under a stereo­microscope. Results: The comparison of the linear length of micro-leakage (mm among the experimental groups revealed no significant difference (p = 0.332. On calculating the percentage of depth of leakage to the total length of the perforation, it was observed that the mean leakage was 35.5% in Group A, 53.6% in Group B and the highest, 87.5% in Group C. The mean of leakage percentage was statistically significant by Kruskal-Wallis test (p = 0.003. The results indicated that the dye penetration used as furcation perforation repair material was least with mineral trioxide aggregate. Comparing the depth of penetration of dye, 50% of the Group A samples showed less than 25% of depth penetration. While 40% of Group B cases had more than 50% dye penetration. In our study, all Group C teeth had ≥ 50% dye penetration. Conclusions: The present study indicated that GIC had the greatest dye penetration followed by CPC and MTA. Mineral trioxide aggregate and calcium phosphate cement had comparatively better sealing ability than glass ionomer cement.

  4. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    Science.gov (United States)

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  5. Distinctly Different Glass Transition Behaviors of Trehalose Mixed with Na2HPO 4 or NaH 2PO 4: Evidence for its Molecular Origin.

    Science.gov (United States)

    Weng, Lindong; Elliott, Gloria D

    2015-07-01

    The present study is aimed at understanding how the interactions between sugar molecules and phosphate ions affect the glass transition temperature of their mixtures, and the implications for pharmaceutical formulations. The glass transition temperature (Tg) and the α-relaxation temperature (Tα) of dehydrated trehalose/sodium phosphate mixtures (monobasic or dibasic) were determined by differential scanning calorimetry and dynamic mechanical analysis, respectively. Molecular dynamics simulations were also conducted to investigate the microscopic interactions between sugar molecules and phosphate ions. The hydrogen-bonding characteristics and the self-aggregation features of these mixtures were quantified and compared. Thermal analysis measurements demonstrated that the addition of NaH2PO4 decreased both the