WorldWideScience

Sample records for sodium intercalation electrode

  1. Manganese oxide electrode with excellent electrochemical performance for sodium ion batteries by pre-intercalation of K and Na ions.

    Science.gov (United States)

    Feng, Mengya; Du, Qinghua; Su, Li; Zhang, Guowei; Wang, Guiling; Ma, Zhipeng; Gao, Weimin; Qin, Xiujuan; Shao, Guangjie

    2017-05-22

    Materials with a layered structure have attracted tremendous attention because of their unique properties. The ultrathin nanosheet structure can result in extremely rapid intercalation/de-intercalation of Na ions in the charge-discharge progress. Herein, we report a manganese oxide with pre-intercalated K and Na ions and having flower-like ultrathin layered structure, which was synthesized by a facile but efficient hydrothermal method under mild condition. The pre-intercalation of Na and K ions facilitates the access of electrolyte ions and shortens the ion diffusion pathways. The layered manganese oxide shows ultrahigh specific capacity when it is used as cathode material for sodium-ion batteries. It also exhibits excellent stability and reversibility. It was found that the amount of intercalated Na ions is approximately 71% of the total charge. The prominent electrochemical performance of the manganese oxide demonstrates the importance of design and synthesis of pre-intercalated ultrathin layered materials.

  2. Method for intercalating alkali metal ions into carbon electrodes

    Science.gov (United States)

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  3. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    Science.gov (United States)

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-04-26

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  4. Intercalation and Exfoliation of Kaolinite with Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Xiaochao Zuo

    2018-03-01

    Full Text Available Kaolinite (Kaol was intercalated with dimethyl sulfoxide (DMSO and subsequently methanol (MeOH to prepare intercalation compounds Kaol-DMSO and Kaol-MeOH. Kaol-MeOH was used as an intermediate to synthesize Kaol-sodium dodecyl sulfate (SDS intercalation compound (Kaol-SDS via displacement reaction. The ultrasonic exfoliation of Kaol-SDS produced a resultant Kaol-SDS-U. The samples were characterized by X-ray diffraction (XRD, Fourier transformation infrared spectroscopy (FTIR, thermal analysis, scanning electronic microscopy (SEM, transmission electron microscopy (TEM and particle size analysis. The results revealed that the intercalation of sodium dodecyl sulfate into kaolinite layers caused an obvious increase of the basal spacing from 0.72–4.21 nm. The dehydroxylation temperature of Kaol-SDS was obviously lower than that of original kaolinite. During the intercalation process of sodium dodecyl sulfate, a few kaolinite layers were exfoliated and curled up from the edges of the kaolinite sheets. After sonication treatment, the kaolinite layers were further transformed into nanoscrolls, and the exfoliated resultant Kaol-SDS-U possessed a smaller particle size close to nanoscale.

  5. Crystal structures of superconducting sodium intercalates of hafnium nitride chloride

    International Nuclear Information System (INIS)

    Oro-Sole, J.; Frontera, C.; Beltran-Porter, D.; Lebedev, O.I.; Van Tendeloo, G.; Fuertes, A.

    2006-01-01

    Sodium intercalation compounds of HfNCl have been prepared at room temperature in naphtyl sodium solutions in tetrahydrofuran and their crystal structure has been investigated by Rietveld refinement using X-ray powder diffraction data and high-resolution electron microscopy. The structure of two intercalates with space group R3-bar m and lattice parameters a=3.58131(6)A, c=57.752(6)A, and a=3.58791(8)A, c=29.6785(17)A is reported, corresponding to the stages 2 and 1, respectively, of Na x HfNCl. For the stage 2 phase an ordered model is presented, showing two crystallographically independent [HfNCl] units with an alternation of the Hf-Hf interlayer distance along the c-axis, according with the occupation by sodium atoms of one out of two van der Waals gaps. Both stages 1 and 2 phases are superconducting with critical temperatures between 20 and 24K, they coexist in different samples with proportions depending on the synthesis conditions, and show a variation in c spacing that can be correlated with the sodium stoichiometry. High-resolution electron microscopy images of the host and intercalated samples show bending of the HfNCl bilayers as well as stacking faults in some regions, which coexist in the same crystal with ordered domains

  6. Potential-modulated intercalation of alkali cations into metal hexacyanoferrate coated electrodes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Schwartz, D.T.

    1998-01-01

    'This program is studying potential-driven cation intercalation and deintercalation in metal hexacyanoferrate compounds, with the eventual goal of creating materials with high selectivity for cesium separations and long cycle lifetimes. The separation of radiocesium from other benign cations has important implications for the cost of processing a variety of cesium contaminated DOE wasteforms. This report summarizes results after nine months of work. Much of the initial efforts have been directed towards quantitatively characterizing the selectivity of nickel hexacyanoferrate derivatized electrodes for intercalating cesium preferentially over other alkali metal cations. Using energy dispersive xray spectroscopy (ex-situ, but non-destructive) and ICP analysis (ex-situ and destructive), the authors have demonstrated that the nickel hexacyanoferrate lattice has a strong preference for intercalated cesium over sodium. For example, when ions are reversibly loaded into a nickel hexacyanoferrate thin film from a solution containing 0.9999 M Na + and 0.0001 M Cs + , the film intercalates 40% as much Cs + as when loaded from pure 1 M Cs + containing electrolyte (all electrolytes use nitrates as the common anion). The authors have also shown that, contrary to the common assumptions found in the literature, a significant fraction of the thin film is not active initially. A new near infrared laser has been purchased and is being added to the Raman spectroscopy facilities to allow in-situ studies of the intercalation processes.'

  7. Electrode Materials for Lithium/Sodium-Ion Batteries

    DEFF Research Database (Denmark)

    Shen, Yanbin

    2014-01-01

    The synthesis of electrode materials for lithium/sodium ion batteries and their structural stability during lithium/sodium insertion/extraction are the two essential issues that have limited battery application in the fields requiring long cycle life and high safety. During her PhD studies, Yanbin...... Shen systematically investigated the controlled synthesis of electrode materials for lithium/sodium ion batteries. She also investigated their formation mechanisms and structural evolution during the operation of batteries using in situ/operando X-ray diffraction techniques. The research findings...... provide insights into formation mechanisms of Li4Ti5O12 anode material from both hydrothermal and solid-state reaction. The results also contribute to a thorough understanding of the intercalation and decay mechanisms of O3/P2 layered sodium cathode materials in sodium ion batteries....

  8. Transient analysis of intercalation electrodes for parameter estimation

    Science.gov (United States)

    Devan, Sheba

    An essential part of integrating batteries as power sources in any application, be it a large scale automotive application or a small scale portable application, is an efficient Battery Management System (BMS). The combination of a battery with the microprocessor based BMS (called "smart battery") helps prolong the life of the battery by operating in the optimal regime and provides accurate information regarding the battery to the end user. The main purposes of BMS are cell protection, monitoring and control, and communication between different components. These purposes are fulfilled by tracking the change in the parameters of the intercalation electrodes in the batteries. Consequently, the functions of the BMS should be prompt, which requires the methodology of extracting the parameters to be efficient in time. The traditional transient techniques applied so far may not be suitable due to reasons such as the inability to apply these techniques when the battery is under operation, long experimental time, etc. The primary aim of this research work is to design a fast, accurate and reliable technique that can be used to extract parameter values of the intercalation electrodes. A methodology based on analysis of the short time response to a sinusoidal input perturbation, in the time domain is demonstrated using a porous electrode model for an intercalation electrode. It is shown that the parameters associated with the interfacial processes occurring in the electrode can be determined rapidly, within a few milliseconds, by measuring the response in the transient region. The short time analysis in the time domain is then extended to a single particle model that involves bulk diffusion in the solid phase in addition to interfacial processes. A systematic procedure for sequential parameter estimation using sensitivity analysis is described. Further, the short time response and the input perturbation are transformed into the frequency domain using Fast Fourier Transform

  9. Ion transport and phase transformation in thin film intercalation electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wunde, Fabian; Nowak, Susann; Muerter, Juliane; Hadjixenophontos, Efi; Berkemeier, Frank; Schmitz, Guido [Stuttgart Univ. (Germany). Inst. fuer Materialwissenschaft

    2017-11-15

    Thin film battery electrodes of the olivine structure LiFePO{sub 4} and the spinel phase LiMn{sub 2}O{sub 4} are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO{sub 4} clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles-Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO{sub 4} have the character of an ion-conductor of vanishing electronic conductivity.

  10. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  11. Impedance Simulation of a Li-Ion Battery with Porous Electrodes and Spherical Li+ Intercalation Particles

    NARCIS (Netherlands)

    Huang, R.W.J.M.; Chung, F.; Kelder, E.M.

    2006-01-01

    We present a semimathematical model for the simulation of the impedance spectra of a rechargeable lithium batteries consisting of porous electrodes with spherical Li+ intercalation particles. The particles are considered to have two distinct homogeneous phases as a result of the intercalation and

  12. Thermodynamics and kinetics of phase transformation in intercalation battery electrodes - phenomenological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lai Wei, E-mail: laiwei@msu.ed [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Ciucci, Francesco [Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, INF 368 D - 69120 Heidelberg (Germany)

    2010-12-15

    Thermodynamics and kinetics of phase transformation in intercalation battery electrodes are investigated by phenomenological models which include a mean-field lattice-gas thermodynamic model and a generalized Poisson-Nernst-Planck equation set based on linear irreversible thermodynamics. The application of modeling to a porous intercalation electrode leads to a hierarchical equivalent circuit with elements of explicit physical meanings. The equivalent circuit corresponding to the intercalation particle of planar, cylindrical and spherical symmetry is reduced to a diffusion equation with concentration dependent diffusivity. The numerical analysis of the diffusion equation suggests the front propagation behavior during phase transformation. The present treatment is also compared with the conventional moving boundary and phase field approaches.

  13. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    Science.gov (United States)

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. INTERPRETATION OF POTENTIAL INTERMITTENCE TITRATION TECHNIQUE EXPERIMENTS FOR VARIOUS Li-INTERCALATION ELECTRODES

    Directory of Open Access Journals (Sweden)

    M.D.Levi

    2002-01-01

    Full Text Available In this paper we compare two different approaches for the calculation of the enhancement factor Wi, based on its definition as the ratio of the chemical and the component diffusion coefficients for species in mixed-conduction electrodes, originated from the "dilute solution" or "lattice gas" models for the ion system. The former approach is only applicable for small changes of the ion concentration while the latter allows one to consider a broad range of intercalation levels. The component diffusion coefficient of lithium ions has been determined for a series of lithium intercalation anodes and cathodes. A new "enhancement factor" for the ion transport has been defined and its relations to the intercalation capacitance and the intercalation isotherm have been established. A correlation between the dependences of the differential capacitance and the partial ion conductivity on the potential has been observed. It is considered as a prove that the intercalation process is controlled by the availability of sites for Li-ion insertion rather than by the concurrent insertion of the counter-balancing electronic species.

  15. In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode

    OpenAIRE

    Yuhki Yui; Masahiko Hayashi; Jiro Nakamura

    2016-01-01

    Electrochemical sodium deposition/dissolution behaviors in propylene carbonate-based electrolyte solution were observed by means of in situ light microscopy. First, granular sodium was deposited at pits in a sodium electrode in the cathodic process. Then, the sodium particles grew linearly from the electrode surface, becoming needle-like in shape. In the subsequent anodic process, the sodium dissolved near the base of the needles on the sodium electrode and the so-called ?dead sodium? broke a...

  16. Low cost iodine intercalated graphene for fuel cells electrodes

    Science.gov (United States)

    Marinoiu, Adriana; Raceanu, Mircea; Carcadea, Elena; Varlam, Mihai; Stefanescu, Ioan

    2017-12-01

    On the theoretical predictions, we report the synthesis of iodine intercalated graphene for proton exchange membrane fuel cells (PEMFCs) applications. The structure and morphology of the samples were characterized by X-ray photoelectron spectroscopy (XPS) analysis, specific surface area by BET method, Raman investigations. The presence of elemental iodine in the form of triiodide and pentaiodide was validated, suggesting that iodine was trapped between graphene layers, leading to interactions with C atoms. The electrochemical performances of iodinated graphenes were tested and compared with a typical PEMFC configuration, containing different Pt/C loading (0.4 and 0.2 mg cm-2). If iodinated graphene is included as microporous layer, the electrochemical performances of the fuel cell are higher in terms of power density than the typical fuel cell. Iodine-doped graphenes have been successfully obtained by simple and cost effective synthetic strategy and demonstrated new insights for designing of a high performance metal-free ORR catalyst by a scalable technique.

  17. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  18. Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect.

    Science.gov (United States)

    Liu, Yu; Dinh, Jim; Tade, Moses O; Shao, Zongping

    2016-09-14

    Oxygen ions can be exploited as a charge carrier to effectively realize a new type of anion-intercalation supercapacitor. In this study, to get some useful guidelines for future materials development, we comparatively studied SrCoO3-δ (SC), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), and Co3O4 as electrodes in supercapacitors with aqueous alkaline electrolyte. The effect of interaction between the electrode materials with the alkaline solution was focused on the structure and specific surface area of the electrode material, and ultimately the electrochemical performance was emphasized. Both BSCF and SC were found to experience cation leaching in alkaline solution, resulting in an increase in the specific surface area of the material, but overleaching caused the damage of perovskite structure of BSCF. Barium leaching was more serious than strontium, and the cation leaching was component dependent. Although high initial capacitance was achieved for BSCF, it was not a good candidate as intercalation-type electrode for supercapacitor because of poor cycling stability from serious Ba(2+) and Sr(2+) leaching. Instead, SC was a favorable electrode candidate for practical use in supercapacitors due to its high capacity and proper cation leaching capacity, which brought beneficial effect on cycling stability. It is suggested that cation leaching effect should be seriously considered in the development of new perovskite materials as electrodes for supercapacitors.

  19. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Abdullah Ahmed Ali, E-mail: abdullah2803@gmail.com [Department of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246 (Yemen); Talib, Zainal Abidin [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400 (Malaysia); Hussein, Mohd Zobir [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM, Serdang, Selangor 43400 (Malaysia)

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8. The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by

  20. Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.

    1999-01-01

    Two-layered tantalum chalcogenides are evaluated as alkali metal intercalation hosts in lithium and sodium electrochemical cells. The metal-rich pseudo-two-dimensional solid Ta 2 Se shows a poor intercalation behaviour. Lithium reacts with the selenide by deintercalating selenium from the blocks of Ta-related b.c.c. structure leading to a collapse of the structure and the formation of tantalum metal. Sodium is reversibly intercalated to a limited extent leading to complex structural changes in the selenide, as revealed by electron diffraction. The two-dimensional telluride Ta 2 Te 3 allows a topotactic intercalation of lithium below 1 F/mol, while a more extended reaction leads to sample amorphization. The better intercalation behaviour of this solid can be related with the one-atom thick metal layer and the van der Waals gap separating tellurium atoms of successive layers. Sodium can be reversibly intercalated into Ta 2 Te 3 in sodium cells which show a good cycling behaviour. Exposure of the intercalated solid to water vapour allows the preparation of hydrated products with a monolayer or a bilayer of water molecules solvating sodium in the interlayer space. (orig.)

  1. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    Science.gov (United States)

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation

  2. Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries.

    Science.gov (United States)

    Lee, Hyeon Jeong; Shin, Jaeho; Choi, Jang Wook

    2018-03-24

    The intrinsic limitations of lithium-ion batteries (LIBs) with regard to safety, cost, and the availability of raw materials have promoted research on so-called "post-LIBs". The recent intense research of post-LIBs provides an invaluable lesson that existing electrode materials used in LIBs may not perform as well in post-LIBs, calling for new material designs compliant with emerging batteries based on new chemistries. One promising approach in this direction is the development of materials with intercalated water or organic molecules, as these materials demonstrate superior electrochemical performance in emerging battery systems. The enlarged ionic channel dimensions and effective shielding of the electrostatic interaction between carrier ions and the lattice host are the origins of the observed electrochemical performance. Moreover, these intercalants serve as interlayer pillars to sustain the framework for prolonged cycles. Representative examples of such intercalated materials applied to batteries based on Li + , Na + , Mg 2+ , and Zn 2+ ions and supercapacitors are considered, along with their impact in materials research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R.; Smith, Raymond B.; Bartelt, Norman C.; Sugar, Joshua D.; Fenton, Kyle R.; Cogswell, Daniel A.; Kilcoyne, A. L. David; Tyliszczak, Tolek; Bazant, Martin Z.; Chueh, William C.

    2014-01-01

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  4. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes.

    Science.gov (United States)

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C

    2014-12-01

    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  5. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang

    2014-09-14

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  6. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2

    Science.gov (United States)

    Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias

    2018-04-01

    The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.

  7. Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks.

    Science.gov (United States)

    Wan, Jiayu; Gu, Feng; Bao, Wenzhong; Dai, Jiaqi; Shen, Fei; Luo, Wei; Han, Xiaogang; Urban, Daniel; Hu, Liangbing

    2015-06-10

    In this work, we report for the first time that Na-ion intercalation of reduced graphene oxide (RGO) can significantly improve its printed network's performance as a transparent conductor. Unlike pristine graphene that inhibits Na-ion intercalation, the larger layer-layer distance of RGO allows Na-ion intercalation, leading to simultaneously much higher DC conductivity and higher optical transmittance. The typical increase of transmittance from 36% to 79% and decrease of sheet resistance from 83k to 311 Ohms/sq in the printed network was observed after Na-ion intercalation. Compared with Li-intercalated graphene, Na-ion intercalated RGO shows much better environmental stability, which is likely due to the self-terminating oxidation of Na ions on the RGO edges. This study demonstrated the great potential of metal-ion intercalation to improve the performance of printed RGO network for transparent conductor applications.

  8. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping.

    Science.gov (United States)

    Chueh, William C; El Gabaly, Farid; Sugar, Joshua D; Bartelt, Norman C; McDaniel, Anthony H; Fenton, Kyle R; Zavadil, Kevin R; Tyliszczak, Tolek; Lai, Wei; McCarty, Kevin F

    2013-03-13

    The intercalation pathway of lithium iron phosphate (LFP) in the positive electrode of a lithium-ion battery was probed at the ∼40 nm length scale using oxidation-state-sensitive X-ray microscopy. Combined with morphological observations of the same exact locations using transmission electron microscopy, we quantified the local state-of-charge of approximately 450 individual LFP particles over nearly the entire thickness of the porous electrode. With the electrode charged to 50% state-of-charge in 0.5 h, we observed that the overwhelming majority of particles were either almost completely delithiated or lithiated. Specifically, only ∼2% of individual particles were at an intermediate state-of-charge. From this small fraction of particles that were actively undergoing delithiation, we conclude that the time needed to charge a particle is ∼1/50 the time needed to charge the entire particle ensemble. Surprisingly, we observed a very weak correlation between the sequence of delithiation and the particle size, contrary to the common expectation that smaller particles delithiate before larger ones. Our quantitative results unambiguously confirm the mosaic (particle-by-particle) pathway of intercalation and suggest that the rate-limiting process of charging is initiating the phase transformation by, for example, a nucleation-like event. Therefore, strategies for further enhancing the performance of LFP electrodes should not focus on increasing the phase-boundary velocity but on the rate of phase-transformation initiation.

  9. First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite

    Directory of Open Access Journals (Sweden)

    Fengya Rao

    2015-06-01

    Full Text Available The structure evolution of fluorinated graphite (CFx upon the Li/Na intercalation has been studied by first-principles calculations. The Li/Na adsorption on single CF layer and intercalated into bulk CF have been calculated. The better cycling performance of Na intercalation into the CF cathode, comparing to that of Li intercalation, is attributed to the different strength and characteristics of the Li-F and Na-F interactions. The interactions between Li and F are stronger and more localized than those between Na and F. The strong and localized Coulomb attraction between Li and F atoms breaks the C−F bonds and pulls the F atoms away, and graphene sheets are formed upon Li intercalation.

  10. Phosphate Framework Electrode Materials for Sodium Ion Batteries.

    Science.gov (United States)

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2017-05-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.

  11. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Ni, Qiao; Bai, Ying; Wu, Feng; Wu, Chuan

    2017-03-01

    Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are among the most promising electrode materials for Na-ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion-type electrode materials are Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 for Na-based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na-ion batteries. Carbonophosphate Na 3 MnCO 3 PO 4 and amorphous FePO 4 have also recently emerged and are contributing to further developing the research scope of polyanion-type Na-ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion-type electrode materials for Na-ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems.

  12. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.

    Science.gov (United States)

    Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng

    2014-02-01

    A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material.

    Directory of Open Access Journals (Sweden)

    Murilo L Bello

    Full Text Available Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation. We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems.

  14. Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Saidi, Wissam [Univ. of Pittsburgh, PA (United States); Romanov, Vyacheslav [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Cygan, Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Kenneth [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Pittsburgh, PA (United States); Guthrie, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-22

    In this study, classical molecular dynamics simulations and density functional theory (DFT)-based molecular dynamics are used to elucidate the process of CO2 intercalation into hydrated Na-montmorillonite at P-T conditions relevant to geological formations suitable for CO2 storage. Of particular interest are the structural and transport properties of interlayer species after CO2 intercalation. The conducted simulations allowed the research team to quantify expansion/contraction of smectite as a function of CO2 and H2O compositions. The resulting swelling curves can be used to gauge the amount of stored CO2, compare it to the experiment, and estimate changes in geomechanical properties of the storage formation. The obtained results showed that the infrared signal of the asymmetric stretch vibration of CO2 molecule is extremely sensitive to the solvent environment. The extent of the frequency shift relative to the gas-phase value can be used to probe hydration level in the interlayer with intercalated CO2. Interaction of supercritical CO2 with brine in deep geological formations promotes an increase of hydrophobicity of clay surfaces. As a result of wettability alteration, estimated diffusion constants of CO2 and H2O increase with the increased CO2 load; this can contribute to faster migration of CO2 throughout the formation.

  15. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  16. In-SITU Raman Spectroscopy of Single Microparticle Li-Intercalation Electrodes

    Science.gov (United States)

    Dokko, Kaoru; Shi, Qing-Fang; Stefan, Ionel C.; Scherson, Daniel A.

    2003-01-01

    Modifications in the vibrational properties of a single microparticle of LiMn2O4 induced by extraction and subsequent injection of Li(+) into the lattice have been monitored in situ via simultaneous acquisition of Raman scattering spectra and cyclic voltammetry data in 1M LiC1O4 solutions in ethylene carbonate (EC):diethyl carbonate (DEC) mixtures (1:1 by volume). Statistical analyses of the spectra in the range 15 < SOD < 45%, where SOD represents the state of discharge (in percent) of the nominally fully charged material, i.e. lambda-MnO2, were found to be consistent with the coexistence of two distinct phases of lithiated metal oxide in agreement with information derived from in situ X-ray diffraction (XRD) measurements involving more conventional battery-type electrodes.

  17. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Institute of Scientific and Technical Information of China (English)

    Mathew JOY; Srividhya J.IYENGAR; Jui CHAKRABORTY; Swapankumar GHOSH

    2017-01-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-AI layered double hydroxide (LDH) nanostructure by varying the synthetic conditions.The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies,size and stability of their aqueous solutions.We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (DicNa)) loading and release processes.Hexagonal plate-like crystals show sustained release with ~90% of the drug from the matrix in a week,suggesting the applicability of LDH nanohybrids in sustained drug delivery systems.The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process.LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension,as studied by photon correlation spectroscopy.

  18. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Science.gov (United States)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  19. Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2006-01-01

    The effect of pore structure on anomalous behaviour of the lithium intercalation into porous V 2 O 5 film electrode has been investigated in terms of fractal geometry by employing ac-impedance spectroscopy combined with N 2 gas adsorption method and atomic force microscopy (AFM). For this purpose, porous V 2 O 5 film electrodes with different pore structures were prepared by the polymer surfactant templating method. From the analysis of N 2 gas adsorption isotherms and the triangulation analysis of AFM images, it was found that porous V 2 O 5 surfaces exhibited self-similar scaling properties with different fractal dimensions depending upon amount of the polymer surfactant in solution and the spatial cut-off ranges. All the ac-impedance spectra measured on porous V 2 O 5 film electrodes showed the non-ideal behaviour of the charge-transfer reaction and the diffusion reaction, which resulted from the interfacial capacitance dispersion and the frequency dispersion of the diffusion impedance, respectively. From the comparison between the surface fractal dimensions by using N 2 gas adsorption method and AFM, and the analysis of ac-impedance spectra by employing a constant phase element (CPE), it is experimentally confirmed that the lithium intercalation into porous V 2 O 5 film electrode is crucially influenced by the pore surface irregularity and the film surface irregularity

  20. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.; Cui, Yi

    2011-01-01

    needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five

  1. Perovskite SrCo0.9 Nb0.1 O3-δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density.

    Science.gov (United States)

    Zhu, Liang; Liu, Yu; Su, Chao; Zhou, Wei; Liu, Meilin; Shao, Zongping

    2016-08-08

    We have synthesized and characterized perovskite-type SrCo0.9 Nb0.1 O3-δ (SCN) as a novel anion-intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm(-3) (and gravimetric capacitance of ca. 773.6 F g(-1) ) at a current density of 0.5 A g(-1) while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg(-1) with robust long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sensors properties of an alkylamine-intercalated kaolinite material towards the voltammetric preconcentration of [Ru(CN)6]4- at a clay-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tonle, I.K. [Ottawa Univ., ON (Canada). Dept. of Chemistry, Center for Catalysis Research and Innovation; Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Dschang Univ. (Cameroon). Dept. de Chimie; Bouwe, B.; Rose, G.; Ngameni, E. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Detellier, C. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences

    2008-07-01

    This study discussed the sensor properties of a kaolinite material in relation to the voltammetric preconcentration of ruthenium (Ru) anions in a clay-modified electrode. An organoclay was intercalated at room temperature with a layer of hexylamine. Dimethylsulfoxide (DMSO) was intercalated between the clay layers and displaced in wet conditions by the akylamine. The modified clay was then characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The analyses confirmed the incorporation of the hexylamine between the kaolinite platelets. The organokaolinite was then studied for use as a preconcentration agent when coated on the active surface of a glassy carbon electrode for the accumulation of [Ru(CN)6]4- anions in a hydrochloric acid medium. Factors that influenced the conductivity of the film and the diffusion of the electroactive species within the film included the concentration of the electrolyte, and the redox probe. The study showed that kaolinite can be used as a material in electrochemical sensors.

  3. A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol A

    International Nuclear Information System (INIS)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Jiang, Yuhang; Jiao, Kui; Li, Weihua

    2015-01-01

    Thin-layered molybdenum disulfide (MoS 2 ) was intercalated, via ultrasonic exfoliation, into self-doped polyaniline (SPAN). This material, when placed on a glassy carbon electrode (GCE), exhibits excellent electrical conductivity and synergistic catalytic activity with respect to the detection of bisphenol A (BPA). The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. Under optimal conditions, the oxidation peak current (measured best at 446 mV vs. SCE) is related to the concentration of BPA in the range from 1.0 nM to 1.0 μM, and the detection limit is 0.6 nM. (author)

  4. Electrode fabrication for Lithium-ion batteries by intercalating of carbon nano tubes inside nano metric pores of silver foam

    International Nuclear Information System (INIS)

    Khoshnevisan, B.

    2011-01-01

    Here there is an on effort to improve working electrode (Ag + carbon nano tubes) preparation for Li-Ion batteries applications. Nano scaled silver foam with high specific area has been employed as a frame for loading carbon nano tubes by electrophoretic deposition method. In this ground, the prepared electrodes show a very good stability and also charge-discharge cycles reversibility.

  5. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries.

    Science.gov (United States)

    He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang

    2017-10-27

    Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.

  6. Mg-Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152+154Eu from aqueous solutions

    International Nuclear Information System (INIS)

    Mahmoud, M.R.; Someda, H.H.

    2012-01-01

    In the present study, Mg-Al layered double hydroxide intercalated with nitrate anions (LDH-NO 3 ) was synthesized, modified with the anionic surfactant, sodium lauryl sulfate, and applied for the removal of 152+154 Eu from aqueous solutions. Modification of the as-synthesized Mg-Al layered double hydroxide was carried out at surfactant concentration of 0.01 M (the organo-LDH produced denoted LDH-NaLS). The as-synthesized and surfactant-intercalated LDHs were characterized by FT-IR and energy-dispersive X-ray spectroscopy techniques. The effect of some variables such as solution pH, contact time and sorbate concentration on removal of 152+154 Eu was investigated. The kinetic data obtained were well fitted by the pseudo-second-order kinetic model rather than the pseudo-first-order model. Intraparticle diffusion model showed that sorption of 152+154 Eu proceed by intraparticle diffusion together with boundary layer diffusion. Experimental isotherm data were well described by Langmuir model. Organo-LDH was found to have higher capacity (156.45 mg g -1 ) for europium than the as-synthesized LDH-NO 3 (119.56 mg g -1 ). Comparing LDHs capacities obtained for Eu(III) in the present work with other sorbents reported in literature indicated that LDHs have the highest capacities. Application of the developed process for removal of 152+154 Eu(III) from radioactive process wastewaters was also studied and the obtained results revealed that these LDHs are promising materials for treatment of radioactive wastewaters. (author)

  7. Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.

    Science.gov (United States)

    Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng

    2018-04-03

    The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.

  8. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    Science.gov (United States)

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-06-01

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Ryan A.; Zhu, Wenhua H.; Payne, Robert U.; Cahela, Donald R.; Tatarchuk, Bruce J. [Center for Microfibrous Materials Manufacturing, Department of Chemical Engineering, 230 Ross Hall, Auburn University, Auburn, AL 36849 (United States)

    2006-10-27

    The Hg/HgO electrode is usually utilized as a reference electrode in alkaline solution such as for development of an alkaline hydrogen electrode. The reference electrode provides a suitable reference point but is available from few commercial vendors and suffers from inadequate documentation on potential in varying electrolytes. A new numerical method uses activity, activity coefficients, and a few correlated empirical equations to determine the potential values in both dilute and concentrated sodium hydroxide solutions at temperatures of 0-90{sup o}C and at concentrations of 0.100-12.8mol kg{sub H{sub 2}O}{sup -1}. The computed potentials of the Hg/HgO electrodes versus a normal hydrogen electrode (NHE) at 25{sup o}C and 1atm are 0.1634V for 0.100m, 0.1077V for 1.00m, and 0.0976V for 1.45m NaOH solutions. The Hg/HgO reduction potential further changes to -0.0751V versus NHE and hydrogen evolution potential changes to -0.9916V versus NHE in a solution of 30.0wt.% NaOH at 80{sup o}C. The calculated values are compared with the measured data at 25 and 75{sup o}C. The experimental data agree well with the numerical values computed from the theoretical and empirical equations. (author)

  10. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    Science.gov (United States)

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  11. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    Science.gov (United States)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  12. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.

    Science.gov (United States)

    Lu, Ke; Hu, Ziyu; Ma, Jizhen; Ma, Houyi; Dai, Liming; Zhang, Jintao

    2017-09-13

    Graphitic carbons have been used as conductive supports for developing rechargeable batteries. However, the classic ion intercalation in graphitic carbon has yet to be coupled with extrinsic redox reactions to develop rechargeable batteries. Herein, we demonstrate the preparation of a free-standing, flexible nitrogen and phosphorus co-doped hierarchically porous graphitic carbon for iodine loading by pyrolysis of polyaniline coated cellulose wiper. We find that heteroatoms could provide additional defect sites for encapsulating iodine while the porous carbon skeleton facilitates redox reactions of iodine and ion intercalation. The combination of ion intercalation with redox reactions of iodine allows for developing rechargeable iodine-carbon batteries free from the unsafe lithium/sodium metals, and hence eliminates the long-standing safety issue. The unique architecture of the hierarchically porous graphitic carbon with heteroatom doping not only provides suitable spaces for both iodine encapsulation and cation intercalation but also generates efficient electronic and ionic transport pathways, thus leading to enhanced performance.Carbon-based electrodes able to intercalate Li + and Na + ions have been exploited for high performing energy storage devices. Here, the authors combine the ion intercalation properties of porous graphitic carbons with the redox chemistry of iodine to produce iodine-carbon batteries with high reversible capacities.

  13. Using quasi-elastic neutron diffraction to study positive electrode for lithium and sodium-ion batteries

    International Nuclear Information System (INIS)

    Pramudita, James C.; Sharma, Neeraj

    2015-01-01

    Sodium-ion batteries has recently been proposed as the alternative for lithium-ion batteries to be the low cost energy storage system. However, challenges still remains for the development of sodium-ion batteries. Optimization of electrode materials and electrolyte capable of insertion/extraction of sodium-ion in a safe and economic way under high current density is needed in order to produce commercially viable sodium-ion batteries. While possible positive electrode material is more prevalent than negative electrode material, many of these material still need further understanding. Quasi-elastic Neutron Scatteringis a technique that utilize the inelastic Neutron Scatteringthat can be used to study solid-state diffusion in materials. This technique can be used to study the diffusion of sodium-ion under electric field through the electrolyte and positive electrode materials in order to further understand the mechanism of sodium insertion/extraction in a working battery. This technique can also be used to study available positive electrode material for lithium-ion batteries to further understand the mechanism of lithium-ion diffusion in current working lithiumion batteries.

  14. Cubic KTi2(PO4)3 as electrode materials for sodium-ion batteries.

    Science.gov (United States)

    Han, Jin; Xu, Maowen; Niu, Yubin; Jia, Min; Liu, Ting; Li, Chang Ming

    2016-12-01

    A novel cubic KTi2(PO4)3 is successfully synthesized via a facile hydrothermal method combined with a subsequent annealing treatment and further used as electrode material for sodium-ion batteries for the first time. For comparison, carbon-coated KTi2(PO4)3 obtained by a normal cane sugar-assisted method reveals superior electrochemical performances in sodium-ion battery. Besides of the high coulombic efficiency of nearly 100% after 100 cycles, a stable capacity of 112mAhg(-1) can be achieved at 0.5C after 100 cycles, and still maintains to 105mAhg(-1) after 500 cycles with capacity retention of approximately 90%. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.

    Science.gov (United States)

    Doeff, Marca M; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C; Conry, Thomas

    2013-11-11

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.

  16. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  17. Kinetics and mechanism of the deep electrochemical oxidation of sodium diclofenac on a boron-doped diamond electrode

    Science.gov (United States)

    Vedenyapina, M. D.; Borisova, D. A.; Rosenwinkel, K.-H.; Weichgrebe, D.; Stopp, P.; Vedenyapin, A. A.

    2013-08-01

    The kinetics and mechanism of the deep oxidation of sodium diclofenac on a boron-doped diamond electrode are studied to develop a technique for purifying wastewater from pharmaceutical products. The products of sodium diclofenac electrolysis are analyzed using cyclic voltammetry and nuclear magnetic resonance techniques. It is shown that the toxicity of the drug and products of its electrolysis decreases upon its deep oxidation.

  18. Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system

    Energy Technology Data Exchange (ETDEWEB)

    Danial, Wan Hazman, E-mail: hazmandanial@gmail.com; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my; Aziz, Madzlan [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia); Chutia, Arunabhiram [Institute of Fluid Sciences, Tohoku University, Sendai 980-8577 (Japan); Sahnoun, Riadh [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia)

    2015-07-22

    The present work reports the synthesis and characterization of graphene via electrochemical exfoliation of graphite rod using two-electrode system assisted by Sodium Dodecyl Sulphate (SDS) as a surfactant. The electrochemical process was carried out with sequence of intercalation of SDS onto the graphite anode followed by exfoliation of the SDS-intercalated graphite electrode when the anode was treated as cathode. The effect of intercalation potential from 5 V to 9 V and concentration of the SDS surfactant of 0.1 M and 0.01 M were investigated. UV-vis Spectroscopic analysis indicated an increase in the graphene production with higher intercalation potential. Transmission Electron Microscopy (TEM) analysis showed a well-ordered hexagonal lattice of graphene image and indicated an angle of 60° between two zigzag directions within the honeycomb crystal lattice. Raman spectroscopy analysis shows the graphitic information effects after the exfoliation process.

  19. Insights into the Dual-Electrode Characteristics of Layered Na0.5Ni0.25Mn0.75O2 Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Palanisamy, Manikandan; Kim, Hyun Woo; Heo, Seongwoo; Lee, Eungje; Kim, Youngsik

    2017-03-29

    Sodium-ion batteries are now close to replacing lithium-ion batteries because they provide superior alternative energy storage solutions that are in great demand, particularly for large-scale applications. To that end, the present study is focused on the properties of a new type of dual-electrode material, Na 0.5 Ni 0.25 Mn 0.75 O 2 , synthesized using a mixed hydroxy-carbonate route. Cyclic voltammetry confirms that redox couples, at high and low voltage ranges, are facilitated by the unique features and properties of this dual-electrode, through sodium ion deintercalation/intercalation into the layered Na 0.5 Ni 0.25 Mn 0.75 O 2 material. This material provides superior performance for Na-ion batteries, as evidenced by the fabricated sodium cell that yielded initial charge-discharge capacities of 125/218 mAh g -1 in the voltage range of 1.5-4.4 V at 0.5 C. At a low voltage range (1.5-2.6 V), the anode cell delivered discharge-charge capacities of 100/99 mAh g -1 with 99% capacity retention, which corresponds to highly reversible redox reaction of the Mn 4+/3+ reduction and the Mn 3+/4+ oxidation observed at 1.85 and 2.06 V, respectively. The symmetric Na-ion cell, fabricated using Na 0.5 Ni 0.25 Mn 0.75 O 2 , yielded initial charge-discharge capacities of 196/187 μAh at 107 μA. These results encourage the further development of new types of futuristic sodium-ion-battery-based energy storage systems.

  20. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.

    2011-12-14

    The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five thousand deep cycles at high current densities in inexpensive aqueous electrolytes. Its open-framework structure allows retention of 66% of the initial capacity even at a very high (41.7C) rate. At low current densities, its round trip energy efficiency reaches 99%. This low-cost material is readily synthesized in bulk quantities. The long cycle life, high power, good energy efficiency, safety, and inexpensive production method make nickel hexacyanoferrate an attractive candidate for use in large-scale batteries to support the electrical grid. © 2011 American Chemical Society.

  1. Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High-Performance Sodium Metal Electrodes.

    Science.gov (United States)

    Lee, Yongwon; Lee, Jaegi; Lee, Jeongmin; Kim, Koeun; Cha, Aming; Kang, Sujin; Wi, Taeung; Kang, Seok Ju; Lee, Hyun-Wook; Choi, Nam-Soon

    2018-05-02

    Sodium (Na) metal anodes with stable electrochemical cycling have attracted widespread attention because of their highest specific capacity and lowest potential among anode materials for Na batteries. The main challenges associated with Na metal anodes are dendritic formation and the low density of deposited Na during electrochemical plating. Here, we demonstrate a fluoroethylene carbonate (FEC)-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide (NaFSI) salt for the stable and dense deposition of the Na metal during electrochemical cycling. The novel electrolyte combination developed here circumvents the dendritic Na deposition that is one of the primary concerns for battery safety and constructs the uniform ionic interlayer achieving highly reversible Na plating/stripping reactions. The FEC-NaFSI constructs the mechanically strong and ion-permeable interlayer containing NaF and ionic compounds such as Na 2 CO 3 and sodium alkylcarbonates.

  2. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    OpenAIRE

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-01-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtain...

  3. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes.

    Science.gov (United States)

    Lacey, Steven D; Wan, Jiayu; von Wald Cresce, Arthur; Russell, Selena M; Dai, Jiaqi; Bao, Wenzhong; Xu, Kang; Hu, Liangbing

    2015-02-11

    A microscale battery comprised of mechanically exfoliated molybdenum disulfide (MoS2) flakes with copper connections and a sodium metal reference was created and investigated as an intercalation model using in situ atomic force microscopy in a dry room environment. While an ethylene carbonate-based electrolyte with a low vapor pressure allowed topographical observations in an open cell configuration, the planar microbattery was used to conduct in situ measurements to understand the structural changes and the concomitant solid electrolyte interphase (SEI) formation at the nanoscale. Topographical observations demonstrated permanent wrinkling behavior of MoS2 electrodes upon sodiation at 0.4 V. SEI formation occurred quickly on both flake edges and planes at voltages before sodium intercalation. Force spectroscopy measurements provided quantitative data on the SEI thickness for MoS2 electrodes in sodium-ion batteries for the first time.

  4. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  5. VS4 Nanoparticles Anchored on Graphene Sheets as a High-Rate and Stable Electrode Material for Sodium Ion Batteries.

    Science.gov (United States)

    Pang, Qiang; Zhao, Yingying; Yu, Yanhao; Bian, Xiaofei; Wang, Xudong; Wei, Yingjin; Gao, Yu; Chen, Gang

    2018-02-22

    The size and conductivity of the electrode materials play a significant role in the kinetics of sodium-ion batteries. Various characterizations reveal that size-controllable VS 4 nanoparticles can be successfully anchored on the surface of graphene sheets (GSs) by a simple cationic-surfactant-assisted hydrothermal method. When used as an electrode material for sodium-ion batteries, these VS 4 @GS nanocomposites show large specific capacity (349.1 mAh g -1 after 100 cycles), excellent long-term stability (84 % capacity retention after 1200 cycles), and high rate capability (188.1 mAh g -1 at 4000 mA g -1 ). A large proportion of the capacity was contributed by capacitive processes. This remarkable electrochemical performance was attributed to synergistic interactions between nanosized VS 4 particles and a highly conductive graphene network, which provided short diffusion pathways for Na + ions and large contact areas between the electrolyte and electrode, resulting in considerably improved electrochemical kinetic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  7. One-pot electrochemical growth of sponge-like polyaniline-intercalated phosphorous-doped graphene oxide on nickel foam as binder-free electrode material of supercapacitor

    Science.gov (United States)

    Bigdeli, Hadise; Moradi, Morteza; Borhani, Saeid; Jafari, Elnaz Abbasi; Hajati, Shaaker; Kiani, Mohammad Ali

    2018-06-01

    In this work, phosphor-doped graphene oxide (PGO) was synthesized by chemical technique. Also, the sponge-like PGO@polyaniline nanocomposite (PGO@PANI) film was coated on the nickel foam by one-step electropolymerization. The active materials were then characterized by Fourier transforms infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller technique. When PANI/PGO was used as supercapacitor electrode, under current density of 1 A/g, the specific capacitance of the prepared PGO@PANI was measured as 603 F/g, which is 6.0 times higher than that of pure PANI (102 F/g). Moreover, capacity stability of the PANI/PGO increased significantly as compared to PANI (65% vs. 44%) after increasing the current density from 1 to 15 A/g. The clear electrochemical performance of PANI/PGO was enhanced owing to the synergistic effect of PGO and PANI. Our results demonstrate that PANI/PGO nanosheet arrays are promising candidate for electrode supercapacitor applications.

  8. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-01-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L −1 . The lower detection limits were found to be 0.02 μmol L −1 . The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  9. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  10. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Photoelectrocatalytic Degradation of Sodium Oxalate by TiO2/Ti Thin Film Electrode

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chang

    2012-01-01

    Full Text Available The photocatalytically active TiO2 thin film was deposited on the titanium substrate plate by chemical vapor deposition (CVD method, and the photoelectrocatalytic degradation of sodium oxalate was investigated by TiO2 thin film reactor prepared in this study with additional electric potential at 365 nm irradiation. The batch system was chosen in this experiment, and the controlled parameters were pH, different supporting electrolytes, applied additional potential, and different electrolyte solutions that were examined and discussed. The experimental results revealed that the additional applied potential in photocatalytic reaction could prohibit recombination of electron/hole pairs, but the photoelectrocatalytic effect was decreased when the applied electric potential was over 0.25 V. Among the electrolyte solutions added, sodium sulfate improved the photoelectrocatalytic effect most significantly. At last, the better photoelectrocatalytic degradation of sodium oxalate occurred at pH 3 when comparing the pH influence.

  12. Preparation and capacitive properties of lithium manganese oxide intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fang; Xie, Yibing, E-mail: ybxie@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Lithium manganese oxide intercalation compound (Li{sub 0.7}MnO{sub 2}) supported on titanium nitride nanotube array (TiN NTA) was applied as cathode electrode material for lithium-ion supercapacitor application. Li{sub 0.7}MnO{sub 2}/TiN NTA was fabricated through electrochemical deposition and simultaneous intercalation process using TiN NTA as a substrate, Mn(CH{sub 3}COO){sub 2} as manganese source, and Li{sub 2}SO{sub 4} as lithium source. The morphology and microstructure of the Li{sub 0.7}MnO{sub 2}/TiN NTA were characterized by scanning electron microscopy and X-ray diffraction analysis. The electrochemical performance of the Li{sub 0.7}MnO{sub 2}/TiN NTA was investigated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge measurements. Li{sub 0.7}MnO{sub 2}/TiN NTA exhibited higher capacitive performance in Li{sub 2}SO{sub 4} electrolyte solution rather than that in Na{sub 2}SO{sub 4} electrolyte solution, which was due to the different intercalation effects of lithium-ion and sodium-ion. The specific capacitance was improved from 503.3 F g{sup −1} for MnO{sub 2}/TiN NTA to 595.0 F g{sup −1} for Li{sub 0.7}MnO{sub 2}/TiN NTA at a current density of 2 A g{sup −1} in 1.0 M Li{sub 2}SO{sub 4} electrolyte solution, which was due to the intercalation of lithium-ion for Li{sub 0.7}MnO{sub 2}. Li{sub 0.7}MnO{sub 2}/TiN NTA also kept 90.4 % capacity retention after 1000 cycles, presenting a good cycling stability. An all-solid-state lithium-ion supercapacitor was fabricated and showed an energy density of 82.5 Wh kg{sup −1} and a power density of 10.0 kW kg{sup −1}.

  13. Reaction products and corrosion of molybdenum electrode in glass melt containing antimony oxides and sodium sulfate

    Czech Academy of Sciences Publication Activity Database

    Matěj, J.; Langrová, Anna

    2012-01-01

    Roč. 56, č. 3 (2012), s. 280-285 ISSN 0862-5468 Institutional support: RVO:67985831 Keywords : antimony oxides * corrosion * glass melt * Molybdenum electrode * sulfate Subject RIV: DD - Geochemistry Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_03_280.pdf

  14. Voltammetric determination of sodium anthraquinone-2-sulfonate using silver solid amalgam electrodes

    Czech Academy of Sciences Publication Activity Database

    Skalová, Štěpánka; Navrátil, Tomáš; Barek, J.; Vyskočil, V.

    2017-01-01

    Roč. 148, č. 3 (2017), s. 577-583 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : Anthraquinone * Drugs * Silver solid amalgam electrode * Voltammetry Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.282, year: 2016

  15. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    Science.gov (United States)

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-03-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

  16. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  17. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature

    Science.gov (United States)

    Hwang, Jinkwang; Matsumoto, Kazuhiko; Orikasa, Yuki; Katayama, Misaki; Inada, Yasuhiro; Nohira, Toshiyuki; Hagiwara, Rika

    2018-02-01

    Maricite NaFePO4 (m-NaFePO4) was investigated as a positive electrode material for intermediate-temperature operation of sodium secondary batteries using ionic liquid electrolytes. Powdered m-NaFePO4 was prepared by a conventional solid-state method at 873 K and subsequently fabricated in two different conditions; one is ball-milled in acetone and the other is re-calcined at 873 K after the ball-milling. Electrochemical properties of the electrodes prepared with the as-synthesized m-NaFePO4, the ball-milled m-NaFePO4, and the re-calcined m-NaFePO4 were investigated in Na[FSA]-[C2C1im][FSA] (C2C1im+ = 1-ethyl-3-methylimidazolium, FSA- = bis(fluorosulfonyl)amide) ionic liquid electrolytes at 298 K and 363 K to assess the effects of temperature and particle size on their electrochemical properties. A reversible charge-discharge capacity of 107 mAh g-1 was achieved with a coulombic efficiency >98% from the 2nd cycle using the ball-milled m-NaFePO4 electrode at a C-rate of 0.1 C and 363 K. Electrochemical impedance spectroscopy using m-NaFePO4/m-NaFePO4 symmetric cells indicated that inactive m-NaFePO4 becomes an active material through ball-milling treatment and elevation of operating temperature. X-ray diffraction analysis of crystalline m-NaFePO4 confirmed the lattice contraction and expansion upon charging and discharging, respectively. These results indicate that the desodiation-sodiation process in m-NaFePO4 is reversible in the intermediate-temperature range.

  18. Solid state sodium cells. Faststof natriumbatterier

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. [eds.

    1989-04-15

    The report describes the results from the project: ''Secondary Sodium Cells with Intercalation Electrodes'' which was financed by the Danish Department of Energy. The work was carried out by the Solid State Electrochemistry Group at the Technical University of Denmark which is formed by collaborators from the Institute of Physical Chemistry and Physics Laboratory III. The use of sodium has several advantages in theory compared to lithium systems: Sodium is much more abundant and lower priced than lithium, it may be easier to find solid electrolytes of sufficiently high conductivity, sodium forms no alloy with aluminium thereby making it possible to use this metal for current collectors instead of the costlier and heavier nickel. The softness of sodium metal may make it easier to achieve and maintain contact to other components in the battery during repeated cycling. This might be of importance for room temperature operation especially. Results from the project have primarily been published in the form of articles in international scientific journals and as contributions to monographs. Copies of these articles form the backbone of the report together with a short commentary to each article. Also included in the report are some general observations, as well as results that are unsuited for publication (e.g. unsuccessful experiments) but which may still contain relevant information for other experimental workers. Lastly, the report includes results on several intercalation compounds that will be published at a later stage as well as some details about the experimental equipment. The report is divided into three main sections, Intercalation Cathode Materials, Polymer Electrolytes and Battery Cycling Equipment. (AB).

  19. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Tanghong; Chen, Wei; Cheng, Lei; Bayliss, Ryan D.; Lin, Feng; Plews, Michael R.; Nordlund, Dennis; Doeff, Marca M.; Persson, Kristin A.; Cabana, Jordi (LBNL); (SLAC); (UIC); (UCB)

    2017-02-07

    Reversible intercalation reactions provide the basis for modern battery electrodes. Despite decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials AxK1–xFeF3 (A = Li, Na). By starting with KFeF3, approximately 75% of K+ ions were subsequently replaced by Li+ and Na+ through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopy confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. This study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.

  20. sodium

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les initiatives de réduction de la consommation de sel qui visent l'ensemble de la population et qui ciblent la teneur en sodium des aliments et sensibilisent les consommateurs sont susceptibles de réduire la consommation de sel dans toutes les couches de la population et d'améliorer la santé cardiovasculaire. Ce projet a ...

  1. An Integrated Glucose Sensor with an All-Solid-State Sodium Ion-Selective Electrode for a Minimally Invasive Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Junko Kojima

    2015-06-01

    Full Text Available We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE integrated into its design. The glucose sensor immobilized glucose oxidase showed a good correlation between the glucose levels in the hydrogels and the reference glucose levels (r > 0.99, and exhibited a good precision (coefficient of variation = 2.9%, 0.6 mg/dL. In the design of the sodium ISEs, we used the insertion material Na0.33MnO2 as the inner contact layer and DD16C5 exhibiting high Na+/K+ selectivity as the ionophore. The developed sodium ISE exhibited high selectivity (\\( \\log \\,k^{pot}_{Na,K} = -2.8\\ and good potential stability. The sodium ISE could measure 0.4 mM (10−3.4 M sodium ion levels in the hydrogels containing 268 mM (10−0.57 M KCl. The small integrated sensor (ϕ < 10 mm detected glucose and sodium ions in hydrogels simultaneously within 1 min, and it exhibited sufficient performance for use as a minimally invasive glucose monitoring system.

  2. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    International Nuclear Information System (INIS)

    Wang Ji; Wei Min; Rao Guoying; Evans, D.G.; Duan Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation

  3. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    Science.gov (United States)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  4. Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes.

    Science.gov (United States)

    Wu, Chao; Kopold, Peter; Ding, Yuan-Li; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-06-23

    Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to the electrodes for sodium-storage, including low reversible capacity and low ion transport, as well as large volume change. To mitigate or even overcome the kinetic problems, we develop a self-assembly route to a novel architecture consisting of nanosized porous NASICON-type NaTi2(PO4)3 particles embedded in microsized 3D graphene network. Such architecture synergistically combines the advantages of a 3D graphene network and of 0D porous nanoparticles. It greatly increases the electron/ion transport kinetics and assures the electrode structure integrity, leading to attractive electrochemical performance as reflected by a high rate-capability (112 mAh g(-1) at 1C, 105 mAh g(-1) at 5C, 96 mAh g(-1) at 10C, 67 mAh g(-1) at 50C), a long cycle-life (capacity retention of 80% after 1000 cycles at 10C), and a high initial Coulombic efficiency (>79%). This nanostructure design provides a promising pathway for developing high performance NASICON-type materials for sodium storage.

  5. Lithium ion intercalation into thin film anatase

    International Nuclear Information System (INIS)

    Kundrata, I.; Froehlich, K.; Ballo, P.

    2015-01-01

    The aim of this work is to find the optimal parameters for thin film TiO 2 anatase grown by Atomic layer deposition (ALD) for use as electrode in lithium ion batteries. Two parameters, the optimal film thickness and growth conditions are aimed for. Optimal film thickness for achieving optimum between capacity gained from volume and capacity gained by changing of the intercalation constant and optimal growth conditions for film conformity on structured substrates with high aspect ratio. Here we presents first results from this ongoing research and discuss future outlooks. (authors)

  6. Interactions between poly(acrylic acid) and sodium dodecyl sulfate: isothermal titration calorimetric and surfactant ion-selective electrode studies.

    Science.gov (United States)

    Wang, C; Tam, K C

    2005-03-24

    Interaction between a monodispersed poly(acrylic acid) (PAA) (M(W) = 5670 g/mol, M(w)/M(n) = 1.02) with sodium dodecyl sulfate (SDS) was investigated using isothermal titration calorimetry (ITC), ion-selective electrode (ISE), and dynamic light scattering measurements. Contrary to previous studies, we report for the first time evidence of interaction between SDS and PAA when the degree of neutralization (alpha) of PAA is lower than 0.2. Hydrocarbon chains of SDS cooperatively bind to apolar segments of PAA driven by hydrophobic interaction. The interaction is both enthalpy and entropy favored (deltaH is negative but deltaS is positive). In 0.05 wt % PAA solution, the SDS concentration corresponding to the onset of binding (i.e., CAC) is approximately 2.4 mM and the saturation concentration (i.e., C(S)) is approximately 13.3 mM when alpha = 0. When PAA was neutralized and ionized, the binding was hindered by the enhanced electrostatic repulsion between negatively charged SDS and PAA chains and improved solubility of the polymer. With increasing alpha to 0.2, CAC increases to approximately 6.2 mM, C(S) drops to 8.6 mM, and the interaction is significantly weakened where the amount of bound SDS on PAA is reduced considerably. The values of CAC and C(S) derived from different techniques are in good agreement. The binding results in the formation of mixed micelles on apolar PAA coils, which then expands and dissociates into single PAA chains. The majority of unneutralized PAA molecules exist as single polymer chains stabilized by bound SDS micelles in solution after the saturation concentration.

  7. Influence of water contamination and conductive additives on the intercalation of lithium into graphite

    Energy Technology Data Exchange (ETDEWEB)

    Joho, F; Rykart, B; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Spahr, M E; Monnier, A [Timcal AG, Sins (Switzerland)

    1999-08-01

    The irreversible charge loss in the first cycle of lithium intercalation into graphite electrodes for lithium-ion batteries is discussed as a function of water contamination of the electrolyte solution. Furthermore, the improvement of the electrode cycle life due to conductive additives to graphite is demonstrated. (author) 5 figs., 3 refs.

  8. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes

    Directory of Open Access Journals (Sweden)

    Shinichiro Kawada

    2015-11-01

    Full Text Available Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.

  9. Atomic force microscopy study of anion intercalation into highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D; Haering, P; Haas, O; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H [University of Berne (Switzerland)

    1999-08-01

    In the context of ion transfer batteries, we studied highly oriented pyrolytic graphite (HOPG) in perchloric acid, as a model to elucidate the mechanism of electrochemical intercalation in graphite. Aim of the work is the local and time dependent investigation of dimensional changes of the host material during electrochemical intercalation processes on the nanometer scale. We used atomic force microscopy (AFM), combined with cyclic voltammetry, as in-situ tool of analysis during intercalation and expulsion of perchloric anions into the HOPG electrodes. According to the AFM measurements, the HOPG interlayer spacing increases by 32% when perchloric anions intercalate, in agreement with the formation of stage IV of graphite intercalation compounds. (author) 3 figs., 3 refs.

  10. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    Science.gov (United States)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  11. An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite

    International Nuclear Information System (INIS)

    Hardwick, Laurence J.; Hahn, Matthias; Ruch, Patrick; Holzapfel, Michael; Scheifele, Werner; Buqa, Hilmi; Krumeich, Frank; Novak, Petr; Koetz, Ruediger

    2006-01-01

    An initial Raman study on the effects of intercalation for aprotic electrolyte-based electrochemical double-layer capacitors (EDLCs) is reported. In situ Raman microscopy is employed in the study of the electrochemical intercalation of tetraethylammonium (Et 4 N + ) and tetrafluoroborate (BF 4 - ) into and out of microcrystalline graphite. During cyclic voltammetry experiments, the insertion of Et 4 N + into graphite for the negative electrode occurs at an onset potential of +1.0 V versus Li/Li + . For the positive electrode, BF 4 - was shown to intercalate above +4.3 V versus Li/Li + . The characteristic G-band doublet peak (E 2g2 (i) (1578 cm -1 ) and E 2g2 (b) (1600 cm -1 )) showed that various staged compounds were formed in both cases and the return of the single G-band (1578 cm -1 ) demonstrates that intercalation was fully reversible. The disappearance of the D-band (1329 cm -1 ) in intercalated graphite is also noted and when the intercalant is removed a more intense D-band reappears, indicating possible lattice damage. For cation intercalation, such irreversible changes of the graphite structure are confirmed by scanning electron microscopy (SEM)

  12. Facile electrochemical synthesis of few layered graphene from discharged battery electrode and its

    Directory of Open Access Journals (Sweden)

    Santosh K. Tiwari

    2017-05-01

    Full Text Available A cost-effective, simple and non-hazardous route for synthesis of few-layered graphene from waste zinc carbon battery (ZCB electrodes via electrochemical expansion (ECE has been reported. In this synthesis, we have electrochemically exfoliated the graphene layers, by intercalating sodium dodecyl benzenesulfonate (SDBS surfactant into graphitic layers at different D.C. voltages with a constant SDBS concentration. The graphene sheets were isolated, purified and characterized by Transmission electron microscopy (TEM, Scanning electron microscopy (SEM, Fourier transform infrared spectrometry (FTIR, X-ray diffraction (XRD, Raman spectrometry, Ultraviolet absorption (UV, Selected area electron diffraction (SAED and Cyclic voltammetry. Best result was obtained at 4.5 V of D.C. A possible mechanism for the intercalation process has been proposed. A promising application of the produced material for supercapacitor application has also been explored in combination with polyaniline.

  13. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries.

    Science.gov (United States)

    Das, Suman; Swain, Diptikanta; Araujo, Rafael B; Shi, Songxin; Ahuja, Rajeev; Row, Tayur N Guru; Bhattacharyya, Aninda J

    2018-02-02

    We discuss here a unique flexible non-carbonaceous layered host, namely, metal titanium niobates (M-Ti-niobate, M: Al 3+ , Pb 2+ , Sb 3+ , Ba 2+ , Mg 2+ ), which can synergistically store both lithium ions and sodium ions via a simultaneous intercalation and alloying mechanisms. M-Ti-niobate is formed by ion exchange of the K + ions, which are specifically located inside galleries between the layers formed by edge and corner sharing TiO 6 and NbO 6 octahedral units in the sol-gel synthesized potassium titanium niobate (KTiNbO 5 ). Drastic volume changes (approximately 300-400 %) typically associated with an alloying mechanism of storage are completely tackled chemically by the unique chemical composition and structure of the M-Ti-niobates. The free space between the adjustable Ti/Nb octahedral layers easily accommodates the volume changes. Due to the presence of an optimum amount of multivalent alloying metal ions (50-75 % of total K + ) in the M-Ti-niobate, an efficient alloying reaction takes place directly with ions and completely eliminates any form of mechanical degradation of the electroactive particles. The M-Ti-niobate can be cycled over a wide voltage range (as low as 0.01 V) and displays remarkably stable Li + and Na + ion cyclability (>2 Li + /Na + per formula unit) for widely varying current densities over few hundreds to thousands of successive cycles. The simultaneous intercalation and alloying storage mechanisms is also studied within the density functional theory (DFT) framework. DFT expectedly shows a very small variation in the volume of Al-titanium niobate following lithium alloying. Moreover, the theoretical investigations also conclusively support the occurrence of the alloying process of Li ions with the Al ions along with the intercalation process during discharge. The M-Ti-niobates studied here demonstrate a paradigm shift in chemical design of electrodes and will pave the way for the development of a multitude of improved electrodes

  14. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

    Science.gov (United States)

    Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang

    2017-02-16

    Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g -1 , which is about three times of 372 mA h g -1 , the value expected for the LiC 6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

  15. Energy Harvesting by Nickel Prussian Blue Analogue Electrode in Neutralization and Mixing Entropy Batteries.

    Science.gov (United States)

    Gomes, Wellington J A S; de Oliveira, Cainã; Huguenin, Fritz

    2015-08-11

    Some industries usually reduce the concentration of protons in acidic wastewater by conducting neutralization reactions and/or adding seawater to industrial effluents. This work proposes a novel electrochemical system that can harvest energy originating from entropic changes due to alteration in the concentration of sodium ions along wastewater treatment. Preparation of a self-assembled material from nickel Prussian blue analogue (NPBA) was the first step to obtain such electrochemical system. Investigation into the electrochemical properties of this material helped to evaluate its potential use in neutralization and mixing entropy batteries. Assessment of parameters such as the potentiodynamic profile of the current density as a function of the concentration of protons and sodium ions, charge capacity, and cyclability as well as the reversibility of the sodium ion electroinsertion process aided estimation of the energy storage efficiency of the system. Frequency-domain measurements and models and the proposed charge compensation mechanism provided the rate constants at different dc potentials. After each charge/discharge cycle, the NPBA electrode harvested 12.4 kJ per mol of intercalated sodium ion in aqueous solutions of NaCl at concentrations of 20 mM and 3.0 M. The full electrochemical cell consisted of an NPBA positive electrode and a negative electrode of silver particles dispersed in a polypyrrole electrode. This cell extracted 16.8 kJ per mol of intercalated ion after each charge/discharge cycle. On the basis of these results, the developed electrochemical system should encourage wastewater treatment and help to achieve sustainable growth.

  16. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  17. Comparison Study of Voltammetric Behavior of Muscle Relaxant Dantrolene Sodium on Silver Solid Amalgam and Bismuth Film Electrodes

    Czech Academy of Sciences Publication Activity Database

    Šelešovská, R.; Martinková, P.; Štěpánková, M.; Navrátil, Tomáš; Chýlková, J.

    2017-01-01

    Roč. 2017, č. 2017 (2017), č. článku 3627428. ISSN 2090-8865 R&D Projects: GA ČR GA17-03868S Institutional support: RVO:61388955 Keywords : performance liquid-chromatography * differential-pulse polarography * anodic-stripping voltammetry * screen-printed electrodes * organic-compounds Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.801, year: 2016

  18. Comparison Study of Voltammetric Behavior of Muscle Relaxant Dantrolene Sodium on Silver Solid Amalgam and Bismuth Film Electrodes

    Czech Academy of Sciences Publication Activity Database

    Šelešovská, R.; Martinková, P.; Štěpánková, M.; Navrátil, Tomáš; Chýlková, J.

    2017-01-01

    Roč. 2017, č. 2017 (2017), č. článku 3627428. ISSN 2090-8865 R&D Projects: GA ČR GA17-03868S Institutional support: RVO:61388955 Keywords : performance liquid - chromatography * differential-pulse polarography * anodic-stripping voltammetry * screen-printed electrodes * organic-compounds Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.801, year: 2016

  19. Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2.

    Science.gov (United States)

    Luo, Kun; Roberts, Matthew R; Guerrini, Niccoló; Tapia-Ruiz, Nuria; Hao, Rong; Massel, Felix; Pickup, David M; Ramos, Silvia; Liu, Yi-Sheng; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G

    2016-09-07

    Conventional intercalation cathodes for lithium batteries store charge in redox reactions associated with the transition metal cations, e.g., Mn(3+/4+) in LiMn2O4, and this limits the energy storage of Li-ion batteries. Compounds such as Li[Li0.2Ni0.2Mn0.6]O2 exhibit a capacity to store charge in excess of the transition metal redox reactions. The additional capacity occurs at and above 4.5 V versus Li(+)/Li. The capacity at 4.5 V is dominated by oxidation of the O(2-) anions accounting for ∼0.43 e(-)/formula unit, with an additional 0.06 e(-)/formula unit being associated with O loss from the lattice. In contrast, the capacity above 4.5 V is mainly O loss, ∼0.08 e(-)/formula. The O redox reaction involves the formation of localized hole states on O during charge, which are located on O coordinated by (Mn(4+)/Li(+)). The results have been obtained by combining operando electrochemical mass spec on (18)O labeled Li[Li0.2Ni0.2Mn0.6]O2 with XANES, soft X-ray spectroscopy, resonant inelastic X-ray spectroscopy, and Raman spectroscopy. Finally the general features of O redox are described with discussion about the role of comparatively ionic (less covalent) 3d metal-oxygen interaction on anion redox in lithium rich cathode materials.

  20. Ibuprofen analysis in blood samples by palladium particles-impregnated sodium montmorillonite electrodes: Validation using high performance liquid chromatography.

    Science.gov (United States)

    Loudiki, A; Boumya, W; Hammani, H; Nasrellah, H; El Bouabi, Y; Zeroual, M; Farahi, A; Lahrich, S; Hnini, K; Achak, M; Bakasse, M; El Mhammedi, M A

    2016-12-01

    The electrochemical detection of ibuprofen has been studied on Palladium-Montmorillonite (Mt) modified carbon paste electrode using differential pulse voltammetry. The optimization of the modifier preparation and the instrumental parameters was investigated. The results indicate that ibuprofen oxidation was favored in the presence of Pd-PdO particles. The quantitative determination of ibuprofen was statistically analyzed and validated using HPLC method. The detection and quantification limits, specificity and precision were found to be acceptable. Finally, the developed method was successfully applied for ibuprofen determination in human blood samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  2. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  3. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel

    2016-06-23

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  4. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel; Ezzeddine, Alaa; Emwas, Abdul-Hamid M.; Khashab, Niveen M.; Al-Ghoul, Mazen

    2016-01-01

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  5. Electrochemistry of Nanostructured Intercalation Hosts

    International Nuclear Information System (INIS)

    Smyrl, William H.

    2009-01-01

    We have shown that: (1) Li+ ions are inserted reversibly, without diffusion control, up to the level of at least 4 moles Li+ ions per mole for V2O5, in the aerogel (ARG) form (500 m2/g specific surface area) and aerogel-like (ARG-L) form (200 m2/g specific surface area)(6,7,1,2); (2) polyvalent cations (Al+3, Mg+2, Zn+2) may be intercalated reversibly into V2O5 (ARG) with high capacity (approaching 4 equivalents/mole V2O5 (ARG)) for each (5); (3) dopant cations such as Ag+ and Cu+2 increase the conductivity of V2O5 (XRG) up to three orders of magnitude(3), they are electrochemically active - showing reduction to the metallic-state in parallel to intercalation of Li+ ions - but are not released to the electrolyte upon oxidation and Li+ ion release (Cu+2 ions are reduced to Cu metal and reoxidized to Cu+2 in Li+ ion insertion/release cycles, but the copper ions are not released to the electrolyte over more than 400 cycles of the XRG form); (4) we have shown that Cu+2 ion (dopant) and Zn+2 ions (chemical insertion and dopant) occupy the same intercalation site inV2O5 xerogel and aerogel(4); and (5) the reversible intercalation of Zn+2, Mg+2, and Al+3 in the ARG(11) indicates that these cations are 'mobile', but that Cu+2 ions and Ag+ ions are 'immobile' in the xerogel, i.e., the latter ions are not exchanged with the electrolyte in Li+ ion intercalation cycling(3).

  6. In-situ Raman spectroscopy as a characterization tool for carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J -C; Joho, F B; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Lithium intercalation and de-intercalation into/from graphite electrodes in a nonaqueous electrolyte has been studied using in-situ Raman spectroscopy. Our experiments give information on the electrode-electrolyte interface with improved spatial resolution. The spectra taken from the electrode surface change with electrode potential. In this way, information on the nature of the chemical species present during charging and discharging half cycles is gained. For the first time, mapping techniques were applied to investigate if lithium intercalation proceeds homogeneously on the carbon electrode. (author) 3 figs., 1 tab., 4 refs.

  7. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Ali Kamal Attia

    2017-04-01

    Full Text Available Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0 using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10-6-3.475 x 10-5 mol L-1. The limits of detection and quantification were found to be 5.160 x 10-7 and 1.720 x 10-6 mol L-1, respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  8. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate.

    Science.gov (United States)

    Attia, Ali Kamal; Abo-Talib, Nisreen Farouk; Tammam, Marwa Hosny

    2017-04-01

    Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH) based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0) using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10 -6 -3.475 x 10 -5 mol L -1 . The limits of detection and quantification were found to be 5.160 x 10 -7 and 1.720 x 10-6 mol L -1 , respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  9. Fabrification of electroreduced graphene oxide–bentonite sodium composite modified electrode and its sensing application for linezolid

    International Nuclear Information System (INIS)

    Prashanth, S.N.; Teradal, Nagappa L.; Seetharamappa, J.; Satpati, Ashis K.; Reddy, A.V.R.

    2014-01-01

    Graphene and its composites have attracted considerable attention in synthesis and electrochemical applications. In the present work, we have synthesized and characterized graphene oxide-bentonite composite (GO-BEN) and utilized it to fabricate an electrochemical sensor. For this, the solution of GO-BEN cast on glassy carbon electrode (GCE) was reduced electrochemically in phosphate buffer solution of pH 6 to obtain electrochemically reduced graphene oxide-bentonite composite (ERGO-BEN-GCE). This ERGO-BEN film was used for electrochemical investigation of an oxazolidinone class of antibiotic, linezolid (LIN) for the first time. The electrochemical sensor showed excellent enhancement and adsorptive ability towards the electrooxidation of LIN. LIN exhibited two each of oxidation and reduction peaks on ERGO-BEN film in phosphate buffer of pH 7.0. Effects of accumulation time, pH of solution and scan rate were studied and various electrochemical parameters were evaluated. The plot of pH versus E p gave a slope of 26.2 mV/pH in the pH range of 4.2-8.0 indicating the participation of two electrons and one proton in the electrode process. An adsorptive stripping differential pulse voltammetric method (AdSDPV) was developed for the determination of LIN in bulk, pharmaceutical formulations and urine samples. Adsorptive stripping linear sweep voltammetric (AdSLSV) and differential pulse voltammetric (DPV) methods were also developed and the results were compared. LIN showed linear relationship between the current density and concentration in the range of 0.25 - 31.25 μM with a LOD of 0.0337 μM in AdSDPV method; 0.5 - 31.25 μM with a LOD of 0.100 μM in DPV method and 1.25 - 37.5 μM with a LOD of 0.5461 μM in AdSLSV method respectively. The proposed AdSDPV method was observed to be simple, fast and inexpensive and hence, could be readily adopted for quality control in pharmaceutical products

  10. An electrochemical sensor for sodium dodecyl sulfate detection based on anion exchange using eosin Y/polyethyleneimine modified electrode.

    Science.gov (United States)

    Hao, Xia; Lei, Jing Lei; Li, Nian Bing; Luo, Hong Qun

    2014-12-10

    A simple and effective method for the detection of electrochemically inactive sodium dodecyl sulfate (SDS) has been designed, based on different binding affinity of polyethyleneimine (PEI) toward electrochemically active eosin Y and electrochemically inactive SDS. The stronger binding affinity of the PEI toward SDS than eosin Y results in the decrease of the redox peak current of surface confined eosin Y and provides a quantitative readout for the SDS. The difference in value of the cathodic peak current showed a linear relationship with SDS concentration in a concentration range from 1 to 40 μg mL(-1), and a detection limit of 0.9 μg mL(-1) for SDS was obtained. Furthermore, the method has been successfully applied to the detection of SDS in real samples. The developed approach provided a simple and reliable detection for SDS and might have potential applications in electrochemical methods for inactive molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Determination of antihypertensive drug moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate at carbon paste electrode.

    Science.gov (United States)

    Attia, Ali K

    2010-04-15

    Herein, an electrochemical differential pulse voltammetric method was developed for the determination of moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate. The oxidation process has been carried out in Britton-Robinson buffer. Moexipril hydrochloride exhibits a well-defined irreversible oxidation peak over the entire pH range (2-11). The peak current varied linearly over the range from 4.0 x 10(-7) to 5.2 x 10(-6) mol L(-1). The limits of detection and quantification were 6.87 x 10(-8) mol L(-1) and 2.29 x 10(-7) mol L(-1), respectively. The recovery was found in the range from 99.65% to 100.76%. The relative standard deviation was found in the range from 0.429% to 0.845%. The proposed method possesses high sensitivity, accuracy and rapid response. Finally, this method was successfully used to determine moexipril hydrochloride in tablets. (c) 2009 Elsevier B.V. All rights reserved.

  12. HALLOYSITE INTERCALATION OF NORTHWEST ANATOLIA

    Directory of Open Access Journals (Sweden)

    Bülent BAŞARA

    2015-11-01

    Full Text Available In this study, the representative samples were taken from the halloysite deposits located in Çanakkale-Balıkesir regions, in NW Anatolia. At first, the dehydration temperatures of the samples were determined after sample preparation and characterization studies. It was found that halloysite samples began to lose their interlayer waters at 50°C and continued up to 70°C. The intercalation studies were carried out on dehydrated samples by using ethylene glycol, potassium acetate, dimethyl sulfoxide and formamide. Although there were negative results by ethylene glycol and potassium acetate, the satisfactory results were obtained by dimethyl sulfoxide and formamide. It was understood that the most effective reagent in terms of intercalation was formamide.

  13. Intercalation behavior of barium phenylphosphonate

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Melánová, Klára; Svoboda, Jan; Zima, Vítězslav

    2010-01-01

    Roč. 71, č. 4 (2010), s. 530-533 ISSN 0022-3697. [15th International Symposium on Intercalation Compounds. Beijing, 11.05.2009-15.05.2009] R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : inorganic compounds * organic compounds * X-ray diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 1.384, year: 2010

  14. Voltammetric determination of sudan ii in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulfate

    International Nuclear Information System (INIS)

    Ma, X.; Chen, M.; Chao, M.

    2013-01-01

    Summary: Herein, a novel electrochemical method was de veloped for the determination of Sudan II based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GME) and the enhancement effect of sodium dodecyl sulfate (SDS). In a pH 6.0 phosphate buffer solution, Sudan II exhibited a pair of well-defined quasi reversible redox peaks at the GME in the presence of 5.0x10/sup -5/ mol L/sup 1/ SDS. The oxidation peak current of Sudan II was linearly proportional to its concentration in a range from 4.0x10/sup -8/ to 4.0x10/sup -6/ mol L/sup 1/, with a linear regression equation of ipa (A) = 3.35 c + 5.96 x 10/sup -6/, r = 0.9988 and a detection limit of 8.0x10/sup -9/ mol L/sup 1/. The recoveries from the standards fortified blank samples were in the range of 94.7% to 97.5% with RSD lower than 4.0%. The novel method has been successfully used to determine Sudan II in food products with satisfactory results. (author)

  15. Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries

    Science.gov (United States)

    Li, Guangqiang; Jiang, Danlu; Wang, Hui; Lan, Xinzheng; Zhong, Honghai; Jiang, Yang

    2014-11-01

    A novel electrode material for sodium-ion batteries (NIBs), Na3V2(PO4)3 with a rhombohedral, Na+ superionic conductor (NASICON)-type structure, was synthesised via a solid-state carbon-thermal reduction reaction assisted by mechanochemical activation. Electron microscopy analysis showed that the synthesised Na3V2(PO4)3 particles had an average size of 300 nm, being coated with a uniform layer of carbon 3 nm in thickness. As a cathode material, Na3V2(PO4)3/C exhibited an initial specific discharge capacity of 98.17 mAh g-1 at 0.1C for potentials ranging from 2.5 to 3.8 V. This was owing to the V3+/V4+ redox couple, which corresponded to the two-phase transition between Na3V2(PO4)3 and NaV2(PO4)3. The cathode lost 4.92% of its discharge specific capacity after 50 cycles. As an anode material, Na3V2(PO4)3/C exhibited an initial specific discharge capacity of 63.2 mAh g-1 at 0.1C for potentials ranging from 1.0 to 2.5 V. This was owing to the V2+/V3+ redox couple, which corresponded to the two-phase transition between Na3V2(PO4)3 and Na4V2(PO4)3. The anode lost approximately 5.41% of its discharge specific capacity after 50 cycles. The three-dimensional channel structure of NaV2(PO4)3 and the changes induced in its lattice parameters during the charge/discharge processes were simulated on the basis of density functional theory.

  16. An ultrasensitive and selective electrochemical sensor for determination of estrone 3-sulfate sodium salt based on molecularly imprinted polymer modified carbon paste electrode.

    Science.gov (United States)

    Song, Han; Wang, Yuli; Zhang, Lu; Tian, Liping; Luo, Jun; Zhao, Na; Han, Yajie; Zhao, Feilang; Ying, Xue; Li, Yingchun

    2017-11-01

    A highly sensitive and selective electrochemical sensor based on carbon paste electrode (CPE) modified with molecularly imprinted polymers (MIPs) has been developed for the determination of estrone 3-sulfate sodium salt (ESS). MIPs were prepared in polar medium via bulk polymerization and characterized by scanning electron microscopy and infrared spectroscopy. Cyclic voltammetry was performed to the study preparation process and binding behavior of the MIP-modified CPE (MIP/CPE) toward ESS. The conditions for preparing MIPs and MIP/CPE as well as ESS detection were optimized. Under the optimal experimental conditions, the detection linear range for ESS is 4 × 10 -12 to 6 × 10 -9  M with a limit of detection of 1.18 × 10 -12  M (S/N = 3). In addition, the sensor exhibits high binding affinity toward ESS over its structural analogues with excellent repeatability and stability. The fabricated MIP/CPE was then successfully employed to detect ESS in pregnant mare urine (PMU) without any pretreatment, and the average recoveries were from 99.6 to 104.9% with relative standard deviation less than 3.0%. High-performance liquid chromatography was adopted as a reference to validate the established approach in detecting ESS and their results showed good agreement. The as-prepared sensor has high potential to be a decent tool for on-site determination of ESS in PMU in a fast and convenient manner. Graphical Abstract ᅟ.

  17. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    International Nuclear Information System (INIS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-01-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4′-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules. - Graphical abstract: Nitrogen-containing organic compounds can be intercalated into the interlayer space of zirconium 4-sulfophenylphosphonate. - Highlights: • Zirconium 4-sulfophenylphosphonate was examined as a host material in intercalation chemistry. • A wide range of nitrogen-containing organic compounds were intercalated. • Possible arrangement of the intercalated species is described

  18. Intercalated compounds of niobium and tantalum dicalcogenides

    International Nuclear Information System (INIS)

    Wypych, F.

    1988-01-01

    The synthesis of niobium and tantalum lamellar compounds and its intercalated derivatives is described. The intercalated compounds with lithium, with alkaline metal and with metals of the first-row transition are studied, characterized by X-ray diffraction. (C.G.C.) [pt

  19. Carbon fibers and composites modified by intercalation

    International Nuclear Information System (INIS)

    Macherzynska, B.; Blazewicz, S.

    2002-01-01

    The aim of this paper was to describe ability to intercalation of laboratory prepared carbon composites and their constituents. In work the following materials were tested; pinch-based fibres of P-120 and K-1100 manufacturer's designations, carbon matrix and resulting composites. To prepare a matrix of composites, phenol-formaldehyde resin (Z) and pinch-based precursor (PAK) were used. After initial carbonization, the carbon matrix was heated to 2150 o C i to improve ability to the future intercalation. Three kinds of composites (P/Z, K/Z and K/PAK), with two directional reinforcement (2D), were prepared. All carbon samples were intercalated with copper chloride(II). To study the structure of all materials, before and after intercalation, X-ray diffraction method was used. It enabled to measure microstructure parameters (L c and L a ), interplanar distance (d 002 ) thickness of an intercalation layer (d i ). Before intercalation, graphite fibers are characterized by well developed graphite structure of three-dimensional order, different than carbon turbostratic structures. Graphite fibres show a tendency to intercalation, however this process proceeds harder than in a synthetic graphite, which is testified by diffraction spectra with visible complex stages of intercalation. Comparison of two kinds of graphite fibres show s that their structure significantly affects intercalation process. In the case of composite matrix, a better structure ordering was observed for carbon obtained from PAK than for carbon originating from Z precursor. During production of composites, after the heat treatment (2150 o C), carbon obtained from pyrolysis of Z precursor crystallises on the fibre surface, building a well-developed structure of matrix. The same process occurs during carbonization of pinch-based precursor in presence of graphite fibres. In both cases the composites contain well crystallized graphite phases. The study of carbon composite intercalation shows that the process

  20. Intercalation of lanthanide trichlorides in graphite

    International Nuclear Information System (INIS)

    Stumpp, E.; Nietfeld, G.

    1979-01-01

    The reactions of the whole series of lanthanide trichlorides with graphite have been investigated. Intercalation compounds have been prepared with the chlorides of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y whereas LaCl 3 , CeCl 3 , PrCl 3 and NdCl 3 do not intercalate. The compounds were characterized by chemical and X-ray analysis. The amount of c-axis increase is consistent with the assumption that the chlorides are intercalated in form of a chloride layer sandwich resmbling the sheets in YCl 3 . The chlorides which do not intercalate crystallize in the UCl 3 structure having 3 D arrangements of ions. Obviously, these chlorides cannot form sheets between the carbon layers. The ability of AlCl 3 to volatilize lanthanide chlorides through complex formation in the gas phase can be used to increase the intercalation rate strikingly. (author)

  1. Intercalation compounds of vanadium pentoxide hydrated with metalporphyrins and lanthanide ions

    International Nuclear Information System (INIS)

    Oliveira, Herenilton Paulino

    1994-01-01

    The lamellar structure of the vanadium pentoxide matrix allows the intercalation of organic molecules, ions and conductor polymers. It is important to emphasize that the vanadium oxide matrix is an intrinsic semiconductor and presents electrochromic properties. In the beginning of this work the method of synthesis and the electrochemical and electrochromic properties were extensively explored. The effect of alkaline metal and lanthanide ions on the structure of vanadium oxide matrix was studied by X-ray and infrared spectroscopy. Moreover, the influence of those ions in the electrochemical, spectro electrochemical and magnetic properties were studied. Finally, some intercalation compounds containing porphyrins were prepared and characterized by elemental analysis, X-ray diffraction, and electronic, vibrational, Moessbauer and X-ray fluorescence spectroscopy. The electrochemical and spectro electrochemical properties were investigated. And the performance of an iron porphyrin based intercalation compound as catalyst for molecular oxygen reduction was evaluated using the rotating ring-disc electrode technique. (author)

  2. X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

    Science.gov (United States)

    Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit

    2017-09-01

    Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.

  3. Nanoparticle intercalation-induced interlayer-gap-opened graphene–polyaniline nanocomposite for enhanced supercapacitive performances

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sungjin; Park, Young Ran [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Park, Sanghyuk [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Kim, Hyeong Jin [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Doh, Ji Hoon [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Hong, Won G. [Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kim, Byungnam [Radiation Equipment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Yang, Woo Seok [Electronic Material and Device Research Center, Korea Electronics Technology Institute, Seongnam, Gyeonggi-do 13509 (Korea, Republic of); Kim, TaeYoung [Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi-do 13120 (Korea, Republic of); Hong, Young Joon, E-mail: yjhong@sejong.ac.kr [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of)

    2017-08-01

    Highlights: • High energy–power supercapacitor electrode is demonstrated using EDLC–PC hybridized rGO–PANi nanocomposite. • A method for perpetuated intercalation of nanoparticles into interlayer gap of rGO is developed. • The intercalaction (i) exfoliates rGO layers, (ii) prevents self-agglomeration, and (iii) enlarges specific surface area of rGO for high power performance. • Electric resistance is substantially reduced by forming more rGO–PANi links via grafting of PANi to well-opened rGO edges. - Abstract: This study demonstrates a method for improving supercapacitive performance of two-dimensional nanosheet-based composite electrode. As a hybridized electrostatic double layer capacitor–electrochemical pseudocapacitor (EDLC–PC) electrode, we synthesized reduced graphene oxide–polyaniline nanofibers (rGO–PANi NFs) composite electrode. For the enhanced supercapacitive performances, insulator silver chloride nanoparticles (AgCl NPs) were intercalated into the interlayer gap of rGO. The AgCl NP intercalation (i) exfoliated rGO layers and (ii) prevented rGO-self-agglomeration that makes it difficult to utilize the high surface-to-volume ratio of ideal mono- (or few-) atomic-thick rGO layers. As a result, (iii) the specific capacitance was improved in accordance with the enlarged specific surface area of rGO. Furthermore, (iv) the well-developed rGO edges, which were opened by the AgCl intercalation, enabled formation of more bonds between PANi and rGO by selective grafting of PANi to the rGO edges. Hence, the bonds of PANi–rGO, as conducting paths, substantially reduced the total electrical resistance. Enhanced specific capacitance, ion diffusion efficiency, and reduced electrical resistance indicated the bi-functional roles of AgCl NP insertion for high performance hybridized EDLC–PC electrodes.

  4. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    International Nuclear Information System (INIS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-01-01

    Highlights: • A MWCNTs/rGO/ZnO quantum dots intercalation nanoballs decorated 3D hierarchical architecture is fabricated on Ni foam. • Large numbers of ZnO quantum dots are intercalated by rGO sheets to construct hierarchical nanoballs. • Improved mechanical, kinetic and electrochemical properties are found. • The strong interfacial effect makes the material can be used for selective detection of dopamine, ascorbic acid and uric acid. - Abstract: ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  5. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Zhao, Minggang, E-mail: zhaomg@ouc.edu.cn; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang, E-mail: sgchen@ouc.edu.cn

    2016-07-15

    Highlights: • A MWCNTs/rGO/ZnO quantum dots intercalation nanoballs decorated 3D hierarchical architecture is fabricated on Ni foam. • Large numbers of ZnO quantum dots are intercalated by rGO sheets to construct hierarchical nanoballs. • Improved mechanical, kinetic and electrochemical properties are found. • The strong interfacial effect makes the material can be used for selective detection of dopamine, ascorbic acid and uric acid. - Abstract: ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  6. Large magnetoresistance in intercalated Cu oxides

    OpenAIRE

    Grigoryan, L.; Furusawa, M.; Hori, H.; Tokumoto, M.

    1997-01-01

    Magnetism and electrical resistance as a function of magnetic field, temperature, and chemical composition are studied in Cu oxides intercalated with metal phthalocyanines MPc, where M is Fe or Ni, and Pc is C_H_N_. An unusually large positive magnetoresistance (MR) of ~ 1200% is observed in FePc-intercalated Bi_Sr_Ca_Cu_O_ samples with two Cu-O layers in the unit cell (n=2). The magnitude of the MR decreased to 40% and ~ 0% in the FePc-intercalated n=3 and n=4 samples, respectively, and to ~...

  7. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram; Patole, Archana

    2017-01-01

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a

  8. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara

    2011-06-01

    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  9. Magnetic resonance studies of intercalation compounds

    International Nuclear Information System (INIS)

    Miller, G.R.

    1990-01-01

    During the last three or four years, nearly tow hundred papers have been published that used NMR or ESR spectroscopy to study compounds formed by the intercalation of molecules or ions into the van der Waals gap of a layered hast compound. The host lattices have ranged from the simple, such as graphite, to the complex, such as clay. In many cases, magnetic resonance techniques now enable one to obtain quite detailed information on even fairly complex intercalated species, on the nature of the changes in the host lattice accompanying intercalation, and on the nature of the interactions between the intercalant species and the host lattice. Magnetic resonance is used in conunction with many other techniques to obtain a fuller picture of these interesting systems, but this review will limit its focus to the use of NMR and ESR techniques. (author). 51 refs

  10. A new rechargeable sodium battery utilizing reversible topotactic oxygen extraction/insertion of CaFeO(z) (2.5 ≤ z ≤ 3) in an organic electrolyte.

    Science.gov (United States)

    Hibino, Mitsuhiro; Harimoto, Ryuji; Ogasawara, Yoshiyuki; Kido, Ryota; Sugahara, Akira; Kudo, Tetsuichi; Tochigi, Eita; Shibata, Naoya; Ikuhara, Yuichi; Mizuno, Noritaka

    2014-01-08

    At present, significant research efforts are being devoted both to identifying means of upgrading existing batteries, including lithium ion types, and also to developing alternate technologies, such as sodium ion, metal-air, and lithium-sulfur batteries. In addition, new battery systems incorporating novel electrode reactions are being identified. One such system utilizes the reaction of electrolyte ions with oxygen atoms reversibly extracted and reinserted topotactically from cathode materials. Batteries based on this system allow the use of various anode materials, such as lithium and sodium, without the requirement to develop new cathode intercalation materials. In the present study, this concept is employed and a new battery based on a CaFeO3 cathode with a sodium anode is demonstrated.

  11. Porous graphite electrodes for rechargeable ion-transfer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Novak, P; Scheifele, W; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The influence of preparation pressure and pore-forming additives on the properties of graphite-based, Li{sup +}-intercalating electrodes for ion-transfer batteries have been investigated. The electrochemical performance of graphite electrodes could be improved by adjusting the porosity. Specific charge of >300 Ah/kg (with respect to the graphite mass) could be achieved. (author) 4 figs., 2 refs.

  12. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    Science.gov (United States)

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  13. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2006-10-20

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy. (author)

  14. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Science.gov (United States)

    Lee, Jong-Won; Popov, Branko N.

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy.

  15. Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics?

    Science.gov (United States)

    Mahns, Benjamin; Roth, Friedrich; Knupfer, Martin

    2012-04-07

    The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.

  16. Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Jin, Juan; Shi, Zhi-qiang; Wang, Cheng-yang

    2014-01-01

    Highlights: • Electrospun carbon nanofiber webs were prepared by pyrolysis of polyacrylonitrile. • The webs as binder-free and current collector-free electrodes for SIBs and LIBs. • Different layer spacing and pore size for Li and Na lead different electrochemical behavior. • Electrochemical performances of the electrodes were high. - Abstract: A series of hard carbon nanofiber-based electrodes derived from electrospun polyacrylonitrile (PAN) nanofibers (PAN-CNFs) have been fabricated by stabilization in air at about 280 °C and then carbonization in N 2 at heat treatment temperatures (HTT) between 800 and 1500 °C. The electrochemical performances of the binder-free, current collector-free carbon nanofiber-based anodes in lithium-ion batteries and sodium-ion batteries are systematically investigated and compared. We demonstrate the presence of similar alkali metal insertion mechanisms in both cases, but just the differences of the layer spacing and pore size available for lithium and sodium ion lead the discharge capacity delivered at sloping region and plateau region to vary from the kinds of alkali elements. Although the anodes in sodium-ion batteries show poorer rate capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 275 mAh g −1 and similar cycling stability due to the conductive 3-D network, weakly ordered turbostratic structure and a large interlayer spacing between graphene sheets. The feature of high capacity and stable cycling performance makes PAN-CNFs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries

  17. Synthesis and characterization of a layered double hydroxide containing an intercalated nickel(II) citrate complex

    International Nuclear Information System (INIS)

    Wang Lianying; Wu Guoqing; Evans, David G.

    2007-01-01

    The nickel(II) citrate complex anion ([Ni(C 6 H 4 O 7 )] 2- ) may be intercalated into the interlayer galleries of a layered double hydroxide (LDH) host by a process involving ion-exchange with an Mg 2 Al-NO 3 LDH precursor. The powder X-ray diffraction (XRD) pattern confirms that the layered structure is maintained. The thermal decomposition process of the complex anion-intercalated material has been characterized by in situ high temperature powder XRD, thermogravimetry-differential thermal analysis (TG-DTA) and coupled with mass spectrometry (MS). The thermal stability of the nickel(II) citrate complex anion intercalated in LDHs in air is lower than that in the sodium salt. Calcination generates a high degree of nickel(II) oxide dispersion in a matrix of magnesium and aluminium oxide phases which should be an advantage if the materials are used as catalyst precursors. Based on the observed data, a structural model for the [Ni(C 6 H 4 O 7 )] 2- anion intercalated in the galleries of the LDH is proposed

  18. A solvated electron lithium electrode for secondary batteries

    Science.gov (United States)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  19. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen; Schwingenschlö gl, Udo

    2016-01-01

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory

  20. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen; Schwingenschlö gl, Udo

    2017-01-01

    It is of technological interest to achieve quasi-freestanding graphene on a substrate. A possible approach is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) is investigated using density functional theory

  1. Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers.

    Science.gov (United States)

    Jacques, Eric; Lindbergh, Göran; Zenkert, Dan; Leijonmarck, Simon; Kjell, Maria Hellqvist

    2015-07-01

    The mechanical and electrochemical properties are coupled through a piezo-electrochemical effect in Li-intercalated carbon fibers. It is demonstrated that this piezo-electrochemical effect makes it possible to harvest electrical energy from mechanical work. Continuous polyacrylonitrile-based carbon fibers that can work both as electrodes for Li-ion batteries and structural reinforcement for composites materials are used in this study. Applying a tensile force to carbon fiber bundles used as Li-intercalating electrodes results in a response of the electrode potential of a few millivolts which allows, at low current densities, lithiation at higher electrode potential than delithiation. More electrical energy is thereby released from the cell at discharge than provided at charge, harvesting energy from the mechanical work of the applied force. The measured harvested specific electrical power is in the order of 1 μW/g for current densities in the order of 1 mA/g, but this has a potential of being increased significantly.

  2. Synthesis of Various Polyaniline / Clay Nanocomposites Derived from Aniline and Substituted Aniline Derivatives by Mechanochemical Intercalation Method

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2010-01-01

    Full Text Available Polyaniline clay nanocomposite can be prepared by mechano-chemical method in which intercalation of anilinium ion into the clay lattices accomplished by mechanical grinding of sodium montmorillonite (Na+MMT in presence of anilinium hydrochloride at room temperature using mortar & pestle for about 30 min and subsequent grinding with oxidizing agent, ammonium peroxysulfate. The appearance of green colour indicates the formation of polyaniline/clay nanocomposite (PANI/Clay. Similarly aniline derivatives like o-toludine and o-anisidine in the form of HCl salt can form intercalation into the clay lattices. The intercalated aniline derivatives were ground mechanically in presence of oxidizing agent ammonium peroxysulfate lead to formation of substituted polyaniline/ clay nanocomposites. The characteristics of various polyaniline-clay nanocomposites were investigated using UV-Visible, FT-IR, cyclic voltammetry studies.

  3. Experimental observation of electrochemical rate limitations affecting sodium ion-electron recombination at electrodes of the alkali metal thermoelectric converter at T about 1200 K

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Loveland, M. E.; Underwood, M. L.; Bankston, C. P.

    1988-01-01

    This paper considers a model of the internal impedances of thin porous Mo and W alkali metal thermoelectric converter (AMTEC), in which the kinetic parameters associated with the reaction of the beta-double-prime alumina solid electrolite (BASE)/porous metal/gas three-phase boundary can be evaluated. Impedance data in the frequency range 0.01-100,000 Hz were collected over a range of AMTEC cell operating voltages for small-area thin porous Mo and W electrodes, yielding apparent charge transfer resistances at a series of cell potentials/currents. The ohmic resistance in the AMTEC cell could be broken down and characterized with three parameters: the BASE ionic resistance, the electrode film sheet resistance, and the contact/lead resistance, all of which could be calculated or measured independently and used to calculate power curves in good agreement with observed power curves. It is shown that these calculations can be used to predict the properties of electrodes with optimized parameters or to detect enhanced transport modes.

  4. First-principles study of mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x=0-2, M = Mn, Co, Ni): A new family of high electrode potential cathodes for the sodium-ion battery

    Science.gov (United States)

    Ri, Gum-Chol; Choe, Song-Hyok; Yu, Chol-Jun

    2018-02-01

    Natural abundance of sodium and its similar behavior to lithium triggered recent extensive studies of cost-effective sodium-ion batteries (SIBs) for large-scale energy storage systems. A challenge is to develop electrode materials with a high electrode potential, specific capacity and a good rate capability. In this work we propose mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x = 0-2, M = Mn, Co, Ni) as a new family of high electrode potential cathodes of SIBs and present their material properties predicted by first-principles calculations. The structural optimizations show that these materials have significantly small volume expansion rates below 5% upon Na insertion/desertion with negative Na binding energies. Through the electronic structure calculations, we find band insulating properties and hole (and/or electron) polaron hoping as a possible mechanism for the charge transfer. Especially we confirm the high electrode voltages over 4 V with reasonably high specific capacities. We also investigate the sodium ion mobility by estimating plausible diffusion pathways and calculating the corresponding activation barriers, demonstrating the reasonably fast migrations of sodium ions during the operation. Our calculation results indicate that these mixed eldfellite compounds can be suitable materials for high performance SIB cathodes.

  5. Superlattice Effects in Graphite Intercalation Compounds.

    Science.gov (United States)

    1986-04-15

    away from ;le[ Isy.st,.mns (r lin( nl :; atars ) and look for nonlinear dynamical effects -. m,,5,: U~ i,: ,1 : s y’t, rns, a3iioh m i Josephson...Intercalation Coaanm, Chemistry Dept., Northeast(.rn,, February 25, 1935. ( iv) "Giant Magnetic Interaction and Domain Dynamics in Twe -. "Dimensions," hoston

  6. Selective coal mining of intercalated lignite deposits

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, R [Kolubara-Projekt, Lazarevac (Yugoslavia)

    1991-01-01

    Describes selective coal mining in the Tamnava-Istocno Polje coal surface coal mine (Yugoslavia), designed for an annual coal production of 11.4 Mt. Until 1991, this mine exploited one thick lignite seam, without spoil intercalations, using a bucket wheel excavator-conveyor-spreader system both for coal mining and removal of overburden. In the future, several spoil intercalations of up to 1.0 m and thicker will appear with a total volume of 22 million m{sup 3}. These intercalations have to be selectively excavated in order to guarantee the calorific value of coal for the Nikola Tesla power plant. Computer calculations were carried out to determine the decrease in excavator coal production due to selective mining of spoil strata. Calculations found that the annual surface mine capacity will be lower by at most 9%, depending on thickness of spoil intercalations. The useful operation time of excavators will be reduced by 98 hours per year. The planned annual coal production will nevertheless be fulfilled. 3 refs.

  7. clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS.

  8. Hydrothermal synthesis of a new ethylenediammonium intercalated ...

    Indian Academy of Sciences (India)

    Unknown

    Vanadyl phosphate; hydrothermal synthesis; intercalation; single crystal ... presence of 'en'.7–15 In all these solids en molecules occur in suitable ... all the cases, the mixture was transferred to a 45 ml Teflon lined Parr acid digestion .... position cannot be fully occupied at the same time as it will lead to a P-P distance of.

  9. Intercalation of Toluidines into Alpha - Zirconium Hydrogenphosphate

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Melánová, Klára; Svoboda, Jan; Zima, Vítězslav

    2006-01-01

    Roč. 55, č. 3-4 (2006), s. 289-293 ISSN 0923-0750 R&D Projects: GA ČR(CZ) GA203/05/2306 Institutional research plan: CEZ:AV0Z40500505 Keywords : intercalation Subject RIV: CA - Inorganic Chemistry Impact factor: 1.251, year: 2006

  10. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  11. Preparation of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    International Nuclear Information System (INIS)

    Li Dianqing; Tuo Zhenjun; Evans, David G.; Duan Xue

    2006-01-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3 -LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability. - Graphical abstract: Intercalation of an organic UV absorber in a layered double hydroxide host leads to an enhancement of its photo- and thermal stability

  12. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  13. Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage

    KAUST Repository

    Wessells, Colin D.

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes. © 2012 American Chemical Society.

  14. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    Science.gov (United States)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  15. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Gui-Liang [Chemical; Xiao, Lisong [Center; Sheng, Tian [Collaborative; Liu, Jianzhao [Chemical; Hu, Yi-Xin [Chemical; Department; Ma, Tianyuan [Chemical; Amine, Rachid [Materials; Xie, Yingying [Chemical; Zhang, Xiaoyi [X-ray Science; Liu, Yuzi [Nanoscience; Ren, Yang [X-ray Science; Sun, Cheng-Jun [X-ray Science; Heald, Steve M. [X-ray Science; Kovacevic, Jasmina [Center; Sehlleier, Yee Hwa [Center; Schulz, Christof [Center; Mattis, Wenjuan Liu [Microvast Power Solutions, 12603; Sun, Shi-Gang [Collaborative; Wiggers, Hartmut [Center; Chen, Zonghai [Chemical; Amine, Khalil [Chemical

    2017-12-15

    Room temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize 3D titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy and computational modeling revealed that the strong interaction between Titania and graphene through comparably strong van-der-Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+ and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

  16. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid.

    Science.gov (United States)

    Xu, Gui-Liang; Xiao, Lisong; Sheng, Tian; Liu, Jianzhao; Hu, Yi-Xin; Ma, Tianyuan; Amine, Rachid; Xie, Yingying; Zhang, Xiaoyi; Liu, Yuzi; Ren, Yang; Sun, Cheng-Jun; Heald, Steve M; Kovacevic, Jasmina; Sehlleier, Yee Hwa; Schulz, Christof; Mattis, Wenjuan Liu; Sun, Shi-Gang; Wiggers, Hartmut; Chen, Zonghai; Amine, Khalil

    2018-01-10

    Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na + intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li + , K + , Mg 2+, and Al 3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

  17. A study of the catalytic role of a gold electrode in the electrochemical activation of four macrolide antibiotics in sodium bicarbonate solution

    Directory of Open Access Journals (Sweden)

    Milka L. Avramov Ivić

    2010-07-01

    Full Text Available Using the cyclic voltammetry, it has been shown that hydrogen evolution at a gold electrode is necessary in the electrochemical activation of azithromycin dihydrate and erythromycin A. After four hours of the potential holding at –1.2 V vs. SCE, the pH of the electrolyte has been changed from 8.40 to 8.96; from 8.40 to 8.77 in the presence of erythromycin A, and from 8.40 to 9.18 in the presence of azithromycin, indicating the reaction of the hydrogen species with antibiotics. This effect has been confirmed by using the phenolphthalein indicator and by analysing colours of the solutions by UV-Vis, as well as by FTIR spectroscopy. Under the identical experimental conditions at the gold electrode, in contrast to azithromycin dihydrate and erythromycin A, roxithromycin and midecamycin electroactivity promotion has been obtained during the first forward sweep starting from the area of a double layer region.

  18. Cauliflower-like MnO@C/N composites with multiscale, expanded hierarchical ordered structures as electrode materials for Lithium- and Sodium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Ting; Wu, Zhenguo; Xiang, Wei; Wang, Enhui; Chen, Tingru; Guo, Xiaodong; Chen, Yanxiao; Zhong, Benhe

    2017-01-01

    MnO@C/N composite with expanded cauliflower-like morphology was prepared via one-pot L-tryptophan assisted hydrothermal method following by annealing in Ar atmosphere. The cauliflower structure was assembled by porous nanowires that composed of MnO nanoparticles wrapped by continuous N-doped amorphous carbon matrix. Superior electrochemical performances were obtained in both lithium/sodium ion batteries. And the reaction kinetics of MnO@C/N in lithium/sodium ion batteries were analyzed and compared. More than 837 mAh g −1 could be retained after 300 cycles at 500 mA g −1 . And a high reversible capacity of 336 mAh g −1 at 5000 mA g −1 also demonstrate the excellent rate performance of MnO@C/N for LIBs. As to SIBs, 123 mAh g −1 could be maintained after 200 cycles at 100 mA g −1 . The superior performances could be attributed to the peculiar porous micro-nano structure and N-doped amorphous carbon coating. The reaction kinetics results revealed that the capacitive-controlled capacity would dominate of the electrochemical performance in SIBs and the diffusion-controlled capacity could play a more important role in LIBs, due to the atom weight and size of Na + is larger than Li + .

  19. First-principles investigation of aluminum intercalation and diffusion in TiO2 materials: Anatase versus rutile

    Science.gov (United States)

    Tang, Weiqiang; Xuan, Jin; Wang, Huizhi; Zhao, Shuangliang; Liu, Honglai

    2018-04-01

    Aluminum-ion batteries, emerging as a promising post-lithium battery solution, have been a subject of increasing research interest. Yet, most existing aluminum-ion research has focused on electrode materials development and synthesis. There has been a lack of fundamental understanding of the electrode processes and thus theoretical guidelines for electrode materials selection and design. In this study, by using density functional theory, we for the first time report a first-principles investigation on the thermodynamic and kinetic properties of aluminum intercalation into two common TiO2 polymorphs, i.e., anatase and rutile. After examining the aluminum intercalation sites, intercalation voltages, storage capacities and aluminum diffusion paths in both cases, we demonstrate that the stable aluminum intercalation site locates at the center of the O6 octahedral for TiO2 rutile and off center for TiO2 anatase. The maximum achievable Al/Ti ratios for rutile and anatase are 0.34375 and 0.36111, respectively. Although rutile is found to have an aluminum storage capacity slightly higher than anatase, the theoretical specific energy of rutile can reach 20.90 Wh kg-1, nearly twice as high as anatase (9.84 Wh kg-1). Moreover, the diffusion coefficient of aluminum ions in rutile is 10-9 cm2 s-1, significantly higher than that in anatase (10-20 cm2 s-1). In this regard, TiO2 rutile appears to be a better candidate than anatase as an electrode material for aluminum-ion batteries.

  20. Phonon studies of intercalated conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Prassides, K; Bell, C J [School of Chemistry and Molecular Sciences, Univ. of Sussex, Brighton (United Kingdom); Dianoux, A J [Inst. Laue-Langevin, 38 - Grenoble (France); Chunguey, Wu; Kanatzidis, M G [Dept. of Chemistry, Michigan State Univ., East Lansing (United States)

    1992-06-01

    The phonon density-of-states of FeOCl, the conductive form of polyaniline and the intercalation compound (polyaniline)[sub 0.20]FeOCl(I) have been measured by the neutron time-of-flight technique. The results are discussed in the light of the conducting and structural properties of the materials. Compound I is oxidised by standing in air and the neutron measurements reveal substantial changes in the inorganic host skeleton. (orig.).

  1. Theological Implications of Markan Interpretative Intercalations

    Directory of Open Access Journals (Sweden)

    Mateusz Kusio

    2015-09-01

    Full Text Available This paper aims at evidencing the thesis that Markan interpretative intercalations are a narrative structure that manifests profound theological engagement of the evangelist. This device is defined as an entanglement of two storylines in the A1–B–A2 pattern which by using the notions of simultaneity, contrast, irony, similarity, etc. offers a wholly novel meaning of the stories. Six intercalations of the St Mark’s gospel – 3 : 20–35; 5 : 21–43; 6 : 7–31; 11 : 12–23; 14 : 1–11, 53–72 – merge different episodes with distinct theological purposes and as such cannot be reduced to the rank of a literary or redactional device. All of them are concerned with the most essential topics of the Markan theology, such as Christology, especially in relation to suffering, requirements of true discipleship, vision of the future ecclesiastical community. St Mark in his intercalations reveals his elaborated, clear-cut theology, as well as narrative ingenuity and mastery.

  2. Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    International Nuclear Information System (INIS)

    O'Dwyer, C.; Lavayen, V.; Clavijo-Cedeno, C.; Torres, C.M.S.

    2008-01-01

    The electron beam induced electronic transport in primary alkyl amine-intercalated V 2 O 5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself. Both nanotube networks and individual nanotubes exhibit similarly high conductivities where the minority carrier transport is bias dependent and nanotube diameter invariant. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors

    Science.gov (United States)

    Ke, Qingqing; Tang, Chunhua; Liu, Yanqiong; Liu, Huajun; Wang, John

    2014-04-01

    A hierarchical nanostructure consisting of graphene sheets intercalated by clusters of Fe3O4 nanocystals is developed for high-performance supercapacitor electrode. Here we show that the negatively charged graphene oxide (GO) and positively charged Fe3O4 clusters enable a strong electrostatic interaction, generating a hierarchical 3D nanostructure, which gives rise to the intercalated composites through a rational hydrothermal process. The electrocapacitive behavior of the resultant composites is systematically investigated by cyclic voltammeter and galvanostatic charge-discharge techniques, where a positive synergistic effect between graphene and Fe3O4 clusters is identified. A maximum specific capacitance of 169 F g-1 is achieved in the Fe3O4 clusters decorated with effectively reduced graphene oxide (Fe3O4-rGO-12h), which is much higher than those of rGO (101 F g-1) and Fe3O4 (68 F g-1) at the current density of 1 Ag-1. Moreover, this intercalated hierarchical nanostructure demonstrates a good capacitance retention, retaining over 88% of the initial capacity after 1000 cycles.

  4. Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Seong-Min [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA; Qiao, Ruimin [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Yang, Wanli [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Lee, Sungsik [X-Ray Science Division, Argonne National Laboratory, Argonne IL 60439 USA; Yu, Xiqian [Institute of Physics, Chinese Academy of Science, Beijing 100190 China; Anasori, Babak [Department of Material Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia PA 19104 USA; Lee, Hungsui [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA; Gogotsi, Yury [Department of Material Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia PA 19104 USA; Yang, Xiao-Qing [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA

    2017-07-14

    Two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V2CTx, where Tx are surface functional groups) was synthesized and studied as anode material for Na-ion batteries. V2CTx anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. The charge storage mechanism of V2CTx material during Na+ intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution of redox reaction of vanadium to the charge storage and the reversible capacity of V2CTx during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO32- content and Na+ intercalation/deintercalation states in the V2CTx electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na+-intercalated V2CTx and the carbonate based non-aqueous electrolyte. The results of this study will provide valuable information for the further studies on V2CTx as anode material for Na-ion batteries and capacitors.

  5. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  6. Spray deposited CeO2–TiO2 counter electrode for electrochromic ...

    Indian Academy of Sciences (India)

    application in smart window technology. The technological requirement of smart windows includes the electrochromic working electrode and ion storage layer that should be optically passive after intercalation/deintercalation process. There are only few materials which are used as an optically passive counter electrode with ...

  7. Synthesis and stability of Br2, ICl and IBr intercalated pitch-based graphite fibers

    Science.gov (United States)

    Wessbecher, Dorothy E.; Forsman, William C.; Gaier, James R.

    1988-01-01

    The intercalation of halogens in pitch-based fiber is studied as well as the stability of the resultant intercalation compounds. It is found that IBr intercalates P-100 to yield a high-sigma GIC with attractive stability properties. During ICl intercalation, the presence of O2 interferes with the reaction and necessitates a higher threshold pressure for intercalation.

  8. The intercalation chemistry of layered iron chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    2016-10-15

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  9. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    Science.gov (United States)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  10. Reaction of nitriles intercalation in tantalum pentachloride complexes with amines

    International Nuclear Information System (INIS)

    Glushkova, M.A.; Chumaevskij, N.A.; Khmelevskaya, L.V.; Ershova, M.M.; Buslaev, Yu.A.

    1987-01-01

    Data on the study of aceto-, propio- and benzonitrile intercalation in TaCl 5 complexes with diethyl- and triethylamines in CCl 4 solution are discussed. Using the methods of IR and Raman spectroscopy it has been established that it is the nature of ligand, and not nitrile intercalated in the complex, that affects greatly the composition of final products. In contrast to acetonitrile, intercalation in the complex of propio- and benzonitriles is observed already at room temperature. On the basis of spectral data a supposition is made that carbon tetrachloride used as a solvent accelerates the reaction of nitrile intercalation and promotes their deprotonation in the presence of aprotonic amine

  11. Superconductivity of TiNCl intercalated with diamines

    International Nuclear Information System (INIS)

    Yamanaka, Shoji; Umemoto, Keita

    2010-01-01

    Intercalation compounds of TiNCl with ethylenediamine (EDA) and hexamethylenediamine (HDA) were prepared. The basal spacing of TiNCl increased by 3.3-3.9 A upon intercalation, implying that the molecules are lying with the alkyl chains parallel to the TiNCl layers in both compounds. The intercalated compounds showed superconductivity with transition temperatures (T c s) of 10.5 and 15.5 K for EDA and HDA, respectively, which are higher than 8.6 K of pyridine (Py) intercalated compound, Py 0.25 TiNCl.

  12. Superconductivity of TiNCl intercalated with diamines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Shoji, E-mail: syamana@hiroshima-u.ac.j [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Umemoto, Keita [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan)

    2010-12-15

    Intercalation compounds of TiNCl with ethylenediamine (EDA) and hexamethylenediamine (HDA) were prepared. The basal spacing of TiNCl increased by 3.3-3.9 A upon intercalation, implying that the molecules are lying with the alkyl chains parallel to the TiNCl layers in both compounds. The intercalated compounds showed superconductivity with transition temperatures (T{sub c}s) of 10.5 and 15.5 K for EDA and HDA, respectively, which are higher than 8.6 K of pyridine (Py) intercalated compound, Py{sub 0.25}TiNCl.

  13. Sodium-Induced Reordering of Atomic Stacks in Black Phosphorus

    KAUST Repository

    Cheng, Yingchun

    2017-01-12

    While theoretical simulations predict contradictory results about how the intercalation of foreign metal atoms affects the order of atomic layers in black phosphorus (BP), no direct experimental visualization work has yet clarified this ambiguity. By in situ electrochemical sodiation of BP inside a high-resolution transmission electron microscope and first-principles calculations, we found that sodium intercalation induces a relative glide of/ ⟨010⟩ {001}, resulting in reordering of atomic stacks from AB to AC in BP. The observed local amorphization in our experiments is triggered by lattice constraints. We predict that intercalation of sodium or other metal atoms introduces n-type carriers in BP. This potentially opens a new field for two-dimensional electronics based on BP.

  14. Sodium-Induced Reordering of Atomic Stacks in Black Phosphorus

    KAUST Repository

    Cheng, Yingchun; Zhu, Yihan; Han, Yu; Liu, Zhongyuan; Yang, Bingchao; Nie, Anmin; Huang, Wei; Shahbazian-Yassar, Reza; Mashayek, Farzad

    2017-01-01

    While theoretical simulations predict contradictory results about how the intercalation of foreign metal atoms affects the order of atomic layers in black phosphorus (BP), no direct experimental visualization work has yet clarified this ambiguity. By in situ electrochemical sodiation of BP inside a high-resolution transmission electron microscope and first-principles calculations, we found that sodium intercalation induces a relative glide of/ ⟨010⟩ {001}, resulting in reordering of atomic stacks from AB to AC in BP. The observed local amorphization in our experiments is triggered by lattice constraints. We predict that intercalation of sodium or other metal atoms introduces n-type carriers in BP. This potentially opens a new field for two-dimensional electronics based on BP.

  15. Ultrahigh intercalation pseudocapacitance of mesoporous orthorhombic niobium pentoxide from a novel cellulose nanocrystal template

    International Nuclear Information System (INIS)

    Kong, Lingping; Zhang, Chuangfang; Wang, Jitong; Long, Donghui; Qiao, Wenming; Ling, Licheng

    2015-01-01

    A facile biotemplating method has been developed to prepare mesoporous orthorhombic nobium pentoxide (T-Nb 2 O 5 ) films with ultrahigh lithium ion (Li + ) intercalation pseudocapacitance. Nanorod-like cellulose nanocrystals (CNs) with 5–10 nm in width and 100–300 nm in length are produced by the hydrolysis of cotton, which can serve as a novel soft templating agent enabling the straightforward synthesis of mesoporous T-Nb 2 O 5 films. By varying the niobic-to-template ratio, it is possible to tune the surface area and crystallite dimension of the Nb 2 O 5 films. The obtained T-Nb 2 O 5 films show typical capacitive-dominated behaviour in the sweep rate range of 1–20 mV s −1 . It delivers an initial intercalation capacity of 644 C g −1 at a current density of 0.625 A g −1 , corresponding to x = 1.83 for Li x Nb 2 O 5 , and can still keep relatively stable capacity of 560 C g −1 after 300 cycles. Moreover, its excellent high-rate capability (450 C g −1 at 12.5 A g −1 ) and wider temperature adaptability present here suggests the promising of T-Nb 2 O 5 as high-energy pseudocapacitor electrode with superior intercalation capacitive behaviour. - Graphical abstract: We developed a facile and sustainable method to prepare T-Nb 2 O 5 nanocrystals using novel nanorod-like cellulose nanocrystals (CNs) as soft templates. The T-Nb 2 O 5 nanocrystals exhibited unprecedented Li + intercalation pseudocapacitance, excellent cycle performance and good high-and-low temperature tolerance performance.

  16. Mechanism of Si intercalation in defective graphene on SiC

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2012-01-01

    Previously reported experimental findings on Si-intercalated graphene on SiC(0001) seem to indicate the possibility of an intercalation process based on the migration of the intercalant through atomic defects in the graphene sheet. We employ density

  17. Lithium manganese oxide spinel electrodes

    Science.gov (United States)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The

  18. Hybrid n-Alkylamine Intercalated Layered Titanates for Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Yuan, H.; van den Nieuwenhuijzen, Karin Jacqueline Huberta; Lette, W.; Schipper, Dirk J.; ten Elshof, Johan E.

    2016-01-01

    The intercalation of different primary n-alkylamines in the structure of a layered titanate of the lepidocrocite type (H1.07Ti1.73O4) for application in high-temperature solid lubrication is reported. The intercalation process of the amines was explored by means of in situ small-angle X-ray

  19. Silica intercalated crystalline zirconium phosphate-type materials

    NARCIS (Netherlands)

    1988-01-01

    The present invention relates to intercalated crystalline zirconium phosphate-types compositions wherein the interlayers of said composition have been intercalated with three-dimensional silicon oxide pillars whereby the pillars comprise at least two silicon atom layers parallel to the clay

  20. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2012-01-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young's modulus suggests that Li

  1. On lunisolar calendars and intercalation schemes in Southeast Asia

    Science.gov (United States)

    Gislén, Lars

    2018-04-01

    This is a survey of different calendar intercalation schemes, mainly in Southeast Asia. The Thai and Burmese Calendars, superficially very similar, are shown to have quite different and interesting intercalation schemes. We also investigate similarities between the original Burmese Calendar and the Romakasiddhânta from India.

  2. Polysulfide intercalated layered double hydroxides for metal capture applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  3. PYRENE INTERCALATING NUCLEIC ACIDS WITH A CARBON LINKER

    DEFF Research Database (Denmark)

    Østergaard, Michael E.; Wamberg, Michael Chr.; Pedersen, Erik Bjerregaard

    2011-01-01

    geminally attached. Fluorescence studies of this intercalating nucleic acid with the pyrene moieties inserted as a bulge showed formation of an excimer band. When a mismatch was introduced at the site of the intercalator, an excimer band was formed for the destabilized duplexes whereas an exciplex band...

  4. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen

    2016-05-26

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  5. K-intercalated carbon systems: Effects of dimensionality and substrate

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-06-01

    Density functional theory is employed to investigate the electronic properties of K-intercalated carbon systems. Young\\'s modulus indicates that the intercalation increases the intrinsic stiffness. For K-intercalated bilayer graphene on SiC(0001) the Dirac cone is maintained, whereas a trilayer configuration exhibits a small splitting at the Dirac point. Interestingly, in contrast to many other intercalated carbon systems, the presence of the SiC(0001) substrate does not suppress but rather enhances the charge carrier density. Reasonably high values are found for all systems, the highest carrier density for the bilayer. The band structure and electron-phonon coupling of free-standing K-intercalated bilayer graphene points to a high probability for superconductivity in this system. © 2012 Europhysics Letters Association.

  6. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen

    2017-01-08

    It is of technological interest to achieve quasi-freestanding graphene on a substrate. A possible approach is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which is in agreement with experiments1, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore effectively decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  7. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    Science.gov (United States)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  8. High pressure measurement of the uniaxial stress of host layers on intercalants and staging transformation of intercalation compounds

    CERN Document Server

    Park, T R; Kim, H; Min, P

    2002-01-01

    A layered double-hydroxide intercalation compound was synthesized to measure the uniaxial stress the host layers exert on the intercalants. To measure the uniaxial stress, we employed the photoluminescence (PL) from the intercalated species, the Sm ion complex, as it is sensitive to the deformation of the intercalants. Of the many PL peaks the Sm ion complex produces, the one that is independent of the counter-cation environment was chosen for the measurement since the Sm ion complexes are placed under a different electrostatic environment after intercalation. The peak position of the PL was redshifted linearly with increasing hydrostatic pressure on the intercalated sample. Using this pressure-induced redshifting rate and the PL difference at ambient pressure between the pre-intercalation and the intercalated ions, we found that, in the absence of external pressure, the uniaxial stress exerted on the samarium ion complexes by the host layers was about 13.9 GPa at room temperature. Time-resolved PL data also ...

  9. Preparation of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    Science.gov (United States)

    Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue

    2006-10-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.

  10. Cr{sub 2}O{sub 5} as new cathode for rechargeable sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu-Yong; Chien, Po-Hsiu; Rose, Alyssa M.; Zheng, Jin [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Hung, Ivan; Gan, Zhehong [Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States); Hu, Yan-Yan, E-mail: hu@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States)

    2016-10-15

    Chromium oxide, Cr{sub 2}O{sub 5}, was synthesized by pyrolyzing CrO{sub 3} at 350 °C and employed as a new cathode in rechargeable sodium ion batteries. Cr{sub 2}O{sub 5}/Na rechargeable batteries delivered high specific capacities up to 310 mAh/g at a current density of C/16 (or 20 mA/g). High-resolution solid-state {sup 23}Na NMR both qualitatively and quantitatively revealed the reversible intercalation of Na ions into the bulk electrode and participation of Na ions in the formation of the solid-electrolyte interphase largely at low potentials. Amorphization of the electrode structure occurred during the first discharge revealed by both NMR and X-ray diffraction data. CrO{sub 3}-catalyzed electrolyte degradation and loss in electronic conductivity led to gradual capacity fading. The specific capacity stabilized at >120 mAh/g after 50 charge-discharge cycles. Further improvement in electrochemical performance is possible via electrode surface modification, polymer binder incorporation, or designs of new morphologies. - Graphical abstract: Electrochemical profile of a Cr{sub 2}O{sub 5}/Na battery cell and high-resolution solid-state {sup 23}Na MAS NMR spectrum of a Cr{sub 2}O{sub 5} electrode discharged to 2 V. - Highlights: • Cr{sub 2}O{sub 5} was synthesized and used as a new cathode in rechargeable Na ion batteries. • A high capacity of 310 mAh/g and an energy density of 564 Wh/kg were achieved. • High-resolution solid-state {sup 23}Na NMR was employed to follow the reaction mechanisms.

  11. A New Platform for Profiling Degradation-Related Impurities Via Exploiting the Opportunities Offered by Ion-Selective Electrodes: Determination of Both Diatrizoate Sodium and Its Cytotoxic Degradation Product.

    Science.gov (United States)

    Riad, Safaa M; Abd El-Rahman, Mohamed K; Fawaz, Esraa M; Shehata, Mostafa A

    2018-05-01

    Although the ultimate goal of administering active pharmaceutical ingredients (APIs) is to save countless lives, the presence of impurities and/or degradation products in APIs or formulations may cause harmful physiological effects. Today, impurity profiling (i.e., the identity as well as the quantity of impurity in a pharmaceutical) is receiving critical attention from regulatory authorities. Despite the predominant use of spectroscopic and chromatographic methods over electrochemical methods for impurity profiling of APIs, this work investigates the opportunities offered by electroanalytical methods, particularly, ion-selective electrodes (ISEs), for profiling degradation-related impurities (DRIs) compared with conventional spectroscopic and chromatographic methods. For a meaningful comparison, diatrizoate sodium (DTA) was chosen as the anionic X-ray contrast agent based on its susceptibility to deacetylation into its cytotoxic and mutagenic degradation product, 3,5-diamino-2,4,6 triiodobenzoic acid (DTB). This cationic diamino compound can be also detected as an impurity in the final product because it is used as a synthetic precursor for the synthesis of DTA. In this study, four novel sensitive and selective sensors for the determination of both DTA and its cytotoxic degradation products are presented. Sensors I and II were developed for the determination of the anionic drug, DTA, and sensors III and IV were developed for the determination of the cationic cytotoxic impurity. The use of these novel sensors not only provides a stability-indicating method for the selective determination of DTA in the presence of its degradation product, but also permits DRI profiling. Moreover, a great advantage of these proposed ISE systems is their higher sensitivity for the quantification of DTB relative to other spectroscopic and chromatographic methods, so it can measure trace amounts of DTB impurities in DTA bulk powder and pharmaceutical formulation without a need for

  12. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.

    Science.gov (United States)

    Wu, Liqiong; Li, Weiwei; Li, Peng; Liao, Shutian; Qiu, Shengqiang; Chen, Mingliang; Guo, Yufen; Li, Qi; Zhu, Chao; Liu, Liwei

    2014-04-09

    A facile and high-yield approach to the preparation of few-layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage-1 H2SO4-graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (papers made of the FLG flakes retain excellent conductivity (≈24,500 S m(-1)). Three-dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self-sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g(-1) at a current density of 0.5 A g(-1), retaining 90% capacitance after 1000 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com [College of Science, Hebei University of Engineering, Handan 056038 (China); School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lei, Lixu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); O' Hare, Dermot [Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Xie, Juan [College of Science, Hebei University of Engineering, Handan 056038 (China); Gao, Pengran [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chang, Tao [College of Science, Hebei University of Engineering, Handan 056038 (China)

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  14. Electrochemical oxidation and detection of sodium urate in alkaline ...

    African Journals Online (AJOL)

    Electrochemical behaviour of copper oxides electrode in the presence of sodium urate was investigated. The correlation between the anodic oxidation and the amperometric detection of sodium urate in the alkaline medium on copper oxides electrode was analysed by cyclic voltammetry (CV) and electrochemical ...

  15. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  16. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    Science.gov (United States)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  17. Renal intercalated cells and blood pressure regulation

    Directory of Open Access Journals (Sweden)

    Susan M. Wall

    2017-12-01

    Full Text Available Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.

  18. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  19. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    International Nuclear Information System (INIS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 °C, while the highest exothermic event in ZHN was at 366 °C, and in the LDH it was at 276 °C. Highlights: ► Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. ► ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. ► NH 3 molecules can be intercalated into ZHC. ► The amino group of amino acids limits the intercalation by ion-exchange.

  20. Diclofenac sodium entrapment and release from halloysite nanotubules.

    Science.gov (United States)

    Krejčová, Kateřina; Deasy, Patrick B; Rabišková, Miloslava

    2013-02-01

    Halloysite was found to have interesting nanotubular geometry viable for the entrapment of various active agents. In this experiment, the ability of hollow halloysite cylinders to entrap the anionic model drug diclofenac sodium and to retard drug dissolution rate was investigated. Drugs could be incorporated into layered tubules via three different mechanisms: adsorption, intercalation and tubular entrapment. Based on the adsorption studies, some diclofenac sodium was shown to be adsorbed to the polyionic mineral surface despite its permanent negative charge. The X-ray powder diffraction analysis (XRPD) results did not prove any intercalation reaction to occur. The most important drug-loading mechanism involved the tubular entrapment with encapsulation efficiency 48.1%. The drug release from halloysite was prolonged in comparison with the dissolution of pure drug. Halloysite itself as well as halloysite loaded with the drug proved to be appropriate material to form pellets by extrusion /spheronization method. halloysite diclofenac sodium drug entrapment pellets prolonged drug release.

  1. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    International Nuclear Information System (INIS)

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-01-01

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T c can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor

  2. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  3. Strain Lattice Imprinting in Graphene by C60 Intercalation at the Graphene/Cu Interface

    NARCIS (Netherlands)

    Monazami, Ehsan; Bignardi, Luca; Rudolf, Petra; Reinke, Petra

    2015-01-01

    Intercalation of C60 molecules at the graphene-substrate interface by annealing leads to amorphous and crystalline intercalated structures. A comparison of topography and electronic structure with wrinkles and moiré patterns confirms intercalation. The intercalated molecules imprint a local

  4. High-pressure sodium lamp

    NARCIS (Netherlands)

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  5. Negative electrodes for Na-ion batteries.

    Science.gov (United States)

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  6. Vanadyl phosphates as high energy density cathode materials for rechargeable sodium battery

    Science.gov (United States)

    Zhang, Ruigang; Mizuno, Fuminori; Ling, Chen; Whittingham, Stanley M.; Zhang, Ruibo; Chen, Zehua

    2017-08-01

    A positive electrode comprising .epsilon.-VOPO.sub.4 and/or Na.sub.x(.epsilon.-VOPO.sub.4) wherein x is a value from 0.1 to 1.0 as an active ingredient, wherein the electrode is capable of insertion and release of sodium ions and a reversible sodium battery containing the positive electrode are provided.

  7. The ion dependent change in the mechanism of charge storage of chemically preintercalated bilayered vanadium oxide electrodes

    Science.gov (United States)

    Clites, Mallory; Pomerantseva, Ekaterina

    2017-08-01

    Chemical pre-intercalation is a soft chemistry synthesis approach that allows for the insertion of inorganic ions into the interlayer space of layered battery electrode materials prior to electrochemical cycling. Previously, we have demonstrated that chemical pre-intercalation of Na+ ions into the structure of bilayered vanadium oxide (δ-V2O5) results in record high initial capacities above 350 mAh g-1 in Na-ion cells. This performance is attributed to the expanded interlayer spacing and predefined diffusion pathways achieved by the insertion of charge-carrying ions. However, the effect of chemical pre-intercalation of δ-V2O5 has not been studied for other ion-based systems beyond sodium. In this work, we report the effect of the chemically preintercalated alkali ion size on the mechanism of charge storage of δ- MxV2O5 (M = Li, Na, K) in Li-ion, Na-ion, and K-ion batteries, respectively. The interlayer spacing of the δ-MxV2O5 varied depending on inserted ion, with 11.1 Å achieved for Li-preintercalated δ-V2O5, 11.4 Å for Na-preintercalated δ- V2O5, and 9.6 Å for K-preintercalated δ-V2O5. Electrochemical performance of each material has been studied in its respective ion-based system (δ-LixV2O5 in Li-ion cells, δ-NaxV2O5 in Na-ion cells, and δ-KxV2O5 in K-ion cells). All materials demonstrated high initial capacities above 200 mAh g-1. However, the mechanism of charge storage differed depending on the charge-carrying ion, with Li-ion cells demonstrating predominantly pseudocapacitive behavior and Naion and K-ion cells demonstrating a significant portion of capacity from diffusion-limited intercalation processes. In this study, the combination of increased ionic radii of the charge-carrying ions and decreased synthesized interlayer spacing of the bilayered vanadium oxide phase correlates to an increase in the portion of capacity attributed diffusion-limited charge-storage processes.

  8. Syntheses, structure and intercalation properties of low-dimensional ...

    Indian Academy of Sciences (India)

    Unknown

    Successful intercalation reactions of compounds 1 and 2 with primary n- alkyl amines have ... and hexavalent metal phenylphosphonates12–17 with ..... Similarly potassium. (3) and ..... ponds to loss of one water molecule, whereas the stage at ...

  9. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  10. Refining the molecular organization of the cardiac intercalated disc

    NARCIS (Netherlands)

    Vermij, Sarah H.; Abriel, Hugues; van Veen, Toon A.B.

    2017-01-01

    This review presents an extensively integrated model of the cardiac intercalated disc (ID), a highly orchestrated structure that connects adjacent cardiomyocytes. Classically, three main structures are distinguished: gap junctions (GJs) metabolically and electrically connect cytoplasm of adjacent

  11. Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds

    OpenAIRE

    MELEZHYK A.V.; TKACHEV A.G.

    2014-01-01

    Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded graphite. A mechanism for the cleavage of graphite to graphene nanoplatelets is proposed. It include...

  12. The influence of hydrogen intercalation on inner pressure of Ni/MH battery during fast charge

    Science.gov (United States)

    Shi, Jianzhen; Wu, Feng; Hu, Daozhong; Chen, Shi; Mao, Licai; Wang, Guoqing

    Gaseous hydrogen is confirmed to be the main component and primarily responsible for the inner pressure rise inside the 8-Ah Ni/MH batteries during fast charge. Based on a temperature-dependent pressure model proposed in this work, the kinetic characteristics of the hydrogen evolution were investigated. The overpotential and exchange current density were obtained by fitting the presented equation to the experimental data. Moreover, the profiles of hydrogen concentration during fast charge was further modeled and calculated according to the proposed mathematical model of hydrogen intercalation. It is indicated that diffusion step controls the fast charge performances and the higher the charge rate is, the more quickly the negative electrode attains to the maximum surface intercalation fraction, and however, the calculated results also show that further charge can reduce the difference of charge efficiency among the various rate during fast charge. Numerical investigations also reveal that the increase of diffusion coefficient and decrease of the particle size can efficiently improve the characteristics of fast charge, respectively.

  13. The influence of hydrogen intercalation on inner pressure of Ni/MH battery during fast charge

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianzhen; Wu, Feng; Hu, Daozhong; Chen, Shi; Mao, Licai; Wang, Guoqing [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081 (China)

    2006-10-20

    Gaseous hydrogen is confirmed to be the main component and primarily responsible for the inner pressure rise inside the 8-Ah Ni/MH batteries during fast charge. Based on a temperature-dependent pressure model proposed in this work, the kinetic characteristics of the hydrogen evolution were investigated. The overpotential and exchange current density were obtained by fitting the presented equation to the experimental data. Moreover, the profiles of hydrogen concentration during fast charge was further modeled and calculated according to the proposed mathematical model of hydrogen intercalation. It is indicated that diffusion step controls the fast charge performances and the higher the charge rate is, the more quickly the negative electrode attains to the maximum surface intercalation fraction, and however, the calculated results also show that further charge can reduce the difference of charge efficiency among the various rate during fast charge. Numerical investigations also reveal that the increase of diffusion coefficient and decrease of the particle size can efficiently improve the characteristics of fast charge, respectively. (author)

  14. Uniform second Li ion intercalation in solid state ϵ-LiVOPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wangoh, Linda W.; Quackenbush, Nicholas F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Sallis, Shawn [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lin, Yuh-Chieh; Ong, Shyue Ping [Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive 0448, La Jolla, California 92093 (United States); Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley [NECCES, Binghamton University, Binghamton, New York 13902 (United States); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lee, Tien-Lin; Schlueter, Christoph [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Piper, Louis F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2016-08-01

    Full, reversible intercalation of two Li{sup +} has not yet been achieved in promising VOPO{sub 4} electrodes. A pronounced Li{sup +} gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO{sub 4} cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li{sup +} gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li{sup +} intercalation is a prerequisite for the formation of intermediate phases Li{sub 1.50}VOPO{sub 4} and Li{sub 1.75}VOPO{sub 4}. The evolution from LiVOPO{sub 4} to Li{sub 2}VOPO{sub 4} via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  15. Uniform second Li ion intercalation in solid state ϵ-LiVOPO4

    International Nuclear Information System (INIS)

    Wangoh, Linda W.; Quackenbush, Nicholas F.; Sallis, Shawn; Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W.; Lin, Yuh-Chieh; Ong, Shyue Ping; Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley; Guo, Jinghua; Lee, Tien-Lin; Schlueter, Christoph; Piper, Louis F. J.

    2016-01-01

    Full, reversible intercalation of two Li + has not yet been achieved in promising VOPO 4 electrodes. A pronounced Li + gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO 4 cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li + gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li + intercalation is a prerequisite for the formation of intermediate phases Li 1.50 VOPO 4 and Li 1.75 VOPO 4 . The evolution from LiVOPO 4 to Li 2 VOPO 4 via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  16. A DNA biosensor based on the electrocatalytic oxidation of amine by a threading intercalator

    International Nuclear Information System (INIS)

    Gao Zhiqiang; Tansil, Natalia

    2009-01-01

    An electrochemical biosensor for the detection of DNA based a peptide nucleic acid (PNA) capture probe (CP) modified indium tin oxide electrode (ITO) is described in this report. After hybridization, a threading intercalator, N,N'-bis[(3-propyl)-imidazole]-1,4,5,8-naphthalene diimide (PIND) imidazole complexed with Ru(bpy) 2 Cl (PIND-Ru, bpy = 2,2'-bipyridine), was introduced to the biosensor. PIND-Ru selectively intercalated to double-stranded DNA (ds-DNA) and became immobilized on the biosensor surface. Voltammetric tests showed highly stable and reversible electrochemical oxidation/reduction processes and the peak currents can directly be utilized for DNA quantification. When the tests were conducted in an amine-containing medium, Tris-HCl buffer for example, a remarkable improvement in the voltammetric response and noticeable enhancements of voltammetric and amperometric sensitivities were observed due to the electrocatalytic activity of the [Ru(bpy) 2 Cl] redox moieties. Electrocatalytic current was observed when as little as 3.0 attomoles of DNA was present in the sample solution

  17. Low sodium diet (image)

    Science.gov (United States)

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ...

  18. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    Directory of Open Access Journals (Sweden)

    T Banerjee

    Full Text Available DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM and spectroscopy (AFS. The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  19. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, T; Banerjee, S; Sett, S; Ghosh, S; Rakshit, T; Mukhopadhyay, R

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  20. Materialographic preparation of lithium-carbon intercalation compounds; Materialographische Praeparation von Lithium-Kohlenstoff-Einlagerungsverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Druee, Martin; Seyring, Martin; Grasemann, Aaron [Jena Univ. (Germany). Otto Schott Institute of Materials Research; Rettenmayr, Markus [Center for Energy and Environmental Chemistry, Jena (Germany)

    2016-12-15

    The materialographic investigation of anode materials for rechargeable lithium ion batteries is a significant step in the understanding and development of electrode materials, but made dramatically more difficult due to the high reactivity of the materials involved. In this work a method is presented which permits the metallographic preparation of the lithium-carbon intercalation compounds used as anode materials in today's rechargeable lithium ion batteries, and which allows the details of their microstructures to be contrasted. After classic, but absolutely water free, preparation in a protective gas atmosphere, the final stage of preparation is carried out using both ion beam polishing and manual polishing on a stationary polishing disc, whereby no significant differences of the quality of the microstructural images obtained is apparent.

  1. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance

    Science.gov (United States)

    Lou, Shuaifeng; Cheng, Xinqun; Wang, Long; Gao, Jinlong; Li, Qin; Ma, Yulin; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping

    2017-09-01

    Orthorhombic Niobium oxide (T-Nb2O5) has been regarded as a promising anode material for high-rate lithium ion batteries (LIBs) due to its potential to operate at high rates with improved safety and high theoretical capacity of 200 mA h g-1. Herein, three-dimensionally ordered macroporous (3DOM) T-Nb2O5, with mesoporous hierarchical structure, was firstly prepared by a simple approach employing self-assembly polystyrene (PS) microspheres as hard templates. The obtained T-Nb2O5 anode material presents obvious and highly-efficiency pseudocapacitive Li+ intercalation behaviour, which plays a dominant role in the kinetics of electrode process. As a result, rapid Li+ intercalation/de-intercalation are achieved, leading to excellent rate capability and long cycle life. The 3DOM T-Nb2O5 shows a remarkable high capacity of 106 and 77 mA h g-1 at the rate of 20C and 50C. The work presented herein holds great promise for future design of material structure, and demonstrates the great potential of T-Nb2O5 as a practical high-rate anode material for LIBs.

  2. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  3. Ultrahigh intercalation pseudocapacitance of mesoporous orthorhombic niobium pentoxide from a novel cellulose nanocrystal template

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingping; Zhang, Chuangfang; Wang, Jitong; Long, Donghui, E-mail: longdh@mail.ecust.edu.cn; Qiao, Wenming; Ling, Licheng

    2015-01-15

    A facile biotemplating method has been developed to prepare mesoporous orthorhombic nobium pentoxide (T-Nb{sub 2}O{sub 5}) films with ultrahigh lithium ion (Li{sup +}) intercalation pseudocapacitance. Nanorod-like cellulose nanocrystals (CNs) with 5–10 nm in width and 100–300 nm in length are produced by the hydrolysis of cotton, which can serve as a novel soft templating agent enabling the straightforward synthesis of mesoporous T-Nb{sub 2}O{sub 5} films. By varying the niobic-to-template ratio, it is possible to tune the surface area and crystallite dimension of the Nb{sub 2}O{sub 5} films. The obtained T-Nb{sub 2}O{sub 5} films show typical capacitive-dominated behaviour in the sweep rate range of 1–20 mV s{sup −1}. It delivers an initial intercalation capacity of 644 C g{sup −1} at a current density of 0.625 A g{sup −1}, corresponding to x = 1.83 for Li{sub x}Nb{sub 2}O{sub 5}, and can still keep relatively stable capacity of 560 C g{sup −1} after 300 cycles. Moreover, its excellent high-rate capability (450 C g{sup −1} at 12.5 A g{sup −1}) and wider temperature adaptability present here suggests the promising of T-Nb{sub 2}O{sub 5} as high-energy pseudocapacitor electrode with superior intercalation capacitive behaviour. - Graphical abstract: We developed a facile and sustainable method to prepare T-Nb{sub 2}O{sub 5} nanocrystals using novel nanorod-like cellulose nanocrystals (CNs) as soft templates. The T-Nb{sub 2}O{sub 5} nanocrystals exhibited unprecedented Li{sup +} intercalation pseudocapacitance, excellent cycle performance and good high-and-low temperature tolerance performance.

  4. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes

    KAUST Repository

    Ruffo, Riccardo

    2009-02-01

    Despite the large number of studies on the behavior of LiCoO2 in organic electrolytes and its recent application as a positive electrode in rechargeable water battery prototypes, a little information is available about the lithium intercalation reaction in this layered compound in aqueous electrolytes. This work shows that LiCoO2 electrodes can be reversibly cycled in LiNO3 aqueous electrolytes for tens of cycles at remarkably high rates with impressive values specific capacity higher than 100 mAh/g, and with a coulomb efficiency greater than 99.7%. Stable and reproducible cycling measurements have been made using a simple cell design that can be easily applied to the study of other intercalation materials, assuming that they are stable in water and that their intercalation potential range matches the electrochemical stability window of the aqueous electrolyte. The experimental arrangement uses a three-electrode flooded cell in which another insertion compound acts as a reversible source and sink of lithium ions, i.e., as the counter electrode. A commercial reference electrode is also present. Both the working and the counter electrodes have been prepared as thin layers on a metallic substrate using the procedures typical for the study of electrodes for lithium-ion batteries in organic solvent electrolytes. © 2008 Elsevier B.V. All rights reserved.

  5. Intercalation Dynamics in Lithium-Ion Batteries

    Science.gov (United States)

    2009-09-01

    tensor for species β; thus, the above is essentially a generalization of Fick’s first law and the Nernst -Planck equation . For non-conserved quantities...crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to reaction rate laws as boundary conditions to...regimes found in different limits of the governing equations . Further, I will present several new findings relevant to batteries Defect Interactions

  6. A label-free photoelectrochemical cocaine aptasensor based on an electropolymerized ruthenium-intercalator complex

    International Nuclear Information System (INIS)

    Haddache, Fatima; Le Goff, Alan; Spinelli, Nicolas; Gairola, Priyanka; Gorgy, Karine; Gondran, Chantal; Defrancq, Eric; Cosnier, Serge

    2016-01-01

    Highlights: • Electrodes were modified by an electrogenerated Ru(II) complex which demonstrates photosensitive properties and intercalating properties towards the stem-loop base pairing domain of cocaine aptamers. • Cocaine aptamers were immobilized as mono-and double-fragment which showed different behaviour towards photocurrent generation. • The binding of aptamer could be followed by photelectrochemistry and modelized using a Langmuir-Freundlich isotherm. • Using the double-fragment aptamer, a label-free photoelectrochemical aptasensor was designed, exhibiting a LOD of 10 nmol L −1 and linear range of 1 10 −8 –5 10 −4 mol L −1 . - Abstract: A photoelectrode was designed by electrodeposition of a pyrrole monomer modified with a polypyridyl Ru(II) complex bearing benzo[i]dipyrido-[3,2-a:2′.3′-c]phenazine (dppn) ligand. Owing to the intercalating properties of these immobilized complexes towards DNA double helix, cocaine aptamer was immobilized on the modified electrodes thanks to its stem-loop configuration in order to design a photoelectrochemical cocaine aptasensor. Especially using a double-fragment aptamer strategy, the binding of cocaine and the formation of the aptamer/cocaine complex was successfully observed and modeled by a Langmuir-Freundlich isotherm, giving access to an apparent dissociation constant K d of 3.8 mmol L −1 . The photoelectrochemical aptasensor exhibits a LOD of 10 nmol L −1 and linear range of 1 10 −8 –5 10 −4 mol L −1 .

  7. Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates

    International Nuclear Information System (INIS)

    Huang Li; Xu Wen-Yan; Que Yan-De; Mao Jin-Hai; Meng Lei; Pan Li-Da; Li Geng; Wang Ye-Liang; Du Shi-Xuan; Gao Hong-Jun; Liu Yun-Qi

    2013-01-01

    Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercalation, seven different metals have been successfully intercalated at the interface of graphene/Ru(0001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(0001) and on Ir(111), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications. (topical review - low-dimensional nanostructures and devices)

  8. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  9. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  10. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  11. Hidden Sodium

    Centers for Disease Control (CDC) Podcasts

    2013-03-04

    In this podcast, learn about reducing sodium intake by knowing what to eat and the main sources of sodium in the diet. It's important for a healthy lifestyle.  Created: 3/4/2013 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/4/2013.

  12. Dietary sodium

    DEFF Research Database (Denmark)

    Graudal, Niels

    2015-01-01

    The 2013 Institute of Medicine (IOM) report "Sodium Intake in Populations: Assessment of Evidence" did not support the current recommendations of the IOM and the American Heart Association (AHA) to reduce daily dietary sodium intake to below 2,300 mg. The report concluded that the population...

  13. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  14. Organoelemental intercalation compounds in the system PbI2-ethan olamine

    International Nuclear Information System (INIS)

    Gurina, G.I.; Evtushenko, V.D.; Muraeva, O.A.; Ignatyuk, V.P.; Koshkin, V.M.

    1985-01-01

    Two intercalation phases with different stoichiometry in system PbI 2 -ethanolamine are identified, using the methods of IR spectroscopy, spectroscopy of diffusion reflection, X-ray phase and thermogravimetric analyses. Formation kinetics of intercalation compounds in the system, having two phases, differing in the content of intercalant in the matrix layers, is studied. In conformity with thermodynamic theory of intercalation, it is shown experimentally, that the value of a charge, transferred from intercalant molecules to the matrix layer, decreases with the increase in intercalant content in interlayer spaces

  15. Decreasing the electronic confinement in layered perovskites through intercalation.

    Science.gov (United States)

    Smith, Matthew D; Pedesseau, Laurent; Kepenekian, Mikaël; Smith, Ian C; Katan, Claudine; Even, Jacky; Karunadasa, Hemamala I

    2017-03-01

    We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layers substantially alter the optical and electronic properties of the inorganic layers. By calculating the spatially resolved dielectric profiles of the organic and inorganic layers within the hybrid structure, we show that the intercalants afford organic layers that are more polarizable than the inorganic layers. This strategy reduces the confinement of excitons generated in the inorganic layers and affords the lowest exciton binding energy for an n = 1 perovskite of which we are aware. We also demonstrate a method for computationally evaluating the exciton's binding energy by solving the Bethe-Salpeter equation for the exciton, which includes an ab initio determination of the material's dielectric profile across organic and inorganic layers. This new semi-empirical method goes beyond the imprecise phenomenological approximation of abrupt dielectric-constant changes at the organic-inorganic interfaces. This work shows that incorporation of polarizable molecules in the organic layers, through intercalation or covalent attachment, is a viable strategy for tuning 2D perovskites towards mimicking the reduced electronic confinement and isotropic light absorption of 3D perovskites while maintaining the greater synthetic tunability of the layered architecture.

  16. Manipulation of Dirac cones in metal-intercalated epitaxial graphene

    Science.gov (United States)

    Wang, Cai-Zhuang; Kim, Minsung; Tringides, Michael; Ho, Kai-Ming

    Graphene is one of the most attractive materials from both fundamental and practical points of view due to its characteristic Dirac cones. The electronic property of graphene can be modified through the interaction with substrate or another graphene layer as illustrated in few-layer epitaxial graphene. Recently, metal intercalation became an effective method to manipulate the electronic structure of graphene by modifying the coupling between the constituent layers. In this work, we show that the Dirac cones of epitaxial graphene can be manipulated by intercalating rare-earth metals. We demonstrate that rare-earth metal intercalated epitaxial graphene has tunable band structures and the energy levels of Dirac cones as well as the linear or quadratic band dispersion can be controlled depending on the location of the intercalation layer and density. Our results could be important for applications and characterizations of the intercalated epitaxial graphene. Supported by the U.S. DOE-BES under Contract No. DE-AC02-07CH11358.

  17. Highly n -doped graphene generated through intercalated terbium atoms

    Science.gov (United States)

    Daukiya, L.; Nair, M. N.; Hajjar-Garreau, S.; Vonau, F.; Aubel, D.; Bubendorff, J. L.; Cranney, M.; Denys, E.; Florentin, A.; Reiter, G.; Simon, L.

    2018-01-01

    We obtained highly n -type doped graphene by intercalating terbium atoms between graphene and SiC(0001) through appropriate annealing in ultrahigh vacuum. After terbium intercalation angle-resolved-photoelectron spectroscopy (ARPES) showed a drastic change in the band structure around the K points of the Brillouin zone: the well-known conical dispersion band of a graphene monolayer was superposed by a second conical dispersion band of a graphene monolayer with an electron density reaching 1015cm-2 . In addition, we demonstrate that atom intercalation proceeds either below the buffer layer or between the buffer layer and the monolayer graphene. The intercalation of terbium below a pure buffer layer led to the formation of a highly n -doped graphene monolayer decoupled from the SiC substrate, as evidenced by ARPES and x-ray photoelectron spectroscopy measurements. The band structure of this highly n -doped monolayer graphene showed a kink (a deviation from the linear dispersion of the Dirac cone), which has been associated with an electron-phonon coupling constant one order of magnitude larger than those usually obtained for graphene with intercalated alkali metals.

  18. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  19. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration

    Science.gov (United States)

    Hofer, Thomas S.; Hünenberger, Philippe H.

    2018-06-01

    The absolute intrinsic hydration free energy GH+,w a t ◦ of the proton, the surface electric potential jump χwa t ◦ upon entering bulk water, and the absolute redox potential VH+,w a t ◦ of the reference hydrogen electrode are cornerstone quantities for formulating single-ion thermodynamics on absolute scales. They can be easily calculated from each other but remain fundamentally elusive, i.e., they cannot be determined experimentally without invoking some extra-thermodynamic assumption (ETA). The Born model provides a natural framework to formulate such an assumption (Born ETA), as it automatically factors out the contribution of crossing the water surface from the hydration free energy. However, this model describes the short-range solvation inaccurately and relies on the choice of arbitrary ion-size parameters. In the present study, both shortcomings are alleviated by performing first-principle calculations of the hydration free energies of the sodium (Na+) and potassium (K+) ions. The calculations rely on thermodynamic integration based on quantum-mechanical molecular-mechanical (QM/MM) molecular dynamics (MD) simulations involving the ion and 2000 water molecules. The ion and its first hydration shell are described using a correlated ab initio method, namely resolution-of-identity second-order Møller-Plesset perturbation (RIMP2). The next hydration shells are described using the extended simple point charge water model (SPC/E). The hydration free energy is first calculated at the MM level and subsequently increased by a quantization term accounting for the transformation to a QM/MM description. It is also corrected for finite-size, approximate-electrostatics, and potential-summation errors, as well as standard-state definition. These computationally intensive simulations provide accurate first-principle estimates for GH+,w a t ◦, χwa t ◦, and VH+,w a t ◦, reported with statistical errors based on a confidence interval of 99%. The values obtained

  20. Understanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics

    Directory of Open Access Journals (Sweden)

    Yin Xie

    2017-07-01

    Full Text Available A series of Mn-based intercalation compounds have been applied as the cathode materials of Li-ion batteries, such as LiMn2O4, LiNi1−x−yCoxMnyO2, etc. With open structures, intercalation compounds exhibit a wide variety of thermodynamic and kinetic properties depending on their crystal structures, host chemistries, etc. Understanding these materials from thermodynamic and kinetic points of view can facilitate the exploration of cathodes with better electrochemical performances. This article reviews the current available thermodynamic and kinetic knowledge on Mn-based intercalation compounds, including the thermal stability, structural intrinsic features, involved redox couples, phase transformations as well as the electrical and ionic conductivity.

  1. The preliminary feasibility of intercalated graphite railgun armatures

    International Nuclear Information System (INIS)

    Gaier, J.R.; Yashan, D.; Naud, S.

    1991-01-01

    This paper reports on graphite intercalation compounds which may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations have been performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading have been addressed for the case of highly oriented pyrolytic graphite

  2. New kaolinite phases expanded through intercalation with potassium acetate

    International Nuclear Information System (INIS)

    Frost, R.L.; Kristof, J.; Kloprogge, J.T.

    1998-01-01

    Full text: Changes in the hydroxyl surfaces of potassium acetate-intercalated kaolinite have been studied over the ambient to predehydroxylation temperature range using a combination of X-ray diffraction and Raman spectroscopy. Upon intercalation, the kaolinite expanded along the c-axis direction to 13.88 Angstroms. Upon heating the intercalation complex over the 50 to 300 deg C range, X-ray diffraction shows the existence of three additional intercalation phases with d-spacings of 9.09, 9.60, and 11.47 Angstroms. The amount of each phase is temperature dependent. These expansions are reversible and upon cooling the intercalation complex returned to its original spacing. The 13.88 Angstroms phase only existed in the presence of water. It is proposed that the expanded kaolinite intercalation phases result from the orientation of the acetate within the intercalation complex. The Raman spectra of the hydroxyl-stretching region (Frost and van der Gaast, 1997) of potassium acetate-intercalated kaolinite has been obtained under an atmosphere of both air and nitrogen using a thermal stage over the 25 to 300 deg C temperature range (Johansson et al., 1998). Raman spectra of the C-C, C=O stretching and O-C-O bending modes show that at least two types of acetate are present in the intercalation complex. These are assigned to two different orientations of the acetate. At 25 deg C, a new band at 3606 cm -1 attributed to the inner surface hydroxyl hydrogen bonded to the acetate ion is observed with a concomitant loss of intensity in the bands attributed to the inner surface hydroxyls (Frost and Kristof, 1997, Frost et al.,1997). Heating the intercalation complex to 50 deg C results in two hydroxyl-stretching frequencies at 3594 and 3604 cm -1 . This change in frequencies is ascribed to phase changes of the potassium acetate-intercalated kaolinite. At 100 deg C, the bands shift to 3600 and 3613 cm -1 . These shifts in frequencies are assigned to new kaolinite expanded phases. At

  3. Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor.

    Science.gov (United States)

    Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao

    2018-06-11

    Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation of graphite intercalation compounds containing oligo and polyethers

    Science.gov (United States)

    Zhang, Hanyang; Lerner, Michael M.

    2016-02-01

    Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets.Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets. Electronic supplementary information (ESI) available: Domain size, additional Raman spectra info, compositional calculation, and packing fractions. See DOI: 10.1039/c5

  5. Intercalation of paracetamol into the hydrotalcite-like host

    International Nuclear Information System (INIS)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-01-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg–Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals. - Graphical abstract: Molecular simulations showed disordered arrangement of paracetamol molecules in the interlayer; most of the interlayer water molecules are located near the hydroxide sheets.▪ Highlights: ► Paracetamol was intercalated in Mg–Al hydrotalcite-like host by rehydration/reconstruction procedure. ► Paracetamol phenolic groups interact with positively charged sites in hydroxide sheets. ► Molecular simulations showed disordered arrangement of guest molecules in the interlayer. ► Slower release of paracetamol intercalated in the hydrotalcite-like host was observed.

  6. Dodecylsulfate and dodecybenzenesulfonate intercalated hydrotalcites as adsorbent materials for the removal of BBR acid dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Mohamed Bouraada

    2016-07-01

    Full Text Available Two modified layered double hydroxides (HT have been synthesized by intercalating both sodium dodecylsulfate (SDS and sodium dodecylbenzenesulfonate (SDBS surfactants into Mg-Al layered double hydroxides using the calcination–rehydratation method. The prepared materials HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET. The obtained materials were used for Brilliant Blue R (BBR dye removal from aqueous solution. Batch studies were carried out to address various experimental parameters such as kinetic, pH, sorption isotherm and temperature. Sorption experiments of acid dye BBR from aqueous solution by HT-SDS and HT-SDBS were investigated in the batch system. Kinetic studies indicate that the sorption of BBR follows the pseudo-second-order model. Sorption capacities of HT-SDS (357.1 mg/g for BBR dye were much higher than those of HT-SDBS (204.1 mg/g. The intercalated Mg-Al layered double hydroxides with SDS and SDBS could possibly be used to remove anionic dyes of relatively high concentrations, whereas HT-CO3 may only be used to remove anionic dyes of low concentrations.

  7. Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage.

    Science.gov (United States)

    Zhu, Yue; Peng, Lele; Chen, Dahong; Yu, Guihua

    2016-01-13

    There is a growing need for energy storage devices in numerous applications where a large amount of energy needs to be either stored or delivered quickly. The present paper details the study of alkali-ion intercalation pseudocapacitance in ultrathin VOPO4 nanosheets, which hold promise in high-rate alkali-ion based electrochemical energy storage. Starting from bulk VOPO4·2H2O chunks, VOPO4 nanosheets were obtained through simple ultrasonication in 2-propanol. These nanosheets as the cathode exhibit a specific capacity of 154 and 136 mAh/g (close to theoretical value 166 mAh/g) for lithium and sodium storage devices at 0.1 C and 100 and ∼70 mAh/g at 5 C, demonstrating their high rate capability. Moreover, the capacity retention is maintained at 90% for lithium ion storage and 73% for sodium ion storage after 500 cycles, showing their reasonable stability. The demonstrated alkali-ion intercalation pseudocapacitance represents a promising direction for developing battery materials with promising high rate capability.

  8. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  9. Sodium Oxybate

    Science.gov (United States)

    ... or give your sodium oxybate to anyone else; selling or sharing it is against the law. Store ... dehydrogenase deficiency (an inherited condition in which certain substances build up in the body and cause retardation ...

  10. Sodium Azide

    Science.gov (United States)

    ... Exposure to a large amount of sodium azide by any route may cause these other health effects as well: Convulsions Low blood pressure Loss of consciousness Lung injury Respiratory failure leading to death Slow heart rate ...

  11. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  12. Intercalation of paracetamol into the hydrotalcite-like host

    Science.gov (United States)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-12-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.

  13. K-intercalated carbon systems: Effects of dimensionality and substrate

    KAUST Repository

    Kaloni, Thaneshwor P.; Kahaly, M. Upadhyay; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    the charge carrier density. Reasonably high values are found for all systems, the highest carrier density for the bilayer. The band structure and electron-phonon coupling of free-standing K-intercalated bilayer graphene points to a high probability

  14. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...

  15. Preparation of intercalated polyaniline/clay nanocomposite and its

    Indian Academy of Sciences (India)

    Intercalated composite of polyaniline and clay has been reported. The composite was prepared by in situ polymerization of aniline within the layers of `illite' clay. The composite was characterized for its structural, spectral, and microscopic properties. At higher level of loading the layered structure of composite breaks ...

  16. Enantiospecific kinking of DNA by a partially intercalating metal complex

    KAUST Repository

    Reymer, Anna

    2012-01-01

    Opposite enantiomers of [Ru(phenanthroline) 3] 2+ affect the persistence length of DNA differently, a long speculated effect of helix kinking. Our molecular dynamics simulations confirm a substantial change of duplex secondary structure produced by wedge-intercalation of one but not the other enantiomer. This effect is exploited by several classes of DNA operative proteins. © The Royal Society of Chemistry 2012.

  17. Capacitive Sensing of Intercalated H2O Molecules Using Graphene.

    Science.gov (United States)

    Olson, Eric J; Ma, Rui; Sun, Tao; Ebrish, Mona A; Haratipour, Nazila; Min, Kyoungmin; Aluru, Narayana R; Koester, Steven J

    2015-11-25

    Understanding the interactions of ambient molecules with graphene and adjacent dielectrics is of fundamental importance for a range of graphene-based devices, particularly sensors, where such interactions could influence the operation of the device. It is well-known that water can be trapped underneath graphene and its host substrate; however, the electrical effect of water beneath graphene and the dynamics of how the interfacial water changes with different ambient conditions has not been quantified. Here, using a metal-oxide-graphene variable-capacitor (varactor) structure, we show that graphene can be used to capacitively sense the intercalation of water between graphene and HfO2 and that this process is reversible on a fast time scale. Atomic force microscopy is used to confirm the intercalation and quantify the displacement of graphene as a function of humidity. Density functional theory simulations are used to quantify the displacement of graphene induced by intercalated water and also explain the observed Dirac point shifts as being due to the combined effect of water and oxygen on the carrier concentration in the graphene. Finally, molecular dynamics simulations indicate that a likely mechanism for the intercalation involves adsorption and lateral diffusion of water molecules beneath the graphene.

  18. Intercalation of papain enzyme into hydrotalcite type layered double hydroxide

    Science.gov (United States)

    Zou, N.; Plank, J.

    2012-09-01

    Intercalation of proteolytic enzyme papain into hydrotalcite type LDH structure was achieved by controlled co-precipitation at pH=9.0 in the presence of papain. Characterization of the MgAl-papain-LDH phase was carried out using X-ray powder diffraction (XRD), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). According to XRD, papain was successfully intercalated. The d-value for the basal spacing of MgAl-papain-LDH was found at ˜5.3 nm. Consequently, original papain (hydrodynamic diameter ˜7.2 nm) attains a compressed conformation during intercalation.Formation of MgAl-papain-LDH was confirmed by elemental analysis and transmission electron microscopy (TEM). Under SEM, MgAl-papain-LDH phases appear as nanothin platelets which are intergrown to flower-like aggregates. Steric size and activity of the enzyme was retained after deintercalation from MgAl-LDH framework, as was evidenced by light scattering and UV/vis measurements. Thus, papain is not denatured during intercalation, and LDH is a suitable host structure which can provide a time-controlled release of the biomolecule.

  19. Alkaline-earth metal phenylphosphonates and their intercalation chemistry

    Czech Academy of Sciences Publication Activity Database

    Melánová, Klára; Beneš, L.; Svoboda, J.; Zima, Vítězslav; Pospíšil, M.; Kovář, P.

    2018-01-01

    Roč. 47, č. 9 (2018), s. 2867-2880 ISSN 1477-9226 R&D Projects: GA ČR(CZ) GA17-10639S Institutional support: RVO:61389013 Keywords : intercalation * layered compounds * alkaline-earth metal phenylphosphonates Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.029, year: 2016

  20. Synthesis of poly(sodium 4-styrenesulfonate) functionalized graphene/cetyltrimethylammonium bromide (CTAB) nanocomposite and its application in electrochemical oxidation of 2,4-dichlorophenol

    International Nuclear Information System (INIS)

    Li, Jianjun; Miao, Dandan; Yang, Ran; Qu, Lingbo; Harrington, Peter de B.

    2014-01-01

    Poly(sodium 4-styrenesulfonate) (PSS) intercalated graphene (PSS-GN) was prepared via in situ reduction of exfoliated graphite oxides in the presence of PSS, and then mixed with CTAB to form a stable PSS-GN-CTAB nanocomposite through electrostatic self-assembly. The prepared composites were characterized by Fourier transform infrared spectrometry (FT-IR), ultraviolet and visible spectrometry (UV–vis) and X-ray diffraction (XRD). A novel 2,4-dichlorophenol (2,4-DCP) electrochemical sensor was fabricated based on a PSS-GN-CTAB modified glassy carbon electrode. It was found that the composite of PSS-GN-CTAB exhibited excellent electrocatalytic activity towards the oxidation of 2,4-DCP. Linear sweep voltammetry (LSV) was used for the quantitative determination of 2,4-DCP. Under the optimum conditions, the peak current of 2,4-DCP was proportional to its concentration at the range of 1.0 × 10 −8 to 2.0 × 10 −6 mol L −1 with a detection limit 2.0 × 10 −9 mol L −1 . The newly developed method was successfully applied for the determination of 2,4-DCP in the waste water with good recoveries. The proposed electrode system represents a new platform for designing excellent electrochemical sensors with water-dispersed graphene

  1. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  2. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu

    2017-12-28

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation of lithium ion, wherein the cathode comprises material adapted for reversible lithium extraction from and insertion into the cathode, and wherein the separator comprises at least one porous, electronically conductive layer and at least one insulating layer, and wherein the electrolyte comprises at least one polysulfide anion. The battery provides for high energy density and capacity. A redox species is introduced into the electrolyte which creates a hybrid battery. Sodium metal and sodium-ion batteries also provided.

  3. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Qiang; Zhang, Zhenghao; Yin, Shengyu; Guo, Zaiping; Wang, Shiquan; Feng, Chuanqi

    2016-01-01

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg −1 after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li + ) window at current density of 100 mAg −1 , respectively, which are much higher than that of graphite (375 mAhg −1 ) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg −1 with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  4. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qiang; Zhang, Zhenghao [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Yin, Shengyu [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Guo, Zaiping [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522 (Australia); Wang, Shiquan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2016-08-30

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg{sup −1} after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li{sup +}) window at current density of 100 mAg{sup −1}, respectively, which are much higher than that of graphite (375 mAhg{sup −1}) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg{sup −1} with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  5. Strontium Metylphosphonate Trihydrate: An Example of a New Class of Host Materials for Intercalation Reactions - Synthesis, Structure and Intercalation Behavior

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Melánová, Klára; Svoboda, Jan; Zima, Vítězslav; Růžička, A.; Trchová, Miroslava

    2011-01-01

    Roč. 6, leden (2011), s. 850-859 ISSN 1434-1948 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : layered compounds * intercalates * solid-state structures Subject RIV: CA - Inorganic Chemistry Impact factor: 3.049, year: 2011

  6. Intercalation of organic molecules into SnS{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798 (Singapore); Kloc, C., E-mail: ckloc@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798 (Singapore)

    2013-02-15

    SnS{sub 2} is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS{sub 2e}n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS{sub 2} after intercalation revealed defects and stacking mismatches among the SnS{sub 2} layers caused by the intercalation. UV-Vis absorption studies showed a red shift in the band edge of the SnS{sub 2} material after intercalation. The band edge was 2.2 eV for pristine SnS{sub 2}; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS{sub 2} single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS{sub 2} after intercalation. Highlights: Black-Right-Pointing-Pointer Organic molecules intercalated inhomogenously between covalently bonded SnS{sub 2} layers. Black-Right-Pointing-Pointer Ethylenediamine (en) intercalate directly into SnS{sub 2}. Black-Right-Pointing-Pointer Phenylenediamine (PPD) and naphthalenediamine (NDA) can be

  7. Intercalation of organic molecules into SnS2 single crystals

    International Nuclear Information System (INIS)

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H.; Kloc, C.

    2013-01-01

    SnS 2 is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS 2e n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS 2 after intercalation revealed defects and stacking mismatches among the SnS 2 layers caused by the intercalation. UV–Vis absorption studies showed a red shift in the band edge of the SnS 2 material after intercalation. The band edge was 2.2 eV for pristine SnS 2 ; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS 2 single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS 2 after intercalation. Highlights: ► Organic molecules intercalated inhomogenously between covalently bonded SnS 2 layers. ► Ethylenediamine (en) intercalate directly into SnS 2 . ► Phenylenediamine (PPD) and naphthalenediamine (NDA) can be intercalated into SnS 2 secondary. ► In a secondary intercalation the bonds between layers are weakened by direct

  8. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.; Cha, Judy J.; Reed, Bryan W.; Wessells, Colin D.; Kong, Desheng; Cui, Yi

    2012-01-01

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  9. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  10. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    Science.gov (United States)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  11. Sodium setpoint and gradient in bicarbonate hemodialysis.

    Science.gov (United States)

    Basile, Carlo; Libutti, Pasquale; Lisi, Piero; Vernaglione, Luigi; Casucci, Francesco; Losurdo, Nicola; Teutonico, Annalisa; Lomonte, Carlo

    2013-01-01

    The demonstration of an individual osmolar setpoint in hemodialysis (HD) is crucial to individualize dialysate sodium concentrations. Furthermore, the diffusive gradient between plasma and dialysate sodium is important in the "fine tuning" of the intradialytic sodium mass balance (MB). The design of this study included part A: a retrospective analysis of predialysis plasma sodium concentrations extracted from a 6-year database in our HD population (147 prevalent white anuric patients); and part B: study of intradialytic sodium kinetics in 48 patients undergoing one 4-hour bicarbonate HD session. Direct potentiometry with an ion-selective electrode was used for sodium measurements. Study part A: the mean number of plasma sodium measurements per patient was 16.06 ± 14.03 over a mean follow-up of 3.55 ± 1.76 years. The mean of the averaged plasma sodium concentrations was 136.7 ± 2.1 mmol/L, with a low mean intraindividual coefficient of variation (1.39 ± 0.4). Study part B: mean predialysis and postdialysis plasma sodium concentrations were 135.8 ± 0.9 and 138.0 ± 0.9 mmol/L (p<0.001). Mean inlet dialyzer sodium concentration was 138.7 ± 1.1 mmol/L; the hourly diffusion concentration gradients showed a statistically significant transfer from dialysate to plasma (Wilks ? <0.0001). A statistically significant relationship was found between sodium MB and diffusion gradient (p<0.02), and between sodium MB and ultrafiltration volume (p<0.01). A relatively "fixed" and individual osmolar setpoint in HD patients was shown for the first time in a long-term follow-up. A dialysate sodium concentration of 140 mmol/L determined a dialysate to plasma sodium gradient.

  12. Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver

    International Nuclear Information System (INIS)

    Gao, J.; Zhang, H.P.; Fu, L.J.; Zhang, T.; Wu, Y.P.; Takamura, T.; Wu, H.Q.; Holze, R.

    2007-01-01

    A method has been developed to suppress the decomposition of propylene carbonate (PC) by coating graphite electrode foil with a layer of silver. Results from electrochemical impedance measurements show that the Ag-coated graphite electrode presents lower charge transfer resistance and faster diffusion of lithium ions in comparison with the virginal one. Cyclic voltammograms and discharge-charge measurements suggest that the decomposition of propylene carbonate and co-intercalation of solvated lithium ions are prevented, and lithium ions can reversibly intercalate into and deintercalate from the Ag-coated graphite electrode. These results indicate that Ag-coating is a good way to improve the electrochemical performance of graphitic carbon in PC-based electrolyte solutions

  13. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    Science.gov (United States)

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Influence of Laurolactam Content on the Clay Intercalation of Polyamide 6,12/Clay Nanocomposites Synthesized by Open Ring Anionic Polymerization

    Directory of Open Access Journals (Sweden)

    E. N. Cabrera Álvarez

    2012-01-01

    Full Text Available In situ anionic homo- and copolymerization of caprolactam (CL and laurolactam (LL with sodium montmorillonite clay (NaMMT was carried out using two different initiators, sodium caprolactamate (CLNa and caprolactam magnesium bromide (CLMgBr. Degree of conversion and final molecular weight were used to assess the advancement and efficiency of the polymerization reaction and X-ray diffraction and electron microscopy were used to evaluate the sodium montmorillonite clay intercalation/exfoliation. The use of CLNa as initiator produced a higher conversion degree and molecular weight than the use of CLMgBr. Through DSC, it was observed that CLNa and CLMgBr tended to produce random and block copolymer structures, respectively, and either random or block, this eventually has an effect on the clay dispersion within the polymer matrix. In all cases, increasing the LL content produced a decrease in the conversion degree and in the molecular weight of the resulting polymer.

  15. Copper-Intercalated TiS2: Electrode Materials for Rechargeable Batteries as Future Power Resources

    Czech Academy of Sciences Publication Activity Database

    Reshak, Ali H

    2009-01-01

    Roč. 113, č. 8 (2009), s. 1635-1645 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z60870520 Keywords : transition-Metal dichalcogenides * X-RAY - absorption * optical-properties Subject RIV: BO - Biophysics Impact factor: 2.899, year: 2009

  16. Development of In Situ Infrared Spectroelectrochemical Techniques: Application to Lithium Intercalation Reactions in Electrode Materials

    National Research Council Canada - National Science Library

    Frech, Roger

    2007-01-01

    .... The transition between LiFePO4 and FePO4 could easily be followed in the in situ spectra. An industrially available coin cell was modified to facilitate routine in situ Raman measurements of lithium batteries...

  17. First principle study of sodium decorated graphyne

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com [Assam University, Silchar (India); Bhattacharya, Barnali [Assam University, Silchar (India); Seriani, Nicola [The Abdus Salam ICTP, Trieste (Italy)

    2015-11-05

    Highlights: • Presence of Na decreases the stability of the system. • Na-decorated graphyne compounds are metallic and might be used in electronics. • The sodium-adsorbed graphyne can be used as electrodes in Na-ion battery. - Abstract: We present first-principles calculations of the electronic properties of Na-decorated graphyne. This structure of the graphyne family is a direct band gap semiconductor with a band gap of 0.44 eV in absence of sodium, but Na-decorated graphyne compounds are metallic, and can then be employed as carbon-based conductors. Metallization is due to charge donation from sodium to carbon. Pristine graphyne is more stable than Na-decorated graphyne, therefore is seems probable that, if this material should be employed as electrode in Na-ion batteries, it would lead to the formation of metallic sodium rather than well dispersed sodium ions. On the other side, this property might be useful if graphyne is employed in water desalination. Finally, the abrupt change from a semiconducting to a metallic state in presence of a small amount of sodium might be exploited in electronics, e.g. for the production of smooth metal–semiconductor interfaces through spatially selective deposition of sodium.

  18. Test Your Sodium Smarts

    Science.gov (United States)

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  19. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Liu, Xifeng; Wang, Jing; Shi, Jingli; Shi, Zhiqiang

    2016-01-01

    Highlights: • Two types of HC materials with different properties as negative electrode. • Lithium ion intercalation plateau of HC affects electrochemical performance of LIC. • The electrochemical performance of LIC is operated at different potential ranges. • The selection of HC and appropriate potential range of LIC have been proposed. - ABSTRACT: Lithium-ion capacitors (LICs) are assembled with activated carbon (AC) cathode and pre-lithiated hard carbon (HC) anode. Two kinds of HC materials with different physical and electrochemical behaviors have been investigated as the negative electrodes for LIC. Compared with spherical HC, the irregular HC shows a distinct lithium ion intercalation plateau in the charge–discharge process. The existence of lithium ion intercalation plateau for irregular HC greatly affects the electrochemical behavior of HC negative electrode and AC positive electrode. The effect of working potential range on the electrochemical performance of LIC-SH and LIC-IH is investigated by the galvanostatic charging–discharging, electrochemical impedance tests and cycle performance testing. The charge–discharge potential range of the irregular HC negative electrode is lower than the spherical HC electrode due to the existence of lithium ion intercalation plateau, which is conducive to the sufficient utilization of the AC positive electrode. The working potential range of LIC should be controlled to realize the optimization of electrochemical performance of LIC. LIC-IH at the working potential range of 2.0-4.0 V exhibits the optimal electrochemical performance, high energy density up to 85.7 Wh kg −1 and power density as high as 7.6 kW kg −1 (based on active material mass of two electrodes), excellent capacity retention about 96.0% after 5000 cycles.

  20. A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.

    Science.gov (United States)

    Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E

    2018-06-12

    Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.

  1. Nuclear Magnetic Resonance Study of Fluorine-Graphite Intercalation Compounds

    International Nuclear Information System (INIS)

    Panich, A.M.; Goren, S.D.; Nakajima, T.; Vieth, H.-M.; Privalov, A.

    1998-01-01

    To study the origin of semimetal-metal and metal-insulator transformations, localization effects and C-E bonding in fluorine-intercalated graphite C x F, 13 C and 19 F NMR investigations have been carried out for a wide range of fluorine content, 3.8 8, are attributed to mobile fluorine acceptor species which are responsible for the increase of electric conductivity in the dilute compound. When increasing the fluorine content to x ∼ 8 corresponding to the maximum electric conductivity, covalent C-P bonds start to oc- cur. The number of these bonds grows with fluorine content resulting in the decrease in conductivity which is caused by a percolation mechanism rather than by a change in bond length. A difference in 19 F chemical shift for fluorine-intercalated graphite C x F and covalent graphite fluoride (CF) n has been observed and is attributed to different C-P bonding in these compounds

  2. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  3. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2011-01-01

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  4. Fabrication of graphene device from graphite intercalation compound

    Science.gov (United States)

    Yagi, Ryuta; Kobara, Hiroaki; Shimomura, Midori; Tahara, Fumiya; Fukada, Seiya

    2012-02-01

    The mechanical exfoliation of graphite is possibly the simplest and practical method in laboratories to obtain graphene flakes for scientific research. However efficiency for obtaining graphene, with desired layer-number and size, depends largely on crystal specific characters, eg., dislocations. To improve the issue, we have adopted graphite intercalation compound (GIC) instead of graphite for a starting material. Generally, GIC is chemically active. We used SbCl5- GIC, which is stable in the atmosphere. Stage structure of SbCl5-GIC could be tuned by temperature of intercalation. We found that considerable number of undoped graphene flakes coexisted with thin SbCl5-GIC flakes, on a substrate where flakes were transferred.?Statistical inspection of number of graphene layer indicated that it is significantly dependent on the stage number of GIC.

  5. Apparatus for removing impurities in the sodium of sodium cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, A

    1970-11-11

    An apparatus is provided for removing oxygen from liquid sodium flowing in a sodium cooled reactor. The removal of oxygen is complete with high efficiency. The liquid sodium to be purified is disposed outside a cylindrical wall and negatively charged, whereas sodium as a reducing material is disposed inside the same wall. The cylindrical wall is made of zirconia-calcia (ZrO/sub 2/)sub(0.87)(CaO)sub(0.13) solid electrolyte, the cylinder having a thickness of 2.5mm, a diameter of 3cm and a depth of 20cm under the sodium level. Electric resistance of the solid electrolyte is 2.3 ohm at 500/sup 0/C. A current of 1A by the application of 25 volts treats 0.3g of oxygen. Consequently, 1 liter or 1kg of liquid sodium containing 1,000ppm of oxygen can be purified for about 3 hours at an electrical consumption of 7.5 watt-hour. In one embodiment, a cylindrical electrolytic solid made of zirconia-calcia or zirconia-yttria was disposed in a container. Liquid sodium containing oxygen flowed outside of the cylinder. Liquid sodium as a reducing material was present inside the cylinder and the container and the cylinder were electrically insulated. An electrode was inserted at the center of the cylinder and a baffle plate at the upper portion of the electrode to shield heat and rising sodium vapor was provided. The space above the container was filled with an inert gas. The oxygen in the liquid sodium to be purified transferred through the wall of the cylinder into the interior of the cylinder so as to oxydize the reducing sodium material. The supersaturated sodium oxide inside the cylinder was deposited.

  6. Le concept d'électrodes liquides de carbone appliqué au domaine des batteries en flux : étude et application aux matériaux d'intercalation du lithium

    OpenAIRE

    Parant , Hélène

    2017-01-01

    This project deals with flow batteries, which are very promising technologies for large scale energy storage, especially for intermittent energies. This work aims at developing new types of electrolytes with carbon particles to enhance power of batteries. This concept is called "liquid electrode" and is implemented in flow batteries with redox lithium intercalation particles in aqueous media. The first objective is to formulate the carbon electrolyte, with a good electronic conductivity (1-4 ...

  7. Production of polyol carbonates and their intercalation into Smectite clays

    OpenAIRE

    Shaheen, Uzma

    2017-01-01

    In hyper-saline conditions, clays in geosynthetic clay liners contract and fail to form a hydraulic barrier due to removal of water from the interlayer spaces of smectite, which is the swelling mineral component of bentonites used in geosynthetic clay liners. Five-membered cyclic carbonates such as propylene carbonate have been reported to form stable intercalated complexes with hydrated Na-smectite, which maintain swollen states at 1M). Glycerol carbonate was selected as an alternative c...

  8. Intercalation compounds of vanadium(5) phosphates with glycerol

    International Nuclear Information System (INIS)

    Yakovleva, T.N.; Vykhodtseva, K.I.; Tarasova, D.V.; Soderzhinova, M.M.

    1997-01-01

    Interaction products of glycerol aqueous solutions with vanadium(5) phosphates were investigated by the methods of ESR, X-ray phase and thermal analyses. It is shown that glycerol molecules enter the interlayer space of VOPO 4 · 2H 2 O lattice with formation of disordered intercalated compounds with glycerol on the basis of partially reduced vanadium phosphate form when using α-VOPO 4 . 16 refs., 4 figs., 1 tab

  9. Wustite-based photoelectrodes with lithium, hydrogen, sodium, magnesium, manganese, zinc and nickel additives

    Science.gov (United States)

    Carter, Emily Ann; Toroker, Maytal Caspary

    2017-08-15

    A photoelectrode, photovoltaic device and photoelectrochemical cell and methods of making are disclosed. The photoelectrode includes an electrode at least partially formed of FeO combined with at least one of lithium, hydrogen, sodium, magnesium, manganese, zinc, and nickel. The electrode may be doped with at least one of lithium, hydrogen, and sodium. The electrode may be alloyed with at least one of magnesium, manganese, zinc, and nickel.

  10. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher; Miller, Nichole C.; McGehee, Michael D.; Dauskardt, Reinhold H.

    2013-01-01

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher

    2013-01-17

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  13. Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces.

    Science.gov (United States)

    Ohtomo, Manabu; Sekine, Yoshiaki; Wang, Shengnan; Hibino, Hiroki; Yamamoto, Hideki

    2016-06-02

    We report a novel etchant-free transfer method of graphene using the intercalation of alkanethiol self-assembled monolayers (SAMs) at the graphene/Cu interfaces. The early stage of intercalation proceeds through graphene grain boundaries or defects within a few seconds at room temperature until stable SAMs are formed after a few hours. The formation of SAMs releases the compressive strain of graphene induced by Cu substrates and make graphene slightly n-doped due to the formation of interface dipoles of the SAMs on metal surfaces. After SAM formation, the graphene is easily delaminated off from the metal substrates and transferred onto insulating substrates. The etchant-free process enables us to decrease the density of charged impurities and the magnitude of potential fluctuation in the transferred graphene, which suppress scattering of carriers. We also demonstrate the removal of alkanethiol SAMs and reuse the substrate. This method will dramatically reduce the cost of graphene transfer, which will benefit industrial applications such as of graphene transparent electrodes.

  14. Connection of indicator of sodium burning in enclosed area

    Energy Technology Data Exchange (ETDEWEB)

    Enenkl, V

    1975-01-15

    The connection is described of an indicator of sodium burning in a closed area. The air and combustion product mixture is sucked by a pump through a pipe from the steam generator. Following possible aftercooling it is passed to a hermetically sealed vessel with distilled water. Fitted in the vessel are electrodes wired to a galvanometer. The air-sodium combustion product mixture is directed to the bottom of the vessel and bubbles through the distilled water. Sodium oxide contained in the mixture dissolves in the water and forms an electrolytic solution. The voltage produced at the electrodes may be indicated by the galvanometer.

  15. Versatile and Tunable Transparent Conducting Electrodes Based on Doped Graphene

    KAUST Repository

    Mansour, Ahmed E.

    2016-11-25

    The continued growth of the optoelectronics industry and the emergence of wearable and flexible electronics will continue to place an ever increasing pressure on replacing ITO, the most widely used transparent conducting electrode (TCE). Among the various candidates, graphene shows the highest optical transmittance in addition to promising electrical transport properties. The currently available large-scale synthesis routes of graphene result in polycrystalline samples rife with grain boundaries and other defects which limit its transport properties. Chemical doping of graphene is a viable route towards increasing its conductivity and tuning its work function. However, dopants are typically present at the surface of the graphene sheet, making them highly susceptible to degradation in environmental conditions. Few-layers graphene (FLG) is a more resilient form of graphene exhibiting higher conductivity and performance stability under stretching and bending as contrasted to single-layer graphene. In addition FLG presents the advantage of being amenable bulk doping by intercalation. Herein, we explore non-covalent doping routes of CVD FLG, such as surface doping, intercalation and combination thereof, through in-depth and systematic characterization of the electrical transport properties and energy levels shifts. The intercalation of FLG with Br2 and FeCl3 is demonstrated, showing the highest improvements of the figure of merit of TCEs of any doping scheme, which results from up to a five-fold increase in conductivity while maintaining the transmittance within 3% of that for the pristine value. Importantly the intercalation yields TCEs that are air-stable, due to encapsulation of the intercalant in the bulk of FLG. Surface doping with novel solution-processed metal-organic molecular species (n- and p-type) is demonstrated with an unprecedented range of work function modulation, resulting from electron transfer and the formation of molecular surface dipoles. However

  16. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  17. One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries.

    Science.gov (United States)

    Li, Biao; Gao, Zhan; Wang, Dake; Hao, Qiaoyan; Wang, Yan; Wang, Yongkun; Tang, Kaibin

    2015-12-01

    Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g(-1) at 25 mA g(-1) up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g(-1) at 250 mA g(-1) up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g(-1) was maintained at 25 mA g(-1) after 115 cycles in the potential range of 2.9-0.5 V.

  18. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance

    Science.gov (United States)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Jiang, Quanguo

    2018-04-01

    Two-dimensional Ti3C2 MXene nanosheets were functionalized with phenylsulfonic groups derived from in situ generated diazonium ions by the corresponding amine. During the functionalization process, the aryl groups were attached onto the MXene surfaces in the form of strong MXene-aryl (Tisbnd Osbnd C) linkages. Simultaneously, the intercalation of diazonium ions enabled Ti3C2 multi-layers to be delaminated into separate few-layer nanosheets via weak sonication with low energy. As a result of chemical functionalization for MXene Ti3C2, the dispersibility was greatly improved and the specific surface area increased significantly. The grafted functional groups are still stable up to at least 200 °C upon thermogravimetric analysis measurements. With diazonium ions intercalating and electroactive groups grafting between-in MXene layers, the chemically functionalized Ti3C2 electrodes exhibited an enhanced supercapacitive performance, which acquired a specific capacitance more than double that of pristine Ti3C2 samples and excellent cycling stability (91% capacity retention after 10,000 cycles at 3 A g-1). This feasible modification scheme can be also extended to functionalize other types of MXenes materials with this or other aryl diazonium ions as surface modifiers and intercalants, thus offering scope for full potential applications of the new 2D materials.

  19. The effect of alkaline cations on the Intercalation of Carbon Dioxide in Sepiolite Minerals: a Molecular Dynamics Investigation.

    Science.gov (United States)

    Tavanti, Francesco; Muniz-Miranda, Francesco; Pedone, Alfonso

    2018-03-01

    The ability of the sepiolite mineral to intercalate CO2 molecules inside its channels in the presence of different alkaline cations (K+, Na+ and Li+) has been studied by classical Molecular Dynamics simulations. Starting from an alkaline-free sepiolite crystalline model we built three models with stoichiometry Mg320Si440Al40O1200(OH)160X+40•480H2O. On these models, we gradually replaced the water molecules present in the channels with carbon dioxide and determined the energy of this exchange reaction as well as the structural organization and dynamics of carbon dioxide in the channels. The adsorption energy shows that the Li-containing sepiolite mineral retains more carbon dioxide with respect to those with sodium and potassium cations in the channels. Moreover, the ordered patterns of CO2 molecules observed in the alkaline-free sepiolite mineral are in part destabilized by the presence of cations decreasing the adsorption capacity of this clay mineral.

  20. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-09-01

    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  1. Thermoelectric Properties of Li-Intercalated ZrSe2 Single Crystals

    DEFF Research Database (Denmark)

    Holgate, Tim; Liu, Yufei; Hitchcock, Dale

    2013-01-01

    Zirconium diselenide (ZrSe2) is one of many members of the layer-structured transition-metal dichalcogenide family. The structure of these materials features a weakly bonded van der Waals gap between covalently bonded CdI2-type atomic layers that may host a wide range of intercalants. Intercalation......, and low cost of such materials, merit further thermoelectric investigations of intercalated zirconium diselenide, especially in conjunction with a substitutional doping approach....

  2. Preparation and properties of Mg/Al layered double hydroxide-oleate and -stearate intercalation compounds

    International Nuclear Information System (INIS)

    Inomata, Kazuya; Ogawa, Makoto

    2006-01-01

    Mg/Al layered double hydroxide-oleate and -stearate intercalation compounds were successfully synthesized by the reconstruction method under hydrothermal conditions from calcined hydrotalcite. The intercalation compounds were characterized by the high structural regularity as evidenced by the sharp and intense X-ray diffraction peaks. The oleate intercalated layered double hydroxide exhibits unique physicochemical properties such as a reversible thermoresponsive change in the basal spacing and swelling in organic solvents such as n-alkanes. (author)

  3. Synthesis of graphite intercalation compound of group VI metals and uranium hexafluorides

    International Nuclear Information System (INIS)

    Fukui, Toshihiro; Hagiwara, Rika; Ema, Keiko; Ito, Yasuhiko

    1993-01-01

    Systematic investigations were made on the synthesis of graphite intercalation compounds of group VI transition metals (W and Mo) and uranium hexafluorides. The reactions were performed by interacting liquid or gaseous metal hexafluorides with or without elemental fluorine at ambient temperature. The degree of intercalation of these metal fluorides depends on the formation enthalpy of fluorometallate anion from the original metal hexafluoride, as has been found for other intercalation reactions of metal fluorides. (author)

  4. An alkali ion source based on graphite intercalation compounds for ion mobility spectrometry

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Hosseini, Zahra S

    2008-01-01

    A variety of alkali cation emitters were developed as the ion source for ion mobility spectrometry. The cation emitters were constructed based on alkali ion graphite intercalation compounds (GICs). The compounds were prepared by fusing alkali salts with ground graphite. In order to produce alkali ions, the compounds were loaded on a filament and heated to red. Reactant ions of the form alk + ions were observed for the alkali salts NaCl, KCl.LiCl, CsCl and SrCl. In addition to Na + ions, K + ions were observed at the beginning of thermionic emission from Na-GIC. This is due to the low ionization potential of potassium that exists in trace amounts in sodium salts. In addition to the potassium ion, Na + was observed in the case of LiCl salt. The Na + and K + peaks originating from impurities totally disappeared after about 40 min. However, the thermionic emission of the main ion of the corresponding salt lasted for several days. No negative ions were observed upon reversing the drift field. Selected organic compounds (methyl isobutyl ketone, dimethyl sulfoxide, acetone and tetrahydrofuran) were also ionized via alkali cation attachment reaction. Distinct ion mobility patterns were observed for different substances using one type of alkali reactant ion. However, the ion mobility pattern for a given substance changed when a different alkali reactant ion was used. Ammonia and amines were not ionized when this source was used

  5. Adsorption of Phosphate Ion in Water with Lithium-Intercalated Gibbsite

    OpenAIRE

    Riwandi Sihombing; Yuni Krisyuningsih Krisnandi; Rahma Widya; Siti Zahrotul Luthfiyah; Rika Tri Yunarti

    2015-01-01

    In order to enhance adsorption capacity of gibbsite (Al(OH)3 as an adsorbent for the adsorption of phosphate in water, gibbsite was modified through lithium-intercalation. The purification method of Tributh and Lagaly was applied prior to intercalation. The Li-Intercalation was prepared by the dispersion of gibbsite into LiCl solution for 24 hours. This intercalation formed an cationic clay with the structure of [LiAl2(OH)6]+ and exchangeable Cl- anions in the gibbsite interlayer. A phosphate...

  6. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.; Gysel, Roman; Beiley, Zach; Miller, Chad E.; Toney, Michael F.; Heeney, Martin; McCulloch, Iain; McGehee, Michael D.

    2009-01-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  7. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  8. Structural effects on the electronic characteristics of intramolecularly intercalated alkali-rubrene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tsung-Lung, E-mail: quantum@mail.ncyu.edu.tw [Department of Electrophysics, National Chia-Yi University, 300 Hsueh-Fu Road, Chiayi, 60004, Taiwan, ROC (China); Lu, Wen-Cai, E-mail: wencailu@jlu.edu.cn [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Physics, Qingdao University, Qingdao, Shandong 266071 (China); State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021 (China)

    2016-11-01

    The geometric and electronic structures of neutral monolithium- and monosodium-rubrene (Li{sub 1} Rub and Na{sub 1} Rub) isomers are investigated and compared with monopotassium-rubrene (K{sub 1} Rub). Based on the alkali binding site, all isomers of these alkali-rubrene complexes can be subdivided into two types: intramolecularly intercalated and extramolecularly adsorbed. The minimum-energy Li{sub 1} Rub and Na{sub 1} Rub are intercalated structures, whereas the minimum-energy K{sub 1} Rub is adsorbed. The fact that the intercalated Li{sub 1} Rub and Na{sub 1} Rub structures are energetically favorable over the adsorbed ones can be explained by two energy rules. First, “double” proximity of the intercalating alkali element to a pair of phenyl side groups enormously reduces the total energy. Second, accommodation of a minuscule intercalant does not significantly deform the carbon frame and, thus, increases the energy only by a small amount. Additionally, the peculiar effects of intramolecular intercalation on the electronic structures of molecules are also studied in this simulation of monoalkali intercalation. In the monoalkali-intercalated rubrene complex, only one of the two pairs of phenyl groups of rubrene is intercalated, intentionally leaving another pair pristine, which facilitates the comparison of electronic structures between the intercalated and pristine pairs of phenyl side groups in a single molecule. The uniformity of chemical environments of the phenyl groups of the intercalated Li{sub 1} Rub/Na{sub 1} Rub is deteriorated by the incorporation of the intercalant, and leads to their spectral characteristics in contrast to K{sub 1} Rub. In particular, the introduction of the intercalant promotes the carbon 2p orbitals of the intercalated phenyl pair to take part in the electronic structures of the HOMO and LUMO peaks of Li{sub 1} Rub/Na{sub 1} Rub. The unpaired electron in the HOMO is delocalized over the backbone with higher probability of

  9. Physical and chemical studies of superconduction properties of the intercalation compounds

    International Nuclear Information System (INIS)

    Eder, F.X.; Lerf, A.

    1980-01-01

    The superconducting properties of the intercalation compounds of layered dichalcogenides were studied. Our studies were concerned mainly to the alkali metal intercalation derivatives of TaS 2 and NbS 2 , and later on extended to the molecule intercalation compounds. The main difficulties with this class of superconductors result from varying material properties; these are therefore the subject of broad intensity in our investigations. The results received on the physical and chemical properties of the intercalation compounds is utilized for a phenomenological description of the factors mainly determining there superconducting properties. (orig.) [de

  10. Mechanism of Si intercalation in defective graphene on SiC

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-10-01

    Previously reported experimental findings on Si-intercalated graphene on SiC(0001) seem to indicate the possibility of an intercalation process based on the migration of the intercalant through atomic defects in the graphene sheet. We employ density functional theory to show that such a process is in fact feasible and obtain insight into its details. By means of total energy and nudged elastic band calculations we are able to establish the mechanism on an atomic level and to determine the driving forces involved in the different steps of the intercalation process through atomic defects.

  11. Structural effects on the electronic characteristics of intramolecularly intercalated alkali-rubrene complexes

    International Nuclear Information System (INIS)

    Li, Tsung-Lung; Lu, Wen-Cai

    2016-01-01

    The geometric and electronic structures of neutral monolithium- and monosodium-rubrene (Li 1 Rub and Na 1 Rub) isomers are investigated and compared with monopotassium-rubrene (K 1 Rub). Based on the alkali binding site, all isomers of these alkali-rubrene complexes can be subdivided into two types: intramolecularly intercalated and extramolecularly adsorbed. The minimum-energy Li 1 Rub and Na 1 Rub are intercalated structures, whereas the minimum-energy K 1 Rub is adsorbed. The fact that the intercalated Li 1 Rub and Na 1 Rub structures are energetically favorable over the adsorbed ones can be explained by two energy rules. First, “double” proximity of the intercalating alkali element to a pair of phenyl side groups enormously reduces the total energy. Second, accommodation of a minuscule intercalant does not significantly deform the carbon frame and, thus, increases the energy only by a small amount. Additionally, the peculiar effects of intramolecular intercalation on the electronic structures of molecules are also studied in this simulation of monoalkali intercalation. In the monoalkali-intercalated rubrene complex, only one of the two pairs of phenyl groups of rubrene is intercalated, intentionally leaving another pair pristine, which facilitates the comparison of electronic structures between the intercalated and pristine pairs of phenyl side groups in a single molecule. The uniformity of chemical environments of the phenyl groups of the intercalated Li 1 Rub/Na 1 Rub is deteriorated by the incorporation of the intercalant, and leads to their spectral characteristics in contrast to K 1 Rub. In particular, the introduction of the intercalant promotes the carbon 2p orbitals of the intercalated phenyl pair to take part in the electronic structures of the HOMO and LUMO peaks of Li 1 Rub/Na 1 Rub. The unpaired electron in the HOMO is delocalized over the backbone with higher probability of distributing over the central two fused rings than over the outer two

  12. In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries

    International Nuclear Information System (INIS)

    Bleith, Peter; Kaiser, Hermann; Novák, Petr; Villevieille, Claire

    2015-01-01

    Na-ion batteries might become a low-cost alternative to Li-ion batteries in the future. Suitable electrode materials, especially anode materials, are needed for Na-ion batteries. As possible candidates Cu 0.5 TiOPO 4 and Fe 0.5 TiOPO 4 were tested. While Cu 0.5 TiOPO 4 does not react with Na + , Fe 0.5 TiOPO 4 shows a specific charge of ≈600 mAh/g upon the first sodiation and 280 mAh/g in the first desodiation. In situ XRD in a new, versatile and reliable in situ cell revealed that Fe 0.5 TiOPO 4 reacts via a conversion type reaction upon sodiation with an amorphisation of the sample

  13. The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries

    International Nuclear Information System (INIS)

    Tan, Jinli; Liu, Li; Guo, Shengping; Hu, Hai; Yan, Zichao; Zhou, Qian; Huang, Zhifeng; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2015-01-01

    Highlights: •The as-prepared CoF 2 shows excellent electrochemical performance as anode material for lithium ion batteries. •The Li insertion/extraction mechanism of CoF 2 below 1.2 V was firstly proposed. •The electrochemical performance of CoF 2 as anode material in sodium ion batteries was firstly studied. -- Abstract: Cobalt (II) fluoride begins to enter into the horizons of people along with the research upsurge of metal fluorides. It is very significative and theoretically influential to make certain its electrochemical reaction mechanism. In this work, we discover a new and unrevealed reversible interfacial intercalation mechanism reacting below 1.2 V for cobalt (II) fluoride electrode material, which contributes a combined discharge capacity of about 400 mA h g −1 with the formation of SEI film at the initial discharge process. A highly reversible storage capacity of 120 mA h g −1 is observed when the cell is cycled over the voltage of 0.01-1.2 V at 0.2 C, and the low-potential voltage reaction process has a significant impact for the whole electrochemical process. Electrochemical analyses suggest that pure cobalt (II) fluoride shows better electrochemical performance when it is cycled at 3.2-0.01 V compared to the high range (1.0-4.5 V). So, we hold that cobalt (II) fluoride is more suitable to serve as anode material for lithium ion batteries. In addition, we also try to reveal the relevant performance and reaction mechanism, and realize the possibility of cobalt (II) fluoride as anode material for sodium ion batteries

  14. Sodium in diet

    Science.gov (United States)

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... Too much sodium in the diet may lead to: High blood pressure in some people A serious buildup of fluid in people with heart failure , cirrhosis of ...

  15. Intercalation of Si between MoS2 layers

    Directory of Open Access Journals (Sweden)

    Rik van Bremen

    2017-09-01

    Full Text Available We report a combined experimental and theoretical study of the growth of sub-monolayer amounts of silicon (Si on molybdenum disulfide (MoS2. At room temperature and low deposition rates we have found compelling evidence that the deposited Si atoms intercalate between the MoS2 layers. Our evidence relies on several experimental observations: (1 Upon the deposition of Si on pristine MoS2 the morphology of the surface transforms from a smooth surface to a hill-and-valley surface. The lattice constant of the hill-and-valley structure amounts to 3.16 Å, which is exactly the lattice constant of pristine MoS2. (2 The transitions from hills to valleys are not abrupt, as one would expect for epitaxial islands growing on-top of a substrate, but very gradual. (3 I(V scanning tunneling spectroscopy spectra recorded at the hills and valleys reveal no noteworthy differences. (4 Spatial maps of dI/dz reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5 X-ray photo-electron spectroscopy measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the relative Si signal. Based on these experimental observations we have to conclude that deposited Si atoms do not reside on the MoS2 surface, but rather intercalate between the MoS2 layers. Our conclusion that Si intercalates upon the deposition on MoS2 is at variance with the interpretation by Chiappe et al. (Adv. Mater. 2014, 26, 2096–2101 that silicon forms a highly strained epitaxial layer on MoS2. Finally, density functional theory calculations indicate that silicene clusters encapsulated by MoS2 are stable.

  16. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  17. DNA intercalator stimulates influenza transcription and virus replication

    Directory of Open Access Journals (Sweden)

    Poon Leo LM

    2011-03-01

    Full Text Available Abstract Influenza A virus uses its host transcription machinery to facilitate viral RNA synthesis, an event that is associated with cellular RNA polymerase II (RNAPII. In this study, various RNAPII transcription inhibitors were used to investigate the effect of RNAPII phosphorylation status on viral RNA transcription. A low concentration of DNA intercalators, such as actinomycin D (ActD, was found to stimulate viral polymerase activity and virus replication. This effect was not observed in cells treated with RNAPII kinase inhibitors. In addition, the loss of RNAPIIa in infected cells was due to the shift of nonphosphorylated RNAPII (RNAPIIa to hyperphosphorylated RNAPII (RNAPIIo.

  18. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    International Nuclear Information System (INIS)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-01-01

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer

  19. Capacitors on the basis of intercalate GaSe

    Directory of Open Access Journals (Sweden)

    Kovalyuk Z. D.

    2010-06-01

    Full Text Available The compound GaSe is obtained by the technique of intercalation of a GaSe single crystal in a melt of the ferroelectric salt KNO3. The x-ray analysis of its crystal structure has been carried out and dielectric frequency characteristics of samples has been measured. It is estab-lished, that accumulation of electric charges occurs in the examined examples in frequency area 100—1000 Hz. A sample of filter capacitor has been created on the basis of the re-ceived compounds.

  20. Physical properties of C60 intercalated graphite films

    International Nuclear Information System (INIS)

    Nakahara, T; Hosomi, N; Taniguchi, J; Suzuki, M; Sato, T; Abe, K; Kuwahara, D; Ishikawa, M; Kato, M; Miura, K

    2007-01-01

    Recently, Miura and Tsuda have synthesized C 60 intercalated graphite film (C 60 /Gr) and reported that the C 60 /Gr consists of alternating close-packed C 60 monolayers and graphite layers. They also found that its frictional force is minimal up to the loading force of 100 nN using AFM [Miura K and Tsuda D 2005 e-J. Surf. Sci. Nanotech. 3 21] Thus, we have started to study the physical properties of C 60 /Gr and carried out NMR, Raman scattering and specific heat measurements. These results suggest that C 60 in C 60 /Gr rotates at room temperature

  1. Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation.

    Science.gov (United States)

    Ramirez, Daniel; Suto, Yusaku; Rosero-Navarro, Nataly Carolina; Miura, Akira; Tadanaga, Kiyoharu; Jaramillo, Franklin

    2018-04-02

    Organic-inorganic hybrid perovskite materials have recently been investigated in a variety of applications, including solar cells, light emitting devices (LEDs), and lasers because of their impressive semiconductor properties. Nevertheless, the perovskite structure has the ability to host extrinsic elements, making its application in the battery field possible. During the present study, we fabricated and investigated the electrochemical properties of three-dimensional (3D) methylammonium lead mixed-halide CH 3 NH 3 PbI 3- x Br x and two-dimensional (2D) propylammonium-methlylammonium lead bromide (CH 3 NH 3 ) 2 (CH 3 (CH 2 ) 2 NH 3 ) 2 Pb 3 Br 10 hybrid perovskite thin films as electrode materials for Li-ion batteries. These electrodes were obtained by solution processing at 100 °C. CH 3 NH 3 PbBr 3 achieved high discharge/charge capacities of ∼500 mA h g -1 /160 mA h g -1 that could account also for other processes taking place during the Li intercalation. It was also found that bromine plays an important role for lithium intercalation, while the new 2D (CH 3 NH 3 ) 2 (CH 3 (CH 2 ) 2 NH 3 ) 2 Pb 3 Br 10 with a layered structure allowed reversibility of the lithium insertion-extraction of 100% with capacities of ∼375 mA h g -1 in the form of a thin film. Results suggest that tuning the composition of these materials can be used to improve intercalation capacities, while modification from 3D to 2D layered structures contributes to improving lithium extraction. The mechanism of the lithium insertion-extraction may consist of an intercalation mechanism in the hybrid material accompanying the alloying-dealloying process of the Li x Pb intermetallic compounds. This work contributes to revealing the relevance of both composition and structure of potential hybrid perovskite materials as future thin film electrode materials with high capacity and compositional versatility.

  2. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    Science.gov (United States)

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  3. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  4. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor.

    Science.gov (United States)

    Zou, Yuqin; Wang, Shuangyin

    2015-07-07

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.

  5. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  6. Controlling Water Intercalation Is Key to a Direct Graphene Transfer.

    Science.gov (United States)

    Verguts, Ken; Schouteden, Koen; Wu, Cheng-Han; Peters, Lisanne; Vrancken, Nandi; Wu, Xiangyu; Li, Zhe; Erkens, Maksiem; Porret, Clement; Huyghebaert, Cedric; Van Haesendonck, Chris; De Gendt, Stefan; Brems, Steven

    2017-10-25

    The key steps of a transfer of two-dimensional (2D) materials are the delamination of the as-grown material from a growth substrate and the lamination of the 2D material on a target substrate. In state-of-the-art transfer experiments, these steps remain very challenging, and transfer variations often result in unreliable 2D material properties. Here, it is demonstrated that interfacial water can insert between graphene and its growth substrate despite the hydrophobic behavior of graphene. It is understood that interfacial water is essential for an electrochemistry-based graphene delamination from a Pt surface. Additionally, the lamination of graphene to a target wafer is hindered by intercalation effects, which can even result in graphene delamination from the target wafer. For circumvention of these issues, a direct, support-free graphene transfer process is demonstrated, which relies on the formation of interfacial water between graphene and its growth surface, while avoiding water intercalation between graphene and the target wafer by using hydrophobic silane layers on the target wafer. The proposed direct graphene transfer also avoids polymer contamination (no temporary support layer) and eliminates the need for etching of the catalyst metal. Therefore, recycling of the growth template becomes feasible. The proposed transfer process might even open the door for the suggested atomic-scale interlocking-toy-brick-based stacking of different 2D materials, which will enable a more reliable fabrication of van der Waals heterostructure-based devices and applications.

  7. Intercalation of cellulase enzyme into a hydrotalcite layer structure

    Science.gov (United States)

    Zou, N.; Plank, J.

    2015-01-01

    A new inorganic-organic hybrid material whereby cellulase enzyme is incorporated into a hydrotalcite type layered double hydroxide (LDH) structure is reported. The Mg2Al-cellulase-LDH was synthesized via co-precipitation from Mg/Al nitrate at pH=9.6. Characterization was performed using X-ray powder diffraction (XRD), small angle X-ray scattering (SAXS), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). From XRD and SAXS measurements, a d-value of ~5.0 nm was identified for the basal spacing of the Mg2Al-cellulase-LDH. Consequently, the cellulase enzyme (hydrodynamic diameter ~6.6 nm) attains a slightly compressed conformation when intercalated. Formation of the LDH hybrid was also confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mg2Al-cellulase-LDH phases appear as ~20 nm thin foils which are intergrown to flower-like aggregates. Activity of the enzyme was retained after deintercalation from the Mg2Al-LDH framework using anion exchange. Accordingly, cellulase is not denatured during the intercalation process, and LDH presents a suitable host structure for time-controlled release of the biomolecule.

  8. Tunable Broadband Nanocarbon Transparent Conductor by Electrochemical Intercalation.

    Science.gov (United States)

    Wan, Jiayu; Xu, Yue; Ozdemir, Burak; Xu, Lisha; Sushkov, Andrei B; Yang, Zhi; Yang, Bao; Drew, Dennis; Barone, Veronica; Hu, Liangbing

    2017-01-24

    Optical transparent and electrical conducting materials with broadband transmission are important for many applications in optoelectronic, telecommunications, and military devices. However, studies of broadband transparent conductors and their controlled modulation are scarce. In this study, we report that reversible transmittance modulation has been achieved with sandwiched nanocarbon thin films (containing carbon nanotubes (CNTs) and reduced graphene oxide (rGO)) via electrochemical alkali-ion intercalation/deintercalation. The transmittance modulation covers a broad range from the visible (450 nm) to the infrared (5 μm), which can be achieved only by rGO rather than pristine graphene films. The large broadband transmittance modulation is understood with DFT calculations, which suggest a decrease in interband transitions in the visible range as well as a reduced reflection in the IR range upon intercalation. We find that a larger interlayer distance in few-layer rGO results in a significant increase in transparency in the infrared region of the spectrum, in agreement with experimental results. Furthermore, a reduced plasma frequency in rGO compared to few-layer graphene is also important to understand the experimental results for broadband transparency in rGO. The broadband transmittance modulation of the CNT/rGO/CNT systems can potentially lead to electrochromic and thermal camouflage applications.

  9. Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications

    Science.gov (United States)

    Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.

    2015-01-01

    Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.

  10. Intercalation of alcohols in Ag sulfonates: topotactic behavior despite flexible layers.

    Science.gov (United States)

    Côté, Adrien P; Ferguson, Michael J; Khan, Kashif A; Enright, Gary D; Kulynych, Angela D; Dalrymple, Sean A; Shimizu, George K H

    2002-01-28

    This article presents the inaugural intercalation study of a layered metal sulfonate network. Silver triflate forms intercalation complexes with straight chain primary alcohols from ethanol (C(2)H(5)OH) to eicosanol (C(20)H(41)OH). Single-crystal data for the EtOH adduct, 1, are presented which show that the intercalation is coordinative to Ag. In contrast to many other layered hosts, no preheating of Ag triflate is required to liberate a coordination site for intercalation to take place, owing to the ability of the triflate ion to reorient. Crystal structure parameters for 1: C(4)H(6)F(6)S(2)O(7)Ag(2), a = 5.345(7) A, b = 11.310(2) A, c = 12.004(2) A, alpha = 116.87(1) degrees, beta = 90.46(1) degrees, gamma = 99.59(1) degrees, triclinic, space group P, Z = 2. Intercalate 1 presents the triflate ion in an unprecedented mu(5)-coordination mode. PXRD data on the family of complexes show that the intercalation is topotactic, as verified by the linear increase in d-spacing and calculated c-axis lengths for the intercalates, with increasing chain length. The data also show that the alcohol intercalates adopt an interdigitated rather than bilayer arrangement.

  11. Potassium-intercalated H2Pc films : Alkali-induced electronic and geometrical modifications

    NARCIS (Netherlands)

    Nilson, K.; Ahlund, J.; Shariati, M. -N.; Schiessling, J.; Palmgren, P.; Brena, B.; Gothelid, E.; Hennies, F.; Huismans, Y.; Evangelista, F.; Rudolf, P.; Gothelid, M.; Martensson, N.; Puglia, C.; Åhlund, J.; Göthelid, E.; Göthelid, M.; Mårtensson, N.

    2012-01-01

    X-ray spectroscopy studies of potassium intercalated metal-free phthalocyanine multilayers adsorbed on Al(110) have been undertaken. Photoelectron spectroscopy measurements show the presence of several charge states of the molecules upon K intercalation, due to a charge transfer from the alkali. In

  12. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes

    NARCIS (Netherlands)

    Aten, J. A.; Buys, C. H.; van der Veen, A. Y.; Mesa, J. R.; Yu, L. C.; Gray, J. W.; Osinga, J.; Stap, J.

    1987-01-01

    A number of structurally unrelated DNA intercalators have been studied as stabilizers of mitotic chromosomes during isolation from rodent and human metaphase cells. Seven out of the nine intercalators tested were found to be useful as chromosome stabilizing agents. Chromosome suspensions prepared in

  13. Optical determination of the electronic coupling and intercalation geometry of thiazole orange homodimer in DNA

    Science.gov (United States)

    Cunningham, Paul D.; Bricker, William P.; Díaz, Sebastián A.; Medintz, Igor L.; Bathe, Mark; Melinger, Joseph S.

    2017-08-01

    Sequence-selective bis-intercalating dyes exhibit large increases in fluorescence in the presence of specific DNA sequences. This property makes this class of fluorophore of particular importance to biosensing and super-resolution imaging. Here we report ultrafast transient anisotropy measurements of resonance energy transfer (RET) between thiazole orange (TO) molecules in a complex formed between the homodimer TOTO and double-stranded (ds) DNA. Biexponential homo-RET dynamics suggest two subpopulations within the ensemble: 80% intercalated and 20% non-intercalated. Based on the application of the transition density cube method to describe the electronic coupling and Monte Carlo simulations of the TOTO/dsDNA geometry, the dihedral angle between intercalated TO molecules is estimated to be 81° ± 5°, corresponding to a coupling strength of 45 ± 22 cm-1. Dye intercalation with this geometry is found to occur independently of the underlying DNA sequence, despite the known preference of TOTO for the nucleobase sequence CTAG. The non-intercalated subpopulation is inferred to have a mean inter-dye separation distance of 19 Å, corresponding to coupling strengths between 0 and 25 cm-1. This information is important to enable the rational design of energy transfer systems that utilize TOTO as a relay dye. The approach used here is generally applicable to determining the electronic coupling strength and intercalation configuration of other dimeric bis-intercalators.

  14. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    Science.gov (United States)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  15. Self-assembled alluaudite Na(2)Fe(3-x)Mn(x)(PO4)(3) micro/nanocompounds for sodium-ion battery electrodes: a new insight into their electronic and geometric structure.

    Science.gov (United States)

    Huang, Weifeng; Li, Biao; Saleem, Muhammad Farooq; Wu, Xiang; Li, Jianjian; Lin, Jun; Xia, Dingguo; Chu, Wangsheng; Wu, Ziyu

    2015-01-07

    A series of alluaudite Na2 Fe3-x Mnx (PO4 )3 microcompounds, which self-assembled from primary nanorods, were prepared successfully through a solvothermal method. As a promising candidate cathode for sodium-ion batteries, it is necessary to obtain a deeper understanding of the relationship between the structure and physicochemical properties of these materials. The local electronic and geometric environments were systematically investigated, for the first time, by using a combination of soft/hard X-ray absorption, IR, and Mössbauer spectroscopy. The results show that the electrochemical performance is not only associated with morphology, but also with the electronic and crystalline structure. With the introduction of manganese into the lattice, the long-range order maintains the isostructural framework and the lattice parameters expand as expected. However, for short-range order, PO4 tetrahedra and MO6 octahedra (M=Fe and Mn) become more severely distorted as a function of Mn concentration. Meanwhile, larger MnO6 octahedra will compress the space of FeO6 octahedra, which will result in stronger core/electron-electron interactions for Fe, as characterized by hard/soft X-ray absorption spectra. These slight changes in the electronic and local structures lead to different electrochemical performances with changes to the manganese content. Moreover, other physicochemical properties, such as magnetic behavior, are also confirmed to be correlated with these different electron interactions and local geometric environments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effectiveness of Co intercalation between Graphene and Ir(1 1 1)

    Science.gov (United States)

    Carlomagno, I.; Drnec, J.; Scaparro, A. M.; Cicia, S.; Mobilio, S.; Felici, R.; Meneghini, C.

    2018-04-01

    Graphene can be used to avoid the oxidation of metallic films. This work explores the effectiveness of such stabilizing effect on Cobalt (Co) films intercalated between Graphene and Ir(1 1 1). After intercalation at 300 °C, two Co films are exposed to ambient pressure and investigated using Co-K edge X-ray Absorption Near Edge Spectroscopy. The formation of a disordered oxide phase is observed, and associated to the presence of some non-intercalated Co. Further annealing at 500 °C causes the oxide reduction to metallic Co which further intercalates below the Graphene. Once the intercalation is completed, Graphene prevents the Co from oxidation under ambient pressure conditions.

  17. Interlayer Structure of Bioactive Molecule, 2-Aminoethanesulfonate, Intercalated into Calcium-Containing Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2012-01-01

    Full Text Available We have successfully intercalated 2-aminoethanesulfonate, a well-known biomolecule taurine, into calcium-containing layered double hydroxides via optimized solid phase intercalation. According to X-ray diffraction patterns and infrared spectroscopy, it was revealed that the intercalated taurine molecules were each directly coordinated to other calcium cation and arranged in a zig-zag pattern. Scanning electron microscopy showed that the particle size and morphology of the LDHs were not affected by the solid phase intercalation, and the surface of intercalates was covered by organic moieties. From ninhydrin amine detection tests, we confirmed that most of the taurine molecules were well stabilized between the calcium-containing LDH layers.

  18. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    International Nuclear Information System (INIS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-01-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  19. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-06-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  20. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2009-06-15

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  1. Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes.

    Science.gov (United States)

    Zhang, Di; Li, Bin; Wang, Shuai; Yang, Shubin

    2017-11-22

    Metallic sodium is a promising anode for sodium-based batteries, owing to its high theoretical capacity (1165 mAh g -1 ) and low potential (-2.714 V vs standard hydrogen electrode). However, the growth of sodium dendrites and the infinite volume change of metallic sodium during sodium striping/plating result in a low Coulombic efficiency and poor cycling stability, generating a safety hazard of sodium-based batteries. Here, an efficient approach was proposed to simultaneously generate an artificial SEI film and 3D host for metallic sodium based on a conversion reaction (CR) between sodium and MoS 2 (4Na + MoS 2 = 2Na 2 S + Mo) at room temperature. In the resultant sodium-MoS 2 hybrid after the conversion reaction (Na-MoS 2 (CR)), the production Na 2 S is homogeneously dispersed on the surface of metallic sodium, which can act as an artificial SEI film, efficiently preventing the growth of sodium dendrites; the residual MoS 2 nanosheets can construct a 3D host to confine metallic sodium, accommodating largely the volume change of sodium. Consequently, the Na-MoS 2 (CR) hybrid exhibits very low overpotential of 25 mV and a very long cycle stability more than 1000 cycles. This novel strategy is promising to promote the development of metal (lithium, sodium, zinc)-based electrodes.

  2. Screen-printed electrode for alkali-metal thermoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Shibata, K.; Tsuchida, K.; Kato, A. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1992-06-01

    An alkali-metal thermoelectric converter (AMTEC) is a device for the direct conversion of thermal to electric energy. An AMTEC contains sodium as working fluid and is divided into a high-temperature region (900-1300 K) and a low-temperature region (400-800 K) by [beta]''-alumina solid electrolyte. A high-performance electrode for an AMTEC must have good electrical conductivity, make a strong physical bond with low contact resistance to [beta]''-alumina, be highly permeable to sodium vapour, resist corrosion by sodium and have a low rate of evaporation at the operating temperature of the AMTEC. We have previously investigated the interaction of nitrides and carbides of some transition-metals (groups IV, V and VI) with [beta],[beta]''-alumina or liquid sodium (about 700degC) with the objective of finding a better electrode material for an AMTEC. The results showed that TiN, TiC, NbN and NbC were good candidates for AMTEC electrodes. We also showed that porous TiN film with low resistance can be prepared by the screen-printing method. In the present work the porous NbN film was prepared by the screen-printing method and the performance as the electrode of an AMTEC was examined. For comparison, the performance of TiN and Mo electrodes prepared by the screen-printing method was also examined. (author).

  3. Liquid sodium pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  4. Liquid sodium pool fires

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  5. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  6. Development of analytical methods relating to aerosol and fission product release from hot and boiling sodium pools

    International Nuclear Information System (INIS)

    Mainka, E.

    1978-11-01

    Analytical methods are described for (a) sodium; (b) the following anions of sodium aerosols: OH - , CO 2 - and HCO 3 - ; (c) fission products Cs and Sr. For sodium, the ion selective electrode was used. The anions were determined by a titration method using phenolphthalein and methyl orange as indicators. Atomic absorption spectroscopy was used for Cs and Sr. (U.K.)

  7. Dielectric properties of halloysite and halloysite-formamide intercalate

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, M., E-mail: mariusz.adamczyk@chem.uni.wroc.pl; Rok, M.; Wolny, A.; Orzechowski, K. [Faculty of Chemistry, University of Wroclaw, Wroclaw 50-383 (Poland)

    2014-01-14

    Due to a high increase in electromagnetic pollution, the protection from non-ionizing electromagnetic radiation (EMR) represents an important problem of contemporary environmental science. We are searching for natural materials with the potential for EMR screening. We have discovered that hydro-halloysite has interesting properties as an EMR absorber. Unfortunately, it is a very unstable material. Drying it for even a short period of time leads to the loss of desired properties. In the paper, we have demonstrated that the intercalation of halloysite (the process of introducing guest molecules into the mineral structure) makes it possible to recover the ability to absorb an electromagnetic wave and obtain a promising material for electromagnetic field shielding applications.

  8. Dielectric properties of halloysite and halloysite-formamide intercalate

    International Nuclear Information System (INIS)

    Adamczyk, M.; Rok, M.; Wolny, A.; Orzechowski, K.

    2014-01-01

    Due to a high increase in electromagnetic pollution, the protection from non-ionizing electromagnetic radiation (EMR) represents an important problem of contemporary environmental science. We are searching for natural materials with the potential for EMR screening. We have discovered that hydro-halloysite has interesting properties as an EMR absorber. Unfortunately, it is a very unstable material. Drying it for even a short period of time leads to the loss of desired properties. In the paper, we have demonstrated that the intercalation of halloysite (the process of introducing guest molecules into the mineral structure) makes it possible to recover the ability to absorb an electromagnetic wave and obtain a promising material for electromagnetic field shielding applications

  9. Design of copper DNA intercalators with leishmanicidal activity.

    Science.gov (United States)

    Navarro, Maribel; Cisneros-Fajardo, Efrén José; Sierralta, Aníbal; Fernández-Mestre, Mercedes; Silva, Pedro; Arrieche, Dwight; Marchán, Edgar

    2003-04-01

    The complexes [Cu(dppz)(NO(3))]NO(3) (1), [Cu(dppz)(2)(NO(3))]NO(3) (2), [Cu(dpq)(NO(3))]NO(3) (3), and [Cu(dpq)(2)(NO(3))]NO(3) (4) were synthesized and characterized by elemental analysis, FAB-mass spectrometry, EPR, UV, and IR spectroscopies, and molar conductivity. DNA interaction studies showed that intercalation is an important way of interacting with DNA for these complexes. The biological activity of these copper complexes was evaluated on Leishmania braziliensis promastigotes, and the results showed leishmanicidal activity. Preliminary ultrastructural studies with the most active complex (2) at 1 h revealed parasite swelling and binucleated cells. This finding suggests that the leishmanicidal activity of the copper complexes could be associated with their interaction with the parasitic DNA.

  10. Thermal decomposition of cesium-ethylene-ternary graphite intercalation compounds

    International Nuclear Information System (INIS)

    Matsumoto, R.; Oishi, Y.; Arii, T.

    2010-01-01

    In this paper, the thermal decomposition of air-stable Cs-ethylene-ternary graphite intercalation compounds (GICs) is discussed. The air stability of Cs-GICs is improved remarkably after the absorption of ethylene into their interlayer nanospace, because the ethylene molecules oligomerize and block the movement of Cs atoms. In addition, the evaporation of Cs atoms from the Cs-ethylene-ternary GICs is observed above 400 o C under a N 2 atmosphere of 100 Pa by ion attachment mass spectrometry. Although the results indicate that Cs-ethylene-ternary GICs remain stable up to approximately 400 o C, their thermal stability is not very high as compared to that of Cs-GICs.

  11. An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds.

    Science.gov (United States)

    Cheng, Hansong; Sha, Xianwei; Chen, Liang; Cooper, Alan C; Foo, Maw-Lin; Lau, Garret C; Bailey, Wade H; Pez, Guido P

    2009-12-16

    We present a combined theoretical and experimental study on H(2) physisorption in partially fluorinated graphite. This material, first predicted computationally using ab initio molecular dynamics simulation and subsequently synthesized and characterized experimentally, represents a novel class of "acceptor type" graphite intercalated compounds that exhibit significantly higher isosteric heat of adsorption for H(2) at near ambient temperatures than previously demonstrated for commonly available porous carbon-based materials. The unusually strong interaction arises from the semi-ionic nature of the C-F bonds. Although a high H(2) storage capacity (>4 wt %) at room temperature is predicted not to be feasible due to the low heat of adsorption, enhanced storage properties can be envisaged by doping the graphitic host with appropriate species to promote higher levels of charge transfer from graphene to F(-) anions.

  12. Intercalation of vanadate in Ni, Zn layered hydroxyacetates

    International Nuclear Information System (INIS)

    Rojas, Ricardo; Barriga, Cristobalina; Ulibarri, M.A.; Rives, Vicente

    2004-01-01

    Interlayer acetate anions in layered double hydroxyacetates of Ni 2+ and Zn 2+ have been exchanged by oxovanadates following three synthetic routes (at 60 deg. C, under hydrothermal conditions and after preswelling with caprylate anions) and different pH; direct exchange at room temperature was not successful. Complete exchange was achieved under adequated conditions, and the precise nature of the interlayer anion depends on the pH during exchange: at low pH (4.5), the presence of α-VO 3 chains, with anchoring (grafting) of the species to the hydroxide layers, is proposed. At higher pH (9.5) V 2 O 7 4- species are present in the interlayer. Thermal decomposition of these vanadate-intercalated products leads to formation of orthorhombic Ni 2+ and Zn 2+ vanadates, together with NiO

  13. Intercalated radio-chemotherapy in small cell lung cancer

    International Nuclear Information System (INIS)

    Hoskin, P.J.; Parton, D.; Yarnold, J.R.; Cherryman, G.; Smith, I.E.

    1991-01-01

    36 patients with small cell lung cancer have been treated using chemotherapy comprising carboplatin, ifosphamide and etoposide. A total of 6 cycles of chemotherapy was given. In 15 patients with limited disease intercalated radio-chemotherapy was used in which two 5-day courses of hyperfractionated radiotherapy were given to the thorax after the 1st and 2nd cycles of chemotherapy. Each course of thoracic radiotherapy delivered 15 Gy in 15 fractions over 5 days. Oesophagitis occurred in 7 patients (40 percent), in 5 of whom this was severe (WHO grade 3). Radiological pneumonitis developed in 6 patients (40 percent) with subsequent fibrosis in 2 patients. These effects are greater than would be expected with this dose of radiation alone and reflect marked enhancement of normal tissue toxicity. (author). 11 refs.; 1 fig.; 1 tab

  14. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  15. Small liquid sodium leaks

    International Nuclear Information System (INIS)

    Dufresne, J.; Rochedereux, Y.; Antonakas, D.; Casselman, C.; Malet, J.C.

    1986-05-01

    Usually, pessimistic considerations inassessing the safety of secondary sodium loops in LMFBR reactor lead to assume guillotine rupture releasing a large amount of sodium estimate the consequences of large sodium fires. In order to reduce these consequences, one has to detect the smallest leak as soon as possible and to evaluate the future of an initial small leak. Analysis of the relationship between crack size and sodium outflow rate; Analysis of a sodium pipe with a small open crack

  16. Phosphate removal from water using lithium intercalated gibbsite.

    Science.gov (United States)

    Wang, Shan-Li; Cheng, Chia-Yi; Tzou, Yu-Min; Liaw, Ren-Bao; Chang, Ta-Wei; Chen, Jen-Hshuan

    2007-08-17

    In this study, lithium intercalated gibbsite (LIG) was investigated for its effectiveness at removing phosphate from water and the mechanisms involved. LIG was prepared through intercalating LiCl into gibbsite giving a structure of [LiAl2(OH)6]+ layers with interlayer Cl- and water. The results of batch adsorption experiments showed that the adsorption isotherms at various pHs exhibited an L-shape and could be fitted well using the Langmuir model. The Langmuir adsorption maximum was determined to be 3.0 mmol g(-1) at pH 4.5 and decreased with increasing pH. The adsorption of phosphate was mainly through the displacement of the interlayer Cl- ions in LIG. In conjunction with the anion exchange reaction, the formation of surface complexes or precipitates could also readily occur at lower pH. The adsorption decreased with increasing pH due to decreased H(2)PO(4)(-)/HPO4(2-) molar ratio in solution and positive charges on the edge faces of LIG. Anion exchange is a fast reaction and can be completed within minutes; on the contrary, surface complexation is a slow process and requires days to reach equilibrium. At lower pH, the amount of adsorbed phosphate decreased significantly as the ionic strength was increased from 0.01 to 0.1M. The adsorption at higher pH showed high selectivity toward divalent HPO4(2-) ions with an increase in ionic strength having no considerable effect on the phosphate adsorption. These results suggest that LIG may be an effective scavenger for removal of phosphate from water.

  17. Advantages of GPU technology in DFT calculations of intercalated graphene

    Science.gov (United States)

    Pešić, J.; Gajić, R.

    2014-09-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an

  18. Advantages of GPU technology in DFT calculations of intercalated graphene

    International Nuclear Information System (INIS)

    Pešić, J; Gajić, R

    2014-01-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an

  19. Phosphate removal from water using lithium intercalated gibbsite

    International Nuclear Information System (INIS)

    Wang, S.-L.; Cheng, C.-Y.; Tzou, Y.-M.; Liaw, R.-B.; Chang, T.-W.; Chen, J.-H.

    2007-01-01

    In this study, lithium intercalated gibbsite (LIG) was investigated for its effectiveness at removing phosphate from water and the mechanisms involved. LIG was prepared through intercalating LiCl into gibbsite giving a structure of [LiAl 2 (OH) 6 ] + layers with interlayer Cl - and water. The results of batch adsorption experiments showed that the adsorption isotherms at various pHs exhibited an L-shape and could be fitted well using the Langmuir model. The Langmuir adsorption maximum was determined to be 3.0 mmol g -1 at pH 4.5 and decreased with increasing pH. The adsorption of phosphate was mainly through the displacement of the interlayer Cl - ions in LIG. In conjunction with the anion exchange reaction, the formation of surface complexes or precipitates could also readily occur at lower pH. The adsorption decreased with increasing pH due to decreased H 2 PO 4 - /HPO 4 2- molar ratio in solution and positive charges on the edge faces of LIG. Anion exchange is a fast reaction and can be completed within minutes; on the contrary, surface complexation is a slow process and requires days to reach equilibrium. At lower pH, the amount of adsorbed phosphate decreased significantly as the ionic strength was increased from 0.01 to 0.1 M. The adsorption at higher pH showed high selectivity toward divalent HPO 4 2- ions with an increase in ionic strength having no considerable effect on the phosphate adsorption. These results suggest that LIG may be an effective scavenger for removal of phosphate from water

  20. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de [Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24.020–150 (Brazil); Mercante, Luiza A. [Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, São Carlos, SP 13560 970 (Brazil); Soriano, Stéphane [Instituto de Física, Universidade Federal Fluminense, Niterói, RJ 24.210 346 (Brazil); Andruh, Marius [Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie nr. 23, Bucharest (Romania); Vieira, Méri D., E-mail: gqimeri@vm.uff.br [Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24.020–150 (Brazil); Vaz, Maria G.F., E-mail: mariavaz@vm.uff.br [Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24.020–150 (Brazil)

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.

  1. Organic electrode materials for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yanliang; Tao, Zhanliang; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Chemistry College, Nankai University, Tianjin (China)

    2012-07-15

    Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  3. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  4. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  5. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  6. Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds

    International Nuclear Information System (INIS)

    Golub, Alexander S; Zubavichus, Yan V; Slovokhotov, Yurii L; Novikov, Yurii N

    2003-01-01

    Chemical methods for the exfoliation of transition metal dichalcogenides in a liquid medium to give single-layer dispersions containing quasi-two-dimensional layers of these compounds are surveyed. Data on the structure of dispersions and their use in the synthesis of various types of heterolayered intercalation compounds are discussed and described systematically. Structural features, the electronic structure and the physicochemical properties of the resulting intercalation compounds are considered. The potential of this method of synthesis is compared with that of traditional solid-state methods for the intercalation of layered crystals.

  7. Stabilization of cadmium electrode properties when introducing surfactants

    International Nuclear Information System (INIS)

    Alekseeva, M.E.; Mansurov, F.Kh.; Nikol'skij, V.A.

    1995-01-01

    The results of tests of both separate cadmium electrodes and silver-cadmium accumulators, depending on introduction of surfactants (polyethylene oxide - PO - and its derivatives), have been considered. The influence of PO on the course of electrochemical reaction on cadmium is pronounced in facilitation of anodic process. In case of PO introduction in the amount of 1 % instead of sodium lignosulfonate (2 %) into accumulators with silver-cadmium electrodes, the electrode potential is stabilized, while the accumulator capacity increases. The time period of the accumulation maintenance in the charged state increases 2-3 fold (1-1,5 years). 5 refs.; 4 figs.; 2 tabs

  8. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa

    2017-08-04

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  9. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa; Hood, Samantha N.; Shoaee, Safa; Schroeder, Bob C.; McCulloch, Iain; Kassal, Ivan; Neher, Dieter; Durrant, James R.

    2017-01-01

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  10. Comparative electrochemical sodium insertion/extraction behavior in layered NaxVS2 and NaxTiS2

    International Nuclear Information System (INIS)

    Lee, Eungje; Sahgong, SunHye; Johnson, Christopher S.; Kim, Youngsik

    2014-01-01

    This study investigates the electrochemical sodium insertion/extraction of Na x VS 2 , and Na x TiS 2 in the voltage range where either intercalation (0.2 ≤ x ≤ 1) or displacement-conversion reaction (x > 1) occurs. Both Na x VS 2 and Na x TiS 2 showed good reversible capacities, as high as ∼160 mAh/g at an average voltage of ∼1.9 V vs. Na in the region for the intercalation reaction (0.2 ≤ x ≤ 1). When sodium (Na) insertion was forced further to the x > 1 composition, Na x VS 2 exhibited the direct displacement-conversion reaction at 0.3 V vs. Na without further Na intercalation, which contrasted with the wider lithium intercalation range of 0 < x ≤ 2 for Li x VS 2 . The displacement-conversion reaction for Na x VS 2 (x > 1) was reversible with a specific capacity of above 200 mAh/g up to 15 cycles, but the displacement reaction for Na x TiS 2 (x > 1) was not observed

  11. Multiphysics Modelling of Sodium Sulfur Battery

    Science.gov (United States)

    Mason, Jerry Hunter

    Due to global climate change and the desire to decrease greenhouse gas emissions, large scale energy storage has become a critical issue. Renewable energy sources such as wind and solar will not be a viable energy source unless the storage problem is solved. One of the practical and cost effective solutions for this problem is sodium sulfur batteries. These batteries are comprised of liquid electrode materials suspended in porous media and operate at relatively high temperatures (>300°C). The sodium anode and the sulfur/sodium-polysulfide cathode are separated by a solid electrolyte made of beta-alumina or NASICON material. Due to the use of porous materials in the electrodes, capillary pressure and the combination of capillary action and gravity become important. Capillary pressure has a strong dependence on the wetting phase (liquid electrode material) saturation; therefore sharp concentration gradients can occur between the inert gas and the electrode liquid, especially within the cathode. These concentration gradients can have direct impacts on the electrodynamics of the battery as they may produce areas of high electrical potential variation, which can decrease efficiency and even cause failures. Then, thermal management also becomes vital since the electrochemistry and material properties are sensitive to temperature gradients. To investigate these phenomena in detail and to attempt to improve upon battery design a multi-dimensional, multi-phase code has been developed and validated in this study. Then a porous media flow model is implemented. Transport equations for charge, mass and heat are solved in a time marching fashion using finite volume method. Material properties are calculated and updated as a function of time. The porous media model is coupled with the continuity equation and a separate diffusion equation for the liquid sodium in the melt. The total mass transport model is coupled with charge transport via Faraday's law. Results show that

  12. Fabrication of a single layer graphene by copper intercalation on a SiC(0001) surface

    International Nuclear Information System (INIS)

    Yagyu, Kazuma; Tochihara, Hiroshi; Tomokage, Hajime; Suzuki, Takayuki; Tajiri, Takayuki; Kohno, Atsushi; Takahashi, Kazutoshi

    2014-01-01

    Cu atoms deposited on a zero layer graphene grown on a SiC(0001) substrate, intercalate between the zero layer graphene and the SiC substrate after the thermal annealing above 600 °C, forming a Cu-intercalated single layer graphene. On the Cu-intercalated single layer graphene, a graphene lattice with superstructure due to moiré pattern is observed by scanning tunneling microscopy, and specific linear dispersion at the K ¯ point as well as a characteristic peak in a C 1s core level spectrum, which is originated from a free-standing graphene, is confirmed by photoemission spectroscopy. The Cu-intercalated single layer graphene is found to be n-doped

  13. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    Science.gov (United States)

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  14. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode

    KAUST Repository

    Xia, Chuan; Guo, Jing; Lei, Yongjiu; Liang, Hanfeng; Zhao, Chao; Alshareef, Husam N.

    2017-01-01

    metal pyrovanadate compounds. The zinc pyrovanadate nanowires show significantly improved electrochemical performance when used as intercalation cathode for aqueous zinc–ion battery. Specifically, the ZVO cathode delivers high capacities of 213 and 76 m

  15. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed Ali; Pedersen, Erik B.; Khaireldin, Nahid Y.

    2016-01-01

    In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion of naphtha......In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion...... of naphthalimide (1H-benzo[de]isoquinoline-1,3(2H)-dione) as the intercalating nucleic acid. The stabilities of i-motif structures with inserted naphthalimide intercalating nucleotides were studied using UV melting temperatures (Tm) and circular dichroism spectra at different pH values and conditions (crowding...

  16. Intercalation of tartrazine into ZnAl and MgAl layered double hydroxides

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Melánová, Klára; Zima, Vítězslav; Svoboda, Jan

    2005-01-01

    Roč. 70, č. 2 (2005), s. 259-267 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40500505 Keywords : intercalation * hydrotalcite Subject RIV: CA - Inorganic Chemistry Impact factor: 0.949, year: 2005

  17. Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Shen Yanming

    2017-05-01

    Full Text Available Glutamate intercalated Mg–Al layered double hydroxide (LDH was prepared by co-precipitation and the removal of Pb2+ in the aqueous solution was investigated. The prepared samples were characterized by XRD, FT-IR and SEM. It was shown that glutamate can intercalate into the interlayer space of Mg–Al LDH. The glutamate intercalated Mg–Al LDH can effectively adsorb Pb2+ in the aqueous solution with an adsorption capacity of 68.49 mg g−1. The adsorption of Pb2+ on glutamate intercalated Mg–Al LDH fitted the pseudo-second-order kinetics model and the isotherm can be well defined by Langmuir model.

  18. Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends

    KAUST Repository

    Cates, Nichole C.; Gysel, Roman; Dahl, Jeremy E. P.; Sellinger, Alan; McGehee, Michael D.

    2010-01-01

    Fullerenes have been shown to intercalate between the side chains of many crystalline and semicrystalline polymers and to affect the properties of polymer:fullerene bulk heterojunction solar cells. Here we present the first in-depth study

  19. A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins

    NARCIS (Netherlands)

    Soni, Siddarth; Raaijmakers, Antonia J A; Raaijmakers, Linsey M; Damen, J Mirjam A; van Stuijvenberg, Leonie; Vos, Marc A; Heck, Albert J R; van Veen, AAB; Scholten, Arjen

    2016-01-01

    AIMS: Synchronous beating of the heart is dependent on the efficient functioning of the cardiac intercalated disk (ID). The ID is composed of a complex protein network enabling electrical continuity and chemical communication between individual cardiomyocytes. Recently, several different studies

  20. Direct extraction of a Na- beam from a sodium plasma

    International Nuclear Information System (INIS)

    Sasao, Namiko; Fujita, Junji; Yamaoka, Hitoshi; Wada, Motoi.

    1990-07-01

    Negative sodium ions (Na - ) were extracted from a small multi-cusp ion source. A steady state sodium plasma was produced by primary electrons in a sodium gas evaporating from a metal sample placed in the discharge chamber. The Na - current density of 1.5 μA/cm 2 was obtained from a single aperture of 1.5 mm diameter at relatively low discharge power of about 0.4 W and filament power of 50 W. Extraction characteristics were studied by changing the plasma electrode bias. The extracted Na - current showed dependence on the bias voltage similar to that of H - or Li - volume production. (author)

  1. Electrochemical oxidation of ascorbic acid mediated by carbon nano tubes/ Li+/ carbon paste modified solid electrode

    International Nuclear Information System (INIS)

    Goh, J.K.; Tan, W.T.

    2008-01-01

    Multi-walled carbon nano tube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electro catalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30 % (w/ W) carbon paste (binder): 70 % (w/ w) MWCNT. This method of modification has lowered the capacitance background current and enabled lower detection limit of ascorbic acid concentration. The electrical conductivity property of MWCNT modified electrode was further improved with the intercalation with lithium ion and resulted in current enhancement of 2 times on the oxidation current of ascorbic acid. Parameters of pH and temperature showed significant relation to the sensitivity of MWCNT modified electrode. Under the optimized parameters, the calibration curve constructed was linear up from 50 μM to 5 mM with sensitivity of 34.5 mA M -1 . The practical application of MWCNT modified electrode was demonstrated with Vitamin C pill and orange juice. Good reproducibility and recovery of ascorbic acid concentration showed the feasibility of MWCNT modified electrode to be used in the detection of ascorbic acid in aqueous solution. This also proposed MWCNT modified BPPG electrode possessed advantages such as low detection limit, high stability, low cost and simplicity in fabrication. (author)

  2. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  3. Naproxen sodium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002507.htm Naproxen sodium overdose To use the sharing features on this page, please enable JavaScript. Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) used ...

  4. Sodium hydroxide poisoning

    Science.gov (United States)

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  5. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  6. Docusate Sodium and Pregnancy

    Science.gov (United States)

    ... a risk of miscarriage. Can use of docusate sodium during pregnancy cause birth defects? Few studies have been done to look at the possible risks of docusate sodium during pregnancy. However, the available studies show that when used ...

  7. Sodium carbonate poisoning

    Science.gov (United States)

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and industrial products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do NOT ...

  8. ELTA: Citatrademark: Sodium measurement

    International Nuclear Information System (INIS)

    Mauvais, O.

    2002-01-01

    ELTA is pleased to present its last model of Sodium analyzers: CITA 2340: Automatically controlled sodium meter, integrating more automation and performances results respecting costs and wastes reduction. (authors)

  9. An intercalated BSc degree is associated with higher marks in subsequent medical school examinations

    OpenAIRE

    Cleland, Jennifer A; Milne, Andrew; Sinclair, Hazel; Lee, Amanda J

    2009-01-01

    Abstract Background To compare medical students on a modern MBChB programme who did an optional intercalated degree with their peers who did not intercalate; in particular, to monitor performance in subsequent undergraduate degree exams. Methods This was a retrospective, observational study of anonymised databases of medical student assessment outcomes. Data were accessed for graduates, University of Aberdeen Medical School, Scotland, UK, from the years 2003 to 2007 (n = 861). The main outcom...

  10. Iron Intercalation in Covalent-Organic Frameworks: A Promising Approach for Semiconductors

    OpenAIRE

    Pakhira, Srimanta; Lucht, Kevin P.; Mendoza-Cortes, Jose L.

    2017-01-01

    Covalent-organic frameworks (COFs) are intriguing platforms for designing functional molecular materials. Here, we present a computational study based on van der Waals dispersion-corrected hybrid density functional theory (DFT-D) to design boroxine-linked and triazine-linked COFs intercalated with Fe. Keeping the original $P-6m2$ symmetry of the pristine COF (COF-Fe-0), we have computationally designed seven new COFs by intercalating Fe atoms between two organic layers. The equilibrium struct...

  11. Self-consistent electronic structure of a model stage-1 graphite acceptor intercalate

    International Nuclear Information System (INIS)

    Campagnoli, G.; Tosatti, E.

    1981-04-01

    A simple but self-consistent LCAO scheme is used to study the π-electronic structure of an idealized stage-1 ordered graphite acceptor intercalate, modeled approximately on C 8 AsF 5 . The resulting non-uniform charge population within the carbon plane, band structure, optical and energy loss properties are discussed and compared with available spectroscopic evidence. The calculated total energy is used to estimate migration energy barriers, and the intercalate vibration mode frequency. (author)

  12. Bifunctional Rhodium Intercalator Conjugates as Mismatch-Directing DNA Alkylating Agents

    OpenAIRE

    Schatzschneider, Ulrich; Barton, Jacqueline K.

    2004-01-01

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covale...

  13. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  14. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    International Nuclear Information System (INIS)

    Kaassis, Abdessamad Y.A.; Xu, Si-Min; Guan, Shanyue; Evans, David G.; Wei, Min; Williams, Gareth R.

    2016-01-01

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co 1.2 Zn 3.8 (OH) 8 ](NO 3 ) 2 ·2H 2 O (CoZn-NO 3 ), [Ni 2 Zn 3 (OH) 8 ](NO 3 ) 2 ·2H 2 O (NiZn-NO 3 ) and [Zn 5 (OH) 8 ](NO 3 ) 2 ·2H 2 O (Zn-NO 3 ). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO 3 but when it was reacted with Zn-NO 3 the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO 3 and Zn-NO 3 is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO 3 and of Val into CoZn-NO 3 are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted

  15. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  16. Liquid sodium technology research

    International Nuclear Information System (INIS)

    Kim, W.C.; Lee, Y.W.; Nam, H.Y.; Chun, S.Y.; Kim, J.; Won, S.Y.

    1982-01-01

    This report describes the technology of impurity control and measurement of liquid sodium, problems associated with material degradation and change of heat transfer characteristics in liquid sodium, and the conceptual design of multipurpose sodium test loop. Discussion and the subsequent analysis are also made with regard to the test results for the sodium-H 2 0 reaction and its effects on the system. (author)

  17. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Yuan, E-mail: cyho@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Wang, Hong-Wen [Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan (China)

    2015-12-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP{sub 250} as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  18. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries

    Science.gov (United States)

    Armstrong, A. Robert; Bruce, Peter G.

    1996-06-01

    RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.

  19. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    International Nuclear Information System (INIS)

    Ho, Ching-Yuan; Wang, Hong-Wen

    2015-01-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP 250 as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  20. Facile synthesis of deoxycholate intercalated layered double hydroxide nanohybrids via a coassembly process

    International Nuclear Information System (INIS)

    Wu, Xiaowen; Wang, Shuang; Du, Na; Zhang, Renjie; Hou, Wanguo

    2013-01-01

    In this paper, we describe a synthesis strategy of deoxycholate (DC) intercalated layered double hydroxide (LDH) nanohybrids via a coassembly method at room temperature. For this strategy, LDH particles were delaminated to well-dispersed 2D nanosheets in formamide, and the resulting LDH nanosheets were then coassembled with DC anions into the DC intercalated LDH (DC-LDH) nanohybrids. The so-synthesized nanohybrids were characterized by XRD, TEM, FT-IR, elemental analyses and TG-DSC. It was found that the loading amount of DC in the nanohybrids could be easily controlled by changing the ratio of DC to LDH. In addition, the nanohybrids have similar characteristics with the DC-LDH nanohybrids synthesized by the hydrothermal method, including their DC loading, crystal structure, morphology and thermal gravimetric behavior. However, this strategy exhibited the advantages of short reaction time and mild experimental conditions compared with the hydrothermal method. - Graphical abstract: Deoxycholate intercalated layered double hydroxide nanohybrids were successfully synthesized via a coassembly strategy. In this strategy, the interlayer spaces of LDHs can be efficiently used for the intercalation of guest species. - Highlights: • Deoxycholate intercalated layered double hydroxide nanohybrids were synthesized via a coassembly strategy. • This strategy exhibited the advantages of short time and mild conditions. • This strategy can enable organic species to be readily intercalated into the LDH galleries

  1. An intercalated BSc degree is associated with higher marks in subsequent medical school examinations

    Directory of Open Access Journals (Sweden)

    Sinclair Hazel

    2009-05-01

    Full Text Available Abstract Background To compare medical students on a modern MBChB programme who did an optional intercalated degree with their peers who did not intercalate; in particular, to monitor performance in subsequent undergraduate degree exams. Methods This was a retrospective, observational study of anonymised databases of medical student assessment outcomes. Data were accessed for graduates, University of Aberdeen Medical School, Scotland, UK, from the years 2003 to 2007 (n = 861. The main outcome measure was marks for summative degree assessments taken after intercalating. Results Of 861 medical students, 154 (17.9% students did an intercalated degree. After adjustment for cohort, maturity, gender and baseline (3rd year performance in matching exam type, having done an IC degree was significantly associated with attaining high (18–20 common assessment scale (CAS marks in three of the six degree assessments occurring after the IC students rejoined the course: the 4th year written exam (p th year OSCE (p = 0.001 and the 5th year Elective project (p = 0.010. Conclusion Intercalating was associated with improved performance in Years 4 and 5 of the MBChB. This improved performance will further contribute to higher academic ranking for Foundation Year posts. Long-term follow-up is required to identify if doing an optional intercalated degree as part of a modern medical degree is associated with following a career in academic medicine.

  2. Study on intercalation of ionic liquid into montmorillonite and its property evaluation

    International Nuclear Information System (INIS)

    Takahashi, Chisato; Shirai, Takashi; Fuji, Masayoshi

    2012-01-01

    Present study report fabrication of a solid–liquid intercalated compound using montmorillonite and ionic liquid [IL; 1-Butyl-3-methylimidazolium tetrafluoroborate; ([BMIM][BF 4 ])]. The intercalation of IL into the interlayer of montmorillonite was revealed by swelling behavior measured by X-ray diffraction (XRD) and cation exchange capacity (CEC). The crystal swelling structure of intercalation compound was further evidenced by transmission electron microscope (TEM). From these results, the arrangement of [BMIM] + ions (cationic part of IL) into the unit layer were proposed. Furthermore, the montmorillonite showed electrical conductivity with the aid of IL. This demonstrates a successful attempt to fabricate a solid–liquid state nano-structure compound as possible transparent electrically conducting thin film. -- Highlights: ► Direct intercalation of ionic liquid into the montmorillonite was studied. ► The crystal swelling structure in liquid state was successfully characterized by TEM. ► We proposed the atomic arrangement of intercalated compound using ionic liquid. ► Ionic liquid is useful for fabricating an intercalated compound with electrical-conductivity.

  3. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping

    Science.gov (United States)

    Hendershot, Jenna M.; O'Brien, Patrick J.

    2014-01-01

    Nucleotide flipping is a common feature of DNA-modifying enzymes that allows access to target sites within duplex DNA. Structural studies have identified many intercalating amino acid side chains in a wide variety of enzymes, but the functional contribution of these intercalating residues is poorly understood. We used site-directed mutagenesis and transient kinetic approaches to dissect the energetic contribution of intercalation for human alkyladenine DNA glycosylase, an enzyme that initiates repair of alkylation damage. When AAG flips out a damaged nucleotide, the void in the duplex is filled by a conserved tyrosine (Y162). We find that tyrosine intercalation confers 140-fold stabilization of the extrahelical specific recognition complex, and that Y162 functions as a plug to slow the rate of unflipping by 6000-fold relative to the Y162A mutant. Surprisingly, mutation to the smaller alanine side chain increases the rate of nucleotide flipping by 50-fold relative to the wild-type enzyme. This provides evidence against the popular model that DNA intercalation accelerates nucleotide flipping. In the case of AAG, DNA intercalation contributes to the specific binding of a damaged nucleotide, but this enhanced specificity comes at the cost of reduced speed of nucleotide flipping. PMID:25324304

  4. Quasi-Free-Standing Graphene Monolayer on a Ni Crystal through Spontaneous Na Intercalation

    Directory of Open Access Journals (Sweden)

    Young S. Park

    2014-07-01

    Full Text Available Graphene on metal substrates often shows different electronic properties from isolated graphene because of graphene-substrate interactions. One needs to remove the metals with acids and then to transfer graphene to weakly interacting substrates to recover electrical properties inherent in graphene. This process is not easy and besides causes undesirable tears, defects, and impurities in graphene. Here, we report a method to recover the electronic structure of graphene from a strongly interacting Ni substrate by spontaneous Na intercalation. In order to characterize the intercalation process, the density-functional-theory calculations and angle-resolved photoemission-spectroscopy (ARPES and scanning-tunneling-microscopy (STM measurements are carried out. From the density-functional-theory calculations, Na atoms energetically prefer interface intercalation to surface adsorption for the graphene/Ni(111 surface. Unlike most intercalants, Na atoms intercalate spontaneously at room temperature due to a tiny diffusion barrier, which is consistent with our temperature-dependent ARPES and core-level photoemission spectroscopy, and with our submonolayer ARPES and STM results at room temperature. As a result of the spontaneous intercalation, the electronic structure of graphene is almost recovered, as confirmed by the Dirac cone with a negligible band gap in ARPES and the sixfold symmetry in STM.

  5. Optical properties of NbCl5 and ZnMg intercalated graphite compounds

    International Nuclear Information System (INIS)

    Jung, Eilho; Lee, Seokbae; Roh, Seulki; Kang, Jihoon; Park, Tuson; Hwang, Jungseek; Meng, Xiuqing; Tongay, Sefaattin

    2014-01-01

    We studied NbCl 5 and ZnMg alloy intercalated graphite compounds using an optical spectroscopy technique. These intercalated metallic graphite samples were quite challenging to obtain optical reflectance spectra since they were not flat and quite thin. By using both a new method and an in situ gold evaporation technique we were able to obtain reliable reflectance spectra of our samples in the far and mid infrared range (80–7000 cm −1 ). We extracted the optical constants including the optical conductivity and the dielectric function from the measured reflectance spectra using a Kramers–Kronig analysis. We also extracted the dc conductivity and the plasma frequencies from the optical conductivity and dielectric functions. NbCl 5 intercalated graphite samples show similar optical conductivity spectra as bare highly oriented pyrolytic graphite even though there are some differences in detail. ZnMg intercalated samples show significantly different optical conductivity spectra from the bare graphite. Optical spectroscopy is one of the most reliable experimental techniques to obtain the electronic band structures of materials. The obtained optical conductivities support the recent theoretically calculated electronic band structures of NbCl 5 and ZnMg intercalated graphite compounds. Our results also provide important information of electronic structures and charge carrier properties of these two new intercalated materials for applications. (paper)

  6. Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide.

    Science.gov (United States)

    Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P

    2003-03-24

    The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).

  7. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z. [Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720 (Hungary); Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Kukovecz, Á. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE “Lendület” Porous Nanocomposites Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Kónya, Z. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Carlson, S. [MAX IV Laboratory, Ole Römers väg 1, Lund SE-223 63 (Sweden); Sipos, P. [Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720 (Hungary); and others

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.

  8. Sodium sieving in children

    NARCIS (Netherlands)

    Rusthoven, Esther; Krediet, Raymond T.; Willems, Hans L.; Monnens, Leo A.; Schröder, Cornelis H.

    2005-01-01

    Sodium sieving is a consequence of dissociation between the amount of water and sodium transported over the peritoneal membrane. This dissociation occurs in the presence of aquaporin-mediated water transport. Sieving of sodium can be used as a rough measure for aquaporin-mediated water transport.

  9. The cation-deficient Ruddlesden-Popper oxysulfide Y2Ti2O5S2 as a layered sulfide: topotactic potassium intercalation to form KY2Ti2O5S2.

    Science.gov (United States)

    Rutt, Oliver J; Hill, Timothy L; Gál, Zoltán A; Hayward, Michael A; Clarke, Simon J

    2003-12-01

    Potassium intercalation into the cation-deficient n = 2 Ruddlesden-Popper oxysulfide Y(2)Ti(2)O(5)S(2) to form KY(2)Ti(2)O(5)S(2) has been carried out by reaction of the oxysulfide with potassium vapor in sealed metal tubes at 400 degrees C, potassium naphthalide in THF at 50 degrees C, or potassium in liquid ammonia at temperatures as low as -78 degrees C. Insertion of potassium is topotactic, and although a site 12-coordinate by oxide ions is vacant in the perovskite-type oxide slabs of the structure, potassium is too large to enter this site via the 4-coordinate window, and instead enters the rock-salt-type sulfide layers of the structure which necessitates a 30% increase in the lattice parameter c normal to the layers. In contrast with one of the sodium intercalates of Y(2)Ti(2)O(5)S(2) (beta-NaY(2)Ti(2)O(5)S(2)) in which sodium occupies a tetrahedral site in the sulfide layers, potassium favors an 8-coordinate site which necessitates a relative translation of adjacent oxide slabs. KY(2)Ti(2)O(5)S(2) is tetragonal: P4/mmm, a = 3.71563(4) A, c = 14.8682(2) A (at 298 K), Z = 1. Although the resistivity (3.4(1) x 10(3) Omega cm) is larger than would be expected for a metal, temperature independent paramagnetism dominates the magnetic susceptibility, and the material is electronically very similar to the analogous sodium intercalate beta-NaY(2)Ti(2)O(5)S(2) which features reduced-titanium-containing oxide layers of very similar geometry and electron count.

  10. A new inexpensive electrochemical meter for oxygen in sodium coolant

    International Nuclear Information System (INIS)

    Periaswami, G.; Rajan Babu, S.S.; Mathews, C.K.

    1987-01-01

    This report describes the development of an inexpensive oxygen meter for sodium coolant and gives the results of the test experiments. Calcia stabilized zirconia has been found to have necessary domain boundary characteristics at low temperatures for use as oxygen sensor in liquid sodium system. It is possible to obtain acceptable sensor cell resistance at temperatures as low as 230 C if K, K 2 O or Na, Na 2 O is used as reference electrode. The performance of these cells has been tested in bench top sodium loops over long periods. Their performance in terms of cell-out put variation with change in oxygen concentration in sodium has been found to be satisfactory. They also have sufficiently long life times since the kinetics of sodium attack on the electrolyte is slow at low temperatures. (author). 17 refs., 6 figs

  11. Liquid-like thermal conduction in intercalated layered crystalline solids

    Science.gov (United States)

    Li, B.; Wang, H.; Kawakita, Y.; Zhang, Q.; Feygenson, M.; Yu, H. L.; Wu, D.; Ohara, K.; Kikuchi, T.; Shibata, K.; Yamada, T.; Ning, X. K.; Chen, Y.; He, J. Q.; Vaknin, D.; Wu, R. Q.; Nakajima, K.; Kanatzidis, M. G.

    2018-03-01

    As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

  12. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  13. Alkali metal-refractory metal biphase electrode for AMTEC

    Science.gov (United States)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  14. Uncharged positive electrode composition

    Science.gov (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  15. Electrochemical sensor based on EDTA intercalated into layered double hydroxides of magnesium and aluminum for ultra trace level detection of lead (II)

    International Nuclear Information System (INIS)

    Dong, Junping; Fang, Qinghua; He, Haibo; Xu, Jiaqiang; Zhang, Yuan; Sun, Youbao

    2015-01-01

    The chelator ethylene diaminetetraacetate (EDTA) has been intercalated into layered double hydroxides by the anion exchange method. The resulting composites were characterized by powder X-ray diffraction, FTIR spectroscopy, thermogravimetry and X-ray photoelectron spectrometry. They were applied to modify a carbon paste electrode for the stripping voltammetric determination of lead (II) ions at ng L −1 levels. Stripping currents are linearly related to the logarithm of Pb (II) concentrations from 2 ng L −1 to 33 μg L −1 . The detection limit (3σ) is as low as 0.95 ng L −1 . The method was successfully applied to the determination of Pb (II) in spiked tap water without any pretreatment.(author)

  16. Report of sodium cavitation

    International Nuclear Information System (INIS)

    Murai, Hitoshi; Shima, Akira; Oba, Toshisaburo; Kobayashi, Ryoji; Hashimoto, Hiroyuki

    1975-01-01

    The damage of components for LMFBRs due to sodium cavitation is serious problem. This report summarizes the following items, (1) mechanism of the incipience of sodium cavitation, (2) damage due to sodium cavitation, (3) detection method for sodium cavitation, and (4) estimation method for sodium cavitation by the comparison with water cavitation. Materials were collected from the reports on liquid metal cavitation, sodium cavitation and water cavitation published from 1965 to now. The mechanism of the incipience of sodium cavitation cavitation parameters (mean location, distributed amount or occurrence aspect and stability), experiment of causing cavitation with Venturi tube, and growth of bubbles within superheated sodium. The sodium cavitation damage was caused by magnetostriction vibration method and with Venturi tube. The state of damage was investigated with the cavitation performance of a sodium pump, and the damage was examined in view of the safety of LMFBR plants. Sodium cavitation was detected with acoustic method, radiation method, and electric method. The effect of physical property of liquid on incipient cavitation was studied. These are thermodynamic effect based on quasistatic thermal equilibrium condition and the effect of the physical property of liquid based on bubble dynamics. (Iwase, T.)

  17. Sodium safety manual

    International Nuclear Information System (INIS)

    Hayes, D.J.; Gardiner, R.L.

    1980-09-01

    The sodium safety manual is based upon more than a decade of experience with liquid sodium at Berkeley Nuclear Laboratories (BNL). It draws particularly from the expertise and experience developed in the course of research work into sodium fires and sodium water reactions. It draws also on information obtained from the UKAEA and other sodium users. Many of the broad principles will apply to other Establishments but much of the detail is specific to BNL and as a consequence its application at other sites may well be limited. Accidents with sodium are at best unpleasant and at worst lethal in an extremely painful way. The object of this manual is to help prevent sodium accidents. It is not intended to give detailed advice on specific precautions for particular situations, but rather to set out the overall strategy which will ensure that sodium activities will be pursued safely. More detail is generally conveyed to staff by the use of local instructions known as Sodium Working Procedures (SWP's) which are not reproduced in this manual although a list of current SWP's is included. Much attention is properly given to the safe design and operation of larger facilities; nevertheless evidence suggests that sodium accidents most frequently occur in small-scale work particularly in operations associated with sodium cleaning and special care is needed in all such cases. (U.K.)

  18. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  19. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  20. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  1. Intercalation of iron hexacyano complexes in Zn,Al hydrotalcite. Part 2. A mid-infrared and Raman spectroscopic study

    International Nuclear Information System (INIS)

    Kloprogge, J.T.; Weier, Matt; Crespo, Inmaculada; Ulibarri, M.A.; Barriga, Cristobalina; Rives, V.; Martens, W.N.; Frost, R.L.

    2004-01-01

    Combined mid-IR and Raman spectroscopies indicate that intercalation of hexacyanoferrate (II) and (III) in the interlayer space of a Zn,Al hydrotalcite dried at 60 deg. C leads to layered solids where the intercalated species correspond to both hexacyanoferrate(II) and (III). This is an indication that depending on the oxidation state of the initial hexacyanoferrate, partial oxidation and reduction takes place upon intercalation. The symmetry of the intercalated hexacyanoferrate decreases from O h existing in the free anions to D 3d . The observation of a broad band around 2080 cm -1 is indicative of the removal of cyanide from the intercalation complex to the outside surface of the crystals. Its position in the intercalation complex is probably filled by a hydroxyl group

  2. Intercalation of alcohols into barium phenylphosphonate: Influence of the number and position of funcitonal groups in the guests on their arrangement in the intercalates.

    Czech Academy of Sciences Publication Activity Database

    Melánová, Klára; Beneš, L.; Zima, Vítězslav; Svoboda, J.; Růžička, A.

    2017-01-01

    Roč. 251, July (2017), s. 211-216 ISSN 0022-4596 R&D Projects: GA ČR(CZ) GA14-13368S Institutional support: RVO:61389013 Keywords : intercalation * barium phosphonate * alcohol s Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 2.299, year: 2016

  3. Resistivity features in intercalated graphite compounds with bromine and iodine chloride in the region of structural phase transitions in the layer of intercalate

    International Nuclear Information System (INIS)

    Ovsyijenko, Yi.V.; Lazarenko, O.A.; Matsuj, L.Yu.; Prokopov, O.Yi.

    2013-01-01

    In the paper anomalous changes of resistivity in graphite intercalated compounds with iodine chloride and bromine are investigated in the phase transition temperature interval. It is shown that these anomalies are caused by the change of carriers mobility in the phase transitional interval as well as by the origin of ''mobile ions liquids''

  4. Operando XRD studies as a tool for determination of transport parameters of mobile ions in electrode materials

    Science.gov (United States)

    Kondracki, Łukasz; Kulka, Andrzej; Świerczek, Konrad; Ziąbka, Magdalena; Molenda, Janina

    2017-11-01

    In this work a detailed operando XRD investigations of structural properties of LixMn2O4 manganese spinel are shown to be a complementary, successful method of determination of diffusion coefficient D and surface exchange coefficient k in the working electrode. Kinetics of lithium ions transport are estimated on the basis of rate of structural changes of the cathode material during a relaxation stage after a high current charge, i.e. during structural relaxation of the material. The presented approach seems to be applicable as a complementary method of determination of transport coefficients for all intercalation-type electrode materials.

  5. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    Science.gov (United States)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  6. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Energy Technology Data Exchange (ETDEWEB)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Ahmad, Haslina; Harun, Siti Norain [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia)

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  7. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  8. Metallization and stiffness of the Li-intercalated MoS{sub 2} bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, N.V. [Institute of Physics of National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Yakovkin, I.N., E-mail: yakov@iop.kiev.ua [Institute of Physics of National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Zeze, D.A. [School of Engineering & Computing Sciences, Durham University, Durham DH1 3LE (United Kingdom)

    2015-10-30

    Graphical abstract: The band structures, DOS, and Fermi surfaces for the MoS{sub 2} bilayer with adsorbed (a, c, e) and intercalated (b, d, f) Li (1 × 1) layer. - Highlights: • Adsorbed or intercalated Li monolayer makes the MoS{sub 2} surface metallic. • Increasing density of adsorbed Li leads to the nonmetal-to-metal transition in the layer. • Lithium inserted into MoS{sub 2} bilayers increases the interlayer interaction. - Abstract: Performed density-functional theory (DFT) calculations have shown that the Li adsorption on the MoS{sub 2} (0 0 0 1) surface, as well as Li intercalation into the space between MoS{sub 2} layers, transforms the semiconductor band structure of MoS{sub 2} into metallic. For the (√3 × √3) – R30° Li layer, the band structures of the MoS{sub 2} bilayer with adsorbed and intercalated Li are very similar, while for higher Li concentrations, the character of metallization for the adsorbed layer substantially differs from that of the MoS{sub 2}–Li–MoS{sub 2} layered system. In particular, for the adsorbed (1 × 1) Li monolayer, the increased density of the layer leads to the nonmetal-to-metal transition, which is evident from the appearance of the band crossing E{sub F} with an upward dispersion, pertinent to simple metals. It has been demonstrated that intercalated Li substantially increases the interlayer interaction in MoS{sub 2}. Specifically, the estimated 0.12 eV energy of the interlayer interaction in the MoS{sub 2} bilayer increases to 0.60 eV. This result is also consistent with results of earlier DFT calculations and available experimental results for alkali-intercalated graphene layers, which have demonstrated a substantial increase in the stiffness due to intercalation of alkalis.

  9. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  10. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    Science.gov (United States)

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  11. Rashba splitting of 100 meV in Au-intercalated graphene on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, D.; Varykhalov, A.; Sánchez-Barriga, J.; Rader, O. [Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Seyller, Th. [Institut für Physik, Technische Universität Chemnitz, Reichenhainer Strasse 70, 09126 Chemnitz (Germany)

    2016-04-25

    Intercalation of Au can produce giant Rashba-type spin-orbit splittings in graphene, but this has not yet been achieved on a semiconductor substrate. For graphene/SiC(0001), Au intercalation yields two phases with different doping. We observe a 100 meV Rashba-type spin-orbit splitting at 0.9 eV binding energy in the case of p-type graphene after Au intercalation. We show that this giant splitting is due to hybridization and much more limited in energy and momentum space than for Au-intercalated graphene on Ni.

  12. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  13. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  14. Real-time tracking of hydrogen peroxide secreted by live cells using MnO{sub 2} nanoparticles intercalated layered doubled hydroxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Asif, Muhammad; Aziz, Ayesha [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Dao, Anh Quang [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Hue Industrial College, 70 Nguyen Hue, Hue, Thua Thien Hue, 531081 (Viet Nam); Hakeem, Abdul; Wang, Haitao; Dong, Shuang; Zhang, Guoan [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Xiao, Fei [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China); Liu, Hongfang, E-mail: liuhf@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China)

    2015-10-22

    We report a facile and green method for the fabrication of new type of electrocatalysts based on MnO{sub 2} nanoparticles incorporated on MgAl LDH P-type semiconductive channel and explore its practical applications as high-performance electrode materials for electrochemical biosensor. A series of MgAl layered doubled hydroxide (LDH) nanohybrids with fixed Mg/Al (M{sup 2+}/M{sup 3+} atomic ratio of 3) and varied amount of MnCl{sub 2}.4H{sub 2}O are fabricated by a facile co-precipitation method. This approach demonstrates the combination of distinct properties including excellent intercalation features of LDH for entrapping nanoparticles and high loading of MnO{sub 2} nanoparticles in the host layers of LDH. Among all samples, Mn5–MgAl with 0.04% loaded manganese has a good crystalline morphology. A well-dispersed MnO{sub 2} nanoparticles encapsulated into the host matrix of hydrotalcite exhibit enhanced electrocatalytic activity towards the reduction of H{sub 2}O{sub 2} as well as excellent stability, selectivity and reproducibility due to synergistic effect of good catalytic ability of MnO{sub 2} and conductive MgAl LDH. Glass carbon electrode (GCE) modified with Mn5–MgAl possesses a wide linear range of 0.05–78 mM, lowest detection limit 5 μM (S/N = 3) and detection sensitivity of 0.9352 μAmM{sup −1}. This outstanding performance enables it to be used for real-time tracking of H{sub 2}O{sub 2} secreted by live HeLa cells. This work may provide new insight in clinical diagnosis, on-site environmental analysis and point of care testing devices. - Highlights: • MnO{sub 2}MgAl nanohybrids have been fabricated by a facile and robust co-precipitation approach. • MgAl layered doubled hydroxide can be used for the intercalation of MnO{sub 2} nanoparticles. • MgAl layered doubled hydroxide nanohybrid serves as p-type semiconductive channel for efficient electrocatalysis. • The nanohybrid electrode demonstrates excellent electrochemical performance

  15. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  16. Sodium aerosol recovering device

    International Nuclear Information System (INIS)

    Fujimori, Koji; Ueda, Mitsuo; Tanaka, Kazuhisa.

    1997-01-01

    A main body of a recovering device is disposed in a sodium cooled reactor or a sodium cooled test device. Air containing sodium aerosol is sucked into the main body of the recovering device by a recycling fan and introduced to a multi-staged metal mesh filter portion. The air about against each of the metal mesh filters, and the sodium aerosol in the air is collected. The air having a reduced sodium aerosol concentration circulates passing through a recycling fan and pipelines to form a circulation air streams. Sodium aerosol deposited on each of the metal mesh filters is scraped off periodically by a scraper driving device to prevent clogging of each of the metal filters. (I.N.)

  17. [Sodium intake during pregnancy].

    Science.gov (United States)

    Delemarre, F M; Franx, A; Knuist, M; Steegers, E A

    1999-10-23

    International studies have yielded contradictory results on efficacy of a sodium-restricted diet during pregnancy in preventing and curing hypertension of pregnancy. In the Netherlands three studies have been performed to investigate the value of dietary sodium restriction in pregnancy; they concerned epidemiology, prevention and treatment. Midwives often prescribed this dietary intervention. Urinary sodium excretion was not related to blood pressure changes in pregnancy. Dietary sodium restriction from the third month of pregnancy onwards did not reduce the incidence of pregnancy-induced hypertension. Maternal side effects were a decreased intake of nutrients, decreased maternal weight gain, lowered plasma volume and stimulation of the renin-angiotensin-aldosterone system. A dietary sodium restriction in women with early symptoms of pregnancy-induced hypertension showed no therapeutic effect on blood pressure. There is no place for dietary sodium restriction in the prevention or treatment of hypertension in pregnancy.

  18. Sodium fire protection

    International Nuclear Information System (INIS)

    Raju, C.; Kale, R.D.

    1979-01-01

    Results of experiments carried out with sodium fires to develop extinguishment techniques are presented. Characteristics, ignition temperature, heat evolution and other aspects of sodium fires are described. Out of the powders tested for extinguishment of 10 Kg sodium fires, sodium bi-carbonate based dry chemical powder has been found to be the best extinguisher followed by large sized vermiculite and then calcium carbonate powders distributed by spray nozzles. Powders, however, do not extinguish large fires effectively due to sodium-concrete reaction. To control large scale fires in a LMFBR, collection trays with protective cover have been found to cause oxygen starvation better than flooding with inert gas. This system has an added advantage in that there is no damage to the sodium facilities as has been in the case of powders which often contain chlorine compounds and cause stress corrosion cracking. (M.G.B.)

  19. Synchrotron x-ray diffraction studies of the structural properties of electrode materials in operating battery cells

    International Nuclear Information System (INIS)

    Thurston, T.R.; Jisrawi, N.M.; Mukerjee, S.; Yang, X.Q.; McBreen, J.; Daroux, M.L.; Xing, X.K.

    1996-01-01

    Hard x rays from a synchrotron source were utilized in diffraction experiments which probed the bulk of electrode materials while they were operating in situ in battery cells. Two technologically relevant electrode materials were examined; an AB 2 -type anode in a nickel endash metal endash hydride cell and a LiMn 2 O 4 cathode in a Li-ion open-quote open-quote rocking chair close-quote close-quote cell. Structural features such as lattice expansions and contractions, phase transitions, and the formation of multiple phases were easily observed as either hydrogen or lithium was electrochemically intercalated in and out of the electrode materials. The relevance of this technique for future studies of battery electrode materials is discussed. copyright 1996 American Institute of Physics

  20. Kaolinite Nanocomposite Platelets Synthesized by Intercalation and Imidization of Poly(styrene-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    Pieter Samyn

    2015-07-01

    Full Text Available A synthesis route is presented for the subsequent intercalation, exfoliation and surface modification of kaolinite (Kln by an imidization reaction of high-molecular weight poly(styrene-co-maleic anhydride or SMA in the presence of ammonium hydroxide. In a first step, the intercalation of ammonolyzed SMA by guest displacement of intercalated dimethylsulfoxide has been proven. In a second step, the imidization of ammonolyzed SMA at 160 °C results in exfoliation of the kaolinite layers and deposition of poly(styrene-co-maleimide or SMI nanoparticles onto the kaolinite surfaces. Compared with a physical mixture of Kln/SMI, the chemically reacted Kln/SMI provides more efficient exfoliation and hydrogen bonding between the nanoparticles and the kaolinite. The kaolinite nanocomposite particles are synthesized in aqueous dispersion with solid content of 65 wt %. The intercalation and exfoliation are optimized for a concentration ratio of Kln/SMI = 70:30, resulting in maximum intercalation and interlayer distance in combination with highest imide content. After thermal curing at 135 °C, the imidization proceeds towards a maximum conversion of the intermediate amic acid moieties. The changes in O–H stretching and kaolinite lattice vibrations have been illustrated by infrared and FT-Raman spectroscopy, which allow for a good quantification of concentration and imidization effects.

  1. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite

    Science.gov (United States)

    Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan

    2018-06-01

    Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.

  2. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy

    Science.gov (United States)

    Díaz, Agustín; González, Millie L.; Pérez, Riviam J.; David, Amanda; Mukherjee, Atashi; Báez, Adriana; Clearfield, Abraham

    2014-01-01

    We report the use of zirconium phosphate nanoplatelets (ZrP) for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct-ion exchange and was tested in-vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is produced with an interlayer distance of 9.3 Å. The in-vitro release profile of the intercalated drug by pH stimulus shows that at low pH under lysosomal conditions the platinum complex is released with simultaneous hydrolysis of the zirconium phosphate material, while at higher pH the complex is not released. Experiments with the MCF-7 cell line show that cisPt@ZrP reduced the cell viability up to 40%. The cisPt@ZrP intercalation product is envisioned as a future nanotherapy agent for cancer. Taking advantage of the shape and sizes of the ZrP particles and controlled release of the drug at low pH, it is intended to exploit the enhanced permeability and retention effect of tumors, as well as their intrinsic acidity, for the destruction of malignant cells. PMID:24072038

  3. Thermal analysis and infrared emission spectroscopic study of halloysite-potassium acetate intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hongfei [School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 China (China); School of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Liu, Qinfu [School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 China (China); Yang, Jing [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Jinshan [School of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2010-11-20

    The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water, (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 {sup o}C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm{sup -1}. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm{sup -1}. Dehydration was completed by 300 {sup o}C and partial dehydroxylation by 350 {sup o}C. The inner hydroxyl group remained until around 500 {sup o}C.

  4. Adsorption of Phosphate Ion in Water with Lithium-Intercalated Gibbsite

    Directory of Open Access Journals (Sweden)

    Riwandi Sihombing

    2015-12-01

    Full Text Available In order to enhance adsorption capacity of gibbsite (Al(OH3 as an adsorbent for the adsorption of phosphate in water, gibbsite was modified through lithium-intercalation. The purification method of Tributh and Lagaly was applied prior to intercalation. The Li-Intercalation was prepared by the dispersion of gibbsite into LiCl solution for 24 hours. This intercalation formed an cationic clay with the structure of [LiAl2(OH6]+ and exchangeable Cl- anions in the gibbsite interlayer. A phosphate adsorption test using Lithium-intercalated gibbsite (LIG resulted in optimum adsorption occurring at pH 4.5 with an adsorption capacity of 11.198 mg phosphate/g LIG which is equivalent with 1.04 wt% LIG. The adsorption capacity decreased with decreasing amounts of H2PO4-/HPO4- species in the solution. This study showed that LIG has potential as an adsorbent for phosphate in an aqueous solution with pH 4.5–9.5.

  5. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  6. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  7. Sodium fill of FFTF

    International Nuclear Information System (INIS)

    Waldo, J.B.; Greenwell, R.K.; Keasling, T.A.; Collins, J.R.; Klos, D.B.

    1980-02-01

    With construction of the Fast Flux Test Facility (FFTF) completed, the first major objective in the startup program was to fill the sodium systems. A sodium fill sequence was developed to match construction completion, and as systems became available, they were inerted, preheated, and filled with sodium. The secondary sodium systems were filled first while dry refueling system testing was in progress in the reactor vessel. The reactor vessel and the primary loops were filled last. This paper describes the methods used and some of the key results achieved for this major FFTF objective

  8. Fires of sodium installations

    International Nuclear Information System (INIS)

    Hajek, L.; Tlalka, R.

    1984-01-01

    A survey is presented of the literature dealing with fires of sodium installations between 1974 and 1981. Also described are three experimental fires of ca 50 kg of sodium in an open area, monitored by UJV Rez. The experimental conditions of the experiments are described and a phenomenological description is presented of the course of the fires. The experiments showed a relationship between wind velocity in the area surrounding the fire and surface temperature of the sodium flame. Systems analysis methods were applied to sodium area, spray and tube fires. (author)

  9. Functions of chalcogenide electrodes in solutions of complexing reagents and interfering ions

    International Nuclear Information System (INIS)

    Kiyanskij, V.V.

    1990-01-01

    The possibility to modify chalcogenide electrodes and their behaviour in solutions of complexing reagents for the development of new methods of potentiometric titration has been studied. It is shown that complexing reagents (EDTA, cupferron, 8-hydroxyquinoline, sodium dithiocarbaminate) and Cu(2), Hg(2) produce a strong effect on the functions of Ag, Cu, Cd, Pb - selective electrodes, which is used for titration of potential-determining and non-potential-determining ions ions (Sr 2+ , La 3+ etc.) and also for modification of sulfide-selecting electrode. A method of potentiometric titration of sulfates and chlorides with modified Cd- and Ag-selective electrodes is suggested

  10. Antifouling composites with self-adaptive controlled release based on an active compound intercalated into layered double hydroxides

    Science.gov (United States)

    Yang, Miaosen; Gu, Lianghua; Yang, Bin; Wang, Li; Sun, Zhiyong; Zheng, Jiyong; Zhang, Jinwei; Hou, Jian; Lin, Cunguo

    2017-12-01

    This paper reports a novel method to prepare the antifouling composites with properties of self-adaptive controlled release (defined as control the release rate autonomously and adaptively according to the change of environmental conditions) by intercalation of sodium paeonolsilate (PAS) into MgAl and ZnAl layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1 and 3:1, respectively. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The controlled release behavior triggered by temperature for the PAS-LDH composites has been investigated, and the results show that the release rate of all PAS-LDH composites increases as the increase of temperature. However, the MgAl-PAS-LDH composites (Mg2Al-PAS-LDH and Mg3Al-PAS-LDH) exhibit the increased release rate of 0.21 ppm/°C from 15 to 30 °C in 3.5% NaCl solution, more than three times of the ZnAl-PAS-LDH composites (0.06 ppm/°C), owing to the confined microenvironment influenced by metal types in LDH layers. In addition, a possible diffusion-controlled process with surface diffusion, bulk diffusion and heterogeneous flat surface diffusion has been revealed via fitting four kinetic equations. Moreover, to verify the practical application of the PAS-LDH composites, a model coating denoted as Mg2Al-PAS-LDH coating was fabricated. The release result displays that the release rate increases or decreases as temperature altered at 15 and 25 °C alternately, indicating its self-adaptive controlled release behavior with temperature. Moreover, the superior resistance to the settlement of Ulva spores at 15 and 25 °C was observed for the Mg2Al-PAS-LDH coating, as a result of the controllable release of antifoulant. Therefore, this work provides a facile and effective method for the fabrication of antifouling composites with self-adaptive controlled release behavior in response to temperature, which can be used to prolong

  11. The forces that shape embryos: physical aspects of convergent extension by cell intercalation

    International Nuclear Information System (INIS)

    Keller, Ray; Shook, David; Skoglund, Paul

    2008-01-01

    We discuss the physical aspects of the morphogenic process of convergence (narrowing) and extension (lengthening) of tissues by cell intercalation. These movements, often referred to as 'convergent extension', occur in both epithelial and mesenchymal tissues during embryogenesis and organogenesis of invertebrates and vertebrates, and they play large roles in shaping the body plan during development. Our focus is on the presumptive mesodermal and neural tissues of the Xenopus (frog) embryo, tissues for which some physical measurements have been made. We discuss the physical aspects of how polarized cell motility, oriented along future tissue axes, generate the forces that drive oriented cell intercalation and how this intercalation results in convergence and extension or convergence and thickening of the tissue. Our goal is to identify aspects of these morphogenic movements for further biophysical, molecular and cell biological, and modeling studies

  12. Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study

    Science.gov (United States)

    Jiang, Xiankai; Song, Bo; Tománek, David

    2018-04-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.

  13. Intercalating cobalt between graphene and iridium (111): Spatially dependent kinetics from the edges

    Science.gov (United States)

    Vlaic, Sergio; Rougemaille, Nicolas; Kimouche, Amina; Burgos, Benito Santos; Locatelli, Andrea; Coraux, Johann

    2017-10-01

    Using low-energy electron microscopy, we image in real time the intercalation of a cobalt monolayer between graphene and the (111) surface of iridium. Our measurements reveal that the edges of a graphene flake represent an energy barrier to intercalation. Based on a simple description of the growth kinetics, we estimate this energy barrier and find small, but substantial, local variations. These local variations suggest a possible influence of the graphene orientation with respect to its substrate and of the graphene edge termination on the energy value of the barrier height. Besides, our measurements show that intercalated cobalt is energetically more favorable than cobalt on bare iridium, indicating a surfactant role of graphene.

  14. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed

    2017-05-23

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  15. Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yuki [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-07

    We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ion battery.

  16. Intercalation of diclofenac in modified Zn/Al hydrotalcite-like preparation

    Science.gov (United States)

    Heraldy, E.; Suprihatin, R. W.; Pranoto

    2016-02-01

    The intercalation of a pharmaceutically active material diclofenac into modified Zn/Al Hydrotalcite-like (Zn/Al HTlc) preparation has been investigated by the coprecipitation and ion exchange method, respectively. The synthetic materials were characterized using X- Ray Diffraction (XRD); Fourier transforms infrared spectroscopy (FTIR); Scanning Electron Microscope (SEM); X-Ray Fluorescence (XRF) and surface area analyzer. The results show that the basal spacing of the product was expanded to 11.03 A for direct synthesis and 10.68 A for indirect synthesis, suggesting that diclofenac anion was intercalated into Zn/Al HTlc and arranged in a tilted bilayer fashion and the specific surface area of material increased after the intercalation of diclofenac.

  17. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed; Kirmani, Ahmad R.; Barlow, Stephen; Marder, Seth R.; Amassian, Aram

    2017-01-01

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  18. Preparation and characterization of trans-RhCl(CO)(TPPTS)2-intercalated layered double hydroxides

    International Nuclear Information System (INIS)

    Zhang Xian; Wei Min; Pu Min; Li Xianjun; Chen Hua; Evans, David G.; Duan Xue

    2005-01-01

    trans-RhCl(CO)(TPPTS) 2 (TPPTS=tris(m-sulfonatophenyl)phosphine) has been intercalated into Zn-Al layered double hydroxides (LDHs) by the method of ion exchange. The structure, composition and thermal stability of the composite material have been characterized by powder X-ray diffraction, Fourier transform infrared and 31 P solid-state magic-angle spinning nuclear magnetic resonance spectroscopy, elemental analysis, thermogravimetry, and differential thermal analysis. The geometry of trans-RhCl(CO)(TPPTS) 2 was fully optimized using the PM3 semiempirical molecular orbital method, and a schematic model for the intercalated species has been proposed. The thermal stability of trans-RhCl(CO)(TPPTS) 2 is significantly enhanced by intercalation, which suggests that such materials may have prospective application as the basis of a supported catalyst system for the hydroformylation of higher olefins

  19. Mössbauer study of pH dependence of iron-intercalation in montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E., E-mail: kuzmann@caesar.elte.hu [Eötvös Loránd University, Institute of Chemistry (Hungary); Garg, V. K.; Singh, H.; Oliveira, A. C. de; Pati, S. S. [University of Brasília, Institute of Physics (Brazil); Homonnay, Z.; Rudolf, M. [Eötvös Loránd University, Institute of Chemistry (Hungary); Molnár, Á. M.; Kovács, E. M. [University of Debrecen, Imre Lajos Isotope Laboratory, Department of Colloid and Environmental Chemistry (Hungary); Baranyai, E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Kubuki, S. [Tokyo Metropolitan University, Department of Chemistry (Japan); Nagy, N. M.; Kónya, J. [University of Debrecen, Imre Lajos Isotope Laboratory, Department of Colloid and Environmental Chemistry (Hungary)

    2016-12-15

    {sup 57}Fe Mössbauer spectroscopy and XRD have successfully been applied to show the incorporation of Fe ion into the interlayer space of montmorillonite via treatment with FeCl {sub 3} in acetone. The 78K {sup 57}Fe Mössbauer spectra of montmorillonite samples reflected magnetically split spectrum part indicating the intercalation of iron into the interlayer of montmorillonite via the treatment with FeCl {sub 3}+acetone and washed with water until the initial pH=2.3 increased to pH=4.14. It was found that the occurrence of intercalated iron in the form of oxide-oxihydroxide in montmorillonite increases with the pH. Intercalation was confirmed by the gradual increase in the basal spacing d{sub 001} with pH.

  20. Intercalation of hydrotalcites with hexacyanoferrate(II) and (III)-a thermoRaman spectroscopic study

    International Nuclear Information System (INIS)

    Frost, Ray L.; Musumeci, Anthony W.; Bouzaid, Jocelyn; Adebajo, Moses O.; Martens, Wayde N.; Theo Kloprogge, J.

    2005-01-01

    Raman spectroscopy using a hot stage indicates that the intercalation of hexacyanoferrate(II) and (III) in the interlayer space of a Mg, Al hydrotalcites leads to layered solids where the intercalated species is both hexacyanoferrate(II) and (III). Raman spectroscopy shows that depending on the oxidation state of the initial hexacyanoferrate partial oxidation and reduction takes place upon intercalation. For the hexacyanoferrate(III) some partial reduction occurs during synthesis. The symmetry of the hexacyanoferrate decreases from O h existing for the free anions to D 3d in the hexacyanoferrate interlayered hydrotalcite complexes. Hot stage Raman spectroscopy reveals the oxidation of the hexacyanoferrate(II) to hexacyanoferrate(III) in the hydrotalcite interlayer with the removal of the cyanide anions above 250 deg. C. Thermal treatment causes the loss of CN ions through the observation of a band at 2080cm -1 . The hexacyanoferrate (III) interlayered Mg, Al hydrotalcites decomposes above 150 deg. C

  1. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.

    Science.gov (United States)

    Okubo, Masashi; Yamada, Atsuo

    2017-10-25

    Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.

  2. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  3. Probing the role of intercalating protein sidechains for kink formation in DNA.

    Directory of Open Access Journals (Sweden)

    Achim Sandmann

    Full Text Available Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP, one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future.

  4. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    Science.gov (United States)

    Y. A. Kaassis, Abdessamad; Xu, Si-Min; Guan, Shanyue; Evans, David G.; Wei, Min; Williams, Gareth R.

    2016-06-01

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co1.2Zn3.8(OH)8](NO3)2·2H2O (CoZn-NO3), [Ni2Zn3(OH)8](NO3)2·2H2O (NiZn-NO3) and [Zn5(OH)8](NO3)2·2H2O (Zn-NO3). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO3 but when it was reacted with Zn-NO3 the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an "X" shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO3 and Zn-NO3 is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO3 and of Val into CoZn-NO3 are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles.

  5. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs

    International Nuclear Information System (INIS)

    Xia Shengjie; Ni Zheming; Xu Qian; Hu Baoxiang; Hu Jun

    2008-01-01

    Zn/Al layered double hydroxides (LDHs) were intercalated with the anionic antihypertensive drugs Enalpril, Lisinopril, Captopril and Ramipril by using coprecipitation or ion-exchange technique. TG-MS analyses suggested that the thermal stability of Ena - , Lis - (arranged with monolayer, resulted from X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR) analysis was enhanced much more than Cap - and Ram - (arranged with bilayer). The release studies show that the release rate of all samples markedly decreased in both pH 4.25 and 7.45. However, the release time of Ena - , Lis - were much longer compared with Cap - , Ram - in both pH 4.25 and 7.45, it is possible that the intercalated guests, arranged with monolayer in the interlayer, show lesser repulsive force and strong affinity with the LDH layers. And the release data followed both the Higuchi-square-root law and the first-order equation well. Based on the analysis of batch release, intercalated structural models as well as the TG-DTA results, we conclude that for drug-LDH, stronger the affinity between intercalated anions and the layers is, better the thermal property and the stability to the acid attack of drug-LDH, and the intercalated anions are easier apt to monolayer arrangement within the interlayer, were presented. - Graphical abstract: A series of antihypertensive drugs including Enalpril, Lisinopril, Captopril and Ramipril were intercalated into Zn/Al-NO 3 -LDHs successfully by coprecipitation or ion-exchange technique. We focus on the structure, thermal property and low/controlled release property of as-synthesized drug-LDH composite intended for the possibility of applying these LDH-antihypertensive nanohybrids in drug delivery and controlled release systems

  6. Electrochemical detection of specific DNA sequences from PCR amplicons on carbon and mercury electrodes using Meldola's Blue as an intercalator

    Czech Academy of Sciences Publication Activity Database

    Kerman, K.; Özkan, D.; Kara, P.; Karadeniz, H.; Özkan, Z.; Erdem, A.; Jelen, František; Özsöz, M.

    2004-01-01

    Roč. 28, č. 5 (2004), s. 523-533 ISSN 1010-7614 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA * biosensor * Meldola's Blue Subject RIV: BO - Biophysics Impact factor: 0.579, year: 2004

  7. Neutron scattering in chemistry (scattering from layer lattices and their intercalation compounds - an illustration)

    International Nuclear Information System (INIS)

    White, J.W.

    1983-01-01

    Three cases of molecules on a free surface or inside layer lattice intercalation compounds are discussed to illustrate the use of neutron scattering techniques. The first is the second stage alkali metal-graphite intercalation compounds such as C 24 Cs which adsorb hydrogen, methane and other gases. The second case is methane physisorbed on the basal plane of graphite where the methane-methane interactions are relatively strong. Rotational tunnelling spectroscopy is sensitive to the parameters of the potential. The third case is that of water physisorbed on clay materials such as vermiculite or montmorillonite where the layer thickness can be changed from one to fifty layers. (UK)

  8. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    Science.gov (United States)

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Isolation of high quality graphene from Ru by solution phase intercalation

    Science.gov (United States)

    Koren, E.; Sutter, E.; Bliznakov, S.; Ivars-Barcelo, F.; Sutter, P.

    2013-09-01

    We introduce a method for isolating graphene grown on epitaxial Ru(0001)/α-Al2O3. The strong graphene/Ru(0001) coupling is weakened by electrochemically driven intercalation of hydrogen underpotentially deposited in aqueous KOH solution, which allows the penetration of water molecules at the graphene/Ru(0001) interface. Following these electrochemically driven processes, the graphene can be isolated by electrochemical hydrogen evolution and transferred to arbitrary supports. Raman and transport measurements demonstrate the high quality of the transferred graphene. Our results show that intercalation, typically carried out in vacuum, can be extended to solution environments for graphene processing under ambient conditions.

  10. The effect of transition metals on the structure of h-BN intercalation compounds

    International Nuclear Information System (INIS)

    Budak, Erhan; Bozkurt, Cetin

    2004-01-01

    In this study, hexagonal boron nitride (h-BN) were synthesized by the modified O'Connor method in the presence of various metal nitrates [M(NO 3 ) x , M=Cr, Mn, Fe, Co, Ni, Cu, Zn, and Ag]. The composites were analyzed by FTIR, XRF, XRD, and SEM techniques. XRD results indicated a change in the interlayer spacing due to the intercalation of Cr, Mn, Fe and Ag. SEM analyses illustrated the grain growth upon metal intercalation even at a temperature of 1320 K

  11. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaassis, Abdessamad Y.A. [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Xu, Si-Min; Guan, Shanyue; Evans, David G. [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wei, Min, E-mail: weimin@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Williams, Gareth R., E-mail: g.williams@ucl.ac.uk [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom)

    2016-06-15

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co{sub 1.2}Zn{sub 3.8}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (CoZn-NO{sub 3}), [Ni{sub 2}Zn{sub 3}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (NiZn-NO{sub 3}) and [Zn{sub 5}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (Zn-NO{sub 3}). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO{sub 3} but when it was reacted with Zn-NO{sub 3} the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO{sub 3} and Zn-NO{sub 3} is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO{sub 3} and of Val into CoZn-NO{sub 3} are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted.

  12. Structural properties and magnetic susceptibility of iron-intercalated titanium ditelluride

    International Nuclear Information System (INIS)

    Pleshchev, V.G.; Titov, A.N.; Titova, S.G.; Kuranov, A.V.

    1997-01-01

    Structural peculiarities and magnetic susceptibility of titanium ditelluride, intercalated by iron, are studied. It is established that the basic motive of crystal structure by intercalation is preserved and the iron atoms are locates in the van der Waals gaps in positions with octahedral coordination. It is shown that the magnetic susceptibility of the Fe 0.25 TiT 2 sample increases approximately by 20 times. The magnetic susceptibility for the Fe 0.33 TiTe 2 samples becomes even much higher

  13. Visibility in sodium fume

    International Nuclear Information System (INIS)

    Hughes, G.W.; Anderson, N.R.

    1971-01-01

    The appearance of sodium fume of unknown concentration and the effects of short term exposure on unprotected workers is described. The molecular extinction coefficient of sodium fume is calculated from which light transmission data, and a rapid method for the estimation of the fume concentration is proposed. (author)

  14. Sodium outleakage detection

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Effective detection of outleakage from sodium facilities permits timely intervention capable of limiting the consequences of such leakage. Two types of detection systems are described: local and overall detection. The use of two independent systems in sodium facilities is recommended. (author)

  15. Annular sodium flowsensor

    International Nuclear Information System (INIS)

    Kaiser, W.C.; Brewer, J.; Forster, G.A.

    1983-01-01

    This paper describes a unique eddy-current type liquid sodium flowsensor, designed as a joint effort between Argonne National Laboratory and Kaman Instrumentation Corp. Test results are included for operation of the flowsensor mounted on a sodium test loop whose configuration simulates the actual operating conditions, except for the magnetic field of the ALIP

  16. High-resolution 13C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    KAUST Repository

    Bouhrara, M.; Saih, Y.; Wågberg, T.; Goze-Bac, C.; Abou-Hamad, E.

    2011-01-01

    charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites

  17. Oxygen electrodes for energy conversion and storage. Annual report, 1 October 1977-30 September 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-15

    Research on the development of high performance, long life O/sub 2/ cathodes for both alkaline and acid electrolytes for a spectrum of applications including industrial electrolysis, fuel cells, and metal-air batteries is described. Oxygen electrocatalysts studied include platinum, silver, underpotential deposited layers and alloy metal layers on noble metal substrates, intercalated graphite, transition metal macrocyclic complexes, and transition metal oxides. Research on gas fed electrodes is also described. Results are presented and discussed in detail. An appendix on the electrodeposition of platinum crystallites on graphite substrates is included. (WHK)

  18. Impedance analysis of DNA and DNA-drug interactions on thin mercury film electrodes

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Dvořák, Jakub; Jelen, František; Vetterl, Vladimír

    2002-01-01

    Roč. 32, č. 2 (2002), s. 167-179 ISSN 1040-8347 R&D Projects: GA AV ČR IAA4004901; GA AV ČR IAA4004002; GA AV ČR IBS5004107 Grant - others:GA FRVŠ(XC) G40583; GA FRVŠ(XC) F40564 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemical impedance spectroscopy * intercalators * DNA at electrode surface Subject RIV: BO - Biophysics Impact factor: 2.074, year: 2002

  19. Total-body sodium and sodium excess

    International Nuclear Information System (INIS)

    Aloia, J.F.; Cohn, S.H.; Abesamis, C.; Babu, T.; Zanzi, I.; Ellis, K.

    1980-01-01

    Total-body levels of sodium (TBNa), chlorine (TBCI), calcium (TBCa), and potassium (TBK) were measured by neutron activation and analysis of results by whole body counting in 66 postmenopausal women. The relationship between TBNa, and TBCl, TBK, and TBCa on the one hand, and height and weight on the other, were found to compare with those previously reported. The hypothesis that TBNa and TBCl are distributed normally could not be rejected. The sodium excess (Na/sub es/) is defined as the sodium that is present in excess of that associated with the extracellular fluid (chlorine) space; the Na/sub es/ approximates nonexchangeable bone sodium. In these 66 postmenopausal women, and in patients with different endocrinopathies previously described, the values on Na/sub es/ did not differ from the normal values except in the thyrotoxicosis patients, where they were decreased. A close relationship between Na/sub es/ and TBCa was maintained in the endocrinopathies studied. This relationship was found in conditions accompanied by either an increment or a loss of skeletal mass. It appears that the NA/sub es/ value is primarily dependent upon the calcium content of bone

  20. Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions.

    Science.gov (United States)

    Mitzi, David B; Medeiros, David R; Malenfant, Patrick R L

    2002-04-22

    Crystals of several new hybrid tin(II) iodide-based perovskites, involving 2,3,4,5,6- pentafluorophenethylammonium or phenethylammonium cation bilayers and intercalated aryl or perfluoroaryl molecules, were grown by slow evaporation of a methanol solution containing the hybrid perovskite and the intercalating species. The (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) structure was solved at -75 degrees C in a monoclinic C2/c subcell [a = 41.089(12) A, b = 6.134(2) A, c = 12.245(3) A, beta = 94.021(5) degrees, Z = 4] and consists of sheets of corner-sharing distorted SnI(6) octahedra separated by bilayers of pentafluorophenethylammonium cations. The intercalated benzene molecules form a single well-ordered layer interposed between adjacent fluoroaryl cation layers. The corresponding hybrid with an unfluorinated organic cation and fluorinated intercalating molecule, (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)), is isostructural [a = 40.685(4) A, b = 6.0804(6) A, c = 12.163(1) A, beta = 93.136(2) degrees, Z = 4]. For each intercalated system, close C...C contacts (3.44-3.50 A) between the aromatic cation and the intercalated molecule are indicative of a significant face-to-face interaction, similar to that found in the complex C(6)H(6).C(6)F(6). Crystal growth runs with the organic cation and prospective intercalating molecule either both fluorinated or both unfluorinated did not yield stable intercalated compounds, demonstrating the significance of fluoroaryl-aryl interactions in the current intercalated structures. Thermal analysis of (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) and (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)) crystals yields, in addition to the characteristic transitions of the parent perovskite, endothermic transitions [12.6(5) and 32.1(8) kJ/mol, respectively] with an onset at 145 degrees C and a weight loss corresponding to the complete loss of the intercalated molecule. The relatively high deintercalation temperature (well above the boiling point of

  1. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  2. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor

    OpenAIRE

    Yuqin Zou; Shuangyin Wang

    2015-01-01

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are us...

  3. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials.

    Science.gov (United States)

    Acerce, Muharrem; Voiry, Damien; Chhowalla, Manish

    2015-04-01

    Efficient intercalation of ions in layered materials forms the basis of electrochemical energy storage devices such as batteries and capacitors. Recent research has focused on the exfoliation of layered materials and then restacking the two-dimensional exfoliated nanosheets to form electrodes with enhanced electrochemical response. Here, we show that chemically exfoliated nanosheets of MoS2 containing a high concentration of the metallic 1T phase can electrochemically intercalate ions such as H(+), Li(+), Na(+) and K(+) with extraordinary efficiency and achieve capacitance values ranging from ∼400 to ∼700 F cm(-3) in a variety of aqueous electrolytes. We also demonstrate that this material is suitable for high-voltage (3.5 V) operation in non-aqueous organic electrolytes, showing prime volumetric energy and power density values, coulombic efficiencies in excess of 95%, and stability over 5,000 cycles. As we show by X-ray diffraction analysis, these favourable electrochemical properties of 1T MoS2 layers are mainly a result of their hydrophilicity and high electrical conductivity, as well as the ability of the exfoliated layers to dynamically expand and intercalate the various ions.

  4. Ethylene glycol intercalation in smectites. molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Szczerba, Marek; Klapyta, Zenon; Kalinichev, Andrey

    2012-01-01

    Document available in extended abstract form only. Intercalation of ethylene glycol in smectites (glycolation) is widely used to discriminate smectites and vermiculites from other clays and among themselves. During this process, ethylene glycol molecules enter into the interlayer spaces of the swelling clays, leading to the formation of two-layer structure (∼17 A) in the case of smectites, or one-layer structure (∼14 A) in the case of vermiculites. In spite of the relatively broad literature on the understanding/characterization of ethylene glycol/water-clays complexes, the simplified structure of this complex presented by Reynolds (1965) is still used in the contemporary X-ray diffraction computer programs, which simulate structures of smectite and illite-smectite. The monolayer structure is only approximated using the assumption of the interlayer cation and ethylene glycol molecules lying in the middle of interlayer spaces. This study was therefore undertaken to investigate the structure of ethylene glycol/water-clays complex in more detail using molecular dynamics simulation. The structural models of smectites were built on the basis of pyrophyllite crystal structure (Lee and Guggenheim, 1981), with substitution of particular atoms. In most of simulations, the structural model assumed the following composition, considered as the most common in the mixed layer illite-smectites: EXCH 0.4 (Si 3.96 Al 0.04 )(Al 1.46 Fe 0.17 Mg 0.37 )O 10 (OH) 2 Atoms of the smectites were described with CLAYFF force field (Cygan et al., 2004), while atoms of water and ethylene glycol with flexible SPC and OPLS force fields, respectively. Ewald summation was used to calculate long range Coulombic interactions and the cutoff was set at 8.5 A. Results of the simulations show that in the two-layer glycolate the content of water is relatively small: up to 0.8 H 2 O per half of the smectite unit cell. Clear thermodynamic preference of mono- or two-layer structure of the complex is

  5. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy; Shetty, Vijeth Rajshekar; Suresh, Gurukar Shivappa; Mahadevan, Kittappa Malavalli; Nagaraju, Doddahalli H.

    2016-01-01

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  6. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy

    2016-10-13

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  7. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT

    International Nuclear Information System (INIS)

    Lim, Cheolwoong; Yan Bo; Yin Leilei; Zhu Likun

    2012-01-01

    Highlights: ► The microstructure of LIB electrodes was obtained by X-ray micro/nano-CT. ► We studied diffusion-induced stresses based on realistic 3D microstructures. ► Stresses depend on geometric characteristics of electrode particle. ► Stresses in a real particle are much higher than those in a spherical particle. - Abstract: Lithium ion batteries experience diffusion-induced stresses during charge and discharge processes which can cause electrode failure in the form of fracture. Previous diffusion-induced stress models and simulations are mainly based on simple active material particle structures, such as spheres and ellipsoids. However, the simple structure model cannot reveal the stress development in a real complex lithium ion battery electrode. In this paper, we studied the diffusion-induced stresses numerically based on a realistic morphology of reconstructed particles during the lithium ion intercalation process. The morphology of negative and positive active materials of a lithium ion battery was determined using X-ray micro/nano computed tomography technology. Diffusion-induced stresses were simulated at different C rates under galvonostatic conditions and compared with spherical particles. The simulation results show that the intercalation stresses of particles depend on their geometric characteristics. The highest von Mises stress and Tresca stress in a real particle are several times higher than the stresses in a spherical particle with the same volume.

  8. Improved supercapacitor performance of MnO2-electrospun carbon nanofibers electrodes by mT magnetic field

    Science.gov (United States)

    Zeng, Zheng; Liu, Yiyang; Zhang, Wendi; Chevva, Harish; Wei, Jianjun

    2017-08-01

    This work reports on a finding of mT magnetic field induced energy storage enhancement of MnO2-based supercapacitance electrodes (magneto-supercapacitor). Electrodes with MnO2 electrochemically deposited at electrospun carbon nanofibers (ECNFs) film are studied by cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), and life cycle stability tests in the presence/absence of milli-Tesla (mT) magnetic fields derived by Helmholtz coils. In the presence of a 1.34 mT magnetic field, MnO2/ECNFs shows a magneto-enhanced capacitance of 141.7 F g-1 vs. 119.2 F g-1 (∼19% increase) with absence of magnetic field at a voltage sweeping rate of 5 mV s-1. The mechanism of the magneto-supercapacitance is discussed and found that the magnetic susceptibility of the MnO2 significantly improves the electron transfer of a pseudo-redox reaction of Mn(IV)/Mn(III) at the electrode, along with the magnetic field induced impedance effect, which may greatly enhance the interface charge density, facilitate electrolyte transportation, and improve the efficiency of cation intercalation/de-intercalation of the pseudocapacitor under mT-magnetic field exposure, resulting in enhancement of energy storage capacitance and longer charge/discharge time of the MnO2/ECNFs electrode without sacrificing its life cycle stability.

  9. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).

    Science.gov (United States)

    Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-10-01

    Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

  10. Monitoring and measurement of oxygen concentrations in liquid sodium

    International Nuclear Information System (INIS)

    Smith, D.L.

    1976-01-01

    The measurement of oxygen concentrations in sodium at levels of interest for LMFBR applications is reviewed. Additional data are presented to support the validity of the vanadium-equilibration method as a reference for determination of oxygen concentrations in sodium at levels equal to or less than 15 ppM. Operating experience with electrochemical oxygen meters that have a thoria-yttria electrolyte and a Na--Na 2 O reference electrode is described. Meter lifetimes in excess of one year have generally been achieved for operating temperatures of 352 and 402 0 C, and fairly stable emfs have been observed for periods of several months. 7 fig, 21 references

  11. Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance

    KAUST Repository

    Abou-Hamad, E; Goze-Bac, C; Nitze, F; Schmid, M; Aznar, R; Mehring, M; Wå gberg, T

    2011-01-01

    We report on the electronic properties of Cs-intercalated single-walled carbon nanotubes (SWNTs). A detailed analysis of the 13C and 133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The 'metallization' of CsxC materials where x=0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF) at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x=0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x<0.05 (α-phase), whereas it reaches a plateau in the range 0.05≤x≤0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2) orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.

  12. Preparation of Fe-intercalated Graphite Based on Coal Tailings, Dimensional Structure

    Directory of Open Access Journals (Sweden)

    Irfan Gustian

    2015-12-01

    Full Text Available Intercalated graphite from coal tailings have been modified through the intercalation of iron. Coal tailings which is a byproduct of the destruction process and flakes washing results from mining coal. Intercalation of iron goal is to improve the physical properties of graphite and modifying sizes of crystal lattice structure with thermal method. Modification process begins with the carbonization of coal tailings at 500ºC and activated with phosphoric acid. Activation process has done by pyrolysis at 700ºC. The results of pyrolysis was soaked in mineral oil for 24 hours, then pyrolysis again with variations in temperature 800°C and 900ºC for 1 hour and subsequent intercalation iron at 1% and 2%. Material before activated, after activated, and the results of pyrolysis still indicates order nano: 29, 25 and 36 nm respectively. X-ray diffraction characterization results indicate that change in the structure, the sizes crystal lattice structure of the material The greater the concentration of iron was added, the resulting peak at 2θ = 33 and 35 also will be more sharply. The results of SEM showed different morphologies from each treatment.

  13. Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation

    DEFF Research Database (Denmark)

    Gerds, Nathalie Christiane; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    Effective utilization of layered double hydroxides (LDH) for industrial applications requires the synthesis of pure and well-defined LDH phases. In the present study, dodecanoate (laurate) anions were intercalated into Mg–Al-layered double hydroxide (LDH-C12) by coprecipitation in the presence of...

  14. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    Science.gov (United States)

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  15. Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine

    NARCIS (Netherlands)

    Evangelista, F.; Gotter, R.; Mahne, N.; Nannarone, S.; Ruocco, A.; Rudolf, P.

    2008-01-01

    The evolution of the electronic properties of a thin film of copper phthalocyanine deposited on Al(100) and progressively intercalated with rubidium atoms was followed by photoemission and X-ray absorption spectroscopies. Electron donation from the Rb atoms to the C32H16N8Cu molecules results in the

  16. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.; Kahaly, M. Upadhyay; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition

  17. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Dessislava Kostadinova

    2016-12-01

    Full Text Available Increasing attention has been devoted to the design of layered double hydroxide (LDH-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid (PAA and three different hydrophilic random copolymers of acrylic acid (AA and n-butyl acrylate (BA with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT polymerization, into LDH containing magnesium(II and aluminium(III intralayer cations and nitrates as counterions (MgAl-NO3 LDH. At basic pH, the copolymer chains (macroRAFT agents carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA, the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR spectroscopies to get a better description of the local structure.

  18. Analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, Romain [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France); Centre Nationale de la Recherche Scientifique (CNRS), Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes (France); Fourre, Yoann; Furet, Eric; Gautier, Regis; Le Fur, Eric [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France)

    2015-04-15

    An approach is presented that enables the analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates. A comparison of previously reported vanadium phosphates reveals two modes of intercalation: (i) 3d transition metal ions intercalated between VOPO{sub 4} layers and (ii) alkali/alkaline earth metal ions between VOPO{sub 4}.H{sub 2}O layers. Both intercalations were investigated using DFT calculations in order to understand the relative shifts of the vanadium phosphate layers. These calculations in addition to an analysis of the stacking sequences in previously reported materials enable the prediction of the crystal structures of M{sub x}(VOPO{sub 4}).yH{sub 2}O (M = Cs{sup +}, Cd{sup 2+} and Sn{sup 2+}). Experimental realization and structural determination of Cd(VOPO{sub 4}){sub 2}.4H{sub 2}O by single-crystal X-ray diffraction confirmed the predicted stacking sequences. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Intercalates of strontium phenylphosphonate with alcohols - Structure analysis by experimental and molecular modeling methods

    Czech Academy of Sciences Publication Activity Database

    Zima, Vítězslav; Melánová, Klára; Kovář, P.; Beneš, L.; Svoboda, Jan; Pospíšil, M.; Růžička, A.

    2015-01-01

    Roč. 2015, č. 9 (2015), s. 1552-1561 ISSN 1434-1948 R&D Projects: GA ČR(CZ) GA14-13368S Institutional support: RVO:61389013 Keywords : layered compounds * intercalation * molecular modeling Subject RIV: CA - Inorganic Chemistry Impact factor: 2.686, year: 2015

  20. Time-resolved luminescence studies in hydrogen uranyl phosphate intercalated with amines

    Energy Technology Data Exchange (ETDEWEB)

    Novo, Joao Batista Marques [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil)]. E-mail: jbmnovo@quimica.ufpr.br; Batista, Fabio Roberto [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Cunha, Carlos Jorge da [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Dias, Lauro Camargo Jr. [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Teixeira Pessine, Francisco Benedito [Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13084-971 Campinas-SP (Brazil)

    2007-05-15

    Time-resolved luminescence decays of intercalated compounds of hydrogen uranyl phosphate (HUP) with p-toluidinium (HUPPT), benzylaminium (HUPBZ), {alpha}-methylbenzylaminium (HUPMBZ) and hydroxylaminium (HUPHAM) were studied. The prepared compounds belong to the tetragonal P4/ncc space group and showed 00 l reflections shifted to lower angles relative to HUP, indicating that the intercalation increases the c parameter of the unit cell. The luminescence decays of the compounds with 100% of intercalation ratio (HUPHAM and HUPBZ) were analyzed by Global Analysis, assuming Lianos' stretched exponential as the model function, which can be applied to compounds with restricted geometry and mobile donor and quencher molecules. It was remarkable that the luminescence decays showed that the quenching of the emission of the uranyl ions by the intercalated protonated amines is not restricted by low dimensionality of the host uranyl phosphate, and that a diffusion mechanism occurs. Benzylaminium cation efficiently quenches the excited energy of the uranyl ions at close distance, but the long-range and long-lifetime quenching is hindered. A different situation is found in the case of the small hydroxylaminium cation, where the long distance diffusion of the species is fast, playing an important role in the quenching of the excited uranyl ions at longer times.