WorldWideScience

Sample records for sodium intercalation electrode

  1. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    Science.gov (United States)

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-04-26

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  2. Method for intercalating alkali metal ions into carbon electrodes

    Science.gov (United States)

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  3. Electrode Materials for Lithium/Sodium-Ion Batteries

    DEFF Research Database (Denmark)

    Shen, Yanbin

    2014-01-01

    The synthesis of electrode materials for lithium/sodium ion batteries and their structural stability during lithium/sodium insertion/extraction are the two essential issues that have limited battery application in the fields requiring long cycle life and high safety. During her PhD studies, Yanbin...... Shen systematically investigated the controlled synthesis of electrode materials for lithium/sodium ion batteries. She also investigated their formation mechanisms and structural evolution during the operation of batteries using in situ/operando X-ray diffraction techniques. The research findings...... provide insights into formation mechanisms of Li4Ti5O12 anode material from both hydrothermal and solid-state reaction. The results also contribute to a thorough understanding of the intercalation and decay mechanisms of O3/P2 layered sodium cathode materials in sodium ion batteries....

  4. Intercalation and Exfoliation of Kaolinite with Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Xiaochao Zuo

    2018-03-01

    Full Text Available Kaolinite (Kaol was intercalated with dimethyl sulfoxide (DMSO and subsequently methanol (MeOH to prepare intercalation compounds Kaol-DMSO and Kaol-MeOH. Kaol-MeOH was used as an intermediate to synthesize Kaol-sodium dodecyl sulfate (SDS intercalation compound (Kaol-SDS via displacement reaction. The ultrasonic exfoliation of Kaol-SDS produced a resultant Kaol-SDS-U. The samples were characterized by X-ray diffraction (XRD, Fourier transformation infrared spectroscopy (FTIR, thermal analysis, scanning electronic microscopy (SEM, transmission electron microscopy (TEM and particle size analysis. The results revealed that the intercalation of sodium dodecyl sulfate into kaolinite layers caused an obvious increase of the basal spacing from 0.72–4.21 nm. The dehydroxylation temperature of Kaol-SDS was obviously lower than that of original kaolinite. During the intercalation process of sodium dodecyl sulfate, a few kaolinite layers were exfoliated and curled up from the edges of the kaolinite sheets. After sonication treatment, the kaolinite layers were further transformed into nanoscrolls, and the exfoliated resultant Kaol-SDS-U possessed a smaller particle size close to nanoscale.

  5. Manganese oxide electrode with excellent electrochemical performance for sodium ion batteries by pre-intercalation of K and Na ions.

    Science.gov (United States)

    Feng, Mengya; Du, Qinghua; Su, Li; Zhang, Guowei; Wang, Guiling; Ma, Zhipeng; Gao, Weimin; Qin, Xiujuan; Shao, Guangjie

    2017-05-22

    Materials with a layered structure have attracted tremendous attention because of their unique properties. The ultrathin nanosheet structure can result in extremely rapid intercalation/de-intercalation of Na ions in the charge-discharge progress. Herein, we report a manganese oxide with pre-intercalated K and Na ions and having flower-like ultrathin layered structure, which was synthesized by a facile but efficient hydrothermal method under mild condition. The pre-intercalation of Na and K ions facilitates the access of electrolyte ions and shortens the ion diffusion pathways. The layered manganese oxide shows ultrahigh specific capacity when it is used as cathode material for sodium-ion batteries. It also exhibits excellent stability and reversibility. It was found that the amount of intercalated Na ions is approximately 71% of the total charge. The prominent electrochemical performance of the manganese oxide demonstrates the importance of design and synthesis of pre-intercalated ultrathin layered materials.

  6. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  7. Crystal structures of superconducting sodium intercalates of hafnium nitride chloride

    International Nuclear Information System (INIS)

    Oro-Sole, J.; Frontera, C.; Beltran-Porter, D.; Lebedev, O.I.; Van Tendeloo, G.; Fuertes, A.

    2006-01-01

    Sodium intercalation compounds of HfNCl have been prepared at room temperature in naphtyl sodium solutions in tetrahydrofuran and their crystal structure has been investigated by Rietveld refinement using X-ray powder diffraction data and high-resolution electron microscopy. The structure of two intercalates with space group R3-bar m and lattice parameters a=3.58131(6)A, c=57.752(6)A, and a=3.58791(8)A, c=29.6785(17)A is reported, corresponding to the stages 2 and 1, respectively, of Na x HfNCl. For the stage 2 phase an ordered model is presented, showing two crystallographically independent [HfNCl] units with an alternation of the Hf-Hf interlayer distance along the c-axis, according with the occupation by sodium atoms of one out of two van der Waals gaps. Both stages 1 and 2 phases are superconducting with critical temperatures between 20 and 24K, they coexist in different samples with proportions depending on the synthesis conditions, and show a variation in c spacing that can be correlated with the sodium stoichiometry. High-resolution electron microscopy images of the host and intercalated samples show bending of the HfNCl bilayers as well as stacking faults in some regions, which coexist in the same crystal with ordered domains

  8. Potential-modulated intercalation of alkali cations into metal hexacyanoferrate coated electrodes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Schwartz, D.T.

    1998-01-01

    'This program is studying potential-driven cation intercalation and deintercalation in metal hexacyanoferrate compounds, with the eventual goal of creating materials with high selectivity for cesium separations and long cycle lifetimes. The separation of radiocesium from other benign cations has important implications for the cost of processing a variety of cesium contaminated DOE wasteforms. This report summarizes results after nine months of work. Much of the initial efforts have been directed towards quantitatively characterizing the selectivity of nickel hexacyanoferrate derivatized electrodes for intercalating cesium preferentially over other alkali metal cations. Using energy dispersive xray spectroscopy (ex-situ, but non-destructive) and ICP analysis (ex-situ and destructive), the authors have demonstrated that the nickel hexacyanoferrate lattice has a strong preference for intercalated cesium over sodium. For example, when ions are reversibly loaded into a nickel hexacyanoferrate thin film from a solution containing 0.9999 M Na + and 0.0001 M Cs + , the film intercalates 40% as much Cs + as when loaded from pure 1 M Cs + containing electrolyte (all electrolytes use nitrates as the common anion). The authors have also shown that, contrary to the common assumptions found in the literature, a significant fraction of the thin film is not active initially. A new near infrared laser has been purchased and is being added to the Raman spectroscopy facilities to allow in-situ studies of the intercalation processes.'

  9. Thermodynamics and kinetics of phase transformation in intercalation battery electrodes - phenomenological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lai Wei, E-mail: laiwei@msu.ed [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Ciucci, Francesco [Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, INF 368 D - 69120 Heidelberg (Germany)

    2010-12-15

    Thermodynamics and kinetics of phase transformation in intercalation battery electrodes are investigated by phenomenological models which include a mean-field lattice-gas thermodynamic model and a generalized Poisson-Nernst-Planck equation set based on linear irreversible thermodynamics. The application of modeling to a porous intercalation electrode leads to a hierarchical equivalent circuit with elements of explicit physical meanings. The equivalent circuit corresponding to the intercalation particle of planar, cylindrical and spherical symmetry is reduced to a diffusion equation with concentration dependent diffusivity. The numerical analysis of the diffusion equation suggests the front propagation behavior during phase transformation. The present treatment is also compared with the conventional moving boundary and phase field approaches.

  10. Transient analysis of intercalation electrodes for parameter estimation

    Science.gov (United States)

    Devan, Sheba

    An essential part of integrating batteries as power sources in any application, be it a large scale automotive application or a small scale portable application, is an efficient Battery Management System (BMS). The combination of a battery with the microprocessor based BMS (called "smart battery") helps prolong the life of the battery by operating in the optimal regime and provides accurate information regarding the battery to the end user. The main purposes of BMS are cell protection, monitoring and control, and communication between different components. These purposes are fulfilled by tracking the change in the parameters of the intercalation electrodes in the batteries. Consequently, the functions of the BMS should be prompt, which requires the methodology of extracting the parameters to be efficient in time. The traditional transient techniques applied so far may not be suitable due to reasons such as the inability to apply these techniques when the battery is under operation, long experimental time, etc. The primary aim of this research work is to design a fast, accurate and reliable technique that can be used to extract parameter values of the intercalation electrodes. A methodology based on analysis of the short time response to a sinusoidal input perturbation, in the time domain is demonstrated using a porous electrode model for an intercalation electrode. It is shown that the parameters associated with the interfacial processes occurring in the electrode can be determined rapidly, within a few milliseconds, by measuring the response in the transient region. The short time analysis in the time domain is then extended to a single particle model that involves bulk diffusion in the solid phase in addition to interfacial processes. A systematic procedure for sequential parameter estimation using sensitivity analysis is described. Further, the short time response and the input perturbation are transformed into the frequency domain using Fast Fourier Transform

  11. Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.

    1999-01-01

    Two-layered tantalum chalcogenides are evaluated as alkali metal intercalation hosts in lithium and sodium electrochemical cells. The metal-rich pseudo-two-dimensional solid Ta 2 Se shows a poor intercalation behaviour. Lithium reacts with the selenide by deintercalating selenium from the blocks of Ta-related b.c.c. structure leading to a collapse of the structure and the formation of tantalum metal. Sodium is reversibly intercalated to a limited extent leading to complex structural changes in the selenide, as revealed by electron diffraction. The two-dimensional telluride Ta 2 Te 3 allows a topotactic intercalation of lithium below 1 F/mol, while a more extended reaction leads to sample amorphization. The better intercalation behaviour of this solid can be related with the one-atom thick metal layer and the van der Waals gap separating tellurium atoms of successive layers. Sodium can be reversibly intercalated into Ta 2 Te 3 in sodium cells which show a good cycling behaviour. Exposure of the intercalated solid to water vapour allows the preparation of hydrated products with a monolayer or a bilayer of water molecules solvating sodium in the interlayer space. (orig.)

  12. In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode

    OpenAIRE

    Yuhki Yui; Masahiko Hayashi; Jiro Nakamura

    2016-01-01

    Electrochemical sodium deposition/dissolution behaviors in propylene carbonate-based electrolyte solution were observed by means of in situ light microscopy. First, granular sodium was deposited at pits in a sodium electrode in the cathodic process. Then, the sodium particles grew linearly from the electrode surface, becoming needle-like in shape. In the subsequent anodic process, the sodium dissolved near the base of the needles on the sodium electrode and the so-called ?dead sodium? broke a...

  13. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R.; Smith, Raymond B.; Bartelt, Norman C.; Sugar, Joshua D.; Fenton, Kyle R.; Cogswell, Daniel A.; Kilcoyne, A. L. David; Tyliszczak, Tolek; Bazant, Martin Z.; Chueh, William C.

    2014-01-01

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  14. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes.

    Science.gov (United States)

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C

    2014-12-01

    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  15. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang

    2014-09-14

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  16. Impedance Simulation of a Li-Ion Battery with Porous Electrodes and Spherical Li+ Intercalation Particles

    NARCIS (Netherlands)

    Huang, R.W.J.M.; Chung, F.; Kelder, E.M.

    2006-01-01

    We present a semimathematical model for the simulation of the impedance spectra of a rechargeable lithium batteries consisting of porous electrodes with spherical Li+ intercalation particles. The particles are considered to have two distinct homogeneous phases as a result of the intercalation and

  17. INTERPRETATION OF POTENTIAL INTERMITTENCE TITRATION TECHNIQUE EXPERIMENTS FOR VARIOUS Li-INTERCALATION ELECTRODES

    Directory of Open Access Journals (Sweden)

    M.D.Levi

    2002-01-01

    Full Text Available In this paper we compare two different approaches for the calculation of the enhancement factor Wi, based on its definition as the ratio of the chemical and the component diffusion coefficients for species in mixed-conduction electrodes, originated from the "dilute solution" or "lattice gas" models for the ion system. The former approach is only applicable for small changes of the ion concentration while the latter allows one to consider a broad range of intercalation levels. The component diffusion coefficient of lithium ions has been determined for a series of lithium intercalation anodes and cathodes. A new "enhancement factor" for the ion transport has been defined and its relations to the intercalation capacitance and the intercalation isotherm have been established. A correlation between the dependences of the differential capacitance and the partial ion conductivity on the potential has been observed. It is considered as a prove that the intercalation process is controlled by the availability of sites for Li-ion insertion rather than by the concurrent insertion of the counter-balancing electronic species.

  18. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Abdullah Ahmed Ali, E-mail: abdullah2803@gmail.com [Department of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246 (Yemen); Talib, Zainal Abidin [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400 (Malaysia); Hussein, Mohd Zobir [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM, Serdang, Selangor 43400 (Malaysia)

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8. The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by

  19. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  20. Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries.

    Science.gov (United States)

    Lee, Hyeon Jeong; Shin, Jaeho; Choi, Jang Wook

    2018-03-24

    The intrinsic limitations of lithium-ion batteries (LIBs) with regard to safety, cost, and the availability of raw materials have promoted research on so-called "post-LIBs". The recent intense research of post-LIBs provides an invaluable lesson that existing electrode materials used in LIBs may not perform as well in post-LIBs, calling for new material designs compliant with emerging batteries based on new chemistries. One promising approach in this direction is the development of materials with intercalated water or organic molecules, as these materials demonstrate superior electrochemical performance in emerging battery systems. The enlarged ionic channel dimensions and effective shielding of the electrostatic interaction between carrier ions and the lattice host are the origins of the observed electrochemical performance. Moreover, these intercalants serve as interlayer pillars to sustain the framework for prolonged cycles. Representative examples of such intercalated materials applied to batteries based on Li + , Na + , Mg 2+ , and Zn 2+ ions and supercapacitors are considered, along with their impact in materials research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect.

    Science.gov (United States)

    Liu, Yu; Dinh, Jim; Tade, Moses O; Shao, Zongping

    2016-09-14

    Oxygen ions can be exploited as a charge carrier to effectively realize a new type of anion-intercalation supercapacitor. In this study, to get some useful guidelines for future materials development, we comparatively studied SrCoO3-δ (SC), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), and Co3O4 as electrodes in supercapacitors with aqueous alkaline electrolyte. The effect of interaction between the electrode materials with the alkaline solution was focused on the structure and specific surface area of the electrode material, and ultimately the electrochemical performance was emphasized. Both BSCF and SC were found to experience cation leaching in alkaline solution, resulting in an increase in the specific surface area of the material, but overleaching caused the damage of perovskite structure of BSCF. Barium leaching was more serious than strontium, and the cation leaching was component dependent. Although high initial capacitance was achieved for BSCF, it was not a good candidate as intercalation-type electrode for supercapacitor because of poor cycling stability from serious Ba(2+) and Sr(2+) leaching. Instead, SC was a favorable electrode candidate for practical use in supercapacitors due to its high capacity and proper cation leaching capacity, which brought beneficial effect on cycling stability. It is suggested that cation leaching effect should be seriously considered in the development of new perovskite materials as electrodes for supercapacitors.

  2. Ion transport and phase transformation in thin film intercalation electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wunde, Fabian; Nowak, Susann; Muerter, Juliane; Hadjixenophontos, Efi; Berkemeier, Frank; Schmitz, Guido [Stuttgart Univ. (Germany). Inst. fuer Materialwissenschaft

    2017-11-15

    Thin film battery electrodes of the olivine structure LiFePO{sub 4} and the spinel phase LiMn{sub 2}O{sub 4} are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO{sub 4} clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles-Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO{sub 4} have the character of an ion-conductor of vanishing electronic conductivity.

  3. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    Science.gov (United States)

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes.

    Science.gov (United States)

    Lacey, Steven D; Wan, Jiayu; von Wald Cresce, Arthur; Russell, Selena M; Dai, Jiaqi; Bao, Wenzhong; Xu, Kang; Hu, Liangbing

    2015-02-11

    A microscale battery comprised of mechanically exfoliated molybdenum disulfide (MoS2) flakes with copper connections and a sodium metal reference was created and investigated as an intercalation model using in situ atomic force microscopy in a dry room environment. While an ethylene carbonate-based electrolyte with a low vapor pressure allowed topographical observations in an open cell configuration, the planar microbattery was used to conduct in situ measurements to understand the structural changes and the concomitant solid electrolyte interphase (SEI) formation at the nanoscale. Topographical observations demonstrated permanent wrinkling behavior of MoS2 electrodes upon sodiation at 0.4 V. SEI formation occurred quickly on both flake edges and planes at voltages before sodium intercalation. Force spectroscopy measurements provided quantitative data on the SEI thickness for MoS2 electrodes in sodium-ion batteries for the first time.

  5. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    Science.gov (United States)

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-03-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

  6. Phosphate Framework Electrode Materials for Sodium Ion Batteries.

    Science.gov (United States)

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2017-05-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.

  7. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.

    Science.gov (United States)

    Lu, Ke; Hu, Ziyu; Ma, Jizhen; Ma, Houyi; Dai, Liming; Zhang, Jintao

    2017-09-13

    Graphitic carbons have been used as conductive supports for developing rechargeable batteries. However, the classic ion intercalation in graphitic carbon has yet to be coupled with extrinsic redox reactions to develop rechargeable batteries. Herein, we demonstrate the preparation of a free-standing, flexible nitrogen and phosphorus co-doped hierarchically porous graphitic carbon for iodine loading by pyrolysis of polyaniline coated cellulose wiper. We find that heteroatoms could provide additional defect sites for encapsulating iodine while the porous carbon skeleton facilitates redox reactions of iodine and ion intercalation. The combination of ion intercalation with redox reactions of iodine allows for developing rechargeable iodine-carbon batteries free from the unsafe lithium/sodium metals, and hence eliminates the long-standing safety issue. The unique architecture of the hierarchically porous graphitic carbon with heteroatom doping not only provides suitable spaces for both iodine encapsulation and cation intercalation but also generates efficient electronic and ionic transport pathways, thus leading to enhanced performance.Carbon-based electrodes able to intercalate Li + and Na + ions have been exploited for high performing energy storage devices. Here, the authors combine the ion intercalation properties of porous graphitic carbons with the redox chemistry of iodine to produce iodine-carbon batteries with high reversible capacities.

  8. Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system

    Energy Technology Data Exchange (ETDEWEB)

    Danial, Wan Hazman, E-mail: hazmandanial@gmail.com; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my; Aziz, Madzlan [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia); Chutia, Arunabhiram [Institute of Fluid Sciences, Tohoku University, Sendai 980-8577 (Japan); Sahnoun, Riadh [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia)

    2015-07-22

    The present work reports the synthesis and characterization of graphene via electrochemical exfoliation of graphite rod using two-electrode system assisted by Sodium Dodecyl Sulphate (SDS) as a surfactant. The electrochemical process was carried out with sequence of intercalation of SDS onto the graphite anode followed by exfoliation of the SDS-intercalated graphite electrode when the anode was treated as cathode. The effect of intercalation potential from 5 V to 9 V and concentration of the SDS surfactant of 0.1 M and 0.01 M were investigated. UV-vis Spectroscopic analysis indicated an increase in the graphene production with higher intercalation potential. Transmission Electron Microscopy (TEM) analysis showed a well-ordered hexagonal lattice of graphene image and indicated an angle of 60° between two zigzag directions within the honeycomb crystal lattice. Raman spectroscopy analysis shows the graphitic information effects after the exfoliation process.

  9. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping.

    Science.gov (United States)

    Chueh, William C; El Gabaly, Farid; Sugar, Joshua D; Bartelt, Norman C; McDaniel, Anthony H; Fenton, Kyle R; Zavadil, Kevin R; Tyliszczak, Tolek; Lai, Wei; McCarty, Kevin F

    2013-03-13

    The intercalation pathway of lithium iron phosphate (LFP) in the positive electrode of a lithium-ion battery was probed at the ∼40 nm length scale using oxidation-state-sensitive X-ray microscopy. Combined with morphological observations of the same exact locations using transmission electron microscopy, we quantified the local state-of-charge of approximately 450 individual LFP particles over nearly the entire thickness of the porous electrode. With the electrode charged to 50% state-of-charge in 0.5 h, we observed that the overwhelming majority of particles were either almost completely delithiated or lithiated. Specifically, only ∼2% of individual particles were at an intermediate state-of-charge. From this small fraction of particles that were actively undergoing delithiation, we conclude that the time needed to charge a particle is ∼1/50 the time needed to charge the entire particle ensemble. Surprisingly, we observed a very weak correlation between the sequence of delithiation and the particle size, contrary to the common expectation that smaller particles delithiate before larger ones. Our quantitative results unambiguously confirm the mosaic (particle-by-particle) pathway of intercalation and suggest that the rate-limiting process of charging is initiating the phase transformation by, for example, a nucleation-like event. Therefore, strategies for further enhancing the performance of LFP electrodes should not focus on increasing the phase-boundary velocity but on the rate of phase-transformation initiation.

  10. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Tanghong; Chen, Wei; Cheng, Lei; Bayliss, Ryan D.; Lin, Feng; Plews, Michael R.; Nordlund, Dennis; Doeff, Marca M.; Persson, Kristin A.; Cabana, Jordi (LBNL); (SLAC); (UIC); (UCB)

    2017-02-07

    Reversible intercalation reactions provide the basis for modern battery electrodes. Despite decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials AxK1–xFeF3 (A = Li, Na). By starting with KFeF3, approximately 75% of K+ ions were subsequently replaced by Li+ and Na+ through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopy confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. This study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.

  11. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    OpenAIRE

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-01-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtain...

  12. Energy Harvesting by Nickel Prussian Blue Analogue Electrode in Neutralization and Mixing Entropy Batteries.

    Science.gov (United States)

    Gomes, Wellington J A S; de Oliveira, Cainã; Huguenin, Fritz

    2015-08-11

    Some industries usually reduce the concentration of protons in acidic wastewater by conducting neutralization reactions and/or adding seawater to industrial effluents. This work proposes a novel electrochemical system that can harvest energy originating from entropic changes due to alteration in the concentration of sodium ions along wastewater treatment. Preparation of a self-assembled material from nickel Prussian blue analogue (NPBA) was the first step to obtain such electrochemical system. Investigation into the electrochemical properties of this material helped to evaluate its potential use in neutralization and mixing entropy batteries. Assessment of parameters such as the potentiodynamic profile of the current density as a function of the concentration of protons and sodium ions, charge capacity, and cyclability as well as the reversibility of the sodium ion electroinsertion process aided estimation of the energy storage efficiency of the system. Frequency-domain measurements and models and the proposed charge compensation mechanism provided the rate constants at different dc potentials. After each charge/discharge cycle, the NPBA electrode harvested 12.4 kJ per mol of intercalated sodium ion in aqueous solutions of NaCl at concentrations of 20 mM and 3.0 M. The full electrochemical cell consisted of an NPBA positive electrode and a negative electrode of silver particles dispersed in a polypyrrole electrode. This cell extracted 16.8 kJ per mol of intercalated ion after each charge/discharge cycle. On the basis of these results, the developed electrochemical system should encourage wastewater treatment and help to achieve sustainable growth.

  13. Solid state sodium cells. Faststof natriumbatterier

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. [eds.

    1989-04-15

    The report describes the results from the project: ''Secondary Sodium Cells with Intercalation Electrodes'' which was financed by the Danish Department of Energy. The work was carried out by the Solid State Electrochemistry Group at the Technical University of Denmark which is formed by collaborators from the Institute of Physical Chemistry and Physics Laboratory III. The use of sodium has several advantages in theory compared to lithium systems: Sodium is much more abundant and lower priced than lithium, it may be easier to find solid electrolytes of sufficiently high conductivity, sodium forms no alloy with aluminium thereby making it possible to use this metal for current collectors instead of the costlier and heavier nickel. The softness of sodium metal may make it easier to achieve and maintain contact to other components in the battery during repeated cycling. This might be of importance for room temperature operation especially. Results from the project have primarily been published in the form of articles in international scientific journals and as contributions to monographs. Copies of these articles form the backbone of the report together with a short commentary to each article. Also included in the report are some general observations, as well as results that are unsuited for publication (e.g. unsuccessful experiments) but which may still contain relevant information for other experimental workers. Lastly, the report includes results on several intercalation compounds that will be published at a later stage as well as some details about the experimental equipment. The report is divided into three main sections, Intercalation Cathode Materials, Polymer Electrolytes and Battery Cycling Equipment. (AB).

  14. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.

    Science.gov (United States)

    Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng

    2014-02-01

    A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  15. Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks.

    Science.gov (United States)

    Wan, Jiayu; Gu, Feng; Bao, Wenzhong; Dai, Jiaqi; Shen, Fei; Luo, Wei; Han, Xiaogang; Urban, Daniel; Hu, Liangbing

    2015-06-10

    In this work, we report for the first time that Na-ion intercalation of reduced graphene oxide (RGO) can significantly improve its printed network's performance as a transparent conductor. Unlike pristine graphene that inhibits Na-ion intercalation, the larger layer-layer distance of RGO allows Na-ion intercalation, leading to simultaneously much higher DC conductivity and higher optical transmittance. The typical increase of transmittance from 36% to 79% and decrease of sheet resistance from 83k to 311 Ohms/sq in the printed network was observed after Na-ion intercalation. Compared with Li-intercalated graphene, Na-ion intercalated RGO shows much better environmental stability, which is likely due to the self-terminating oxidation of Na ions on the RGO edges. This study demonstrated the great potential of metal-ion intercalation to improve the performance of printed RGO network for transparent conductor applications.

  16. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    Science.gov (United States)

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation

  17. Using quasi-elastic neutron diffraction to study positive electrode for lithium and sodium-ion batteries

    International Nuclear Information System (INIS)

    Pramudita, James C.; Sharma, Neeraj

    2015-01-01

    Sodium-ion batteries has recently been proposed as the alternative for lithium-ion batteries to be the low cost energy storage system. However, challenges still remains for the development of sodium-ion batteries. Optimization of electrode materials and electrolyte capable of insertion/extraction of sodium-ion in a safe and economic way under high current density is needed in order to produce commercially viable sodium-ion batteries. While possible positive electrode material is more prevalent than negative electrode material, many of these material still need further understanding. Quasi-elastic Neutron Scatteringis a technique that utilize the inelastic Neutron Scatteringthat can be used to study solid-state diffusion in materials. This technique can be used to study the diffusion of sodium-ion under electric field through the electrolyte and positive electrode materials in order to further understand the mechanism of sodium insertion/extraction in a working battery. This technique can also be used to study available positive electrode material for lithium-ion batteries to further understand the mechanism of lithium-ion diffusion in current working lithiumion batteries.

  18. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Ni, Qiao; Bai, Ying; Wu, Feng; Wu, Chuan

    2017-03-01

    Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are among the most promising electrode materials for Na-ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion-type electrode materials are Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 for Na-based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na-ion batteries. Carbonophosphate Na 3 MnCO 3 PO 4 and amorphous FePO 4 have also recently emerged and are contributing to further developing the research scope of polyanion-type Na-ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion-type electrode materials for Na-ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems.

  19. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

    Science.gov (United States)

    Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang

    2017-02-16

    Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g -1 , which is about three times of 372 mA h g -1 , the value expected for the LiC 6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

  20. Insights into the Dual-Electrode Characteristics of Layered Na0.5Ni0.25Mn0.75O2 Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Palanisamy, Manikandan; Kim, Hyun Woo; Heo, Seongwoo; Lee, Eungje; Kim, Youngsik

    2017-03-29

    Sodium-ion batteries are now close to replacing lithium-ion batteries because they provide superior alternative energy storage solutions that are in great demand, particularly for large-scale applications. To that end, the present study is focused on the properties of a new type of dual-electrode material, Na 0.5 Ni 0.25 Mn 0.75 O 2 , synthesized using a mixed hydroxy-carbonate route. Cyclic voltammetry confirms that redox couples, at high and low voltage ranges, are facilitated by the unique features and properties of this dual-electrode, through sodium ion deintercalation/intercalation into the layered Na 0.5 Ni 0.25 Mn 0.75 O 2 material. This material provides superior performance for Na-ion batteries, as evidenced by the fabricated sodium cell that yielded initial charge-discharge capacities of 125/218 mAh g -1 in the voltage range of 1.5-4.4 V at 0.5 C. At a low voltage range (1.5-2.6 V), the anode cell delivered discharge-charge capacities of 100/99 mAh g -1 with 99% capacity retention, which corresponds to highly reversible redox reaction of the Mn 4+/3+ reduction and the Mn 3+/4+ oxidation observed at 1.85 and 2.06 V, respectively. The symmetric Na-ion cell, fabricated using Na 0.5 Ni 0.25 Mn 0.75 O 2 , yielded initial charge-discharge capacities of 196/187 μAh at 107 μA. These results encourage the further development of new types of futuristic sodium-ion-battery-based energy storage systems.

  1. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2

    Science.gov (United States)

    Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias

    2018-04-01

    The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.

  2. Sensors properties of an alkylamine-intercalated kaolinite material towards the voltammetric preconcentration of [Ru(CN)6]4- at a clay-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tonle, I.K. [Ottawa Univ., ON (Canada). Dept. of Chemistry, Center for Catalysis Research and Innovation; Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Dschang Univ. (Cameroon). Dept. de Chimie; Bouwe, B.; Rose, G.; Ngameni, E. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Detellier, C. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences

    2008-07-01

    This study discussed the sensor properties of a kaolinite material in relation to the voltammetric preconcentration of ruthenium (Ru) anions in a clay-modified electrode. An organoclay was intercalated at room temperature with a layer of hexylamine. Dimethylsulfoxide (DMSO) was intercalated between the clay layers and displaced in wet conditions by the akylamine. The modified clay was then characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The analyses confirmed the incorporation of the hexylamine between the kaolinite platelets. The organokaolinite was then studied for use as a preconcentration agent when coated on the active surface of a glassy carbon electrode for the accumulation of [Ru(CN)6]4- anions in a hydrochloric acid medium. Factors that influenced the conductivity of the film and the diffusion of the electroactive species within the film included the concentration of the electrolyte, and the redox probe. The study showed that kaolinite can be used as a material in electrochemical sensors.

  3. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material.

    Directory of Open Access Journals (Sweden)

    Murilo L Bello

    Full Text Available Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation. We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems.

  4. First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite

    Directory of Open Access Journals (Sweden)

    Fengya Rao

    2015-06-01

    Full Text Available The structure evolution of fluorinated graphite (CFx upon the Li/Na intercalation has been studied by first-principles calculations. The Li/Na adsorption on single CF layer and intercalated into bulk CF have been calculated. The better cycling performance of Na intercalation into the CF cathode, comparing to that of Li intercalation, is attributed to the different strength and characteristics of the Li-F and Na-F interactions. The interactions between Li and F are stronger and more localized than those between Na and F. The strong and localized Coulomb attraction between Li and F atoms breaks the C−F bonds and pulls the F atoms away, and graphene sheets are formed upon Li intercalation.

  5. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  6. Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2006-01-01

    The effect of pore structure on anomalous behaviour of the lithium intercalation into porous V 2 O 5 film electrode has been investigated in terms of fractal geometry by employing ac-impedance spectroscopy combined with N 2 gas adsorption method and atomic force microscopy (AFM). For this purpose, porous V 2 O 5 film electrodes with different pore structures were prepared by the polymer surfactant templating method. From the analysis of N 2 gas adsorption isotherms and the triangulation analysis of AFM images, it was found that porous V 2 O 5 surfaces exhibited self-similar scaling properties with different fractal dimensions depending upon amount of the polymer surfactant in solution and the spatial cut-off ranges. All the ac-impedance spectra measured on porous V 2 O 5 film electrodes showed the non-ideal behaviour of the charge-transfer reaction and the diffusion reaction, which resulted from the interfacial capacitance dispersion and the frequency dispersion of the diffusion impedance, respectively. From the comparison between the surface fractal dimensions by using N 2 gas adsorption method and AFM, and the analysis of ac-impedance spectra by employing a constant phase element (CPE), it is experimentally confirmed that the lithium intercalation into porous V 2 O 5 film electrode is crucially influenced by the pore surface irregularity and the film surface irregularity

  7. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    Science.gov (United States)

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-06-01

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  9. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries.

    Science.gov (United States)

    He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang

    2017-10-27

    Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.

  10. Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers.

    Science.gov (United States)

    Jacques, Eric; Lindbergh, Göran; Zenkert, Dan; Leijonmarck, Simon; Kjell, Maria Hellqvist

    2015-07-01

    The mechanical and electrochemical properties are coupled through a piezo-electrochemical effect in Li-intercalated carbon fibers. It is demonstrated that this piezo-electrochemical effect makes it possible to harvest electrical energy from mechanical work. Continuous polyacrylonitrile-based carbon fibers that can work both as electrodes for Li-ion batteries and structural reinforcement for composites materials are used in this study. Applying a tensile force to carbon fiber bundles used as Li-intercalating electrodes results in a response of the electrode potential of a few millivolts which allows, at low current densities, lithiation at higher electrode potential than delithiation. More electrical energy is thereby released from the cell at discharge than provided at charge, harvesting energy from the mechanical work of the applied force. The measured harvested specific electrical power is in the order of 1 μW/g for current densities in the order of 1 mA/g, but this has a potential of being increased significantly.

  11. In-situ Raman spectroscopy as a characterization tool for carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J -C; Joho, F B; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Lithium intercalation and de-intercalation into/from graphite electrodes in a nonaqueous electrolyte has been studied using in-situ Raman spectroscopy. Our experiments give information on the electrode-electrolyte interface with improved spatial resolution. The spectra taken from the electrode surface change with electrode potential. In this way, information on the nature of the chemical species present during charging and discharging half cycles is gained. For the first time, mapping techniques were applied to investigate if lithium intercalation proceeds homogeneously on the carbon electrode. (author) 3 figs., 1 tab., 4 refs.

  12. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    Science.gov (United States)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  13. An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite

    International Nuclear Information System (INIS)

    Hardwick, Laurence J.; Hahn, Matthias; Ruch, Patrick; Holzapfel, Michael; Scheifele, Werner; Buqa, Hilmi; Krumeich, Frank; Novak, Petr; Koetz, Ruediger

    2006-01-01

    An initial Raman study on the effects of intercalation for aprotic electrolyte-based electrochemical double-layer capacitors (EDLCs) is reported. In situ Raman microscopy is employed in the study of the electrochemical intercalation of tetraethylammonium (Et 4 N + ) and tetrafluoroborate (BF 4 - ) into and out of microcrystalline graphite. During cyclic voltammetry experiments, the insertion of Et 4 N + into graphite for the negative electrode occurs at an onset potential of +1.0 V versus Li/Li + . For the positive electrode, BF 4 - was shown to intercalate above +4.3 V versus Li/Li + . The characteristic G-band doublet peak (E 2g2 (i) (1578 cm -1 ) and E 2g2 (b) (1600 cm -1 )) showed that various staged compounds were formed in both cases and the return of the single G-band (1578 cm -1 ) demonstrates that intercalation was fully reversible. The disappearance of the D-band (1329 cm -1 ) in intercalated graphite is also noted and when the intercalant is removed a more intense D-band reappears, indicating possible lattice damage. For cation intercalation, such irreversible changes of the graphite structure are confirmed by scanning electron microscopy (SEM)

  14. Atomic force microscopy study of anion intercalation into highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D; Haering, P; Haas, O; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H [University of Berne (Switzerland)

    1999-08-01

    In the context of ion transfer batteries, we studied highly oriented pyrolytic graphite (HOPG) in perchloric acid, as a model to elucidate the mechanism of electrochemical intercalation in graphite. Aim of the work is the local and time dependent investigation of dimensional changes of the host material during electrochemical intercalation processes on the nanometer scale. We used atomic force microscopy (AFM), combined with cyclic voltammetry, as in-situ tool of analysis during intercalation and expulsion of perchloric anions into the HOPG electrodes. According to the AFM measurements, the HOPG interlayer spacing increases by 32% when perchloric anions intercalate, in agreement with the formation of stage IV of graphite intercalation compounds. (author) 3 figs., 3 refs.

  15. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.; Cui, Yi

    2011-01-01

    needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five

  16. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    Science.gov (United States)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  17. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    International Nuclear Information System (INIS)

    Wang Ji; Wei Min; Rao Guoying; Evans, D.G.; Duan Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation

  18. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    Science.gov (United States)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  19. Preparation and capacitive properties of lithium manganese oxide intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fang; Xie, Yibing, E-mail: ybxie@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Lithium manganese oxide intercalation compound (Li{sub 0.7}MnO{sub 2}) supported on titanium nitride nanotube array (TiN NTA) was applied as cathode electrode material for lithium-ion supercapacitor application. Li{sub 0.7}MnO{sub 2}/TiN NTA was fabricated through electrochemical deposition and simultaneous intercalation process using TiN NTA as a substrate, Mn(CH{sub 3}COO){sub 2} as manganese source, and Li{sub 2}SO{sub 4} as lithium source. The morphology and microstructure of the Li{sub 0.7}MnO{sub 2}/TiN NTA were characterized by scanning electron microscopy and X-ray diffraction analysis. The electrochemical performance of the Li{sub 0.7}MnO{sub 2}/TiN NTA was investigated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge measurements. Li{sub 0.7}MnO{sub 2}/TiN NTA exhibited higher capacitive performance in Li{sub 2}SO{sub 4} electrolyte solution rather than that in Na{sub 2}SO{sub 4} electrolyte solution, which was due to the different intercalation effects of lithium-ion and sodium-ion. The specific capacitance was improved from 503.3 F g{sup −1} for MnO{sub 2}/TiN NTA to 595.0 F g{sup −1} for Li{sub 0.7}MnO{sub 2}/TiN NTA at a current density of 2 A g{sup −1} in 1.0 M Li{sub 2}SO{sub 4} electrolyte solution, which was due to the intercalation of lithium-ion for Li{sub 0.7}MnO{sub 2}. Li{sub 0.7}MnO{sub 2}/TiN NTA also kept 90.4 % capacity retention after 1000 cycles, presenting a good cycling stability. An all-solid-state lithium-ion supercapacitor was fabricated and showed an energy density of 82.5 Wh kg{sup −1} and a power density of 10.0 kW kg{sup −1}.

  20. Nanoparticle intercalation-induced interlayer-gap-opened graphene–polyaniline nanocomposite for enhanced supercapacitive performances

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sungjin; Park, Young Ran [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Park, Sanghyuk [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Kim, Hyeong Jin [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Doh, Ji Hoon [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Hong, Won G. [Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kim, Byungnam [Radiation Equipment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Yang, Woo Seok [Electronic Material and Device Research Center, Korea Electronics Technology Institute, Seongnam, Gyeonggi-do 13509 (Korea, Republic of); Kim, TaeYoung [Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi-do 13120 (Korea, Republic of); Hong, Young Joon, E-mail: yjhong@sejong.ac.kr [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of)

    2017-08-01

    Highlights: • High energy–power supercapacitor electrode is demonstrated using EDLC–PC hybridized rGO–PANi nanocomposite. • A method for perpetuated intercalation of nanoparticles into interlayer gap of rGO is developed. • The intercalaction (i) exfoliates rGO layers, (ii) prevents self-agglomeration, and (iii) enlarges specific surface area of rGO for high power performance. • Electric resistance is substantially reduced by forming more rGO–PANi links via grafting of PANi to well-opened rGO edges. - Abstract: This study demonstrates a method for improving supercapacitive performance of two-dimensional nanosheet-based composite electrode. As a hybridized electrostatic double layer capacitor–electrochemical pseudocapacitor (EDLC–PC) electrode, we synthesized reduced graphene oxide–polyaniline nanofibers (rGO–PANi NFs) composite electrode. For the enhanced supercapacitive performances, insulator silver chloride nanoparticles (AgCl NPs) were intercalated into the interlayer gap of rGO. The AgCl NP intercalation (i) exfoliated rGO layers and (ii) prevented rGO-self-agglomeration that makes it difficult to utilize the high surface-to-volume ratio of ideal mono- (or few-) atomic-thick rGO layers. As a result, (iii) the specific capacitance was improved in accordance with the enlarged specific surface area of rGO. Furthermore, (iv) the well-developed rGO edges, which were opened by the AgCl intercalation, enabled formation of more bonds between PANi and rGO by selective grafting of PANi to the rGO edges. Hence, the bonds of PANi–rGO, as conducting paths, substantially reduced the total electrical resistance. Enhanced specific capacitance, ion diffusion efficiency, and reduced electrical resistance indicated the bi-functional roles of AgCl NP insertion for high performance hybridized EDLC–PC electrodes.

  1. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel

    2016-06-23

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  2. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel; Ezzeddine, Alaa; Emwas, Abdul-Hamid M.; Khashab, Niveen M.; Al-Ghoul, Mazen

    2016-01-01

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  3. Facile electrochemical synthesis of few layered graphene from discharged battery electrode and its

    Directory of Open Access Journals (Sweden)

    Santosh K. Tiwari

    2017-05-01

    Full Text Available A cost-effective, simple and non-hazardous route for synthesis of few-layered graphene from waste zinc carbon battery (ZCB electrodes via electrochemical expansion (ECE has been reported. In this synthesis, we have electrochemically exfoliated the graphene layers, by intercalating sodium dodecyl benzenesulfonate (SDBS surfactant into graphitic layers at different D.C. voltages with a constant SDBS concentration. The graphene sheets were isolated, purified and characterized by Transmission electron microscopy (TEM, Scanning electron microscopy (SEM, Fourier transform infrared spectrometry (FTIR, X-ray diffraction (XRD, Raman spectrometry, Ultraviolet absorption (UV, Selected area electron diffraction (SAED and Cyclic voltammetry. Best result was obtained at 4.5 V of D.C. A possible mechanism for the intercalation process has been proposed. A promising application of the produced material for supercapacitor application has also been explored in combination with polyaniline.

  4. First-principles investigation of aluminum intercalation and diffusion in TiO2 materials: Anatase versus rutile

    Science.gov (United States)

    Tang, Weiqiang; Xuan, Jin; Wang, Huizhi; Zhao, Shuangliang; Liu, Honglai

    2018-04-01

    Aluminum-ion batteries, emerging as a promising post-lithium battery solution, have been a subject of increasing research interest. Yet, most existing aluminum-ion research has focused on electrode materials development and synthesis. There has been a lack of fundamental understanding of the electrode processes and thus theoretical guidelines for electrode materials selection and design. In this study, by using density functional theory, we for the first time report a first-principles investigation on the thermodynamic and kinetic properties of aluminum intercalation into two common TiO2 polymorphs, i.e., anatase and rutile. After examining the aluminum intercalation sites, intercalation voltages, storage capacities and aluminum diffusion paths in both cases, we demonstrate that the stable aluminum intercalation site locates at the center of the O6 octahedral for TiO2 rutile and off center for TiO2 anatase. The maximum achievable Al/Ti ratios for rutile and anatase are 0.34375 and 0.36111, respectively. Although rutile is found to have an aluminum storage capacity slightly higher than anatase, the theoretical specific energy of rutile can reach 20.90 Wh kg-1, nearly twice as high as anatase (9.84 Wh kg-1). Moreover, the diffusion coefficient of aluminum ions in rutile is 10-9 cm2 s-1, significantly higher than that in anatase (10-20 cm2 s-1). In this regard, TiO2 rutile appears to be a better candidate than anatase as an electrode material for aluminum-ion batteries.

  5. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-01-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L −1 . The lower detection limits were found to be 0.02 μmol L −1 . The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  6. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  7. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  8. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries.

    Science.gov (United States)

    Das, Suman; Swain, Diptikanta; Araujo, Rafael B; Shi, Songxin; Ahuja, Rajeev; Row, Tayur N Guru; Bhattacharyya, Aninda J

    2018-02-02

    We discuss here a unique flexible non-carbonaceous layered host, namely, metal titanium niobates (M-Ti-niobate, M: Al 3+ , Pb 2+ , Sb 3+ , Ba 2+ , Mg 2+ ), which can synergistically store both lithium ions and sodium ions via a simultaneous intercalation and alloying mechanisms. M-Ti-niobate is formed by ion exchange of the K + ions, which are specifically located inside galleries between the layers formed by edge and corner sharing TiO 6 and NbO 6 octahedral units in the sol-gel synthesized potassium titanium niobate (KTiNbO 5 ). Drastic volume changes (approximately 300-400 %) typically associated with an alloying mechanism of storage are completely tackled chemically by the unique chemical composition and structure of the M-Ti-niobates. The free space between the adjustable Ti/Nb octahedral layers easily accommodates the volume changes. Due to the presence of an optimum amount of multivalent alloying metal ions (50-75 % of total K + ) in the M-Ti-niobate, an efficient alloying reaction takes place directly with ions and completely eliminates any form of mechanical degradation of the electroactive particles. The M-Ti-niobate can be cycled over a wide voltage range (as low as 0.01 V) and displays remarkably stable Li + and Na + ion cyclability (>2 Li + /Na + per formula unit) for widely varying current densities over few hundreds to thousands of successive cycles. The simultaneous intercalation and alloying storage mechanisms is also studied within the density functional theory (DFT) framework. DFT expectedly shows a very small variation in the volume of Al-titanium niobate following lithium alloying. Moreover, the theoretical investigations also conclusively support the occurrence of the alloying process of Li ions with the Al ions along with the intercalation process during discharge. The M-Ti-niobates studied here demonstrate a paradigm shift in chemical design of electrodes and will pave the way for the development of a multitude of improved electrodes

  9. Perovskite SrCo0.9 Nb0.1 O3-δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density.

    Science.gov (United States)

    Zhu, Liang; Liu, Yu; Su, Chao; Zhou, Wei; Liu, Meilin; Shao, Zongping

    2016-08-08

    We have synthesized and characterized perovskite-type SrCo0.9 Nb0.1 O3-δ (SCN) as a novel anion-intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm(-3) (and gravimetric capacitance of ca. 773.6 F g(-1) ) at a current density of 0.5 A g(-1) while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg(-1) with robust long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Jin, Juan; Shi, Zhi-qiang; Wang, Cheng-yang

    2014-01-01

    Highlights: • Electrospun carbon nanofiber webs were prepared by pyrolysis of polyacrylonitrile. • The webs as binder-free and current collector-free electrodes for SIBs and LIBs. • Different layer spacing and pore size for Li and Na lead different electrochemical behavior. • Electrochemical performances of the electrodes were high. - Abstract: A series of hard carbon nanofiber-based electrodes derived from electrospun polyacrylonitrile (PAN) nanofibers (PAN-CNFs) have been fabricated by stabilization in air at about 280 °C and then carbonization in N 2 at heat treatment temperatures (HTT) between 800 and 1500 °C. The electrochemical performances of the binder-free, current collector-free carbon nanofiber-based anodes in lithium-ion batteries and sodium-ion batteries are systematically investigated and compared. We demonstrate the presence of similar alkali metal insertion mechanisms in both cases, but just the differences of the layer spacing and pore size available for lithium and sodium ion lead the discharge capacity delivered at sloping region and plateau region to vary from the kinds of alkali elements. Although the anodes in sodium-ion batteries show poorer rate capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 275 mAh g −1 and similar cycling stability due to the conductive 3-D network, weakly ordered turbostratic structure and a large interlayer spacing between graphene sheets. The feature of high capacity and stable cycling performance makes PAN-CNFs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries

  11. Influence of water contamination and conductive additives on the intercalation of lithium into graphite

    Energy Technology Data Exchange (ETDEWEB)

    Joho, F; Rykart, B; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Spahr, M E; Monnier, A [Timcal AG, Sins (Switzerland)

    1999-08-01

    The irreversible charge loss in the first cycle of lithium intercalation into graphite electrodes for lithium-ion batteries is discussed as a function of water contamination of the electrolyte solution. Furthermore, the improvement of the electrode cycle life due to conductive additives to graphite is demonstrated. (author) 5 figs., 3 refs.

  12. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Saidi, Wissam [Univ. of Pittsburgh, PA (United States); Romanov, Vyacheslav [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Cygan, Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Kenneth [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Pittsburgh, PA (United States); Guthrie, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-22

    In this study, classical molecular dynamics simulations and density functional theory (DFT)-based molecular dynamics are used to elucidate the process of CO2 intercalation into hydrated Na-montmorillonite at P-T conditions relevant to geological formations suitable for CO2 storage. Of particular interest are the structural and transport properties of interlayer species after CO2 intercalation. The conducted simulations allowed the research team to quantify expansion/contraction of smectite as a function of CO2 and H2O compositions. The resulting swelling curves can be used to gauge the amount of stored CO2, compare it to the experiment, and estimate changes in geomechanical properties of the storage formation. The obtained results showed that the infrared signal of the asymmetric stretch vibration of CO2 molecule is extremely sensitive to the solvent environment. The extent of the frequency shift relative to the gas-phase value can be used to probe hydration level in the interlayer with intercalated CO2. Interaction of supercritical CO2 with brine in deep geological formations promotes an increase of hydrophobicity of clay surfaces. As a result of wettability alteration, estimated diffusion constants of CO2 and H2O increase with the increased CO2 load; this can contribute to faster migration of CO2 throughout the formation.

  14. Sodium-Induced Reordering of Atomic Stacks in Black Phosphorus

    KAUST Repository

    Cheng, Yingchun

    2017-01-12

    While theoretical simulations predict contradictory results about how the intercalation of foreign metal atoms affects the order of atomic layers in black phosphorus (BP), no direct experimental visualization work has yet clarified this ambiguity. By in situ electrochemical sodiation of BP inside a high-resolution transmission electron microscope and first-principles calculations, we found that sodium intercalation induces a relative glide of/ ⟨010⟩ {001}, resulting in reordering of atomic stacks from AB to AC in BP. The observed local amorphization in our experiments is triggered by lattice constraints. We predict that intercalation of sodium or other metal atoms introduces n-type carriers in BP. This potentially opens a new field for two-dimensional electronics based on BP.

  15. Sodium-Induced Reordering of Atomic Stacks in Black Phosphorus

    KAUST Repository

    Cheng, Yingchun; Zhu, Yihan; Han, Yu; Liu, Zhongyuan; Yang, Bingchao; Nie, Anmin; Huang, Wei; Shahbazian-Yassar, Reza; Mashayek, Farzad

    2017-01-01

    While theoretical simulations predict contradictory results about how the intercalation of foreign metal atoms affects the order of atomic layers in black phosphorus (BP), no direct experimental visualization work has yet clarified this ambiguity. By in situ electrochemical sodiation of BP inside a high-resolution transmission electron microscope and first-principles calculations, we found that sodium intercalation induces a relative glide of/ ⟨010⟩ {001}, resulting in reordering of atomic stacks from AB to AC in BP. The observed local amorphization in our experiments is triggered by lattice constraints. We predict that intercalation of sodium or other metal atoms introduces n-type carriers in BP. This potentially opens a new field for two-dimensional electronics based on BP.

  16. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    Science.gov (United States)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  17. A new rechargeable sodium battery utilizing reversible topotactic oxygen extraction/insertion of CaFeO(z) (2.5 ≤ z ≤ 3) in an organic electrolyte.

    Science.gov (United States)

    Hibino, Mitsuhiro; Harimoto, Ryuji; Ogasawara, Yoshiyuki; Kido, Ryota; Sugahara, Akira; Kudo, Tetsuichi; Tochigi, Eita; Shibata, Naoya; Ikuhara, Yuichi; Mizuno, Noritaka

    2014-01-08

    At present, significant research efforts are being devoted both to identifying means of upgrading existing batteries, including lithium ion types, and also to developing alternate technologies, such as sodium ion, metal-air, and lithium-sulfur batteries. In addition, new battery systems incorporating novel electrode reactions are being identified. One such system utilizes the reaction of electrolyte ions with oxygen atoms reversibly extracted and reinserted topotactically from cathode materials. Batteries based on this system allow the use of various anode materials, such as lithium and sodium, without the requirement to develop new cathode intercalation materials. In the present study, this concept is employed and a new battery based on a CaFeO3 cathode with a sodium anode is demonstrated.

  18. Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Ryan A.; Zhu, Wenhua H.; Payne, Robert U.; Cahela, Donald R.; Tatarchuk, Bruce J. [Center for Microfibrous Materials Manufacturing, Department of Chemical Engineering, 230 Ross Hall, Auburn University, Auburn, AL 36849 (United States)

    2006-10-27

    The Hg/HgO electrode is usually utilized as a reference electrode in alkaline solution such as for development of an alkaline hydrogen electrode. The reference electrode provides a suitable reference point but is available from few commercial vendors and suffers from inadequate documentation on potential in varying electrolytes. A new numerical method uses activity, activity coefficients, and a few correlated empirical equations to determine the potential values in both dilute and concentrated sodium hydroxide solutions at temperatures of 0-90{sup o}C and at concentrations of 0.100-12.8mol kg{sub H{sub 2}O}{sup -1}. The computed potentials of the Hg/HgO electrodes versus a normal hydrogen electrode (NHE) at 25{sup o}C and 1atm are 0.1634V for 0.100m, 0.1077V for 1.00m, and 0.0976V for 1.45m NaOH solutions. The Hg/HgO reduction potential further changes to -0.0751V versus NHE and hydrogen evolution potential changes to -0.9916V versus NHE in a solution of 30.0wt.% NaOH at 80{sup o}C. The calculated values are compared with the measured data at 25 and 75{sup o}C. The experimental data agree well with the numerical values computed from the theoretical and empirical equations. (author)

  19. Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.

    Science.gov (United States)

    Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng

    2018-04-03

    The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.

  20. A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol A

    International Nuclear Information System (INIS)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Jiang, Yuhang; Jiao, Kui; Li, Weihua

    2015-01-01

    Thin-layered molybdenum disulfide (MoS 2 ) was intercalated, via ultrasonic exfoliation, into self-doped polyaniline (SPAN). This material, when placed on a glassy carbon electrode (GCE), exhibits excellent electrical conductivity and synergistic catalytic activity with respect to the detection of bisphenol A (BPA). The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. Under optimal conditions, the oxidation peak current (measured best at 446 mV vs. SCE) is related to the concentration of BPA in the range from 1.0 nM to 1.0 μM, and the detection limit is 0.6 nM. (author)

  1. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid.

    Science.gov (United States)

    Xu, Gui-Liang; Xiao, Lisong; Sheng, Tian; Liu, Jianzhao; Hu, Yi-Xin; Ma, Tianyuan; Amine, Rachid; Xie, Yingying; Zhang, Xiaoyi; Liu, Yuzi; Ren, Yang; Sun, Cheng-Jun; Heald, Steve M; Kovacevic, Jasmina; Sehlleier, Yee Hwa; Schulz, Christof; Mattis, Wenjuan Liu; Sun, Shi-Gang; Wiggers, Hartmut; Chen, Zonghai; Amine, Khalil

    2018-01-10

    Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na + intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li + , K + , Mg 2+, and Al 3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

  2. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Gui-Liang [Chemical; Xiao, Lisong [Center; Sheng, Tian [Collaborative; Liu, Jianzhao [Chemical; Hu, Yi-Xin [Chemical; Department; Ma, Tianyuan [Chemical; Amine, Rachid [Materials; Xie, Yingying [Chemical; Zhang, Xiaoyi [X-ray Science; Liu, Yuzi [Nanoscience; Ren, Yang [X-ray Science; Sun, Cheng-Jun [X-ray Science; Heald, Steve M. [X-ray Science; Kovacevic, Jasmina [Center; Sehlleier, Yee Hwa [Center; Schulz, Christof [Center; Mattis, Wenjuan Liu [Microvast Power Solutions, 12603; Sun, Shi-Gang [Collaborative; Wiggers, Hartmut [Center; Chen, Zonghai [Chemical; Amine, Khalil [Chemical

    2017-12-15

    Room temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize 3D titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy and computational modeling revealed that the strong interaction between Titania and graphene through comparably strong van-der-Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+ and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

  3. Intercalation compounds of vanadium pentoxide hydrated with metalporphyrins and lanthanide ions

    International Nuclear Information System (INIS)

    Oliveira, Herenilton Paulino

    1994-01-01

    The lamellar structure of the vanadium pentoxide matrix allows the intercalation of organic molecules, ions and conductor polymers. It is important to emphasize that the vanadium oxide matrix is an intrinsic semiconductor and presents electrochromic properties. In the beginning of this work the method of synthesis and the electrochemical and electrochromic properties were extensively explored. The effect of alkaline metal and lanthanide ions on the structure of vanadium oxide matrix was studied by X-ray and infrared spectroscopy. Moreover, the influence of those ions in the electrochemical, spectro electrochemical and magnetic properties were studied. Finally, some intercalation compounds containing porphyrins were prepared and characterized by elemental analysis, X-ray diffraction, and electronic, vibrational, Moessbauer and X-ray fluorescence spectroscopy. The electrochemical and spectro electrochemical properties were investigated. And the performance of an iron porphyrin based intercalation compound as catalyst for molecular oxygen reduction was evaluated using the rotating ring-disc electrode technique. (author)

  4. Kinetics and mechanism of the deep electrochemical oxidation of sodium diclofenac on a boron-doped diamond electrode

    Science.gov (United States)

    Vedenyapina, M. D.; Borisova, D. A.; Rosenwinkel, K.-H.; Weichgrebe, D.; Stopp, P.; Vedenyapin, A. A.

    2013-08-01

    The kinetics and mechanism of the deep oxidation of sodium diclofenac on a boron-doped diamond electrode are studied to develop a technique for purifying wastewater from pharmaceutical products. The products of sodium diclofenac electrolysis are analyzed using cyclic voltammetry and nuclear magnetic resonance techniques. It is shown that the toxicity of the drug and products of its electrolysis decreases upon its deep oxidation.

  5. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Zhao, Minggang, E-mail: zhaomg@ouc.edu.cn; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang, E-mail: sgchen@ouc.edu.cn

    2016-07-15

    Highlights: • A MWCNTs/rGO/ZnO quantum dots intercalation nanoballs decorated 3D hierarchical architecture is fabricated on Ni foam. • Large numbers of ZnO quantum dots are intercalated by rGO sheets to construct hierarchical nanoballs. • Improved mechanical, kinetic and electrochemical properties are found. • The strong interfacial effect makes the material can be used for selective detection of dopamine, ascorbic acid and uric acid. - Abstract: ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  6. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    International Nuclear Information System (INIS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-01-01

    Highlights: • A MWCNTs/rGO/ZnO quantum dots intercalation nanoballs decorated 3D hierarchical architecture is fabricated on Ni foam. • Large numbers of ZnO quantum dots are intercalated by rGO sheets to construct hierarchical nanoballs. • Improved mechanical, kinetic and electrochemical properties are found. • The strong interfacial effect makes the material can be used for selective detection of dopamine, ascorbic acid and uric acid. - Abstract: ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  7. Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver

    International Nuclear Information System (INIS)

    Gao, J.; Zhang, H.P.; Fu, L.J.; Zhang, T.; Wu, Y.P.; Takamura, T.; Wu, H.Q.; Holze, R.

    2007-01-01

    A method has been developed to suppress the decomposition of propylene carbonate (PC) by coating graphite electrode foil with a layer of silver. Results from electrochemical impedance measurements show that the Ag-coated graphite electrode presents lower charge transfer resistance and faster diffusion of lithium ions in comparison with the virginal one. Cyclic voltammograms and discharge-charge measurements suggest that the decomposition of propylene carbonate and co-intercalation of solvated lithium ions are prevented, and lithium ions can reversibly intercalate into and deintercalate from the Ag-coated graphite electrode. These results indicate that Ag-coating is a good way to improve the electrochemical performance of graphitic carbon in PC-based electrolyte solutions

  8. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Liu, Xifeng; Wang, Jing; Shi, Jingli; Shi, Zhiqiang

    2016-01-01

    Highlights: • Two types of HC materials with different properties as negative electrode. • Lithium ion intercalation plateau of HC affects electrochemical performance of LIC. • The electrochemical performance of LIC is operated at different potential ranges. • The selection of HC and appropriate potential range of LIC have been proposed. - ABSTRACT: Lithium-ion capacitors (LICs) are assembled with activated carbon (AC) cathode and pre-lithiated hard carbon (HC) anode. Two kinds of HC materials with different physical and electrochemical behaviors have been investigated as the negative electrodes for LIC. Compared with spherical HC, the irregular HC shows a distinct lithium ion intercalation plateau in the charge–discharge process. The existence of lithium ion intercalation plateau for irregular HC greatly affects the electrochemical behavior of HC negative electrode and AC positive electrode. The effect of working potential range on the electrochemical performance of LIC-SH and LIC-IH is investigated by the galvanostatic charging–discharging, electrochemical impedance tests and cycle performance testing. The charge–discharge potential range of the irregular HC negative electrode is lower than the spherical HC electrode due to the existence of lithium ion intercalation plateau, which is conducive to the sufficient utilization of the AC positive electrode. The working potential range of LIC should be controlled to realize the optimization of electrochemical performance of LIC. LIC-IH at the working potential range of 2.0-4.0 V exhibits the optimal electrochemical performance, high energy density up to 85.7 Wh kg −1 and power density as high as 7.6 kW kg −1 (based on active material mass of two electrodes), excellent capacity retention about 96.0% after 5000 cycles.

  9. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes

    KAUST Repository

    Ruffo, Riccardo

    2009-02-01

    Despite the large number of studies on the behavior of LiCoO2 in organic electrolytes and its recent application as a positive electrode in rechargeable water battery prototypes, a little information is available about the lithium intercalation reaction in this layered compound in aqueous electrolytes. This work shows that LiCoO2 electrodes can be reversibly cycled in LiNO3 aqueous electrolytes for tens of cycles at remarkably high rates with impressive values specific capacity higher than 100 mAh/g, and with a coulomb efficiency greater than 99.7%. Stable and reproducible cycling measurements have been made using a simple cell design that can be easily applied to the study of other intercalation materials, assuming that they are stable in water and that their intercalation potential range matches the electrochemical stability window of the aqueous electrolyte. The experimental arrangement uses a three-electrode flooded cell in which another insertion compound acts as a reversible source and sink of lithium ions, i.e., as the counter electrode. A commercial reference electrode is also present. Both the working and the counter electrodes have been prepared as thin layers on a metallic substrate using the procedures typical for the study of electrodes for lithium-ion batteries in organic solvent electrolytes. © 2008 Elsevier B.V. All rights reserved.

  10. Cubic KTi2(PO4)3 as electrode materials for sodium-ion batteries.

    Science.gov (United States)

    Han, Jin; Xu, Maowen; Niu, Yubin; Jia, Min; Liu, Ting; Li, Chang Ming

    2016-12-01

    A novel cubic KTi2(PO4)3 is successfully synthesized via a facile hydrothermal method combined with a subsequent annealing treatment and further used as electrode material for sodium-ion batteries for the first time. For comparison, carbon-coated KTi2(PO4)3 obtained by a normal cane sugar-assisted method reveals superior electrochemical performances in sodium-ion battery. Besides of the high coulombic efficiency of nearly 100% after 100 cycles, a stable capacity of 112mAhg(-1) can be achieved at 0.5C after 100 cycles, and still maintains to 105mAhg(-1) after 500 cycles with capacity retention of approximately 90%. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Mg-Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152+154Eu from aqueous solutions

    International Nuclear Information System (INIS)

    Mahmoud, M.R.; Someda, H.H.

    2012-01-01

    In the present study, Mg-Al layered double hydroxide intercalated with nitrate anions (LDH-NO 3 ) was synthesized, modified with the anionic surfactant, sodium lauryl sulfate, and applied for the removal of 152+154 Eu from aqueous solutions. Modification of the as-synthesized Mg-Al layered double hydroxide was carried out at surfactant concentration of 0.01 M (the organo-LDH produced denoted LDH-NaLS). The as-synthesized and surfactant-intercalated LDHs were characterized by FT-IR and energy-dispersive X-ray spectroscopy techniques. The effect of some variables such as solution pH, contact time and sorbate concentration on removal of 152+154 Eu was investigated. The kinetic data obtained were well fitted by the pseudo-second-order kinetic model rather than the pseudo-first-order model. Intraparticle diffusion model showed that sorption of 152+154 Eu proceed by intraparticle diffusion together with boundary layer diffusion. Experimental isotherm data were well described by Langmuir model. Organo-LDH was found to have higher capacity (156.45 mg g -1 ) for europium than the as-synthesized LDH-NO 3 (119.56 mg g -1 ). Comparing LDHs capacities obtained for Eu(III) in the present work with other sorbents reported in literature indicated that LDHs have the highest capacities. Application of the developed process for removal of 152+154 Eu(III) from radioactive process wastewaters was also studied and the obtained results revealed that these LDHs are promising materials for treatment of radioactive wastewaters. (author)

  12. Lithium ion intercalation into thin film anatase

    International Nuclear Information System (INIS)

    Kundrata, I.; Froehlich, K.; Ballo, P.

    2015-01-01

    The aim of this work is to find the optimal parameters for thin film TiO 2 anatase grown by Atomic layer deposition (ALD) for use as electrode in lithium ion batteries. Two parameters, the optimal film thickness and growth conditions are aimed for. Optimal film thickness for achieving optimum between capacity gained from volume and capacity gained by changing of the intercalation constant and optimal growth conditions for film conformity on structured substrates with high aspect ratio. Here we presents first results from this ongoing research and discuss future outlooks. (authors)

  13. Lithium manganese oxide spinel electrodes

    Science.gov (United States)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The

  14. Porous graphite electrodes for rechargeable ion-transfer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Novak, P; Scheifele, W; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The influence of preparation pressure and pore-forming additives on the properties of graphite-based, Li{sup +}-intercalating electrodes for ion-transfer batteries have been investigated. The electrochemical performance of graphite electrodes could be improved by adjusting the porosity. Specific charge of >300 Ah/kg (with respect to the graphite mass) could be achieved. (author) 4 figs., 2 refs.

  15. A solvated electron lithium electrode for secondary batteries

    Science.gov (United States)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  16. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2006-10-20

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy. (author)

  17. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Science.gov (United States)

    Lee, Jong-Won; Popov, Branko N.

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy.

  18. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    Science.gov (United States)

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  19. Diclofenac sodium entrapment and release from halloysite nanotubules.

    Science.gov (United States)

    Krejčová, Kateřina; Deasy, Patrick B; Rabišková, Miloslava

    2013-02-01

    Halloysite was found to have interesting nanotubular geometry viable for the entrapment of various active agents. In this experiment, the ability of hollow halloysite cylinders to entrap the anionic model drug diclofenac sodium and to retard drug dissolution rate was investigated. Drugs could be incorporated into layered tubules via three different mechanisms: adsorption, intercalation and tubular entrapment. Based on the adsorption studies, some diclofenac sodium was shown to be adsorbed to the polyionic mineral surface despite its permanent negative charge. The X-ray powder diffraction analysis (XRPD) results did not prove any intercalation reaction to occur. The most important drug-loading mechanism involved the tubular entrapment with encapsulation efficiency 48.1%. The drug release from halloysite was prolonged in comparison with the dissolution of pure drug. Halloysite itself as well as halloysite loaded with the drug proved to be appropriate material to form pellets by extrusion /spheronization method. halloysite diclofenac sodium drug entrapment pellets prolonged drug release.

  20. Synthesis and characterization of a layered double hydroxide containing an intercalated nickel(II) citrate complex

    International Nuclear Information System (INIS)

    Wang Lianying; Wu Guoqing; Evans, David G.

    2007-01-01

    The nickel(II) citrate complex anion ([Ni(C 6 H 4 O 7 )] 2- ) may be intercalated into the interlayer galleries of a layered double hydroxide (LDH) host by a process involving ion-exchange with an Mg 2 Al-NO 3 LDH precursor. The powder X-ray diffraction (XRD) pattern confirms that the layered structure is maintained. The thermal decomposition process of the complex anion-intercalated material has been characterized by in situ high temperature powder XRD, thermogravimetry-differential thermal analysis (TG-DTA) and coupled with mass spectrometry (MS). The thermal stability of the nickel(II) citrate complex anion intercalated in LDHs in air is lower than that in the sodium salt. Calcination generates a high degree of nickel(II) oxide dispersion in a matrix of magnesium and aluminium oxide phases which should be an advantage if the materials are used as catalyst precursors. Based on the observed data, a structural model for the [Ni(C 6 H 4 O 7 )] 2- anion intercalated in the galleries of the LDH is proposed

  1. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    Science.gov (United States)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  2. VS4 Nanoparticles Anchored on Graphene Sheets as a High-Rate and Stable Electrode Material for Sodium Ion Batteries.

    Science.gov (United States)

    Pang, Qiang; Zhao, Yingying; Yu, Yanhao; Bian, Xiaofei; Wang, Xudong; Wei, Yingjin; Gao, Yu; Chen, Gang

    2018-02-22

    The size and conductivity of the electrode materials play a significant role in the kinetics of sodium-ion batteries. Various characterizations reveal that size-controllable VS 4 nanoparticles can be successfully anchored on the surface of graphene sheets (GSs) by a simple cationic-surfactant-assisted hydrothermal method. When used as an electrode material for sodium-ion batteries, these VS 4 @GS nanocomposites show large specific capacity (349.1 mAh g -1 after 100 cycles), excellent long-term stability (84 % capacity retention after 1200 cycles), and high rate capability (188.1 mAh g -1 at 4000 mA g -1 ). A large proportion of the capacity was contributed by capacitive processes. This remarkable electrochemical performance was attributed to synergistic interactions between nanosized VS 4 particles and a highly conductive graphene network, which provided short diffusion pathways for Na + ions and large contact areas between the electrolyte and electrode, resulting in considerably improved electrochemical kinetic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

    Science.gov (United States)

    Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit

    2017-09-01

    Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.

  4. Synthesis of Various Polyaniline / Clay Nanocomposites Derived from Aniline and Substituted Aniline Derivatives by Mechanochemical Intercalation Method

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2010-01-01

    Full Text Available Polyaniline clay nanocomposite can be prepared by mechano-chemical method in which intercalation of anilinium ion into the clay lattices accomplished by mechanical grinding of sodium montmorillonite (Na+MMT in presence of anilinium hydrochloride at room temperature using mortar & pestle for about 30 min and subsequent grinding with oxidizing agent, ammonium peroxysulfate. The appearance of green colour indicates the formation of polyaniline/clay nanocomposite (PANI/Clay. Similarly aniline derivatives like o-toludine and o-anisidine in the form of HCl salt can form intercalation into the clay lattices. The intercalated aniline derivatives were ground mechanically in presence of oxidizing agent ammonium peroxysulfate lead to formation of substituted polyaniline/ clay nanocomposites. The characteristics of various polyaniline-clay nanocomposites were investigated using UV-Visible, FT-IR, cyclic voltammetry studies.

  5. Preparation of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    International Nuclear Information System (INIS)

    Li Dianqing; Tuo Zhenjun; Evans, David G.; Duan Xue

    2006-01-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3 -LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability. - Graphical abstract: Intercalation of an organic UV absorber in a layered double hydroxide host leads to an enhancement of its photo- and thermal stability

  6. Spray deposited CeO2–TiO2 counter electrode for electrochromic ...

    Indian Academy of Sciences (India)

    application in smart window technology. The technological requirement of smart windows includes the electrochromic working electrode and ion storage layer that should be optically passive after intercalation/deintercalation process. There are only few materials which are used as an optically passive counter electrode with ...

  7. Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors

    Science.gov (United States)

    Ke, Qingqing; Tang, Chunhua; Liu, Yanqiong; Liu, Huajun; Wang, John

    2014-04-01

    A hierarchical nanostructure consisting of graphene sheets intercalated by clusters of Fe3O4 nanocystals is developed for high-performance supercapacitor electrode. Here we show that the negatively charged graphene oxide (GO) and positively charged Fe3O4 clusters enable a strong electrostatic interaction, generating a hierarchical 3D nanostructure, which gives rise to the intercalated composites through a rational hydrothermal process. The electrocapacitive behavior of the resultant composites is systematically investigated by cyclic voltammeter and galvanostatic charge-discharge techniques, where a positive synergistic effect between graphene and Fe3O4 clusters is identified. A maximum specific capacitance of 169 F g-1 is achieved in the Fe3O4 clusters decorated with effectively reduced graphene oxide (Fe3O4-rGO-12h), which is much higher than those of rGO (101 F g-1) and Fe3O4 (68 F g-1) at the current density of 1 Ag-1. Moreover, this intercalated hierarchical nanostructure demonstrates a good capacitance retention, retaining over 88% of the initial capacity after 1000 cycles.

  8. Preparation of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    Science.gov (United States)

    Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue

    2006-10-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.

  9. Low cost iodine intercalated graphene for fuel cells electrodes

    Science.gov (United States)

    Marinoiu, Adriana; Raceanu, Mircea; Carcadea, Elena; Varlam, Mihai; Stefanescu, Ioan

    2017-12-01

    On the theoretical predictions, we report the synthesis of iodine intercalated graphene for proton exchange membrane fuel cells (PEMFCs) applications. The structure and morphology of the samples were characterized by X-ray photoelectron spectroscopy (XPS) analysis, specific surface area by BET method, Raman investigations. The presence of elemental iodine in the form of triiodide and pentaiodide was validated, suggesting that iodine was trapped between graphene layers, leading to interactions with C atoms. The electrochemical performances of iodinated graphenes were tested and compared with a typical PEMFC configuration, containing different Pt/C loading (0.4 and 0.2 mg cm-2). If iodinated graphene is included as microporous layer, the electrochemical performances of the fuel cell are higher in terms of power density than the typical fuel cell. Iodine-doped graphenes have been successfully obtained by simple and cost effective synthetic strategy and demonstrated new insights for designing of a high performance metal-free ORR catalyst by a scalable technique.

  10. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    Science.gov (United States)

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  11. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    International Nuclear Information System (INIS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-01-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4′-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules. - Graphical abstract: Nitrogen-containing organic compounds can be intercalated into the interlayer space of zirconium 4-sulfophenylphosphonate. - Highlights: • Zirconium 4-sulfophenylphosphonate was examined as a host material in intercalation chemistry. • A wide range of nitrogen-containing organic compounds were intercalated. • Possible arrangement of the intercalated species is described

  12. High pressure measurement of the uniaxial stress of host layers on intercalants and staging transformation of intercalation compounds

    CERN Document Server

    Park, T R; Kim, H; Min, P

    2002-01-01

    A layered double-hydroxide intercalation compound was synthesized to measure the uniaxial stress the host layers exert on the intercalants. To measure the uniaxial stress, we employed the photoluminescence (PL) from the intercalated species, the Sm ion complex, as it is sensitive to the deformation of the intercalants. Of the many PL peaks the Sm ion complex produces, the one that is independent of the counter-cation environment was chosen for the measurement since the Sm ion complexes are placed under a different electrostatic environment after intercalation. The peak position of the PL was redshifted linearly with increasing hydrostatic pressure on the intercalated sample. Using this pressure-induced redshifting rate and the PL difference at ambient pressure between the pre-intercalation and the intercalated ions, we found that, in the absence of external pressure, the uniaxial stress exerted on the samarium ion complexes by the host layers was about 13.9 GPa at room temperature. Time-resolved PL data also ...

  13. Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage.

    Science.gov (United States)

    Zhu, Yue; Peng, Lele; Chen, Dahong; Yu, Guihua

    2016-01-13

    There is a growing need for energy storage devices in numerous applications where a large amount of energy needs to be either stored or delivered quickly. The present paper details the study of alkali-ion intercalation pseudocapacitance in ultrathin VOPO4 nanosheets, which hold promise in high-rate alkali-ion based electrochemical energy storage. Starting from bulk VOPO4·2H2O chunks, VOPO4 nanosheets were obtained through simple ultrasonication in 2-propanol. These nanosheets as the cathode exhibit a specific capacity of 154 and 136 mAh/g (close to theoretical value 166 mAh/g) for lithium and sodium storage devices at 0.1 C and 100 and ∼70 mAh/g at 5 C, demonstrating their high rate capability. Moreover, the capacity retention is maintained at 90% for lithium ion storage and 73% for sodium ion storage after 500 cycles, showing their reasonable stability. The demonstrated alkali-ion intercalation pseudocapacitance represents a promising direction for developing battery materials with promising high rate capability.

  14. Comparative electrochemical sodium insertion/extraction behavior in layered NaxVS2 and NaxTiS2

    International Nuclear Information System (INIS)

    Lee, Eungje; Sahgong, SunHye; Johnson, Christopher S.; Kim, Youngsik

    2014-01-01

    This study investigates the electrochemical sodium insertion/extraction of Na x VS 2 , and Na x TiS 2 in the voltage range where either intercalation (0.2 ≤ x ≤ 1) or displacement-conversion reaction (x > 1) occurs. Both Na x VS 2 and Na x TiS 2 showed good reversible capacities, as high as ∼160 mAh/g at an average voltage of ∼1.9 V vs. Na in the region for the intercalation reaction (0.2 ≤ x ≤ 1). When sodium (Na) insertion was forced further to the x > 1 composition, Na x VS 2 exhibited the direct displacement-conversion reaction at 0.3 V vs. Na without further Na intercalation, which contrasted with the wider lithium intercalation range of 0 < x ≤ 2 for Li x VS 2 . The displacement-conversion reaction for Na x VS 2 (x > 1) was reversible with a specific capacity of above 200 mAh/g up to 15 cycles, but the displacement reaction for Na x TiS 2 (x > 1) was not observed

  15. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor.

    Science.gov (United States)

    Zou, Yuqin; Wang, Shuangyin

    2015-07-07

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.

  16. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  17. Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics?

    Science.gov (United States)

    Mahns, Benjamin; Roth, Friedrich; Knupfer, Martin

    2012-04-07

    The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.

  18. Negative electrodes for Na-ion batteries.

    Science.gov (United States)

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  19. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  20. Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation.

    Science.gov (United States)

    Ramirez, Daniel; Suto, Yusaku; Rosero-Navarro, Nataly Carolina; Miura, Akira; Tadanaga, Kiyoharu; Jaramillo, Franklin

    2018-04-02

    Organic-inorganic hybrid perovskite materials have recently been investigated in a variety of applications, including solar cells, light emitting devices (LEDs), and lasers because of their impressive semiconductor properties. Nevertheless, the perovskite structure has the ability to host extrinsic elements, making its application in the battery field possible. During the present study, we fabricated and investigated the electrochemical properties of three-dimensional (3D) methylammonium lead mixed-halide CH 3 NH 3 PbI 3- x Br x and two-dimensional (2D) propylammonium-methlylammonium lead bromide (CH 3 NH 3 ) 2 (CH 3 (CH 2 ) 2 NH 3 ) 2 Pb 3 Br 10 hybrid perovskite thin films as electrode materials for Li-ion batteries. These electrodes were obtained by solution processing at 100 °C. CH 3 NH 3 PbBr 3 achieved high discharge/charge capacities of ∼500 mA h g -1 /160 mA h g -1 that could account also for other processes taking place during the Li intercalation. It was also found that bromine plays an important role for lithium intercalation, while the new 2D (CH 3 NH 3 ) 2 (CH 3 (CH 2 ) 2 NH 3 ) 2 Pb 3 Br 10 with a layered structure allowed reversibility of the lithium insertion-extraction of 100% with capacities of ∼375 mA h g -1 in the form of a thin film. Results suggest that tuning the composition of these materials can be used to improve intercalation capacities, while modification from 3D to 2D layered structures contributes to improving lithium extraction. The mechanism of the lithium insertion-extraction may consist of an intercalation mechanism in the hybrid material accompanying the alloying-dealloying process of the Li x Pb intermetallic compounds. This work contributes to revealing the relevance of both composition and structure of potential hybrid perovskite materials as future thin film electrode materials with high capacity and compositional versatility.

  1. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy

    2016-10-13

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  2. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy; Shetty, Vijeth Rajshekar; Suresh, Gurukar Shivappa; Mahadevan, Kittappa Malavalli; Nagaraju, Doddahalli H.

    2016-01-01

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  3. Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage

    KAUST Repository

    Wessells, Colin D.

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes. © 2012 American Chemical Society.

  4. Carbon fibers and composites modified by intercalation

    International Nuclear Information System (INIS)

    Macherzynska, B.; Blazewicz, S.

    2002-01-01

    The aim of this paper was to describe ability to intercalation of laboratory prepared carbon composites and their constituents. In work the following materials were tested; pinch-based fibres of P-120 and K-1100 manufacturer's designations, carbon matrix and resulting composites. To prepare a matrix of composites, phenol-formaldehyde resin (Z) and pinch-based precursor (PAK) were used. After initial carbonization, the carbon matrix was heated to 2150 o C i to improve ability to the future intercalation. Three kinds of composites (P/Z, K/Z and K/PAK), with two directional reinforcement (2D), were prepared. All carbon samples were intercalated with copper chloride(II). To study the structure of all materials, before and after intercalation, X-ray diffraction method was used. It enabled to measure microstructure parameters (L c and L a ), interplanar distance (d 002 ) thickness of an intercalation layer (d i ). Before intercalation, graphite fibers are characterized by well developed graphite structure of three-dimensional order, different than carbon turbostratic structures. Graphite fibres show a tendency to intercalation, however this process proceeds harder than in a synthetic graphite, which is testified by diffraction spectra with visible complex stages of intercalation. Comparison of two kinds of graphite fibres show s that their structure significantly affects intercalation process. In the case of composite matrix, a better structure ordering was observed for carbon obtained from PAK than for carbon originating from Z precursor. During production of composites, after the heat treatment (2150 o C), carbon obtained from pyrolysis of Z precursor crystallises on the fibre surface, building a well-developed structure of matrix. The same process occurs during carbonization of pinch-based precursor in presence of graphite fibres. In both cases the composites contain well crystallized graphite phases. The study of carbon composite intercalation shows that the process

  5. The intercalation chemistry of layered iron chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    2016-10-15

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  6. Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Seong-Min [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA; Qiao, Ruimin [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Yang, Wanli [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Lee, Sungsik [X-Ray Science Division, Argonne National Laboratory, Argonne IL 60439 USA; Yu, Xiqian [Institute of Physics, Chinese Academy of Science, Beijing 100190 China; Anasori, Babak [Department of Material Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia PA 19104 USA; Lee, Hungsui [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA; Gogotsi, Yury [Department of Material Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia PA 19104 USA; Yang, Xiao-Qing [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA

    2017-07-14

    Two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V2CTx, where Tx are surface functional groups) was synthesized and studied as anode material for Na-ion batteries. V2CTx anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. The charge storage mechanism of V2CTx material during Na+ intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution of redox reaction of vanadium to the charge storage and the reversible capacity of V2CTx during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO32- content and Na+ intercalation/deintercalation states in the V2CTx electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na+-intercalated V2CTx and the carbonate based non-aqueous electrolyte. The results of this study will provide valuable information for the further studies on V2CTx as anode material for Na-ion batteries and capacitors.

  7. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  8. Intercalation of lanthanide trichlorides in graphite

    International Nuclear Information System (INIS)

    Stumpp, E.; Nietfeld, G.

    1979-01-01

    The reactions of the whole series of lanthanide trichlorides with graphite have been investigated. Intercalation compounds have been prepared with the chlorides of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y whereas LaCl 3 , CeCl 3 , PrCl 3 and NdCl 3 do not intercalate. The compounds were characterized by chemical and X-ray analysis. The amount of c-axis increase is consistent with the assumption that the chlorides are intercalated in form of a chloride layer sandwich resmbling the sheets in YCl 3 . The chlorides which do not intercalate crystallize in the UCl 3 structure having 3 D arrangements of ions. Obviously, these chlorides cannot form sheets between the carbon layers. The ability of AlCl 3 to volatilize lanthanide chlorides through complex formation in the gas phase can be used to increase the intercalation rate strikingly. (author)

  9. A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.

    Science.gov (United States)

    Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E

    2018-06-12

    Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.

  10. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    Directory of Open Access Journals (Sweden)

    T Banerjee

    Full Text Available DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM and spectroscopy (AFS. The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  11. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, T; Banerjee, S; Sett, S; Ghosh, S; Rakshit, T; Mukhopadhyay, R

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  12. Superconductivity of TiNCl intercalated with diamines

    International Nuclear Information System (INIS)

    Yamanaka, Shoji; Umemoto, Keita

    2010-01-01

    Intercalation compounds of TiNCl with ethylenediamine (EDA) and hexamethylenediamine (HDA) were prepared. The basal spacing of TiNCl increased by 3.3-3.9 A upon intercalation, implying that the molecules are lying with the alkyl chains parallel to the TiNCl layers in both compounds. The intercalated compounds showed superconductivity with transition temperatures (T c s) of 10.5 and 15.5 K for EDA and HDA, respectively, which are higher than 8.6 K of pyridine (Py) intercalated compound, Py 0.25 TiNCl.

  13. Intercalation of organic molecules into SnS2 single crystals

    International Nuclear Information System (INIS)

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H.; Kloc, C.

    2013-01-01

    SnS 2 is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS 2e n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS 2 after intercalation revealed defects and stacking mismatches among the SnS 2 layers caused by the intercalation. UV–Vis absorption studies showed a red shift in the band edge of the SnS 2 material after intercalation. The band edge was 2.2 eV for pristine SnS 2 ; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS 2 single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS 2 after intercalation. Highlights: ► Organic molecules intercalated inhomogenously between covalently bonded SnS 2 layers. ► Ethylenediamine (en) intercalate directly into SnS 2 . ► Phenylenediamine (PPD) and naphthalenediamine (NDA) can be intercalated into SnS 2 secondary. ► In a secondary intercalation the bonds between layers are weakened by direct

  14. Electrochemical oxidation and detection of sodium urate in alkaline ...

    African Journals Online (AJOL)

    Electrochemical behaviour of copper oxides electrode in the presence of sodium urate was investigated. The correlation between the anodic oxidation and the amperometric detection of sodium urate in the alkaline medium on copper oxides electrode was analysed by cyclic voltammetry (CV) and electrochemical ...

  15. Uniform second Li ion intercalation in solid state ϵ-LiVOPO4

    International Nuclear Information System (INIS)

    Wangoh, Linda W.; Quackenbush, Nicholas F.; Sallis, Shawn; Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W.; Lin, Yuh-Chieh; Ong, Shyue Ping; Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley; Guo, Jinghua; Lee, Tien-Lin; Schlueter, Christoph; Piper, Louis F. J.

    2016-01-01

    Full, reversible intercalation of two Li + has not yet been achieved in promising VOPO 4 electrodes. A pronounced Li + gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO 4 cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li + gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li + intercalation is a prerequisite for the formation of intermediate phases Li 1.50 VOPO 4 and Li 1.75 VOPO 4 . The evolution from LiVOPO 4 to Li 2 VOPO 4 via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  16. Superconductivity of TiNCl intercalated with diamines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Shoji, E-mail: syamana@hiroshima-u.ac.j [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Umemoto, Keita [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan)

    2010-12-15

    Intercalation compounds of TiNCl with ethylenediamine (EDA) and hexamethylenediamine (HDA) were prepared. The basal spacing of TiNCl increased by 3.3-3.9 A upon intercalation, implying that the molecules are lying with the alkyl chains parallel to the TiNCl layers in both compounds. The intercalated compounds showed superconductivity with transition temperatures (T{sub c}s) of 10.5 and 15.5 K for EDA and HDA, respectively, which are higher than 8.6 K of pyridine (Py) intercalated compound, Py{sub 0.25}TiNCl.

  17. Apparatus for removing impurities in the sodium of sodium cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, A

    1970-11-11

    An apparatus is provided for removing oxygen from liquid sodium flowing in a sodium cooled reactor. The removal of oxygen is complete with high efficiency. The liquid sodium to be purified is disposed outside a cylindrical wall and negatively charged, whereas sodium as a reducing material is disposed inside the same wall. The cylindrical wall is made of zirconia-calcia (ZrO/sub 2/)sub(0.87)(CaO)sub(0.13) solid electrolyte, the cylinder having a thickness of 2.5mm, a diameter of 3cm and a depth of 20cm under the sodium level. Electric resistance of the solid electrolyte is 2.3 ohm at 500/sup 0/C. A current of 1A by the application of 25 volts treats 0.3g of oxygen. Consequently, 1 liter or 1kg of liquid sodium containing 1,000ppm of oxygen can be purified for about 3 hours at an electrical consumption of 7.5 watt-hour. In one embodiment, a cylindrical electrolytic solid made of zirconia-calcia or zirconia-yttria was disposed in a container. Liquid sodium containing oxygen flowed outside of the cylinder. Liquid sodium as a reducing material was present inside the cylinder and the container and the cylinder were electrically insulated. An electrode was inserted at the center of the cylinder and a baffle plate at the upper portion of the electrode to shield heat and rising sodium vapor was provided. The space above the container was filled with an inert gas. The oxygen in the liquid sodium to be purified transferred through the wall of the cylinder into the interior of the cylinder so as to oxydize the reducing sodium material. The supersaturated sodium oxide inside the cylinder was deposited.

  18. A label-free photoelectrochemical cocaine aptasensor based on an electropolymerized ruthenium-intercalator complex

    International Nuclear Information System (INIS)

    Haddache, Fatima; Le Goff, Alan; Spinelli, Nicolas; Gairola, Priyanka; Gorgy, Karine; Gondran, Chantal; Defrancq, Eric; Cosnier, Serge

    2016-01-01

    Highlights: • Electrodes were modified by an electrogenerated Ru(II) complex which demonstrates photosensitive properties and intercalating properties towards the stem-loop base pairing domain of cocaine aptamers. • Cocaine aptamers were immobilized as mono-and double-fragment which showed different behaviour towards photocurrent generation. • The binding of aptamer could be followed by photelectrochemistry and modelized using a Langmuir-Freundlich isotherm. • Using the double-fragment aptamer, a label-free photoelectrochemical aptasensor was designed, exhibiting a LOD of 10 nmol L −1 and linear range of 1 10 −8 –5 10 −4 mol L −1 . - Abstract: A photoelectrode was designed by electrodeposition of a pyrrole monomer modified with a polypyridyl Ru(II) complex bearing benzo[i]dipyrido-[3,2-a:2′.3′-c]phenazine (dppn) ligand. Owing to the intercalating properties of these immobilized complexes towards DNA double helix, cocaine aptamer was immobilized on the modified electrodes thanks to its stem-loop configuration in order to design a photoelectrochemical cocaine aptasensor. Especially using a double-fragment aptamer strategy, the binding of cocaine and the formation of the aptamer/cocaine complex was successfully observed and modeled by a Langmuir-Freundlich isotherm, giving access to an apparent dissociation constant K d of 3.8 mmol L −1 . The photoelectrochemical aptasensor exhibits a LOD of 10 nmol L −1 and linear range of 1 10 −8 –5 10 −4 mol L −1 .

  19. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.

    2011-12-14

    The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five thousand deep cycles at high current densities in inexpensive aqueous electrolytes. Its open-framework structure allows retention of 66% of the initial capacity even at a very high (41.7C) rate. At low current densities, its round trip energy efficiency reaches 99%. This low-cost material is readily synthesized in bulk quantities. The long cycle life, high power, good energy efficiency, safety, and inexpensive production method make nickel hexacyanoferrate an attractive candidate for use in large-scale batteries to support the electrical grid. © 2011 American Chemical Society.

  20. A DNA biosensor based on the electrocatalytic oxidation of amine by a threading intercalator

    International Nuclear Information System (INIS)

    Gao Zhiqiang; Tansil, Natalia

    2009-01-01

    An electrochemical biosensor for the detection of DNA based a peptide nucleic acid (PNA) capture probe (CP) modified indium tin oxide electrode (ITO) is described in this report. After hybridization, a threading intercalator, N,N'-bis[(3-propyl)-imidazole]-1,4,5,8-naphthalene diimide (PIND) imidazole complexed with Ru(bpy) 2 Cl (PIND-Ru, bpy = 2,2'-bipyridine), was introduced to the biosensor. PIND-Ru selectively intercalated to double-stranded DNA (ds-DNA) and became immobilized on the biosensor surface. Voltammetric tests showed highly stable and reversible electrochemical oxidation/reduction processes and the peak currents can directly be utilized for DNA quantification. When the tests were conducted in an amine-containing medium, Tris-HCl buffer for example, a remarkable improvement in the voltammetric response and noticeable enhancements of voltammetric and amperometric sensitivities were observed due to the electrocatalytic activity of the [Ru(bpy) 2 Cl] redox moieties. Electrocatalytic current was observed when as little as 3.0 attomoles of DNA was present in the sample solution

  1. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.

    Science.gov (United States)

    Doeff, Marca M; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C; Conry, Thomas

    2013-11-11

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.

  2. Dodecylsulfate and dodecybenzenesulfonate intercalated hydrotalcites as adsorbent materials for the removal of BBR acid dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Mohamed Bouraada

    2016-07-01

    Full Text Available Two modified layered double hydroxides (HT have been synthesized by intercalating both sodium dodecylsulfate (SDS and sodium dodecylbenzenesulfonate (SDBS surfactants into Mg-Al layered double hydroxides using the calcination–rehydratation method. The prepared materials HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET. The obtained materials were used for Brilliant Blue R (BBR dye removal from aqueous solution. Batch studies were carried out to address various experimental parameters such as kinetic, pH, sorption isotherm and temperature. Sorption experiments of acid dye BBR from aqueous solution by HT-SDS and HT-SDBS were investigated in the batch system. Kinetic studies indicate that the sorption of BBR follows the pseudo-second-order model. Sorption capacities of HT-SDS (357.1 mg/g for BBR dye were much higher than those of HT-SDBS (204.1 mg/g. The intercalated Mg-Al layered double hydroxides with SDS and SDBS could possibly be used to remove anionic dyes of relatively high concentrations, whereas HT-CO3 may only be used to remove anionic dyes of low concentrations.

  3. An Integrated Glucose Sensor with an All-Solid-State Sodium Ion-Selective Electrode for a Minimally Invasive Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Junko Kojima

    2015-06-01

    Full Text Available We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE integrated into its design. The glucose sensor immobilized glucose oxidase showed a good correlation between the glucose levels in the hydrogels and the reference glucose levels (r > 0.99, and exhibited a good precision (coefficient of variation = 2.9%, 0.6 mg/dL. In the design of the sodium ISEs, we used the insertion material Na0.33MnO2 as the inner contact layer and DD16C5 exhibiting high Na+/K+ selectivity as the ionophore. The developed sodium ISE exhibited high selectivity (\\( \\log \\,k^{pot}_{Na,K} = -2.8\\ and good potential stability. The sodium ISE could measure 0.4 mM (10−3.4 M sodium ion levels in the hydrogels containing 268 mM (10−0.57 M KCl. The small integrated sensor (ϕ < 10 mm detected glucose and sodium ions in hydrogels simultaneously within 1 min, and it exhibited sufficient performance for use as a minimally invasive glucose monitoring system.

  4. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara

    2011-06-01

    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  5. Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    International Nuclear Information System (INIS)

    O'Dwyer, C.; Lavayen, V.; Clavijo-Cedeno, C.; Torres, C.M.S.

    2008-01-01

    The electron beam induced electronic transport in primary alkyl amine-intercalated V 2 O 5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself. Both nanotube networks and individual nanotubes exhibit similarly high conductivities where the minority carrier transport is bias dependent and nanotube diameter invariant. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  7. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  8. Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes.

    Science.gov (United States)

    Wu, Chao; Kopold, Peter; Ding, Yuan-Li; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-06-23

    Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to the electrodes for sodium-storage, including low reversible capacity and low ion transport, as well as large volume change. To mitigate or even overcome the kinetic problems, we develop a self-assembly route to a novel architecture consisting of nanosized porous NASICON-type NaTi2(PO4)3 particles embedded in microsized 3D graphene network. Such architecture synergistically combines the advantages of a 3D graphene network and of 0D porous nanoparticles. It greatly increases the electron/ion transport kinetics and assures the electrode structure integrity, leading to attractive electrochemical performance as reflected by a high rate-capability (112 mAh g(-1) at 1C, 105 mAh g(-1) at 5C, 96 mAh g(-1) at 10C, 67 mAh g(-1) at 50C), a long cycle-life (capacity retention of 80% after 1000 cycles at 10C), and a high initial Coulombic efficiency (>79%). This nanostructure design provides a promising pathway for developing high performance NASICON-type materials for sodium storage.

  9. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com [College of Science, Hebei University of Engineering, Handan 056038 (China); School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lei, Lixu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); O' Hare, Dermot [Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Xie, Juan [College of Science, Hebei University of Engineering, Handan 056038 (China); Gao, Pengran [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chang, Tao [College of Science, Hebei University of Engineering, Handan 056038 (China)

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  10. Magnetic resonance studies of intercalation compounds

    International Nuclear Information System (INIS)

    Miller, G.R.

    1990-01-01

    During the last three or four years, nearly tow hundred papers have been published that used NMR or ESR spectroscopy to study compounds formed by the intercalation of molecules or ions into the van der Waals gap of a layered hast compound. The host lattices have ranged from the simple, such as graphite, to the complex, such as clay. In many cases, magnetic resonance techniques now enable one to obtain quite detailed information on even fairly complex intercalated species, on the nature of the changes in the host lattice accompanying intercalation, and on the nature of the interactions between the intercalant species and the host lattice. Magnetic resonance is used in conunction with many other techniques to obtain a fuller picture of these interesting systems, but this review will limit its focus to the use of NMR and ESR techniques. (author). 51 refs

  11. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance

    Science.gov (United States)

    Lou, Shuaifeng; Cheng, Xinqun; Wang, Long; Gao, Jinlong; Li, Qin; Ma, Yulin; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping

    2017-09-01

    Orthorhombic Niobium oxide (T-Nb2O5) has been regarded as a promising anode material for high-rate lithium ion batteries (LIBs) due to its potential to operate at high rates with improved safety and high theoretical capacity of 200 mA h g-1. Herein, three-dimensionally ordered macroporous (3DOM) T-Nb2O5, with mesoporous hierarchical structure, was firstly prepared by a simple approach employing self-assembly polystyrene (PS) microspheres as hard templates. The obtained T-Nb2O5 anode material presents obvious and highly-efficiency pseudocapacitive Li+ intercalation behaviour, which plays a dominant role in the kinetics of electrode process. As a result, rapid Li+ intercalation/de-intercalation are achieved, leading to excellent rate capability and long cycle life. The 3DOM T-Nb2O5 shows a remarkable high capacity of 106 and 77 mA h g-1 at the rate of 20C and 50C. The work presented herein holds great promise for future design of material structure, and demonstrates the great potential of T-Nb2O5 as a practical high-rate anode material for LIBs.

  12. Large magnetoresistance in intercalated Cu oxides

    OpenAIRE

    Grigoryan, L.; Furusawa, M.; Hori, H.; Tokumoto, M.

    1997-01-01

    Magnetism and electrical resistance as a function of magnetic field, temperature, and chemical composition are studied in Cu oxides intercalated with metal phthalocyanines MPc, where M is Fe or Ni, and Pc is C_H_N_. An unusually large positive magnetoresistance (MR) of ~ 1200% is observed in FePc-intercalated Bi_Sr_Ca_Cu_O_ samples with two Cu-O layers in the unit cell (n=2). The magnitude of the MR decreased to 40% and ~ 0% in the FePc-intercalated n=3 and n=4 samples, respectively, and to ~...

  13. Ultrahigh intercalation pseudocapacitance of mesoporous orthorhombic niobium pentoxide from a novel cellulose nanocrystal template

    International Nuclear Information System (INIS)

    Kong, Lingping; Zhang, Chuangfang; Wang, Jitong; Long, Donghui; Qiao, Wenming; Ling, Licheng

    2015-01-01

    A facile biotemplating method has been developed to prepare mesoporous orthorhombic nobium pentoxide (T-Nb 2 O 5 ) films with ultrahigh lithium ion (Li + ) intercalation pseudocapacitance. Nanorod-like cellulose nanocrystals (CNs) with 5–10 nm in width and 100–300 nm in length are produced by the hydrolysis of cotton, which can serve as a novel soft templating agent enabling the straightforward synthesis of mesoporous T-Nb 2 O 5 films. By varying the niobic-to-template ratio, it is possible to tune the surface area and crystallite dimension of the Nb 2 O 5 films. The obtained T-Nb 2 O 5 films show typical capacitive-dominated behaviour in the sweep rate range of 1–20 mV s −1 . It delivers an initial intercalation capacity of 644 C g −1 at a current density of 0.625 A g −1 , corresponding to x = 1.83 for Li x Nb 2 O 5 , and can still keep relatively stable capacity of 560 C g −1 after 300 cycles. Moreover, its excellent high-rate capability (450 C g −1 at 12.5 A g −1 ) and wider temperature adaptability present here suggests the promising of T-Nb 2 O 5 as high-energy pseudocapacitor electrode with superior intercalation capacitive behaviour. - Graphical abstract: We developed a facile and sustainable method to prepare T-Nb 2 O 5 nanocrystals using novel nanorod-like cellulose nanocrystals (CNs) as soft templates. The T-Nb 2 O 5 nanocrystals exhibited unprecedented Li + intercalation pseudocapacitance, excellent cycle performance and good high-and-low temperature tolerance performance.

  14. Screen-printed electrode for alkali-metal thermoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Shibata, K.; Tsuchida, K.; Kato, A. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1992-06-01

    An alkali-metal thermoelectric converter (AMTEC) is a device for the direct conversion of thermal to electric energy. An AMTEC contains sodium as working fluid and is divided into a high-temperature region (900-1300 K) and a low-temperature region (400-800 K) by [beta]''-alumina solid electrolyte. A high-performance electrode for an AMTEC must have good electrical conductivity, make a strong physical bond with low contact resistance to [beta]''-alumina, be highly permeable to sodium vapour, resist corrosion by sodium and have a low rate of evaporation at the operating temperature of the AMTEC. We have previously investigated the interaction of nitrides and carbides of some transition-metals (groups IV, V and VI) with [beta],[beta]''-alumina or liquid sodium (about 700degC) with the objective of finding a better electrode material for an AMTEC. The results showed that TiN, TiC, NbN and NbC were good candidates for AMTEC electrodes. We also showed that porous TiN film with low resistance can be prepared by the screen-printing method. In the present work the porous NbN film was prepared by the screen-printing method and the performance as the electrode of an AMTEC was examined. For comparison, the performance of TiN and Mo electrodes prepared by the screen-printing method was also examined. (author).

  15. The ion dependent change in the mechanism of charge storage of chemically preintercalated bilayered vanadium oxide electrodes

    Science.gov (United States)

    Clites, Mallory; Pomerantseva, Ekaterina

    2017-08-01

    Chemical pre-intercalation is a soft chemistry synthesis approach that allows for the insertion of inorganic ions into the interlayer space of layered battery electrode materials prior to electrochemical cycling. Previously, we have demonstrated that chemical pre-intercalation of Na+ ions into the structure of bilayered vanadium oxide (δ-V2O5) results in record high initial capacities above 350 mAh g-1 in Na-ion cells. This performance is attributed to the expanded interlayer spacing and predefined diffusion pathways achieved by the insertion of charge-carrying ions. However, the effect of chemical pre-intercalation of δ-V2O5 has not been studied for other ion-based systems beyond sodium. In this work, we report the effect of the chemically preintercalated alkali ion size on the mechanism of charge storage of δ- MxV2O5 (M = Li, Na, K) in Li-ion, Na-ion, and K-ion batteries, respectively. The interlayer spacing of the δ-MxV2O5 varied depending on inserted ion, with 11.1 Å achieved for Li-preintercalated δ-V2O5, 11.4 Å for Na-preintercalated δ- V2O5, and 9.6 Å for K-preintercalated δ-V2O5. Electrochemical performance of each material has been studied in its respective ion-based system (δ-LixV2O5 in Li-ion cells, δ-NaxV2O5 in Na-ion cells, and δ-KxV2O5 in K-ion cells). All materials demonstrated high initial capacities above 200 mAh g-1. However, the mechanism of charge storage differed depending on the charge-carrying ion, with Li-ion cells demonstrating predominantly pseudocapacitive behavior and Naion and K-ion cells demonstrating a significant portion of capacity from diffusion-limited intercalation processes. In this study, the combination of increased ionic radii of the charge-carrying ions and decreased synthesized interlayer spacing of the bilayered vanadium oxide phase correlates to an increase in the portion of capacity attributed diffusion-limited charge-storage processes.

  16. The influence of hydrogen intercalation on inner pressure of Ni/MH battery during fast charge

    Science.gov (United States)

    Shi, Jianzhen; Wu, Feng; Hu, Daozhong; Chen, Shi; Mao, Licai; Wang, Guoqing

    Gaseous hydrogen is confirmed to be the main component and primarily responsible for the inner pressure rise inside the 8-Ah Ni/MH batteries during fast charge. Based on a temperature-dependent pressure model proposed in this work, the kinetic characteristics of the hydrogen evolution were investigated. The overpotential and exchange current density were obtained by fitting the presented equation to the experimental data. Moreover, the profiles of hydrogen concentration during fast charge was further modeled and calculated according to the proposed mathematical model of hydrogen intercalation. It is indicated that diffusion step controls the fast charge performances and the higher the charge rate is, the more quickly the negative electrode attains to the maximum surface intercalation fraction, and however, the calculated results also show that further charge can reduce the difference of charge efficiency among the various rate during fast charge. Numerical investigations also reveal that the increase of diffusion coefficient and decrease of the particle size can efficiently improve the characteristics of fast charge, respectively.

  17. Vanadyl phosphates as high energy density cathode materials for rechargeable sodium battery

    Science.gov (United States)

    Zhang, Ruigang; Mizuno, Fuminori; Ling, Chen; Whittingham, Stanley M.; Zhang, Ruibo; Chen, Zehua

    2017-08-01

    A positive electrode comprising .epsilon.-VOPO.sub.4 and/or Na.sub.x(.epsilon.-VOPO.sub.4) wherein x is a value from 0.1 to 1.0 as an active ingredient, wherein the electrode is capable of insertion and release of sodium ions and a reversible sodium battery containing the positive electrode are provided.

  18. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries

    Science.gov (United States)

    Armstrong, A. Robert; Bruce, Peter G.

    1996-06-01

    RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.

  19. Cr{sub 2}O{sub 5} as new cathode for rechargeable sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu-Yong; Chien, Po-Hsiu; Rose, Alyssa M.; Zheng, Jin [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Hung, Ivan; Gan, Zhehong [Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States); Hu, Yan-Yan, E-mail: hu@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States)

    2016-10-15

    Chromium oxide, Cr{sub 2}O{sub 5}, was synthesized by pyrolyzing CrO{sub 3} at 350 °C and employed as a new cathode in rechargeable sodium ion batteries. Cr{sub 2}O{sub 5}/Na rechargeable batteries delivered high specific capacities up to 310 mAh/g at a current density of C/16 (or 20 mA/g). High-resolution solid-state {sup 23}Na NMR both qualitatively and quantitatively revealed the reversible intercalation of Na ions into the bulk electrode and participation of Na ions in the formation of the solid-electrolyte interphase largely at low potentials. Amorphization of the electrode structure occurred during the first discharge revealed by both NMR and X-ray diffraction data. CrO{sub 3}-catalyzed electrolyte degradation and loss in electronic conductivity led to gradual capacity fading. The specific capacity stabilized at >120 mAh/g after 50 charge-discharge cycles. Further improvement in electrochemical performance is possible via electrode surface modification, polymer binder incorporation, or designs of new morphologies. - Graphical abstract: Electrochemical profile of a Cr{sub 2}O{sub 5}/Na battery cell and high-resolution solid-state {sup 23}Na MAS NMR spectrum of a Cr{sub 2}O{sub 5} electrode discharged to 2 V. - Highlights: • Cr{sub 2}O{sub 5} was synthesized and used as a new cathode in rechargeable Na ion batteries. • A high capacity of 310 mAh/g and an energy density of 564 Wh/kg were achieved. • High-resolution solid-state {sup 23}Na NMR was employed to follow the reaction mechanisms.

  20. Intercalation of organic molecules into SnS{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798 (Singapore); Kloc, C., E-mail: ckloc@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798 (Singapore)

    2013-02-15

    SnS{sub 2} is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS{sub 2e}n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS{sub 2} after intercalation revealed defects and stacking mismatches among the SnS{sub 2} layers caused by the intercalation. UV-Vis absorption studies showed a red shift in the band edge of the SnS{sub 2} material after intercalation. The band edge was 2.2 eV for pristine SnS{sub 2}; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS{sub 2} single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS{sub 2} after intercalation. Highlights: Black-Right-Pointing-Pointer Organic molecules intercalated inhomogenously between covalently bonded SnS{sub 2} layers. Black-Right-Pointing-Pointer Ethylenediamine (en) intercalate directly into SnS{sub 2}. Black-Right-Pointing-Pointer Phenylenediamine (PPD) and naphthalenediamine (NDA) can be

  1. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu

    2017-12-28

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation of lithium ion, wherein the cathode comprises material adapted for reversible lithium extraction from and insertion into the cathode, and wherein the separator comprises at least one porous, electronically conductive layer and at least one insulating layer, and wherein the electrolyte comprises at least one polysulfide anion. The battery provides for high energy density and capacity. A redox species is introduced into the electrolyte which creates a hybrid battery. Sodium metal and sodium-ion batteries also provided.

  2. Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor.

    Science.gov (United States)

    Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao

    2018-06-11

    Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ultrahigh intercalation pseudocapacitance of mesoporous orthorhombic niobium pentoxide from a novel cellulose nanocrystal template

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingping; Zhang, Chuangfang; Wang, Jitong; Long, Donghui, E-mail: longdh@mail.ecust.edu.cn; Qiao, Wenming; Ling, Licheng

    2015-01-15

    A facile biotemplating method has been developed to prepare mesoporous orthorhombic nobium pentoxide (T-Nb{sub 2}O{sub 5}) films with ultrahigh lithium ion (Li{sup +}) intercalation pseudocapacitance. Nanorod-like cellulose nanocrystals (CNs) with 5–10 nm in width and 100–300 nm in length are produced by the hydrolysis of cotton, which can serve as a novel soft templating agent enabling the straightforward synthesis of mesoporous T-Nb{sub 2}O{sub 5} films. By varying the niobic-to-template ratio, it is possible to tune the surface area and crystallite dimension of the Nb{sub 2}O{sub 5} films. The obtained T-Nb{sub 2}O{sub 5} films show typical capacitive-dominated behaviour in the sweep rate range of 1–20 mV s{sup −1}. It delivers an initial intercalation capacity of 644 C g{sup −1} at a current density of 0.625 A g{sup −1}, corresponding to x = 1.83 for Li{sub x}Nb{sub 2}O{sub 5}, and can still keep relatively stable capacity of 560 C g{sup −1} after 300 cycles. Moreover, its excellent high-rate capability (450 C g{sup −1} at 12.5 A g{sup −1}) and wider temperature adaptability present here suggests the promising of T-Nb{sub 2}O{sub 5} as high-energy pseudocapacitor electrode with superior intercalation capacitive behaviour. - Graphical abstract: We developed a facile and sustainable method to prepare T-Nb{sub 2}O{sub 5} nanocrystals using novel nanorod-like cellulose nanocrystals (CNs) as soft templates. The T-Nb{sub 2}O{sub 5} nanocrystals exhibited unprecedented Li{sup +} intercalation pseudocapacitance, excellent cycle performance and good high-and-low temperature tolerance performance.

  4. Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces.

    Science.gov (United States)

    Ohtomo, Manabu; Sekine, Yoshiaki; Wang, Shengnan; Hibino, Hiroki; Yamamoto, Hideki

    2016-06-02

    We report a novel etchant-free transfer method of graphene using the intercalation of alkanethiol self-assembled monolayers (SAMs) at the graphene/Cu interfaces. The early stage of intercalation proceeds through graphene grain boundaries or defects within a few seconds at room temperature until stable SAMs are formed after a few hours. The formation of SAMs releases the compressive strain of graphene induced by Cu substrates and make graphene slightly n-doped due to the formation of interface dipoles of the SAMs on metal surfaces. After SAM formation, the graphene is easily delaminated off from the metal substrates and transferred onto insulating substrates. The etchant-free process enables us to decrease the density of charged impurities and the magnitude of potential fluctuation in the transferred graphene, which suppress scattering of carriers. We also demonstrate the removal of alkanethiol SAMs and reuse the substrate. This method will dramatically reduce the cost of graphene transfer, which will benefit industrial applications such as of graphene transparent electrodes.

  5. Electrochemistry of Nanostructured Intercalation Hosts

    International Nuclear Information System (INIS)

    Smyrl, William H.

    2009-01-01

    We have shown that: (1) Li+ ions are inserted reversibly, without diffusion control, up to the level of at least 4 moles Li+ ions per mole for V2O5, in the aerogel (ARG) form (500 m2/g specific surface area) and aerogel-like (ARG-L) form (200 m2/g specific surface area)(6,7,1,2); (2) polyvalent cations (Al+3, Mg+2, Zn+2) may be intercalated reversibly into V2O5 (ARG) with high capacity (approaching 4 equivalents/mole V2O5 (ARG)) for each (5); (3) dopant cations such as Ag+ and Cu+2 increase the conductivity of V2O5 (XRG) up to three orders of magnitude(3), they are electrochemically active - showing reduction to the metallic-state in parallel to intercalation of Li+ ions - but are not released to the electrolyte upon oxidation and Li+ ion release (Cu+2 ions are reduced to Cu metal and reoxidized to Cu+2 in Li+ ion insertion/release cycles, but the copper ions are not released to the electrolyte over more than 400 cycles of the XRG form); (4) we have shown that Cu+2 ion (dopant) and Zn+2 ions (chemical insertion and dopant) occupy the same intercalation site inV2O5 xerogel and aerogel(4); and (5) the reversible intercalation of Zn+2, Mg+2, and Al+3 in the ARG(11) indicates that these cations are 'mobile', but that Cu+2 ions and Ag+ ions are 'immobile' in the xerogel, i.e., the latter ions are not exchanged with the electrolyte in Li+ ion intercalation cycling(3).

  6. First-principles study of mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x=0-2, M = Mn, Co, Ni): A new family of high electrode potential cathodes for the sodium-ion battery

    Science.gov (United States)

    Ri, Gum-Chol; Choe, Song-Hyok; Yu, Chol-Jun

    2018-02-01

    Natural abundance of sodium and its similar behavior to lithium triggered recent extensive studies of cost-effective sodium-ion batteries (SIBs) for large-scale energy storage systems. A challenge is to develop electrode materials with a high electrode potential, specific capacity and a good rate capability. In this work we propose mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x = 0-2, M = Mn, Co, Ni) as a new family of high electrode potential cathodes of SIBs and present their material properties predicted by first-principles calculations. The structural optimizations show that these materials have significantly small volume expansion rates below 5% upon Na insertion/desertion with negative Na binding energies. Through the electronic structure calculations, we find band insulating properties and hole (and/or electron) polaron hoping as a possible mechanism for the charge transfer. Especially we confirm the high electrode voltages over 4 V with reasonably high specific capacities. We also investigate the sodium ion mobility by estimating plausible diffusion pathways and calculating the corresponding activation barriers, demonstrating the reasonably fast migrations of sodium ions during the operation. Our calculation results indicate that these mixed eldfellite compounds can be suitable materials for high performance SIB cathodes.

  7. Organoelemental intercalation compounds in the system PbI2-ethan olamine

    International Nuclear Information System (INIS)

    Gurina, G.I.; Evtushenko, V.D.; Muraeva, O.A.; Ignatyuk, V.P.; Koshkin, V.M.

    1985-01-01

    Two intercalation phases with different stoichiometry in system PbI 2 -ethanolamine are identified, using the methods of IR spectroscopy, spectroscopy of diffusion reflection, X-ray phase and thermogravimetric analyses. Formation kinetics of intercalation compounds in the system, having two phases, differing in the content of intercalant in the matrix layers, is studied. In conformity with thermodynamic theory of intercalation, it is shown experimentally, that the value of a charge, transferred from intercalant molecules to the matrix layer, decreases with the increase in intercalant content in interlayer spaces

  8. Silica intercalated crystalline zirconium phosphate-type materials

    NARCIS (Netherlands)

    1988-01-01

    The present invention relates to intercalated crystalline zirconium phosphate-types compositions wherein the interlayers of said composition have been intercalated with three-dimensional silicon oxide pillars whereby the pillars comprise at least two silicon atom layers parallel to the clay

  9. Intercalated compounds of niobium and tantalum dicalcogenides

    International Nuclear Information System (INIS)

    Wypych, F.

    1988-01-01

    The synthesis of niobium and tantalum lamellar compounds and its intercalated derivatives is described. The intercalated compounds with lithium, with alkaline metal and with metals of the first-row transition are studied, characterized by X-ray diffraction. (C.G.C.) [pt

  10. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa; Hood, Samantha N.; Shoaee, Safa; Schroeder, Bob C.; McCulloch, Iain; Kassal, Ivan; Neher, Dieter; Durrant, James R.

    2017-01-01

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  11. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa

    2017-08-04

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  12. K-intercalated carbon systems: Effects of dimensionality and substrate

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-06-01

    Density functional theory is employed to investigate the electronic properties of K-intercalated carbon systems. Young\\'s modulus indicates that the intercalation increases the intrinsic stiffness. For K-intercalated bilayer graphene on SiC(0001) the Dirac cone is maintained, whereas a trilayer configuration exhibits a small splitting at the Dirac point. Interestingly, in contrast to many other intercalated carbon systems, the presence of the SiC(0001) substrate does not suppress but rather enhances the charge carrier density. Reasonably high values are found for all systems, the highest carrier density for the bilayer. The band structure and electron-phonon coupling of free-standing K-intercalated bilayer graphene points to a high probability for superconductivity in this system. © 2012 Europhysics Letters Association.

  13. Uniform second Li ion intercalation in solid state ϵ-LiVOPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wangoh, Linda W.; Quackenbush, Nicholas F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Sallis, Shawn [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lin, Yuh-Chieh; Ong, Shyue Ping [Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive 0448, La Jolla, California 92093 (United States); Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley [NECCES, Binghamton University, Binghamton, New York 13902 (United States); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lee, Tien-Lin; Schlueter, Christoph [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Piper, Louis F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2016-08-01

    Full, reversible intercalation of two Li{sup +} has not yet been achieved in promising VOPO{sub 4} electrodes. A pronounced Li{sup +} gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO{sub 4} cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li{sup +} gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li{sup +} intercalation is a prerequisite for the formation of intermediate phases Li{sub 1.50}VOPO{sub 4} and Li{sub 1.75}VOPO{sub 4}. The evolution from LiVOPO{sub 4} to Li{sub 2}VOPO{sub 4} via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  14. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2012-01-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young's modulus suggests that Li

  15. The influence of hydrogen intercalation on inner pressure of Ni/MH battery during fast charge

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianzhen; Wu, Feng; Hu, Daozhong; Chen, Shi; Mao, Licai; Wang, Guoqing [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081 (China)

    2006-10-20

    Gaseous hydrogen is confirmed to be the main component and primarily responsible for the inner pressure rise inside the 8-Ah Ni/MH batteries during fast charge. Based on a temperature-dependent pressure model proposed in this work, the kinetic characteristics of the hydrogen evolution were investigated. The overpotential and exchange current density were obtained by fitting the presented equation to the experimental data. Moreover, the profiles of hydrogen concentration during fast charge was further modeled and calculated according to the proposed mathematical model of hydrogen intercalation. It is indicated that diffusion step controls the fast charge performances and the higher the charge rate is, the more quickly the negative electrode attains to the maximum surface intercalation fraction, and however, the calculated results also show that further charge can reduce the difference of charge efficiency among the various rate during fast charge. Numerical investigations also reveal that the increase of diffusion coefficient and decrease of the particle size can efficiently improve the characteristics of fast charge, respectively. (author)

  16. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    Science.gov (United States)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  17. Connection of indicator of sodium burning in enclosed area

    Energy Technology Data Exchange (ETDEWEB)

    Enenkl, V

    1975-01-15

    The connection is described of an indicator of sodium burning in a closed area. The air and combustion product mixture is sucked by a pump through a pipe from the steam generator. Following possible aftercooling it is passed to a hermetically sealed vessel with distilled water. Fitted in the vessel are electrodes wired to a galvanometer. The air-sodium combustion product mixture is directed to the bottom of the vessel and bubbles through the distilled water. Sodium oxide contained in the mixture dissolves in the water and forms an electrolytic solution. The voltage produced at the electrodes may be indicated by the galvanometer.

  18. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen

    2016-05-26

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  19. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen

    2017-01-08

    It is of technological interest to achieve quasi-freestanding graphene on a substrate. A possible approach is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which is in agreement with experiments1, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore effectively decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  20. Mechanism of Si intercalation in defective graphene on SiC

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2012-01-01

    Previously reported experimental findings on Si-intercalated graphene on SiC(0001) seem to indicate the possibility of an intercalation process based on the migration of the intercalant through atomic defects in the graphene sheet. We employ density

  1. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT

    International Nuclear Information System (INIS)

    Lim, Cheolwoong; Yan Bo; Yin Leilei; Zhu Likun

    2012-01-01

    Highlights: ► The microstructure of LIB electrodes was obtained by X-ray micro/nano-CT. ► We studied diffusion-induced stresses based on realistic 3D microstructures. ► Stresses depend on geometric characteristics of electrode particle. ► Stresses in a real particle are much higher than those in a spherical particle. - Abstract: Lithium ion batteries experience diffusion-induced stresses during charge and discharge processes which can cause electrode failure in the form of fracture. Previous diffusion-induced stress models and simulations are mainly based on simple active material particle structures, such as spheres and ellipsoids. However, the simple structure model cannot reveal the stress development in a real complex lithium ion battery electrode. In this paper, we studied the diffusion-induced stresses numerically based on a realistic morphology of reconstructed particles during the lithium ion intercalation process. The morphology of negative and positive active materials of a lithium ion battery was determined using X-ray micro/nano computed tomography technology. Diffusion-induced stresses were simulated at different C rates under galvonostatic conditions and compared with spherical particles. The simulation results show that the intercalation stresses of particles depend on their geometric characteristics. The highest von Mises stress and Tresca stress in a real particle are several times higher than the stresses in a spherical particle with the same volume.

  2. Selective coal mining of intercalated lignite deposits

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, R [Kolubara-Projekt, Lazarevac (Yugoslavia)

    1991-01-01

    Describes selective coal mining in the Tamnava-Istocno Polje coal surface coal mine (Yugoslavia), designed for an annual coal production of 11.4 Mt. Until 1991, this mine exploited one thick lignite seam, without spoil intercalations, using a bucket wheel excavator-conveyor-spreader system both for coal mining and removal of overburden. In the future, several spoil intercalations of up to 1.0 m and thicker will appear with a total volume of 22 million m{sup 3}. These intercalations have to be selectively excavated in order to guarantee the calorific value of coal for the Nikola Tesla power plant. Computer calculations were carried out to determine the decrease in excavator coal production due to selective mining of spoil strata. Calculations found that the annual surface mine capacity will be lower by at most 9%, depending on thickness of spoil intercalations. The useful operation time of excavators will be reduced by 98 hours per year. The planned annual coal production will nevertheless be fulfilled. 3 refs.

  3. Wustite-based photoelectrodes with lithium, hydrogen, sodium, magnesium, manganese, zinc and nickel additives

    Science.gov (United States)

    Carter, Emily Ann; Toroker, Maytal Caspary

    2017-08-15

    A photoelectrode, photovoltaic device and photoelectrochemical cell and methods of making are disclosed. The photoelectrode includes an electrode at least partially formed of FeO combined with at least one of lithium, hydrogen, sodium, magnesium, manganese, zinc, and nickel. The electrode may be doped with at least one of lithium, hydrogen, and sodium. The electrode may be alloyed with at least one of magnesium, manganese, zinc, and nickel.

  4. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.

    Science.gov (United States)

    Wu, Liqiong; Li, Weiwei; Li, Peng; Liao, Shutian; Qiu, Shengqiang; Chen, Mingliang; Guo, Yufen; Li, Qi; Zhu, Chao; Liu, Liwei

    2014-04-09

    A facile and high-yield approach to the preparation of few-layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage-1 H2SO4-graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (papers made of the FLG flakes retain excellent conductivity (≈24,500 S m(-1)). Three-dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self-sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g(-1) at a current density of 0.5 A g(-1), retaining 90% capacitance after 1000 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. First principle study of sodium decorated graphyne

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com [Assam University, Silchar (India); Bhattacharya, Barnali [Assam University, Silchar (India); Seriani, Nicola [The Abdus Salam ICTP, Trieste (Italy)

    2015-11-05

    Highlights: • Presence of Na decreases the stability of the system. • Na-decorated graphyne compounds are metallic and might be used in electronics. • The sodium-adsorbed graphyne can be used as electrodes in Na-ion battery. - Abstract: We present first-principles calculations of the electronic properties of Na-decorated graphyne. This structure of the graphyne family is a direct band gap semiconductor with a band gap of 0.44 eV in absence of sodium, but Na-decorated graphyne compounds are metallic, and can then be employed as carbon-based conductors. Metallization is due to charge donation from sodium to carbon. Pristine graphyne is more stable than Na-decorated graphyne, therefore is seems probable that, if this material should be employed as electrode in Na-ion batteries, it would lead to the formation of metallic sodium rather than well dispersed sodium ions. On the other side, this property might be useful if graphyne is employed in water desalination. Finally, the abrupt change from a semiconducting to a metallic state in presence of a small amount of sodium might be exploited in electronics, e.g. for the production of smooth metal–semiconductor interfaces through spatially selective deposition of sodium.

  6. Adsorption of Phosphate Ion in Water with Lithium-Intercalated Gibbsite

    OpenAIRE

    Riwandi Sihombing; Yuni Krisyuningsih Krisnandi; Rahma Widya; Siti Zahrotul Luthfiyah; Rika Tri Yunarti

    2015-01-01

    In order to enhance adsorption capacity of gibbsite (Al(OH)3 as an adsorbent for the adsorption of phosphate in water, gibbsite was modified through lithium-intercalation. The purification method of Tributh and Lagaly was applied prior to intercalation. The Li-Intercalation was prepared by the dispersion of gibbsite into LiCl solution for 24 hours. This intercalation formed an cationic clay with the structure of [LiAl2(OH)6]+ and exchangeable Cl- anions in the gibbsite interlayer. A phosphate...

  7. Structural effects on the electronic characteristics of intramolecularly intercalated alkali-rubrene complexes

    International Nuclear Information System (INIS)

    Li, Tsung-Lung; Lu, Wen-Cai

    2016-01-01

    The geometric and electronic structures of neutral monolithium- and monosodium-rubrene (Li 1 Rub and Na 1 Rub) isomers are investigated and compared with monopotassium-rubrene (K 1 Rub). Based on the alkali binding site, all isomers of these alkali-rubrene complexes can be subdivided into two types: intramolecularly intercalated and extramolecularly adsorbed. The minimum-energy Li 1 Rub and Na 1 Rub are intercalated structures, whereas the minimum-energy K 1 Rub is adsorbed. The fact that the intercalated Li 1 Rub and Na 1 Rub structures are energetically favorable over the adsorbed ones can be explained by two energy rules. First, “double” proximity of the intercalating alkali element to a pair of phenyl side groups enormously reduces the total energy. Second, accommodation of a minuscule intercalant does not significantly deform the carbon frame and, thus, increases the energy only by a small amount. Additionally, the peculiar effects of intramolecular intercalation on the electronic structures of molecules are also studied in this simulation of monoalkali intercalation. In the monoalkali-intercalated rubrene complex, only one of the two pairs of phenyl groups of rubrene is intercalated, intentionally leaving another pair pristine, which facilitates the comparison of electronic structures between the intercalated and pristine pairs of phenyl side groups in a single molecule. The uniformity of chemical environments of the phenyl groups of the intercalated Li 1 Rub/Na 1 Rub is deteriorated by the incorporation of the intercalant, and leads to their spectral characteristics in contrast to K 1 Rub. In particular, the introduction of the intercalant promotes the carbon 2p orbitals of the intercalated phenyl pair to take part in the electronic structures of the HOMO and LUMO peaks of Li 1 Rub/Na 1 Rub. The unpaired electron in the HOMO is delocalized over the backbone with higher probability of distributing over the central two fused rings than over the outer two

  8. New kaolinite phases expanded through intercalation with potassium acetate

    International Nuclear Information System (INIS)

    Frost, R.L.; Kristof, J.; Kloprogge, J.T.

    1998-01-01

    Full text: Changes in the hydroxyl surfaces of potassium acetate-intercalated kaolinite have been studied over the ambient to predehydroxylation temperature range using a combination of X-ray diffraction and Raman spectroscopy. Upon intercalation, the kaolinite expanded along the c-axis direction to 13.88 Angstroms. Upon heating the intercalation complex over the 50 to 300 deg C range, X-ray diffraction shows the existence of three additional intercalation phases with d-spacings of 9.09, 9.60, and 11.47 Angstroms. The amount of each phase is temperature dependent. These expansions are reversible and upon cooling the intercalation complex returned to its original spacing. The 13.88 Angstroms phase only existed in the presence of water. It is proposed that the expanded kaolinite intercalation phases result from the orientation of the acetate within the intercalation complex. The Raman spectra of the hydroxyl-stretching region (Frost and van der Gaast, 1997) of potassium acetate-intercalated kaolinite has been obtained under an atmosphere of both air and nitrogen using a thermal stage over the 25 to 300 deg C temperature range (Johansson et al., 1998). Raman spectra of the C-C, C=O stretching and O-C-O bending modes show that at least two types of acetate are present in the intercalation complex. These are assigned to two different orientations of the acetate. At 25 deg C, a new band at 3606 cm -1 attributed to the inner surface hydroxyl hydrogen bonded to the acetate ion is observed with a concomitant loss of intensity in the bands attributed to the inner surface hydroxyls (Frost and Kristof, 1997, Frost et al.,1997). Heating the intercalation complex to 50 deg C results in two hydroxyl-stretching frequencies at 3594 and 3604 cm -1 . This change in frequencies is ascribed to phase changes of the potassium acetate-intercalated kaolinite. At 100 deg C, the bands shift to 3600 and 3613 cm -1 . These shifts in frequencies are assigned to new kaolinite expanded phases. At

  9. Improved supercapacitor performance of MnO2-electrospun carbon nanofibers electrodes by mT magnetic field

    Science.gov (United States)

    Zeng, Zheng; Liu, Yiyang; Zhang, Wendi; Chevva, Harish; Wei, Jianjun

    2017-08-01

    This work reports on a finding of mT magnetic field induced energy storage enhancement of MnO2-based supercapacitance electrodes (magneto-supercapacitor). Electrodes with MnO2 electrochemically deposited at electrospun carbon nanofibers (ECNFs) film are studied by cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), and life cycle stability tests in the presence/absence of milli-Tesla (mT) magnetic fields derived by Helmholtz coils. In the presence of a 1.34 mT magnetic field, MnO2/ECNFs shows a magneto-enhanced capacitance of 141.7 F g-1 vs. 119.2 F g-1 (∼19% increase) with absence of magnetic field at a voltage sweeping rate of 5 mV s-1. The mechanism of the magneto-supercapacitance is discussed and found that the magnetic susceptibility of the MnO2 significantly improves the electron transfer of a pseudo-redox reaction of Mn(IV)/Mn(III) at the electrode, along with the magnetic field induced impedance effect, which may greatly enhance the interface charge density, facilitate electrolyte transportation, and improve the efficiency of cation intercalation/de-intercalation of the pseudocapacitor under mT-magnetic field exposure, resulting in enhancement of energy storage capacitance and longer charge/discharge time of the MnO2/ECNFs electrode without sacrificing its life cycle stability.

  10. Intercalation of paracetamol into the hydrotalcite-like host

    International Nuclear Information System (INIS)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-01-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg–Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals. - Graphical abstract: Molecular simulations showed disordered arrangement of paracetamol molecules in the interlayer; most of the interlayer water molecules are located near the hydroxide sheets.▪ Highlights: ► Paracetamol was intercalated in Mg–Al hydrotalcite-like host by rehydration/reconstruction procedure. ► Paracetamol phenolic groups interact with positively charged sites in hydroxide sheets. ► Molecular simulations showed disordered arrangement of guest molecules in the interlayer. ► Slower release of paracetamol intercalated in the hydrotalcite-like host was observed.

  11. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance

    Science.gov (United States)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Jiang, Quanguo

    2018-04-01

    Two-dimensional Ti3C2 MXene nanosheets were functionalized with phenylsulfonic groups derived from in situ generated diazonium ions by the corresponding amine. During the functionalization process, the aryl groups were attached onto the MXene surfaces in the form of strong MXene-aryl (Tisbnd Osbnd C) linkages. Simultaneously, the intercalation of diazonium ions enabled Ti3C2 multi-layers to be delaminated into separate few-layer nanosheets via weak sonication with low energy. As a result of chemical functionalization for MXene Ti3C2, the dispersibility was greatly improved and the specific surface area increased significantly. The grafted functional groups are still stable up to at least 200 °C upon thermogravimetric analysis measurements. With diazonium ions intercalating and electroactive groups grafting between-in MXene layers, the chemically functionalized Ti3C2 electrodes exhibited an enhanced supercapacitive performance, which acquired a specific capacitance more than double that of pristine Ti3C2 samples and excellent cycling stability (91% capacity retention after 10,000 cycles at 3 A g-1). This feasible modification scheme can be also extended to functionalize other types of MXenes materials with this or other aryl diazonium ions as surface modifiers and intercalants, thus offering scope for full potential applications of the new 2D materials.

  12. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    International Nuclear Information System (INIS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 °C, while the highest exothermic event in ZHN was at 366 °C, and in the LDH it was at 276 °C. Highlights: ► Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. ► ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. ► NH 3 molecules can be intercalated into ZHC. ► The amino group of amino acids limits the intercalation by ion-exchange.

  13. Manipulation of Dirac cones in metal-intercalated epitaxial graphene

    Science.gov (United States)

    Wang, Cai-Zhuang; Kim, Minsung; Tringides, Michael; Ho, Kai-Ming

    Graphene is one of the most attractive materials from both fundamental and practical points of view due to its characteristic Dirac cones. The electronic property of graphene can be modified through the interaction with substrate or another graphene layer as illustrated in few-layer epitaxial graphene. Recently, metal intercalation became an effective method to manipulate the electronic structure of graphene by modifying the coupling between the constituent layers. In this work, we show that the Dirac cones of epitaxial graphene can be manipulated by intercalating rare-earth metals. We demonstrate that rare-earth metal intercalated epitaxial graphene has tunable band structures and the energy levels of Dirac cones as well as the linear or quadratic band dispersion can be controlled depending on the location of the intercalation layer and density. Our results could be important for applications and characterizations of the intercalated epitaxial graphene. Supported by the U.S. DOE-BES under Contract No. DE-AC02-07CH11358.

  14. Mechanism of Si intercalation in defective graphene on SiC

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-10-01

    Previously reported experimental findings on Si-intercalated graphene on SiC(0001) seem to indicate the possibility of an intercalation process based on the migration of the intercalant through atomic defects in the graphene sheet. We employ density functional theory to show that such a process is in fact feasible and obtain insight into its details. By means of total energy and nudged elastic band calculations we are able to establish the mechanism on an atomic level and to determine the driving forces involved in the different steps of the intercalation process through atomic defects.

  15. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  16. Structural effects on the electronic characteristics of intramolecularly intercalated alkali-rubrene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tsung-Lung, E-mail: quantum@mail.ncyu.edu.tw [Department of Electrophysics, National Chia-Yi University, 300 Hsueh-Fu Road, Chiayi, 60004, Taiwan, ROC (China); Lu, Wen-Cai, E-mail: wencailu@jlu.edu.cn [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Physics, Qingdao University, Qingdao, Shandong 266071 (China); State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021 (China)

    2016-11-01

    The geometric and electronic structures of neutral monolithium- and monosodium-rubrene (Li{sub 1} Rub and Na{sub 1} Rub) isomers are investigated and compared with monopotassium-rubrene (K{sub 1} Rub). Based on the alkali binding site, all isomers of these alkali-rubrene complexes can be subdivided into two types: intramolecularly intercalated and extramolecularly adsorbed. The minimum-energy Li{sub 1} Rub and Na{sub 1} Rub are intercalated structures, whereas the minimum-energy K{sub 1} Rub is adsorbed. The fact that the intercalated Li{sub 1} Rub and Na{sub 1} Rub structures are energetically favorable over the adsorbed ones can be explained by two energy rules. First, “double” proximity of the intercalating alkali element to a pair of phenyl side groups enormously reduces the total energy. Second, accommodation of a minuscule intercalant does not significantly deform the carbon frame and, thus, increases the energy only by a small amount. Additionally, the peculiar effects of intramolecular intercalation on the electronic structures of molecules are also studied in this simulation of monoalkali intercalation. In the monoalkali-intercalated rubrene complex, only one of the two pairs of phenyl groups of rubrene is intercalated, intentionally leaving another pair pristine, which facilitates the comparison of electronic structures between the intercalated and pristine pairs of phenyl side groups in a single molecule. The uniformity of chemical environments of the phenyl groups of the intercalated Li{sub 1} Rub/Na{sub 1} Rub is deteriorated by the incorporation of the intercalant, and leads to their spectral characteristics in contrast to K{sub 1} Rub. In particular, the introduction of the intercalant promotes the carbon 2p orbitals of the intercalated phenyl pair to take part in the electronic structures of the HOMO and LUMO peaks of Li{sub 1} Rub/Na{sub 1} Rub. The unpaired electron in the HOMO is delocalized over the backbone with higher probability of

  17. Intercalation of alcohols in Ag sulfonates: topotactic behavior despite flexible layers.

    Science.gov (United States)

    Côté, Adrien P; Ferguson, Michael J; Khan, Kashif A; Enright, Gary D; Kulynych, Angela D; Dalrymple, Sean A; Shimizu, George K H

    2002-01-28

    This article presents the inaugural intercalation study of a layered metal sulfonate network. Silver triflate forms intercalation complexes with straight chain primary alcohols from ethanol (C(2)H(5)OH) to eicosanol (C(20)H(41)OH). Single-crystal data for the EtOH adduct, 1, are presented which show that the intercalation is coordinative to Ag. In contrast to many other layered hosts, no preheating of Ag triflate is required to liberate a coordination site for intercalation to take place, owing to the ability of the triflate ion to reorient. Crystal structure parameters for 1: C(4)H(6)F(6)S(2)O(7)Ag(2), a = 5.345(7) A, b = 11.310(2) A, c = 12.004(2) A, alpha = 116.87(1) degrees, beta = 90.46(1) degrees, gamma = 99.59(1) degrees, triclinic, space group P, Z = 2. Intercalate 1 presents the triflate ion in an unprecedented mu(5)-coordination mode. PXRD data on the family of complexes show that the intercalation is topotactic, as verified by the linear increase in d-spacing and calculated c-axis lengths for the intercalates, with increasing chain length. The data also show that the alcohol intercalates adopt an interdigitated rather than bilayer arrangement.

  18. Effectiveness of Co intercalation between Graphene and Ir(1 1 1)

    Science.gov (United States)

    Carlomagno, I.; Drnec, J.; Scaparro, A. M.; Cicia, S.; Mobilio, S.; Felici, R.; Meneghini, C.

    2018-04-01

    Graphene can be used to avoid the oxidation of metallic films. This work explores the effectiveness of such stabilizing effect on Cobalt (Co) films intercalated between Graphene and Ir(1 1 1). After intercalation at 300 °C, two Co films are exposed to ambient pressure and investigated using Co-K edge X-ray Absorption Near Edge Spectroscopy. The formation of a disordered oxide phase is observed, and associated to the presence of some non-intercalated Co. Further annealing at 500 °C causes the oxide reduction to metallic Co which further intercalates below the Graphene. Once the intercalation is completed, Graphene prevents the Co from oxidation under ambient pressure conditions.

  19. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  20. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Yuan, E-mail: cyho@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Wang, Hong-Wen [Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan (China)

    2015-12-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP{sub 250} as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  1. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    International Nuclear Information System (INIS)

    Ho, Ching-Yuan; Wang, Hong-Wen

    2015-01-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP 250 as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  2. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    Science.gov (United States)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  3. Highly n -doped graphene generated through intercalated terbium atoms

    Science.gov (United States)

    Daukiya, L.; Nair, M. N.; Hajjar-Garreau, S.; Vonau, F.; Aubel, D.; Bubendorff, J. L.; Cranney, M.; Denys, E.; Florentin, A.; Reiter, G.; Simon, L.

    2018-01-01

    We obtained highly n -type doped graphene by intercalating terbium atoms between graphene and SiC(0001) through appropriate annealing in ultrahigh vacuum. After terbium intercalation angle-resolved-photoelectron spectroscopy (ARPES) showed a drastic change in the band structure around the K points of the Brillouin zone: the well-known conical dispersion band of a graphene monolayer was superposed by a second conical dispersion band of a graphene monolayer with an electron density reaching 1015cm-2 . In addition, we demonstrate that atom intercalation proceeds either below the buffer layer or between the buffer layer and the monolayer graphene. The intercalation of terbium below a pure buffer layer led to the formation of a highly n -doped graphene monolayer decoupled from the SiC substrate, as evidenced by ARPES and x-ray photoelectron spectroscopy measurements. The band structure of this highly n -doped monolayer graphene showed a kink (a deviation from the linear dispersion of the Dirac cone), which has been associated with an electron-phonon coupling constant one order of magnitude larger than those usually obtained for graphene with intercalated alkali metals.

  4. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  5. PYRENE INTERCALATING NUCLEIC ACIDS WITH A CARBON LINKER

    DEFF Research Database (Denmark)

    Østergaard, Michael E.; Wamberg, Michael Chr.; Pedersen, Erik Bjerregaard

    2011-01-01

    geminally attached. Fluorescence studies of this intercalating nucleic acid with the pyrene moieties inserted as a bulge showed formation of an excimer band. When a mismatch was introduced at the site of the intercalator, an excimer band was formed for the destabilized duplexes whereas an exciplex band...

  6. Intercalation of paracetamol into the hydrotalcite-like host

    Science.gov (United States)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-12-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.

  7. Layer-Tunable Phosphorene Modulated by the Cation Insertion Rate as a Sodium-Storage Anode.

    Science.gov (United States)

    Huang, Zhaodong; Hou, Hongshuai; Zhang, Yan; Wang, Chao; Qiu, Xiaoqing; Ji, Xiaobo

    2017-09-01

    Liquid phase exfoliation of few-layer phosphorene (FL-P) is extensively explored in recent years. Nevertheless, their deficiencies such as ultralong sonication time, limited flake size distribution, and uncontrollable thicknesses are major hurdles for the development of phosphorene-based materials. Herein, electrochemical cationic intercalation has been introduced to prepare phosphorene, through which large-area FL-P without surface functional groups can be efficiently attained (less than 1 h). More importantly, its layer number (from 2 to 11 layers) can be manipulated by changing the applied potential. The as-obtained phosphorene delivers superior sodium-storage performances when directly utilized as an anode material in sodium-ion batteries. This electrochemical cation insertion method to prepare phosphorene should greatly facilitate the development of phosphorene-based technologies. Moreover, this work provides the possibility for the scalable preparation of monolayer 2D materials by exploring intercalation ions. Additionally, the successful electrochemical exfoliation of phosphorene can promote the application of electrochemical exfoliation in other 2D materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synchrotron x-ray diffraction studies of the structural properties of electrode materials in operating battery cells

    International Nuclear Information System (INIS)

    Thurston, T.R.; Jisrawi, N.M.; Mukerjee, S.; Yang, X.Q.; McBreen, J.; Daroux, M.L.; Xing, X.K.

    1996-01-01

    Hard x rays from a synchrotron source were utilized in diffraction experiments which probed the bulk of electrode materials while they were operating in situ in battery cells. Two technologically relevant electrode materials were examined; an AB 2 -type anode in a nickel endash metal endash hydride cell and a LiMn 2 O 4 cathode in a Li-ion open-quote open-quote rocking chair close-quote close-quote cell. Structural features such as lattice expansions and contractions, phase transitions, and the formation of multiple phases were easily observed as either hydrogen or lithium was electrochemically intercalated in and out of the electrode materials. The relevance of this technique for future studies of battery electrode materials is discussed. copyright 1996 American Institute of Physics

  9. Synthesis of poly(sodium 4-styrenesulfonate) functionalized graphene/cetyltrimethylammonium bromide (CTAB) nanocomposite and its application in electrochemical oxidation of 2,4-dichlorophenol

    International Nuclear Information System (INIS)

    Li, Jianjun; Miao, Dandan; Yang, Ran; Qu, Lingbo; Harrington, Peter de B.

    2014-01-01

    Poly(sodium 4-styrenesulfonate) (PSS) intercalated graphene (PSS-GN) was prepared via in situ reduction of exfoliated graphite oxides in the presence of PSS, and then mixed with CTAB to form a stable PSS-GN-CTAB nanocomposite through electrostatic self-assembly. The prepared composites were characterized by Fourier transform infrared spectrometry (FT-IR), ultraviolet and visible spectrometry (UV–vis) and X-ray diffraction (XRD). A novel 2,4-dichlorophenol (2,4-DCP) electrochemical sensor was fabricated based on a PSS-GN-CTAB modified glassy carbon electrode. It was found that the composite of PSS-GN-CTAB exhibited excellent electrocatalytic activity towards the oxidation of 2,4-DCP. Linear sweep voltammetry (LSV) was used for the quantitative determination of 2,4-DCP. Under the optimum conditions, the peak current of 2,4-DCP was proportional to its concentration at the range of 1.0 × 10 −8 to 2.0 × 10 −6 mol L −1 with a detection limit 2.0 × 10 −9 mol L −1 . The newly developed method was successfully applied for the determination of 2,4-DCP in the waste water with good recoveries. The proposed electrode system represents a new platform for designing excellent electrochemical sensors with water-dispersed graphene

  10. Structural characterization of hexadecyltrimethylammonium-smectite composites and their potentiometric electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Cubuk, Osman [Department of Chemistry, Faculty of Arts and Sciences, Erzincan University, 24100 Erzincan (Turkey); Caglar, Bulent, E-mail: bcaglar55@gmail.com [Department of Chemistry, Faculty of Arts and Sciences, Erzincan University, 24100 Erzincan (Turkey); Topcu, Cihan; Coldur, Fatih; Sarp, Gokhan [Department of Chemistry, Faculty of Arts and Sciences, Erzincan University, 24100 Erzincan (Turkey); Tabak, Ahmet [Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100 Rize (Turkey); Sahin, Erdal [Department of Chemistry, Faculty of Arts and Sciences, Erzincan University, 24100 Erzincan (Turkey)

    2015-05-30

    Graphical abstract: - Highlights: • Surfactant cations intercalated with different molecular arrangements into smectite layers. • The electrophoretic mobility values indicate that excess surfactant loadings also create positive charges on the organosmectites surfaces. • A novel potentiometric SCN{sup −} selective electrode was fabricated based on modified smectite. - Abstract: Organosmectites were prepared by the intercalation of hexadecyltrimethylammonium cations at various ratios into interlayer of Unye smectite. Structural, thermal, morphological and textural properties of the synthesized organosmectites were characterized. Afterwards, a novel potentiometric PVC-membrane thiocyanate selective electrode was prepared based on the obtained hexadecyltrimethylammonium modified smectites as electroactive material. The basal spacing values of organosmectites were observed in the range of 15.61 and 35.50 Å. Powder X-ray diffraction data show that the surfactant cations penetrated into the smectite layers with different molecular arrangements. Modification of smectite with hexadecyltrimethylammonium led to appreciable decreases in the intensities of the FTIR bands at 3402 and 1635 cm{sup −1} and the new characteristic vibrational bands at 2927, 2850, 1472 and 722 cm{sup −1} originating from the surfactant molecules appeared. The thermal analysis data showed that the decomposition of surfactant species occurred in the temperature range of 170–720 °C and the amount of dehydrated water gradually decreased with the increase in surfactant amount. The intercalation of surfactant species within the gallery spacing led gradually to smaller surface areas. In addition, the electrophoretic mobility values indicate that excess surfactant loadings also generate positive charges on the organosmectite surfaces. The most convenient membrane composition resulting in the best potentiometric performance was investigated. The optimum membrane composition was determined to

  11. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen; Schwingenschlö gl, Udo

    2016-01-01

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory

  12. Reaction of nitriles intercalation in tantalum pentachloride complexes with amines

    International Nuclear Information System (INIS)

    Glushkova, M.A.; Chumaevskij, N.A.; Khmelevskaya, L.V.; Ershova, M.M.; Buslaev, Yu.A.

    1987-01-01

    Data on the study of aceto-, propio- and benzonitrile intercalation in TaCl 5 complexes with diethyl- and triethylamines in CCl 4 solution are discussed. Using the methods of IR and Raman spectroscopy it has been established that it is the nature of ligand, and not nitrile intercalated in the complex, that affects greatly the composition of final products. In contrast to acetonitrile, intercalation in the complex of propio- and benzonitriles is observed already at room temperature. On the basis of spectral data a supposition is made that carbon tetrachloride used as a solvent accelerates the reaction of nitrile intercalation and promotes their deprotonation in the presence of aprotonic amine

  13. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    International Nuclear Information System (INIS)

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-01-01

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T c can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor

  14. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  15. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen; Schwingenschlö gl, Udo

    2017-01-01

    It is of technological interest to achieve quasi-freestanding graphene on a substrate. A possible approach is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) is investigated using density functional theory

  16. The cation-deficient Ruddlesden-Popper oxysulfide Y2Ti2O5S2 as a layered sulfide: topotactic potassium intercalation to form KY2Ti2O5S2.

    Science.gov (United States)

    Rutt, Oliver J; Hill, Timothy L; Gál, Zoltán A; Hayward, Michael A; Clarke, Simon J

    2003-12-01

    Potassium intercalation into the cation-deficient n = 2 Ruddlesden-Popper oxysulfide Y(2)Ti(2)O(5)S(2) to form KY(2)Ti(2)O(5)S(2) has been carried out by reaction of the oxysulfide with potassium vapor in sealed metal tubes at 400 degrees C, potassium naphthalide in THF at 50 degrees C, or potassium in liquid ammonia at temperatures as low as -78 degrees C. Insertion of potassium is topotactic, and although a site 12-coordinate by oxide ions is vacant in the perovskite-type oxide slabs of the structure, potassium is too large to enter this site via the 4-coordinate window, and instead enters the rock-salt-type sulfide layers of the structure which necessitates a 30% increase in the lattice parameter c normal to the layers. In contrast with one of the sodium intercalates of Y(2)Ti(2)O(5)S(2) (beta-NaY(2)Ti(2)O(5)S(2)) in which sodium occupies a tetrahedral site in the sulfide layers, potassium favors an 8-coordinate site which necessitates a relative translation of adjacent oxide slabs. KY(2)Ti(2)O(5)S(2) is tetragonal: P4/mmm, a = 3.71563(4) A, c = 14.8682(2) A (at 298 K), Z = 1. Although the resistivity (3.4(1) x 10(3) Omega cm) is larger than would be expected for a metal, temperature independent paramagnetism dominates the magnetic susceptibility, and the material is electronically very similar to the analogous sodium intercalate beta-NaY(2)Ti(2)O(5)S(2) which features reduced-titanium-containing oxide layers of very similar geometry and electron count.

  17. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    Science.gov (United States)

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    Science.gov (United States)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β″-Al 2O 3 solid electrolyte at elevated temperatures (typically 300-350 °C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

  19. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    2010-01-01

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β''-Al 2 O 3 solid electrolyte at elevated temperatures (typically 300-350 C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (author)

  20. Influence of Laurolactam Content on the Clay Intercalation of Polyamide 6,12/Clay Nanocomposites Synthesized by Open Ring Anionic Polymerization

    Directory of Open Access Journals (Sweden)

    E. N. Cabrera Álvarez

    2012-01-01

    Full Text Available In situ anionic homo- and copolymerization of caprolactam (CL and laurolactam (LL with sodium montmorillonite clay (NaMMT was carried out using two different initiators, sodium caprolactamate (CLNa and caprolactam magnesium bromide (CLMgBr. Degree of conversion and final molecular weight were used to assess the advancement and efficiency of the polymerization reaction and X-ray diffraction and electron microscopy were used to evaluate the sodium montmorillonite clay intercalation/exfoliation. The use of CLNa as initiator produced a higher conversion degree and molecular weight than the use of CLMgBr. Through DSC, it was observed that CLNa and CLMgBr tended to produce random and block copolymer structures, respectively, and either random or block, this eventually has an effect on the clay dispersion within the polymer matrix. In all cases, increasing the LL content produced a decrease in the conversion degree and in the molecular weight of the resulting polymer.

  1. Materialographic preparation of lithium-carbon intercalation compounds; Materialographische Praeparation von Lithium-Kohlenstoff-Einlagerungsverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Druee, Martin; Seyring, Martin; Grasemann, Aaron [Jena Univ. (Germany). Otto Schott Institute of Materials Research; Rettenmayr, Markus [Center for Energy and Environmental Chemistry, Jena (Germany)

    2016-12-15

    The materialographic investigation of anode materials for rechargeable lithium ion batteries is a significant step in the understanding and development of electrode materials, but made dramatically more difficult due to the high reactivity of the materials involved. In this work a method is presented which permits the metallographic preparation of the lithium-carbon intercalation compounds used as anode materials in today's rechargeable lithium ion batteries, and which allows the details of their microstructures to be contrasted. After classic, but absolutely water free, preparation in a protective gas atmosphere, the final stage of preparation is carried out using both ion beam polishing and manual polishing on a stationary polishing disc, whereby no significant differences of the quality of the microstructural images obtained is apparent.

  2. Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions.

    Science.gov (United States)

    Mitzi, David B; Medeiros, David R; Malenfant, Patrick R L

    2002-04-22

    Crystals of several new hybrid tin(II) iodide-based perovskites, involving 2,3,4,5,6- pentafluorophenethylammonium or phenethylammonium cation bilayers and intercalated aryl or perfluoroaryl molecules, were grown by slow evaporation of a methanol solution containing the hybrid perovskite and the intercalating species. The (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) structure was solved at -75 degrees C in a monoclinic C2/c subcell [a = 41.089(12) A, b = 6.134(2) A, c = 12.245(3) A, beta = 94.021(5) degrees, Z = 4] and consists of sheets of corner-sharing distorted SnI(6) octahedra separated by bilayers of pentafluorophenethylammonium cations. The intercalated benzene molecules form a single well-ordered layer interposed between adjacent fluoroaryl cation layers. The corresponding hybrid with an unfluorinated organic cation and fluorinated intercalating molecule, (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)), is isostructural [a = 40.685(4) A, b = 6.0804(6) A, c = 12.163(1) A, beta = 93.136(2) degrees, Z = 4]. For each intercalated system, close C...C contacts (3.44-3.50 A) between the aromatic cation and the intercalated molecule are indicative of a significant face-to-face interaction, similar to that found in the complex C(6)H(6).C(6)F(6). Crystal growth runs with the organic cation and prospective intercalating molecule either both fluorinated or both unfluorinated did not yield stable intercalated compounds, demonstrating the significance of fluoroaryl-aryl interactions in the current intercalated structures. Thermal analysis of (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) and (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)) crystals yields, in addition to the characteristic transitions of the parent perovskite, endothermic transitions [12.6(5) and 32.1(8) kJ/mol, respectively] with an onset at 145 degrees C and a weight loss corresponding to the complete loss of the intercalated molecule. The relatively high deintercalation temperature (well above the boiling point of

  3. Multiphysics Modelling of Sodium Sulfur Battery

    Science.gov (United States)

    Mason, Jerry Hunter

    Due to global climate change and the desire to decrease greenhouse gas emissions, large scale energy storage has become a critical issue. Renewable energy sources such as wind and solar will not be a viable energy source unless the storage problem is solved. One of the practical and cost effective solutions for this problem is sodium sulfur batteries. These batteries are comprised of liquid electrode materials suspended in porous media and operate at relatively high temperatures (>300°C). The sodium anode and the sulfur/sodium-polysulfide cathode are separated by a solid electrolyte made of beta-alumina or NASICON material. Due to the use of porous materials in the electrodes, capillary pressure and the combination of capillary action and gravity become important. Capillary pressure has a strong dependence on the wetting phase (liquid electrode material) saturation; therefore sharp concentration gradients can occur between the inert gas and the electrode liquid, especially within the cathode. These concentration gradients can have direct impacts on the electrodynamics of the battery as they may produce areas of high electrical potential variation, which can decrease efficiency and even cause failures. Then, thermal management also becomes vital since the electrochemistry and material properties are sensitive to temperature gradients. To investigate these phenomena in detail and to attempt to improve upon battery design a multi-dimensional, multi-phase code has been developed and validated in this study. Then a porous media flow model is implemented. Transport equations for charge, mass and heat are solved in a time marching fashion using finite volume method. Material properties are calculated and updated as a function of time. The porous media model is coupled with the continuity equation and a separate diffusion equation for the liquid sodium in the melt. The total mass transport model is coupled with charge transport via Faraday's law. Results show that

  4. Adsorption of Phosphate Ion in Water with Lithium-Intercalated Gibbsite

    Directory of Open Access Journals (Sweden)

    Riwandi Sihombing

    2015-12-01

    Full Text Available In order to enhance adsorption capacity of gibbsite (Al(OH3 as an adsorbent for the adsorption of phosphate in water, gibbsite was modified through lithium-intercalation. The purification method of Tributh and Lagaly was applied prior to intercalation. The Li-Intercalation was prepared by the dispersion of gibbsite into LiCl solution for 24 hours. This intercalation formed an cationic clay with the structure of [LiAl2(OH6]+ and exchangeable Cl- anions in the gibbsite interlayer. A phosphate adsorption test using Lithium-intercalated gibbsite (LIG resulted in optimum adsorption occurring at pH 4.5 with an adsorption capacity of 11.198 mg phosphate/g LIG which is equivalent with 1.04 wt% LIG. The adsorption capacity decreased with decreasing amounts of H2PO4-/HPO4- species in the solution. This study showed that LIG has potential as an adsorbent for phosphate in an aqueous solution with pH 4.5–9.5.

  5. Physical and chemical studies of superconduction properties of the intercalation compounds

    International Nuclear Information System (INIS)

    Eder, F.X.; Lerf, A.

    1980-01-01

    The superconducting properties of the intercalation compounds of layered dichalcogenides were studied. Our studies were concerned mainly to the alkali metal intercalation derivatives of TaS 2 and NbS 2 , and later on extended to the molecule intercalation compounds. The main difficulties with this class of superconductors result from varying material properties; these are therefore the subject of broad intensity in our investigations. The results received on the physical and chemical properties of the intercalation compounds is utilized for a phenomenological description of the factors mainly determining there superconducting properties. (orig.) [de

  6. Synthesis and stability of Br2, ICl and IBr intercalated pitch-based graphite fibers

    Science.gov (United States)

    Wessbecher, Dorothy E.; Forsman, William C.; Gaier, James R.

    1988-01-01

    The intercalation of halogens in pitch-based fiber is studied as well as the stability of the resultant intercalation compounds. It is found that IBr intercalates P-100 to yield a high-sigma GIC with attractive stability properties. During ICl intercalation, the presence of O2 interferes with the reaction and necessitates a higher threshold pressure for intercalation.

  7. HALLOYSITE INTERCALATION OF NORTHWEST ANATOLIA

    Directory of Open Access Journals (Sweden)

    Bülent BAŞARA

    2015-11-01

    Full Text Available In this study, the representative samples were taken from the halloysite deposits located in Çanakkale-Balıkesir regions, in NW Anatolia. At first, the dehydration temperatures of the samples were determined after sample preparation and characterization studies. It was found that halloysite samples began to lose their interlayer waters at 50°C and continued up to 70°C. The intercalation studies were carried out on dehydrated samples by using ethylene glycol, potassium acetate, dimethyl sulfoxide and formamide. Although there were negative results by ethylene glycol and potassium acetate, the satisfactory results were obtained by dimethyl sulfoxide and formamide. It was understood that the most effective reagent in terms of intercalation was formamide.

  8. Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates

    International Nuclear Information System (INIS)

    Huang Li; Xu Wen-Yan; Que Yan-De; Mao Jin-Hai; Meng Lei; Pan Li-Da; Li Geng; Wang Ye-Liang; Du Shi-Xuan; Gao Hong-Jun; Liu Yun-Qi

    2013-01-01

    Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercalation, seven different metals have been successfully intercalated at the interface of graphene/Ru(0001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(0001) and on Ir(111), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications. (topical review - low-dimensional nanostructures and devices)

  9. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping

    Science.gov (United States)

    Hendershot, Jenna M.; O'Brien, Patrick J.

    2014-01-01

    Nucleotide flipping is a common feature of DNA-modifying enzymes that allows access to target sites within duplex DNA. Structural studies have identified many intercalating amino acid side chains in a wide variety of enzymes, but the functional contribution of these intercalating residues is poorly understood. We used site-directed mutagenesis and transient kinetic approaches to dissect the energetic contribution of intercalation for human alkyladenine DNA glycosylase, an enzyme that initiates repair of alkylation damage. When AAG flips out a damaged nucleotide, the void in the duplex is filled by a conserved tyrosine (Y162). We find that tyrosine intercalation confers 140-fold stabilization of the extrahelical specific recognition complex, and that Y162 functions as a plug to slow the rate of unflipping by 6000-fold relative to the Y162A mutant. Surprisingly, mutation to the smaller alanine side chain increases the rate of nucleotide flipping by 50-fold relative to the wild-type enzyme. This provides evidence against the popular model that DNA intercalation accelerates nucleotide flipping. In the case of AAG, DNA intercalation contributes to the specific binding of a damaged nucleotide, but this enhanced specificity comes at the cost of reduced speed of nucleotide flipping. PMID:25324304

  10. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    Science.gov (United States)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  11. One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries.

    Science.gov (United States)

    Li, Biao; Gao, Zhan; Wang, Dake; Hao, Qiaoyan; Wang, Yan; Wang, Yongkun; Tang, Kaibin

    2015-12-01

    Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g(-1) at 25 mA g(-1) up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g(-1) at 250 mA g(-1) up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g(-1) was maintained at 25 mA g(-1) after 115 cycles in the potential range of 2.9-0.5 V.

  12. Theological Implications of Markan Interpretative Intercalations

    Directory of Open Access Journals (Sweden)

    Mateusz Kusio

    2015-09-01

    Full Text Available This paper aims at evidencing the thesis that Markan interpretative intercalations are a narrative structure that manifests profound theological engagement of the evangelist. This device is defined as an entanglement of two storylines in the A1–B–A2 pattern which by using the notions of simultaneity, contrast, irony, similarity, etc. offers a wholly novel meaning of the stories. Six intercalations of the St Mark’s gospel – 3 : 20–35; 5 : 21–43; 6 : 7–31; 11 : 12–23; 14 : 1–11, 53–72 – merge different episodes with distinct theological purposes and as such cannot be reduced to the rank of a literary or redactional device. All of them are concerned with the most essential topics of the Markan theology, such as Christology, especially in relation to suffering, requirements of true discipleship, vision of the future ecclesiastical community. St Mark in his intercalations reveals his elaborated, clear-cut theology, as well as narrative ingenuity and mastery.

  13. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  14. Strain Lattice Imprinting in Graphene by C60 Intercalation at the Graphene/Cu Interface

    NARCIS (Netherlands)

    Monazami, Ehsan; Bignardi, Luca; Rudolf, Petra; Reinke, Petra

    2015-01-01

    Intercalation of C60 molecules at the graphene-substrate interface by annealing leads to amorphous and crystalline intercalated structures. A comparison of topography and electronic structure with wrinkles and moiré patterns confirms intercalation. The intercalated molecules imprint a local

  15. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de [Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24.020–150 (Brazil); Mercante, Luiza A. [Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, São Carlos, SP 13560 970 (Brazil); Soriano, Stéphane [Instituto de Física, Universidade Federal Fluminense, Niterói, RJ 24.210 346 (Brazil); Andruh, Marius [Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie nr. 23, Bucharest (Romania); Vieira, Méri D., E-mail: gqimeri@vm.uff.br [Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24.020–150 (Brazil); Vaz, Maria G.F., E-mail: mariavaz@vm.uff.br [Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24.020–150 (Brazil)

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.

  16. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials.

    Science.gov (United States)

    Acerce, Muharrem; Voiry, Damien; Chhowalla, Manish

    2015-04-01

    Efficient intercalation of ions in layered materials forms the basis of electrochemical energy storage devices such as batteries and capacitors. Recent research has focused on the exfoliation of layered materials and then restacking the two-dimensional exfoliated nanosheets to form electrodes with enhanced electrochemical response. Here, we show that chemically exfoliated nanosheets of MoS2 containing a high concentration of the metallic 1T phase can electrochemically intercalate ions such as H(+), Li(+), Na(+) and K(+) with extraordinary efficiency and achieve capacitance values ranging from ∼400 to ∼700 F cm(-3) in a variety of aqueous electrolytes. We also demonstrate that this material is suitable for high-voltage (3.5 V) operation in non-aqueous organic electrolytes, showing prime volumetric energy and power density values, coulombic efficiencies in excess of 95%, and stability over 5,000 cycles. As we show by X-ray diffraction analysis, these favourable electrochemical properties of 1T MoS2 layers are mainly a result of their hydrophilicity and high electrical conductivity, as well as the ability of the exfoliated layers to dynamically expand and intercalate the various ions.

  17. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    Science.gov (United States)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  18. On lunisolar calendars and intercalation schemes in Southeast Asia

    Science.gov (United States)

    Gislén, Lars

    2018-04-01

    This is a survey of different calendar intercalation schemes, mainly in Southeast Asia. The Thai and Burmese Calendars, superficially very similar, are shown to have quite different and interesting intercalation schemes. We also investigate similarities between the original Burmese Calendar and the Romakasiddhânta from India.

  19. In-SITU Raman Spectroscopy of Single Microparticle Li-Intercalation Electrodes

    Science.gov (United States)

    Dokko, Kaoru; Shi, Qing-Fang; Stefan, Ionel C.; Scherson, Daniel A.

    2003-01-01

    Modifications in the vibrational properties of a single microparticle of LiMn2O4 induced by extraction and subsequent injection of Li(+) into the lattice have been monitored in situ via simultaneous acquisition of Raman scattering spectra and cyclic voltammetry data in 1M LiC1O4 solutions in ethylene carbonate (EC):diethyl carbonate (DEC) mixtures (1:1 by volume). Statistical analyses of the spectra in the range 15 < SOD < 45%, where SOD represents the state of discharge (in percent) of the nominally fully charged material, i.e. lambda-MnO2, were found to be consistent with the coexistence of two distinct phases of lithiated metal oxide in agreement with information derived from in situ X-ray diffraction (XRD) measurements involving more conventional battery-type electrodes.

  20. Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine.

    Science.gov (United States)

    Hong, Seok-Min; Etacheri, Vinodkumar; Hong, Chulgi Nathan; Choi, Seung Wan; Lee, Ki Bong; Pol, Vilas G

    2017-06-07

    Fluorocarbon (C x F y ) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g -1 and 269 mAh g -1 in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g -1 ) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.

  1. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.

    Science.gov (United States)

    Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp

    2018-01-02

    Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polysulfide intercalated layered double hydroxides for metal capture applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  3. Sodium monitoring in the water and steam cycle of power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dudouit, P. [Ecole Nationale Superieure d' Electricite et de Mecanique, Nancy (France); Guillou, P.; Hostis, E. l' [Hach Ultra Analytics SA, Vesenaz (Switzerland)

    2006-11-15

    Today sodium concentration has become one of the most important indexes for quality control of water and steam at power plants; however, measurement of this parameter can be difficult in practice. The use of ion selective electrodes means that analyzers are sensitive to pH shifts, and constant exposure to very low concentrations of sodium ions in ultrapure water conditions can lead to electrode desensitization. In addition, there is a need to address drift through regular calibration. This paper discusses the technical challenges in low level sodium analysis and the required features for a practical and accurate analyzer to provide trouble free, sub {mu}g.kg{sup -1} (sub ppb) measurement. (orig.)

  4. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shen [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Xiao, Lifen [College of Chemistry, Central China Normal University, Wuhan 430079 China; Pacific Northwest National Laboratory, Richland WA 99352 USA; Sushko, Maria L. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Han, Kee Sung [Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Pacific Northwest National Laboratory, Richland WA 99352 USA; Yan, Mengyu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Liang, Xinmiao [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Mai, Liqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Feng, Jiwen [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Cao, Yuliang [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Ai, Xinping [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Yang, Hanxi [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Liu, Jun [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-12

    Hard carbon is one of the most promising anode materials for sodium-ion batteries, but the low coulombic efficiency is still a key barrier. In this paper we synthesized a series of nanostructured hard carbon materials with controlled architectures. Using a combination of in-situ XRD mapping, ex-situ NMR, EPR, electrochemical techniques and simulations, an “adsorption-intercalation” (A-I) mechanism is established for Na ion storage. During the initial stages of Na insertion, Na ions adsorb on the defect sites of hard carbon with a wide adsorption energy distribution, producing a sloping voltage profile. In the second stage, Na ions intercalate into graphitic layers with suitable spacing to form NaCx compounds similar to the Li ion intercalation process in graphite, producing a flat low voltage plateau. The cation intercalation with a flat voltage plateau should be enhanced and the sloping region should be avoided. Guided by this knowledge, non-porous hard carbon material has been developed which has achieved high reversible capacity and coulombic efficiency to fulfill practical application.

  5. A fundamental approach to better understand the lithium insertion mechanisms in electrode materials; Une approche fondamentale pour mieux comprendre les mecanismes d`insertion du lithium dans les materiaux d`electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier-Fourcade, J.; Branci, C.; Sarradin, J.; Jumas, J.C. [Montpellier-2 Univ., 34 (France). Laboratoire de Physicochimie de la Matiere Condensee

    1996-12-31

    The development of rechargeable lithium batteries with a high mass capacity, made with non-toxic and low cost materials is an important industrial challenge. Morphological and structural modifications occurring in the electrode materials during charge-output cycles should not lower the electrochemical characteristics and the cycling properties of the battery. Thus the structure of electrode materials must be sufficiently deformable and stable to support the constraints linked with lithium intercalation and de-intercalation (ions and electrons absorption/extraction). The aim of this work is to explain some characteristics (mass capacity, ions and electrons mobility, cycling) using the relation between some mechanisms of lithium insertion (sites occupation, lattice reduction mods) and the nature of atoms and chemical bonds (covalence, ionicity). This approach is developed on 2-D models of crystallized and vitreous sulfur compounds (CdI{sub 2} type) with a large inter-sheet distance, and on 3-D spinel models with a huge number of vacant sites. The method is based on a correlation between experimental studies (XAFS, DX, Moessbauer, XPS) and theoretical calculations and on the electronic and electrochemical characteristics. The model proposed should allow to improve materials in a predictive way (type of substitution) or to imagine new materials. (J.S.) 15 refs.

  6. A fundamental approach to better understand the lithium insertion mechanisms in electrode materials; Une approche fondamentale pour mieux comprendre les mecanismes d`insertion du lithium dans les materiaux d`electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier-Fourcade, J; Branci, C; Sarradin, J; Jumas, J C [Montpellier-2 Univ., 34 (France). Laboratoire de Physicochimie de la Matiere Condensee

    1997-12-31

    The development of rechargeable lithium batteries with a high mass capacity, made with non-toxic and low cost materials is an important industrial challenge. Morphological and structural modifications occurring in the electrode materials during charge-output cycles should not lower the electrochemical characteristics and the cycling properties of the battery. Thus the structure of electrode materials must be sufficiently deformable and stable to support the constraints linked with lithium intercalation and de-intercalation (ions and electrons absorption/extraction). The aim of this work is to explain some characteristics (mass capacity, ions and electrons mobility, cycling) using the relation between some mechanisms of lithium insertion (sites occupation, lattice reduction mods) and the nature of atoms and chemical bonds (covalence, ionicity). This approach is developed on 2-D models of crystallized and vitreous sulfur compounds (CdI{sub 2} type) with a large inter-sheet distance, and on 3-D spinel models with a huge number of vacant sites. The method is based on a correlation between experimental studies (XAFS, DX, Moessbauer, XPS) and theoretical calculations and on the electronic and electrochemical characteristics. The model proposed should allow to improve materials in a predictive way (type of substitution) or to imagine new materials. (J.S.) 15 refs.

  7. Organic electrode materials for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yanliang; Tao, Zhanliang; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Chemistry College, Nankai University, Tianjin (China)

    2012-07-15

    Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries

    International Nuclear Information System (INIS)

    Ogihara, Nobuhiro; Igarashi, Yoshiyuki; Kamakura, Ayumu; Naoi, Katsuhiko; Kusachi, Yuki; Utsugi, Koji

    2006-01-01

    In order to understand the properties of high-rate capability and cycleability for a disordered carbon negative electrode in LiPF 6 /PC based electrolyte solution, the cell performance tests with various rates and depth of discharges (DODs) has been studied by spectroscopic and electrochemical analyses. From the charge-discharge measurements, a surface carbon-edge redox reaction occurring between a carbonyl (C edge =O) and a lithium alkoxide (C edge -OLi) that delivers a large capacity was found fast and high cycleability at only shallow DOD (2.0-0.4 V). The limited or shallow charge-discharge cycling utilizing such facile and reversible action of the C edge =O/C edge -OLi of the disordered carbon is suited to an application for an negative electrode of asymmetric hybrid capacitors. A deep DOD discharge (2.0-0.0 V) revealed the existence of some complex processes involving a lithium cluster deposition at pores or microvoids as well as a lithium ion intercalation at graphene layers. The cluster deposition at pores was found to be relatively fast and reproducible. The lithium ion intercalation at graphenes and the subsequent cluster deposition at microvoids were found to be slow and degrade the cycleability after 100 cycles because of the accumulation of a thick and low-ion-conductive solid electrolyte interface (SEI) film on surface

  9. Alkali metal-refractory metal biphase electrode for AMTEC

    Science.gov (United States)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  10. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    Science.gov (United States)

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  11. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-09-01

    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  12. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  13. Hybrid n-Alkylamine Intercalated Layered Titanates for Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Yuan, H.; van den Nieuwenhuijzen, Karin Jacqueline Huberta; Lette, W.; Schipper, Dirk J.; ten Elshof, Johan E.

    2016-01-01

    The intercalation of different primary n-alkylamines in the structure of a layered titanate of the lepidocrocite type (H1.07Ti1.73O4) for application in high-temperature solid lubrication is reported. The intercalation process of the amines was explored by means of in situ small-angle X-ray

  14. Versatile and Tunable Transparent Conducting Electrodes Based on Doped Graphene

    KAUST Repository

    Mansour, Ahmed E.

    2016-11-25

    The continued growth of the optoelectronics industry and the emergence of wearable and flexible electronics will continue to place an ever increasing pressure on replacing ITO, the most widely used transparent conducting electrode (TCE). Among the various candidates, graphene shows the highest optical transmittance in addition to promising electrical transport properties. The currently available large-scale synthesis routes of graphene result in polycrystalline samples rife with grain boundaries and other defects which limit its transport properties. Chemical doping of graphene is a viable route towards increasing its conductivity and tuning its work function. However, dopants are typically present at the surface of the graphene sheet, making them highly susceptible to degradation in environmental conditions. Few-layers graphene (FLG) is a more resilient form of graphene exhibiting higher conductivity and performance stability under stretching and bending as contrasted to single-layer graphene. In addition FLG presents the advantage of being amenable bulk doping by intercalation. Herein, we explore non-covalent doping routes of CVD FLG, such as surface doping, intercalation and combination thereof, through in-depth and systematic characterization of the electrical transport properties and energy levels shifts. The intercalation of FLG with Br2 and FeCl3 is demonstrated, showing the highest improvements of the figure of merit of TCEs of any doping scheme, which results from up to a five-fold increase in conductivity while maintaining the transmittance within 3% of that for the pristine value. Importantly the intercalation yields TCEs that are air-stable, due to encapsulation of the intercalant in the bulk of FLG. Surface doping with novel solution-processed metal-organic molecular species (n- and p-type) is demonstrated with an unprecedented range of work function modulation, resulting from electron transfer and the formation of molecular surface dipoles. However

  15. Study on intercalation of ionic liquid into montmorillonite and its property evaluation

    International Nuclear Information System (INIS)

    Takahashi, Chisato; Shirai, Takashi; Fuji, Masayoshi

    2012-01-01

    Present study report fabrication of a solid–liquid intercalated compound using montmorillonite and ionic liquid [IL; 1-Butyl-3-methylimidazolium tetrafluoroborate; ([BMIM][BF 4 ])]. The intercalation of IL into the interlayer of montmorillonite was revealed by swelling behavior measured by X-ray diffraction (XRD) and cation exchange capacity (CEC). The crystal swelling structure of intercalation compound was further evidenced by transmission electron microscope (TEM). From these results, the arrangement of [BMIM] + ions (cationic part of IL) into the unit layer were proposed. Furthermore, the montmorillonite showed electrical conductivity with the aid of IL. This demonstrates a successful attempt to fabricate a solid–liquid state nano-structure compound as possible transparent electrically conducting thin film. -- Highlights: ► Direct intercalation of ionic liquid into the montmorillonite was studied. ► The crystal swelling structure in liquid state was successfully characterized by TEM. ► We proposed the atomic arrangement of intercalated compound using ionic liquid. ► Ionic liquid is useful for fabricating an intercalated compound with electrical-conductivity.

  16. Energy extraction and water treatment in one system: The idea of using a desalination battery in a cooling tower

    Science.gov (United States)

    Shapira, Barak; Cohen, Izaak; Penki, Tirupathi Rao; Avraham, Eran; Aurbach, Doron

    2018-02-01

    The use of sodium manganese oxide as an intercalation electrode for water treatment was recently explored, and referred to as a "desalination battery" and "hybrid capacitive deionization". Here, we examine the feasibility of using such a desalination battery, comprising crystalline Na4Mn9O18 as the cathode and Ag/AgCl/Cl- electrode as the anode, to extract energy from low-grade waste heat sources. Sodium manganese oxide electrode's material was produced via a solid-state synthesis. Electrodes were produced by spray-coated onto graphite foils, and showed a temperature dependence of the electrode potential, namely, ∂ E / ∂ T , of -0.63 mV/K (whereas, the Ag/AgCl/Cl- mesh electrode showed much lower temperature dependence, < 0.1 mV/K). In order to demonstrate ion-removal capabilities together with the feasibility of thermal-energy conversion, a flow battery system was constructed. Thermally regenerative electrochemical cycles (TREC) were constructed for the flow battery cell. The thermal energy conversion, in this particular system, was shown to be feasible at relatively low C-rate (C/19) with temperatures varying between 30 °C and 70 °C.

  17. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  18. Preparation of graphite intercalation compounds containing oligo and polyethers

    Science.gov (United States)

    Zhang, Hanyang; Lerner, Michael M.

    2016-02-01

    Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets.Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets. Electronic supplementary information (ESI) available: Domain size, additional Raman spectra info, compositional calculation, and packing fractions. See DOI: 10.1039/c5

  19. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    Science.gov (United States)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  20. Understanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics

    Directory of Open Access Journals (Sweden)

    Yin Xie

    2017-07-01

    Full Text Available A series of Mn-based intercalation compounds have been applied as the cathode materials of Li-ion batteries, such as LiMn2O4, LiNi1−x−yCoxMnyO2, etc. With open structures, intercalation compounds exhibit a wide variety of thermodynamic and kinetic properties depending on their crystal structures, host chemistries, etc. Understanding these materials from thermodynamic and kinetic points of view can facilitate the exploration of cathodes with better electrochemical performances. This article reviews the current available thermodynamic and kinetic knowledge on Mn-based intercalation compounds, including the thermal stability, structural intrinsic features, involved redox couples, phase transformations as well as the electrical and ionic conductivity.

  1. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.; Cha, Judy J.; Reed, Bryan W.; Wessells, Colin D.; Kong, Desheng; Cui, Yi

    2012-01-01

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  2. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  3. Impedance analysis of DNA and DNA-drug interactions on thin mercury film electrodes

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Dvořák, Jakub; Jelen, František; Vetterl, Vladimír

    2002-01-01

    Roč. 32, č. 2 (2002), s. 167-179 ISSN 1040-8347 R&D Projects: GA AV ČR IAA4004901; GA AV ČR IAA4004002; GA AV ČR IBS5004107 Grant - others:GA FRVŠ(XC) G40583; GA FRVŠ(XC) F40564 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemical impedance spectroscopy * intercalators * DNA at electrode surface Subject RIV: BO - Biophysics Impact factor: 2.074, year: 2002

  4. The preliminary feasibility of intercalated graphite railgun armatures

    International Nuclear Information System (INIS)

    Gaier, J.R.; Yashan, D.; Naud, S.

    1991-01-01

    This paper reports on graphite intercalation compounds which may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations have been performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading have been addressed for the case of highly oriented pyrolytic graphite

  5. Kinetics and mechanism of ionic intercalation/de-intercalation during the formation of α-cobalt hydroxide and its polymorphic transition to β-cobalt hydroxide: Reaction-diffusion framework

    KAUST Repository

    Rahbani, Janane; Khashab, Niveen M.; Patra, Digambara; Al-Ghoul, Mazen

    2012-01-01

    We study the kinetics and mechanism of intercalation and de-intercalation of small anions during the formation of crystalline α-Co(OH) 2 and its transformation to β-Co(OH) 2 within a reaction-diffusion framework. We therein use fluorescence spectroscopy with Rhodamine 6G (Rh6G) as a probe as well as other spectroscopic and imaging techniques. The method is based on the reaction and diffusion of hydroxide ions into a gel matrix containing the Co(ii) ions, the conjugate anions to be intercalated and Rh6G. The advantage of this simple method is that it allows us to separate throughout space the various stages during the formation of α-Co(OH) 2 and its transformation to β-Co(OH) 2, thus enabling fluorescence measurements of the those stages by simply focusing on different areas of the tube. It also permits us to extract with ease the solids for characterization and image analysis. The macroscopic evolution of the system, which consists of a leading blue front designating the formation of α-Co(OH) 2 followed by a sharp blue/pink interface designating the transformation to the pink β-Co(OH) 2, exhibits different dynamics depending on the anion present in the gel. At a certain stage, the blue/pink interface stops its propagation and only the blue front continues. This represents clear evidence of the dependence of the kinetics of intercalation and de-intercalation on the nature of the anion. The coexisting polymorphs were collected and characterized using XRD, FTIR, Raman and UV-Vis. The fluorescence images of the α-Co(OH) 2 reveal clearly the presence of Rh6G between its layers, whereas images from the β polymorph indicate the opposite. Moreover, the fluorescence of Rh6G is monitored during the formation of α-Co(OH) 2 and its conversion to β-Co(OH) 2. During the formation, the fluorescence intensity and lifetime are significantly increased whereas the opposite happens during the transformation to the β phase. We are able to calculate the activation energies

  6. High-pressure sodium lamp

    NARCIS (Netherlands)

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  7. AFFINITY BIOSENSOR BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH DNA FOR GENOTOXIC COMPOUNDS DETECTION

    Directory of Open Access Journals (Sweden)

    Bambang Kuswandi

    2010-06-01

    Full Text Available An electrochemical method for the detection of the genotoxic compounds using a DNA-modified electrode was developed. This electrode was successfully used for the electrochemical detection of genotoxic compounds in water samples. The electrochemical results clearly demonstrated that, the development is related to the molecular interaction between the surface-linked DNA obtained from calf thymus and the target compounds, such as pollutants, in order to develop a simple device for rapid screening of genotoxic compounds in environmental samples. The detection of such compounds was measured by their effect on the oxidation signal of the guanine peak of the DNA immobilised on the surface of carbon based Screen-Printed Electrode (SPE in disposable mode, and monitored by square-wave voltametric analysis. The DNA biosensor is able to detect known intercalating and groove-binding genotoxic compounds such as Dioxin, Bisphenol A, PCBs, and Phtalates. Application to real water samples is discussed and reported.   Keywords: electrochemical, screen-printed electrode, DNA biosensor, genotoxic compounds

  8. The re-emergence of sodium ion batteries: testing, processing, and manufacturability

    Science.gov (United States)

    Roberts, Samuel; Kendrick, Emma

    2018-01-01

    With the re-emergence of sodium ion batteries (NIBs), we discuss the reasons for the recent interests in this technology and discuss the synergies between lithium ion battery (LIB) and NIB technologies and the potential for NIB as a “drop-in” technology for LIB manufacturing. The electrochemical testing of sodium materials in sodium metal anode arrangements is reviewed. The performance, stability, and polarization of the sodium in these test cells lead to alternative testing in three-electrode and alternative anode cell configurations. NIB manufacturability is also discussed, together with the impact that the material stability has upon the electrodes and coating. Finally, full-cell NIB technologies are reviewed, and literature proof-of-concept cells give an idea of some of the key differences in the testing protocols of these batteries. For more commercially relevant formats, safety, passive voltage control through cell balancing and cell formation aspects are discussed. PMID:29910609

  9. Electro-oxidation of chlorophenols on poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode

    International Nuclear Information System (INIS)

    Pigani, L.; Musiani, M.; Pirvu, C.; Terzi, F.; Zanardi, C.; Seeber, R.

    2007-01-01

    The electrochemical behaviour of chlorinated phenols on Pt/poly(3,4-ethylenedioxy)thiophene,LiClO 4 and on Pt/poly(3,4-ethylenedioxy)thiophene,poly(sodium-4-styrenesulphonate) electrodes has been investigated in phosphate buffer solution. Poly(sodium-4-styrenesulphonate) exerts remarkable effect against the electrode fouling induced by oxidation of chlorophenols, allowing us to record the relevant anodic response even after repeated potential cycles. Hypotheses about the role exerted by poly(sodium 4-styrenesulphonate) are made, on the basis of evidences provided by several techniques, such as cyclic voltammetry, electrochemical impedance spectroscopy, electrochemical microgravimetry and atomic force microscopy. Thanks to the fact that different chlorophenols show differences in the voltammetric responses, depending on number and position of the chloro substituents on the aromatic ring, applications of the modified electrode in the analysis of mixtures of chlorinated phenols are possible

  10. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.

    Science.gov (United States)

    Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen

    2014-08-01

    A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Decreasing the electronic confinement in layered perovskites through intercalation.

    Science.gov (United States)

    Smith, Matthew D; Pedesseau, Laurent; Kepenekian, Mikaël; Smith, Ian C; Katan, Claudine; Even, Jacky; Karunadasa, Hemamala I

    2017-03-01

    We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layers substantially alter the optical and electronic properties of the inorganic layers. By calculating the spatially resolved dielectric profiles of the organic and inorganic layers within the hybrid structure, we show that the intercalants afford organic layers that are more polarizable than the inorganic layers. This strategy reduces the confinement of excitons generated in the inorganic layers and affords the lowest exciton binding energy for an n = 1 perovskite of which we are aware. We also demonstrate a method for computationally evaluating the exciton's binding energy by solving the Bethe-Salpeter equation for the exciton, which includes an ab initio determination of the material's dielectric profile across organic and inorganic layers. This new semi-empirical method goes beyond the imprecise phenomenological approximation of abrupt dielectric-constant changes at the organic-inorganic interfaces. This work shows that incorporation of polarizable molecules in the organic layers, through intercalation or covalent attachment, is a viable strategy for tuning 2D perovskites towards mimicking the reduced electronic confinement and isotropic light absorption of 3D perovskites while maintaining the greater synthetic tunability of the layered architecture.

  12. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Qiang; Zhang, Zhenghao; Yin, Shengyu; Guo, Zaiping; Wang, Shiquan; Feng, Chuanqi

    2016-01-01

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg −1 after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li + ) window at current density of 100 mAg −1 , respectively, which are much higher than that of graphite (375 mAhg −1 ) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg −1 with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  13. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qiang; Zhang, Zhenghao [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Yin, Shengyu [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Guo, Zaiping [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522 (Australia); Wang, Shiquan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2016-08-30

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg{sup −1} after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li{sup +}) window at current density of 100 mAg{sup −1}, respectively, which are much higher than that of graphite (375 mAhg{sup −1}) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg{sup −1} with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  14. Operando XRD studies as a tool for determination of transport parameters of mobile ions in electrode materials

    Science.gov (United States)

    Kondracki, Łukasz; Kulka, Andrzej; Świerczek, Konrad; Ziąbka, Magdalena; Molenda, Janina

    2017-11-01

    In this work a detailed operando XRD investigations of structural properties of LixMn2O4 manganese spinel are shown to be a complementary, successful method of determination of diffusion coefficient D and surface exchange coefficient k in the working electrode. Kinetics of lithium ions transport are estimated on the basis of rate of structural changes of the cathode material during a relaxation stage after a high current charge, i.e. during structural relaxation of the material. The presented approach seems to be applicable as a complementary method of determination of transport coefficients for all intercalation-type electrode materials.

  15. Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Shen Yanming

    2017-05-01

    Full Text Available Glutamate intercalated Mg–Al layered double hydroxide (LDH was prepared by co-precipitation and the removal of Pb2+ in the aqueous solution was investigated. The prepared samples were characterized by XRD, FT-IR and SEM. It was shown that glutamate can intercalate into the interlayer space of Mg–Al LDH. The glutamate intercalated Mg–Al LDH can effectively adsorb Pb2+ in the aqueous solution with an adsorption capacity of 68.49 mg g−1. The adsorption of Pb2+ on glutamate intercalated Mg–Al LDH fitted the pseudo-second-order kinetics model and the isotherm can be well defined by Langmuir model.

  16. In-situ electrochemical coating of Ag nanoparticles onto graphite electrode with enhanced performance for Li-ion batteries

    International Nuclear Information System (INIS)

    Yun, Jiaojiao; Wang, Yan; Gao, Tian; Zheng, Huiyuan; Shen, Ming; Qu, Qunting; Zheng, Honghe

    2015-01-01

    The effects of silver hexafluorophosphate (AgPF 6 ) as an electrolyte additive on the electrochemical behaviors of graphite anode are systematically studied by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The surface structure and composition of graphite electrode after electrochemical cycles are investigated through scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. It is found that Ag nanoparticles derived from electrochemical reduction of Ag + are homogenously distributed on the graphite surface. Significant improvements on the discharge capacity, rate behavior, and low-temperature performance of graphite electrode are obtained. The reasons are associated with the decreased resistances of solid-electrolyte interface and charge-transfer process, which improve the electrode kinetics for Li + intercalation/deintercalation

  17. The progress of the electrode materials development for lithium ion battery

    International Nuclear Information System (INIS)

    Kang Kai; Dai Shouhui; Wan Yuhua

    2001-01-01

    The structure and the charge-discharge principle of Li-ion battery are briefly discussed; the progress of electrode materials for Li-ion battery is reviewed in detail. Graphite has found wide applications in commercial Li-ion batteries, however, the hard carbon, especially the carbon with hydrogen is the most promising anode material for Li-ion battery owing to its high capacity, which has now become hot spot of investigation. Following the LiCoO 2 , LiMn 2 O 4 spinel compound becomes the most powerful contestant. On the basis of the authors' results, the synthesis methods of LiMn 2 O 4 and its characterizations are compared. Moreover, the structural properties of intercalation electrode materials that are related to the rechargeable capacity and stability during cycling of lithium ions are also discussed

  18. Interlayer Structure of Bioactive Molecule, 2-Aminoethanesulfonate, Intercalated into Calcium-Containing Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2012-01-01

    Full Text Available We have successfully intercalated 2-aminoethanesulfonate, a well-known biomolecule taurine, into calcium-containing layered double hydroxides via optimized solid phase intercalation. According to X-ray diffraction patterns and infrared spectroscopy, it was revealed that the intercalated taurine molecules were each directly coordinated to other calcium cation and arranged in a zig-zag pattern. Scanning electron microscopy showed that the particle size and morphology of the LDHs were not affected by the solid phase intercalation, and the surface of intercalates was covered by organic moieties. From ninhydrin amine detection tests, we confirmed that most of the taurine molecules were well stabilized between the calcium-containing LDH layers.

  19. Thermoelectric Properties of Li-Intercalated ZrSe2 Single Crystals

    DEFF Research Database (Denmark)

    Holgate, Tim; Liu, Yufei; Hitchcock, Dale

    2013-01-01

    Zirconium diselenide (ZrSe2) is one of many members of the layer-structured transition-metal dichalcogenide family. The structure of these materials features a weakly bonded van der Waals gap between covalently bonded CdI2-type atomic layers that may host a wide range of intercalants. Intercalation......, and low cost of such materials, merit further thermoelectric investigations of intercalated zirconium diselenide, especially in conjunction with a substitutional doping approach....

  20. All 2D materials as electrodes for high power hybrid energy storage applications

    Science.gov (United States)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  1. Synthesis of graphite intercalation compound of group VI metals and uranium hexafluorides

    International Nuclear Information System (INIS)

    Fukui, Toshihiro; Hagiwara, Rika; Ema, Keiko; Ito, Yasuhiko

    1993-01-01

    Systematic investigations were made on the synthesis of graphite intercalation compounds of group VI transition metals (W and Mo) and uranium hexafluorides. The reactions were performed by interacting liquid or gaseous metal hexafluorides with or without elemental fluorine at ambient temperature. The degree of intercalation of these metal fluorides depends on the formation enthalpy of fluorometallate anion from the original metal hexafluoride, as has been found for other intercalation reactions of metal fluorides. (author)

  2. Stabilization of cadmium electrode properties when introducing surfactants

    International Nuclear Information System (INIS)

    Alekseeva, M.E.; Mansurov, F.Kh.; Nikol'skij, V.A.

    1995-01-01

    The results of tests of both separate cadmium electrodes and silver-cadmium accumulators, depending on introduction of surfactants (polyethylene oxide - PO - and its derivatives), have been considered. The influence of PO on the course of electrochemical reaction on cadmium is pronounced in facilitation of anodic process. In case of PO introduction in the amount of 1 % instead of sodium lignosulfonate (2 %) into accumulators with silver-cadmium electrodes, the electrode potential is stabilized, while the accumulator capacity increases. The time period of the accumulation maintenance in the charged state increases 2-3 fold (1-1,5 years). 5 refs.; 4 figs.; 2 tabs

  3. Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds

    OpenAIRE

    MELEZHYK A.V.; TKACHEV A.G.

    2014-01-01

    Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded graphite. A mechanism for the cleavage of graphite to graphene nanoplatelets is proposed. It include...

  4. Intercalation of papain enzyme into hydrotalcite type layered double hydroxide

    Science.gov (United States)

    Zou, N.; Plank, J.

    2012-09-01

    Intercalation of proteolytic enzyme papain into hydrotalcite type LDH structure was achieved by controlled co-precipitation at pH=9.0 in the presence of papain. Characterization of the MgAl-papain-LDH phase was carried out using X-ray powder diffraction (XRD), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). According to XRD, papain was successfully intercalated. The d-value for the basal spacing of MgAl-papain-LDH was found at ˜5.3 nm. Consequently, original papain (hydrodynamic diameter ˜7.2 nm) attains a compressed conformation during intercalation.Formation of MgAl-papain-LDH was confirmed by elemental analysis and transmission electron microscopy (TEM). Under SEM, MgAl-papain-LDH phases appear as nanothin platelets which are intergrown to flower-like aggregates. Steric size and activity of the enzyme was retained after deintercalation from MgAl-LDH framework, as was evidenced by light scattering and UV/vis measurements. Thus, papain is not denatured during intercalation, and LDH is a suitable host structure which can provide a time-controlled release of the biomolecule.

  5. Le concept d'électrodes liquides de carbone appliqué au domaine des batteries en flux : étude et application aux matériaux d'intercalation du lithium

    OpenAIRE

    Parant , Hélène

    2017-01-01

    This project deals with flow batteries, which are very promising technologies for large scale energy storage, especially for intermittent energies. This work aims at developing new types of electrolytes with carbon particles to enhance power of batteries. This concept is called "liquid electrode" and is implemented in flow batteries with redox lithium intercalation particles in aqueous media. The first objective is to formulate the carbon electrolyte, with a good electronic conductivity (1-4 ...

  6. Intercalation of diclofenac in modified Zn/Al hydrotalcite-like preparation

    Science.gov (United States)

    Heraldy, E.; Suprihatin, R. W.; Pranoto

    2016-02-01

    The intercalation of a pharmaceutically active material diclofenac into modified Zn/Al Hydrotalcite-like (Zn/Al HTlc) preparation has been investigated by the coprecipitation and ion exchange method, respectively. The synthetic materials were characterized using X- Ray Diffraction (XRD); Fourier transforms infrared spectroscopy (FTIR); Scanning Electron Microscope (SEM); X-Ray Fluorescence (XRF) and surface area analyzer. The results show that the basal spacing of the product was expanded to 11.03 A for direct synthesis and 10.68 A for indirect synthesis, suggesting that diclofenac anion was intercalated into Zn/Al HTlc and arranged in a tilted bilayer fashion and the specific surface area of material increased after the intercalation of diclofenac.

  7. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  8. Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes.

    Science.gov (United States)

    Zhang, Di; Li, Bin; Wang, Shuai; Yang, Shubin

    2017-11-22

    Metallic sodium is a promising anode for sodium-based batteries, owing to its high theoretical capacity (1165 mAh g -1 ) and low potential (-2.714 V vs standard hydrogen electrode). However, the growth of sodium dendrites and the infinite volume change of metallic sodium during sodium striping/plating result in a low Coulombic efficiency and poor cycling stability, generating a safety hazard of sodium-based batteries. Here, an efficient approach was proposed to simultaneously generate an artificial SEI film and 3D host for metallic sodium based on a conversion reaction (CR) between sodium and MoS 2 (4Na + MoS 2 = 2Na 2 S + Mo) at room temperature. In the resultant sodium-MoS 2 hybrid after the conversion reaction (Na-MoS 2 (CR)), the production Na 2 S is homogeneously dispersed on the surface of metallic sodium, which can act as an artificial SEI film, efficiently preventing the growth of sodium dendrites; the residual MoS 2 nanosheets can construct a 3D host to confine metallic sodium, accommodating largely the volume change of sodium. Consequently, the Na-MoS 2 (CR) hybrid exhibits very low overpotential of 25 mV and a very long cycle stability more than 1000 cycles. This novel strategy is promising to promote the development of metal (lithium, sodium, zinc)-based electrodes.

  9. A MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes

    International Nuclear Information System (INIS)

    Pomerantseva, Ekaterina; Jung, Hyun; Gnerlich, Markus; Baron, Sergio; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2013-01-01

    We report the first successful demonstration of an optical microelectromechanical systems (MEMS) sensing platform for the in situ characterization of electrochemically induced reversible mechanical changes in lithium-ion battery (LIB) electrodes. The platform consists of an array of flexible membranes with a reflective surface on one side and a thin-film LIB electrode on the other side. The membranes deflect due to the active battery material volume change caused by lithium intercalation (expansion) and extraction (contraction). This deflection is monitored using the Fabry–Perot optical interferometry principle. The active material volume change causes high internal stresses and mechanical degradation of the electrodes. The stress evolution observed in a silicon thin-film electrode incorporated into this MEMS platform follows a ‘first elastic, then plastic’ deformation scheme. Understanding of the internal stresses in battery electrodes during discharge/charge is important for improving the reliability and cycle lifetime of LIBs. The developed MEMS platform presents a new method for in situ diagnostics of thin-film LIB electrodes to aid the development of new materials, optimization of electrode performance, and prevention of battery failure. (paper)

  10. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    International Nuclear Information System (INIS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-01-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  11. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-06-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  12. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2009-06-15

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  13. Optical properties of NbCl5 and ZnMg intercalated graphite compounds

    International Nuclear Information System (INIS)

    Jung, Eilho; Lee, Seokbae; Roh, Seulki; Kang, Jihoon; Park, Tuson; Hwang, Jungseek; Meng, Xiuqing; Tongay, Sefaattin

    2014-01-01

    We studied NbCl 5 and ZnMg alloy intercalated graphite compounds using an optical spectroscopy technique. These intercalated metallic graphite samples were quite challenging to obtain optical reflectance spectra since they were not flat and quite thin. By using both a new method and an in situ gold evaporation technique we were able to obtain reliable reflectance spectra of our samples in the far and mid infrared range (80–7000 cm −1 ). We extracted the optical constants including the optical conductivity and the dielectric function from the measured reflectance spectra using a Kramers–Kronig analysis. We also extracted the dc conductivity and the plasma frequencies from the optical conductivity and dielectric functions. NbCl 5 intercalated graphite samples show similar optical conductivity spectra as bare highly oriented pyrolytic graphite even though there are some differences in detail. ZnMg intercalated samples show significantly different optical conductivity spectra from the bare graphite. Optical spectroscopy is one of the most reliable experimental techniques to obtain the electronic band structures of materials. The obtained optical conductivities support the recent theoretically calculated electronic band structures of NbCl 5 and ZnMg intercalated graphite compounds. Our results also provide important information of electronic structures and charge carrier properties of these two new intercalated materials for applications. (paper)

  14. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z. [Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720 (Hungary); Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Kukovecz, Á. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE “Lendület” Porous Nanocomposites Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Kónya, Z. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Carlson, S. [MAX IV Laboratory, Ole Römers väg 1, Lund SE-223 63 (Sweden); Sipos, P. [Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720 (Hungary); and others

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.

  15. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  16. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature

    Science.gov (United States)

    Hwang, Jinkwang; Matsumoto, Kazuhiko; Orikasa, Yuki; Katayama, Misaki; Inada, Yasuhiro; Nohira, Toshiyuki; Hagiwara, Rika

    2018-02-01

    Maricite NaFePO4 (m-NaFePO4) was investigated as a positive electrode material for intermediate-temperature operation of sodium secondary batteries using ionic liquid electrolytes. Powdered m-NaFePO4 was prepared by a conventional solid-state method at 873 K and subsequently fabricated in two different conditions; one is ball-milled in acetone and the other is re-calcined at 873 K after the ball-milling. Electrochemical properties of the electrodes prepared with the as-synthesized m-NaFePO4, the ball-milled m-NaFePO4, and the re-calcined m-NaFePO4 were investigated in Na[FSA]-[C2C1im][FSA] (C2C1im+ = 1-ethyl-3-methylimidazolium, FSA- = bis(fluorosulfonyl)amide) ionic liquid electrolytes at 298 K and 363 K to assess the effects of temperature and particle size on their electrochemical properties. A reversible charge-discharge capacity of 107 mAh g-1 was achieved with a coulombic efficiency >98% from the 2nd cycle using the ball-milled m-NaFePO4 electrode at a C-rate of 0.1 C and 363 K. Electrochemical impedance spectroscopy using m-NaFePO4/m-NaFePO4 symmetric cells indicated that inactive m-NaFePO4 becomes an active material through ball-milling treatment and elevation of operating temperature. X-ray diffraction analysis of crystalline m-NaFePO4 confirmed the lattice contraction and expansion upon charging and discharging, respectively. These results indicate that the desodiation-sodiation process in m-NaFePO4 is reversible in the intermediate-temperature range.

  17. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  18. Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High-Performance Sodium Metal Electrodes.

    Science.gov (United States)

    Lee, Yongwon; Lee, Jaegi; Lee, Jeongmin; Kim, Koeun; Cha, Aming; Kang, Sujin; Wi, Taeung; Kang, Seok Ju; Lee, Hyun-Wook; Choi, Nam-Soon

    2018-05-02

    Sodium (Na) metal anodes with stable electrochemical cycling have attracted widespread attention because of their highest specific capacity and lowest potential among anode materials for Na batteries. The main challenges associated with Na metal anodes are dendritic formation and the low density of deposited Na during electrochemical plating. Here, we demonstrate a fluoroethylene carbonate (FEC)-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide (NaFSI) salt for the stable and dense deposition of the Na metal during electrochemical cycling. The novel electrolyte combination developed here circumvents the dendritic Na deposition that is one of the primary concerns for battery safety and constructs the uniform ionic interlayer achieving highly reversible Na plating/stripping reactions. The FEC-NaFSI constructs the mechanically strong and ion-permeable interlayer containing NaF and ionic compounds such as Na 2 CO 3 and sodium alkylcarbonates.

  19. Rashba splitting of 100 meV in Au-intercalated graphene on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, D.; Varykhalov, A.; Sánchez-Barriga, J.; Rader, O. [Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Seyller, Th. [Institut für Physik, Technische Universität Chemnitz, Reichenhainer Strasse 70, 09126 Chemnitz (Germany)

    2016-04-25

    Intercalation of Au can produce giant Rashba-type spin-orbit splittings in graphene, but this has not yet been achieved on a semiconductor substrate. For graphene/SiC(0001), Au intercalation yields two phases with different doping. We observe a 100 meV Rashba-type spin-orbit splitting at 0.9 eV binding energy in the case of p-type graphene after Au intercalation. We show that this giant splitting is due to hybridization and much more limited in energy and momentum space than for Au-intercalated graphene on Ni.

  20. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed Ali; Pedersen, Erik B.; Khaireldin, Nahid Y.

    2016-01-01

    In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion of naphtha......In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion...... of naphthalimide (1H-benzo[de]isoquinoline-1,3(2H)-dione) as the intercalating nucleic acid. The stabilities of i-motif structures with inserted naphthalimide intercalating nucleotides were studied using UV melting temperatures (Tm) and circular dichroism spectra at different pH values and conditions (crowding...

  1. Carbon coated anatase TiO2 mesocrystals enabling ultrastable and robust sodium storage

    Science.gov (United States)

    Zhang, Weifeng; Lan, Tongbin; Ding, Tianli; Wu, Nae-Lih; Wei, Mingdeng

    2017-08-01

    Nanoporous anatase TiO2 mesocrystals with tunable architectures and crystalline phases were successfully fabricated in the presence of the butyl oleate and oleylamine. Especially, the introduced surfactants served as a carbon source, bring a uniform carbon layer (about 2-8 nm) for heightening the electronic conductivity. The carbon coated TiO2 mesocrystals assembled from crystalline tiny subunits have more space sites for sodium-ion storage. When the material was applied as an electrode material in rechargeable sodium-ion batteries, it exhibited a superior capacity of about 90 mA h g-1 at 20 C (1 C = 168 mA g-1) and a highly reversible capacity for 5000 cycles, which is the longest cycle life reported for sodium storage in TiO2 electrodes.

  2. Analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, Romain [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France); Centre Nationale de la Recherche Scientifique (CNRS), Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes (France); Fourre, Yoann; Furet, Eric; Gautier, Regis; Le Fur, Eric [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France)

    2015-04-15

    An approach is presented that enables the analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates. A comparison of previously reported vanadium phosphates reveals two modes of intercalation: (i) 3d transition metal ions intercalated between VOPO{sub 4} layers and (ii) alkali/alkaline earth metal ions between VOPO{sub 4}.H{sub 2}O layers. Both intercalations were investigated using DFT calculations in order to understand the relative shifts of the vanadium phosphate layers. These calculations in addition to an analysis of the stacking sequences in previously reported materials enable the prediction of the crystal structures of M{sub x}(VOPO{sub 4}).yH{sub 2}O (M = Cs{sup +}, Cd{sup 2+} and Sn{sup 2+}). Experimental realization and structural determination of Cd(VOPO{sub 4}){sub 2}.4H{sub 2}O by single-crystal X-ray diffraction confirmed the predicted stacking sequences. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    International Nuclear Information System (INIS)

    Kaassis, Abdessamad Y.A.; Xu, Si-Min; Guan, Shanyue; Evans, David G.; Wei, Min; Williams, Gareth R.

    2016-01-01

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co 1.2 Zn 3.8 (OH) 8 ](NO 3 ) 2 ·2H 2 O (CoZn-NO 3 ), [Ni 2 Zn 3 (OH) 8 ](NO 3 ) 2 ·2H 2 O (NiZn-NO 3 ) and [Zn 5 (OH) 8 ](NO 3 ) 2 ·2H 2 O (Zn-NO 3 ). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO 3 but when it was reacted with Zn-NO 3 the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO 3 and Zn-NO 3 is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO 3 and of Val into CoZn-NO 3 are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted

  4. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.

    Science.gov (United States)

    Okubo, Masashi; Yamada, Atsuo

    2017-10-25

    Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.

  5. Metallization and stiffness of the Li-intercalated MoS{sub 2} bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, N.V. [Institute of Physics of National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Yakovkin, I.N., E-mail: yakov@iop.kiev.ua [Institute of Physics of National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Zeze, D.A. [School of Engineering & Computing Sciences, Durham University, Durham DH1 3LE (United Kingdom)

    2015-10-30

    Graphical abstract: The band structures, DOS, and Fermi surfaces for the MoS{sub 2} bilayer with adsorbed (a, c, e) and intercalated (b, d, f) Li (1 × 1) layer. - Highlights: • Adsorbed or intercalated Li monolayer makes the MoS{sub 2} surface metallic. • Increasing density of adsorbed Li leads to the nonmetal-to-metal transition in the layer. • Lithium inserted into MoS{sub 2} bilayers increases the interlayer interaction. - Abstract: Performed density-functional theory (DFT) calculations have shown that the Li adsorption on the MoS{sub 2} (0 0 0 1) surface, as well as Li intercalation into the space between MoS{sub 2} layers, transforms the semiconductor band structure of MoS{sub 2} into metallic. For the (√3 × √3) – R30° Li layer, the band structures of the MoS{sub 2} bilayer with adsorbed and intercalated Li are very similar, while for higher Li concentrations, the character of metallization for the adsorbed layer substantially differs from that of the MoS{sub 2}–Li–MoS{sub 2} layered system. In particular, for the adsorbed (1 × 1) Li monolayer, the increased density of the layer leads to the nonmetal-to-metal transition, which is evident from the appearance of the band crossing E{sub F} with an upward dispersion, pertinent to simple metals. It has been demonstrated that intercalated Li substantially increases the interlayer interaction in MoS{sub 2}. Specifically, the estimated 0.12 eV energy of the interlayer interaction in the MoS{sub 2} bilayer increases to 0.60 eV. This result is also consistent with results of earlier DFT calculations and available experimental results for alkali-intercalated graphene layers, which have demonstrated a substantial increase in the stiffness due to intercalation of alkalis.

  6. Quasi-Free-Standing Graphene Monolayer on a Ni Crystal through Spontaneous Na Intercalation

    Directory of Open Access Journals (Sweden)

    Young S. Park

    2014-07-01

    Full Text Available Graphene on metal substrates often shows different electronic properties from isolated graphene because of graphene-substrate interactions. One needs to remove the metals with acids and then to transfer graphene to weakly interacting substrates to recover electrical properties inherent in graphene. This process is not easy and besides causes undesirable tears, defects, and impurities in graphene. Here, we report a method to recover the electronic structure of graphene from a strongly interacting Ni substrate by spontaneous Na intercalation. In order to characterize the intercalation process, the density-functional-theory calculations and angle-resolved photoemission-spectroscopy (ARPES and scanning-tunneling-microscopy (STM measurements are carried out. From the density-functional-theory calculations, Na atoms energetically prefer interface intercalation to surface adsorption for the graphene/Ni(111 surface. Unlike most intercalants, Na atoms intercalate spontaneously at room temperature due to a tiny diffusion barrier, which is consistent with our temperature-dependent ARPES and core-level photoemission spectroscopy, and with our submonolayer ARPES and STM results at room temperature. As a result of the spontaneous intercalation, the electronic structure of graphene is almost recovered, as confirmed by the Dirac cone with a negligible band gap in ARPES and the sixfold symmetry in STM.

  7. Template-free synthesis of two-dimensional titania/titanate nanosheets as electrodes for high-performance supercapacitor applications

    Science.gov (United States)

    Barai, Hasi Rani; Rahman, Md. Mahbubur; Joo, Sang Woo

    2017-12-01

    Template-free two-dimensional (2D) titania/titanate nanosheets on Ti metal foil (TiNS/Ti) is prepared by a hydrothermal method at 150 °C assisted by KOH(aq.),followed by sintering at 500 °C. A single thin layer of TiNS is grown with 2D morphology when using low concentrations of KOH(aq.) (0.25 and 0.5 M). However, the morphology is transformed to 1D when using a high concentration of KOH(aq.). The TiNS is a mixture of rutile TiO2 and K-titanate (K2Ti3O7 and K2Ti2O5) with the formation of Ti3+ interstitials. The optimized TiNS/Ti electrode exhibits quasi-rectangular cyclic voltammograms (CVs) in a wide potential range. The specific capacitance (Cs) are 6.8 × 103 and 4.7 × 103 μF/cm2 according to the CV (scan rate, 5 mV/s) and charge-discharge measurements (CD, current density, 50 μA/cm2), respectively. These values are much higher than those reported for pure 0D and 1D TiO2 nanostructures.The higher Cs for the TiNS/Ti electrode can be ascribed to the increased rate of K+ intercalation and de-intercalation during charging and discharging, as well as enhanced conductivity enable by the K in the crystal lattice (10.30%) and Ti3+ interstitials (5.2%), respectively. The TiNS/Ti electrode shows excellent stability with the Cs retention of 89% even after 5000 CD cycles.

  8. Optical determination of the electronic coupling and intercalation geometry of thiazole orange homodimer in DNA

    Science.gov (United States)

    Cunningham, Paul D.; Bricker, William P.; Díaz, Sebastián A.; Medintz, Igor L.; Bathe, Mark; Melinger, Joseph S.

    2017-08-01

    Sequence-selective bis-intercalating dyes exhibit large increases in fluorescence in the presence of specific DNA sequences. This property makes this class of fluorophore of particular importance to biosensing and super-resolution imaging. Here we report ultrafast transient anisotropy measurements of resonance energy transfer (RET) between thiazole orange (TO) molecules in a complex formed between the homodimer TOTO and double-stranded (ds) DNA. Biexponential homo-RET dynamics suggest two subpopulations within the ensemble: 80% intercalated and 20% non-intercalated. Based on the application of the transition density cube method to describe the electronic coupling and Monte Carlo simulations of the TOTO/dsDNA geometry, the dihedral angle between intercalated TO molecules is estimated to be 81° ± 5°, corresponding to a coupling strength of 45 ± 22 cm-1. Dye intercalation with this geometry is found to occur independently of the underlying DNA sequence, despite the known preference of TOTO for the nucleobase sequence CTAG. The non-intercalated subpopulation is inferred to have a mean inter-dye separation distance of 19 Å, corresponding to coupling strengths between 0 and 25 cm-1. This information is important to enable the rational design of energy transfer systems that utilize TOTO as a relay dye. The approach used here is generally applicable to determining the electronic coupling strength and intercalation configuration of other dimeric bis-intercalators.

  9. clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS.

  10. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    Science.gov (United States)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  11. Potassium-intercalated H2Pc films : Alkali-induced electronic and geometrical modifications

    NARCIS (Netherlands)

    Nilson, K.; Ahlund, J.; Shariati, M. -N.; Schiessling, J.; Palmgren, P.; Brena, B.; Gothelid, E.; Hennies, F.; Huismans, Y.; Evangelista, F.; Rudolf, P.; Gothelid, M.; Martensson, N.; Puglia, C.; Åhlund, J.; Göthelid, E.; Göthelid, M.; Mårtensson, N.

    2012-01-01

    X-ray spectroscopy studies of potassium intercalated metal-free phthalocyanine multilayers adsorbed on Al(110) have been undertaken. Photoelectron spectroscopy measurements show the presence of several charge states of the molecules upon K intercalation, due to a charge transfer from the alkali. In

  12. In-test and post-test analyses of sodium-sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi; Kawamoto, Hiroyuki; Hatoh, Hisamitsu

    1986-01-15

    Cell life of sodium-sulfur cells is often determined by the degradation of the solid electrolyte. Solid electrolyte degradation will cause an increase of electrolyte resistivity, decrease of faradic efficiency, or even an electrolyte rupture which leads to a cell temperature rise due to direct reaction of reactants. Electrolyte degradation in actual sodium-sulfur cells is believed to be caused by the passage of sodium ion current across the solid electrolyte. The degree of degradation has been reported to be a function of amount of charge passed through the electrolyte, and the breakdown of the solid electrolyte was observed to occur above some threshold. For this reason, the concentration of sodium ion current density is to be avoided to prevent solid electrolyte from premature degradation and rupture, and the electrode structure for a sodium-sulfur cell should be determined with enough care to homogenize the current density distribution on the electrolyte. The longitudinal current density distribution of a sodium-sulfur cell was measured by attaching probing terminals on the electrode container. It was found that the current density distribution of a vertically supported cell was inhomogeneous due to the effect of gravity. This setup can be used as a way to locate the place where the first electrolyte cracking occurs. It was also found that the electrolyte cracking accompanies a fluctuation of cycling cell voltage that starts to appear several cycles before the noticeable break down of the electrolyte.

  13. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  14. Facile synthesis of deoxycholate intercalated layered double hydroxide nanohybrids via a coassembly process

    International Nuclear Information System (INIS)

    Wu, Xiaowen; Wang, Shuang; Du, Na; Zhang, Renjie; Hou, Wanguo

    2013-01-01

    In this paper, we describe a synthesis strategy of deoxycholate (DC) intercalated layered double hydroxide (LDH) nanohybrids via a coassembly method at room temperature. For this strategy, LDH particles were delaminated to well-dispersed 2D nanosheets in formamide, and the resulting LDH nanosheets were then coassembled with DC anions into the DC intercalated LDH (DC-LDH) nanohybrids. The so-synthesized nanohybrids were characterized by XRD, TEM, FT-IR, elemental analyses and TG-DSC. It was found that the loading amount of DC in the nanohybrids could be easily controlled by changing the ratio of DC to LDH. In addition, the nanohybrids have similar characteristics with the DC-LDH nanohybrids synthesized by the hydrothermal method, including their DC loading, crystal structure, morphology and thermal gravimetric behavior. However, this strategy exhibited the advantages of short reaction time and mild experimental conditions compared with the hydrothermal method. - Graphical abstract: Deoxycholate intercalated layered double hydroxide nanohybrids were successfully synthesized via a coassembly strategy. In this strategy, the interlayer spaces of LDHs can be efficiently used for the intercalation of guest species. - Highlights: • Deoxycholate intercalated layered double hydroxide nanohybrids were synthesized via a coassembly strategy. • This strategy exhibited the advantages of short time and mild conditions. • This strategy can enable organic species to be readily intercalated into the LDH galleries

  15. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  16. New insights into the intercalation chemistry of Al(OH)3.

    Science.gov (United States)

    Williams, Gareth R; Moorhouse, Saul J; Prior, Timothy J; Fogg, Andrew M; Rees, Nicholas H; O'Hare, Dermot

    2011-06-14

    This paper reports a number of recent developments in the intercalation chemistry of Al(OH)(3). From Rietveld refinement and solid-state NMR, it has been possible to develop a structural model for the recently reported [M(II)Al(4)(OH)(12)](NO(3))(2)·yH(2)O family of layered double hydroxides (LDHs). The M(2+) cations occupy half of the octahedral holes in the Al(OH)(3) layers, and it is thought that there is complete ordering of the metal ions while the interlayer nitrate anions are highly disordered. Filling the remainder of the octahedral holes in the layers proved impossible. While the intercalation of Li salts into Al(OH)(3) is facile, it was found that the intercalation of M(II) salts is much more capricious. Only with Co, Ni, Cu, and Zn nitrates and Zn sulfate were phase-pure LDHs produced. In other cases, there is either no reaction or a phase believed to be an LDH forms concomitantly with impurity phases. Reacting Al(OH)(3) with mixtures of M(II) salts can lead to the production of three-metal M(II)-M(II)'-Al LDHs, but it is necessary to control precisely the starting ratios of the two M(II) salts in the reaction gel because Al(OH)(3) displays selective intercalation of M nitrate (Li > Ni > Co ≈ Zn). The three-metal M(II)-M(II)'-Al LDHs exhibit facile ion exchange intercalation, which has been investigated in the first energy dispersive X-ray diffraction study of a chemical reaction system performed on Beamline I12 of the Diamond Light Source.

  17. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaassis, Abdessamad Y.A. [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Xu, Si-Min; Guan, Shanyue; Evans, David G. [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wei, Min, E-mail: weimin@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Williams, Gareth R., E-mail: g.williams@ucl.ac.uk [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom)

    2016-06-15

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co{sub 1.2}Zn{sub 3.8}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (CoZn-NO{sub 3}), [Ni{sub 2}Zn{sub 3}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (NiZn-NO{sub 3}) and [Zn{sub 5}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (Zn-NO{sub 3}). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO{sub 3} but when it was reacted with Zn-NO{sub 3} the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO{sub 3} and Zn-NO{sub 3} is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO{sub 3} and of Val into CoZn-NO{sub 3} are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted.

  18. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes

    Directory of Open Access Journals (Sweden)

    Shinichiro Kawada

    2015-11-01

    Full Text Available Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.

  19. Capacitive Sensing of Intercalated H2O Molecules Using Graphene.

    Science.gov (United States)

    Olson, Eric J; Ma, Rui; Sun, Tao; Ebrish, Mona A; Haratipour, Nazila; Min, Kyoungmin; Aluru, Narayana R; Koester, Steven J

    2015-11-25

    Understanding the interactions of ambient molecules with graphene and adjacent dielectrics is of fundamental importance for a range of graphene-based devices, particularly sensors, where such interactions could influence the operation of the device. It is well-known that water can be trapped underneath graphene and its host substrate; however, the electrical effect of water beneath graphene and the dynamics of how the interfacial water changes with different ambient conditions has not been quantified. Here, using a metal-oxide-graphene variable-capacitor (varactor) structure, we show that graphene can be used to capacitively sense the intercalation of water between graphene and HfO2 and that this process is reversible on a fast time scale. Atomic force microscopy is used to confirm the intercalation and quantify the displacement of graphene as a function of humidity. Density functional theory simulations are used to quantify the displacement of graphene induced by intercalated water and also explain the observed Dirac point shifts as being due to the combined effect of water and oxygen on the carrier concentration in the graphene. Finally, molecular dynamics simulations indicate that a likely mechanism for the intercalation involves adsorption and lateral diffusion of water molecules beneath the graphene.

  20. The second sodium site in the dopamine transporter controls cation permeability and is regulated by chloride

    DEFF Research Database (Denmark)

    Borre, Lars; Andreassen, Thorvald F; Shi, Lei

    2014-01-01

    The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters (NSSs) and controls dopamine (DA) homeostasis by mediating Na(+)- and Cl(-)-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted mutagene......The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters (NSSs) and controls dopamine (DA) homeostasis by mediating Na(+)- and Cl(-)-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted...

  1. Bifunctional Rhodium Intercalator Conjugates as Mismatch-Directing DNA Alkylating Agents

    OpenAIRE

    Schatzschneider, Ulrich; Barton, Jacqueline K.

    2004-01-01

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covale...

  2. Electrochemical oxidation of ascorbic acid mediated by carbon nano tubes/ Li+/ carbon paste modified solid electrode

    International Nuclear Information System (INIS)

    Goh, J.K.; Tan, W.T.

    2008-01-01

    Multi-walled carbon nano tube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electro catalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30 % (w/ W) carbon paste (binder): 70 % (w/ w) MWCNT. This method of modification has lowered the capacitance background current and enabled lower detection limit of ascorbic acid concentration. The electrical conductivity property of MWCNT modified electrode was further improved with the intercalation with lithium ion and resulted in current enhancement of 2 times on the oxidation current of ascorbic acid. Parameters of pH and temperature showed significant relation to the sensitivity of MWCNT modified electrode. Under the optimized parameters, the calibration curve constructed was linear up from 50 μM to 5 mM with sensitivity of 34.5 mA M -1 . The practical application of MWCNT modified electrode was demonstrated with Vitamin C pill and orange juice. Good reproducibility and recovery of ascorbic acid concentration showed the feasibility of MWCNT modified electrode to be used in the detection of ascorbic acid in aqueous solution. This also proposed MWCNT modified BPPG electrode possessed advantages such as low detection limit, high stability, low cost and simplicity in fabrication. (author)

  3. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    Science.gov (United States)

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  4. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    Science.gov (United States)

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  5. Design of a Sensitive and Selective Electrochemical Aptasensor for the Determination of the Complementary cDNA of miRNA-145 Based on the Intercalation and Electrochemical Reduction of Doxorubicin.

    Science.gov (United States)

    Mohamadi, Maryam; Mostafavi, Ali; Torkzadeh-Mahani, Masoud

    2017-11-01

    The aim of this research was the determination of a microRNA (miRNA) using a DNA electrochemical aptasensor. In this biosensor, the complementary complementary DNA (cDNA) of miRNA-145 (a sense RNA transcript) was the target strand and the cDNA of miRNA-145 was the probe strand. Both cDNAs can be the product of the reverse transcriptase-polymerase chain reaction of miRNA. The proposed aptasensor's function was based on the hybridization of target strands with probes immobilized on the surface of a working electrode and the subsequent intercalation of doxorubicin (DOX) molecules functioning as the electroactive indicators of any double strands that formed. Electrochemical transduction was performed by measuring the cathodic current resulting from the electrochemical reduction of the intercalated molecules at the electrode surface. In the experiment, because many DOX molecules accumulated on each target strand on the electrode surface, amplification was inherently easy, without a need for enzymatic or complicated amplification strategies. The proposed aptasensor also had the excellent ability to regenerate as a result of the melting of the DNA duplex. Moreover, the use of DNA probe strands obviated the challenges of working with an RNA probe, such as sensitivity to RNase enzyme. In addition to the linear relationship between the electrochemical signal and the concentration of the target strands that ranged from 2.0 to 80.0 nM with an LOD of 0.27 nM, the proposed biosensor was clearly capable of distinguishing between complementary (target strand) and noncomplementary sequences. The presented biosensor was successfully applied for the quantification of DNA strands corresponding to miRNA-145 in human serum samples.

  6. Real-time tracking of hydrogen peroxide secreted by live cells using MnO{sub 2} nanoparticles intercalated layered doubled hydroxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Asif, Muhammad; Aziz, Ayesha [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Dao, Anh Quang [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Hue Industrial College, 70 Nguyen Hue, Hue, Thua Thien Hue, 531081 (Viet Nam); Hakeem, Abdul; Wang, Haitao; Dong, Shuang; Zhang, Guoan [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Xiao, Fei [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China); Liu, Hongfang, E-mail: liuhf@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China)

    2015-10-22

    We report a facile and green method for the fabrication of new type of electrocatalysts based on MnO{sub 2} nanoparticles incorporated on MgAl LDH P-type semiconductive channel and explore its practical applications as high-performance electrode materials for electrochemical biosensor. A series of MgAl layered doubled hydroxide (LDH) nanohybrids with fixed Mg/Al (M{sup 2+}/M{sup 3+} atomic ratio of 3) and varied amount of MnCl{sub 2}.4H{sub 2}O are fabricated by a facile co-precipitation method. This approach demonstrates the combination of distinct properties including excellent intercalation features of LDH for entrapping nanoparticles and high loading of MnO{sub 2} nanoparticles in the host layers of LDH. Among all samples, Mn5–MgAl with 0.04% loaded manganese has a good crystalline morphology. A well-dispersed MnO{sub 2} nanoparticles encapsulated into the host matrix of hydrotalcite exhibit enhanced electrocatalytic activity towards the reduction of H{sub 2}O{sub 2} as well as excellent stability, selectivity and reproducibility due to synergistic effect of good catalytic ability of MnO{sub 2} and conductive MgAl LDH. Glass carbon electrode (GCE) modified with Mn5–MgAl possesses a wide linear range of 0.05–78 mM, lowest detection limit 5 μM (S/N = 3) and detection sensitivity of 0.9352 μAmM{sup −1}. This outstanding performance enables it to be used for real-time tracking of H{sub 2}O{sub 2} secreted by live HeLa cells. This work may provide new insight in clinical diagnosis, on-site environmental analysis and point of care testing devices. - Highlights: • MnO{sub 2}MgAl nanohybrids have been fabricated by a facile and robust co-precipitation approach. • MgAl layered doubled hydroxide can be used for the intercalation of MnO{sub 2} nanoparticles. • MgAl layered doubled hydroxide nanohybrid serves as p-type semiconductive channel for efficient electrocatalysis. • The nanohybrid electrode demonstrates excellent electrochemical performance

  7. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors.

    Science.gov (United States)

    Li, Yingzhi; Zhao, Xin; Xu, Qian; Zhang, Qinghua; Chen, Dajun

    2011-05-17

    A porous and mat-like polyaniline/sodium alginate (PANI/SA) composite with excellent electrochemical properties was polymerized in an aqueous solution with sodium sulfate as a template. Ultraviolet-visible spectra, X-ray diffraction pattern, and Fourier transform infrared spectra were employed to characterize the PANI/SA composite, indicating that the PANI/SA composite was successfully prepared. The PANI/SA nanofibers with uniform diameters from 50 to 100 nm can be observed on scanning electron microscopy. Cyclic voltammetry and galvanostatic charge/discharge tests were carried out to investigate the electrochemical properties. The PANI/SA nanostructure electrode exhibits an excellent specific capacitance as high as 2093 F g(-1), long cycle life, and fast reflect of oxidation/reduction on high current changes. The remarkable electrochemical characteristic is attributed to the nanostructured electrode materials, which generates a high electrode/electrolyte contact area and short path lengths for electronic transport and electrolyte ion. The approach is simple and can be easily extended to fabricate nanostructural composites for supercapacitor electrode materials.

  8. Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide.

    Science.gov (United States)

    Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P

    2003-03-24

    The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).

  9. Functions of chalcogenide electrodes in solutions of complexing reagents and interfering ions

    International Nuclear Information System (INIS)

    Kiyanskij, V.V.

    1990-01-01

    The possibility to modify chalcogenide electrodes and their behaviour in solutions of complexing reagents for the development of new methods of potentiometric titration has been studied. It is shown that complexing reagents (EDTA, cupferron, 8-hydroxyquinoline, sodium dithiocarbaminate) and Cu(2), Hg(2) produce a strong effect on the functions of Ag, Cu, Cd, Pb - selective electrodes, which is used for titration of potential-determining and non-potential-determining ions ions (Sr 2+ , La 3+ etc.) and also for modification of sulfide-selecting electrode. A method of potentiometric titration of sulfates and chlorides with modified Cd- and Ag-selective electrodes is suggested

  10. Intercalation behavior of barium phenylphosphonate

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Melánová, Klára; Svoboda, Jan; Zima, Vítězslav

    2010-01-01

    Roč. 71, č. 4 (2010), s. 530-533 ISSN 0022-3697. [15th International Symposium on Intercalation Compounds. Beijing, 11.05.2009-15.05.2009] R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : inorganic compounds * organic compounds * X-ray diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 1.384, year: 2010

  11. Thermal analysis and infrared emission spectroscopic study of halloysite-potassium acetate intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hongfei [School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 China (China); School of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Liu, Qinfu [School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 China (China); Yang, Jing [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Jinshan [School of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2010-11-20

    The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water, (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 {sup o}C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm{sup -1}. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm{sup -1}. Dehydration was completed by 300 {sup o}C and partial dehydroxylation by 350 {sup o}C. The inner hydroxyl group remained until around 500 {sup o}C.

  12. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram; Patole, Archana

    2017-01-01

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a

  13. Preparation and properties of Mg/Al layered double hydroxide-oleate and -stearate intercalation compounds

    International Nuclear Information System (INIS)

    Inomata, Kazuya; Ogawa, Makoto

    2006-01-01

    Mg/Al layered double hydroxide-oleate and -stearate intercalation compounds were successfully synthesized by the reconstruction method under hydrothermal conditions from calcined hydrotalcite. The intercalation compounds were characterized by the high structural regularity as evidenced by the sharp and intense X-ray diffraction peaks. The oleate intercalated layered double hydroxide exhibits unique physicochemical properties such as a reversible thermoresponsive change in the basal spacing and swelling in organic solvents such as n-alkanes. (author)

  14. Preparation of Fe-intercalated Graphite Based on Coal Tailings, Dimensional Structure

    Directory of Open Access Journals (Sweden)

    Irfan Gustian

    2015-12-01

    Full Text Available Intercalated graphite from coal tailings have been modified through the intercalation of iron. Coal tailings which is a byproduct of the destruction process and flakes washing results from mining coal. Intercalation of iron goal is to improve the physical properties of graphite and modifying sizes of crystal lattice structure with thermal method. Modification process begins with the carbonization of coal tailings at 500ºC and activated with phosphoric acid. Activation process has done by pyrolysis at 700ºC. The results of pyrolysis was soaked in mineral oil for 24 hours, then pyrolysis again with variations in temperature 800°C and 900ºC for 1 hour and subsequent intercalation iron at 1% and 2%. Material before activated, after activated, and the results of pyrolysis still indicates order nano: 29, 25 and 36 nm respectively. X-ray diffraction characterization results indicate that change in the structure, the sizes crystal lattice structure of the material The greater the concentration of iron was added, the resulting peak at 2θ = 33 and 35 also will be more sharply. The results of SEM showed different morphologies from each treatment.

  15. Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds

    International Nuclear Information System (INIS)

    Golub, Alexander S; Zubavichus, Yan V; Slovokhotov, Yurii L; Novikov, Yurii N

    2003-01-01

    Chemical methods for the exfoliation of transition metal dichalcogenides in a liquid medium to give single-layer dispersions containing quasi-two-dimensional layers of these compounds are surveyed. Data on the structure of dispersions and their use in the synthesis of various types of heterolayered intercalation compounds are discussed and described systematically. Structural features, the electronic structure and the physicochemical properties of the resulting intercalation compounds are considered. The potential of this method of synthesis is compared with that of traditional solid-state methods for the intercalation of layered crystals.

  16. A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density.

    Science.gov (United States)

    Wang, Faxing; Wang, Xiaowei; Chang, Zheng; Wu, Xiongwei; Liu, Xiang; Fu, Lijun; Zhu, Yusong; Wu, Yuping; Huang, Wei

    2015-11-18

    A quasi-solid-state sodium-ion capacitor is demonstrated with nanoporous disordered carbon and macroporous graphene as the negative and positive electrodes, respectively, using a sodium-ion-conducting gel polymer electrolyte. It can operate at a cell voltage as high as 4.2 V with an energy density of record high 168 W h kg(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogen diffusion in La1.5Nd0.5MgNi9 alloy electrodes of the Ni/MH battery

    International Nuclear Information System (INIS)

    Volodin, A.A.; Denys, R.V.; Tsirlina, G.A.; Tarasov, B.P.; Fichtner, M.; Yartys, V.A.

    2015-01-01

    Highlights: • Hydrogen diffusion in the La 1.5 Nd 0.5 MgNi 9 alloy electrode was studied. • Various techniques of low amplitude potentiostatic data treatment were used. • D H demonstrates a maximum (2 × 10 −11 cm 2 /s) at 85% of discharge of the electrode. • Maximum is associated with a conversion of β-hydride into a solid α-solution. • Optimization of material and electrode will allow high discharge rates. - Abstract: Hydrogen diffusion in the La 1.5 Nd 0.5 MgNi 9 battery electrode material has been studied using low amplitude potentiostatic experiments. Complex diffusion behavior is examined in frames of electroanalytical models proposed for the lithium intercalation materials. Hydrogen diffusion coefficient D H changes with hydrogen content in the metal hydride anode electrode and has a maximum of ca. 2 × 10 −11 cm 2 /s at ca. 85% of discharge. Such a behavior differs from the trends known for the transport in lithium battery materials, but qualitatively agrees with the data for the highly concentrated β-PdH x

  18. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2011-01-01

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  19. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  20. Intercalation behavior of amino acids into Zn-Al-layered double hydroxide by calcination-rehydration reaction

    International Nuclear Information System (INIS)

    Aisawa, Sumio; Kudo, Hiroko; Hoshi, Tomomi; Takahashi, Satoshi; Hirahara, Hidetoshi; Umetsu, Yoshio; Narita, Eiichi

    2004-01-01

    The intercalation of amino acids for the Zn-Al-layered double hydroxide (LDH) has been investigated by the calcination-rehydration reaction at 298K using mainly phenylalanine (Phe) as a guest amino acid. The Zn-Al oxide precursor prepared by the calcination of Zn-Al-carbonated LDH at 773K for 2h was used as the host material. The amount of Phe intercalated by the rehydration was remarkably influenced by the initial solution pH and reached ca. 2.7 times for anion exchange capacity (AEC) of the LDH at neutral and weak alkaline solutions, suggesting that Phe was intercalated as amphoteric ion form into the LDH interlayer. As Phe is intercalated for the LDH as monovalent anion in alkaline solution, the amount of Phe intercalated at pH 10.5 corresponded with AEC of the LDH. The solid products were found to have the expanded LDH structure, which confirmed that Phe was intercalated into the LDH interlayer as amphoteric ion or anion form. The basal spacing, d 003 , of the Phe/LDH was 1.58nm at pH 7.0 and 0.80nm at pH 10.5; two kinds of expansion suggested for Phe in the interlayer space as vertical (pH 7.0) and horizontal (pH 10.5) orientations. The intercalation behavior of various amino acids for the LDH was also found to be greatly influenced by the feature of the amino acid side-chain, namely, its carbon-chain length, structure and physicochemical property. In particular, α-amino acids possessing a hydrophobic or negative-charged side-chain were preferentially intercalated for the LDH

  1. Structural properties and magnetic susceptibility of iron-intercalated titanium ditelluride

    International Nuclear Information System (INIS)

    Pleshchev, V.G.; Titov, A.N.; Titova, S.G.; Kuranov, A.V.

    1997-01-01

    Structural peculiarities and magnetic susceptibility of titanium ditelluride, intercalated by iron, are studied. It is established that the basic motive of crystal structure by intercalation is preserved and the iron atoms are locates in the van der Waals gaps in positions with octahedral coordination. It is shown that the magnetic susceptibility of the Fe 0.25 TiT 2 sample increases approximately by 20 times. The magnetic susceptibility for the Fe 0.33 TiTe 2 samples becomes even much higher

  2. Probing the role of intercalating protein sidechains for kink formation in DNA.

    Directory of Open Access Journals (Sweden)

    Achim Sandmann

    Full Text Available Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP, one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future.

  3. Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries.

    Science.gov (United States)

    Sun, Bing; Li, Peng; Zhang, Jinqiang; Wang, Dan; Munroe, Paul; Wang, Chengyin; Notten, Peter H L; Wang, Guoxiu

    2018-05-31

    Sodium (Na) metal is one of the most promising electrode materials for next-generation low-cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co-doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N- and S-containing functional groups on the carbon nanotubes induce the NSCNTs to be highly "sodiophilic," which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na-metal-based anode (Na/NSCNT anode) exhibits a dendrite-free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium-oxygen (Na-O 2 ) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na-O 2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next-generation high-energy-density sodium-metal batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    Science.gov (United States)

    Y. A. Kaassis, Abdessamad; Xu, Si-Min; Guan, Shanyue; Evans, David G.; Wei, Min; Williams, Gareth R.

    2016-06-01

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co1.2Zn3.8(OH)8](NO3)2·2H2O (CoZn-NO3), [Ni2Zn3(OH)8](NO3)2·2H2O (NiZn-NO3) and [Zn5(OH)8](NO3)2·2H2O (Zn-NO3). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO3 but when it was reacted with Zn-NO3 the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an "X" shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO3 and Zn-NO3 is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO3 and of Val into CoZn-NO3 are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles.

  5. Intercalation of iron hexacyano complexes in Zn,Al hydrotalcite. Part 2. A mid-infrared and Raman spectroscopic study

    International Nuclear Information System (INIS)

    Kloprogge, J.T.; Weier, Matt; Crespo, Inmaculada; Ulibarri, M.A.; Barriga, Cristobalina; Rives, V.; Martens, W.N.; Frost, R.L.

    2004-01-01

    Combined mid-IR and Raman spectroscopies indicate that intercalation of hexacyanoferrate (II) and (III) in the interlayer space of a Zn,Al hydrotalcite dried at 60 deg. C leads to layered solids where the intercalated species correspond to both hexacyanoferrate(II) and (III). This is an indication that depending on the oxidation state of the initial hexacyanoferrate, partial oxidation and reduction takes place upon intercalation. The symmetry of the intercalated hexacyanoferrate decreases from O h existing in the free anions to D 3d . The observation of a broad band around 2080 cm -1 is indicative of the removal of cyanide from the intercalation complex to the outside surface of the crystals. Its position in the intercalation complex is probably filled by a hydroxyl group

  6. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher; Miller, Nichole C.; McGehee, Michael D.; Dauskardt, Reinhold H.

    2013-01-01

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  8. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher

    2013-01-17

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries

    International Nuclear Information System (INIS)

    Tan, Jinli; Liu, Li; Guo, Shengping; Hu, Hai; Yan, Zichao; Zhou, Qian; Huang, Zhifeng; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2015-01-01

    Highlights: •The as-prepared CoF 2 shows excellent electrochemical performance as anode material for lithium ion batteries. •The Li insertion/extraction mechanism of CoF 2 below 1.2 V was firstly proposed. •The electrochemical performance of CoF 2 as anode material in sodium ion batteries was firstly studied. -- Abstract: Cobalt (II) fluoride begins to enter into the horizons of people along with the research upsurge of metal fluorides. It is very significative and theoretically influential to make certain its electrochemical reaction mechanism. In this work, we discover a new and unrevealed reversible interfacial intercalation mechanism reacting below 1.2 V for cobalt (II) fluoride electrode material, which contributes a combined discharge capacity of about 400 mA h g −1 with the formation of SEI film at the initial discharge process. A highly reversible storage capacity of 120 mA h g −1 is observed when the cell is cycled over the voltage of 0.01-1.2 V at 0.2 C, and the low-potential voltage reaction process has a significant impact for the whole electrochemical process. Electrochemical analyses suggest that pure cobalt (II) fluoride shows better electrochemical performance when it is cycled at 3.2-0.01 V compared to the high range (1.0-4.5 V). So, we hold that cobalt (II) fluoride is more suitable to serve as anode material for lithium ion batteries. In addition, we also try to reveal the relevant performance and reaction mechanism, and realize the possibility of cobalt (II) fluoride as anode material for sodium ion batteries

  10. Lithium intercalation in the LiLaNb{sub 2}O{sub 7} perovskite structure; Intercalation du lithium dans la structure perovskite LiLaNb{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Bohnke, C.; Bohnke, O.; Fourquet, J.L. [Universite du Maine, 72 - Le Mans (France). Laboratoire des Fluorures

    1996-12-31

    ABO{sub 3} perovskite-type oxides having vacancies in the A-sites of their structure are interesting candidates for solid electrolytes when their A-sites are occupied by Li{sup +} ions having a high mobility. This is the case with the [Li{sub 3x}La{sub 2/3-x}]TiO{sub 3} solid solution compound which has a 10{sup -3} S cm{sup -1} ionic conductivity at ambient temperature. Electrochemical intercalation in this material is possible thanks to the presence of Ti{sup 4+} but the small amount of vacancies (0.33 maximum) leads to a low intercalation rate. In order to solve this problem, the LiLaNb{sub 2}O{sub 7} material which has a greater amount of vacancies has been studied and the results relative to the electrochemical intercalation of lithium in this perovskite are presented. The thermodynamical and kinetics properties of the lithium intercalation reaction have been studied by intermittent galvano-static discharges and impedance spectroscopy in LiClO{sub 4}-propylene carbonate medium. (J.S.) 7 refs.

  11. Lithium intercalation in the LiLaNb{sub 2}O{sub 7} perovskite structure; Intercalation du lithium dans la structure perovskite LiLaNb{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Bohnke, C; Bohnke, O; Fourquet, J L [Universite du Maine, 72 - Le Mans (France). Laboratoire des Fluorures

    1997-12-31

    ABO{sub 3} perovskite-type oxides having vacancies in the A-sites of their structure are interesting candidates for solid electrolytes when their A-sites are occupied by Li{sup +} ions having a high mobility. This is the case with the [Li{sub 3x}La{sub 2/3-x}]TiO{sub 3} solid solution compound which has a 10{sup -3} S cm{sup -1} ionic conductivity at ambient temperature. Electrochemical intercalation in this material is possible thanks to the presence of Ti{sup 4+} but the small amount of vacancies (0.33 maximum) leads to a low intercalation rate. In order to solve this problem, the LiLaNb{sub 2}O{sub 7} material which has a greater amount of vacancies has been studied and the results relative to the electrochemical intercalation of lithium in this perovskite are presented. The thermodynamical and kinetics properties of the lithium intercalation reaction have been studied by intermittent galvano-static discharges and impedance spectroscopy in LiClO{sub 4}-propylene carbonate medium. (J.S.) 7 refs.

  12. Sodium setpoint and gradient in bicarbonate hemodialysis.

    Science.gov (United States)

    Basile, Carlo; Libutti, Pasquale; Lisi, Piero; Vernaglione, Luigi; Casucci, Francesco; Losurdo, Nicola; Teutonico, Annalisa; Lomonte, Carlo

    2013-01-01

    The demonstration of an individual osmolar setpoint in hemodialysis (HD) is crucial to individualize dialysate sodium concentrations. Furthermore, the diffusive gradient between plasma and dialysate sodium is important in the "fine tuning" of the intradialytic sodium mass balance (MB). The design of this study included part A: a retrospective analysis of predialysis plasma sodium concentrations extracted from a 6-year database in our HD population (147 prevalent white anuric patients); and part B: study of intradialytic sodium kinetics in 48 patients undergoing one 4-hour bicarbonate HD session. Direct potentiometry with an ion-selective electrode was used for sodium measurements. Study part A: the mean number of plasma sodium measurements per patient was 16.06 ± 14.03 over a mean follow-up of 3.55 ± 1.76 years. The mean of the averaged plasma sodium concentrations was 136.7 ± 2.1 mmol/L, with a low mean intraindividual coefficient of variation (1.39 ± 0.4). Study part B: mean predialysis and postdialysis plasma sodium concentrations were 135.8 ± 0.9 and 138.0 ± 0.9 mmol/L (p<0.001). Mean inlet dialyzer sodium concentration was 138.7 ± 1.1 mmol/L; the hourly diffusion concentration gradients showed a statistically significant transfer from dialysate to plasma (Wilks ? <0.0001). A statistically significant relationship was found between sodium MB and diffusion gradient (p<0.02), and between sodium MB and ultrafiltration volume (p<0.01). A relatively "fixed" and individual osmolar setpoint in HD patients was shown for the first time in a long-term follow-up. A dialysate sodium concentration of 140 mmol/L determined a dialysate to plasma sodium gradient.

  13. Electrode fabrication for Lithium-ion batteries by intercalating of carbon nano tubes inside nano metric pores of silver foam

    International Nuclear Information System (INIS)

    Khoshnevisan, B.

    2011-01-01

    Here there is an on effort to improve working electrode (Ag + carbon nano tubes) preparation for Li-Ion batteries applications. Nano scaled silver foam with high specific area has been employed as a frame for loading carbon nano tubes by electrophoretic deposition method. In this ground, the prepared electrodes show a very good stability and also charge-discharge cycles reversibility.

  14. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  15. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  16. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy

    Science.gov (United States)

    Díaz, Agustín; González, Millie L.; Pérez, Riviam J.; David, Amanda; Mukherjee, Atashi; Báez, Adriana; Clearfield, Abraham

    2014-01-01

    We report the use of zirconium phosphate nanoplatelets (ZrP) for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct-ion exchange and was tested in-vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is produced with an interlayer distance of 9.3 Å. The in-vitro release profile of the intercalated drug by pH stimulus shows that at low pH under lysosomal conditions the platinum complex is released with simultaneous hydrolysis of the zirconium phosphate material, while at higher pH the complex is not released. Experiments with the MCF-7 cell line show that cisPt@ZrP reduced the cell viability up to 40%. The cisPt@ZrP intercalation product is envisioned as a future nanotherapy agent for cancer. Taking advantage of the shape and sizes of the ZrP particles and controlled release of the drug at low pH, it is intended to exploit the enhanced permeability and retention effect of tumors, as well as their intrinsic acidity, for the destruction of malignant cells. PMID:24072038

  17. Fabrication of a single layer graphene by copper intercalation on a SiC(0001) surface

    International Nuclear Information System (INIS)

    Yagyu, Kazuma; Tochihara, Hiroshi; Tomokage, Hajime; Suzuki, Takayuki; Tajiri, Takayuki; Kohno, Atsushi; Takahashi, Kazutoshi

    2014-01-01

    Cu atoms deposited on a zero layer graphene grown on a SiC(0001) substrate, intercalate between the zero layer graphene and the SiC substrate after the thermal annealing above 600 °C, forming a Cu-intercalated single layer graphene. On the Cu-intercalated single layer graphene, a graphene lattice with superstructure due to moiré pattern is observed by scanning tunneling microscopy, and specific linear dispersion at the K ¯ point as well as a characteristic peak in a C 1s core level spectrum, which is originated from a free-standing graphene, is confirmed by photoemission spectroscopy. The Cu-intercalated single layer graphene is found to be n-doped

  18. Time-resolved luminescence studies in hydrogen uranyl phosphate intercalated with amines

    Energy Technology Data Exchange (ETDEWEB)

    Novo, Joao Batista Marques [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil)]. E-mail: jbmnovo@quimica.ufpr.br; Batista, Fabio Roberto [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Cunha, Carlos Jorge da [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Dias, Lauro Camargo Jr. [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Teixeira Pessine, Francisco Benedito [Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13084-971 Campinas-SP (Brazil)

    2007-05-15

    Time-resolved luminescence decays of intercalated compounds of hydrogen uranyl phosphate (HUP) with p-toluidinium (HUPPT), benzylaminium (HUPBZ), {alpha}-methylbenzylaminium (HUPMBZ) and hydroxylaminium (HUPHAM) were studied. The prepared compounds belong to the tetragonal P4/ncc space group and showed 00 l reflections shifted to lower angles relative to HUP, indicating that the intercalation increases the c parameter of the unit cell. The luminescence decays of the compounds with 100% of intercalation ratio (HUPHAM and HUPBZ) were analyzed by Global Analysis, assuming Lianos' stretched exponential as the model function, which can be applied to compounds with restricted geometry and mobile donor and quencher molecules. It was remarkable that the luminescence decays showed that the quenching of the emission of the uranyl ions by the intercalated protonated amines is not restricted by low dimensionality of the host uranyl phosphate, and that a diffusion mechanism occurs. Benzylaminium cation efficiently quenches the excited energy of the uranyl ions at close distance, but the long-range and long-lifetime quenching is hindered. A different situation is found in the case of the small hydroxylaminium cation, where the long distance diffusion of the species is fast, playing an important role in the quenching of the excited uranyl ions at longer times.

  19. Time-resolved luminescence studies in hydrogen uranyl phosphate intercalated with amines

    International Nuclear Information System (INIS)

    Novo, Joao Batista Marques; Batista, Fabio Roberto; Cunha, Carlos Jorge da; Dias, Lauro Camargo Jr.; Teixeira Pessine, Francisco Benedito

    2007-01-01

    Time-resolved luminescence decays of intercalated compounds of hydrogen uranyl phosphate (HUP) with p-toluidinium (HUPPT), benzylaminium (HUPBZ), α-methylbenzylaminium (HUPMBZ) and hydroxylaminium (HUPHAM) were studied. The prepared compounds belong to the tetragonal P4/ncc space group and showed 00 l reflections shifted to lower angles relative to HUP, indicating that the intercalation increases the c parameter of the unit cell. The luminescence decays of the compounds with 100% of intercalation ratio (HUPHAM and HUPBZ) were analyzed by Global Analysis, assuming Lianos' stretched exponential as the model function, which can be applied to compounds with restricted geometry and mobile donor and quencher molecules. It was remarkable that the luminescence decays showed that the quenching of the emission of the uranyl ions by the intercalated protonated amines is not restricted by low dimensionality of the host uranyl phosphate, and that a diffusion mechanism occurs. Benzylaminium cation efficiently quenches the excited energy of the uranyl ions at close distance, but the long-range and long-lifetime quenching is hindered. A different situation is found in the case of the small hydroxylaminium cation, where the long distance diffusion of the species is fast, playing an important role in the quenching of the excited uranyl ions at longer times

  20. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  1. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.; Gysel, Roman; Beiley, Zach; Miller, Chad E.; Toney, Michael F.; Heeney, Martin; McCulloch, Iain; McGehee, Michael D.

    2009-01-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  2. Electrodeposited Porous Mn1.5Co1.5O₄/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors.

    Science.gov (United States)

    Pan, Guan-Ting; Chong, Siewhui; Yang, Thomas C-K; Huang, Chao-Ming

    2017-03-31

    Mesoporous Mn 1.5 Co 1.5 O₄ (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO₃) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg -1 and a power density of 1.01 kW·kg -1 at 1 A·g -1 . After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling.

  3. Dynamics of water intercalation fronts in a nano-layered synthetic silicate: A synchrotron X-ray scattering study

    International Nuclear Information System (INIS)

    Lovoll, G.; Sandnes, B.; Meheust, Y.; Maloy, K.J.; Fossum, J.O.; Silva, G.J. da; Mundim, M.S.P.; Droppa, R. Jr.; Fonseca, D.M.

    2005-01-01

    We performed synchrotron X-ray scattering studies of the dynamics of the water intercalation front in a Na-Fluorohectorite clay. Like other smectite clays, fluorohectorite particles can swell due to intercalation of successive water layers. Monitoring the intensities of Bragg peaks of the known 1- and 2-water-layer hydration states at different positions in the sample enabled spatial and temporal measurement of the proportions of the different hydration states. From experiments with controlled temperature and an imposed humidity gradient on a quasi one-dimensional powder sample, we were able to localize the intercalation front and demonstrate that the width of this front was smaller than 2 mm after penetrating 9 mm into the sample. The speed at which the intercalation front advanced through the sample during the diffusion process was shown to decrease with time. The diffraction signature of random water intercalation in the vicinity of the intercalation front also provided information on the changes in the water content of the mesopores around clay particles

  4. Superlattice Effects in Graphite Intercalation Compounds.

    Science.gov (United States)

    1986-04-15

    away from ;le[ Isy.st,.mns (r lin( nl :; atars ) and look for nonlinear dynamical effects -. m,,5,: U~ i,: ,1 : s y’t, rns, a3iioh m i Josephson...Intercalation Coaanm, Chemistry Dept., Northeast(.rn,, February 25, 1935. ( iv) "Giant Magnetic Interaction and Domain Dynamics in Twe -. "Dimensions," hoston

  5. Development of an electrical connector for liquid sodium environment. Final Report

    International Nuclear Information System (INIS)

    Kataoka, Hajime; Noguchi, Koichi; Takatsudo, Hiroshi; Miyakawa, Shun-ichi

    1998-07-01

    The INstrumented irradiation Test Assembly (INTA) has been used to conduct precision on-line instrumented irradiation tests in the experimental fast reactor JOYO. In INTA, direct instrumentation wiring between the irradiation test section in the core and the upper structure section in the rotating plug makes INTA structurally complex and expensive. Instead of direct wiring, if an electrical connector capable of withstanding a heated liquid sodium environment could be used between the irradiation test section and the upper structure section, the upper mechanism of INTA could be reused and testing costs would be drastically reduced. Moreover, the reactor load factor would be improved because of reduced handling time for INTA. In an attempt to gain this advantage, research and development of an electric connector in a sodium environment was carried out from 1988 to 1996 at PNC. As no previous R and D had been conducted in this area, this development activity was conducted in a boot strap manner. The first test was carried out for a small model fabrication, the second was for a water partial model, and the third was for a sodium partial model. Based on those tests, a prototype design specification of the connector was determined. In the sodium partial model test, the resilience of the electrical connector insulation to the sodium environment was investigated. However, severe cracking in the ceramic insulator caused by the high temperature sodium environment was discovered at the junction of ceramic insulator and metallic electrode. Although additional sodium partial tests were performed for various material combinations of ceramic insulators, metallic electrodes, brazing materials and metallization materials, the results of the tests were unsatisfactory. Therefore, it was decided that the development of the connector in sodium should cease at PNC in 1997. (J.P.N.)

  6. Iron Intercalation in Covalent-Organic Frameworks: A Promising Approach for Semiconductors

    OpenAIRE

    Pakhira, Srimanta; Lucht, Kevin P.; Mendoza-Cortes, Jose L.

    2017-01-01

    Covalent-organic frameworks (COFs) are intriguing platforms for designing functional molecular materials. Here, we present a computational study based on van der Waals dispersion-corrected hybrid density functional theory (DFT-D) to design boroxine-linked and triazine-linked COFs intercalated with Fe. Keeping the original $P-6m2$ symmetry of the pristine COF (COF-Fe-0), we have computationally designed seven new COFs by intercalating Fe atoms between two organic layers. The equilibrium struct...

  7. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  8. An intercalated BSc degree is associated with higher marks in subsequent medical school examinations

    Directory of Open Access Journals (Sweden)

    Sinclair Hazel

    2009-05-01

    Full Text Available Abstract Background To compare medical students on a modern MBChB programme who did an optional intercalated degree with their peers who did not intercalate; in particular, to monitor performance in subsequent undergraduate degree exams. Methods This was a retrospective, observational study of anonymised databases of medical student assessment outcomes. Data were accessed for graduates, University of Aberdeen Medical School, Scotland, UK, from the years 2003 to 2007 (n = 861. The main outcome measure was marks for summative degree assessments taken after intercalating. Results Of 861 medical students, 154 (17.9% students did an intercalated degree. After adjustment for cohort, maturity, gender and baseline (3rd year performance in matching exam type, having done an IC degree was significantly associated with attaining high (18–20 common assessment scale (CAS marks in three of the six degree assessments occurring after the IC students rejoined the course: the 4th year written exam (p th year OSCE (p = 0.001 and the 5th year Elective project (p = 0.010. Conclusion Intercalating was associated with improved performance in Years 4 and 5 of the MBChB. This improved performance will further contribute to higher academic ranking for Foundation Year posts. Long-term follow-up is required to identify if doing an optional intercalated degree as part of a modern medical degree is associated with following a career in academic medicine.

  9. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite

    Science.gov (United States)

    Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan

    2018-06-01

    Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.

  10. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs

    International Nuclear Information System (INIS)

    Xia Shengjie; Ni Zheming; Xu Qian; Hu Baoxiang; Hu Jun

    2008-01-01

    Zn/Al layered double hydroxides (LDHs) were intercalated with the anionic antihypertensive drugs Enalpril, Lisinopril, Captopril and Ramipril by using coprecipitation or ion-exchange technique. TG-MS analyses suggested that the thermal stability of Ena - , Lis - (arranged with monolayer, resulted from X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR) analysis was enhanced much more than Cap - and Ram - (arranged with bilayer). The release studies show that the release rate of all samples markedly decreased in both pH 4.25 and 7.45. However, the release time of Ena - , Lis - were much longer compared with Cap - , Ram - in both pH 4.25 and 7.45, it is possible that the intercalated guests, arranged with monolayer in the interlayer, show lesser repulsive force and strong affinity with the LDH layers. And the release data followed both the Higuchi-square-root law and the first-order equation well. Based on the analysis of batch release, intercalated structural models as well as the TG-DTA results, we conclude that for drug-LDH, stronger the affinity between intercalated anions and the layers is, better the thermal property and the stability to the acid attack of drug-LDH, and the intercalated anions are easier apt to monolayer arrangement within the interlayer, were presented. - Graphical abstract: A series of antihypertensive drugs including Enalpril, Lisinopril, Captopril and Ramipril were intercalated into Zn/Al-NO 3 -LDHs successfully by coprecipitation or ion-exchange technique. We focus on the structure, thermal property and low/controlled release property of as-synthesized drug-LDH composite intended for the possibility of applying these LDH-antihypertensive nanohybrids in drug delivery and controlled release systems

  11. A new inexpensive electrochemical meter for oxygen in sodium coolant

    International Nuclear Information System (INIS)

    Periaswami, G.; Rajan Babu, S.S.; Mathews, C.K.

    1987-01-01

    This report describes the development of an inexpensive oxygen meter for sodium coolant and gives the results of the test experiments. Calcia stabilized zirconia has been found to have necessary domain boundary characteristics at low temperatures for use as oxygen sensor in liquid sodium system. It is possible to obtain acceptable sensor cell resistance at temperatures as low as 230 C if K, K 2 O or Na, Na 2 O is used as reference electrode. The performance of these cells has been tested in bench top sodium loops over long periods. Their performance in terms of cell-out put variation with change in oxygen concentration in sodium has been found to be satisfactory. They also have sufficiently long life times since the kinetics of sodium attack on the electrolyte is slow at low temperatures. (author). 17 refs., 6 figs

  12. Mössbauer study of pH dependence of iron-intercalation in montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E., E-mail: kuzmann@caesar.elte.hu [Eötvös Loránd University, Institute of Chemistry (Hungary); Garg, V. K.; Singh, H.; Oliveira, A. C. de; Pati, S. S. [University of Brasília, Institute of Physics (Brazil); Homonnay, Z.; Rudolf, M. [Eötvös Loránd University, Institute of Chemistry (Hungary); Molnár, Á. M.; Kovács, E. M. [University of Debrecen, Imre Lajos Isotope Laboratory, Department of Colloid and Environmental Chemistry (Hungary); Baranyai, E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Kubuki, S. [Tokyo Metropolitan University, Department of Chemistry (Japan); Nagy, N. M.; Kónya, J. [University of Debrecen, Imre Lajos Isotope Laboratory, Department of Colloid and Environmental Chemistry (Hungary)

    2016-12-15

    {sup 57}Fe Mössbauer spectroscopy and XRD have successfully been applied to show the incorporation of Fe ion into the interlayer space of montmorillonite via treatment with FeCl {sub 3} in acetone. The 78K {sup 57}Fe Mössbauer spectra of montmorillonite samples reflected magnetically split spectrum part indicating the intercalation of iron into the interlayer of montmorillonite via the treatment with FeCl {sub 3}+acetone and washed with water until the initial pH=2.3 increased to pH=4.14. It was found that the occurrence of intercalated iron in the form of oxide-oxihydroxide in montmorillonite increases with the pH. Intercalation was confirmed by the gradual increase in the basal spacing d{sub 001} with pH.

  13. Oxygen electrodes for energy conversion and storage. Annual report, 1 October 1977-30 September 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-15

    Research on the development of high performance, long life O/sub 2/ cathodes for both alkaline and acid electrolytes for a spectrum of applications including industrial electrolysis, fuel cells, and metal-air batteries is described. Oxygen electrocatalysts studied include platinum, silver, underpotential deposited layers and alloy metal layers on noble metal substrates, intercalated graphite, transition metal macrocyclic complexes, and transition metal oxides. Research on gas fed electrodes is also described. Results are presented and discussed in detail. An appendix on the electrodeposition of platinum crystallites on graphite substrates is included. (WHK)

  14. Intercalation of Toluidines into Alpha - Zirconium Hydrogenphosphate

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Melánová, Klára; Svoboda, Jan; Zima, Vítězslav

    2006-01-01

    Roč. 55, č. 3-4 (2006), s. 289-293 ISSN 0923-0750 R&D Projects: GA ČR(CZ) GA203/05/2306 Institutional research plan: CEZ:AV0Z40500505 Keywords : intercalation Subject RIV: CA - Inorganic Chemistry Impact factor: 1.251, year: 2006

  15. Direct extraction of a Na- beam from a sodium plasma

    International Nuclear Information System (INIS)

    Sasao, Namiko; Fujita, Junji; Yamaoka, Hitoshi; Wada, Motoi.

    1990-07-01

    Negative sodium ions (Na - ) were extracted from a small multi-cusp ion source. A steady state sodium plasma was produced by primary electrons in a sodium gas evaporating from a metal sample placed in the discharge chamber. The Na - current density of 1.5 μA/cm 2 was obtained from a single aperture of 1.5 mm diameter at relatively low discharge power of about 0.4 W and filament power of 50 W. Extraction characteristics were studied by changing the plasma electrode bias. The extracted Na - current showed dependence on the bias voltage similar to that of H - or Li - volume production. (author)

  16. Development of analytical methods relating to aerosol and fission product release from hot and boiling sodium pools

    International Nuclear Information System (INIS)

    Mainka, E.

    1978-11-01

    Analytical methods are described for (a) sodium; (b) the following anions of sodium aerosols: OH - , CO 2 - and HCO 3 - ; (c) fission products Cs and Sr. For sodium, the ion selective electrode was used. The anions were determined by a titration method using phenolphthalein and methyl orange as indicators. Atomic absorption spectroscopy was used for Cs and Sr. (U.K.)

  17. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    Science.gov (United States)

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fabrication of graphene device from graphite intercalation compound

    Science.gov (United States)

    Yagi, Ryuta; Kobara, Hiroaki; Shimomura, Midori; Tahara, Fumiya; Fukada, Seiya

    2012-02-01

    The mechanical exfoliation of graphite is possibly the simplest and practical method in laboratories to obtain graphene flakes for scientific research. However efficiency for obtaining graphene, with desired layer-number and size, depends largely on crystal specific characters, eg., dislocations. To improve the issue, we have adopted graphite intercalation compound (GIC) instead of graphite for a starting material. Generally, GIC is chemically active. We used SbCl5- GIC, which is stable in the atmosphere. Stage structure of SbCl5-GIC could be tuned by temperature of intercalation. We found that considerable number of undoped graphene flakes coexisted with thin SbCl5-GIC flakes, on a substrate where flakes were transferred.?Statistical inspection of number of graphene layer indicated that it is significantly dependent on the stage number of GIC.

  19. Electrochemical sensor based on EDTA intercalated into layered double hydroxides of magnesium and aluminum for ultra trace level detection of lead (II)

    International Nuclear Information System (INIS)

    Dong, Junping; Fang, Qinghua; He, Haibo; Xu, Jiaqiang; Zhang, Yuan; Sun, Youbao

    2015-01-01

    The chelator ethylene diaminetetraacetate (EDTA) has been intercalated into layered double hydroxides by the anion exchange method. The resulting composites were characterized by powder X-ray diffraction, FTIR spectroscopy, thermogravimetry and X-ray photoelectron spectrometry. They were applied to modify a carbon paste electrode for the stripping voltammetric determination of lead (II) ions at ng L −1 levels. Stripping currents are linearly related to the logarithm of Pb (II) concentrations from 2 ng L −1 to 33 μg L −1 . The detection limit (3σ) is as low as 0.95 ng L −1 . The method was successfully applied to the determination of Pb (II) in spiked tap water without any pretreatment.(author)

  20. The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.; Bankston, C.P.; Thakoor, A.P.; Cole, T.

    1986-01-01

    The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/sub 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell

  1. Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors

    Directory of Open Access Journals (Sweden)

    Guan-Ting Pan

    2017-03-01

    Full Text Available Mesoporous Mn1.5Co1.5O4 (MCO spinel films were prepared directly on a conductive nickel (Ni foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni-15 min electrode (electrodeposition time: 15 min exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively. Further, an asymmetric supercapacitor that utilizes (MCO/Ni-15 min as a positive electrode, a plasma-treated activated carbon (PAC/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO3 gel electrolyte (denoted as (PAC/Ni//(MCO/Ni-15 min was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg−1 and a power density of 1.01 kW·kg−1 at 1 A·g−1. After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni//(MCO/Ni-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling.

  2. Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors

    Science.gov (United States)

    Pan, Guan-Ting; Chong, Siewhui; Yang, Thomas C.-K.; Huang, Chao-Ming

    2017-01-01

    Mesoporous Mn1.5Co1.5O4 (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO3) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg−1 and a power density of 1.01 kW·kg−1 at 1 A·g−1. After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling. PMID:28772727

  3. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor

    OpenAIRE

    Yuqin Zou; Shuangyin Wang

    2015-01-01

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are us...

  4. High capacity electrode materials for batteries and process for their manufacture

    Science.gov (United States)

    Johnson, Christopher S.; Xiong, Hui; Rajh, Tijana; Shevchenko, Elena; Tepavcevic, Sanja

    2018-04-03

    The present invention provides a nanostructured metal oxide material for use as a component of an electrode in a lithium-ion or sodium-ion battery. The material comprises a nanostructured titanium oxide or vanadium oxide film on a metal foil substrate, produced by depositing or forming a nanostructured titanium dioxide or vanadium oxide material on the substrate, and then charging and discharging the material in an electrochemical cell from a high voltage in the range of about 2.8 to 3.8 V, to a low voltage in the range of about 0.8 to 1.4 V over a period of about 1/30 of an hour or less. Lithium-ion and sodium-ion electrochemical cells comprising electrodes formed from the nanostructured metal oxide materials, as well as batteries formed from the cells, also are provided.

  5. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  6. Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study

    Science.gov (United States)

    Jiang, Xiankai; Song, Bo; Tománek, David

    2018-04-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.

  7. Study of the lithium insertion-deinsertion mechanism in nanocrystalline γ-Fe2O3 electrodes by means of electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Quintin, M.; Devos, O.; Delville, M.H.; Campet, G.

    2006-01-01

    Lithium intercalation hosts are a key point to the energy density of the largely used LiCoO 2 (even if of high cost and toxicity) as well as of manganese oxides which have been investigated most extensively. Iron oxides are attractive electrode materials for low-voltage rechargeable lithium batteries from both cost and environmental standpoints. However, search for iron oxides of conventional crystalline structures and micrometer particle sizes as lithium intercalation cathodes, has been greeted with disappointing results. Here we report on the synthesis, characterizations, electrochemical study and electrochemical impedance spectroscopy (EIS) of a nanocrystalline γ-Fe 2 O 3 that simultaneously exhibits high lithium insertion capacity and good capacity retention upon cycling. These properties reveal thermodynamics of the nanocrystalline material inherently different from those of its microcrystalline counterpart. Moreover, EIS showed that the intercalation process of the lithium ion occurs according to two processes involving first the reduction of the surface Fe 3+ with concomitant charge neutralization by Li + ions onto the surface defects of the nanoparticle followed by the reduction of the core Fe 3+ with insertion of the Li + deeper in the particle

  8. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    International Nuclear Information System (INIS)

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-01-01

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and “wizard hat” parabolic for rhombohedral (ABCA) stacking

  9. Intercalating cobalt between graphene and iridium (111): Spatially dependent kinetics from the edges

    Science.gov (United States)

    Vlaic, Sergio; Rougemaille, Nicolas; Kimouche, Amina; Burgos, Benito Santos; Locatelli, Andrea; Coraux, Johann

    2017-10-01

    Using low-energy electron microscopy, we image in real time the intercalation of a cobalt monolayer between graphene and the (111) surface of iridium. Our measurements reveal that the edges of a graphene flake represent an energy barrier to intercalation. Based on a simple description of the growth kinetics, we estimate this energy barrier and find small, but substantial, local variations. These local variations suggest a possible influence of the graphene orientation with respect to its substrate and of the graphene edge termination on the energy value of the barrier height. Besides, our measurements show that intercalated cobalt is energetically more favorable than cobalt on bare iridium, indicating a surfactant role of graphene.

  10. Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yuki [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-07

    We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ion battery.

  11. Kaolinite Nanocomposite Platelets Synthesized by Intercalation and Imidization of Poly(styrene-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    Pieter Samyn

    2015-07-01

    Full Text Available A synthesis route is presented for the subsequent intercalation, exfoliation and surface modification of kaolinite (Kln by an imidization reaction of high-molecular weight poly(styrene-co-maleic anhydride or SMA in the presence of ammonium hydroxide. In a first step, the intercalation of ammonolyzed SMA by guest displacement of intercalated dimethylsulfoxide has been proven. In a second step, the imidization of ammonolyzed SMA at 160 °C results in exfoliation of the kaolinite layers and deposition of poly(styrene-co-maleimide or SMI nanoparticles onto the kaolinite surfaces. Compared with a physical mixture of Kln/SMI, the chemically reacted Kln/SMI provides more efficient exfoliation and hydrogen bonding between the nanoparticles and the kaolinite. The kaolinite nanocomposite particles are synthesized in aqueous dispersion with solid content of 65 wt %. The intercalation and exfoliation are optimized for a concentration ratio of Kln/SMI = 70:30, resulting in maximum intercalation and interlayer distance in combination with highest imide content. After thermal curing at 135 °C, the imidization proceeds towards a maximum conversion of the intermediate amic acid moieties. The changes in O–H stretching and kaolinite lattice vibrations have been illustrated by infrared and FT-Raman spectroscopy, which allow for a good quantification of concentration and imidization effects.

  12. Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries

    International Nuclear Information System (INIS)

    Li Chilin; Fu Zhengwen

    2008-01-01

    Nano-sized CuWO 4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO 4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO 4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO 4 layers shows a high-volume rate capacity of 145 μAh/cm 2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu 2+ /Cu 0 , additional capacity can be achieved by the reversible reactivity of (WO 4 ) 2- framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO 4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries

  13. High-resolution 13C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    KAUST Repository

    Bouhrara, M.

    2011-09-06

    We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.

  14. Syntheses, structure and intercalation properties of low-dimensional ...

    Indian Academy of Sciences (India)

    Unknown

    Successful intercalation reactions of compounds 1 and 2 with primary n- alkyl amines have ... and hexavalent metal phenylphosphonates12–17 with ..... Similarly potassium. (3) and ..... ponds to loss of one water molecule, whereas the stage at ...

  15. Synthesis, spectroscopic analysis and electrochemical performance of modified β-nickel hydroxide electrode with CuO

    Directory of Open Access Journals (Sweden)

    B. Shruthi

    2017-03-01

    Full Text Available In the present work, a modified β-nickel hydroxide (β-Ni(OH2 electrode material with CuO has been prepared using a co-precipitation method. The structure and property of the modified β-Ni(OH2 with CuO were characterized by X-ray diffraction (XRD, Fourier Transform infra-red (FT-IR, Raman and thermal gravimetric-differential thermal analysis (TG-DTA techniques. The results of the FT-IR spectroscopy and TG-DTA indicate that the modified β-Ni(OH2 electrode materials contain intercalated water molecules and anions. A pasted–type electrode was prepared using nickel hydroxide powder as the main active material on a nickel sheet as a current collector. Cyclic voltammetry (CV and Electrochemical impedance spectroscopy (EIS studies were undertaken to assess the electrochemical behavior of pure β-Ni(OH2 and modified β-Ni(OH2 electrode with CuO in a 6 M KOH electrolyte. The addition of CuO into β-nickel hydroxide was found to enhance the reversibility of the electrode reaction and also increase the separation of the oxidation current peak of the active material from the oxygen evolution current. The modified nickel hydroxide with CuO was also found to exhibit a higher proton diffusion coefficient and a lower charge transfer resistance. These findings suggest that the modified β-Ni(OH2 with CuO possesses an enhanced electrochemical response and thus can be recognized as a promising candidate for battery electrode applications.

  16. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.

    Science.gov (United States)

    Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei

    2012-12-01

    We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.

  17. Self-consistent electronic structure of a model stage-1 graphite acceptor intercalate

    International Nuclear Information System (INIS)

    Campagnoli, G.; Tosatti, E.

    1981-04-01

    A simple but self-consistent LCAO scheme is used to study the π-electronic structure of an idealized stage-1 ordered graphite acceptor intercalate, modeled approximately on C 8 AsF 5 . The resulting non-uniform charge population within the carbon plane, band structure, optical and energy loss properties are discussed and compared with available spectroscopic evidence. The calculated total energy is used to estimate migration energy barriers, and the intercalate vibration mode frequency. (author)

  18. Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO2-Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors.

    Science.gov (United States)

    Le, Zaiyuan; Liu, Fang; Nie, Ping; Li, Xinru; Liu, Xiaoyan; Bian, Zhenfeng; Chen, Gen; Wu, Hao Bin; Lu, Yunfeng

    2017-03-28

    Sodium-ion capacitors can potentially combine the virtues of high power capability of conventional electrochemical capacitors and high energy density of batteries. However, the lack of high-performance electrode materials has been the major challenge of sodium-based energy storage devices. In this work, we report a microwave-assisted synthesis of single-crystal-like anatase TiO 2 mesocages anchored on graphene as a sodium storage material. The architecture of the nanocomposite results in pseudocapacitive charge storage behavior with fast kinetics, high reversibility, and negligible degradation to the micro/nanostructure. The nanocomposite delivers a high capacity of 268 mAh g -1 at 0.2 C, which remains 126 mAh g -1 at 10 C for over 18 000 cycles. Coupling with a carbon-based cathode, a full cell of sodium-ion capacitor successfully demonstrates a high energy density of 64.2 Wh kg -1 at 56.3 W kg -1 and 25.8 Wh kg -1 at 1357 W kg -1 , as well as an ultralong lifespan of 10 000 cycles with over 90% of capacity retention.

  19. Structure formation and surface chemistry of ionic liquids on model electrode surfaces—Model studies for the electrode | electrolyte interface in Li-ion batteries

    Science.gov (United States)

    Buchner, Florian; Uhl, Benedikt; Forster-Tonigold, Katrin; Bansmann, Joachim; Groß, Axel; Behm, R. Jürgen

    2018-05-01

    Ionic liquids (ILs) are considered as attractive electrolyte solvents in modern battery concepts such as Li-ion batteries. Here we present a comprehensive review of the results of previous model studies on the interaction of the battery relevant IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP]+[TFSI]-) with a series of structurally and chemically well-defined model electrode surfaces, which are increasingly complex and relevant for battery applications [Ag(111), Au(111), Cu(111), pristine and lithiated highly oriented pyrolytic graphite (HOPG), and rutile TiO2(110)]. Combining surface science techniques such as high resolution scanning tunneling microscopy and X-ray photoelectron spectroscopy for characterizing surface structure and chemical composition in deposited (sub-)monolayer adlayers with dispersion corrected density functional theory based calculations, this work aims at a molecular scale understanding of the fundamental processes at the electrode | electrolyte interface, which are crucial for the development of the so-called solid electrolyte interphase (SEI) layer in batteries. Performed under idealized conditions, in an ultrahigh vacuum environment, these model studies provide detailed insights on the structure formation in the adlayer, the substrate-adsorbate and adsorbate-adsorbate interactions responsible for this, and the tendency for chemically induced decomposition of the IL. To mimic the situation in an electrolyte, we also investigated the interaction of adsorbed IL (sub-)monolayers with coadsorbed lithium. Even at 80 K, postdeposited Li is found to react with the IL, leading to decomposition products such as LiF, Li3N, Li2S, LixSOy, and Li2O. In the absence of a [BMP]+[TFSI]- adlayer, it tends to adsorb, dissolve, or intercalate into the substrate (metals, HOPG) or to react with the substrate (TiO2) above a critical temperature, forming LiOx and Ti3+ species in the latter case. Finally, the formation of stable

  20. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Energy Technology Data Exchange (ETDEWEB)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Ahmad, Haslina; Harun, Siti Norain [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia)

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  1. Measurements of quadrupolar interaction by perturbed angular correltion method on intercalated 2H-TaS sub(2)

    International Nuclear Information System (INIS)

    Saitovitch, H.

    1979-01-01

    This work is based on our quadrupolar interaction (QI) measurements on intercalated 2H-TaS sub(2) coumponds. As intercalating elements we used the alcalines - Li, Na, K, Cs -as well as the NH sub(3) (ammonia) and C sub(6) H sub(5) N (pyridine) molecules. The (QI) measurements were performed via the differential perturbed angular correlation (DPAC) technique, using Ta sup(181) as the probe isotope, on the hydrated and anhidrous phases of the intercalated systems. Our results happened to be in better agreement with the ionic model, one of the accepted models used to describe the intercalation process, as well as the transfered charges quantities and its distribution in the intercalated systems. And by its side the measured quantities, quadrupole interaction frequencies (QIF) and their distributions δ, contributed to support and to improve the ionic model. A strong charge dynamics between the 2H-TaS sub(2) sandwiches was observed and a relation between the (QIF) changes and amount of transfered charge (e sup(-)/Ta) was established. The attempt to specify the numerical contributions to the (QI) changes arriving from the different components of the 2H-TaS sub(2) intercalated systems put in evidence the probable orbitals involved in the systems bonds. Finally the kinetics of the intercalation process to form the 2H-TaS sub(2) (Li) sub(x) system was followed continuously by the (DPAC) measurements. (author)

  2. Preparation and electrochemical property of TiO_2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium

    International Nuclear Information System (INIS)

    Guo, Xiaolei; Li, Dong; Wan, Jiafeng; Yu, Xiujuan

    2015-01-01

    Titanium dioxide/Nano-graphite (TiO_2/Nano-G) composite was synthesized by a sol-gel method and TiO_2/Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR), scanning electrons microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performance of the TiO_2/Nano-G anode electrode was investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electro-catalytic performance was evaluated by the yield of ·OH radicals, degradation of methyl orange and ceftriaxone sodium. The results demonstrated that TiO_2 nanoparticles were dispersed on the surface and interlamination of the Nano-G uniformly, TiO_2/Nano-G electrode owned higher electro-catalytic oxidation activity and stability than Nano-G electrode. Degradation rate of ceftriaxone sodium within 120 min by TiO_2(40)/Nano-G electrode was 97.7%. And ·OH radicals given by TiO_2/Nano-G electrode was higher than that of Nano-G electrode and DSA (Ti/IrO_2-RuO_2) electrode. The excellent electro-catalytic performance could be ascribed to the admirable conductive property of the Nano-G and more production of ·OH offered by TiO_2(40)/Nano-G electrode.

  3. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.

    Science.gov (United States)

    Cheng, Huhu; Dong, Zelin; Hu, Chuangang; Zhao, Yang; Hu, Yue; Qu, Liangti; Chen, Nan; Dai, Liming

    2013-04-21

    Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.

  4. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    Science.gov (United States)

    Eastwood, D. S.; Bradley, R. S.; Tariq, F.; Cooper, S. J.; Taiwo, O. O.; Gelb, J.; Merkle, A.; Brett, D. J. L.; Brandon, N. P.; Withers, P. J.; Lee, P. D.; Shearing, P. R.

    2014-04-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li+ ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.

  5. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    International Nuclear Information System (INIS)

    Eastwood, D.S.; Bradley, R.S.; Tariq, F.; Cooper, S.J.; Taiwo, O.O.; Gelb, J.; Merkle, A.; Brett, D.J.L.; Brandon, N.P.; Withers, P.J.; Lee, P.D.; Shearing, P.R.

    2014-01-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li + ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution

  6. Strontium Metylphosphonate Trihydrate: An Example of a New Class of Host Materials for Intercalation Reactions - Synthesis, Structure and Intercalation Behavior

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Melánová, Klára; Svoboda, Jan; Zima, Vítězslav; Růžička, A.; Trchová, Miroslava

    2011-01-01

    Roč. 6, leden (2011), s. 850-859 ISSN 1434-1948 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : layered compounds * intercalates * solid-state structures Subject RIV: CA - Inorganic Chemistry Impact factor: 3.049, year: 2011

  7. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon

    International Nuclear Information System (INIS)

    Kuratani, Kentaro; Yao, Masaru; Senoh, Hiroshi; Takeichi, Nobuhiko; Sakai, Tetsuo; Kiyobayashi, Tetsu

    2012-01-01

    We assembled a sodium-ion capacitor (Na-IC) by combining sodium pre-doped hard carbon (HC) as the negative- and activated carbon (AC) as the positive-electrode. The electrochemical properties were compared with two lithium-ion capacitors (Li-ICs) in which the negative electrodes were prepared with Li pre-doped HC and mesocarbon microbeads (MCMB). The positive and negative electrodes were prepared using the established doctor blade method. The negative electrodes were galvanostatically pre-doped with Na or Li to 80% of the full capacity of carbons. The potential of the negative electrodes after pre-doping was around 0.0 V vs. Na/Na + or Li/Li + , which resulted in the higher output potential difference of the Na-IC and Li-ICs than that of the conventional electrochemical double-layer capacitors (EDLCs) because AC positive electrode works in the same principle both in the ion capacitors and in the EDLC. The state-of-charge of the negative electrode varied 80 ± 10% during the electrochemical charging and discharging. The capacity of the cell was evaluated using galvanostatic charge–discharge measurement. At the discharge current density of 10 mA cm −2 , the Na-IC maintained 70% of the capacity that obtained at the current density of 0.5 mA cm −2 , which was comparable to the Li-ICs. At 50 mA cm −2 , the capacities of the Li-IC(MCMB) and the Na-IC dropped to 20% whereas the Li-IC(HC) retained 30% of the capacity observed at 0.5 mA cm −2 . The capacities of the Na-IC and Li-ICs decreased by 9% and 3%, respectively, after 1000 cycles of charging and discharging.

  8. Phonon studies of intercalated conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Prassides, K; Bell, C J [School of Chemistry and Molecular Sciences, Univ. of Sussex, Brighton (United Kingdom); Dianoux, A J [Inst. Laue-Langevin, 38 - Grenoble (France); Chunguey, Wu; Kanatzidis, M G [Dept. of Chemistry, Michigan State Univ., East Lansing (United States)

    1992-06-01

    The phonon density-of-states of FeOCl, the conductive form of polyaniline and the intercalation compound (polyaniline)[sub 0.20]FeOCl(I) have been measured by the neutron time-of-flight technique. The results are discussed in the light of the conducting and structural properties of the materials. Compound I is oxidised by standing in air and the neutron measurements reveal substantial changes in the inorganic host skeleton. (orig.).

  9. Determination of uranyl ion by potentiometric titration using an uranyl-selective electrode

    International Nuclear Information System (INIS)

    Nassory, N.S.

    1990-01-01

    A potentiometric titration of uranyl ion is described using an uranyl selective electrode based on a membrane containing a complex of UO 2 -bis[di-4-(1,1,3,3-tetramethylbutyl)phenyl phosphate] as an ion-exchanger and tritolyl phosphate as a solvent mediator. The titrations were carried out with various titrants: Sodium hydroxide, potassium fluoride and sodium salts of acetate, oxalate and citrate. The equivalence points were determined by Gran's method. Good results were obtained by using sodium oxalate as a titrant for the determination of uranium in several samples of ammonium diuranate. The results were quite comparable with those obtained by X-ray fluorescence spectrometry. (orig.)

  10. The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes

    KAUST Repository

    Wessells, Colin D.

    2012-01-01

    Recent battery research has focused on the high power and energy density needed for portable electronics and vehicles, but the requirements for grid-scale energy storage are different, with emphasis on low cost, long cycle life, and safety. Open framework materials with the Prussian Blue crystal structure offer the high power capability, ultra-long cycle life, and scalable, low cost synthesis and operation that are necessary for storage systems to integrate transient energy sources, such as wind and solar, with the electrical grid. We have demonstrated that two open framework materials, copper hexacyanoferrate and nickel hexacyanoferrate, can reversibly intercalate lithium, sodium, potassium, and ammonium ions at high rates. These materials can achieve capacities of up to 60 mAhg. The porous, nanoparticulate morphology of these materials, synthesized by the use of simple and inexpensive methods, results in remarkable rate capabilities: e.g. copper hexacyanoferrate retains 84 of its maximum capacity during potassium cycling at a very high (41.7C) rate, while nickel hexacyanoferrate retains 66 of its maximum capacity while cycling either sodium or potassium at this same rate. These materials show excellent stability during the cycling of sodium and potassium, with minimal capacity loss after 500 cycles. © 2011 The Electrochemical Society.

  11. Hydrothermal synthesis of a new ethylenediammonium intercalated ...

    Indian Academy of Sciences (India)

    Unknown

    Vanadyl phosphate; hydrothermal synthesis; intercalation; single crystal ... presence of 'en'.7–15 In all these solids en molecules occur in suitable ... all the cases, the mixture was transferred to a 45 ml Teflon lined Parr acid digestion .... position cannot be fully occupied at the same time as it will lead to a P-P distance of.

  12. Synthesis and characterizaton of inorganic materials for sodium-ion batteries

    Science.gov (United States)

    Shanmugam, Rengarajan

    Development of low-cost energy storage devices is critical for wide-scale implementation of intermittent renewable energy technologies and improving the electricity grid. Commercial devices remain prohibitively expensive or lack the performance specifications for a wider market reach. Na-ion batteries would perfectly suited for these large-scale applications as the raw materials (such as soda ash, salt, etc.) are plentiful, inexpensive and geographically unconstrained. However, extensive materials research on insertion electrodes is required for better understanding of the electrochemical and structural properties and engineering high performance Na-ion batteries. This thesis research involves exploratory study on new insertion materials with various crystallographic structure-types and extensive characterization of promising new inorganic compositions. Tunnel-type materials, sodium nickel phosphate-Na4Ni7(PO4)6, and sodium cobalt titanate- Na0.8Co0.4Ti1.6O4, were investigated to capitalize on the intrinsic structural stability offered by framework materials. Sol-gel and solid-state reaction synthetic techniques were employed for inorganic powder synthesis. Galvanostatic and potentiostatic testing confirm reversible sodium insertion/de-insertion reactions albeit with inadequate electrochemical characteristics (high voltage hysteresis> 1V). Subsequent efforts involved investigating layer-structured materials supporting fast ionic transport for better electrochemical performance. P2-sodium nickel titanate, Na2/3[Ni1/3Ti2/3]O2 (P2NT), with prismatic sodium co-ordination, was synthesized by solid-state technique. The 'bifunctional' oxide contains Ni2+/4+ and Ti4+/3+ redox couples with redox potentials of 3.6 V, 0.7 V vs. Na/Na+, respectively. This bifunctional approach would simplify electrode processing and provide cost reduction opportunities in battery manufacturing. The structural changes monitored using ex-situ XRD demonstrate a favorably broad solid

  13. Work Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2017-07-01

    Full Text Available This paper reports on characterization techniques for electron emission from potassium-intercalated boron nitride-modified graphitic petals (GPs. Carbon-based materials offer potentially good performance in electron emission applications owing to high thermal stability and a wide range of nanostructures that increase emission current via field enhancement. Furthermore, potassium adsorption and intercalation of carbon-based nanoscale emitters decreases work functions from approximately 4.6 eV to as low as 2.0 eV. In this study, boron nitride modifications of GPs were performed. Hexagonal boron nitride is a planar structure akin to graphene and has demonstrated useful chemical and electrical properties when embedded in graphitic layers. Photoemission induced by simulated solar excitation was employed to characterize the emitter electron energy distributions, and changes in the electron emission characteristics with respect to temperature identified annealing temperature limits. After several heating cycles, a single stable emission peak with work function of 2.8 eV was present for the intercalated GP sample up to 1,000 K. Up to 600 K, the potassium-intercalated boron nitride modified sample exhibited improved retention of potassium in the form of multiple emission peaks (1.8, 2.5, and 3.3 eV resulting in a large net electron emission relative to the unmodified graphitic sample. However, upon further heating to 1,000 K, the unmodified GP sample demonstrated better stability and higher emission current than the boron nitride modified sample. Both samples deintercalated above 1,000 K.

  14. A naproxen complex of dysprosium intercalates into calf thymus DNA base pairs

    International Nuclear Information System (INIS)

    Yang, Mengsi; Jin, Jianhua; Xu, Guiqing; Cui, Fengling; Luo, Hongxia

    2014-01-01

    Highlights: • Binding mode to ctDNA was studied by various methods. • Intercalation is the most possible binding mode. • Dynamic and static quenching occurred simultaneously. • Hydrophobic force played a major role. • Binding characteristic of rare earth complexes to DNA are dependent on the element. - Abstract: The binding mode and mechanism of dysprosium–naproxen complex (Dy–NAP) with calf thymus deoxyribonucleic acid (ctDNA) were studied using UV–vis and fluorescence spectra in physiological buffer (pH 7.4). The results showed that more than one type of quenching process occurred and the binding mode between Dy–NAP with ctDNA might be intercalation. In addition, ionic strength, iodide quenching and fluorescence polarization experiments corroborated the intercalation binding mode between Dy–NAP and ctDNA. The calculated thermodynamic parameters ΔG, ΔH and ΔS at different temperature demonstrated that hydrophobic interaction force played a major role in the binding process

  15. Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites

    Science.gov (United States)

    Hu, Jinlong; Gan, Mengyu; Ma, Li; Zhang, Jun; Xie, Shuang; Xu, Fenfang; Shen, JiYue Zheng Xiaoyu; Yin, Hui

    2015-02-01

    The polymeric nanocomposites (PANI/AD-LDH) were prepared by in situ polymerization based on polyaniline (PANI) and decavanadate-intercalated and γ-aminopropyltriethoxysilane (APTS)-grafted ZnAl-layered double hydroxide (AD-LDH). FTIR and XRD studies confirm the grafting of APTS with decavanadate-intercalated LDH (D-LDH). The extent of grafting (wt%) has also been estimated on the basis of the residue left in nitrogen atmosphere at 800 °C in TGA. SEM and XPS studies show the partial exfoliation of grafted LDH in the PANI matrix and the interfacial interaction between PANI and grafted LDH, respectively. The grafted intercalated layered double hydroxide in reinforcing the properties of the PANI nanocomposites has also been investigated by open circuit potential (OCP), tafel polarization curves (TAF), electrochemical impendence spectroscopy (EIS), salt spray test and TGA-DTA. The experimental results indicate that the PANI/AD-LDH has a higher thermal stability and anticorrosion properties relative to the PANI.

  16. Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends

    KAUST Repository

    Cates, Nichole C.

    2010-06-08

    Fullerenes have been shown to intercalate between the side chains of many crystalline and semicrystalline polymers and to affect the properties of polymer:fullerene bulk heterojunction solar cells. Here we present the first in-depth study of intercalation in an amorphous polymer. We study blends of the widely studied amorphous polymer poly(2-methoxy-5-(3studied amorphous polymer poly(,7·studied amorphous polymer poly(-dimethyloctyloxy)-p-phenylene vinylene) (MDMO-PPV) with a variety of molecules using photoluminescence measurements, scanning electron microscopy, and space-charge limited current mobility measurements. The blends with elevated hole mobilities exhibit complete photoluminescence quenching and show no phase separation in a scanning electron microscope. We conclude that intercalation occurs in MDMO-PPV:fullerene blends and is responsible for the increase in the MDMO-PPV hole mobility by several orders of magnitude when it is blended with fullerenes, despite the dilution of the hole-conducting polymer with an electron acceptor. © 2010 American Chemical Society.

  17. Photoelectrocatalytic Degradation of Sodium Oxalate by TiO2/Ti Thin Film Electrode

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chang

    2012-01-01

    Full Text Available The photocatalytically active TiO2 thin film was deposited on the titanium substrate plate by chemical vapor deposition (CVD method, and the photoelectrocatalytic degradation of sodium oxalate was investigated by TiO2 thin film reactor prepared in this study with additional electric potential at 365 nm irradiation. The batch system was chosen in this experiment, and the controlled parameters were pH, different supporting electrolytes, applied additional potential, and different electrolyte solutions that were examined and discussed. The experimental results revealed that the additional applied potential in photocatalytic reaction could prohibit recombination of electron/hole pairs, but the photoelectrocatalytic effect was decreased when the applied electric potential was over 0.25 V. Among the electrolyte solutions added, sodium sulfate improved the photoelectrocatalytic effect most significantly. At last, the better photoelectrocatalytic degradation of sodium oxalate occurred at pH 3 when comparing the pH influence.

  18. Isolation of high quality graphene from Ru by solution phase intercalation

    Science.gov (United States)

    Koren, E.; Sutter, E.; Bliznakov, S.; Ivars-Barcelo, F.; Sutter, P.

    2013-09-01

    We introduce a method for isolating graphene grown on epitaxial Ru(0001)/α-Al2O3. The strong graphene/Ru(0001) coupling is weakened by electrochemically driven intercalation of hydrogen underpotentially deposited in aqueous KOH solution, which allows the penetration of water molecules at the graphene/Ru(0001) interface. Following these electrochemically driven processes, the graphene can be isolated by electrochemical hydrogen evolution and transferred to arbitrary supports. Raman and transport measurements demonstrate the high quality of the transferred graphene. Our results show that intercalation, typically carried out in vacuum, can be extended to solution environments for graphene processing under ambient conditions.

  19. Metallization and superconductivity in Ca-intercalated bilayer MoS2

    Science.gov (United States)

    Szczȱśniak, R.; Durajski, A. P.; Jarosik, M. W.

    2017-12-01

    A two-dimensional molybdenum disulfide (MoS2) has attracted significant interest recently due to its outstanding physical, chemical and optoelectronic properties. In this paper, using the first-principles calculations, the dynamical stability, electronic structure and superconducting properties of Ca-intercalated bilayer MoS2 are investigated. The calculated electron-phonon coupling constant implies that the stable form of investigated system is a strong-coupling superconductor (λ = 1.05) with a low value of critical temperature (TC = 13.3 K). Moreover, results obtained within the framework of the isotropic Migdal-Eliashberg formalism proved that Ca-intercalated bilayer MoS2 exhibits behavior that goes beyond the scope of the conventional BCS theory.

  20. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents.

    Science.gov (United States)

    Schatzschneider, Ulrich; Barton, Jacqueline K

    2004-07-21

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covalent modification was established on the basis of the enhanced depurination associated with N-alkylation. The site-selective alkylation at mismatched DNA renders these conjugates useful tools for the covalent tagging of DNA base pair mismatches and new chemotherapeutic design.

  1. Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B., E-mail: park@mie.utoronto.ca [University of Toronto, Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering (Canada)

    2013-08-15

    The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.

  2. A new method synthesis polyaniline/multi-walled carbon nanotube composites for supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, J.; Wei, X.; Zhou, S.P. [Shandong Univ. of Technology, Zibo (China). School of Chemical Engineering

    2010-07-01

    A series of polyaniline multi-walled nanotube (PANIMWNT) composite films were prepared using an in situ polymerization technique. Scanning electron microscopy (SEM) was used to characterize the morphology and microstructure of the samples. Cyclic voltammetry (CV), impedance spectroscopy, and galvanostatic charge/discharge analyses were used to determine the electrochemical properties of the PANIMWNT films in a 3-electrode system. The electrochemical performance of PANI, PANIMWNT, and MWNT film performances was then compared. Results of the study showed that the PANI electrodes showed a much higher capacitance than the MWNT and PANIMWNT electrodes. Both the PANI and PANIMWNT nanocomposites showed good electrochemical capacitance. The improved performance of the electrodes was attributed to the presence of sodium hypochlorite (NaClO). 5 refs.

  3. The forces that shape embryos: physical aspects of convergent extension by cell intercalation

    International Nuclear Information System (INIS)

    Keller, Ray; Shook, David; Skoglund, Paul

    2008-01-01

    We discuss the physical aspects of the morphogenic process of convergence (narrowing) and extension (lengthening) of tissues by cell intercalation. These movements, often referred to as 'convergent extension', occur in both epithelial and mesenchymal tissues during embryogenesis and organogenesis of invertebrates and vertebrates, and they play large roles in shaping the body plan during development. Our focus is on the presumptive mesodermal and neural tissues of the Xenopus (frog) embryo, tissues for which some physical measurements have been made. We discuss the physical aspects of how polarized cell motility, oriented along future tissue axes, generate the forces that drive oriented cell intercalation and how this intercalation results in convergence and extension or convergence and thickening of the tissue. Our goal is to identify aspects of these morphogenic movements for further biophysical, molecular and cell biological, and modeling studies

  4. Testing and performance of electrolytic oxygen meters for use in liquid sodium

    International Nuclear Information System (INIS)

    Taylor, R.G.; Thompson, R.

    1983-01-01

    The performance of yttria-doped thoria ceramic electrochemical oxygen meters in liquid sodium is described. Tests were carried out using laboratory loops. Temperature coefficients of the oxygen meters have been measured between 380 0 C and 480 0 C, and the response to changes in oxygen level using cold-trap temperatures from 125 0 C to 250 0 C was determined. The ceramic has been shown to give good performance over lifetimes exceeding 400 days in some cases. The temperature coefficients and response to oxygen level changes are in good agreement with thermodynamic predictions. The effect of running the meters in high-oxygen sodium has been studied and a general mode of failure has been shown to be grain-boundary attack by oxygen/sodium solutions. The effect of #betta#-radiation on the meters has been studied. The meters with a metal/metal oxide reference electrode were unaffected by dose rates up to 52860 mGy h - 1 . Meters with an air reference electrode do show an effect as a voltage reduction at levels down to 2420 mGy h - 1 . This effect was temperature-dependent and was insignificant at 500 0 C. (orig.)

  5. Refining the molecular organization of the cardiac intercalated disc

    NARCIS (Netherlands)

    Vermij, Sarah H.; Abriel, Hugues; van Veen, Toon A.B.

    2017-01-01

    This review presents an extensively integrated model of the cardiac intercalated disc (ID), a highly orchestrated structure that connects adjacent cardiomyocytes. Classically, three main structures are distinguished: gap junctions (GJs) metabolically and electrically connect cytoplasm of adjacent

  6. Hydrogen diffusion in La{sub 1.5}Nd{sub 0.5}MgNi{sub 9} alloy electrodes of the Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, A.A. [Institute of Problems of Chemical Physics of RAS, Chernogolovka (Russian Federation); Denys, R.V. [Institute for Energy Technology, P.O. Box 40, Kjeller NO2027 (Norway); Tsirlina, G.A. [Department of Electrochemistry, Moscow State University, Moscow (Russian Federation); Tarasov, B.P. [Institute of Problems of Chemical Physics of RAS, Chernogolovka (Russian Federation); Fichtner, M. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Yartys, V.A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, P.O. Box 40, Kjeller NO2027 (Norway)

    2015-10-05

    Highlights: • Hydrogen diffusion in the La{sub 1.5}Nd{sub 0.5}MgNi{sub 9} alloy electrode was studied. • Various techniques of low amplitude potentiostatic data treatment were used. • D{sub H} demonstrates a maximum (2 × 10{sup −11} cm{sup 2}/s) at 85% of discharge of the electrode. • Maximum is associated with a conversion of β-hydride into a solid α-solution. • Optimization of material and electrode will allow high discharge rates. - Abstract: Hydrogen diffusion in the La{sub 1.5}Nd{sub 0.5}MgNi{sub 9} battery electrode material has been studied using low amplitude potentiostatic experiments. Complex diffusion behavior is examined in frames of electroanalytical models proposed for the lithium intercalation materials. Hydrogen diffusion coefficient D{sub H} changes with hydrogen content in the metal hydride anode electrode and has a maximum of ca. 2 × 10{sup −11} cm{sup 2}/s at ca. 85% of discharge. Such a behavior differs from the trends known for the transport in lithium battery materials, but qualitatively agrees with the data for the highly concentrated β-PdH{sub x}.

  7. Preparation of intercalated polyaniline/clay nanocomposite and its

    Indian Academy of Sciences (India)

    Intercalated composite of polyaniline and clay has been reported. The composite was prepared by in situ polymerization of aniline within the layers of `illite' clay. The composite was characterized for its structural, spectral, and microscopic properties. At higher level of loading the layered structure of composite breaks ...

  8. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes

    NARCIS (Netherlands)

    Aten, J. A.; Buys, C. H.; van der Veen, A. Y.; Mesa, J. R.; Yu, L. C.; Gray, J. W.; Osinga, J.; Stap, J.

    1987-01-01

    A number of structurally unrelated DNA intercalators have been studied as stabilizers of mitotic chromosomes during isolation from rodent and human metaphase cells. Seven out of the nine intercalators tested were found to be useful as chromosome stabilizing agents. Chromosome suspensions prepared in

  9. Why does the lumen maintenance of sodium-scandium metal halide lamps improve by VHF operation?

    International Nuclear Information System (INIS)

    Van Erk, W; Luijks, G M J F; Hitchcock, W

    2011-01-01

    Lifetime experiments show that sodium-scandium metal halide lamps perform better on very high frequency (VHF) drivers than on low frequency (LF) constant wattage autotransformer (CWA) ballasts. The question why, will be addressed with focus on arc tube aspects. It is argued that at high frequency operation sodium loss is less, and that the absence of thermal fluctuations in the electrode tip causes less damage and cracking to this part of the electrode. Sudden lm W -1 drops, observed with CWA-operated lamps, most probably occur when the arc attaches on such a corroded and cracked surface. Thorium is effective as an emitter both in the CWA and the VHF operation mode, despite the absence of cataphoretic transport to the cathode in the VHF case.

  10. Why does the lumen maintenance of sodium-scandium metal halide lamps improve by VHF operation?

    Energy Technology Data Exchange (ETDEWEB)

    Van Erk, W [Philips Lighting, Sondervick 47, 5505 NB Veldhoven (Netherlands); Luijks, G M J F [Advanced Development Lighting, Philips Lighting, PO Box 80020, 5600 JM Eindhoven (Netherlands); Hitchcock, W, E-mail: Gerard.luijks@philips.com [Philips Lighting Company, 7265 Route 54, Bath, NY 14810 (United States)

    2011-06-08

    Lifetime experiments show that sodium-scandium metal halide lamps perform better on very high frequency (VHF) drivers than on low frequency (LF) constant wattage autotransformer (CWA) ballasts. The question why, will be addressed with focus on arc tube aspects. It is argued that at high frequency operation sodium loss is less, and that the absence of thermal fluctuations in the electrode tip causes less damage and cracking to this part of the electrode. Sudden lm W{sup -1} drops, observed with CWA-operated lamps, most probably occur when the arc attaches on such a corroded and cracked surface. Thorium is effective as an emitter both in the CWA and the VHF operation mode, despite the absence of cataphoretic transport to the cathode in the VHF case.

  11. K-intercalated carbon systems: Effects of dimensionality and substrate

    KAUST Repository

    Kaloni, Thaneshwor P.; Kahaly, M. Upadhyay; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    the charge carrier density. Reasonably high values are found for all systems, the highest carrier density for the bilayer. The band structure and electron-phonon coupling of free-standing K-intercalated bilayer graphene points to a high probability

  12. Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance

    KAUST Repository

    Abou-Hamad, E; Goze-Bac, C; Nitze, F; Schmid, M; Aznar, R; Mehring, M; Wå gberg, T

    2011-01-01

    We report on the electronic properties of Cs-intercalated single-walled carbon nanotubes (SWNTs). A detailed analysis of the 13C and 133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The 'metallization' of CsxC materials where x=0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF) at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x=0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x<0.05 (α-phase), whereas it reaches a plateau in the range 0.05≤x≤0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2) orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.

  13. Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance

    KAUST Repository

    Abou-Hamad, E

    2011-05-24

    We report on the electronic properties of Cs-intercalated single-walled carbon nanotubes (SWNTs). A detailed analysis of the 13C and 133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The \\'metallization\\' of CsxC materials where x=0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF) at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x=0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x<0.05 (α-phase), whereas it reaches a plateau in the range 0.05≤x≤0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2) orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.

  14. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    Science.gov (United States)

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. X-ray absorption studies of graphite intercalates and metal-ammonia solutions

    International Nuclear Information System (INIS)

    Robertson, A.S.

    1979-09-01

    X-ray absorption spectroscopy (XAS) was used to study the arsenic fluorocomplexes, including the AsF 5 and AsF 6 - intercalates of graphite, and rubidium metal-ammonia solutions. The As-F distances obtained for AsF 3 and AsF 5 gas are both in excellent agreement with electron diffraction data (within 0.004 A). A superior measurement which is significantly shorter than the accepted value of the bond distance in an undistorted AsF 6 - octahedra is reported. Both the XAES and EXAFS data presented support the hypothesis that the AsF 5 oxidizes graphite upon intercalation to produce AsF 6 - and AsF 3 intercalant species. Changes in the Rb K-edge features which are consistent with the known properties of Rb-NH 3 are correlated with conductivity and delocalization of the solvated electrons. In the XAES region, intensity and position changes of absorption transitions are explained. In the EXAFS region, the Rb-N bond distance and the relative number of nitrogen atoms in the first shell are measured. XAS has been shown to provide unique information about the nature of the metal-ammonia phase separation, phase transition, and density fluctuations

  16. Monitoring and measurement of oxygen concentrations in liquid sodium

    International Nuclear Information System (INIS)

    Smith, D.L.

    1976-01-01

    The measurement of oxygen concentrations in sodium at levels of interest for LMFBR applications is reviewed. Additional data are presented to support the validity of the vanadium-equilibration method as a reference for determination of oxygen concentrations in sodium at levels equal to or less than 15 ppM. Operating experience with electrochemical oxygen meters that have a thoria-yttria electrolyte and a Na--Na 2 O reference electrode is described. Meter lifetimes in excess of one year have generally been achieved for operating temperatures of 352 and 402 0 C, and fairly stable emfs have been observed for periods of several months. 7 fig, 21 references

  17. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...

  18. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay

    2013-07-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  19. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay; Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  20. Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystal

    International Nuclear Information System (INIS)

    Endo, Tatsuro; Ueda, China; Hisamoto, Hideaki; Kajita, Hiroshi; Okuda, Norimichi; Tanaka, Satoru

    2013-01-01

    We have fabricated polymer-based 2-dimensional photonic crystals that play a key role in enhancing the fluorescence of DNA intercalators. Highly ordered 2-dimensional photonic crystals possessing triangle-shaped and nm-sized hole arrays were fabricated on a 100 μm thick polymer film using nano-imprint lithography. Samples of double-stranded DNAs (sizes: 4361 and 48502 bp; concentration: 1 pM to 10 nM) were adsorbed on the surface of the 2-dimensional photonic crystal by electrostatic interactions and then treated with intercalators. It is found that the fluorescence intensity of the intercalator is enhanced by a factor of up to 10 compared to the enhancement in the absence of the 2-dimensional photonic crystal. Fluorescence intensity increases with increasing length and concentration of the DNAs. If the 2-dimensional photonic crystal is used as a Bragg reflection mirror, the enhancement of fluorescence intensity can be easily observed using a conventional spectrofluorometer. These results suggest that the printed photonic crystal offers a great potential for highly sensitive intercalator-based fluorescent detection of DNAs. (author)

  1. Free-standing Hierarchical Porous Assemblies of Commercial TiO_2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xiong; Xu, Guobao; Xiao, Huaping; Wei, Xiaolin; Yang, Liwen

    2017-01-01

    Highlights: • Utilization of commercial nanomaterials to freestanding sodium electrode is demonstrated. • Free-standing electrodes composed of TiO_2 and MWCNTs are hierarchically porous. • Hierarchical porous architecture benefits charge transport and interfacial Na"+ adsorption. • Free-standing hierarchical porous electrodes exhibit superior Na storage performance. - Abstract: Freestanding hierarchical porous assemblies of commercial TiO_2 nanocrystals and multi-wall carbon nanotubes (MWCNTs) as electrode materials for sodium ion batteries (SIBs) are prepared via modified vacuum filtration, free-drying and annealing. Microstructure characterizations reveal that TiO_2 nanocrystals are confined in hierarchically porous, highly electrically conductive and mechanically robust MWCNTs networks with cross-linking of thermally-treated bovine serum albumin. The hierarchical porous architecture not only enables rapid charge transportation and sufficient interaction between electrode and electrolyte, but also guarantees abundant interfacial sites for Na"+ adsorption, which benefits substantial contribution from pseudocapacitive Na storage. When it is used directly as an anode for sodium-ion batteries, the prepared electrode delivers high specific capacity of 100 mA h g"−"1 at a current density of 3000 mA g"−"1, and 150 mA h g"−"1 after 500 cycles at a current density of 500 mA g"−"1. The low-cost TiO_2-based freestanding anode has large potential application in high-performance SIBs for portable, flexible and wearable electronics.

  2. Fluoride Removal From Drinking Water by Electrocoagulation Using Iron and Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Takdastan

    2014-07-01

    Full Text Available Background Existence of fluoride in drinking water above the permissible level causes human skeletal fluorosis. Objectives Electrocoagulation by iron and aluminum electrodes was proposed for removing fluoride from drinking water. Materials and Methods Effects of different operating conditions such as treatment time, initial pH, applied voltage, type and number of electrodes, the spaces between aluminum and iron electrodes, and energy consumption during electrocoagulation were investigated in the batch reactor. Variable concentrations of fluoride solution were prepared by mixing proper amounts of sodium fluoride with deionized water. Results Experimental results showed that aluminum electrode is more effective in fluoride removal than iron, as in 40 minutes and initial pH of 7.5 at 20 V, the fluoride removal process reached to 97.86%. The final recommendable limit of fluoride (1.5 mg/L was obtained in 10 minutes at 20 V with the aluminum electrode. Conclusions In electrocoagulation with iron and aluminum electrodes, increase of voltage, number of electrodes and reaction time as well as decrease of the spaces between electrodes, enhanced the fluoride removal efficiency from drinking water. In addition the effect of pH and initial concentration of fluoride varied with types of electrodes.

  3. Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Liu, Qinfu, E-mail: lqf@cumtb.edu.cn [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Cheng, Hongfei [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Zeng, Fangui [Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-03-15

    Graphical abstract: Snapshot of the kaolinite–DMSO system after equilibrium is reached. - Highlights: • Dimethyl sulfoxide arranges a monolayer structure between kaolinite layers. • Weak hydrogen bonds exist between methyl groups of dimethyl sulfoxide and kaolinite silica layer. • Intercalated dimethyl sulfoxide forms strong hydrogen bonds with kaolinite alumina layer. - Abstract: Kaolinite intercalation complex with dimethyl sulfoxide (DMSO) was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry–differential scanning calorimetry (TG–DSC) combined with molecular dynamics simulation. The bands assigned to the OH stretching of inner surface of kaolinite were significantly perturbed after intercalation of DMSO into kaolinite. Additionally, the bands attributed to the vibration of gibbsite-like layers of kaolinite shifted to the lower wave number, indicating that the intercalated DMSO were strongly hydrogen bonded to the alumina octahedral surface of kaolinite. The slightly decreased intensity of 1031 cm{sup −1} and 1016 cm{sup −1} band due to the in-plane vibration of Si−O of kaolinite revealed that some DMSO molecules formed weak hydrogen bonds with the silicon tetrahedral surface of kaolinite. Based on the TG result of kaolinite–DMSO intercalation complex, the formula of A1{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}(DMSO){sub 0.7} was obtained, with which the kaolinite–DMSO complex model was constructed. The molecular dynamics simulation of kaolinite–DMSO complex directly confirmed the monolayer structure of DMSO in interlayer space of kaolinite, where the DMSO arranged almost parallel with kaolinite basal surface with all methyl groups being distributed near the interlayer midplane and oxygen atoms orienting toward to the alumina octahedral surface. The radial distribution function between kaolinite and intercalated DMSO verified the strong hydrogen bonds forming between hydroxyl hydrogen

  4. Nanocomposite Materials for the Sodium-Ion Battery: A Review.

    Science.gov (United States)

    Liang, Yaru; Lai, Wei-Hong; Miao, Zongcheng; Chou, Shu-Lei

    2018-02-01

    Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na + ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Alkaline-earth metal phenylphosphonates and their intercalation chemistry

    Czech Academy of Sciences Publication Activity Database

    Melánová, Klára; Beneš, L.; Svoboda, J.; Zima, Vítězslav; Pospíšil, M.; Kovář, P.

    2018-01-01

    Roč. 47, č. 9 (2018), s. 2867-2880 ISSN 1477-9226 R&D Projects: GA ČR(CZ) GA17-10639S Institutional support: RVO:61389013 Keywords : intercalation * layered compounds * alkaline-earth metal phenylphosphonates Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.029, year: 2016

  6. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    Science.gov (United States)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  7. The effect of transition metals on the structure of h-BN intercalation compounds

    International Nuclear Information System (INIS)

    Budak, Erhan; Bozkurt, Cetin

    2004-01-01

    In this study, hexagonal boron nitride (h-BN) were synthesized by the modified O'Connor method in the presence of various metal nitrates [M(NO 3 ) x , M=Cr, Mn, Fe, Co, Ni, Cu, Zn, and Ag]. The composites were analyzed by FTIR, XRF, XRD, and SEM techniques. XRD results indicated a change in the interlayer spacing due to the intercalation of Cr, Mn, Fe and Ag. SEM analyses illustrated the grain growth upon metal intercalation even at a temperature of 1320 K

  8. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.

    Science.gov (United States)

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron

    2018-01-16

    Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A

  9. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, D.S. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Didcot, Oxon OX11 0FA (United Kingdom); Bradley, R.S. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Tariq, F.; Cooper, S.J. [Dept. Earth Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Taiwo, O.O. [Dept. Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Gelb, J.; Merkle, A. [Carl Zeiss X-ray Microscopy Inc., Pleasanton, CA 94588 (United States); Brett, D.J.L. [Dept. Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Brandon, N.P. [Dept. Earth Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Withers, P.J.; Lee, P.D. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Didcot, Oxon OX11 0FA (United Kingdom); Shearing, P.R., E-mail: p.shearing@ucl.ac.uk [Dept. Chemical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2014-04-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li{sup +} ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.

  10. Effects of Cu intercalation on the graphene/Ni(111) surface: density-functional calculations

    International Nuclear Information System (INIS)

    Kwon, Se Gab; Kang, Myung Ho

    2012-01-01

    The Cu-intercalated graphene/Ni(111) surface has been studied by using density-functional theory calculations. We find that (1) the intercalation-induced decoupling between graphene and the Ni(111) substrate begins sharply at a Cu coverage of about 0.75 ML, (2) at the optimal Cu coverage of 1 ML, graphene recovers an almost ideal Dirac-cone band structure with no band gap, and (3) the Dirac point is located at 0.17 eV below the Fermi level, indicating a small charge transfer from the substrate. Cu thus plays essentially the same role as Au in realizing quasi-free-standing graphene by intercalation. Our charge character analysis shows that the Dirac-cone bands near the Fermi level reveal a weakening of their π character when crossing the Ni d bands, suggesting that the resulting low Dirac-cone intensity could possibly be the origin of the recent photoemission report of a relatively large band gap of 0.18 eV.

  11. Intercalation of hydrotalcites with hexacyanoferrate(II) and (III)-a thermoRaman spectroscopic study

    International Nuclear Information System (INIS)

    Frost, Ray L.; Musumeci, Anthony W.; Bouzaid, Jocelyn; Adebajo, Moses O.; Martens, Wayde N.; Theo Kloprogge, J.

    2005-01-01

    Raman spectroscopy using a hot stage indicates that the intercalation of hexacyanoferrate(II) and (III) in the interlayer space of a Mg, Al hydrotalcites leads to layered solids where the intercalated species is both hexacyanoferrate(II) and (III). Raman spectroscopy shows that depending on the oxidation state of the initial hexacyanoferrate partial oxidation and reduction takes place upon intercalation. For the hexacyanoferrate(III) some partial reduction occurs during synthesis. The symmetry of the hexacyanoferrate decreases from O h existing for the free anions to D 3d in the hexacyanoferrate interlayered hydrotalcite complexes. Hot stage Raman spectroscopy reveals the oxidation of the hexacyanoferrate(II) to hexacyanoferrate(III) in the hydrotalcite interlayer with the removal of the cyanide anions above 250 deg. C. Thermal treatment causes the loss of CN ions through the observation of a band at 2080cm -1 . The hexacyanoferrate (III) interlayered Mg, Al hydrotalcites decomposes above 150 deg. C

  12. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    Science.gov (United States)

    Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás; Kónya, Zoltán; Kukovecz, Ákos; Kristóf, János

    2017-03-01

    Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the 'c'-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the 'c'-crystal direction. The d(001) value showed a diffuse pattern at 7.4-7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  13. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  14. Intercalation of Si between MoS2 layers

    Directory of Open Access Journals (Sweden)

    Rik van Bremen

    2017-09-01

    Full Text Available We report a combined experimental and theoretical study of the growth of sub-monolayer amounts of silicon (Si on molybdenum disulfide (MoS2. At room temperature and low deposition rates we have found compelling evidence that the deposited Si atoms intercalate between the MoS2 layers. Our evidence relies on several experimental observations: (1 Upon the deposition of Si on pristine MoS2 the morphology of the surface transforms from a smooth surface to a hill-and-valley surface. The lattice constant of the hill-and-valley structure amounts to 3.16 Å, which is exactly the lattice constant of pristine MoS2. (2 The transitions from hills to valleys are not abrupt, as one would expect for epitaxial islands growing on-top of a substrate, but very gradual. (3 I(V scanning tunneling spectroscopy spectra recorded at the hills and valleys reveal no noteworthy differences. (4 Spatial maps of dI/dz reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5 X-ray photo-electron spectroscopy measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the relative Si signal. Based on these experimental observations we have to conclude that deposited Si atoms do not reside on the MoS2 surface, but rather intercalate between the MoS2 layers. Our conclusion that Si intercalates upon the deposition on MoS2 is at variance with the interpretation by Chiappe et al. (Adv. Mater. 2014, 26, 2096–2101 that silicon forms a highly strained epitaxial layer on MoS2. Finally, density functional theory calculations indicate that silicene clusters encapsulated by MoS2 are stable.

  15. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    International Nuclear Information System (INIS)

    Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás

    2017-01-01

    Highlights: • Halloysite intercalation/delamination. • Thin-walled nanoscroll preparation. • Oxidative surface cleaning with H_2O_2 and heating. • X-ray diffraction, TEM, N_2 adsorption, TG/DTG and FT-IR/ATR measurements. • Nanoscroll rearrangement, periodicity along the crystallographic ‘c’-axis. - Abstract: Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N_2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the ‘c’-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the ‘c’-crystal direction. The d(001) value showed a diffuse pattern at 7.4–7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  16. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zsirka, Balázs, E-mail: zsirkab@almos.vein.hu [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Horváth, Erzsébet, E-mail: erzsebet.horvath@gmail.com [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Szabó, Péter, E-mail: xysma@msn.com [University of Pannonia, Department of Analytical Chemistry, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Juzsakova, Tatjána, E-mail: yuzhakova@almos.uni-pannon.hu [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Szilágyi, Róbert K., E-mail: szilagyi@montana.edu [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Fertig, Dávid, E-mail: fertig.david92@gmail.com [University of Pannonia, Department of Analytical Chemistry, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Makó, Éva, E-mail: makoe@almos.vein.hu [University of Pannonia, Institute of Materials Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Varga, Tamás, E-mail: vtamas@chem.u-szeged.hu [University of Szeged, Department of Applied and Environmental Chemistry, Rerrich B. tér 1., Szeged H-6720 Hungary (Hungary); and others

    2017-03-31

    Highlights: • Halloysite intercalation/delamination. • Thin-walled nanoscroll preparation. • Oxidative surface cleaning with H{sub 2}O{sub 2} and heating. • X-ray diffraction, TEM, N{sub 2} adsorption, TG/DTG and FT-IR/ATR measurements. • Nanoscroll rearrangement, periodicity along the crystallographic ‘c’-axis. - Abstract: Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N{sub 2} adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the ‘c’-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the ‘c’-crystal direction. The d(001) value showed a diffuse pattern at 7.4–7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  17. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-02-01

    Full Text Available A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200–1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability. Keywords: Pheniramine, Sodium lauryl sulfate (SLS, Glassy carbon electrode modified with multi-walled carbon nanotubes (GCE-MWCNTs, Solubilized systems, Voltammetric quantification

  18. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed

    2017-05-23

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  19. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed; Kirmani, Ahmad R.; Barlow, Stephen; Marder, Seth R.; Amassian, Aram

    2017-01-01

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  20. Preparation and characterization of trans-RhCl(CO)(TPPTS)2-intercalated layered double hydroxides

    International Nuclear Information System (INIS)

    Zhang Xian; Wei Min; Pu Min; Li Xianjun; Chen Hua; Evans, David G.; Duan Xue

    2005-01-01

    trans-RhCl(CO)(TPPTS) 2 (TPPTS=tris(m-sulfonatophenyl)phosphine) has been intercalated into Zn-Al layered double hydroxides (LDHs) by the method of ion exchange. The structure, composition and thermal stability of the composite material have been characterized by powder X-ray diffraction, Fourier transform infrared and 31 P solid-state magic-angle spinning nuclear magnetic resonance spectroscopy, elemental analysis, thermogravimetry, and differential thermal analysis. The geometry of trans-RhCl(CO)(TPPTS) 2 was fully optimized using the PM3 semiempirical molecular orbital method, and a schematic model for the intercalated species has been proposed. The thermal stability of trans-RhCl(CO)(TPPTS) 2 is significantly enhanced by intercalation, which suggests that such materials may have prospective application as the basis of a supported catalyst system for the hydroformylation of higher olefins

  1. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    International Nuclear Information System (INIS)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel; Wiley, John B.

    2012-01-01

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb 2 O 7 , is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb 2 LaNb 2 O 7 . This compound is then reacted at room-temperature with in situ generated H 2 S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb 2 Cl)LaNb 2 O 7 where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S 2− alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H 2 Se (g) were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  2. Thermoelectric transport properties of polycrystalline titanium diselenide co-intercalated with nickel and titanium using spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Holgate, T.C. [Department of Energy Storage and Conversion, Technical University of Denmark, Riso Campus, 4000 Roskilde (Denmark); Zhu, S.; Zhou, M. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Bangarigadu-Sanasy, S.; Kleinke, H. [Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); He, J. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Tritt, T.M., E-mail: ttritt@clemson.edu [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2013-01-15

    Polycrystalline samples of nickel intercalated (0-5%) TiSe{sub 2} were attempted via solid-state reaction in evacuated quartz tubes followed by densification using a spark plasma sintering process. X-ray diffraction data indicated that mixed NiSe{sub 2} and TiSe{sub 2} phases were present after initial synthesis by solid-state reaction, but a pure TiSe{sub 2} phase was present after the spark plasma sintering. While EPMA data reveals the stoichiometry to be near 1:1.8 (Ti:Se) for all samples, comparisons of the measured bulk densities to the theoretical densities suggest that the off stoichiometry is a result of the co-intercalation of both Ni and Ti rather than Se vacancies. Due to the presence of excess Ti (0.085-0.130 per formula) in the van der Waals gap of all the samples, the sensitive electron-hole balance is offset by the additional Ti-3d electrons, leading to an increase in the thermopower (n-type) over pristine, stoichiometric TiSe{sub 2}. The effects of the co-intercalation of both Ni and Ti in TiSe{sub 2} on the structural, thermal, and electrical properties are discussed herein. - Graphical abstract: Co-intercalation of nickel and excess titanium into the van der Waals gap of TiSe{sub 2} via solid state synthesis followed by spark plasma sintering results in a systematic shift in the ratio of hole and electron carrier concentration, which is close to unity for pristine TiSe{sub 2}. This directly affects the electrical transport properties, and as the structural disorder induced by intercalation suppresses the lattice thermal conductivity, co-intercalation is an effective route to enhance the thermoelectric properties of transition metal diselenides. Highlights: Black-Right-Pointing-Pointer Single phase bulk Ni and Ti co-intercalated TiSe{sub 2} samples prepared by spark plasma sintering. Black-Right-Pointing-Pointer Density and X-ray diffraction suggest that the Ni and excess Ti are ordered in the Van der Waals gap. Black-Right-Pointing-Pointer Co-intercalation

  3. Intercalation compounds of NbSe2 und SnSe2. Model systems for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Herzinger, Michael

    2013-01-01

    Quasi-two-dimensional (2D) metal dichalcogenides have received considerable research interest since their complex anisotropic electronic properties can be controlled by the intercalation of donor species. Although layered dichalcogenides have been studied by many aspects of chemical and physical properties, their two-dimensional character is only poorly understood. The present work deals with the layer-shaped dichalcogenides SnSe 2 and NbSe 2 . The host-material SnSe 2 was synthesized by chemical transport with Iodine as transport agent in sealed quartz ampoules. The intercalation of the semiconducting layered single crystals SnSe 2 with the organometallic compound cobaltocene (CoCp 2 ) leads to superconductivity up to T = 8 K. Ex-situ intercalation studies show an intercalation-mechanism outgoing from the host material 2H-SnSe 2 in a stage-2 phase which goes over in a stage-1 phase for higher intercalation degrees. In addition, SnSe 2 {CoCp 2 } x show remarkable low-temperature properties e.g. the coexistence of superconductivity and magnetism in dependence of the staging and cobaltocene-content of the material. Starting from an intercalation degree of 17% CoCp 2 long range ordered magnetism (with increasing saturation magnetization) was observed in 18R-SnSe 2 {CoCp 2 } x . Furthermore SnSe 2 {CoCp 2 } x show an extremely sensitive superconducting pinning behavior in very small magnetic fields partially below B 2 -content. A phase diagram was developed in dependence of the degree of intercalation over the whole range of intercalation between 0 % and 33 %. For comparison of the low-temperature character of SnSe 2 {CoCp 2 } x , another layer-shaped superconductor NbSe 2 was intercalated with CoCp 2 . The layered high-k s-wave superconductor 2H-NbSe 2 belongs to the most prominent low-dimensional materials studied during the past fifty years. After the discovery of the high temperature superconductor MgB 2 , a benchmark system for multi-band superconductivity, NbSe 2

  4. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    Science.gov (United States)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  5. The effect of alkaline cations on the Intercalation of Carbon Dioxide in Sepiolite Minerals: a Molecular Dynamics Investigation.

    Science.gov (United States)

    Tavanti, Francesco; Muniz-Miranda, Francesco; Pedone, Alfonso

    2018-03-01

    The ability of the sepiolite mineral to intercalate CO2 molecules inside its channels in the presence of different alkaline cations (K+, Na+ and Li+) has been studied by classical Molecular Dynamics simulations. Starting from an alkaline-free sepiolite crystalline model we built three models with stoichiometry Mg320Si440Al40O1200(OH)160X+40•480H2O. On these models, we gradually replaced the water molecules present in the channels with carbon dioxide and determined the energy of this exchange reaction as well as the structural organization and dynamics of carbon dioxide in the channels. The adsorption energy shows that the Li-containing sepiolite mineral retains more carbon dioxide with respect to those with sodium and potassium cations in the channels. Moreover, the ordered patterns of CO2 molecules observed in the alkaline-free sepiolite mineral are in part destabilized by the presence of cations decreasing the adsorption capacity of this clay mineral.

  6. Effect of adsorbed/intercalated anionic dyes into the mechanical properties of PVA: layered zinc hydroxide nitrate nanocomposites.

    Science.gov (United States)

    Marangoni, Rafael; Mikowski, Alexandre; Wypych, Fernando

    2010-11-15

    Zinc hydroxide nitrate (ZHN) was adsorbed with anions of blue dyes (Chicago sky blue, CSB; Evans blue, EB; and Niagara blue, NB) and intercalated with anions of orange dyes (Orange G, OG; Orange II, OII; methyl orange, MO). Transparent, homogeneous and colored nanocomposite films were obtained by casting after dispersing the pigments (dye-intercalated/adsorbed into LHSs) into commercial poly(vinyl alcohol) (PVA). The films were characterized by XRD, UV-Vis spectroscopy, and mechanical testing. The mechanical properties of the PVA compounded with the dye-intercalated/adsorbed ZHN were evaluated, and reasonable increases in Young's modulus and ultimate tensile strength were observed, depending on the amount and choice of layered filler. These results demonstrate the possibility of using a new class of layered hydroxide salts intercalated and adsorbed with anionic dyes to prepare multifunctional polymer nanocomposite materials. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. An intercalated BSc degree is associated with higher marks in subsequent medical school examinations

    OpenAIRE

    Cleland, Jennifer A; Milne, Andrew; Sinclair, Hazel; Lee, Amanda J

    2009-01-01

    Abstract Background To compare medical students on a modern MBChB programme who did an optional intercalated degree with their peers who did not intercalate; in particular, to monitor performance in subsequent undergraduate degree exams. Methods This was a retrospective, observational study of anonymised databases of medical student assessment outcomes. Data were accessed for graduates, University of Aberdeen Medical School, Scotland, UK, from the years 2003 to 2007 (n = 861). The main outcom...

  8. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate

    Science.gov (United States)

    Lee, Minah; Hong, Jihyun; Lopez, Jeffrey; Sun, Yongming; Feng, Dawei; Lim, Kipil; Chueh, William C.; Toney, Michael F.; Cui, Yi; Bao, Zhenan

    2017-11-01

    Sodium-ion batteries (SIBs) for grid-scale applications need active materials that combine a high energy density with sustainability. Given the high theoretical specific capacity 501 mAh g-1, and Earth abundance of disodium rhodizonate (Na2C6O6), it is one of the most promising cathodes for SIBs. However, substantially lower reversible capacities have been obtained compared with the theoretical value and the understanding of this discrepancy has been limited. Here, we reveal that irreversible phase transformation of Na2C6O6 during cycling is the origin of the deteriorating redox activity of Na2C6O6. The active-particle size and electrolyte conditions were identified as key factors to decrease the activation barrier of the phase transformation during desodiation. On the basis of this understanding, we achieved four-sodium storage in a Na2C6O6 electrode with a reversible capacity of 484 mAh g-1, an energy density of 726 Wh kg-1cathode, an energy efficiency above 87% and a good cycle retention.

  9. Decorating Waste Cloth via Industrial Wastewater for Tube-Type Flexible and Wearable Sodium-Ion Batteries.

    Science.gov (United States)

    Zhu, Yun-Hai; Yuan, Shuang; Bao, Di; Yin, Yan-Bin; Zhong, Hai-Xia; Zhang, Xin-Bo; Yan, Jun-Min; Jiang, Qing

    2017-04-01

    To turn waste into treasure, a facile and cost-effective strategy is developed to revive electroless nickel plating wastewater and cotton-textile waste toward a novel electrode substrate. Based on the substrate, a binder-free PB@GO@NTC electrode is obtained, which exhibits superior electrochemical performance. Moreover, for the first time, a novel tube-type flexible and wearable sodium-ion battery is successfully fabricated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis, characterization and dielectric properties of polynorbornadiene–clay nanocomposites by ROMP using intercalated Ruthenium catalyst

    International Nuclear Information System (INIS)

    Yalçınkaya, Esra Evrim; Balcan, Mehmet; Güler, Çetin

    2013-01-01

    Polynorbornadiene clay nanocomposites were prepared for the first time by the ring opening metathesis polymerization (ROMP) using modified montmorillonite and polynorbornadiene the latter of which is used commonly in electric–electronic industry. The Na–MMT clay was modified by a quaternary ammonium salt containing Ruthenium complex as a suitable catalyst and intercalant as well. The norbornadiene monomers were polymerized within the modified montmorillonite layers by in-situ polymerization method in different clay loading degrees. Intercalation ability of the Ru catalyst and partially exfoliated nanocomposite structure were proved by powder X-ray Diffraction (XRD) Spectroscopy and Transmission Electron Microscopy (TEM) methods. The nanocomposite materials with high thermal degradation temperature and low dielectric constant compared to the pure polynorbornadiene were obtained. The dielectric constants decreased with the increase of the clay content. - Highlights: • Polynorbornadiene–clay nanocomposites were prepared for the first time. • Ruthenium complex was assigned as both suitable catalyst and intercalant. • The norbornadiene was polymerized by in-situ polymerization method. • Exfoliation/intercalation structures were found to be related with loading degree. • PNBD–MMT nanocomposites had a higher thermal degradation temperature and lower dielectric constant

  11. Visual Observation of Dissolution of Copper Ions from a Copper Electrode

    Science.gov (United States)

    Ikemoto, Isao; Saitou, Kouichi

    2013-01-01

    During electrolysis, to visually observe the conversion of a metal to its cation, either the cation or its complex ion should have a distinct color while the electrolyte solution must be colorless and transparent. A demonstration is described in which copper is used as the electrodes and sodium polyacrylate (a superabsorbent polymer) solution is…

  12. Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Dennis W.; Abraham, Daniel P; Lu, Wenquan; Gallagher, Kevin G.; Bettge, Martin; Jansen, Andrew N

    2015-01-21

    The impedance of a lithium- and manganese-rich layered transition-metal oxide (MR-NMC) positive electrode, specifically Li1.2Ni0.15Mn0.55Co0.1O2, is compared to two other transition-metal layered oxide materials, specifically LiNi0.8Co0.15Al0.05O2 (NCA) and Li1.05(Ni1/3Co1/3Mn1/3)0.95O2 (NMC). A more detailed electrochemical impedance spectroscopy (EIS) study is conducted on the LMR-NMC electrode, which includes a range of states-of-charge (SOCs) for both current directions (i.e. charge and discharge) and two relaxation times (i.e. hours and one hundred hours) before the EIS sweep. The LMR-NMC electrode EIS studies are supported by half-cell constant current and galvanostatic intermittent titration technique (GITT) studies. Two types of electrochemical models are utilized to examine the results. The first type is a lithium ion cell electrochemical model for intercalation active material electrodes that includes a complex active material/electrolyte interfacial structure. In conclusion, the other is a lithium ion half-cell electrochemical model that focuses on the unique composite structure of the bulk LMR-NMC materials.

  13. Voltammetric determination of sodium anthraquinone-2-sulfonate using silver solid amalgam electrodes

    Czech Academy of Sciences Publication Activity Database

    Skalová, Štěpánka; Navrátil, Tomáš; Barek, J.; Vyskočil, V.

    2017-01-01

    Roč. 148, č. 3 (2017), s. 577-583 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : Anthraquinone * Drugs * Silver solid amalgam electrode * Voltammetry Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.282, year: 2016

  14. Ab initio study of radiation effects on the Li4Ti5O12 electrode used in lithium-ion batteries

    Science.gov (United States)

    Samin, Adib; Kurth, Michael; Cao, Lei

    2015-04-01

    Lithium-ion batteries are currently in wide use owing to their high energy density and enhanced capabilities. Li4Ti5O12 is a promising anode material for lithium-ion batteries because of its advantageous properties. Lithium-ion batteries could be exposed to radiation occurring in various conditions such as during outer space exploration and nuclear accidents. In this study, we apply density functional theory to explore the effect of radiation damage on this electrode and, ultimately, on the performance of the battery. It was found that radiation could affect the structural stability of the material. Furthermore, the electrode was shown to undergo a transition from insulator to metal, following the defects due to radiation. In addition, the effect of radiation on the intercalation potential was found to be highly dependent on the nature of the defect induced.

  15. Ab initio study of radiation effects on the Li4Ti5O12 electrode used in lithium-ion batteries

    International Nuclear Information System (INIS)

    th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Samin, Adib; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Kurth, Michael; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Cao, Lei

    2015-01-01

    Lithium-ion batteries are currently in wide use owing to their high energy density and enhanced capabilities. Li 4 Ti 5 O 12 is a promising anode material for lithium-ion batteries because of its advantageous properties. Lithium-ion batteries could be exposed to radiation occurring in various conditions such as during outer space exploration and nuclear accidents. In this study, we apply density functional theory to explore the effect of radiation damage on this electrode and, ultimately, on the performance of the battery. It was found that radiation could affect the structural stability of the material. Furthermore, the electrode was shown to undergo a transition from insulator to metal, following the defects due to radiation. In addition, the effect of radiation on the intercalation potential was found to be highly dependent on the nature of the defect induced

  16. Nuclear Magnetic Resonance Study of Fluorine-Graphite Intercalation Compounds

    International Nuclear Information System (INIS)

    Panich, A.M.; Goren, S.D.; Nakajima, T.; Vieth, H.-M.; Privalov, A.

    1998-01-01

    To study the origin of semimetal-metal and metal-insulator transformations, localization effects and C-E bonding in fluorine-intercalated graphite C x F, 13 C and 19 F NMR investigations have been carried out for a wide range of fluorine content, 3.8 8, are attributed to mobile fluorine acceptor species which are responsible for the increase of electric conductivity in the dilute compound. When increasing the fluorine content to x ∼ 8 corresponding to the maximum electric conductivity, covalent C-P bonds start to oc- cur. The number of these bonds grows with fluorine content resulting in the decrease in conductivity which is caused by a percolation mechanism rather than by a change in bond length. A difference in 19 F chemical shift for fluorine-intercalated graphite C x F and covalent graphite fluoride (CF) n has been observed and is attributed to different C-P bonding in these compounds

  17. Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: Oxidation of phenol

    International Nuclear Information System (INIS)

    Hernandez, Maria; Fernandez, Lenys; Borras, Carlos; Mostany, Jorge; Carrero, Hermes

    2007-01-01

    The characteristics of hydrotalcite (HT)-like clay films containing ionic and nonionic surfactants and their ability to oxidize phenol have been examined. The HT clay (Co/Al-NO 3 ) was synthesized by coprecipitation techniques and then modified with surfactants such as sodium dodecylbenzenesulfonate (SDBS), octylphenoxypolyethoxyethanol (TX100) or cetylpyridinium bromide (CPB). X-ray diffraction analysis revealed that the interlayer basal spacing varied depending on the type of surfactant retained by the HT. The presence of SDBS and CPB expanded the HT interlayer, which in the presence of TX100 did not show an appreciable change. Phenol oxidation is favored at surfactant-HT-GC modified electrodes, after a preconcentration time, compared to phenol oxidation at HT-GC or GC electrodes. Surfactant-HT-GC modified electrodes display good stability in continuous electrochemical phenol oxidation. At pH values between 6 and 10.8, both SDBS-HT-GC and TX100-HT-GC modified electrodes seem to be promising electrodes for the detection of phenol in water; while the CPB-HT-GC modified electrode should be affected by the inorganic anions

  18. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States); Wiley, John B., E-mail: jwiley@uno.edu [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States)

    2012-06-15

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb{sub 2}O{sub 7}, is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb{sub 2}LaNb{sub 2}O{sub 7}. This compound is then reacted at room-temperature with in situ generated H{sub 2}S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb{sub 2}Cl)LaNb{sub 2}O{sub 7} where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S{sup 2−} alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H{sub 2}Se{sub (g)} were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  19. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Dessislava Kostadinova

    2016-12-01

    Full Text Available Increasing attention has been devoted to the design of layered double hydroxide (LDH-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid (PAA and three different hydrophilic random copolymers of acrylic acid (AA and n-butyl acrylate (BA with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT polymerization, into LDH containing magnesium(II and aluminium(III intralayer cations and nitrates as counterions (MgAl-NO3 LDH. At basic pH, the copolymer chains (macroRAFT agents carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA, the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR spectroscopies to get a better description of the local structure.

  20. High-resolution 13C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    KAUST Repository

    Bouhrara, M.; Saih, Y.; Wågberg, T.; Goze-Bac, C.; Abou-Hamad, E.

    2011-01-01

    charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites

  1. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Le, D.-B. [3M Electronic Markets Materials Division, 3M Center, St. Paul, MN 55144-1000 (United States); Ferguson, P.P. [Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Dahn, J.R., E-mail: jeff.dahn@dal.c [Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada)

    2010-03-01

    A lithium polyacrylate (Li-PAA) binder has been developed by 3M Company that is useful with electrodes comprising alloy anode materials. This binder was used to prepare electrodes made with Sn{sub 30}Co{sub 30}C{sub 40} material prepared by mechanical attrition. The electrochemical performance of electrodes using Li-PAA binder was characterized and compared to those using sodium carboxymethyl cellulose (CMC) and polyvinylidene fluoride (PVDF) binders. The Sn{sub 30}Co{sub 30}C{sub 40} electrodes using Li-PAA and CMC binders show much smaller irreversible capacity than the ones using PVDF binder. Poor capacity retention is observed when PVDF binder is used. By contrast, the electrodes using Li-PAA binder show excellent capacity retention for Sn{sub 30}Co{sub 30}C{sub 40} materials and a specific capacity of 450 mAh/g is achieved for at least 100 cycles. The results suggest that Li-PAA is a promising binder for electrodes made from large-volume change alloy materials.

  2. Sodium-Doped Mesoporous Ni2P2O7 Hexagonal Tablets for High-Performance Flexible All-Solid-State Hybrid Supercapacitors.

    Science.gov (United States)

    Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan

    2015-08-01

    A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. One-step exfoliation and surface modification of lamellar hydroxyapatite by intercalation of glucosamine

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Honglin [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Li, Wei; Ji, Dehui [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); Zuo, Guifu [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, Hebei United University, Tangshan, 063009 (China); Xiong, Guangyao, E-mail: xiongguangyao@163.com [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); Zhu, Yong [School of Chemical Engineering, Tianjin University, Tianjin, 300072 (China); Li, Lili; Han, Ming [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); Wu, Caoqun [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Wan, Yizao, E-mail: yzwantju@126.com [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China)

    2016-04-15

    Effective exfoliation is crucial to the application of layered materials in many fields. Herein, we report a novel effective, scalable, and ecofriendly method for the exfoliation of lamellar HAp by glucosamine intercalation such that individual HAp nanoplates can be obtained. The as-exfoliated HAp nanoplates were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric (TG) analysis. It is found that the glucosamine intercalation not only results in complete exfoliation of lamellar HAp but also introduces the glucosamine molecules onto the surface of individual HAp nanoplates, thus obtaining separated glucosamine-grafted HAp nanoplates (Glu-HAps). Results from MTT assay demonstrate that glucosamine grafting on HAp nanoplates greatly improves the cell growth and proliferation as compared to nongrafted HAp counterparts. - Highlights: • Glucosamine was used as intercalation agent to exfoliate lamellar hydroxyapatite. • Glucosamine was grafted onto the as-exfoliated nanoplate-like hydroxyapatite. • Exfoliation and surface grafting were accomplished in one step. • Glucosamine-grafted HAp showed improved biocompatibility over nongrafted one.

  4. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    Science.gov (United States)

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  5. NMR study of electrode materials for lithium ion-batteries; Etude par RMN de materiaux d'electrode pour batteries lithium-ion

    Energy Technology Data Exchange (ETDEWEB)

    Chazel, C.

    2006-01-15

    This work is devoted to the study of LiMO{sub 2} et LiM{sub 2}O{sub 4} (M: transition metal) intercalation compounds used as electrode material for lithium-ion batteries. Solid state NMR allows one to characterise the local environment of the lithium ions present in these phases by the use of the hyperfine interactions due to the presence of some electron spin density coming from localised electrons (Fermi-contact shift) or itinerant electrons (Knight shift) on the lithium nucleus. By following the transformation of the LiNiO{sub 2} layered phase into the LiNi{sub 2}O{sub 4} spinel material using lithium NMR, we studied the nature of the asymmetric signal observed for LiNiO{sub 2}, and the influence of the departure from the ideal stoichiometry; we showed a coupled ion/electron hopping in Li{sub X}NiO{sub 2} phases linked to Li/vacancy and Ni{sup 3+}/Ni{sup 4+} ordering, and finally showed the existence of structural defects within the LiNi{sub 2}O{sub 4} spinel phase obtained by thermal treatment of Li{sub 0.5}NiO{sub 2}. Lithium NMR of the intercalated materials obtained from the LiTi{sub 2}O{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12} spinels showed a metallic behaviour for Li{sub 2}Ti{sub 2}O{sub 4} with a Knight shift of the NMR signal similar to that of LiTi{sub 2}O{sub 4}, and signals intermediate in nature between Knight and Fermi-contact shifts for Li{sub 7}Ti{sub 5}O{sub 12}. (author)

  6. Electrode polarization studies in hot corrosion systems. Progress report, 1 July 1978--31 May 1979

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, O.F.

    1979-02-01

    Work is reported on thermodynamic analysis of gasifier models, equilibrium calculations performed on two and thre phase equilibrium involving components of coal gas, sodium salts, and carbon. Electrode polarization studies in molten sodium carbonate and polarization tests were performed on iron, steel, nickel, and on 304 and 316 stainless steel in molten sodium carbonate under a variety of exploratory environments. Gas/metal reactions studies, initial evaluation studies iron in hydrogen-hydrogen sulfide mixtures, pertaining to a new gravimetric facility are presented. Evaluation was made of reaction kinetics from polarization. A visual regression procedure utilizing interactive computer graphics is described for the fitting of multiparameter, nonlinear equations to experimental curves.

  7. The Facile Synthesis of N-Aryl Isoxazolones as DNA Intercalators ...

    African Journals Online (AJOL)

    NICO

    2012-02-20

    Feb 20, 2012 ... Chemistry Department, Islamic Azad University, Khoy Branch, Khoy, Iran. Received 9 December 2011, revised ... These compounds have potential applications as DNA intercalators. KEYWORDS. Isoxazolones ... Isoxazolones derivatives are important heterocyclic compounds with a wide range of reported ...

  8. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Gautam G.; Gallaway, Joshua W.; Turney, Damon E.; Nyce, Michael; Huang, Jinchao; Wei, Xia; Banerjee, Sanjoy

    2017-03-06

    Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g-1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ~10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives have been unsuccessful. We report a class of Bi-birnessite (a layered manganese oxide polymorph mixed with bismuth oxide (Bi2O3)) cathodes intercalated with Cu2+ that deliver near-full two-electron capacity reversibly for >6,000 cycles. The key to rechargeability lies in exploiting the redox potentials of Cu to reversibly intercalate into the Bi-birnessite-layered structure during its dissolution and precipitation process for stabilizing and enhancing its charge transfer characteristics. This process holds promise for other applications like catalysis and intercalation of metal ions into layered structures. A large prismatic rechargeable Zn-birnessite cell delivering ~140 Wh l-1 is shown.

  9. Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process

    International Nuclear Information System (INIS)

    Yue Lu; Zhong Haoxiang; Zhang Lingzhi

    2012-01-01

    Graphical abstract: Nano-Si/multi-wall carbon nanotube composite paper was prepared as free-standing electrode for lithium-ion batteries by a simple filtration method using sodium carboxymethyl cellulose as a dispersing/binding agent, followed by a thermal sintering process. The prepared paper electrode exhibited a significantly improved electrochemical performance, maintaining a specific capacity of 942 mAh g −1 after 30 cycles with a capacity fade of 0.46%/cycle. - Abstract: Nano-Si/(multi-wall carbon nanotube) (Si/MWCNT) composite paper was prepared as flexible electrode for lithium ion batteries by a simple filtration method using sodium carboxymethyl cellulose (CMC) as a dispersing/binding agent, followed by a thermal sintering process. Scanning electron microscopy (SEM) showed that nanosized Si particles were dispersed homogeneously and intertwined by the MWCNT throughout the whole paper electrode. After thermal sintering, Si/MWCNT paper electrode exhibited a significantly improved flexibility with a high Si content of 35.6 wt% as compared with before sintering, and retained a specific capacity of 942 mAh g −1 after 30 cycles with a capacity fade of 0.46%/cycle.

  10. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer

    DEFF Research Database (Denmark)

    Shen, Yanbin; Pedersen, Erik Ejler; Christensen, Mogens

    2014-01-01

    An electrochemical cell has been designed for powder X-ray diffraction (PXRD) studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode...... to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li4Ti5O12 anode and LiMn2O4 cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na0.84Fe0.56Mn0.44O2)....

  11. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).

    Science.gov (United States)

    Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-10-01

    Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

  12. Tuning metal–graphene interaction by non-metal intercalation: a case study of the graphene/oxygen/Ni (1 1 1) system

    International Nuclear Information System (INIS)

    Zhang, Wei-Bing; Chen, Chuan

    2015-01-01

    Epitaxial growth of graphene on transition metal surfaces has been proposed as one of the most promising methods for large-scale preparation of high-quality graphene. However, the presence of the substrate could significantly affect the intrinsic electronic structure of graphene and intercalation of metals is an established route for decoupling the graphene from the substrate. Taking a graphene/Ni(1 1 1) surface as an example, we suggest reactive oxygen as an effective intercalation element to recover the linear dispersion of graphene based on density functional theory calculation, in which vdW interactions are treated using the optB88-vdW functional. The possible intercalation configurations at different coverage are considered and the geometry and electronic structure are analyzed in detail. Our results indicate that the energy favorable structures change from top-fcc to bridge-top configuration after oxygen intercalation and the binding between the graphene and the O/Ni(1 1 1) substrate becomes stronger at high oxygen coverage even than pure Ni(1 1 1) substrate. Most interestingly, the electronic structure of pristine graphene is found to be almost restored, especially for the bridge-top configuration after oxygen intercalation, and the Dirac points move towards the high energy region relative to the Fermi level. A graphene/oxygen/Ni (1 1 1) system is thus suggested as a p-type doped strongly bound Dirac system. Detailed analysis using projected energy band and differential charge density indicates that the intercalated oxygen atoms react with the Ni (1 1 1) surface strongly, which not only blocks the strong interaction between Ni and graphene but also passivates oxygen 2p states. The intercalation mechanisms distinguished from the conventional metal intercalation will be useful to understand other complex intercalation systems. (paper)

  13. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations

    KAUST Repository

    Cheng, Yingchun

    2015-08-28

    Lithium, sodium and magnesium have attracted wide attention as potential ions for rechargeable batteries. The Materials Project database of high throughput first principles calculations is used to investigate the phase transitions of SnO2 during ion intercalation and extraction. Various intermediate phases are predicted to be formed during the first intercalation, whereas in later cycles other intermediate phases are encountered. The volume expansions after intercalation and extraction are analyzed. We show that different lithium and sodium oxide products found in recent experiments are due to different oxygen chemical potentials.

  14. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    Science.gov (United States)

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  15. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.

    Science.gov (United States)

    Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe

    2006-02-01

    High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.

  16. Intercalation of Mg-ions in layered V2O5 cathode materials for rechargeable Mg-ion batteries

    DEFF Research Database (Denmark)

    Sørensen, Daniel Risskov; Johannesen, Pætur; Christensen, Christian Kolle

    The development of functioning rechargeable Mg-ion batteries is still in its early stage, and a coarse screening of suitable cathode materials is still on-going. Within the intercalation-type cathodes, layered crystalline materials are of high interest as they are known to perform well in Li-ion...... intercalation batteries and are also increasingly being explored for Na-ion batteries. Here, we present an investigation of the layered material orthorhombic V2O5, which is a classical candidate for an ion-intercalation material having a high theoretical capacity1. We present discharge-curves for the insertion...... discharge. This indicates that the degradation is highly associated with formation of ion-blocking layers on the anode....

  17. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    International Nuclear Information System (INIS)

    Arora, P.; Doyle, M.; White, R.E.

    1999-01-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li x C 6 vertical bar 1 M LiPF 6 , 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) vert b ar LiMn 2 O 4 cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized

  18. 3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries.

    Science.gov (United States)

    Xie, Xiuqiang; Chen, Shuangqiang; Sun, Bing; Wang, Chengyin; Wang, Guoxiu

    2015-09-07

    Low-cost and sustainable sodium-ion batteries are regarded as a promising technology for large-scale energy storage and conversion. The development of high-rate anode materials is highly desirable for sodium-ion batteries. The optimization of mass transport and electron transfer is crucial in the discovery of electrode materials with good high-rate performances. Herein, we report the synthesis of 3 D interconnected SnO2 /graphene aerogels with a hierarchically porous structure as anode materials for sodium-ion batteries. The unique 3 D architecture was prepared by a facile in situ process, during which cross-linked 3 D conductive graphene networks with macro-/meso-sized hierarchical pores were formed and SnO2 nanoparticles were dispersed uniformly on the graphene surface simultaneously. Such a 3 D functional architecture not only facilitates the electrode-electrolyte interaction but also provides an efficient electron pathway within the graphene networks. When applied as anode materials in sodium-ion batteries, the as-prepared SnO2 /graphene aerogel exhibited high reversible capacity, improved cycling performance compared to SnO2 , and promising high-rate capability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Classical molecular dynamics and quantum abs-initio studies on lithium-intercalation in interconnected hollow spherical nano-spheres of amorphous Silicon

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Malik, R.; Prakash, S.

    2016-01-01

    A high concentration of lithium, corresponding to charge capacity of ~4200 mAh/g, can be intercalated in silicon. Unfortunately, due to high intercalation strain leading to fracture and consequent poor cyclability, silicon cannot be used as anode in lithium ion batteries. But recently interconnec......A high concentration of lithium, corresponding to charge capacity of ~4200 mAh/g, can be intercalated in silicon. Unfortunately, due to high intercalation strain leading to fracture and consequent poor cyclability, silicon cannot be used as anode in lithium ion batteries. But recently...... interconnected hollow nano-spheres of amorphous silicon have been found to exhibit high cyclability. The absence of fracture upon lithiation and the high cyclability has been attributed to reduction in intercalation stress due to hollow spherical geometry of the silicon nano-particles. The present work argues...... that the hollow spherical geometry alone cannot ensure the absence of fracture. Using classical molecular dynamics and density functional theory based simulations; satisfactory explanation to the absence of fracture has been explored at the atomic scale....

  20. Dynamic Electrochemical Impedance Spectroscopy of a Three-Electrode Lithium-Ion Battery during Pulse Charge and Discharge

    International Nuclear Information System (INIS)

    Huang, Jun; Ge, Hao; Li, Zhe; Zhang, Jianbo

    2015-01-01

    Highlights: • Dynamic EIS is performed on a three-electrode pouch cell; • Charge transfer resistance during insertion is generally larger than that during deinsertion due to the surface concentration change; • An inductive behavior is revealed at low frequencies due to the violation of stationary condition in DEIS measurement; • Electrochemical models of a single active particle in both time and frequency domain are developed. • The model predicts a positive correlation between the lower frequency limit and the DC current. - Abstract: The dynamic electrochemical impedance spectroscopy (DEIS) of a three-electrode pouch type lithium-ion battery is measured using a series of sine wave perturbations super-imposed on pulse charge and discharge. The DEIS reveals noticeable differences between charge and discharge at frequencies corresponding to the charge transfer reaction. The charge transfer resistance during intercalation is generally found to be larger than that during deintercalation for the battery chemistry in this study. This result is mainly attributed to the decreased Li ion concentration in the electrolyte during intercalation. At low frequencies, an abnormal inductive behavior is also observed. Such abnormality is found to result from the violation of stationary condition, i.e. the state of the battery under pulse charge or discharge deviates significantly from its initial condition for the perturbation of low frequencies. To analytically define the stationary condition, we develop electrochemical models of a single active particle in both time and frequency domain, which describes the transport of lithium ions in both active particle and electrolyte phase and the interfacial charge transfer reactions at their interface. The lower frequency limit is a key parameter to ensure a quasistationary state during the DEIS measurement. An explicit formulation of the stationary condition predicts a positive correlation between the lower frequency limit and