WorldWideScience

Sample records for sodium hydroxide mineral

  1. Sodium hydroxide poisoning

    Science.gov (United States)

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  2. Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System

    Science.gov (United States)

    Doelle, K.; Bajrami, B.

    2018-01-01

    This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.

  3. Reactions between rocks and the hydroxides of calcium, sodium and potassium: progress report no. 1

    International Nuclear Information System (INIS)

    Van Aardt, J.H.P.; Visser, S.

    1982-01-01

    The reaction between the hydroxides of calcium, sodium and potassium, and clay minerals, feldspars, and some rocks (aggregates for use in concrete) was investigated. The reaction products were examined by means of x-ray diffraction and chemical analysis. The solid reaction products identified were hydrated calcium silicates,hydrated calcium aluminates, and hydrated calcium alumina silicates. It was found that, in the presence of water, calcium hydroxide liberated alkali into solution if the rocks and minerals contained alkali metals in their structure. Two crystalline hydrated sodium calcium silicates (12A and 16A) were prepared in the system Na 2 O-CaO-SiO 2 -H 2 O at 80 degrees Celsius. The one compound (12A) was also observed when sodium hydroxide plus calcium hydroxide and water reacted with silica- or silicate-containing rocks

  4. Parametric Effect of Sodium Hydroxide and Sodium Carbonate on the Potency of a Degreaser

    OpenAIRE

    Babatope Abimbola Olufemi

    2016-01-01

    Experimental and statistical analysis was carried out on the comparative effect of sodium hydroxide and sodium carbonate on the potency of a laboratory produced degreaser in this work. The materials used include; octadecyl benzene sulphonic acid, sodium hydroxide, sodium carbonate, sodium metasilicate, carboxyl methyl cellulose (C.M.C), formadelhyde, perfume, colourant and distilled water. Different samples of degreaser were produced with varying composition of sodium hydroxide and sodium car...

  5. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte

    International Nuclear Information System (INIS)

    Chatenet, Marian; Micoud, Fabrice; Roche, Ivan; Chainet, Eric

    2006-01-01

    The direct oxidation of sodium borohydride in concentrated sodium hydroxide medium has been studied by cyclic and linear voltammetry, chronoamperometry and chronopotentiometry for silver and gold electrocatalysts, either bulk and polycrystalline or nanodispersed over high area carbon blacks. Gold and silver yield rather complete utilisation of the reducer: around 7.5 electrons are delivered on these materials, versus 4 at the most for platinum as a result of the BH 4 - non-negligible hydrolysis taking place on this latter material. The kinetic parameters for the direct borohydride oxidation are better for gold than for silver. A strong influence of the ratio of sodium hydroxide versus sodium borohydride is found: whereas the theoretical stoichiometry does forecast that eight hydroxide ions are needed for each borohydride ion, our experimental results prove that a larger excess hydroxide ion is necessary in quasi-steady state conditions. When the above-mentioned ratio is unity (1 M NaOH and 1 M NaBH 4 ), the tetrahydroborate ions direct oxidation is limited by the hydroxide concentration, and their hydrolysis is no longer negligible. The hydrolysis products are probably BH 3 OH - ions, for which gold displays a rather good oxidation activity. Additionally, silver, which is a weak BH 4 - oxidation electrocatalyst, exhibits the best activity of all the studied materials towards the BH 3 OH - direct oxidation. Finally, carbon-supported gold nanoparticles seem promising as anode material to be used in direct borohydride fuel cells

  6. Transformation of sodium from the Rapsodie fast breeder reactor into sodium hydroxide

    International Nuclear Information System (INIS)

    Roger, J.; Latge, C.; Rodriguez, G.

    1994-01-01

    One of the major problems raised by decommissioning a fast breeder reactor (FBR) concerns the disposal of the sodium coolant. The Desora operation was undertaken to eliminate the Rapsodie primary sodium as part of the partial decommissioning program, and to develop an operational sodium treatment unit for other needs. The process involves reacting small quantities of sodium in water inside a closed vessel, producing aqueous sodium hydroxide and hydrogen gas. It is described in this work. (O.L.). 4 figs

  7. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    International Nuclear Information System (INIS)

    Moyer, Bruce A.; Marchand, Alan P.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Haverlock, Tamara J.

    2004-01-01

    This research was intended to provide the scientific foundation upon which the feasibility of liquid-liquid extraction chemistry for bulk reduction of the volume of high-activity tank waste can be evaluated. Primary focus has been on sodium hydroxide separation, with potential Hanford application. Value in sodium hydroxide separation can potentially be found in alternative flowsheets for treatment and disposal of low-activity salt waste. Additional value can be expected in recycle of sodium hydroxide for use in waste retrieval and sludge washing, whereupon additions of fresh sodium hydroxide to the waste can be avoided. Potential savings are large both because of the huge cost of vitrification of the low-activity waste stream and because volume reduction of high-activity wastes could obviate construction of costly new tanks. Toward these ends, the conceptual development begun in the original proposal was extended with the formulation of eight fundamental approaches that could be undertaken for extraction of sodium hydroxide

  8. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  9. The corrosion of steels in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Newman, R.N.; Smith, C.A.; Smith, R.J.

    1976-09-01

    The role of sodium hydroxide corrosion is discussed in relation to the wastage of materials observed in fast reactor boilers under fault conditions in the vicinity of a water leak into sodium. An experimental technique to study the corrosion under varying conditions is described. The results presented are for 2 1/4Cr 1Mo obtained in static sodium hydroxide in a closed volume over the temperature range 1033K to 1273K. It is found that the corrosion rate can be followed by monitoring the hydrogen produced by the reaction, which can be written as: Fe + 2NaOH = NaFeO 2 + NaH + 1/2H 2 . After an initial acceleration period the rate law is parabolic. The effect on the corrosion rate of melt and cover gas composition has been in part investigated, and the relevance of mass flow of reactants is discussed. (author)

  10. Titration of Monoprotic Acids with Sodium Hydroxide Contaminated by Sodium Carbonate.

    Science.gov (United States)

    Michalowski, Tadeusz

    1988-01-01

    Discusses the effects of using carbon dioxide contaminated sodium hydroxide solution as a titrant for a solution of a weak monoprotic acid and the resulting distortion of the titration curve in comparison to one obtained when an uncontaminated titrant is used. (CW)

  11. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  12. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Bajpai, M.B.; Shenoi, M.R.K.; Keni, V.S.

    1994-01-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author)

  13. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, M B; Shenoi, M R.K.; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author). 3 figs., 2 tabs.

  14. EFFECT OF SODIUM HYDROXIDE CONCENTRATION ON FRESH PROPERTIES AND COMPRESSIVE STRENGTH OF SELF-COMPACTING GEOPOLYMER CONCRETE

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2013-02-01

    Full Text Available This paper reports the results of the laboratory tests conducted to investigate the effect of sodium hydroxide concentration on the fresh properties and compressive strength of self-compacting geopolymer concrete (SCGC. The experiments were conducted by varying the concentration of sodium hydroxide from 8 M to 14 M. Test methods such as Slump flow, V-Funnel, L-box and J-Ring were used to assess the workability characteristics of SCGC. The test specimens were cured at 70°C for a period of 48 hours and then kept in room temperature until the day of testing. Compressive strength test was carried out at the ages of 1, 3, 7 and 28 days. Test results indicate that concentration variation of sodium hydroxide had least effect on the fresh properties of SCGC. With the increase in sodium hydroxide concentration, the workability of fresh concrete was slightly reduced; however, the corresponding compressive strength was increased. Concrete samples with sodium hydroxide concentration of 12 M produced maximum compressive strength.

  15. Production of zeolite A come from rio Capim Kaolin: Study on recycle of sodium hydroxide solution

    International Nuclear Information System (INIS)

    Moraes, C.G.; Rodrigues, E.C.; Rocha Junior, C.A.F.; Macedo, E.N.; Neves, R.F.

    2011-01-01

    The kaolin processing industry is an important economic sector in the State of Para, but produces huge amounts of wastes composed essentially of kaolinite. The production processes of zeolites typically use sodium hydroxide in excess, are discarded. So the objective is the development process for production of zeolite A which allows the reuse of the solution of sodium hydroxide used in excess through your recycling. Presents the results of XRD, SEM of the zeolites produced in five consecutive cycles performed at a temperature of 110°C/24h as a source of sodium hydroxide solution of sodium 5 M, using a molar ratio of Si/Al = 1 and Na/Al = 1,26. (author)

  16. Iron Hydroxide Minerals Drive Organic and Phosphorus Chemistry in Subsurface Redox / pH Gradients

    Science.gov (United States)

    Flores, E.; Barge, L. M.; VanderVelde, D.; Baum, M.

    2017-12-01

    Iron minerals, particularly iron oxides and oxyhydroxides, are prevalent on Mars and may exist in mixed valence or even reduced states beneath the oxidized surface. Iron (II,III) hydroxides, including green rust, are reactive and potentially catalytic minerals that can absorb and concentrate charged species, while also driving chemical reactions. These minerals are highly redox-sensitive and the presence of organics and/or phosphorus species could affect their mineralogy and/or stability. Conversely, the minerals might be able to drive chemical processes such as amino acid formation, phosphorus oxyanion reactions, or could simply selectively preserve organic species via surface adsorption. In an open aqueous sediment column, soluble products of mineral-driven reactions could also diffuse to sites of different chemical conditions to react even further. We synthesized Fe-hydroxide minerals under various conditions relevant to early Earth and ancient Mars (>3.0 Gyr), anoxically and in the presence of salts likely to have been present in surface or ground waters. Using these minerals we conducted experiments to test whether iron hydroxides could promote amino acid formation, and how the reaction is affected by subsurface gradients of redox, pH, and temperature. We also tested the adsorption of organic and phosphorus species onto Fe-hydroxide minerals at different conditions within the gradients. The suite of organic or phosphorus signatures that may be found in a particular mineral system is a combination of what is synthesized there, what is preferentially concentrated / retained there, and what is preserved against degradation. Further work is needed to determine how these processes could have proceeded on Mars and what mineral-organic signatures, abiotic or otherwise, would be produced from such processes.

  17. In vitro digestible energy of some agricultural residues, as influenced by gamma irradiation and sodium hydroxide

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1999-01-01

    Experiments have been carried out to study the changes in the values of in vitro apparent organic matter digestibility (IVOMD) and in vitro digestible energy (IVDE) of wheat straw (WS), cotton seed shell (CSS), peanut shell (PS), soybean shell (SS), extracted olive cake (EOC) and extracted unpeeled sunflower seeds (ESS) after irradiation by various doses of gamma radiation (0, 100, 150, 200 kGy) or after spraying with different amounts of sodium hydroxide (NaOH): 0, 2, 4, and 6 g NaOH/25 ml water/100 g DM. The results indicate that there were significant increases in IVOMD and IVDE values for all irradiated samples and for sodium hydroxide treatments except for SS and ESS. Combined treatment of irradiation and sodium hydroxide resulted in a larger increase in the digestible energy than the individual treatments

  18. Nitrogen stabilization in organo-mineral fractions from soils with different land uses

    Science.gov (United States)

    Giannetta, Beatrice; Zaccone, Claudio; Rovira, Pere; Vischetti, Costantino; Plaza, César

    2017-04-01

    Understanding the processes that control quantity and quality of soil organic matter (SOM) interacting with mineral surfaces is of paramount importance. Although several physical fractionation methods have been proposed to date to obtain fractions that mirror SOM degree of stability and protection, a detailed quantification of stabilisation modes through which SOM bounds to the mineral matrix is still lacking. In this research we determined C and N distribution in several soils including coniferous and broadleaved forest soils, grassland soils, technosols and an agricultural soil amended with biochar at rates of 0 and 20 t/ha in a factorial combination with two types of organic amendment (municipal solid waste compost and sewage sludge). We performed a physical size fractionation by ultrasonic dispersion and wet sieving, splitting particles into four different size fractions: coarse sand (2000-200 µm diameter), fine sand (200-50 µm), coarse silt (50-20 µm) and fine silt plus clay (stabilization modes. This method, in fact, allows resolving the nature of different bonds between mineral and organic components by the use of sequential extractions with chemical reagents (potassium sulphate, sodium tetraborate, sodium pyrophosphate, sodium hydroxide, sodium hydroxide after weak acid attack, sodium hydroxide after sodium dithionite pretreatment, and sodium hydroxide after hydrofluoric acid pretreatments). Elemental analysis (CHN) was then carried out on SOM pools isolated from different fractions. Preliminary data show that, for all land uses in general, and for grassland soils in particular, most of the total N is found in organo-mineral complexes (fraction soil N content. Although a small N loss was observed during the fractionation procedure, especially in N-rich samples, and data analysis is still ongoing, these preliminary results could already represent a valuable insight into organic N stabilization by mineral matrix.

  19. The determination of hydroxide and carbonate in concentrated sodium chloride solutions

    NARCIS (Netherlands)

    Roolvink, W.B.; Bos, M.

    1980-01-01

    A computer method for the determination of carbonate and hydroxide in concentrated (2.89 M) sodium chloride solutions is described. The method is based on multiparametric curve-fitting and can also be applied to salts of dibasic acids with unknown equilibrium constants. The systematic error is not

  20. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  1. EFFECT OF SODIUM SILICATE TO SODIUM HYDROXIDE RATIOS ON DURABILITY OF GEOPOLYMER MORTARS CONTAINING NATURAL AND ARTIFICIAL POZZOLANS

    Directory of Open Access Journals (Sweden)

    F. Nurhayat Degirmenci

    2017-09-01

    Full Text Available This study aims to provide the experimental data on the sulphate and acid performance of geopolymer mortar containing pozzolanic materials such as fly ash (FA, ground granulated blast furnace slag (GGBS and natural zeolite (NZ. The alkaline solution was the combination of sodium silicate and sodium hydroxide solution with the ratio (Na ₂SiO₃/NaOH of 1.0, 2.0 and 3.0. The molarity of sodium hydroxide was fixed as 10. The performances of geopolymer mortar were measured in terms of sodium and magnesium sulphate resistance and sulphuric and hydrochlorich acid resistance with 5% and 10 % concentration after 24 weeks. The evaluations were measured as visual observation, measurement of weight change and residual compressive strength. It has been observed that Na ₂SiO₃/NaOH ratio is effective on residual compressive strength of geopolymer mortar in both sulphate and acid exposure. The higher ratio of Na ₂SiO₃/NaOH results in a higher residual compressive strength. The GGBS based geopolymer mortar has a very good resistance in acid media in terms of weight loss and residual compressive strength. The inclusion of FA in the GGBS based geopolymer mixture was found to be a suitable base of geopolymer mortar under ambient curing conditions.

  2. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  3. Hupresin Retains Binding Capacity for Butyrylcholinesterase and Acetylcholinesterase after Sanitation with Sodium Hydroxide

    Directory of Open Access Journals (Sweden)

    Seda Onder

    2017-10-01

    Full Text Available Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE in human plasma and acetylcholinesterase (AChE solubilized from red blood cells (RBC. Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA with full activity and 10–15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.

  4. Determination of soluble bromine in an extra-high-pressure mercury discharge lamp by sodium hydroxide decomposition-suppressed ion chromatography.

    Science.gov (United States)

    Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu

    2006-02-01

    We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.

  5. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    Directory of Open Access Journals (Sweden)

    Singh Harvin Kaur A/P Gurchran

    2014-07-01

    Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.

  6. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  7. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Onwudili, Jude A.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2009-07-15

    The role of sodium hydroxide as a promoter of hydrogen gas production during the hydrothermal gasification of glucose and other biomass samples has been investigated. Experiments were carried out in a batch reactor with glucose and also in the presence of the alkali from 200 C, 2 MPa to 450 C, 34 MPa at constant water loading. Without sodium hydroxide, glucose decomposed to produce mainly carbon dioxide, water, char and tar. Furfural, its derivatives and reaction products dominated the ethyl acetate extract of the water (organic fraction) at lower reaction conditions. This indicated that the dehydration of glucose to yield these products was unfavourable to hydrogen gas production. In the presence of sodium hydroxide however, glucose initially decomposed to form mostly alkylated and hydroxylated carbonyl compounds, whose further decomposition yielded hydrogen gas. It was observed that at 350 C, 21.5 MPa, half of the optimum hydrogen gas yield had formed and at 450 C, 34 MPa, more than 80 volume percent of the gaseous effluent was hydrogen gas, while the balance was hydrocarbon gases, mostly methane ({>=}10 volume percent). Other biomass samples were also comparably reacted at the optimum conditions observed for glucose. The rate of hydrogen production for the biomass samples was in the following order; glucose > cellulose, starch, rice straw > potato > rice husk. (author)

  8. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Sorption of sodium hydroxide by type I collagen and bovine corneas.

    Science.gov (United States)

    Whikehart, D R; Edwards, W C; Pfister, R R

    1991-01-01

    There are no quantitative studies on the uptake of alkali into corneal tissues. To study this phenomenon, both type I collagen and bovine corneas were incubated in sodium hydroxide (NaOH) under varying conditions for periods up to 27.5 h. The sorption (absorption or adsorption) of the alkali to protein and tissue was measured as the quantity of NaOH no longer available for titration to neutrality with hydrochloric acid. Sorption was found to be dependent on the concentration of NaOH (0.01-1 N) but independent of the incubation temperature (4-35 degrees C). In whole cornea, sorption of 1 N NaOH began immediately and increased with time up to 6 h. After 6 h, sorption decreased, together with the observed degradation and solubilization of the tissue. Stripping of the corneal endothelium alone or of the endothelium and epithelium increased sorption in a similar manner when compared to whole corneas for periods up to 4 h. These observations are compatible with ionic and nonionic bonding of hydroxide ions to collagen (including that of the cornea) and the subsequent release of hydroxide ions during hydrolysis of the protein itself. Indirect evidence also suggests the inclusion of quantities of unbound hydroxide ions in hydrated gels of glycosaminoglycans. It is proposed that in a chemical burn of the cornea, alkali is both stored in the tissue (by sorption) and reacted with it (by hydrolysis), without any net consumption of alkali taking place.

  10. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  11. Method for strontium isolation from high-mineralized water

    International Nuclear Information System (INIS)

    Evzhanov, Kh.; Andriyasova, G.M.

    1983-01-01

    A method to isolate strontium from high-mineralized waters containing sodium, magnesium, calcium and strontium chlorides, which differ from the prototype method in a considerable decrease in energy consumption with the preservation of a high degree of Sr, Mg and Ca isolation selectivity, has been suggested. According to the method suggested mineralized waters are treated with alkali (NaOH) in the amount of 95-97% of stoichiometry by magnesium, then after separation of magnesium hydroxide precipitate mother liquor is treated with sodium carbonate in the amount of 50-60% of stoichiometry by calcium. After separation of calcium carbonate precipitate mother liquor is treated with NaOH in the amount of 130-135% of stoichiometry by calcium. After separation of calcium hydroxide precipitate from mother liquor by means of sodium carbonate introduction strontium carbonate is isolated. The degree of strontium extraction in the form of SrCO 3 constitutes 90.5% of its content in the initial solution. The method presented can be used for strontium separation from natural and waste waters

  12. Nutritional value of whole coconut, coconut powder, and coconut fiber treated with sodium hydroxide for sheep

    Directory of Open Access Journals (Sweden)

    José Cardoso de Araújo Neto

    Full Text Available ABSTRACT The growing consumption of green coconut - fresh and industrialized - in Brazil generates a large volume of wastes and coproducts that justifies the search for alternatives for their use in animal feeding. The most limiting factor to the inclusion of these coproducts in ruminant diets is their high fiber content, which may restrict intake and performance. The present study determined the composition and in vitro dry matter degradability of whole coconut, coconut powder, and coconut fiber treated with sodium hydroxide (0%, 3%, and 6% and the effect of including whole coconut hydrolyzed with 6% sodium hydroxide at different concentrations (25%, 30%, 35%, and 40% in the diet on apparent digestibility of nutrients, performance, and feeding behavior of sheep. Alkalinization decreased the hemicellulose, NDF, and ADF contents of the evaluated coproducts. Whole coconut and coconut powder provided greater in vitro degradation of DM compared with coconut fiber, with highest values obtained with the inclusion of 6% sodium hydroxide. Inclusion of whole coconut in the diets did not affect the intakes of DM, CP, NDF, and ADF, but influenced weight gain, feed conversion, and apparent digestibility of DM and NDF. Regarding the feeding behavior of the animals, the inclusion of whole coconut in the diet only affected their rumination time. Whole coconut hydrolyzed with 6% NAOH can be included in diets for feedlot sheep at up to 35% without reducing intake or weight gain.

  13. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    Science.gov (United States)

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  14. Development of sodium disposal technology. Experiment of sodium compound solidification process

    International Nuclear Information System (INIS)

    Matsumoto, Toshiyuki; Ohura, Masato; Yatoh, Yasuo

    2007-07-01

    A large amount of sodium containing radioactive waste will come up at the time of final shutdown/decommission of FBR plant. The radioactive waste is managed as solid state material in a closed can in Japan. As for the sodium, there is no established method to convert the radioactive sodium to solid waste. Further, the sodium is highly reactive. Thus, it is recommended to convert the sodium to a stable substance before the solidification process. One of the stabilizing methods is conversion of sodium into sodium hydroxide solution. These stabilization and solidification processes should be safe, economical, and efficient. In order to develop such sodium disposal technology, nonradioactive sodium was used and a basic experiment was performed. Waste-fluid Slag Solidification method was employed as the solidification process of sodium hydroxide solution. Experimental parameters were mixing ratio of the sodium hydroxide and the slag solidification material, temperature and concentration of the sodium hydroxide. The best parameters were obtained to achieve the maximum filling ratio of the sodium hydroxide under a condition of enough high compressive strength of the solidified waste. In a beaker level test, the solidified waste was kept in a long term and it was shown that there was no change of appearance, density, and also the compressive strength was kept at a target value. In a real scale test, homogeneous profiles of the density and the compressive strength were obtained. The compressive strength was higher than the target value. It was shown that the Waste-fluid Slag Solidification method can be applied to the solidification process of the sodium hydroxide solution, which was produced by the stabilization process. (author)

  15. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    Science.gov (United States)

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  16. Method for the production of solid hydroxides contained in mineral oils, mineral oil-like materials or mineral oil-containing materials and uses of products thus obtained. Verfahren zur Herstellung von Mineraloele, mineraloelaehnliche Stoffe oder mineraloelhaltige Stoffe enthaltenden festen Hydroxiden sowie die Verwendung danach erhaltener Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Boelsing, F

    1975-07-29

    A method has been developed which permits mineral oils, mineral oil-like substances or mineral oil-containing substances (eg waste oil) to be separated in powder form, even when these substance are present in a continuous phase with water (for example, oil slurries). A compound (eg. line) which forms a hydroxide with water is added, the formed hydroxide then acts as carrier substance. Prerequisite for obtaining the end-product in powdered form is that the homogeneous mixing of the oil-containing substance and hydroxide-forming substance takes place at a faster rate than the necessary auxilliary reaction, namely hydroxide formation, and further that water in present in at least stoichiometric quantities. The powdered end-product finds numerous applications eg. road construction, soil conditioning and compacting, recultivation measures in cement manufacture, and others.

  17. Effect of Zinc Oxide Nanoparticles and Sodium Hydroxide on the Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammad Mirjalili

    2017-12-01

    Full Text Available In this study, the synthesis of zinc oxide nanoparticles was carried out, together with the hydrolysis of polyethylene terephthalate, using sodium hydroxide to increase surface activity and enhance nanoparticle adsorption. Polyester fabrics were treated with zinc acetate and sodium hydroxide in an ultrasonic bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confi rmed using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS. The self-cleaning property of treated fabrics was evaluated through discolouring using methylene blue stain under solar irradiation. The antibacterial activities of the samples against common pathogenic bacteria, including Escherichia coli and Staphylococcus aureus, were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound-treated polyethylene terephthalate improved significantly.

  18. Formation of mixed hydroxides in the thorium chloride-iron chloride-sodium hydroxide system

    International Nuclear Information System (INIS)

    Krivokhatskij, A.S.; Prokudina, A.F.; Sapozhnikova, T.V.

    1976-01-01

    The process of formation of mixed hydroxides in the system thorium chloride-iron chloride-NaOH was studied at commensurate concentrations of Th and Fe in solution (1:1 and 1:10 mole fractions, respectively) with ionic strength 0.3, 2.1, and 4.1, created with the electrolyte NaCl, at room temperature 22+-1degC. By the methods of chemical, potentiometric, thermographic, and IR-spectrometric analyses, it was shown that all the synthesized precipitates are mechanical mixtures of two phases - thorium hydroxide and iron hydroxide - and not a new hydrated compound. The formal solubility of the precipitates of mixed hydroxides was determined. It was shown that the numerical value of the formal solubility depends on the conditions of formation and age of the precipitates

  19. Sedimentation and deformation of an aqueous sodium hydroxide drop in vegetable oil

    Science.gov (United States)

    White, Andrew; Hyacinthe, Hyaquino; Ward, Thomas

    2013-11-01

    The addition of water droplets in fuels is known to provide benefits such as decreased Nitrous Oxide NOx emissions. Unfortunately the shelf life of a water-fuel emulsion is limited by the sedimentation rate of the water droplets. It is well known that adding surfactants can significantly slow the sedimentation rate due to the introduction of Marangoni stresses. In the case of a vegetable oil fuel, adding sodium hydroxide (NaOH) to the water droplets will produce surfactants through saponification in the form of sodium-carboxylate salts. Pendant drops of aqueous NaOH solutions with pH between 11 and 13 will be suspended in several oils such as corn, olive, canola and soybean oil in order to measure the interfacial tension. The change in interfacial tension with time will be used to estimate the surfactant concentration and the saponification rate. Then individual drops will be placed in the oils to observe the settling velocity and drop deformation. NSF CBET.

  20. Potentiometric and spectrophotometric titration study of interaction of tungstovanadophosphoric heteropolyacids with sodium hydroxide

    International Nuclear Information System (INIS)

    Borkoyakov, S.A.; Fisun, L.A.

    1988-01-01

    The methods of potentiometric and spectrophotometric titration are used to study H s+n PW 12-n V n O 40 (n=1,2) (P-W-V HPA) decomposition by sodium hydroxide. It is shown that at the first stage of heteropolyanion interaction with alkali (pH) > 4 P-W-V HPA structural reconstruction takes place. It is accompanied by the formation of complexes with a higher content of vanadium atoms stable at pH 4-7/ P-W-V HPA decomposition to initial salts occurs at pH > 8

  1. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé , Alexander W.; Ohno, Tsutomu; Higgins, Steven R.; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B.

    2015-01-01

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  2. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  3. Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Chang-Jiang Pan

    2016-12-01

    Full Text Available Owing to excellent mechanical property and biodegradation, magnesium-based alloys have been widely investigated for temporary implants such as cardiovascular stent and bone graft; however, the fast biodegradation in physiological environment and the limited surface biocompatibility hinder their clinical applications. In the present study, magnesium alloy was treated by sodium hydroxide (NaOH and hydrogen fluoride (HF solutions, respectively, to produce the chemical conversion layers with the aim of improving the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR and X-ray photoelectron spectroscopy (XPS indicated that the chemical conversion layers of magnesium hydroxide or magnesium fluoride were obtained successfully. Sodium hydroxide treatment can significantly enhance the surface hydrophilicity while hydrogen fluoride treatment improved the surface hydrophobicity. Both the chemical conversion layers can obviously improve the corrosion resistance of the pristine magnesium alloy. Due to the hydrophobicity of magnesium fluoride, HF-treated magnesium alloy showed the relative better corrosion resistance than that of NaOH-treated substrate. According to the results of hemolysis assay and platelet adhesion, the chemical surface modified samples exhibited improved blood compatibility as compared to the pristine magnesium alloy. Furthermore, the chemical surface modified samples improved cytocompatibility to endothelial cells, the cells had better cell adhesion and proliferative profiles on the modified surfaces. Due to the excellent hydrophilicity, the NaOH-treated substrate displayed better blood compatibility and cytocompatibility to endothelial cells than that of HF-treated sample. It was considered that the method of the present study can be used for the surface modification of the magnesium alloy to enhance the corrosion resistance and biocompatibility.

  4. Sodium-calcium ion exchange on clay minerals at moderate to high ionic strengths

    International Nuclear Information System (INIS)

    Rogers, W.J.

    1979-12-01

    Sodium-calcium ion exchange on several clay minerals was studied at ionic strengths ranging from 0.01 to above 1.0. The minerals studied included attapulgite, illite, kaolin, and several montmorillonites. Distribution coefficients of calcium and sodium were obtained for the minerals over a wide range of solution conditions at pH five and equilibrium constants were calculated. The distribution coefficient of calcium, D/sub Ca/, was studied as a function of time, solution pH, loading, sodium concentration, and ionic strength fraction of sodium in constant ionic strength solutions. The distribution coefficient of sodium, D/sub Na/, was also studied as a function of time, loading, and sodium ionic strength fraction in constant total ionic strength solutions. Values of equilibrium constants calculated from distribution coefficients for solutions of constant ionic strength scattered bwteen 2 and 10 kg/kg for the montmorillonites and attapulgite while equilibrium constants for illite ranged from 5 to 10 kg/kg. No equilibrium constants for kaolin were calculated since distribution coefficients of sodium on this clay were too small to be measured. It was found that equilibrium constants at trace sodium loading were generally lower than those for higher sodium loadings by an order of magnitude or more due to the sensitivity of sodium distribution coefficients to the concentration of sodium in the clay at low loadings. Theoretical and experimental treatments of ion exclusion were included

  5. Potassium hydroxide: an alternative reagent to perform the modified apt test.

    Science.gov (United States)

    Chicaiza, Henry; Hellstrand, Karl; Lerer, Trudy; Smith, Sharon; Sylvester, Francisco

    2014-09-01

    We tested the performance of potassium hydroxide (KOH) in the modified Apt test under different experimental conditions using sodium hydroxide as a positive control. Like sodium hydroxide, KOH differentiated fresh fetal and adult blood stains on a cloth but not dried blood. KOH may be used to perform the Apt test at the bedside. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Interaction of radium with fresh water sediments and their mineral components Pt. 1. Ferris hydroxide and quartz

    Energy Technology Data Exchange (ETDEWEB)

    Benes, P; Strejc, P; Lukavec, Z [Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Katedra Jaderne Chemie

    1984-05-01

    The radiotracer method has been used for investigation of the adsorption and desorption of radium traces on ferric hydroxide and quartz under conditions similar to those prevailing in waste and surface waters. The effects of pH, liquid to solid ratio, ionic strength and presence of Ca/sup 2 +/ or SO/sub 4//sup 2 -/ ions have been studied. It is concluded that at pH less than 7 and at concentration of suspended sediments of common composition less than 100 mg.1/sup -1/, ferric hydroxide and quartz have negligible effect on the state and migration of radium in surface waters. Radium adsorbed on quartz can be easily desorbed with dilute solutions of hydrochloric acid or sodium chloride. 14 refs.

  7. Fluorometric determination of zirconium in minerals

    Science.gov (United States)

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  8. Comparison of efficacy of phenol and sodium hydroxide matricectomies for management of ingrown toenails

    International Nuclear Information System (INIS)

    Jabbar, A.; Majeed, S.; Arif, A.

    2015-01-01

    To compare the efficacy of Phenol and Sodium Hydroxide Matricectomies in terms of frequency of pain and wound healing in the management of Ingrown Toenails. Study Design: Randomized Clinical Trial Place of Duration of Study: Out Patient Department of Surgery Combined Military Hospital Kharian from Aug 2010 to Feb 2011. Patients and Methods: A total of 140 cases with Ingrown Toenails were selected and randomly divided into two groups of 70 each. Cases of Group A and B were subjected to Phenol Matricectomy (PMC) and Sodium Hydroxide Matricectomy (SHMC) respectively. Postoperative pain was comparatively and Southampton Wound Grade for wound healing were analyzed at 2nd and 10th postop day. Results: Mean age of Group A was 28.86 ± 6.423 whereas that of Group B was 28.80 ± 5.997. Group A had 58 (83%) males and 12 (17%) females. Group B had 48 (69%) males and 22 (31%) females. Postoperative pain was comparatively less in group A with statistical difference between two groups on 2nd day (p = 0.014), whereas it was less intense in group B with no statistical significant difference on 10th day (p=0.662). Wound healing was better in group B with statistical difference between two groups on 2nd (p = 0.022) and 10th day (p = 0.024). Group B (91.4%) had more statistically significant efficacy than Group A (71.4%) (p = 0.004). Conclusion: SHMC is superior to PMC in reducing pain and improving wound healing for managing Ingrown Toenails. (author)

  9. Effect of controlled deactivation on the thermochemical characteristics of hydrogen adsorption on skeletal nickel from sodium hydroxide-water solutions

    Science.gov (United States)

    Prozorov, D. A.; Lukin, M. V.; Ulitin, M. V.

    2013-04-01

    Differential heats of adsorption in a wide range of surface coverage and maximum amounts of adsorbed hydrogen are determined by adsorption calorimetry on partially deactivated skeletal nickel from aqueous solutions of sodium hydroxide. The effect of the composition of solutions on the values of limiting adsorption and adsorption equilibria of individual forms of hydrogen is shown.

  10. Intermediate-scale sodium-concrete reaction tests with basalt and limestone concrete

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Muhlestein, L.D.

    1981-01-01

    Ten tests were performed to investigate the chemical reactions and rate and extent of attack between sodium and basalt and limestone concretes. Test temperatures ranged from 510 to 870 0 C (950 to 1600 0 F) and test times from 2 to 24 hours. Sodium hydroxide was added to some of the tests to assess the impact of a sodium hydroxide-aided reaction on the overall penetration characteristics. Data suggest that the sodium penetration of concrete surfaces is limited. Penetration of basalt concrete in the presence of sodium hydroxide is shown to be less severe than attack by the metallic sodium alone. Presence of sodium hydroxide changes the characteristics of sodium penetration of limestone concrete, but no major differences in bulk penetration were observed as compared to penetration by metallic sodium

  11. Natural mineral bottled waters available on the Polish market as a source of minerals for the consumers. Part 2: The intake of sodium and potassium.

    Science.gov (United States)

    Gątarska, Anna; Ciborska, Joanna; Tońska, Elżbieta

    Natural mineral waters are purchased and consumed according to consumer preferences and possible recommendations. The choice of appropriate water should take into account not only the general level of mineralization but also the content of individual components, including electrolytes such as sodium and potassium. Sodium is necessary to ensure the proper physiological functions of the body. It is defined as a health risk factor only when its excessive intake occurs. Potassium acts antagonistically towards sodium and calcium ions, contributes to a reduction of the volume of extracellular fluids and at the same time reduces muscle tension and permeability of cell membranes. The demand for sodium and potassium is of particular importance in people expending significant physical effort, where an increased electrolyte supply is recommended. The aim of the study was to estimate the content of sodium and potassium in natural mineral waters available in the Polish market and to evaluate the intake of those components with the commercially available mineral waters by different groups of consumers at the assumed volume of their consumption. The research material consisted of natural mineral waters of forty various brands available on the Polish market. The examined products were either produced in Poland or originated in other European countries. Among the products under examination, about 30% of the waters were imported from Lithuania, Latvia, the Czech Republic, France, Italy and Germany. A sample for analyses consisted of two package units of the examined water from different production lots. Samples for research were collected at random. The study was conducted with the same samples in in which calcium and magnesium content was determined, which was the subject of the first part of the study. The content of sodium and potassium was determined using the emission technique (acetylene-air flame), with the use of atomic absorption spectrometer – ICE 3000 SERIES – THERMO

  12. Inhibitive Effect of Butyltin Trichloride on Dissolution and Localized Corrosion of Aluminium in Sodium Hydroxide and Hydrochloric Acid

    OpenAIRE

    Mourad, M.Y.; Ibrahim, E.H.; Seliman, S.A.

    1990-01-01

    The dissolution of aluminium in sodium hydroxide and hydrochloric acid in the presence of butyltin trichloride as corrosion inhibitor has been studied by hydrogen evolution and thermometric methods. Experimental findings indicate that the inhibition effect of butyltin trichloride takes place through an adsorption mechanism following the Frumkin's isotherm. Butyltin trichloride acts as a weakly adsorbed inhibitor in NaOH and as a strongly adsorbed inhibitor in hydrochloric acid medium. Wile...

  13. Use of sodium hydroxide treated selenium deficient barley to induce vitamin E and selenium deficiency in yearling cattle.

    Science.gov (United States)

    Rice, D A; McMurray, C H

    1986-02-15

    Selenium deficient barley grown in Northern Ireland was treated with sodium hydroxide to deplete it of vitamin E. Housed cattle fed a complete diet based on this treated barley developed nutritional degenerative myopathy, showing that spontaneous myopathy in yearling cattle can be the result of vitamin E and selenium deficiency alone. The diet used is as effective and cheaper than others presently in use for inducing degenerative myopathy.

  14. Comparison of sodium carbonate-oxygen and sodium hydroxide-oxygen pretreatments on the chemical composition and enzymatic saccharification of wheat straw.

    Science.gov (United States)

    Geng, Wenhui; Huang, Ting; Jin, Yongcan; Song, Junlong; Chang, Hou-Min; Jameel, Hasan

    2014-06-01

    Pretreatment of wheat straw with a combination of sodium carbonate (Na2CO3) or sodium hydroxide (NaOH) with oxygen (O2) 0.5MPa was evaluated for its delignification ability at relatively low temperature 110°C and for its effect on enzymatic hydrolysis efficiency. In the pretreatment, the increase of alkali charge (as Na2O) up to 12% for Na2CO3 and 6% for NaOH, respectively, resulted in enhancement of lignin removal, but did not significantly degrade cellulose and hemicellulose. When the pretreated solid was hydrolyzed with a mixture of cellulases and hemicellulases, the sugar yield increased rapidly with the lignin removal during the pretreatment. A total sugar yield based on dry matter of raw material, 63.8% for Na2CO3-O2 and 71.9% for NaOH-O2 was achieved under a cellulase loading of 20FPU/g-cellulose. The delignification efficiency and total sugar yield from enzymatic hydrolysis were comparable to the previously reported results at much higher temperature without oxygen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    It is important to safely treat the waste sodium which was produced from the sodium cooled fast reactors and the sodium facilities. About 1.3 tons of sodium waste has accumulated at KAERI from the sodium experiments which have been carried out since 1990. Also, large scaled sodium experiments are scheduled to verify the design of the sodium cooled fast reactor. As a treatment method for the waste sodium produced at the sodium facility, an investigation of the reaction procedure of the waste sodium with the sodium hydroxide aqueous has been developed. The NOAH process was developed in France for the treatment of waste sodium produced from sodium facilities and reactors. In the NOAH process, a small amount of sodium waste is continuously injected into the upper space which is formed on the free surface of the aqueous and slowly reacted with sodium hydroxide aqueous. Since the density of the sodium is lower than that of the aqueous, the injected sodium waste sometimes accumulates above the free surface of the sodium hydroxide aqueous, and its reaction rate becomes slow or suddenly increases. In the improved process, the sodium was injected into a reaction vessel filled with a sodium hydroxide aqueous through an atomizing nozzle installed on a lower level than that of the aqueous to maintain the reaction uniformly. Fig.1 shows the sodium waste process which was proposed in KAERI. The aqueous is composed of 60% sodium hydroxide, and its temperature is about 60 .deg. C. The process is an exothermic reaction. The hydrogen gas is generated, and the concentration of the sodium hydroxide increases in this process. It needs several systems for the process, i.e. a waste sodium injection, a cooling of the aqueous, hydrogen ventilation, and neutralization with nitric acid. The atomizing nozzle was designed to inject the sodium with the nitrogen gas which supplies a heat to the sodium to prevent its solidification and to uniformly mix the sodium with the aqueous. There are

  16. Leaching of silicon from ferronickel (FeNi) smelting slag with sodium hydroxide solution at atmospheric pressure

    Science.gov (United States)

    Mufakhir, F. R.; Mubarok, M. Z.; Ichlas, Z. T.

    2018-01-01

    The present paper reports the leaching behavior of silicon from ferronickel slag under atmospheric pressure using sodium hydroxide solution. The effect of several experimental variables, namely concentration of leaching agent, operating temperature, stirring speed, and slurry density was investigated. The leaching kinetic was also investigated by using shrinking core model. It was determined that leaching of silicon from the slag was controlled by diffusion through product layer, although the activation energy was found to be 85.84 kJ/mol, which was unusually high for such a diffusion-controlled process.

  17. Coating a polystyrene well-plate surface with synthetic hematite, goethite and aluminium hydroxide for cell mineral adhesion studies in a controlled environment

    International Nuclear Information System (INIS)

    Pouran, Hamid M.; Banwart, Steve A.; Romero-Gonzalez, Maria

    2014-01-01

    Highlights: • Hematite, goethite and aluminium hydroxide were synthesized and characterize. • Polystyrene cell culture well plates were coated with the synthetic metal oxides. • The coated well plates proven to be completely identical to the synthetic minerals. • The coating method is compatible with what occurs in aquifers with metal oxides. • This method provides a key experimental part for cell mineral adhesion studies. - Abstract: Iron and aluminium oxides are available in many climatic regions and play a vital role in many environmental processes, including the interactions of microorganisms in contaminated soils and groundwater with their ambient environment. Indigenous microorganisms in contaminated environments often have the ability to degrade or transform those contaminants, a concept that supports an in situ remediation approach and uses natural microbial populations in order to bio-remediate polluted sites. These metal oxides have a relatively high pH-dependent surface charge, which makes them good candidates for studying mineral–bacterial adhesion. Given the importance of understanding the reactions that occur at metal oxide and bacterial cell interfaces and to investigate this phenomenon further under well-characterized conditions, some of the most common iron and aluminium oxides; hematite, goethite and aluminium hydroxide, were synthesized and characterized and a coating method was developed to coat polystyrene well-plates as a surface exposable to bacterial adhesion with these minerals (non-treated polystyrene-12 well-plates which are used for cell cultures). The coating process was designed in a way that resembles naturally coated surfaces in aquifers. Hematite, Fe 2 O 3 , was synthesized from acidic FeCl 3 solution, while goethite, FeOOH, and aluminium hydroxide, Al(OH) 3 , were prepared from an alkaline solution of Fe(NO 3 ) 3 and Al(NO 3 ) 3 . They were further characterized using X-ray diffraction (XRD), Fourier transform infrared

  18. Study of Activated Carbons by Pyrolysis of Mangifera Indica Seed (Mango in Presence of Sodium and Potassium Hydroxide

    Directory of Open Access Journals (Sweden)

    J. C. Moreno-Piraján

    2012-01-01

    Full Text Available Activated carbons (ACs were prepared by pyrolysis of seeds mango in presence of sodium and potassium hydroxide (chemical activities. Seeds mango from Colombian Mango cultives were impregnated with aqueous solutions of NaOH and KOH following a variant of the incipient wetness method. Different concentrations were used to produce impregnation ratios of 3:1 (weight terms. Activation was carried out under argon flow by heating to 823 K with 1 h soaking time. The porous texture of the obtained ACs was characterized by physical adsorptions of N2 at 77 K and CO2 at 273 K. The impregnation ration and hydroxide type had a strong influence on the pore structure of these ACs, which could be easily controlled by simply varying the proportion of the hydroxides used in the activation. Thus, the development of porosity for precursors with low structural order (high reactivity is better with NaOH than KOH, whereas the opposite is observed for the highly ordered ones. Variable adsorption capacities and porosity distributions can be achieved depending on the activating agent selected. In general, KOH produces activated carbons with narrower micropore distributions than those prepared by NaOH.

  19. The effect of Sodium hydroxide catalyst in formation of Ni nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Shahbahrami, N.; Reyhani, A.; Afshari, N.; Mortazavi, Z.; Norouzian, Sh.; Hojabri, A.; Novinrooz, A. J.

    2007-01-01

    In this paper, Ni nanoparticles growth is studies by spontaneous auto catalytic reduction in an alcohol- water solution in present NaOH catalysis with various ratio at room temperature. The scanning electron microscopy and XRD analyses have been used for investigation diameter and structure of Ni nanoparticles. Investigation of the analyses show that have not formed Ni Nanoparticles in Ph values 8, 9, 10 and 13, but in Ph values 11 and 12 have formed Ni Nanoparticles with average diameter of about 65 and 90 nm, respectively. The XRD patterns show that samples have face-centered cubic structure with (111),(200).(222) planes. The results show that sodium hydroxide value is very effect on the Ni nanoparticles growth.

  20. Effect of sodium hydroxide, ozone and sulphur dioxide on the composition and in vitro digestibility of wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ghedalia, D.; Miron, J.

    1981-01-01

    Wheat straw was treated with 5% sodium hydroxide, ozone, and 5% sulphur dioxide at 70 C for 72 h, and the effect of treatments on the composition and the in vitro organic matter digestibility (IVOMD) by rumen microorganisms was studied. Ozone and SO/sub 2/ solubilised most or all of the straw hemicellulose, converting it into cell solubles, whereas sodium hydroxide exerted a limited effect in this direction. The level of cell solubles increased from 31.8 to 48.2 and 52.2% and that of the reducing sugars from 2.2 to 15.6 and 24.3%, by ozone and SO/sub 2/ treatments, respectively. The IVOMD of straw was significantly increased by 80% (from 44 to 80%) with SO/sub 2/, whereas NaOH and ozone improved the IVOMD by only 50% (from 44 to 66%). The initial digestibility (ID at 6 h) suggested to represent substrate fermentability was significantly increased by SO/sub 2/ from 7.4 to 29.3%. In the present study, SO/sub 2/ was found to be the most efficient treatment for wheat straw in terms of overall degradability and fermentability. The technological advantage of the proposed treatment lies in the low moisture content (40%) and the moderate temperature required (70/sup 0/C), conditions which could be attained by solar systems. 19 references, 2 figures, 3 tables.

  1. Experimental investigation of aluminum complexing with sodium ion and of gallium and iron (III) speciation in natural solutions

    International Nuclear Information System (INIS)

    Diakonov, Igor

    1995-01-01

    The aim of this work is to acquire thermodynamic data on the aqueous complexes forming between sodium and aluminum, gallium and hydroxide, and iron (III) and hydroxide. These data will provide for a better understanding of the transport and distribution of these elements in surface and hydrothermal fluids. Stability constants of the sodium-aluminate complex (Na Al(OH) 4 deg.) were obtained from boehmite solubility measurements at temperatures from 125 to 350 deg. C in alkaline solutions containing from 0.1 to 1 mol/L sodium. Complementary potentiometric measurements were performed with a sodium selective electrode, between 75 and 200 deg C (the potentiometric study was carried out by Gleb Pokrovski). Analyses of these data within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model allowed determination of the HKF parameters for Na Al(OH) 4 deg. and calculation of its thermodynamic properties to 800 deg. C and 5 kb. The results of this work show that Na Al(OH) 4 deg. complex formation increases significantly the solubility of aluminum-bearing minerals and consequently aluminum mobility in hydrothermal fluids. Gallium speciation in surface and hydrothermal fluids is dominated by the negatively charged species, Ga(OH) 4 - . The thermodynamic properties of this species were determined from of OEGaOOH solubility measurements as a function of pH and temperature from 25 to 250 deg. C. In general, the variation of gallium aqueous speciation with pH is similar to that of aluminum other than at temperatures less than 200 deg. C over the pH range 3 - 6. This difference can account for the independent behavior of gallium versus aluminum in numerous low temperature natural systems. The thermodynamic properties of Fe(OH) 3 deg. which dominates the speciation of Fe(III) in surface waters and Fe(OH) 4 - were determined from hematite solubility measurements as a function of pH, oxygen pressure and temperature from 110 to 300 deg. C. The available thermodynamic data on

  2. Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution.

    Science.gov (United States)

    Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L

    2012-11-06

    To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.

  3. Degumming Pretreatment with Sodium Hydroxide and Sodium Oxalate in the Process of Whole Cotton Stalk APMP Pulping

    Directory of Open Access Journals (Sweden)

    Yu-Meng Zhao

    2015-03-01

    Full Text Available The effect of degumming pretreatment on whole cotton stalk alkaline peroxide mechanical pulp (APMP was researched. Degumming pretreatment was used as the first stage of an APMP pulping process, replacing conventional hot water pretreatment. Two degumming agents of sodium hydroxide (NaOH and sodium oxalate (Na2C2O4 were researched separately. The efficiency of hot water pretreatment, NaOH pretreatment, and Na2C2O4 pretreatment on pectin and metal ions removal was compared. After pretreatment of hot water, NaOH, and Na2C2O4, pectin content was reduced to 4.0%, 2.1%, 1.6%, respectively, compared to original material (4.3%, at removal rates of 7%, 51%, and 64%, respectively. For metal ions, especially transition metal ions, the removal rate was up to 20% after degumming pretreatment. The brightness of the handsheets was 64% ISO, 68% ISO, and 73% ISO, respectively. The dirt count was 2674 mm2•m-2, 533 mm2•m-2, and 132 mm2•m-2, respectively. After Na2C2O4 pretreatment, the tension index and tear index were increased to 40.5 N•m•g-1 and 4.5 mN•m2•g-1, respectively. Through degumming pretreatment, pectin, metal ions, and dirt count were reduced efficiently, and the brightness and physical strength were improved significantly.

  4. The sodium process facility at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1997-01-01

    Argonne National Laboratory - West (ANL-W) has approximately 680,000 liters (180,000 gallons) of raw sodium stored in facilities on site. As mandated by the State of Idaho and the United States Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The SPF was designed to react elemental sodium to sodium carbonate through two-stages involving caustic process and carbonate process steps. The sodium is first reacted to sodium hydroxide in the caustic process step. The caustic process step involves the injection of sodium into a nickel reaction vessel filled with a 50 wt% solution of sodium hydroxide. Water is also injected, controlling the boiling point of the solution. In the carbonate process, the sodium hydroxide is reacted with carbon dioxide to form sodium carbonate. This dry powder, similar in consistency to baking soda, is a waste form acceptable for burial in the State of Idaho as a non-hazardous, radioactive waste. The caustic process was originally designed and built in the 1980s for reacting the 290,000 liters (77,000 gallons) of primary sodium from the Fermi-1 Reactor to sodium hydroxide. The hydroxide was slated to be used to neutralize acid products from the PUREX process at the Hanford site. However, changes in the DOE mission precluded the need for hydroxide and the caustic process was never operated. With the shutdown of the Experimental Breeder Reactor-II (EBR-II), the necessity for a facility to react sodium was identified. In order to comply with Resource Conservation and Recovery Act (RCRA) requirements, the sodium had to be converted into a waste form acceptable for disposal in a Sub-Title D low-level radioactive waste disposal facility. Sodium hydroxide is a RCRA

  5. Doping magnesium hydroxide with sodium nitrate: a new approach to tune the dehydration reactivity of heat-storage materials.

    Science.gov (United States)

    Shkatulov, Alexandr; Krieger, Tamara; Zaikovskii, Vladimir; Chesalov, Yurii; Aristov, Yuri

    2014-11-26

    Thermochemical energy storage (TES) provides a challenging approach for improving the efficiency of various energy systems. Magnesium hydroxide, Mg(OH)2, is known as a suitable material for TES at temperature T>300 °C. In this work, the thermal decomposition of Mg(OH)2 in the absence and presence of sodium nitrate (NaNO3) is investigated to adapt this material for TES at T300 °C in vapor atmosphere) than a pure Mg(OH)2; (3) the morphology of the dehydration product (MgO) dramatically changes. Differential scanning calorimetry, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and vibrational spectroscopy (IR and Raman) are used to study the observed effects and to elucidate possible ways the NaNO3 influences the Mg(OH)2 dehydration and morphology of the dehydration product. The mechanism involving a chemical interaction between the salt and the hydroxide accompanied by nitrate embedding into brucite layers is discussed.

  6. Average formation number n-barOH of colloid-type indium hydroxide

    International Nuclear Information System (INIS)

    Stefanowicz, T.; Szent-Kirallyine Gajda, J.

    1983-01-01

    Indium perchlorate in perchloric acid solution was titrated with sodium hydroxide solution to various pH values. Indium hydroxide colloid was removed by ultracentrifugation and supernatant solution was titrated with base to neutral pH. The two-stage titration data were used to calculate the formation number of indium hydroxide colloid, which was found to equal n-bar OH = 2.8. (author)

  7. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    Science.gov (United States)

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  8. Mineral content in French type bread with sodium replacement using ...

    African Journals Online (AJOL)

    Mineral content in French type bread with sodium replacement using fluorescence spectrometry X-rays by energy dispersive. Thaisa A. Souza Gusmão, Rennan P. De Gusmão, Severina De Sousa, Mário Eduardo R. Moreira Cavalcanti Mata, Maria Elita M Duarte, Rossana Maria F. De Figuereido, Ricardo T Moreira ...

  9. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    Science.gov (United States)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  10. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    Science.gov (United States)

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji

    2014-09-01

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  11. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Zaini, Mariana Binti Mohd [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Badri, Khairiah Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43 (Malaysia)

    2014-09-03

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  12. Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation Summary Of Prior Lab-Scale Testing

    International Nuclear Information System (INIS)

    Sams, T.L.; Guillot, S.

    2011-01-01

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  13. Effect of Different Concentration of Sodium Hydroxide [NaOH] on Kenaf Sandwich Structures

    Science.gov (United States)

    Aziz, M.; Halim, Z.; Othman, M.

    2018-01-01

    Sandwich panels are structures that made of three layers, low-density core inserted in between thin skin layers. This structures allow the achievement of excellent mechanical performance with low weight, thus this characteristic fulfil requirement to be use in aircraft application. In recent time, sandwich structures have been studied due to it has multifunction properties and lightweight. The aim of this study is to fabricate a composite sandwich structures with biodegradable material for face sheet [skin] where the fibre being treat with different concentration of sodium hydroxide [NaOH] with 10 and 20 hours of soaking time. Kenaf fibre [treated] reinforced epoxy will be used as skins and Nomex honeycomb is chosen to perform as core for this sandwich composite structure. The mechanical properties that are evaluated such as flexural strength and impact energy of kenaf fibre-reinforced epoxy sandwich structures. For flexural test, the optimum flexural strength is 13.4 MPa and impact strength is 18.3 J.

  14. Carbon dioxide absorbents containing potassium hydroxide produce much larger concentrations of compound A from sevoflurane in clinical practice.

    Science.gov (United States)

    Yamakage, M; Yamada, S; Chen, X; Iwasaki, S; Tsujiguchi, N; Namiki, A

    2000-07-01

    We investigated the concentrations of degraded sevoflurane Compound A during low-flow anesthesia with four carbon dioxide (CO(2)) absorbents. The concentrations of Compound A, obtained from the inspiratory limb of the circle system, were measured by using a gas chromatograph. In the groups administered 2 L/min fresh gas flow with 1% sevoflurane, when the conventional CO(2) absorbents, Wakolime(TM) (Wako, Tokyo, Japan) and Drägersorb(TM) (Dräger, Lübeck, Germany), were used, the concentrations of Compound A increased steadily from a baseline to 14.3 ppm (mean) and 13.2 ppm, respectively, at 2 h after exposure to sevoflurane. In contrast, when the other novel types of absorbents containing decreased or no potassium hydroxide/sodium hydroxide, Medisorb(TM) (Datex-Ohmeda, Louisville, CO) and Amsorb(TM) (Armstrong, Coleraine, Northern Ireland), were used, Compound A remained at baseline (potassium hydroxide/sodium hydroxide produce much larger concentrations of Compound A from sevoflurane in clinical practice. An absorbent containing neither potassium hydroxide nor sodium hydroxide produces the smallest concentrations of Compound A.

  15. Aspects and mechanisms of austenitic stainless steel corrosion in case of sodium leaks under mineral wool insulation

    International Nuclear Information System (INIS)

    Bertrand, C.; Ardellier, A.

    1996-01-01

    Sodium pipe rupture tests representative of Fast Reactors Accidents have been carried out on austenitic stainless steel surfaces. These tests improve our knowledge of small sodium leakage propagation in mineral wool insulation. They explain the new and unexpected aspects of the crevice corrosion phenomenon which has been observed on austenitic stainless steel pipe surfaces. Experimental results show that corrosion is limited to a peripheral annular zone, which extends out in concentric waves. The diameter of this corrosion zone is practically constant. Tests show that sodium does not expand directly on the pipe surface. Sodium sprays through mineral wool insulation, where chemical reaction between silica fibers, occluded oxygen and water vapor occur at the same time. Simultaneously, there is a diffusion phenomenon of liquid Na droplets on the mineral wool fibers. The study allows to prove the electrochemical nature of the corrosion. The excess liquid Na, spraying as droplets induces an anodic dissolution mechanism by differential aeration. This phenomenon explains the random microscopic and macroscopic aspects of material removal. (authors). 1 ref., 16 figs

  16. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    International Nuclear Information System (INIS)

    Mendoza, Oscar; Giraldo, Carolina; Camargo, Sergio S.; Tobón, Jorge I.

    2015-01-01

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure

  17. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Oscar, E-mail: oamendoz@unal.edu.co [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia); Giraldo, Carolina [Cementos Argos S.A., Medellín (Colombia); Camargo, Sergio S. [Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro/COPPE, Rio de Janeiro (Brazil); Tobón, Jorge I. [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia)

    2015-08-15

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.

  18. Interaction of pristine hydrotalcite-like layered double hydroxides ...

    Indian Academy of Sciences (India)

    Metal oxides in general have surface acidic sites, but for exceptional circumstances, are not expected to mineralize CO2. Given their intrinsic basicity and an expandable interlayer gallery, the hydrotalcite-like layered double hydroxides (LDHs) are expected to be superior candidate materials for CO2 mineralization.

  19. Inhibitory effect of some carbazides on corrosion of aluminium in hydrochloric acid and sodium hydroxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, A.S. [El-Mansoura Univ. (Egypt). Dept. of Chemistry; Madkour, L.H. [Tanta Univ. (Egypt). Dept. of Chemistry; Elshafei, A.A. [El-Mansoura Univ. (Egypt). Dept. of Chemistry; Elasklany, A.H. [El-Mansoura Univ. (Egypt). Dept. of Chemistry

    1995-06-01

    The dissolution of aluminium in hydrochloric acid and sodium hydroxide solutions in the presence of semicarbazide, thiosemicarbazide and sym.diphenylcarbazide as corrosion inhibitors has been studied using thermometric, weight-loss and polarization methods. The three methods gave consistent results. The higher inhibition efficiency of these compounds in acidic than in alkaline madia may be due to the less negative potential of aluminium in hydrochloric acid solution, favouring adsorption of the additive. The adsorption of these compounds were found to obey Frumkin adsorption isotherm. Cathodic polarization measurements showed that these compounds are cathodic inhibitors and their adsorption in the double layer does not change the mechanism of the hydrogen evolution reaction. The results are analysed in terms of both molecular and cationic adsorption. (orig.)

  20. The effect of sodium on the mineral balance of plants, using the example of root celery and stalk celery. Part I. The role of sodium and potassium in the process of accumulation and utilization of mineral elements

    Directory of Open Access Journals (Sweden)

    Urszula Kruszelnicka

    2013-12-01

    Full Text Available In the years 1977 - 1980, studies were conducted on the effect of sodium used to supplement low (K = 800 mg/5 kg and high (K = 1400 mg/5 kg potassium doses on the content of mineral components, their accumulation in the yield and the percentage of their utilization. The study was carried out on root celery - Apium graveolens L. var. rapaceum (Mill. and stalk celery - Apium graveolens L. var. dulce (Mill.. The results obtained in these experiments point to the following conclusions: it was found that potassium and sodium mutually limit each other's uptake. Sodium was more antagonistic towards the uptake of calcium than was potassium. However, no clearly antagonistic effect of these elements on the uptake of magnesium was determined. The accumulation of potassium and sodium by the experimental plants rose while the percentage of utilization of these elements decreased as their level in the nutrient medium increased. Sodium exerted a more distinct effect on the accumulation and utilization of other mineral elements than did potassium.

  1. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Science.gov (United States)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  2. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Institute of Scientific and Technical Information of China (English)

    Mathew JOY; Srividhya J.IYENGAR; Jui CHAKRABORTY; Swapankumar GHOSH

    2017-01-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-AI layered double hydroxide (LDH) nanostructure by varying the synthetic conditions.The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies,size and stability of their aqueous solutions.We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (DicNa)) loading and release processes.Hexagonal plate-like crystals show sustained release with ~90% of the drug from the matrix in a week,suggesting the applicability of LDH nanohybrids in sustained drug delivery systems.The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process.LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension,as studied by photon correlation spectroscopy.

  3. Will mineral trioxide aggregate replace calcium hydroxide in treating pulpal and periodontal healing complications subsequent to dental trauma?

    DEFF Research Database (Denmark)

    Bakland, Leif K; Andreasen, Jens O

    2012-01-01

    Mineral trioxide aggregate (MTA) has over the last two decades begun to take the place of calcium hydroxide (CH) in the treatment of a variety of pulpal and periodontal healing complications following dental trauma. These conditions include teeth with: (i) exposed pulps, (ii) immature roots......, the quality of such induced hard tissues, and finally the dentin weakening effect of CH, which in some instances lead to cervical root fractures in immature teeth. MTA appears, from a relatively few clinical studies, to overcome these shortcomings of CH. The lack of long-term clinical studies, however, may...

  4. HYDROGEN PEROXIDE BLEACHING OF CMP PULP USING MAGNESIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Farhad Zeinaly

    2009-11-01

    Full Text Available Conventional bleaching of hardwood CMP pulp with magnesium hydroxide (Mg(OH2 show significant benefits over bleaching with sodium hydroxide (NaOH under various conditions. Magnesium hydroxide bleaching generate higher optical properties, higher pulp yield and lower effluent COD at the same chemical charge, but the physical properties were found to be similar for both processes. The initial freeness of the bleached pulps and refining value to reach a target freeness (about 350 ml. CSF were more for the Mg(OH2-based process. The residual peroxide of filtrate from the Mg(OH2-based process was very high as compared to conventional bleaching.

  5. Jatropha curcas leaves analysis, reveals it as mineral source for low sodium diets.

    Science.gov (United States)

    Méndez, Lucero; Rojas, Janne; Izaguirre, César; Contreras, Billmary; Gómez, Rubén

    2014-12-15

    Jatropha curcas is a perennial herb, belonging to the family Euphorbiaceae, found in countries such as India, Mexico and Venezuela. In the present study, proximate composition and mineral content on the leaves of J. curcas was analysed and compared to spinach (Spinacia oleracea L.) using a ICP-AES. The bromatologic test (dry material) results for ashes, proteins, lipids and carbohydrates revealed 23.4%, 28.0%, 3.2% and 45.4% for J. curcas; whereas for S. oleracea values were 28.9%, 20.8%, 0.5% and 49.9%. Furthermore, minerals found in both species ashes were: calcium, potassium, magnesium, iron and phosphorus, resulting that leaves of J. curcas are composed by three times the iron and calcium amount comparing to spinach; while sodium was absent from the former species. In this study Cu and Zn were found only in spinach, while Pb and As were not detected in any of the studied species. These results indicate that J. curcas leaves might be considered as mineral source suitable for animal and human consumption, especially for people who requires a low sodium diet. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Calcium hydroxide induced apexification with apical root development: a clinical case report.

    Science.gov (United States)

    Soares, J; Santos, S; César, C; Silva, P; Sá, M; Silveira, F; Nunes, E

    2008-08-01

    To report the induction of apical root development by calcium hydroxide in teeth with pulp necrosis and periapical radiolucency. A 10-year-old male patient was admitted to the clinic complaining of an intense pain and oedema on the anterior facial region, compatible with an acute dentoalveolar abscess. There was a previous history of dental trauma; only tooth 11 was negative to pulp sensitivity tests. Radiographically, tooth 11 exhibited incomplete root formation, characterized by a wide root canal, thin and fragile dentinal walls, and an extensive, divergent foraminal opening associated with an apical radiolucency. The first appointment focused on urgent local and systemic treatment. Apexification treatment commenced at the second session after 7 days, by means of chemo-mechanical debridement throughout the entire root canal, using K-files and irrigation with a 2.5% sodium hypochlorite solution. Subsequently, a calcium hydroxide paste was applied and changed four times over 8 months, when radiographic examination revealed complete closure of the foraminal opening, resulting in resolution of the periapical radiolucency and associated with 5 mm of additional root development. The root canal was filled by thermomechanical compaction of gutta-percha and sealer. A 3-year follow-up revealed normal periapical tissues and the absence of symptoms. * In young patients, dental trauma may cause pulp necrosis and arrest of root formation. * Under certain circumstances, chemo-mechanical debridement, including the use of a calcium hydroxide paste, is a valid alternative to mineral trioxide aggregate and or surgery for root-end closure. * In teeth with incompletely formed roots associated with periapical lesions, calcium hydroxide can induce periapical repair through the closure of the foramen and apical root development.

  7. Solubility Model for Ferrous Iron Hydroxide, Hibbingite, Siderite, and Chukanovite in High Saline Solutions of Sodium Chloride, Sodium Sulfate, and Sodium Carbonate

    International Nuclear Information System (INIS)

    Kim, Sungtae; Marrs, Cassandra; Nemer, Martin; Jang, Jay Je-Hun

    2017-01-01

    Here, a solubility model is presented for ferrous iron hydroxide (Fe(OH) 2 (s)), hibbingite (Fe 2 Cl(OH) 3 (s)), siderite (FeCO 3 (s)), and chukanovite (Fe 2 CO 3 (OH) 2 (s)). The Pitzer activity coefficient equation was utilized in developing the model to account for the excess free energies of aqueous species in the background solutions of high ionic strength. Solubility limiting minerals were analyzed before and after experiments using X-ray diffraction. Formation of Fe(OH) 2 (s) was observed in the experiments that were initiated with Fe 2 Cl(OH) 3 (s) in Na 2 SO 4 solution. Coexistence of siderite and chukanovite was observed in the experiments in Na 2 CO 3 + NaCl solutions. Two equilibrium constants that had been reported by us for the dissolution of Fe(OH) 2 (s) and Fe 2 Cl(OH) 3 (s) (Nemer et al.) were rederived in this paper, using newer thermodynamic data selected from the literature to maintain internal consistency of the series of our data analyses in preparation, including this paper. Three additional equilibrium constants for the following reactions were determined in this paper: dissolution of siderite and chukanovite and dissociation of the aqueous species Fe(CO 3 ) 2 –2 . Five Pitzer interaction parameters were derived in this paper: β (0) , β (1) , and C φ parameters for the species pair Fe +2 /SO 4 –2 ; β (0) and β (1) parameters for the species pair Na+/Fe(CO3)2–2. Our model predicts that, among the four inorganic ferrous iron minerals, siderite is the stable mineral in two WIPP-related brines (WIPP: Waste Isolation Pilot Plant), i.e., GWB and ERDA6 (Brush and Domski), and the electrochemical equilibrium between elemental iron and siderite provides a low oxygen fugacity (10 –91.2 atm) that can keep the actinides at their lowest oxidation states. (Nemer et al., Brush and Domski; references numbered 1 and 2 in the main text).

  8. Structural Differentiation between Layered Single (Ni) and Double Metal Hydroxides (Ni–Al LDHs) Using Wavelet Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Siebecker, Matthew G. [University of Delaware, Delaware Environmental Institute; Sparks, Donald L. [University of Delaware, Delaware Environmental Institute

    2017-09-07

    Layered double hydroxides (LDHs) are anionic clays important in disciplines such as environmental chemistry, geochemistry, and materials science. Developments in signal processing of extended X-ray absorption fine structure (EXAFS) data, such as wavelet transformation (WT), have been used to identify transition metals and Al present in the hydroxide sheets of LDHs. The WT plots of LDHs should be distinct from those of isostructural single metal hydroxides. However, no direct comparison of these minerals appears in the literature using WT. This work systematically analyzes a suite of Ni-rich mineral standards, including Ni–Al LDHs, single metal Ni hydroxides, and Ni-rich silicates using WT. The results illustrate that the WT plots for α-Ni(OH)2 and Ni–Al LDHs are often indistinguishable from each other, with similar two-component plots for the different mineral types. This demonstrates that the WT of the first metal shell often cannot be used to differentiate an LDH from a single metal hydroxide. Interlayer anions adsorbed to the hydroxide sheet of α-Ni(OH)2 affect the EXAFS spectra and are not visible in the FT but are clearly resolved and discrete in the WT.

  9. Foliar spray of sodium antagonistic essential mineral elements- a technique to induce salt tolerance in plants growing under saline environment (abstract)

    International Nuclear Information System (INIS)

    Ahmad, R.; Jabeen, R.

    2005-01-01

    Plants growing at saline substrate practice deficiencies in absorption of some essential mineral elements through roots due to presence of excessive sodium in rhizosphere. Sodium being antagonistic to other cations does not let them enter in roots and hence apart from its own toxicity in metabolism, the plants suffer with deficiencies of some mineral elements, which are necessary for growth. Potassium being essential mineral element is much effected due to this antagonistic behavior of sodium ion. Lagenaria siceraria (var. Loki) being a broad leaf vegetable was selected for these experiments. Plant growing at saline substrate was sprayed with specially prepared spray materials containing different dilutions of potassium nitrate. The anatomy of leaf with special reference to that of stomata was also studied to ensure absorption of required minerals. Growth of plants in terms of leaf area is being monitored at present. Some preliminary experiments show betterment in production of fruits in plants undergoing foliar spray. This hypothesis has opened a new chapter demanding series of experiments dealing with recipe of spray materials, mechanism of minerals uptake through stomata, participation of absorbed minerals in metabolic activities around palisade tissue probably by activating potassium dependent enzyme system which otherwise is blocked by replaced sodium, translocation of these minerals from leaves through petiole in rest of plants and overall effect of such spray on vegetative as well as reproductive growth in plants under saline environment. Some of this work is in progress. (author)

  10. Effect of calcium hydroxide on slip casting behaviour

    OpenAIRE

    Şakar‐Deliormanlı, Aylin; Yayla, Zeliha

    2004-01-01

    The effect of calcium hydroxide addition on the casting performance of ceramic slips for sanitary ware was studied. Powder composed of feldspar (24 wt.%), quartz (24 wt.%), kaolin (35 wt.%) and ball clay (17 wt.%) was mixed with water to contain 65 wt.% of solids (specific density 1800 g/l). Either Ca(OH)2 or Na2CO3 was added at concentrations ranging between 0.060 and 0.085 wt.% and the slurries were dispersed by the optimum addition of sodium silicate. Calcium hydroxide in presence of sodiu...

  11. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  12. A study preliminary technician for the obtaining of concentrated de lanthanum and cerium to leave of national minerals

    International Nuclear Information System (INIS)

    Orrego A, P; Navarro D, Patricio; Mahu A, Susana; Vega V, Pilar

    1999-01-01

    A preliminary technical study was carried out to obtain concentrated oxides of Lanthanum (La) and Cerium (Ce), from a radioactively anomalous local mineral. This study is part of a joint project of the National Mining Company (ENAMI) and the Chilean Nuclear Energy Commission (CCHEN), G eological Investigation of Rare Earth in the Region III mountain range ; which aims to diversify the production of minerals that have potential economic interest in the short term. Three sections were defined over area of 100 km 2 , where the rare earth bearing metallic mineral is davidite ((AB-3(O, OH)-7), with A = Fe 2+ , RE, U, Ca, Na, Zr, Th; B = Ti 4+ , Fe 3+ U, V 3+ , Cr 3+ and varieties of anatase with Ti, RE, La, Ce and Nd. The metallurgical research includes the following stages: leaching with sulfuric acid, selective precipitation of purities and the rare earth, evaluating the reagents sodium hydroxide and ammonium hydroxide, dissolution of the precipitates containing rare earth with nitric acid and later precipitation with oxalic acid. According to the results obtained in the laboratory tests, the best operating conditions would be: (1) Leaching R(S/L) = 1, dosage 500 kg of acid /ton mineral; 90 , (2) Precipitation of impurities Ammonium Hydroxide, pH = 4.5 at 90 , (3) Precipitation elements of RE Ammonium Hydroxide, pH 7,5 at 90 , (4) Dissolution HNO-3, 70 , (5) Oxalic precipitation Oxalic acid, pH ∼ 1,0 at 70 . The results of each stage were evaluated with the following major points: Sulfuric acid is not a good leaching agent under normal conditions of temperature and pressure. For sulfuric solutions ammonium hydroxide provides the best precipitation efficiencies. Selective precipitation with oxalic acid produces bigger lanthanide recovery at a pH of less than 1.0. By means this design a concentrate of oxides of rare earth with an approximate of 43% may be obtained

  13. Contribution to the study of hydrogenated and oxygenated impurities in liquid sodium

    International Nuclear Information System (INIS)

    Naud, G.

    1964-07-01

    This study is made up essentially of two parts. The first is devoted to the development of dosage methods for selectively determining the oxygenated and hydrogenated impurities present in sodium, that is the oxide, the hydride and the hydroxide. The second makes use of these methods for a study of the Na-H 2 -O 2 system, as well as of the related problem of the attack of pyrex glass by molten sodium. The conventional method for dosing oxygen by amalgamation was first adapted to the simultaneous measurement of the hydride. We then developed a method for dosing the total hydrogen by measuring successively the concentrations of gas present in the hydride and hydroxide form. This method is based on the thermal decomposition of the hydride and the reaction between sodium and the hydroxide. Our contribution to the study of the Na-H 2 -O 2 System consists first of all in the study of the reaction between hydrogen and sodium in the temperature range from 150 to 250 deg C and at a pressure of about 150 mm of mercury. The study of the thermal decomposition of the hydride in sodium was then studied. It was possible to make some qualitative observations concerning the reaction between sodium and sodium hydroxide. Finally some complementary tests made it possible to define the nature of the phenomena occurring during the attack of pyrex glass by sodium. (author) [fr

  14. Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

    Directory of Open Access Journals (Sweden)

    Y. Prawoto

    2012-01-01

    Full Text Available Through an investigation of the field failure analysis and laboratory experiment, a study on (stress corrosion cracking SCC behavior of steel and aluminum was performed. All samples were extracted from known operating conditions from the field failures. Similar but accelerated laboratory test was subsequently conducted in such a way as to mimic the field failures. The crack depth and behavior of the SCC were then analyzed after the laboratory test and the mechanism of stress corrosion cracking was studied. The results show that for the same given stress relative to ultimate tensile strength, the susceptibility to SCC is greatly influenced by heat treatment. Furthermore, it was also concluded that when expressed relative to the (ultimate tensile strength UTS, aluminum has similar level of SCC susceptibility to that of steel, although with respect to the same absolute value of applied stress, aluminum is more susceptible to SCC in sodium hydroxide environment than steel.

  15. Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents.

    Science.gov (United States)

    Bicu, Ioan; Mustata, Fanica

    2013-10-15

    Response surface methodology was used to optimize cellulose recovery from orange peel using sodium hydroxide (NaOH) as isolation reagent, and to minimize its ash content using ethylenediaminetetraacetic acid (EDTA) as chelating agent. The independent variables were NaOH charge, EDTA charge and cooking time. Other two constant parameters were cooking temperature (98 °C) and liquid-to-solid ratio (7.5). The dependent variables were cellulose yield and ash content. A second-order polynomial model was used for plotting response surfaces and for determining optimum cooking conditions. The analysis of coefficient values for independent variables in the regression equation showed that NaOH and EDTA charges were major factors influencing the cellulose yield and ash content, respectively. Optimum conditions were defined by: NaOH charge 38.2%, EDTA charge 9.56%, and cooking time 317 min. The predicted cellulose yield was 24.06% and ash content 0.69%. A good agreement between the experimental values and the predicted was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A single α-cobalt hydroxide/sodium alginate bilayer layer-by-layer assembly for conferring flame retardancy to flexible polyurethane foams

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaowei [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Yuan, Bihe [School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070 (China); Pan, Ying; Feng, Xiaming; Duan, Lijin [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Zong, Ruowen, E-mail: zongrw@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    A layer-by-layer (LBL) assembly coating composed of α-cobalt hydroxide (α-Co(OH){sub 2}) and sodium alginate (SA) is deposited on flexible polyurethane (FPU) foam to reduce its flammability. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) are employed to prove the LBL assembly process. It is obvious from SEM results that a uniform and rough coating is deposited on FPU foam compared with that of untreated one. The peak intensity of methylene of SA in FITR spectra and typical (003) diffraction peak of α-Co(OH){sub 2} nanosheets at 11.0° in XRD patterns increases gradually with increment of bilayer number. Combustion behavior and toxicity suppression property of samples are characterized by cone calorimeter (under an irradiance of 35 kW m{sup −2}) and Thermogravimetry/Fourier transform infrared spectroscopy. The one and two bilayers (BL) coating on FPU foam can achieve excellent flame retardancy. Compared with untreated sample, the peak heat release rate of the coated FPU foam containing only one BL coating is reduced by 58.7%. The content of gaseous toxic substances during pyrolysis of FPU foam deposited with a single bilayer coating, such as CO and NCO-containing compounds, are reduced by 20.0% and 9.2%, respectively. Besides, the flame retardant mechanism of the coated FPU foam is also revealed. - Highlights: • The α-Co(OH){sub 2} nanosheets are firstly employed in LBL assembly. • A single α-cobalt hydroxide/sodium alginate bilayer LBL assembly for conferring excellent flame retardancy to FPU foam. • The flame retardant mechanism of LBL assembly FPU foam is displayed.

  17. Precipitation of the rare earth double sodium and rare earths from the sulfuric liquor and the conversion into rare earth hydroxides through meta ethic reaction

    International Nuclear Information System (INIS)

    Abreu, Renata D.; Oliveira, Ester F.; Brito, Walter de; Morais, Carlos A.

    2007-01-01

    This work presents the purification study of the rare earths through precipitation of rare earth and sodium (Na TR (SO 4 ) 2 . x H 2 O)) double sulfate and his conversion to rare earths hydroxide TR(OH) 3 by meta ethic reaction through the addition of sodium hydroxide solution to the solid double sulfate. The study used the sulfuric liquor as rare earth sample, generated in the chemical processing of the monazite with sulfuric acid by the Industrias Nucleares do Brasil - INB, Brazil, after the thorium and uranium extraction. The work investigated the influence of the main variables involved in the precipitation of Na TR(SO 4 ) 2 .xH 2 O and in the conversion for the TR(OH) 3 , as follows: type and excess of the precipitation agent, temperature and time reaction. The obtained solid composites were characterized by X-ray diffraction, infrared and chemical analysis. The double sulfate diffractogram indicated the Na TR(SO 4 ) 2 mono-hydrated. The characterization of the metatese products has shown that, for obtaining the complete conversion of NaTR(SO 4 ) 2 .H 2 O into TR(OH) 3 , the reaction must be hot processed (∼70 deg C) and with small excess of Na OH (≤ 5 percent). (author)

  18. Methods in the treatment of sodium wastes

    International Nuclear Information System (INIS)

    Rodriguez, G.

    1997-01-01

    In the domain of sodium waste processing, we have followed a logical route that has enabled us to propose a global method with respect to sodium wastes. This approach has led to: The choice of only those sodium processes using water; The development of sodium purification methods; The development of methods for cutting metallic wastes soiled by or filled with sodium; The transformation of the resulting sodium hydroxide into ultimate solid wastes for surface storage. (author)

  19. Study on the utilization of a sodium-sulfuric acid solution for the uranium minerals' leaching

    International Nuclear Information System (INIS)

    Echenique, Patricia; Fruchtenicht, Fernando; Gil, Daniel; Vigo, Daniel; Bouza, Angel; Vert, Gabriela; Becquart, Elena

    1988-01-01

    Argentine uranium minerals have been leached at bench scale with a different agent trying to reduce sulfuric acid consumption. The leaching agent was a sodium sulfate-sulfuric acid solution and the ore was from Sierra Pintada (San Rafael - Mendoza). The work was performed in stirred vessel at atmospheric pressure. The influence of different variables, pH, temperature, oxidant agent, sodium sulfate concentration and time, in the sulfuric acid consumption and the uranium yield was studied. (Author) [es

  20. EKSTRAKSI SELULOSA DARI POD HUSK KAKAO MENGGUNAKAN SODIUM HIDROKSIDA

    Directory of Open Access Journals (Sweden)

    Gatot Siswo Hutomo

    2013-03-01

    Full Text Available EKSTRAKSI SELULOSA DARI POD HUSK KAKAO MENGGUNAKAN SODIUMHIDROKSIDA Cellulose Extraction from Cacao Pod Husk Using Sodium Hydroxide Gatot Siswo Hutomo, Djagal Wiseso Marseno, Sri Anggrahini, Supriyanto ABSTRAK Pod husk kakao banyak mengandung komponen kimia seperti pektin, lignin, hemiselulosa dan selulosa serta beberapakomponen yang lain yaitu caffein dan theobromine. Khusus selulosa dapat dilakukan modiÞ kasi sebagai turunanselulosa yang mempunyai banyak fungsi serta dapat diaplikasikan untuk pangan. Penelitian ekstraksi selulosa dari podhusk kakao telah dilakukan. Tujuan penelitian ini adalah untuk memperoleh konsentrasi sodium hidroksida sebagaibahan untuk ekstraksi selulosa dari pod husk kakao. Selulosa pada pod husk kakao terikat sangat kuat dengan lignin,sodium hidroksida akan memutus dengan baik ikatan antara selulosa dengan lignin. Bleaching pada selulosa jugadilakukan dengan menggunakan sodium hipoklorida 3% dan sodium bisulÞ t 3% untuk meningkatkan lightness. SpektraFT-IR dan X-ray juga dilakukan untuk pendeteksian pada selulosa hasil ekstraksi. Hasil ekstraksi selulosa dari pod huskkakao menggunakan sodiumhidroksida 12% menghasilkan rendemen sekitar 26,09% (db dengan kristalinitas 27,14%,kadar abu 6,56% (db, WHC 5,87 g/g dan OHC 2,74 g/g. Dapat disimpulkan bahwa sodium hidroksida 12% adalahkonsentrasi yang paling baik untuk mengekstraksi selulosa dari pod husk kakao.Kata kunci: Selulosa, pod husk, kakao, ekstraksi ABSTRACT Cacao pod husk contains some compounds like pectin, lignin, hemicelluloses and cellulose, and other compounds suchas caffeine and theobromine. Especially for cellulose should be modiÞ ed as derivates which it have multi functionsin food application. Extraction cellulose from pod husk cacao was investigated. The aim of the research was to Þ ndthe concentration of sodium hydroxide for cellulose extraction from pod husk cacao. Bleaching for cellulose werecarried out twice using sodium hypochlorite 3% (oxydator and

  1. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  2. Atmospheric dispersion of sodium aerosol due to a sodium leak in a fast breeder reactor complex

    International Nuclear Information System (INIS)

    Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.

    2008-01-01

    Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model dose not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions. (author)

  3. Surface analytical techniques applied to minerals processing

    International Nuclear Information System (INIS)

    Smart, R.St.C.

    1991-01-01

    An understanding of the chemical and physical forms of the chemically altered layers on the surfaces of base metal sulphides, particularly in the form of hydroxides, oxyhydroxides and oxides, and the changes that occur in them during minerals processing lies at the core of a complete description of flotation chemistry. This paper reviews the application of a variety of surface-sensitive techniques and methodologies applied to the study of surface layers on single minerals, mixed minerals, synthetic ores and real ores. Evidence from combined XPS/SAM/SEM studies have provided images and analyses of three forms of oxide, oxyhydroxide and hydroxide products on the surfaces of single sulphide minerals, mineral mixtures and complex sulphide ores. 4 refs., 2 tabs., 4 figs

  4. Structural and surface functionality changes in reticulated vitreous carbon produced from poly(furfuryl alcohol) with sodium hydroxide additions

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Silvia Sizuka, E-mail: silviaoishi@uol.com.br [LAS, Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas 1758, São José dos Campos, SP 12227-010 (Brazil); Botelho, Edson Cocchieri [Departamento de Materiais e Tecnologia, Univ Estadual Paulista (UNESP), Av. Doutor Ariberto Pereira da Cunha 333, Guaratinguetá, SP 12516-410 (Brazil); Rezende, Mirabel Cerqueira [Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), Rua Talim 330, São José dos Campos, SP 12231-280 (Brazil); Ferreira, Neidenêi Gomes [LAS, Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas 1758, São José dos Campos, SP 12227-010 (Brazil)

    2017-02-01

    Highlights: • Reticulated vitreous carbon (RVC) was processed from poly(furfuryl alcohol) with different amounts of NaOH. • A correlation between microstructure and surface functionalities was proposed. • The structural ordering was mainly influenced by the cured PFA polymerization degree and carboxylic acid content on RVC surface. - Abstract: The use of sodium hydroxide to neutralize the acid catalyst increases the storage life of poly(furfuryl alcohol) (PFA) resin avoiding its continuous polymerization. In this work, a concentrated sodium hydroxide solution (NaOH) was added directly to the PFA resin in order to minimize the production of wastes generated when PFA is washed with diluted basic solution. Thus, different amounts of this concentrated basic solution were added to the resin up to reaching pH values of around 3, 5, 7, and 9. From these four types of modified PFA two sample sets of reticulated vitreous carbon (RVC) were processed and heat treated at two different temperatures (1000 and 1700 °C). A correlation among cross-link density of PFA and RVC morphology, structural ordering and surface functionalities was systematically studied using Fourier transform infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy techniques. The PFA neutralization (pH 7) led to its higher polymerization degree, promoting a crystallinity decrease on RVC treated at 1000 °C as well as its highest percentages of carboxylic groups on surface. A NaOH excess (pH 9) substantially increased the RVC oxygen content, but its crystallinity remained similar to those for samples from pH 3 and 5 treated at 1000 °C, probably due to the reduced presence of carboxylic group and the lower polymerization degree of its cured resin. Samples with pH 3 and 5 heat treated at 1000 and 1700 °C can be considered the most ordered which indicated that small quantities of NaOH may be advantageous to minimize continuous

  5. Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Ryan A.; Zhu, Wenhua H.; Payne, Robert U.; Cahela, Donald R.; Tatarchuk, Bruce J. [Center for Microfibrous Materials Manufacturing, Department of Chemical Engineering, 230 Ross Hall, Auburn University, Auburn, AL 36849 (United States)

    2006-10-27

    The Hg/HgO electrode is usually utilized as a reference electrode in alkaline solution such as for development of an alkaline hydrogen electrode. The reference electrode provides a suitable reference point but is available from few commercial vendors and suffers from inadequate documentation on potential in varying electrolytes. A new numerical method uses activity, activity coefficients, and a few correlated empirical equations to determine the potential values in both dilute and concentrated sodium hydroxide solutions at temperatures of 0-90{sup o}C and at concentrations of 0.100-12.8mol kg{sub H{sub 2}O}{sup -1}. The computed potentials of the Hg/HgO electrodes versus a normal hydrogen electrode (NHE) at 25{sup o}C and 1atm are 0.1634V for 0.100m, 0.1077V for 1.00m, and 0.0976V for 1.45m NaOH solutions. The Hg/HgO reduction potential further changes to -0.0751V versus NHE and hydrogen evolution potential changes to -0.9916V versus NHE in a solution of 30.0wt.% NaOH at 80{sup o}C. The calculated values are compared with the measured data at 25 and 75{sup o}C. The experimental data agree well with the numerical values computed from the theoretical and empirical equations. (author)

  6. Fabrication and corrosion behavior of fresh porous silicon in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Lai, Chuan; Li, Xueming; Zhang, Daixiong; Xiang, Zhen; Yang, Wenjing; Guo, Xiaogang

    2014-01-01

    The corrosion behavior of fresh porous silicon (f-PS) in sodium hydroxide (NaOH) solution in the presence and absence of ethanol was studied by weight loss measurements and scanning electron microscope (SEM) technique. The phenomena and progress of f-PS corrosion in 1.0 M NaOH at 318 K was obtained and described. Weight loss measurements show that the corrosion rate increases with increasing temperature and concentration of NaOH solution. Meanwhile, the corrosion rate first increases with increasing volume ratio of ethanol in 1.0 M NaOH, and then decreases. Additionally, the thermodynamic and kinetic parameters (E a , A, ΔH a and ΔS a ) for f-PS corrosion were obtained and discussed. And the effect factors (T, c and v) of f-PS corrosion in NaOH solution were studied in this paper. - Highlights: • The corrosion behavior of f-PS in NaOH solution was studied for the first time. • Phenomena and progress of f-PS corrosion in NaOH solution was obtained and described. • The effect factors (T, c and v) of f-PS corrosion in NaOH solution were studied. • The kinetic and thermodynamic parameters were obtained and discussed. • The corrosion rate can be improved by adding ethanol into NaOH solution

  7. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  8. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.

    Science.gov (United States)

    Mejia, Jacqueline; Roden, Eric E; Ginder-Vogel, Matthew

    2016-04-05

    Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments.

  9. Preparation of YBa2Cu3O7-x precursors from a fused eutectic of sodium and potassium hydroxides

    International Nuclear Information System (INIS)

    Coppa, N.; Nichols, D.H.; Schwegler, J.W.; Crow, J.E.; Myer, G.H.; Salamon, R.E.

    1989-01-01

    A method for preparing YBa 2 Cu 3 O 7-x from the simultaneous thermal decomposition of the nitrates of yttrium, barium, and copper in an anhydrous fused eutectic of sodium and potassium hydroxide is described. This method eliminates the need for any mechanical grinding or the introduction of carbon containing anions. Products formed are fine powders (∼1 μm) having mole ratios 1.00 Y:2.00 Ba:3.06 Cu. X-ray diffraction analysis reveal that the initial products are Y(OH) 3 , BaO 2 , and CuO, which when air calcinated/ oxygen annealed at 900--950 degree C form the superconducting YBa 2 Cu 3 O 7-x . A mechanism is postulated for product formation as a function of reaction conditions

  10. Effect of Long Term Oral Warfarin Sodium Treatment on Bone Mineral Density Scores and Spinal Sagittal Alignment

    Directory of Open Access Journals (Sweden)

    Kamil Eyvazov

    2016-04-01

    Full Text Available Objective: The aim of this study was to investigate the effect of long term oral warfarin sodium treatment on bone mineral density (BMD and spinal sagittal alignment. Materials and Methods: Sixty four participants were enrolled for this retrospective study. Participants were divided into two groups-participants who had taken warfarin sodium for at least two years (n=33 and participants who had never taken warfarin sodium (n=31. All of the individuals were evaluated at the same center. Dual X-ray absorptiometry (DXA was used for measuring BMD. Whole spine x-rays were obtained for sagittal assessment and the following parameters were measured: Cervical lordosis, thoracic kyphosis, lumbar lordosis, pelvic incidence, pelvic tilt, sacral slope and sagittal vertical axis (SVA. Results: The mean BMD value was significantly higher in participants who had not taken warfarin sodium compared to participants who had taken warfarin sodium. The differences between the average values were 0.1552 g/cm2 in BMD; 2.1 in T scores; 1.4 in Z scores. On the radiological evaluation of the spine, cervical lordosis was 7.1 degrees lower, lumbar lordosis was 4.7 degrees lower and thoracic kyphosis was 5.3 degrees higher in the patients using drug. C7 plumb line was interchanged forward in the patients using drug. Conclusions: This study shows that warfarin sodium use worsens bone quality in the lumbar region and does not affect bone quality in the femoral region. Furthermore, warfarin sodium use also reduces physiological lordosis and enhances thoracic kyphosis. Consequences of these changes are the likely cause of sagittal spinal anterior imbalance. Long-term oral warfarin sodium use affect bone mineral density and spinal alignment. Our conclusion about giving clear message and show exactly mechanism we need prospective randomized multicentre studies in future. We strongly believe this study will be pioneer for future researches.

  11. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki [Laboratory of Interface Microstructure Analysis (LIMSA), Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)], E-mail: himendra@eng.hokudai.ac.jp

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  12. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    International Nuclear Information System (INIS)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-01-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method

  13. Determination of chloride and sulphur in sodium by ion chromatography and its application to PFBR sodium samples

    International Nuclear Information System (INIS)

    Vijayalakshmi, S.; Ushalakshmi, K.

    2011-01-01

    Analytical method using ion chromatography was developed for the determination of chloride and sulphur in sodium. In this method, sodium was dissolved in water and various sulphur species present in the sample was oxidized to sulphate using hydrogen peroxide. Carbon dioxide gas was passed through the solution to convert sodium hydroxide to carbonate solution. The resulting sample solution was analysed using suppressed Ion chromatography employing carbonate eluent. This method was applied to the analysis of sodium samples procured for prototype fast breeder reactor. (author)

  14. Technology Readiness Evaluation For Aluminum Removal And Sodium Hydroxide Regenration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation

    International Nuclear Information System (INIS)

    Sams, T.L.; Massie, H.L.

    2011-01-01

    A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

  15. Study of optimal transformation of liquid effluents resulting from the destruction of radioactive sodium by water into ultimate solid wastes

    International Nuclear Information System (INIS)

    Rodriguez, G.; Camaro, S.; Fiquet, O.; Bernard, A.; Le Bescop, P.

    1997-01-01

    In the framework of sodium waste processing, it has been proposed to retain only processes that treat the sodium using water, thus generating the same by-products: hydrogen and sodium hydroxide. As the objective is to minimise radioactive liquid releases and as, moreover, the authorizations with respect to sodium salt releases are highly restrictive, several solutions have been envisaged for transforming the active sodium hydroxide coming from sodium destruction processes into ultimate solid wastes that can be stored on the surface in a storage site approved by the ANDRA (National Radioactive Waste Management Agency): the Aube Storage Site (CSA). Two processes have been considered and compared: immobilisation in concrete (cementation) and immobilisation in ceramic (ceramisation). These two processes are evaluated according to several criteria: the state of advancement of the process, the quantity of sodium hydroxide (and therefore of sodium) that can be treated per package. (author)

  16. Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a gas-solid system.

    Science.gov (United States)

    Lin, Pao-Chung; Huang, Cheng-Wei; Hsiao, Ching-Ta; Teng, Hsisheng

    2008-04-15

    Magnesium hydroxide extracted from magnesium-bearing minerals is considered a promising agent for binding CO2 as a carbonate mineral in a gas-solid reaction. An efficient extraction route consisting of hydrothermal treatment on serpentine in HCl followed by NaOH titration for Mg(OH)2 precipitation was demonstrated. The extracted Mg(OH)2 powder had a mean crystal domain size as small as 12 nm and an apparent surface area of 54 m2/g. Under one atmosphere of 10 vol% CO2/N2, carbonation of the serpentine-derived Mg(OH)2 to 26% of the stoichiometric limit was achieved at 325 degrees C in 2 h; while carbonation of a commercially available Mg(OH)2, with a mean crystal domain size of 33 nm and an apparent surface area of 3.5 m2/g, reached only 9% of the stoichiometric limit. The amount of CO2 fixation was found to be inversely proportional to the crystal domain size of the Mg(OH)2 specimens. The experimental data strongly suggested that only a monolayer of carbonates was formed on the crystal domain boundary in the gas-solid reaction, with little penetration of the carbonates into the crystal domain.

  17. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  18. The Effect of Sodium Hydroxide Molarity on Strength Development of Non-Cement Class C Fly Ash Geopolymer Mortar

    Science.gov (United States)

    Wardhono, A.

    2018-01-01

    The use of fly ash as cement replacement material can overcome the environmental issues, especially the global warming problem caused by the greenhouse effect. This is attributed to the CO2 gas produced during the cement manufacturing process, which 1 ton of cement is equivalent to 1 ton CO2. However, the major problem of fly ash is the requirement of activators to activate the polymer reactions. The most common activator used in non-cement or geopolymer material is the combination of sodium hydroxide (NaOH) and sodium silicate. This study aims to identify the effect of NaOH molarity as activator on strength development of non-cement class C fly ash geopolymer mortar. The molarity variations of NaOH were 6 Molar (M), 8M, 10M, 12M, 14M and 15M. The compressive strength test was performed at the age of 3, 7 and 28 days in accordance with ASTM standard, and the specimens were cured at room temperature. The results show that the highest compressive strength was achieved by geopolymer mortar with a molarity of 12M. It exhibits a higher strength to that normal mortar at 28 days. However, the use of NaOH molarity more than 12M tends to decrease the strength of non-cement geopolymer mortar specimens.

  19. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate

    Science.gov (United States)

    Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi

    2017-07-01

    The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.

  20. Impregnation of sodium titanate onto DMAPAA-grafted fiber under mild reaction conditions and its strontium removal performance from seawater

    International Nuclear Information System (INIS)

    Katagiri, Mizuki; Kono, Michitaka; Goto, Shun-ichi; Kawai-Noma, Shigeko; Umeno, Daisuke; Saito, Kyoichi; Fujiwara, Kunio; Sugo, Takanobu

    2015-01-01

    Sodium titanate was impregnated onto a commercially available 6-nylon fiber by means of radiation-induced graft polymerization of dimethyaminopropyl acrylamide (DMAPAA) and subsequent chemical modifications. A peroxo complex of titanium anions was bound onto the DMAPAA-grafted fiber before the bound titanium species was converted to sodium titanate through precipitation with sodium hydroxide. Impregnation percentage of sodium titanate of the fiber was constant at 20% in the range of sodium hydroxide concentration in a mixture of methanol and water at a volume fraction of methanol of 80% of 0.001 to 1 M, whereas the removal percentage of strontium from seawater leveled off at 80% above a sodium hydroxide concentration in water of 0.1 M. Determination of adsorption isotherms in seawater demonstrates that the sodium-titanate-impregnated fiber with an impregnation percentage of 10% exhibited 2.6-fold higher amount of strontium adsorbed in seawater per g of sodium titanate (8.8 mg-Sr/g) than a commercially available granular adsorbent for strontium, SrTreat ® (3.4 mg-Sr/g). (author)

  1. The Corrosion Behavior of Nickel and Inconel 600 in Sodium Hydroxide and Hydrochloric Acid Solution at 280 .deg. C

    International Nuclear Information System (INIS)

    Lee, Ihh Chong; Suk, Tae Won

    1980-01-01

    The corrosion behavior of nickel and Inconel 600 has been investigated by the weight change measurement method at pH ranges 3∼13 of the solution. The specimens were exposed to aqueous solutions in a static autoclave at 280 .deg. C for 210 hours. The pH of the solutions was adjusted by hydrochloric acid and sodium hydroxide and the dissolved oxygen concentration was fixed as 10 ppb by using pure nitrogen gas. Weight loss of Inconel 600 was much less than that of nickel over the tested pH ranges. At pH 9.5, nickel and Inconel 600 showed the minimum weight loss phenomenon and the values of weight loss were 1.5mg/dm 2 and 0.9mg/dm 2 , respectively. Microscopic examination showed that nickel surface was attacked uniformly, whereas Inconel 600 surface was not greatly

  2. Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008-2011.

    Science.gov (United States)

    Kim, Sung-Woo; Jeon, Jae-Han; Choi, Yeon-Kyung; Lee, Won-Kee; Hwang, In-Ryang; Kim, Jung-Guk; Lee, In-Kyu; Park, Keun-Gyu

    2015-08-01

    Accumulating evidence shows that high sodium chloride intake increases urinary calcium excretion and may be a risk factor for osteoporosis. However, the effect of oral sodium chloride intake on bone mineral density (BMD) and risk of osteoporosis has been inadequately researched. The aim of the present study was to determine whether urinary sodium excretion (reflecting oral sodium chloride intake) associates with BMD and prevalence of osteoporosis in postmenopausal women. This cross-sectional study involved a nationally representative sample consisting of 2,779 postmenopausal women who participated in the Korea National Health and Nutritional Examination Surveys in 2008-2011. The association of urinary sodium/creatinine ratio with BMD and other osteoporosis risk factors was assessed. In addition, the prevalence of osteoporosis was assessed in four groups with different urinary sodium/creatinine ratios. Participants with osteoporosis had significantly higher urinary sodium/creatinine ratios than the participants without osteoporosis. After adjusting for multiple confounding factors, urinary sodium/creatinine ratio correlated inversely with lumbar spine BMD (P = 0.001). Similarly, when participants were divided into quartile groups according to urinary sodium/creatinine ratio, the average BMD dropped as the urinary sodium/creatinine ratio increased. Multiple logistic regression analysis revealed that compared to quartile 1, quartile 4 had a significantly increased prevalence of lumbar spine osteoporosis (odds ratios 1.346, P for trend = 0.044). High urinary sodium excretion was significantly associated with low BMD and high prevalence of osteoporosis in lumbar spine. These results suggest that high sodium chloride intake decreases lumbar spine BMD and increases the risk of osteoporosis in postmenopausal women.

  3. Application of sorption method on hydroxides for purification of some reactive from iron(III) markings

    International Nuclear Information System (INIS)

    Rakhmonberdiev, A.D.; Khamidov, B.O.

    1986-01-01

    The method of purification of solutions of citric acid, tartaric acid and their salts, potassium hydroxide, potassium nitrate and chloride, sodium perchlorate from iron (III) impurities by means of sorption method on zirconium hydroxide is elaborated. The control of iron(III) content in solutions is conducted by inversion voltammetry method with mercury-graphite electrode. It is defined that complete sorption of iron (III) ions achieves at ph =4÷14.

  4. Hideout of sodium salts in tubesheet crevices: Final report

    International Nuclear Information System (INIS)

    Brunet, J.P.; Campon, J.L.

    1987-07-01

    The hideout of sodium hydroxide and sodium chloride in tubesheet crevices was studied in single tube model boilers at CADARACHE. Radioactive Na 24 was used for the measurements. Crevices of 0.2 mm width were empty or packed. A hydraulically expanded crevice and a rolled crevice were also studied. The concentration rate depends on the bulk water concentration but the equilibrium concentration appears to be related only to thermal conditions. The equilibrium value of 25 moles per liter in the crevice was extrapolated, the sodium concentration in the bulk water being in the range of 5 to 50 ppM. This equilibrium will be obtained with an ''integrated pollution'' of 5000 to 10,000 ppM x hours. Flushing produced by the boiler depressurization was shown to be an effective way to remove salt from the crevice. Sodium hydroxide was shown to concentrate even in a residual crevice of few μm width

  5. Permanence and diffusion of borax-copper hydroxide remedial preservative applied to unseasoned pine posts : 10 year update

    Science.gov (United States)

    Douglas Crawford; Stan Lebow; Mike West; Bill Abbott

    2005-01-01

    In 1993, unseasoned pine posts were treated with groundline remedial treatment containing 3.1% copper hydroxide and 40% sodium tetraborate decahydrate (borax). The soundness of the posts was periodically evaluated using a push test. After 3.5, 6.5, and 10 years, sections were taken from two posts to determine retention of borax and copper hydroxide below ground to 36...

  6. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  7. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  8. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    Energy Technology Data Exchange (ETDEWEB)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George; Desai, Aditya; Duffey, Kean; Balagopal, Shekar [Ceramatec Inc., Salt Lake City, UT 84119 (United States)

    2012-07-01

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodium management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent

  9. EFFECTS OF SODIUM CHLORIDE ON GROWTH AND MINERAL NUTRITION OF PURPLETOP VERVAIN

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2016-04-01

    Full Text Available There is a rising demand for salt-tolerant species for landscaping. Purpletop vervain is an excellent landscape plant for gardens and parks, with fragrant lavender to rose-purple flowers. However, little is known concerning the effect of sodium chloride on morphological characteristics, flowering and mineral uptake of purpletop vervain. In this study, carried out in 2013–2014, the plants of purpletop vervain were grown in pots in an unheated plastic tunnel. The plants were watered with 200 mM NaCl solution four times, every seven days. Salinity-exposed plants were characterized by slightly reduced plant height, weight of the aboveground part and visual score. Salt stress caused also an increase in leaf content sodium, chlorine and manganese. Salinity had no effect on earliness of flowering and content in leaves of phosphorus, potassium, magnesium, copper, zinc and iron. Purpletop vervain seems to be plant species able to tolerate salt stress under controlled conditions.

  10. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue.

    Science.gov (United States)

    Marrakchi, F; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-05-01

    In this work, mesoporous-activated carbon (CSAC) was prepared from chitosan flakes (CS) via single-step sodium hydroxide activation for the adsorption of methylene blue (MB). CSAC was prepared using different impregnation ratios of NaOH:CS (1:1, 2:1, 3:1, and 4:1) at 800°C for 90min. The adsorption performance of CSAC was evaluated for MB at different adsorption variables, such MB initial concentrations (25-400mg/L), solution pH (3-11), and temperature (30-50°C). The adsorption isotherm data of CSAC-MB were well fitted to Langmuir model with a maximum adsorption capacity 143.53mg/g at 50°C. Best representation of kinetic data was obtained by the pseudo-second order model. CSAC exhibited excellent adsorption uptake for MB and can potentially be used for other cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials

    International Nuclear Information System (INIS)

    Reddy Channu, V.S.; Holze, Rudolf; Yeo, In-Hyeong; Mho, Sun-il; Kalluru, Rajamohan R.

    2011-01-01

    Sodium vanadate nanomaterials were synthesized at different pH-values of a sodium hydroxide solution of vanadium pentoxide. Polyaniline-modified sodium vanadate nanomaterials were prepared at room temperature and at 3 C by a chemical polymerization method. The crystal structure and phase purity of the samples have been examined by powder XRD. The samples were identified as HNaV 6 O 16 .4H 2 O and Na 1.1 V 3 O 7.9 . The electrochemical measurements show that polyaniline-modified sodium vanadate hydrated nanomaterials provide higher current density than the sodium vanadate nanomaterials. (orig.)

  12. Concentration of 99Tc in seawater by coprecipitation with iron hydroxide

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Eto, Ichiro; Muhammad Sayad; Takashima, Yoshimasa

    1991-01-01

    A method for accumulation of 99 Tc in seawater has been developed. Technetium tracer in +VII oxidation state was added to the seawater together with reducing agent, potassium pyrosulfite, and coprecipitation agent, ferric chloride. After reduction of Tc(VII) at pH 4, Tc(IV) was coprecipitated as iron hydroxide by addition of sodium hydroxide to pH 9. The reduction and coprecipitation was quantitative and overall recovery of Tc was more than 98%. The green color of iron precipitate formed at pH 9 suggested that Tc(VII) as well as ferric ion was reduced under this condition. Adsorption of Tc(IV), however, was poor for iron hydroxide which was prepared in advance indicating active surface of freshly precipitated iron hydroxide is necessary for quantitative recovery of Tc(IV). A repeating coprecipitation technique was examined for enrichment of Tc in seawater that the same iron was used repeatedly as coprecipitater. After separation of iron hydroxide with Tc(IV) from supernatant, the precipitate was dissolved by addition of acid and then new seawater which contained reducing agent and Tc(VII) was added. Reduction and coprecipitation was again carried out. Good recovery was attained for 7 repeats. The proposed repeating coprecipitation technique was applicable to a large amount of seawater without increasing the amount of iron hydroxide which is subjected to radiochemical analysis. (author)

  13. Application of magnesium hydroxide and barium hydroxide for the ...

    African Journals Online (AJOL)

    Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulphate from mine water. ... equivalent to the Ba(OH)2 dosage. During CO2-dosing, CaCO3 is precipitated to the saturation level of CaCO3. Keywords: Magnesium hydroxide; barium hydroxide; sulphate removal; water treatment ...

  14. The effects of potassium and rubidium hydroxide on the alkali-silica reaction

    International Nuclear Information System (INIS)

    Shomglin, K.; Turanli, L.; Wenk, H.-R.; Monteiro, P.J.M.; Sposito, G.

    2003-01-01

    Expansion of mortar specimens prepared with an aggregate of mylonite from the Santa Rosa mylonite zone in southern California was studied to investigate the effect of different alkali ions on the alkali-silica reaction in concrete. The expansion tests indicate that mortar has a greater expansion when subjected to a sodium hydroxide bath than in a sodium-potassium-rubidium hydroxide bath. Electron probe microanalysis (EPMA) of mortar bars at early ages show that rubidium ions, used as tracer, were present throughout the sample by the third day of exposure. The analysis also shows a high concentration of rubidium in silica gel from mortar bars exposed to bath solutions containing rubidium. The results suggest that expansion of mortar bars using ASTM C 1260 does not depend on the diffusion of alkali ions. The results indicate that the expansion of alkali-silica gel depends on the type of alkali ions present. Alkali-silica gel containing rubidium shows a lower concentration of calcium, suggesting competition for the same sites

  15. Mg-Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152+154Eu from aqueous solutions

    International Nuclear Information System (INIS)

    Mahmoud, M.R.; Someda, H.H.

    2012-01-01

    In the present study, Mg-Al layered double hydroxide intercalated with nitrate anions (LDH-NO 3 ) was synthesized, modified with the anionic surfactant, sodium lauryl sulfate, and applied for the removal of 152+154 Eu from aqueous solutions. Modification of the as-synthesized Mg-Al layered double hydroxide was carried out at surfactant concentration of 0.01 M (the organo-LDH produced denoted LDH-NaLS). The as-synthesized and surfactant-intercalated LDHs were characterized by FT-IR and energy-dispersive X-ray spectroscopy techniques. The effect of some variables such as solution pH, contact time and sorbate concentration on removal of 152+154 Eu was investigated. The kinetic data obtained were well fitted by the pseudo-second-order kinetic model rather than the pseudo-first-order model. Intraparticle diffusion model showed that sorption of 152+154 Eu proceed by intraparticle diffusion together with boundary layer diffusion. Experimental isotherm data were well described by Langmuir model. Organo-LDH was found to have higher capacity (156.45 mg g -1 ) for europium than the as-synthesized LDH-NO 3 (119.56 mg g -1 ). Comparing LDHs capacities obtained for Eu(III) in the present work with other sorbents reported in literature indicated that LDHs have the highest capacities. Application of the developed process for removal of 152+154 Eu(III) from radioactive process wastewaters was also studied and the obtained results revealed that these LDHs are promising materials for treatment of radioactive wastewaters. (author)

  16. Computational NMR, IR/RAMAN calculations in sodium pravastatin: Investigation of the Self-Assembled Nanostructure of Pravastatin-LDH (Layered Double Hydroxides) Systems

    Science.gov (United States)

    Petersen, Philippe; Cunha, Vanessa; Gonçalves, Marcos; Petrilli, Helena; Constantino, Vera; Instituto de Física, Departamento de Física de Materiais e Mecânica Team; Instituto de Química, Departamento de Química Fundamental Team

    2013-03-01

    Layered double hydroxides (LDH) can be used as nanocontainers for immobilization of Pravastatin, in order to obtain suitable drug carriers. The material's structure and spectroscopic properties were analyzed by NMR, IR/RAMAN and supported by theoretical calculations. Density Functional Theory (DFT) calculations were performed using the Gaussian03 package. The geometry optimizations were performed considering the single crystal X-ray diffraction data of tert-octylamonium salt of Pravastatin. Tetramethylsilane (TMS), obtained with the same basis set, was used as reference for calculating the chemical shift of 13C. A scaling factor was used to compare theoretical and experimental harmonic vibrational frequencies. Through the NMR and IR/RAMAN spectra, we were able to make precise assignments of the NMR and IR/RAMAN of Sodium Pravastatin. We acknowledge support from CAPES, INEO and CNPQ.

  17. Contribution to the study of hydrogenated and oxygenated impurities in liquid sodium; Contribution a l'etude des impuretees hydrogenees et oxygenees dans le sodium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Naud, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-15

    This study is made up essentially of two parts. The first is devoted to the development of dosage methods for selectively determining the oxygenated and hydrogenated impurities present in sodium, that is the oxide, the hydride and the hydroxide. The second makes use of these methods for a study of the Na-H{sub 2}-O{sub 2} system, as well as of the related problem of the attack of pyrex glass by molten sodium. The conventional method for dosing oxygen by amalgamation was first adapted to the simultaneous measurement of the hydride. We then developed a method for dosing the total hydrogen by measuring successively the concentrations of gas present in the hydride and hydroxide form. This method is based on the thermal decomposition of the hydride and the reaction between sodium and the hydroxide. Our contribution to the study of the Na-H{sub 2}-O{sub 2} System consists first of all in the study of the reaction between hydrogen and sodium in the temperature range from 150 to 250 deg C and at a pressure of about 150 mm of mercury. The study of the thermal decomposition of the hydride in sodium was then studied. It was possible to make some qualitative observations concerning the reaction between sodium and sodium hydroxide. Finally some complementary tests made it possible to define the nature of the phenomena occurring during the attack of pyrex glass by sodium. (author) [French] Cette etude comporte essentiellement deux parties. La premiere est consacree a la mise au point de methodes de dosages permettant de determiner selectivement les impuretes oxygenees et hydrogenees presentes dans le sodium, a savoir l'oxyde, l'hydrure et l'hydroxyde. La seconde met a profit ces methodes en vue de l'etude du systeme Na-H{sub 2}-O{sub 2}. ainsi que du phenomene connexe d'attaque du verre pyrex par le sodium fondu. La methode classique de dosage de l'oxygene par amalgamation a d'abord ete adaptee au dosage simultane de l'hydrure. Nous avons ensuite mis au point le dosage de l

  18. Trace contaminant concentration affects mineral transformation and pollutant fate in hydroxide-weathered Hanford sediments

    International Nuclear Information System (INIS)

    Perdrial, Nicolas; Rivera, Nelson; Thompson, Aaron; O’Day, Peggy A.; Chorover, Jon

    2011-01-01

    Highlights: ► Fate of Sr, Cs and I tracked during hydroxide-weathering of sediments. ► pCO 2 and contaminant concentration affected mineral transformation. ► Sodalite/cancrinite formed at μM levels, chabazite at mM levels. ► Absence of CO 2 resulted in calcite dissolution and strätlingite formation. ► Trace contaminant concentrations modified their own sequestration path. - Abstract: Prior work has shown that when silicaceous sediments are infused with caustic radioactive waste, contaminant fate is tightly coupled to ensuing mineral weathering reactions. However, the effects of local aqueous geochemical conditions on these reactions are poorly studied. Thus, we varied contaminant concentration and pCO 2 during the weathering of previously uncontaminated Hanford sediments over 6 months and 1 year in a solution of caustic waste (pH 13, high ionic strength). Co-contaminants Sr, Cs and I were added at “low” (Cs/Sr: 10 −5 m; I: 10 −7 m) and “high” (Cs/Sr: 10 −3 m; I: 10 −5 m) concentrations, and headspace was held at atmospheric or undetectable ( 2 partial pressure. Solid phase characterization revealed the formation of the zeolite chabazite in “high” samples, whereas feldspathoids, sodalite and cancrinite, were formed preferentially in “low” samples. Sr, Cs and I were sequestered in all reacted sediments. Native calcite dissolution in the CO 2 -free treatment drove the formation of strätlingite (Ca 2 Al 2 SiO 7 ·8H 2 O) and diminished availability of Si and Al for feldspathoid formation. Results indicate that pCO 2 and contaminant concentrations strongly affect contaminant speciation in waste-weathered sediments, and are therefore likely to impact reaction product stability under any remediation scenario.

  19. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.

    Science.gov (United States)

    Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2014-07-01

    The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.

  20. In Situ Hybridization of Pulp Fibers Using Mg-Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Carl-Erik Lange

    2015-04-01

    Full Text Available Inorganic Mg2+ and Al3+ containing layered double hydroxide (LDH particles were synthesised in situ from aqueous solution onto chemical pulp fibers of pine (Pinus sylvestris. High super saturated (hss solution with sodium carbonate produced LDH particles with an average diameter of 100–200 nm. Nano-size (70 nm LDH particles were found from fibers external surface and, to a lesser degree, from the S2 cell wall after synthesis via low super saturated (lss route. The synthesis via slow urea hydrolysis (Uhyd yielded micron and clay sized LDH (2–5 μm and enabled efficient fiber densification via mineralization of S2 fiber wall layer as indicated by TEM and compliance analysis. The Uhyd method decreased fiber compliance up to 50%. Reduction in the polymerisation degree of cellulose was observed with capillary viscometry. Thermogravimetric analysis showed that the hybridization with LDH reduced the exothermic heat, indicating, that this material can be incorporated in flame retardant applications. Fiber charge was assessed by Fibers 2015, 3 104 adsorption expermients with methylene blue (MB and metanil yellow (MY. Synthesis via lss route retained most of the fibres original charge and provided the highest capacity (10 μmol/g for anionic MY, indicating cationic character of hybrid fibers. Our results suggested that mineralized fibers can be potentially used in advanced applications such as biocomposites and adsorbent materials.

  1. Numerical thermal-hydraulics study on sodium-water reaction phenomena

    International Nuclear Information System (INIS)

    Takashi, Takata; Akira, Yamaguchi

    2003-01-01

    A new computational program SERAPHIM (Sodium-watEr Reaction Analysis: PHysics of Interdisciplinary Multi-phase flow) is developed to investigate the Sodium-Water Reaction (SWR) phenomena based on parallel computation technology. A compressible three-fluid (liquid water, liquid sodium and mixture gas) and one-pressure model is adopted for multi-phase calculation. The Highly Simplified Maker And Cell (HSMAC) method considering with compressibility is implemented as the numerical solution. The Message-Passing Interface (MPI) is used for the parallel computation. Two types of reactions are considered for the SWR modeling; one is a surface reaction and the other is a gas phase reaction. The surface reaction model assumes that liquid sodium reacts with water vapor on the surface of liquid sodium. An analogy of heat transfer and mass transfer is applied in this model. Reaction heating vaporizes liquid sodium resulting in the gas phase reaction. The ab initio molecular orbital method is applied to investigate the reaction mechanism and evaluate the reaction rate described by the Arrhenius law. A performance of parallel computation is tested on the cluster-PC (16 CPUs) system. The execution time becomes 17.1 times faster in case of 16 CPUs. It seems promising that the SERAPHIM code is practicable for large-scale analysis of the SWR phenomena. Three-dimensional SWR analyses are also carried out to investigate the characteristics of the thermal-hydraulics with the SWR and an influence of initial pressure (0.2 MPa and 0.6 MPa) on an early stage of the SWR phenomenon. As a result, distribution of a gas region, in which water vapor or product of the SWR such as hydrogen and sodium hydroxide exits, velocity and high temperature region differs by 0.2 MPa and 0.6 MPa conditions. However, the maximum gas temperature has an upper bounding and is almost constant both in the analyses. The reason of the upper bounding is attributed to the fact that a hydrogen gas covers up a liquid

  2. Removal of sodium from the component of the sodium purification loop

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Kyung Chai; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  3. Semi-Batch Reactive Distillation of Consecutive Reaction : The Saponification Reaction of Diethyl Adipate with Sodium Hydroxide Solution

    Directory of Open Access Journals (Sweden)

    Raghad Fareed Kasim

    2016-03-01

    Full Text Available This research presents a new study in reactive distillation by using consecutive reaction: the saponification reaction of diethyl adipate (DA with sodium hydroxide solution . The effect of three parameters were studied through a design of experiments applying 23 factorial design . These parameters were : the mole ratio of DA to NaOH solution (0.1 and 1 , NaOH solution concentration (3 N and 8 N , and batch time (1.5 hr. and 3.5 hr. . The conversion of DA to sodium monoethyladipate(SMA(intermediate product was the effect of these parameters which was detected . Also , the percentage purity of the intermediate product was recorded . The results showed that increasing mole ratio of DA to NaOHsolution increases the conversion and percentage purity to a maximum value within the range of study . The effect of NaOH solution concentration decreases the conversion and percentage purity to specified value within the range of study . The effect of batch time on conversion and percentage purity , when NaOH solution concentration (3 N is as follows : the increasing in batch time decreases the conversion and percentage purity to specified value within the range of study . When NaOH solution concentration (8 N increasing batch time decreases the conversion , while percentage purity increases with increasing batch time to a maximum value within the range of study . The maximum attainable conversion within the studied range of parameters was eighteen fold of the base case , while the maximum percentage purity was (99.40 % . Empirical equation was obtained using statistical analysis of experimental results . The empirical results of relative conversion was drawn . The empirical graphs showed linear variation .

  4. Uranium (VI) chemistry at the interface solution/minerals (quartz and aluminium hydroxide): experiments and spectroscopic investigations of the uranyl surface species

    International Nuclear Information System (INIS)

    Froideval, A.

    2004-09-01

    This study deals with the understanding of the uranyl chemistry at the 0.1 M NaNO 3 solution/mineral (quartz and aluminium hydroxide) interface. The aims are:(i) to identify and to characterize the different uranyl surface species (mononuclear, polynuclear complexes and/or precipitates...), i.e. the coordination environments of sorbed/precipitated uranyl ions, by using X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) and time-resolved laser-induced fluorescence spectroscopy (TRLFS), and;(ii) to investigate the influence of pH, initial uranyl aqueous concentration and hydroxyl ligand concentration on the uranyl surface speciation. Our study on the speciation of uranyl ions at the quartz surface (i) confirms the formation of uranyl polynuclear/oligomers on quartz from moderate (1 μmol/m 2 ) to high (26 μmol/m 2 ) uranyl surface concentrations and (ii) show that theses polynuclear species coexist with uranyl mononuclear surface species over a pH range ≅ 5-8.5 and a wide range of initial uranyl concentration o f the solutions (10-100 μM). The uranyl concentration of these surface species depends on pH and on the initial uranyl aqueous concentration. Hydrate (surface-) precipitates and/or adsorbed polynuclear species and monomeric uranyl surface complexes are formed on aluminium hydroxide. Uranyl mononuclear complexes are predominant at acidic pH, as well as uranyl in solution or on the surface. Besides mononuclear species, precipitates and/or adsorbed polynuclear species are predominantly formed at neutral pH values on aluminium hydroxide. A main contribution of our investigations is that precipitation and/or adsorption of polynuclear species seem to occur at low uranyl surface concentrations (0.01-0.4 μmol/m 2 ). The uranyl surface speciation is mainly dependent on the pH and the aluminol ligand concentration. (author)

  5. Nickel hydroxide electrode. 3: Thermogravimetric investigations of nickel (II) hydroxides

    Science.gov (United States)

    Dennstedt, W.; Loeser, W.

    1982-01-01

    Water contained in Ni hydroxide influences its electrochemical reactivity. The water content of alpha and beta Ni hydroxides is different with respect to the amount and bond strength. Thermogravimetric experiments show that the water of the beta Ni hydroxides exceeding the stoichiometric composition is completely removed at 160 deg. The water contained in the interlayers of the beta hydroxide, however, is removed only at higher temperatures, together with the water originating from the decomposition of the hydroxide. These differences are attributed to the formation of II bonds within the interlayers and between interlayers and adjacent main layers. An attempt is made to explain the relations between water content and the oxidizability of the Ni hydroxides.

  6. Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles

    International Nuclear Information System (INIS)

    Tian, Li; Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong; Lin, Jun

    2013-01-01

    Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF 4 to hexagonal NaYF 4 and to hexagonal Y(OH) 2.02 F 0.98 owing to ion exchange. - Highlights: • Novel Y(OH) 2.02 F 0.98 nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH) 2.02 F 0.98 . The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation

  7. Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)

    International Nuclear Information System (INIS)

    Grutzeck, Michael W.

    2005-01-01

    Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to ∼700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ((micro)m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''

  8. The effect of dentin on the pulp tissue dissolution capacity of sodium hypochlorite and calcium hydroxide.

    Science.gov (United States)

    Slutzky-Goldberg, Iris; Hanut, Aiham; Matalon, Shlomo; Baev, Valery; Slutzky, Hagay

    2013-08-01

    Sodium hypochlorite (NaOCl) and calcium hydroxide (Ca[OH]2) have tissue dissolution capacity. The aim of this study was to evaluate the potential effect of dentin on their tissue dissolution capacity in a novel dentin model. Dentin models were prepared from 25 freshly extracted human molar teeth; the crowns were separated from the roots, and a rectangular inner shape was prepared. Pulp tissue samples adjusted to similar weights of 6.5 ± 0.2 mg were randomly divided into 6 groups: NaOCl groups in test tubes or dentin models for 1 hour, Ca(OH)2 groups in test tubes or dentin models for 1 week, and control groups saline in test tubes or dentin models for 1 week. The final weights after the experimental period were checked and compared with the initial weights. The differences were statistically analyzed. The tissue dissolution capacity of Ca(OH)2 was affected by the presence of dentin. Similarly, NaOCl lost its effect on the pulp tissue after incubation in dentin. Comparison between all test groups showed highly significant differences (P interactions between local endodontic medicaments, dentin, and pulp tissue. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Activity of NaOH buffered by silicate solids in molten sodium acetate-water at 3170C

    International Nuclear Information System (INIS)

    Weres, O.; Tsao, L.

    1988-01-01

    Silica and sodium acetate are present in the steam generator tube sheet crevices of many nuclear power plants. Trace solutes in the condensate are tremendously concentrated in the crevices by boiling. Sparingly soluble sodium silicates and other solids precipitate from the crevice liquid leaving an extremely concentrated molten mixture of water, sodium acetate and other salts. The precipitates buffer the activity of sodium hydroxide in the superheated liquid that remains. The activity of NaOH corresponding to the buffers quartz/sodium disilicate and sodium disilicate/sodium metasilicate at 317 0 C has been determined experimentally. The sodium hydroxide content of a sodium acetate-water melt buffered by these reactions was determined by chemical analysis, and the corresponding activity of NaOH at temperature was calculated using the recently published Pitzer-Simonson Model of molten salt-water mixtures. The molten mixture of sodium acetate and water plays the role solvent in these experiments and calculations. The free energies of formation of solid sodium silicates at 317 0 C were also determined. The activity of NaOH corresponding to other silicate and phosphate buffers was calculated using published thermodynamic data and estimated from phase diagrams

  10. Obtain of uranium concentrates from fertil liquids

    International Nuclear Information System (INIS)

    Narvaez Castillo, W.A.

    1992-01-01

    This research tried to encounter the form to remove uranium from the rock in the best way, for that it was used different process like leaching, extraction, concentration and precipitation. To leach the mineral was chosen basic leaching, using a mixture of carbonate-sodium bicarbonate, this method is more adequated for the basic nature of the mineral. In extraction was used specific uranium ionic interchanges, so was chosen a tertiary amine like Alamina 336. The concentration phase is intimately binding with the extraction by ionic interchange, for the capability of resine's extraction to obtain concentrated liquids. When the liquids were obtained with high concentration of uranium in the same time were purified and then were precipitated, for that we employed a precipitant agent like: Sodium hydroxide, Amonium hydroxide, Magnesium hydroxide, Hydrogen peroxide and phosphates. With all concentrates we obtain the YELLOW CAKE

  11. Milk production is unaffected by replacing barley or sodium hydroxide wheat with maize cob silage in rations for dairy cows

    DEFF Research Database (Denmark)

    Hymøller, Lone; Hellwing, Anne Louise Frydendahl; Lund, Peter

    2014-01-01

    . The energy-corrected milk yield was unaffected by treatment. The fat content of the milk on the MCS ration was not different from the SHW ration, whereas it was higher on the barley ration. The protein content of the milk decreased when MCS was used in the ration compared with barley and SHW. From ruminal......Starch is an important energy-providing nutrient for dairy cows that is most commonly provided from cereal grains. However, ruminal fermentation of large amounts of easily degradable starch leads to excessive production and accumulation of volatile fatty acids (VFA). VFA not only play a vital role...... in the energy metabolism of dairy cows but are also the main cause of ruminal acidosis and depressed feed intake. The aim of the present study was to compare maize cob silage (MCS) as an energy supplement in rations for dairy cows with highly rumen-digestible rolled barley and with sodium hydroxide wheat (SHW...

  12. Comparison of calcium carbonate and aluminium hydroxide as phosphate binders on biochemical bone markers, PTH(1-84), and bone mineral content in dialysis patients

    DEFF Research Database (Denmark)

    Jespersen, B; Jensen, J D; Nielsen, H K

    1991-01-01

    Bone mineral content, estimated by single-photon absorptiometry of the forearm, serum values of intact parathyroid hormone (PTH(1-84], osteocalcin, alkaline phosphatase, 1,25-dihydroxycholecalciferol (1,25(OH)2D3), and aluminium were determined during treatment with calcium carbonate (CaCO3......) or aluminium hydroxide (Al(OH)3) in 11 dialysis patients participating in a randomised cross-over study. Each treatment period lasted 6 months. Serum phosphorus was maintained in the range 1.5-2.0 mmol/l. During Al(OH)3 treatment bone mineral content (BMC) decreased by 11% per half-year (mean), but only by 3...... 0.05), osteocalcin decreased (89% versus 117%, P less than 0.01), alkaline phosphatase decreased (92% versus 116%, P less than 0.05), and aluminium decreased (56% versus 189%, P less than 0.05). 1,25(OH)2D3 remained unchanged in both periods. No increase in soft-tissue calcification was demonstrated...

  13. The effect of rolled barley, sodium hydroxide-treated wheat or maize cob silage on digestive enzymes activity in the alimentary tract of dairy cows

    DEFF Research Database (Denmark)

    Moharrey, A.; Hymøller, Lone; Weisbjerg, Martin Riis

    2017-01-01

    In the present study digestive enzyme activities were studied in the rumen, intestine and faeces of dairy cows fed rations differing in starch source. Three total mixed rations were prepared for dairy cows with maize cob silage (MCS), sodium hydroxide-treated wheat (SHW) or rolled barley as starch...... DM (2.61 vs 2.91 and 3.15%) and a higher ash content (30.99 vs 29.24 and 24.31%) in the ruminal fluid without affecting enzyme activities. Positive correlation between lipolytic and amylolitic activities in ruminal fluid was stated, which supported the hypothesis that amylolytic bacteria provide...... energy for lipolytic bacteria. So, the enzymes activities in the different parts of the digestive tract were not affected by the different starch sources....

  14. The sodium level. An inconspicuous but very important parameter in all-volatile treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bursik, Albert [PowerPlant Chemistry GmbH, Neulussheim (Germany)

    2011-07-15

    Boiler tube failure due to ''lack of sodium''? This is certainly not a common concern, yet this contribution stresses the importance of the presence of sodium in the boiler water even when applying all-volatile treatment (AVT) as a method of boiler water treatment. Sodium in the cycle (either unintentionally via sodium-contaminated makeup or intentionally through sodium hydroxide additions) may neutralize the possible acidic contaminations and help to avoid boiler tube failures due to hydrogen damage. (orig.)

  15. Environmental Benign Synthesis of Lithium Silicates and Mg-Al Layered Double Hydroxide from Vermiculite Mineral for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-04-01

    Full Text Available This research introduces a completely new environmental benign synthesis route for obtaining two kinds of inter-mediate and high temperature CO2 sorbents, Mg-Al layered double hydroxide (LDH and Li4SiO4, from vermiculite. The mineral vermiculite was leached with acid, from which the obtained SiO2 was used for the synthesis of Li4SiO4 and the leaching waste water was used for the synthesis of Mg-Al LDH. Therefore, no waste was produced during the whole process. Both Li4SiO4 and Mg-Al LDH sorbents were carefully characterized using XRD, SEM, and BET analyses. The CO2 capturing performance of these two sorbents was comprehensively evaluated. The influence of the Li/Si ratio, calcination temperature, calcination time, and sorption temperature on the CO2 sorption capacity of Li4SiO4, and the sorption temperature on the CO2 sorption capacity of LDH, were investigated. The optimal leaching acid concentration for vermiculite and the CO2 sorption/desorption cycling performance of both the Li4SiO4 and Mg-Al LDH sorbents were determined. In sum, this demonstrated a unique and environment-friendly scheme for obtaining two CO2 sorbents from cheap raw materials, and this idea is applicable to the efficient utilization of other minerals.

  16. CALCIUM HYDROXIDE IN ENDODONTIC TREATMENT OF PERIAPICALLY INFECTED TEETH

    Directory of Open Access Journals (Sweden)

    Rahmi Alma Farah Adang

    2006-04-01

    Full Text Available An inadequate endodontic treatment may affect the root canal system and spread beyond its apical foramina that elicit periodontal tissue developing into abscess, granuloma and radicular cyst. Periodical lesions can be treated with non surgical endodontic treatment using calcium hydroxide dressing. This case study is reporting teeth 11 with periodical lesions and infection. Evidence of a clinical healing and radiographic assessments were followed by a non surgical endodontic therapy. Successful treatment outcome is related to the elimination of infection agents from the root canal. This can activate a stimulation zone to promote regeneration. Calcium hydroxide used as a root canal dressing may promote alkalinity at the adjacent tissue , create favourable environmental condition in which hard tissue formation can occur, interfere the bactericidal activity, increase mineralization, and induce healing.

  17. Development of a sodium ionization detector for sodium-to-gas leaks

    International Nuclear Information System (INIS)

    Swaminathan, K.; Elumalai, G.

    1984-01-01

    A sensitive sodium-to-gas leak detector has been indigenously developed for use in liquid metal cooled fast breeder reactor. The detector relies on the relative ease with which sodium vapour or its aerosols including its oxides and hydroxides can be thermally ionized compared with other possible constituents such as nitrogen, oxygen, water vapour etc. in a carrier gas and is therefore called sodium ionization detector (SID). The ionization current is a measure of sodium concentration in the carrier gas sampled through the detector. Different sensor designs using platinum and rhodium as filament materials in varying sizes were constructed and their responses to different sodium aerosol concentrations in the carrier gas were investigated. Nitrogen was used as the carrier gas. Both the background current and speed of response were found to depend on the diameter of the filament. There was also a particular collector voltage which yielded maximum sensitivity of the detector. The sensor was therefore optimised considering influence of above factors and a detector has been built which demonstrates a sensitivity better than 0.3 nanogram of sodium per cubic centimetre of carrier gas for a signal to background ratio of 1:1. Its usefulness in detecting sodium fires in experimental area was also demonstrated. Currently efforts are under way to improve the life time of the filament used in the above detector. (author)

  18. Stress corrosion on austenitic stainless steels components after sodium draining

    International Nuclear Information System (INIS)

    Champeix, L.; Baque, P.; Chairat, C.

    1980-04-01

    The damage study performed on 316 pipes of a loop after two leakages allows to conclude that a stress corrosion process in sodium hydroxide environment has induced trans-crystaline cracks. The research of conditions inducing such a phenomenon is developed, including parametric tests under uniaxial load and some tests on pipe with welded joints. In aqueous sodium hydroxide, two corrosion processes have been revealed: a general oxidization increasing with environment aeration and a transcrystalline cracking appearing for stresses of the order of yield strength. Other conditions such a temperature (upper than 100 0 C) and time exposures (some tens of hours) are necessary. Cautions in order to limit introduction of wet air into drained loop and a choice of appropriate preheating conditions when restarting the installation must permit to avoid such a type of incident

  19. Comparison of the removal of calcium hydroxide medicaments on the root canal treatment irrigated with manual and sonic agitation technique

    Directory of Open Access Journals (Sweden)

    Anna Muryani

    2017-11-01

    Full Text Available Introduction: Irrigation of the root canal system is an important part of the endodontic treatment principle which aims to improve the hygiene of the root canal system from any debris and medicament residue with the hydrodynamic system. Root irrigation technique can be done with the manual and sonic system by using 2.5% NaOCI irrigation solution. Calcium hydroxide is used as a medicament for root canal sterilization. Root canal treatment will fail due to the imperfect removal of calcium hydroxide residue. The objective of this research was to analyze the comparison of the removal of calcium hydroxide medicaments on the root canal treatment irrigated with manual and sonic agitation technique using 2.5% sodium hypochlorite solution. Methods: The methods used in this study was experimental laboratory. The sample used was 30 maxillary incisors. The teeth were then divided into two groups randomly, then the root canal preparation was done by the crown down technique with manual irrigation using 2.5% NaOCI solution. The radicular part of the teeth was then split longitudinally, given a standardized groove in the one-third of the apical part, then applied with water-solved calcium hydroxide. The teeth were unified afterwards by using flowable composites, then soaked in the artificial saliva at the temperature of 37ºC. The sample of the 1st group was irrigated by manual agitation technique, and the sample of the 2nd group 2 was irrigated by sonic agitation technique, then both were viewed by stereo microscope. The data results were analyzed by Kruskal-Wallis and Mann-Whitney tests. Results: The results of calcium hydroxide removal were different between the root canals that were irrigated using 2.5% sodium hypochlorite irrigation solution by manual agitation technique compared to the sonic agitation technique. Irrigation using 2.5% sodium hypochlorite irrigation solution with the sonic agitation techniques were proven to be more effective in lifting Ca

  20. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    Science.gov (United States)

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  1. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method

    Science.gov (United States)

    Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.

  2. A systematic study of multiple minerals precipitation modelling in wastewater treatment.

    Science.gov (United States)

    Kazadi Mbamba, Christian; Tait, Stephan; Flores-Alsina, Xavier; Batstone, Damien J

    2015-11-15

    Mineral solids precipitation is important in wastewater treatment. However approaches to minerals precipitation modelling are varied, often empirical, and mostly focused on single precipitate classes. A common approach, applicable to multi-species precipitates, is needed to integrate into existing wastewater treatment models. The present study systematically tested a semi-mechanistic modelling approach, using various experimental platforms with multiple minerals precipitation. Experiments included dynamic titration with addition of sodium hydroxide to synthetic wastewater, and aeration to progressively increase pH and induce precipitation in real piggery digestate and sewage sludge digestate. The model approach consisted of an equilibrium part for aqueous phase reactions and a kinetic part for minerals precipitation. The model was fitted to dissolved calcium, magnesium, total inorganic carbon and phosphate. Results indicated that precipitation was dominated by the mineral struvite, forming together with varied and minor amounts of calcium phosphate and calcium carbonate. The model approach was noted to have the advantage of requiring a minimal number of fitted parameters, so the model was readily identifiable. Kinetic rate coefficients, which were statistically fitted, were generally in the range 0.35-11.6 h(-1) with confidence intervals of 10-80% relative. Confidence regions for the kinetic rate coefficients were often asymmetric with model-data residuals increasing more gradually with larger coefficient values. This suggests that a large kinetic coefficient could be used when actual measured data is lacking for a particular precipitate-matrix combination. Correlation between the kinetic rate coefficients of different minerals was low, indicating that parameter values for individual minerals could be independently fitted (keeping all other model parameters constant). Implementation was therefore relatively flexible, and would be readily expandable to include other

  3. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  4. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  5. The study of the thermal behavior of solid mixtures of metakaolin and sodium hydroxide by isoconversional model-free analyzes

    Science.gov (United States)

    Gordina, Natalya E.; Prokof'ev, Valery Yu; Smirnov, Nikolay N.; Khramtsova, Alexandra P.

    2017-11-01

    Interactions in solid mixtures of 6Al2Si2O7: 12NaOH and 6Al2Si2O7: 12NaOH: 2Al2O3 under thermal treatment were studied. Ultrasonic pre-treatment of suspensions with a frequency of 22 kHz was applied. X-ray phase analysis, scanning electron microscopy, and synchronous thermal analysis were used in this research. It was shown that after evaporation of the suspensions, the hydrated LTA zeolite and sodium hydroaluminate are synthesized. During thermal treatment up to 500 °C, the adsorption water is removed first and then the dehydration of the zeolite and hydroaluminate occurs. Calcination at temperatures above 500° C leads to the synthesis of Na6Al4Si4O17 and Na8Al4Si4O18 by the interaction of metakaolin and zeolite with sodium hydroxide. At temperatures above 700 °C, the formation of mullite and nepheline occurs in the temperature range of 500-800 °C. The kinetic parameters have been calculated using Friedman analysis (differential method), Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall analyzes (integral methods). It was shown that all analyzes give similar dependences of the apparent activation energy vs the conversion extent and the values of E are in the range of 70-350 kJ mol-1. It was established that ultrasonic pre-treatment allows to reduce the values of the apparent activation energy. It was discovered that the Al2O3 excess over the stoichiometry of the LTA zeolite synthesis is an inhibitor of the mullite and nepheline formation reactions.

  6. Soil phosphorus redistribution among iron-bearing minerals under redox fluctuation

    Science.gov (United States)

    Lin, Y.; Bhattacharyya, A.; Campbell, A.; Nico, P. S.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Phosphorus (P) is a key limiting nutrient in tropical forests that governs primary production, litter decomposition, and soil respiration. A large proportion of P in these highly weathered soils is bound to short-range ordered or poorly crystalline iron (Fe) minerals. It is well-documented that these Fe minerals are redox-sensitive; however, little is known about how Fe-redox interactions affect soil P turnover. We evaluated the impacts of oxic/anoxic fluctuation on soil P fractions and reactive Fe species in a laboratory incubation experiment. Soils from a humid tropical forest were amended with plant biomass and incubated for up to 44 days under four redox regimes: static oxic, static anoxic, high frequency fluctuating (4-day oxic/4-day anoxic), and low frequency fluctuating (8-day oxic/4-day anoxic). We found that the static anoxic treatment induced a 10-fold increase in Fe(II) (extracted by hydrochloric acid) and a 1.5-fold increase in poorly crystalline Fe (extracted by ammonium oxalate), suggesting that anoxic conditions drastically increased Fe(III) reduction and the formation of amorphous Fe minerals. Static anoxic conditions also increased Fe-bound P (extracted by sodium hydroxide) and increased the oxalate-extractable P by up to 110% relative to static oxic conditions. In two fluctuating treatments, Fe(II) and oxalate-extractable Fe and P were all increased by short-term reduction events after 30 minutes, but fell back to their initial levels after 3 hours. These results suggest that reductive dissolution of Fe(III) minerals mobilized a significant amount of P; however, this P could be rapidly re-adsorbed. Furthermore, bioavailable P extracted by sodium bicarbonate solution was largely unaffected by redox regimes and was only increased by static anoxic conditions after 20 days. Overall, our data demonstrate that a significant amount of soil P may be liberated and re-adsorbed by Fe minerals during redox fluctuation. Even though bioavailable P appears to be

  7. Synergy and Diffusion with a Borax-Copper Hydroxide Groundline Preservative: 20 Year Update

    Science.gov (United States)

    Stan Lebow; Bessie Woodward; Bill Abbott; Mike West

    2014-01-01

    A groundline remedial treatment containing 3.1% copper hydroxide (2% elemental copper) and 40% sodium tetraborate decahydrate (borax) was applied to unseasoned pine posts prior to placement in a test site in southern Mississippi. The soundness of the posts was periodically evaluated using a push test. After 3.5, 6.5, 10, 15 and 20 years, sections were taken from two...

  8. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  9. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN; A

    International Nuclear Information System (INIS)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2001-01-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO(sub 2) emissions can be overcome. Permanent and safe methods for CO(sub 2) capture and disposal/storage need to be developed. Mineralization of stationary-source CO(sub 2) emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH)(sub 2) was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH)(sub 2) gas-solid carbonation as a potentially cost-effective CO(sub 2) mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO(sub 2) sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This report covers the third year progress of this grant, as well as providing an integrated overview of the progress in years 1-3, as we have been granted a one-year no-cost extension to wrap up a few studies and publications to optimize project impact

  10. The role of sodium in the body

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2011-05-01

    Full Text Available Sodium is a metallic element with the symbol Na , in the same group with Li, K, Rb, Cs; is widespread in nature in the form of salts (nitrates, carbonates, chlorides, atomic number 11 and atomic weight 22,9898 . It,s a soft metal, reactive and with a low melting point , with a relative density of 0,97 at 200C (680 F. From the commercial point of view, sodium is the most important of all the alkaline metals. Elemental sodium was first isolated by Humpry Davy in 1807 by passing an electric current through molten sodium hydroxide. Elemental sodium does not occur naturally on earth, because it quickly oxidizes in air and is violently reactive with water, so it must be stored in a non-oxidizing medium, such as liquid hydrocarbon . The free metal is used for some chemical synthesis, analysis, and heat transfer applications .

  11. The Synthesis and Physical Properties of Magnesium Borate Mineral of Admontite Synthesized from Sodium Borates

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2014-01-01

    Full Text Available Magnesium borates are significant compounds due to their advanced mechanical and thermal durability properties. This group of minerals can be used in ceramic industry, in detergent industry, and as neutron shielding material, phosphor of thermoluminescence by dint of their extraordinary specialties. In the present study, the synthesis of magnesium borate via hydrothermal method from sodium borates and physical properties of synthesized magnesium borate minerals were investigated. The characterization of the products was carried out by X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies, and differential thermal analysis and thermal gravimetry (DTA/TG. The surface morphology was examined by scanning electron microscopy (SEM. B2O3 content was determined through titration. The electrical resistivity/conductivity properties of products were measured by Picoammeter Voltage Source. UV-vis spectrometer was used to investigate optical absorption characteristics of synthesized minerals in the range 200–1000 nm at room temperature. XRD results identified the synthesized borate minerals as admontite [MgO(B2O33·7(H2O] with code number “01-076-0540” and mcallisterite [Mg2(B6O7(OH62·9(H2O] with code number “01-070-1902.” The FT-IR and Raman spectra of the obtained samples were similar with characteristic magnesium borate bands. The investigation of the SEM images remarked that both nano- and microscale minerals were produced. The reaction yields were between 75.1 and 98.7%.

  12. Clinical Survey of Successfulness of DPC with MTA and Calcium Hydroxide

    Directory of Open Access Journals (Sweden)

    E.Yasini

    2005-02-01

    Full Text Available Statement of Problem: The pulp may be exposed during remove of caries or by traumatic and iatrogenicinjuries. The material used to DPC, must be biocompatible, scalable and prevent bacterial leakage.Furthermore, it is better to stimulate dentinogenesis. Calcium hydroxide is most usual material for DPC. But itcannot provide a suitablcbiologic seal. Mineral irioxide aggregate (MTA is also a suitable material for DPC.Purpose: The aim of this study was to compare the clinical success of DPC done with MTA or calciumhydroxide cement.Materials and Methods: In this study eighteen posterior teeth without previous spontaneous pain thatinvolved mechanicaly exposure was randomly selected and capped with MTA or calcium hydroxide. These teeth were evaluated by clinical vitality test and radiograph after 3 and 12 months, and patients werequestioned about irritative or spontancus pain in this period. Statistical analysis was carried out by Usher exacttest (a-0.05.Results: This study showed that in calcium hydroxid groud three had irreversible pulpitis and two teeth had symptom and signs of reversible pulpitis. While, In MTA group all cases were normaL and no clinical sign was evident.Conclusion: MTA exhibited better results than calcium hydroxide cement for the capping of the pulp in human

  13. Polymethyl methacrylate and polystyrene with layered double hydroxide nano composites: In situ synthesis, morphology and thermal properties

    International Nuclear Information System (INIS)

    Botan, Rodrigo; Nogueira, Telma R.; Lona, Liliane M.F.; Wypych, Fernando

    2011-01-01

    Over the past decade, polymer nanocomposites have attracted interest, both in industry and in academia, because they often exhibit remarkable improvement in their properties when compared with pure polymer or conventional micro and macro-composites using low levels of reinforcements. In this work polymethyl methacrylate and polystyrene reinforced with layered double hydroxide, which was intercalated with sodium dodecyl sulfate were synthesized by in situ bulk polymerization. The nanocomposites were characterized and compared by X-ray diffraction, thermogravimetric analysis and flammability test. The X-ray diffraction demonstrated that synthesized nanocomposites showed a high global dispersion of layered double hydroxide, suggesting exfoliated morphology. The result of thermogravimetric analysis and flammability test for synthesized polystyrene/ layered double hydroxide nanocomposite presented a significant improvement in thermal stability and flammability property when compared with pure polymer. (author)

  14. Sodium hydroxide injection passivation work for the reactor water clean-up system in a new ABWR plant

    International Nuclear Information System (INIS)

    Wen, Tung-Jen; Lu, Ju-Huang

    2012-09-01

    Several studies have identified that Co-58 and Co-60 as the primary source of radiation build up on out-of-core components in new BWR plants. The deposition rate of Co on stainless steel and carbon steel is shown to be controlled mainly by the thickness of oxide films and its morphology formed through pretreatment. The passivation treatment was implemented accordingly at Lungmen unit 1 in an ABWR plant in September 2010. It is determined that the passivation conditions should be maintained at the temperature of 180∼230 deg. C, pH of 8.0∼8.5 and dissolved oxygen content over 400 ppb. The films would provide effective protection against radioactive deposition. The application of the pre-filming process on piping before the pre-operation is done during the flow induced vibration test (FIV) period. The protectiveness of stable magnetite can be increased by the pH control under the specific condition. The pre-filming control process and evaluation of passivation effectiveness is discussed in detail based on the surface analysis of the passivated specimens. Many efforts have been devoted to sodium hydroxide injection method for pH control of the system through the filter demineralizer under smooth operation. A comparison of test specimens on the properties of oxide film formed between laboratory and in-plant tests through alkaline treatment are also shown in this report. (authors)

  15. Conversion of rice hull ash into soluble sodium silicate

    Directory of Open Access Journals (Sweden)

    Edson Luiz Foletto

    2006-09-01

    Full Text Available Sodium silicate is used as raw material for several purposes: silica gel production, preparation of catalysts, inks, load for medicines, concrete hardening accelerator, component of detergents and soaps, refractory constituent and deflocculant in clay slurries. In this work sodium silicate was produced by reacting rice hull ash (RHA and aqueous sodium hydroxide, in open and closed reaction systems. The studied process variables were time, temperature of reaction and composition of the reaction mixture (expressed in terms of molar ratios NaOH/SiO2 and H2O/SiO2. About 90% silica conversion contained in the RHA into sodium silicate was achieved in closed system at 200 °C. The results showed that sodium silicate production from RHA can generate aggregate value to this residue.

  16. The actual prevention of fibrogenic effect of mineral dust

    Directory of Open Access Journals (Sweden)

    Bobro Milan

    2000-09-01

    Full Text Available The dustiness occurs in the mining work environment during the process of disintegration of rocks by drilling, explosion and dislocation. The dust contains minerals forming the massif, under Slovak mining conditions, it was usually quartz and some other minerals. They usually accompanied utility minerals. The characteristic mining aerosol is created during disintegration process. It was inhaled by miners and due to the most dangerous fibrogenic mineral – quartz – it caused that employees suffered from the so far incurable industrial disease. From that reason a long-term research of reaction qualities of quartz dust was carried out and the possibility to decrease its fibrogenic properties was researched. The prevention vested in the elimination of these properties on the surface of quartz grain or other silicate before entering, i.e. being inhaled by lungs, using water soluble aluminium hydroxide compound. This water was used for flushing in drilling process and to decrease dustiness by spraying it directly in the mining workplace. The aluminium hydroxide agent reacted with mineral dust directly in aerosol before being inhaled. The principle vested in the reaction of one mole of agent with two moles of surface structures of quartz particle forming a thermostatic layer of a new mineral type, in this case aluminium silicate of kaolinite. The required concentration of aluminium hydroxide compound solution for pure quartz dust was determined by experimental works and calculation with a required reserve or even slight excess of agent. If the fibrogenity of quartz not influenced in this manner was considered as 100%, its cytostatic and consequently fibrogenic effect would be decreased by the influence of this agent minimally by 60%. The method has been tested directly in mines, but due to recession of mining industry, it was not introduced in practice, however, it is currently getting a certain significance in tunnelling of transport tunnels in

  17. Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols

    OpenAIRE

    Nikoshvili, Linda Zh.; Bykov, Alexey V.; Khudyakova, Tatiana E.; Lagrange, Thomas; Héroguel, Florent; Luterbacher, Jeremy S.; Matveeva, Valentina G.; Sulman, Esther M.; Dyson, Paul J.; Kiwi-Minsker, Lioubov

    2017-01-01

    Postimpregnation of Pd nanoparticles (NPs) stabilized within hyper-cross-linked polystyrene with sodium or potassium hydroxides of optimal concentration was found to significantly increase the catalytic activity for the partial hydrogenation of the C–C triple bond in 2-methyl-3-butyn-2-ol at ambient hydrogen pressure. The alkali metal hydroxide accelerates the transformation of the residual Pd(II) salt into Pd(0) NPs and diminishes the reaction induction period. In addition, the selectivity t...

  18. Typomorphism and isomorphism of uranium hydroxides of the woelsendorfite group

    International Nuclear Information System (INIS)

    Belova, L.N.; Ryzhov, V.I.; Fedorov, O.V.; Lyubomilova, G.V.

    1985-01-01

    In oxidation zone of uranium deposit uranium hydroxides of the wolsendorfite group: calcuranoite, bauranoite, wolsendorfite and their varieties are studied. Chemical and microprobe analyses are carried out. It is established, that the minerals are encountered in the form of two generations. Early generation forms partial or complete pseudomorphosis over rich contrast pitchblende ores. The late one is encountered in the form of redeposited crystal aggregates in calcite-pitchblende streaks. Study in details of chemical composition of the group minerals permitted to establish the existence of a continuous isomorphous series with ultimate members calcuranoite and wolsendorfite with regular change in chemical and physical properties within the series. Existence of bauranoite-calcuranoite and bauranoite-wolsendorfite isomorphous series is assumed

  19. Mineral resource of the month: salt

    Science.gov (United States)

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  20. OPAQUE MINERAL CONTENT OF DUTLUCA VOLCANICS (BURHANİYE - BALIKESİR: THE EFFECT OF HYDROTHERMAL ALTERATION ON THESE MINERALS

    Directory of Open Access Journals (Sweden)

    Şükrü KOÇ

    2016-12-01

    Full Text Available Dutluca volcanics, which are known as Hallaçlar Formation in regional scale in the study area (Kurshens- ky, 1976, are composed of hydrothermally altered andesite and basaltic andesite. In these rocks, sulfidic minerals such as pyrite, enargite and chalcosine, and oxide and hydroxide minerals such as magnetite, hematite and goethite were detected as opaque minerals. The presence of enargite in opaque mineral para- genesis, and the changes observed in structures and textures of opaque and silicate minerals indicate that examined volcanics have been altered by highly sulfidic hydrothermal solutions. During the hydrothermal alteration process, which indicates at least in two phases, a diffuse pyritization rich in H S in reducing conditions and enargite mineral, which is known as pathfinder minerals in such processes, formed in the first phase. Later on; the extensive martitization developed in oxidizing conditions.

  1. Effects of curing conditions on the structure of sodium carboxymethyl starch/mineral matrix system: FT-IR investigation.

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-04-24

    Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  3. Apexification of an Immature Permanent Incisor with the Use of Calcium Hydroxide: 16-Year Follow-Up of a Case

    Directory of Open Access Journals (Sweden)

    Camila Maggi Maia Silveira

    2015-01-01

    Full Text Available Apexification is a process of forming a mineralized apical barrier and had been performed by using calcium hydroxide paste, due to its biological and healing performances in cases of existent trauma. This clinical report aims to report the results of a 16-year follow-up study of an apexification treatment applied to nonvital tooth 22 of a healthy 8-year-old male after a trauma. Clinical inspection of the tooth showed fractures of the incisal edge and mesial angle, absence of coronal mobility, and negative pulp vitality under cold testing. Radiographic analysis of the root revealed incomplete apex formation. The possibility of fracture into the root or luxation injury was rejected, and the diagnosis of pulp necrosis was verified. Apexification by calcium hydroxide and subsequent endodontic treatment were planned. Initial formation of the mineralized apical barrier was observed after 3 months, and the barrier was considered to be completed after 8 months. Clinical, radiographic, and CBCT examinations after 16 years verified the success of the treatment, although the choice of calcium hydroxide for apexification treatment is discussed.

  4. Degradation of l-polylactide during melt processing with layered double hydroxides

    DEFF Research Database (Denmark)

    Gerds, Nathalie; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    PLA was melt compounded in small-scale batches with two forms of laurate-modified magnesium–aluminum layered double hydroxide (Mg-Al-LDH-C12), the corresponding carbonate form (Mg-Al-LDH-CO3) and a series of other additives. Various methods were then adopted to characterize the resulting compounds...... in an effort to gain greater insights into PLA degradation during melt processing. PLA molecular weight reduction was found to vary according to the type of LDH additive. It is considered that the degree of particle dispersion and LDH exfoliation, and hence the accessibility of the hydroxide layer surfaces...... and catalytically active Mg site centers are causative factors for PLA degradation. Interestingly, the release of water under the processing conditions was found to have a rather small effect on the PLA degradation. Low loadings of sodium laurate also caused PLA degradation indicating that carboxylate chain ends...

  5. Removal of nitrate from ammonium hydroxide solution containing organics by ion exchange method

    International Nuclear Information System (INIS)

    Venugopal Chetty, K.; Gamare, Jayashree S.; Vaidya, V.N.

    2004-01-01

    Removal of nitrate from ammonium hydroxide solution containing HMTA (hexamethyltetramine) and Urea was studied using indigenously available anion exchange resins. This type of waste is produced during nuclear fuel preparation by internal gelation process. The resins used are Tulsion A-27(MP) and Duolite A. 102D. The time of equilibration and capacity of the resins were determined from distribution ratios obtained by equilibrating resin with nitrate solution. The loading, washing and elution behavior of nitrate on these resins were studied using synthetic mixture having similar composition of the waste produced. Elution studies were carried out using sodium hydroxide, hydrochloric acid and ammonium chloride. The studies were also carried out at higher temperature of around 60 degC. The data was compared with that obtained using Dowex 1x4 for the same purpose. (author)

  6. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  7. Growth of PbTe nanorods controlled by polymerized tellurium anions and metal(II) amides via composite-hydroxide-mediated approach

    International Nuclear Information System (INIS)

    Wan Buyong; Hu Chenguo; Liu Hong; Xiong Yufeng; Li Feiyun; Xi Yi; He Xiaoshan

    2009-01-01

    The pure face-centered-cubic PbTe nanorods have been synthesized by the composite-hydroxide-mediated approach using hydrazine as a reducing agent. The method is based on reaction among reactants in the melts of potassium hydroxide and sodium hydroxide eutectic at 170-220 deg. C and normal atmosphere without using any organic dispersant or surface-capping agent. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy were used to characterize the structure, morphology and composition of the samples. The diameters of nanorods are almost fixed, while the lengths can be tunable under different growth time and temperatures. The growth mechanism of PbTe nanorods is investigated via UV-vis absorption, demonstrating that polymerized tellurium anions and metal(II) amides in the hydrazine hydroxide melts could control the crystallization and growth process of PbTe nanostructures. The band gap of as-synthesized PbTe nanorods has been calculated based on UV-vis-NIR optical diffuse reflectance spectra data.

  8. Growth of PbTe nanorods controlled by polymerized tellurium anions and metal(II) amides via composite-hydroxide-mediated approach

    Energy Technology Data Exchange (ETDEWEB)

    Wan Buyong [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); College of Physics and Information Technology, Chongqing Normal University, Chongqing 400047 (China); Hu Chenguo, E-mail: hucg@cqu.edu.cn [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Liu Hong [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Xiong Yufeng [National Center for Nanoscience and Technology, Beijing 100080 (China); Li Feiyun; Xi Yi; He Xiaoshan [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China)

    2009-09-15

    The pure face-centered-cubic PbTe nanorods have been synthesized by the composite-hydroxide-mediated approach using hydrazine as a reducing agent. The method is based on reaction among reactants in the melts of potassium hydroxide and sodium hydroxide eutectic at 170-220 deg. C and normal atmosphere without using any organic dispersant or surface-capping agent. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy were used to characterize the structure, morphology and composition of the samples. The diameters of nanorods are almost fixed, while the lengths can be tunable under different growth time and temperatures. The growth mechanism of PbTe nanorods is investigated via UV-vis absorption, demonstrating that polymerized tellurium anions and metal(II) amides in the hydrazine hydroxide melts could control the crystallization and growth process of PbTe nanostructures. The band gap of as-synthesized PbTe nanorods has been calculated based on UV-vis-NIR optical diffuse reflectance spectra data.

  9. REDUCTION OF PLUTONIUM TO Pu$sup +3$ BY SODIUM DITHIONITE IN POTASSIUM CARBONATE

    Science.gov (United States)

    Miller, D.R.; Hoekstra, H.R.

    1958-12-16

    Plutonium values are reduced in an alkaline aqueous medlum to the trlvalent state by means of sodium dlthionite. Plutonlum values are also separated from normally assoclated contaminants by metathesizing a lanthanum fluoride carrier precipitate containing plutonium with a hydroxide solution, performing the metathesis in the presence of about 0.2 M sodium dithionite at a temperature of between 40 and 90 icient laborato C.

  10. Synthesis Study Of Surfactants Sodium Ligno Sulphonate (SLS) From Biomass Waste Using Fourier Transform Infra Red (FTIR)

    OpenAIRE

    Priyanto Slamet; Pramudono Bambang; Kusworo Tutuk Djoko; Suherman; Aji Hapsoro Aruno; Untoro Edi; Ratu Puspa

    2018-01-01

    Lignin from biomass waste (Black Liquor) was isolated by using sulfuric acid 25% and sodium hydroxide solutions 2N. The obtained lignin was reacted with Sodium Bisulfite to Sodium Ligno Sulfonate (SLS). The best result was achieved at 80 ° C, pH 9, ratio of lignin and bisulfite 4: 1, for 2 hours, and 290 rpm stirring rate. The result of lignin formed was sulfonated using Sodium Bisulfite (NaHSO3) to Sodium Ligno Sulfonate (SLS) whose results were tested by the role of groups in peak formation...

  11. Cleaning of Sodium in the Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high- oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  12. Exothermic potential of sodium nitrate salt cake

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1977-06-01

    High-Level radioactive liquid waste is being reduced to a liquid slurry by an evaporation and crystallization process and stored in the existing single-shell tanks. Continuous pumping of the waste storage tank will reduce the present 30 to 50% moisture to the minimum possible. The reduced waste is a relatively immobile salt cake consisting predominantly of sodium nitrate (NaNO 3 ) with lesser amounts of sodium nitrite (NaNO 2 ), sodium metaaluminate (NaAlO 2 ), and sodium hydroxide (NaOH). Trace amounts of fission products, transuranics, and a broad spectrum of organic materials in small but unknown amounts are also present. A program was initiated in 1973 to determine whether or not conditions exist which could lead to an exothermic reaction in the salt cake. Results of the latest series of tests conducted to determine the effects of mass and pressure are summarized. Hanford salt cake, as stored, cannot support combustion, and does not ignite when covered with a burning volatile hydrocarbon

  13. Laboratory-scale sodium-carbonate aggregate concrete interactions

    International Nuclear Information System (INIS)

    Westrich, H.R.; Stockman, H.W.; Suo-Anttila, A.

    1983-09-01

    A series of laboratory-scale experiments was made at 600 0 C to identify the important heat-producing chemical reactions between sodium and carbonate aggregate concretes. Reactions between sodium and carbonate aggregate were found to be responsible for the bulk of heat production in sodium-concrete tests. Exothermic reactions were initiated at 580+-30 0 C for limestone and dolostone aggregates as well as for hydrated limestone concrete, and at 540+-10 0 C for dehydrated limestone concrete, but were ill-defined for dolostone concrete. Major reaction products included CaO, MgO, Na 2 CO 3 , Na 2 O, NaOH, and elemental carbon. Sodium hydroxide, which forms when water is released from cement phases, causes slow erosion of the concrete with little heat production. The time-temperature profiles of these experiments have been modeled with a simplified version of the SLAM computer code, which has allowed derivation of chemical reaction rate coefficients

  14. Ice and mineral licks used by caribou in winter

    Directory of Open Access Journals (Sweden)

    Douglas C. Heard

    1990-09-01

    Full Text Available In winter, barren-ground caribou obtain minerals from ice and soil licks. Between December and April we have seen caribou cratering on the surface of frozen lakes and licking the ice. Ice samples from eight licks on four lakes contained concentrations of calcium, magnesium, sodium, potassium, phosphorus, chloride and sulphate many times higher than in the surrounding unlicked ice or than would be expected in lake water. Soil licks being used in March and June had high concentrations of calcium, magnesium, sodium phosphorus and potassium. In winter caribou may be seeking supplements of all of the major mineral elements (calcium, magnesium, sodium and potassium at ice and soil licks because lichens, their staple winter diet, are low in minerals and may also reduce the absorption of some minerals.

  15. Pulp revascularization after root canal decontamination with calcium hydroxide and 2% chlorhexidine gel.

    Science.gov (United States)

    Soares, Adriana de Jesus; Lins, Fernanda Freitas; Nagata, Juliana Yuri; Gomes, Brenda Paula Figueiredo de Almeida; Zaia, Alexandre Augusto; Ferraz, Caio Cezar Randi; de Almeida, José Flávio Affonso; de Souza-Filho, Francisco José

    2013-03-01

    Pulp revascularization may be considered a promising alternative for necrotic immature teeth. Many studies have accomplished passive decontamination associated with an antibiotic paste. To date, there is no report evaluating calcium hydroxide associated with 2% chlorhexidine gel for revascularization therapy. The aim of this case report was to describe a new proposal for pulp revascularization with mechanical decontamination and intracanal medication composed of calcium hydroxide and 2% chlorhexidine gel. The patient, a 9-year-old girl, suffered an intrusion associated with pulp exposure caused by an enamel-dentin fracture in her maxillary left central incisor. After diagnosis, treatment consisted of revascularization therapy with gentle manual instrumentation of the cervical and medium thirds of the root in addition to intracanal medication with calcium hydroxide and 2% chlorhexidine gel for 21 days. In the second session, a blood clot was stimulated up to the cervical third of the root canal. Mineral trioxide aggregate (MTA; Angelus, Londrina, Paraná, Brazil) was used for cervical sealing of the canal. Coronal sealing was performed with temporary filling material and composite resin. During the follow-up period, the root canal space showed a progressive decrease in width, mineralized tissue deposition on root canal walls, and apical closure. A cone-beam computed tomography scan taken at the 2-year follow-up confirmed these findings and did not show complete root canal calcification. This new proposal for revascularization therapy with 2% chlorhexidine gel may be used for the treatment of necrotic immature root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. One-step enrichment and chemiluminescence detection of sodium dodecyl benzene sulfonate in river water using Mg-Al-carbonate layered double hydroxides.

    Science.gov (United States)

    Guan, Weijiang; Zhou, Wenjuan; Han, Dongmei; Zhang, Mengchun; Lu, Chao; Lin, Jin-Ming

    2014-03-01

    In this work, Mg-Al CO3-layered double hydroxides (LDHs) were used as adsorbent materials for sodium dodecyl benzene sulfonate (SDBS) in aqueous solutions, the enriched SDBS can be directly detected by IO4(-)-H2O2 chemiluminescence (CL) system. The commonly existing cations cannot be enriched by Mg-Al CO3-LDHs due to the structurally positively charged layers of LDHs, while other adsorbed anionic interferents had no effect on the IO4(-)-H2O2 CL reaction. The corresponding linear regression equation was established in the range of 0.1-10 μM for SDBS. The detection limit at a signal-to-noise (S/N) ratio of 3 for SDBS was 0.08 μM. The relative standard deviation (RSD) for nine repeated measurements of 0.5 μM SDBS was 2.6%. This proposed method has been successfully applied to the determination of SDBS in river water samples. To the best of our knowledge, we have first time coupled the high enrichment capacity of LDHs towards anions with CL detection for analytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Mineral statistics yearbook 1994

    International Nuclear Information System (INIS)

    1994-01-01

    A summary of mineral production in Saskatchewan was compiled and presented as a reference manual. Statistical information on fuel minerals such as crude oil, natural gas, liquefied petroleum gas and coal, and of industrial and metallic minerals, such as potash, sodium sulphate, salt and uranium, was provided in all conceivable variety of tables. Production statistics, disposition and value of sales of industrial and metallic minerals were also made available. Statistical data on drilling of oil and gas reservoirs and crown land disposition were also included. figs., tabs

  18. Genotoxicity test of propolis extract, mineral trioksida aggregat, and calcium hydroxide on fibroblast BHK-21 cell cultures

    Directory of Open Access Journals (Sweden)

    Ceples Dian Kartika W.P

    2015-03-01

    Full Text Available Background: Health industry has always used natural products as an alternative. Propolis, a natural antibiotic, is a resinous yellow brown or dark brown substance derived from honey bees (Apis mellifera. The main chemical compounds contained in propolis are flavonoids, phenolics and other various aromatic compounds. Flavonoids are well known plant compounds that have antibacterial, antifungal, antiviral, antioxidant and anti-inflammatory proprieties. Propolis is expected to be an alternative used for root canal treatment with lower toxicity compared to calcium hydroxide (Ca(OH2 . Over the last decade, a new material, mineral trioxide aggregate (MTA was developed, and has been used as the gold standard. All materials used in mouth should be biocompatible. The initial level of material biocompatibility evaluation involves toxicity and genotoxicity tests. Purpose: This research is aimed to conduct comparison test of genotoxicity effect of propolis extract, MTA and Ca(OH2 on fibroblast BHK-21 cell culture. Methods: This research was conducted with single-cell gel electrophoresis method. Results: The results indicate that propolis extract cannot cause DNA damage, while MTA can cause apoptosis and Ca(OH2 can cause neucrosis. Conclusion: It can be concluded that propolis extract has genotoxicity effect lower than MTA and Ca(OH2 , but MTA has lower effect on fibroblast BHK-21 cell culture.

  19. Influence of zeolite treated with sulphuric acid and sodium hydroxide on the coagulation-flocculation process of drainage. Influencia de la zeolita tratada con acido sulfurico y con hidroxido de sodio en el proceso de coagulacion floculacion en aguas superficiales

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Duque, M; Herrera Vasconcelos, T; Laria Piedra, N

    1994-01-01

    The present paper has had as objective the treatment of natural zeolite from Tasajera with sulfuric acid and sodium hydroxide (residuals acid and basic from the regeneration of cationic and anionic resins of the ''Otto Parallada'' thermoelectric plant) at different times and concentrations, with a further comparison and testing of the effectiveness of the obtained zeolite in respect to the natural one as a coadyuvant of the coagulation-flocculation process in the treatment of superficial water. (Author)

  20. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    Science.gov (United States)

    Jung, Haesung; Jun, Young-Shin

    2016-01-05

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.

  1. Modelling of niobium sorption on clay minerals in sodium and calcium perchlorate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ervanne, Heini; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Laboratory of Radiochemistry

    2014-11-01

    The sorption behaviour of niobium on kaolinite and illite minerals in sodium and calcium perchlorate solutions was evaluated with use of the mass distribution coefficient, Rd, obtained in batch sorption experiments. Very high distribution coefficient values, about 100 m{sup 3}/kg, were obtained for both minerals in the neutral pH range between 6 and 8. Values were somewhat lower at pH 5. In NaClO{sub 4} solution, the sorption of niobium starts to decrease at pH higher than 8. This is in agreement with the increase, with pH, in the proportion of anionic niobate species, which are presumed to be low or non-sorbing. A similar decrease was not observed in Ca(ClO{sub 4}){sub 2} solution, probably owing to the influence of Ca on niobium solution speciation and surface species. The surface complexation model was applied to model the Rd values. The model fitted well for the NaClO{sub 4} solution but only at pH below 9 for the Ca(ClO{sub 4}){sub 2} solution. The discrepancy between the strong sorption of niobium in calcium-bearing solution at high pH and the calculated speciation is due in part to the non-inclusion of calcium niobate solution species and Ca-Nb compounds in the present NEA and other similar thermodynamic databases.

  2. Effects of Sodium Hydroxide and Sodium Aluminate on the Precipitation of Aluminum Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Parker, Kent E.; McCready, David E.; Wang, Li Q.

    2006-01-01

    Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down. Studies were conducted at 80 C to identify the insoluble aluminosilicate phase(s) and to determine the kinetics of their formation and transformation. These tests were carried out under conditions more similar to those that occur in HLW tanks and evaporators. Comparison of our results with those reported from the site show very similar trends. Initially, an amorphous phase precipitates followed by a zeolite phase that transforms to sodalite and which finally converts to cancrinite. Our results also show the expected trend of an increased rate of transformation into denser aluminosilicate phases (sodalite and cancrinite) with time and increasing hydroxide concentrations

  3. Ion-exchange properties of cesium and strontium into zeolites from sodium salt solutions

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki; Ohtani, Tozo.

    1978-01-01

    The ion-exchange properties of cesium and strontium into zeolite from sodium salt solution has been studied in zeolite A, zeolite X, zeolite Y, mordenite and clinoptilolite. The distribution of cesium into mordenite from about 1 -- 2 M sodium chloride and sodium hydroxide solutions is considerably larger than that into zeolite A. The distribution coefficient for 2 M solution of sodium salts was about 300. Therefore, the separation of cesium from sodium salt solution is possible by using mordenite. The distribution of strontium into zeolites form 1 -- 2 M solutions of sodium chloride and sodium nitrate were in the order of zeolite A>zeolite X>zeolite Y asymptoticaly equals mordenite. The distribution coefficient of 230 was obtained for 1 M solutions of sodium salts. The anion in solutions had no effect on the distribution of cesium and strontium into zeolite from sodium salt solution. (author)

  4. 21 CFR 184.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  5. Influence of zeolite treated with sulphuric acid and sodium hydroxide on the coagulation-flocculation process of drainage. Influencia de la zeolita tratada con acido sulfurico y con hidroxido de sodio en el proceso de coagulacion floculacion en aguas superficiales

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Duque, M.; Herrera Vasconcelos, T.; Laria Piedra, N.

    1994-01-01

    The present paper has had as objective the treatment of natural zeolite from Tasajera with sulfuric acid and sodium hydroxide (residuals acid and basic from the regeneration of cationic and anionic resins of the ''Otto Parallada'' thermoelectric plant) at different times and concentrations, with a further comparison and testing of the effectiveness of the obtained zeolite in respect to the natural one as a coadyuvant of the coagulation-flocculation process in the treatment of superficial water. (Author)

  6. Relevance of a Hypersaline Sodium-Rich Naturally Sparkling Mineral Water to the Protection against Metabolic Syndrome Induction in Fructose-Fed Sprague-Dawley Rats: A Biochemical, Metabolic, and Redox Approach

    Directory of Open Access Journals (Sweden)

    Cidália Dionísio Pereira

    2014-01-01

    Full Text Available The Metabolic Syndrome increases the risk for atherosclerotic cardiovascular disease and type 2 Diabetes Mellitus. Increased fructose consumption and/or mineral deficiency have been associated with Metabolic Syndrome development. This study aimed to investigate the effects of 8 weeks consumption of a hypersaline sodium-rich naturally sparkling mineral water on 10% fructose-fed Sprague-Dawley rats (Metabolic Syndrome animal model. The ingestion of the mineral water (rich in sodium bicarbonate and with higher potassium, calcium, and magnesium content than the tap water used as control reduced/prevented not only the fructose-induced increase of heart rate, plasma triacylglycerols, insulin and leptin levels, hepatic catalase activity, and organ weight to body weight ratios (for liver and both kidneys but also the decrease of hepatic glutathione peroxidase activity and oxidized glutathione content. This mineral-rich water seems to have potential to prevent Metabolic Syndrome induction by fructose. We hypothesize that its regular intake in the context of modern diets, which have a general acidic character interfering with mineral homeostasis and are poor in micronutrients, namely potassium, calcium, and magnesium, could add surplus value and attenuate imbalances, thus contributing to metabolic and redox health and, consequently, decreasing the risk for atherosclerotic cardiovascular disease.

  7. A Nanolayer Copper Coating for Prevention of Nosocomial Multi-Drug Resistant Infections

    Science.gov (United States)

    2017-12-01

    application). On day 6, the injection site areas will be treated with the detergent, and known sensitizer, sodium lauryl sulfate (10% in mineral oil). On...extracted. A solution of 0.15% sodium lauryl sulfate (dissolved in 0.9% normal saline) is used as the test solution and 0.9% normal saline is used as...cotton-based dressing. Briefly, the process involves the steps of pad application of aqueous sodium hydroxide (NaOH), followed by pad application

  8. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  9. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  10. Refining of the cracked products of mineral oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Seelig, S

    1928-06-02

    A process is disclosed for the refining of the distilled or cracked products from mineral oil, shale oil, or brown-coal-tar oil, with the aid of alkali-plumbite solution, characterized by adding to the plumbite solution from oxide, iron hydroxide, basic oxide, or an iron salt.

  11. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel

    2016-06-23

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  12. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel; Ezzeddine, Alaa; Emwas, Abdul-Hamid M.; Khashab, Niveen M.; Al-Ghoul, Mazen

    2016-01-01

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  13. Computer simulation for sodium-concrete reactions

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou

    2006-01-01

    In the liquid metal cooled fast breeder reactors (LMFBRs), direct contacts between sodium and concrete is unavoidable. Due to sodium's high chemical reactivity, sodium would react with concrete violently. Lots of hydrogen gas and heat would be released then. This would harm the ignorantly of the containment. This paper developed a program to simualte sodium-conrete reactions across-the-board. It could give the reaction zone temperature, pool temperature, penetration depth, penetration rate, hydrogen flux and reaction heat and so on. Concrete was considered to be composed of silica and water only in this paper. The variable, the quitient of sodium hydroxide, was introduced in the continuity equation to simulate the chemical reactions more realistically. The product of the net gas flux and boundary depth was ably transformed to that of penetration rate and boundary depth. The complex chemical kinetics equations was simplified under some hypothesises. All the technique applied above simplified the computer simulation consumedly. In other words, they made the computer simulation feasible. Theoretics models that applied in the program and the calculation procedure were expatiated in detail. Good agreements of an overall transient behavior were obtained in the series of sodium-concrete reaction experiment analysis. The comparison between the analytical and experimental results showed the program presented in this paper was creditable and reasonable for simulating the sodium-concrete reactions. This program could be used for nuclear safety judgement. (authors)

  14. Effect of the Association of Nonsteroidal Anti-inflammatory and Antibiotic Drugs on Antibiofilm Activity and pH of Calcium Hydroxide Pastes.

    Science.gov (United States)

    de Freitas, Rafaela Pignatti; Greatti, Vanessa Raquel; Alcalde, Murilo Priori; Cavenago, Bruno Cavalini; Vivan, Rodrigo Ricci; Duarte, Marco Antonio Hungaro; Weckwerth, Ana Carolina Villas Bôas; Weckwerth, Paulo Henrique

    2017-01-01

    The objective of the present study was to evaluate the in vitro antibiofilm activity and pH of calcium hydroxide associated with different nonsteroidal anti-inflammatory drugs (NSAIDs). The groups analyzed were as follows: group 1, calcium hydroxide paste with propylene glycol; group 2, calcium hydroxide paste with propylene glycol + 5% diclofenac sodium; group 3, calcium hydroxide paste with propylene glycol + 5% ibuprofen; group 4, calcium hydroxide paste with propylene glycol + 5% ciprofloxacin; and group 6, positive control (without medication). For analysis of the pH, the pastes were inserted into tubes and immersed in flasks containing ultrapure water. At the time intervals of 3, 24, 72, and 168 hours, the pH was measured with a calibrated pH meter. For microbial analysis, biofilm was induced in 30 bovine dentin blocks for 21 days. Subsequently, the pastes were placed on the blocks with biofilm for 7 days. Afterward, the pastes were removed by irrigation with sterile water, and the specimens were analyzed with a laser scanning confocal microscope with the 50 μL Live/Dead BacLight Bacterial Viability solution L7012 Kit (Molecular Probes, Inc, Eugene, OR). Data were subjected to statistical analysis at a significance level of 5%. The highest pH values were found for calcium hydroxide associated with ciprofloxacin in all periods analyzed. With the exception of pure calcium hydroxide paste, the other groups showed statistically significant differences (P antibiotic did not interfere with the pH of calcium hydroxide paste and increased the antimicrobial action of calcium hydroxide paste against Enterococcus faecalis biofilm formation. Published by Elsevier Inc.

  15. Oxygen titration in sodium. The mercury method and its use for very low values

    International Nuclear Information System (INIS)

    Champeix, L.; Darras, R.; Duflo, J.

    1958-01-01

    The mercury method for the oxygen titration in sodium has now been known for ten years and is probably the more frequently used. In this text, precision are given to what extent it is valuable when used in microanalysis. Details are given on the apparatus, its manipulation and its calibration. After testing, we have decided to use flame spectroscopy to titrate the sodium hydroxide formed. Discussions are exposed on the errors due to the presence of sodium chloride and calcium. Results are examined from the point of view of their reproducibility and accuracy. If great care is taken, this method allows oxygen titration in sodium even for values below 10 ppm with satisfactory precision. (author) [fr

  16. The radiation chemistry of aqueous sodium terephthalate solutions

    International Nuclear Information System (INIS)

    Matthews, R.W.

    1980-04-01

    The radiation chemistry of cobalt-60 gamma-irradiated aqueous sodium terephthalate solutions has been studied. In aerated 4 x 10 -4 M sodium hydroxide solutions, the main products are hydroxyterephthalate (HTA) (G = 0.99 +- 0.01), carbonate (G = 1.31 +- 0.08), and peroxides (G = 2.84 +- 0.04). The HTA and carbonate species are both formed as a result of hydroxyl radical attack and account for approximately 90 per cent of hydroxyl radical reactions. Oxygen needs to be present for efficient conversion of the terephthalate-OH radical adduct to HTA and oxygenation increases G(HTA) above the aerated solution value. G(HTA) is unaffected by changes in terephthalate concentration between 1 x 10 -4 M and 1 x 10 -2 M in sodium hydroxide solutions at pH 10. Decreasing the solution pH does however affect G(HTA). In phosphate buffered solutions pH 6.85, G(HTA) is 0.93 +- 0.01 and lower values are obtained with further decrease in solution pH. The lowering of the G(HTA) value is attributed to recombination reactions between the terephthalate-OH radical products and reducing radical products. Experimental evidence supporting the recombination postulate was obtained from the measurement of a parallel decrease in the peroxide yield and the observation of a dose rate effect on G(HTA). Competition kinetic studies with the added solutes carbonate and bicarbonate gave the rate ratios k (OH + TA 2- ) : k(OH + CO 3 2- ) : k(OH + HCO 3 - ) = 1 : 0.105 : 0.0036

  17. Electroacoustic isoelectric point determinations of bauxite refinery residues: different neutralization techniques and minor mineral effects.

    Science.gov (United States)

    Freire, Tiago S S; Clark, Malcolm W; Comarmond, M Josick; Payne, Timothy E; Reichelt-Brushett, Amanda J; Thorogood, Gordon J

    2012-08-14

    Bauxite refinery residue (BRR) is a highly caustic, iron hydroxide-rich byproduct from alumina production. Some chemical treatments of BRR reduce soluble alkalinity and lower residue pH (to values work shows that minor mineral components in complex mineral systems may have a disproportionate effect on the observable bulk IEP. Furthermore, this work shows the appropriateness of electroacoustic techniques in investigating samples with significant soluble mineral components (e.g., ANC).

  18. Neutron activation determination of rhenium in mineral raw materials of complex composition

    International Nuclear Information System (INIS)

    Shiryaeva, M.B.; Lyubimova, L.N.; Salmin, Yu.P.; Ryumina, K.N.; Tatarkin, M.A.

    1984-01-01

    The method of neutron-activation rhenium determination in mineral raw material of complex composition is developed, according to which easily hydrolized elements: scandium, iron, lanthanum, ytterbium, protactinium, hafnium and partially ruthenium and osmium are isolated in the form of hydroxides after smelting of a sample, which has been previously irradiated in nuclear reactor (thermal neutron flux 1.2x10 13 n/cm 2 xs for 22 hr) with sodium peroxide and leaching of the melt by water. To separate Re from other interfering elements extraction of perrhenate-ion by methylethylketone from alkali solution is used. Interfering effect of gold is eliminated by its extraction with TBP 30% solution in toluence or benzene from 1 M HNO 3 . Activity of rhenium preparations, singled out from samples of comparison, is measured, using multichannel γ-spectrometer with Ge(Li)-coaxial detector of high resolution (approximately 2.0-2.2 keV over the line 122 keV 5+ Co). Relative standard deviation in Re content range 5x10 -7 -5x10 -2 % does not exceed 0.3

  19. Effective Production of Sorbitol and Mannitol from Sugars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2013-06-01

    Full Text Available Effective production of hexitols (sorbitol and mannitol was achieved from sugars by means of nickel nanoparticles supported on aluminium hydroxide (NiNPs/AlOH catalyst. NiNPs/AlOH catalyst was prepared by a simple and benign environmentally procedure using less amount of sodium hydroxide. ICP-AES and XRD analyses confirmed that the NiNPs/AlOH catalysts comprised a large amount of remained aluminium hydroxide (i.e. bayerite and gibbsite. The presence of aluminium hydroxide caused a high dispersion Ni metal species. The average Ni crystallite sizes that derived from the Scherrer`s equation for former R-Ni and NiNPs/AlOH were 8.6 nm and 4.1 nm, respectively. The catalyst exhibited high activity and selectivity both hydrogenolysis of disaccharides (sucrose and cellobiose and monosaccharides (glucose, fructose, and xylose at 403 K for 24 h. The NiNPs/AlOH catalyst was found to be reusable for at least five consecutive runs without any significant loss of activity and selectivity. © 2013 BCREC UNDIP. All rights reservedReceived: 21st December 2012; Revised: 7th February 2013; Accepted: 10th February 2013[How to Cite: Rodiansono, R., Shimazu, S. (2013. Effective Production of Sorbitol and Mannitol from Sug-ars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 40-46. (doi:10.9767/bcrec.8.1.4290.40-46][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4290.40-46] | View in  |

  20. Layered Metal Hydroxides Containing Calcium and Their Structural Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Heo, Il; Lee, Sung Han; Oh, Jae Min [College of Science and Technology, Yonsei University, Wonju (Korea, Republic of); Paek, Seung Min [Kyungpook National University, Daegu (Korea, Republic of); Park, Chung Berm; Choi, Ae Jin [National Institute of Horticultural and Herbal Science of R and D Eumseong (Korea, Republic of); Choy, Jin Ho [Ewha Womans University, Seoul (Korea, Republic of)

    2012-06-15

    Layered metal hydroxides (LMHs) containing calcium were synthesized by coprecipitation in solution having two different trivalent metal ions, iron and aluminum. Two mixed metal solutions (Ca{sup 2+}/Al{sup 3+} and Ca{sup 2+}/Fe{sup 3+} = 2/1) were added to sodium hydroxide solution and the final pH was adjusted to {approx}11.5 and {approx}13 for CaAl-and CaFe-LMHs. Powder X-ray diffraction (XRD) for the two LMH samples showed well developed (00l) diffractions indicating 2-dimensional crystal structure of the synthesized LMHs. Rietveld refinement of the X-ray diffraction pattern, the local structure analysis through X-ray absorption spectroscopy, and thermal analysis also confirmed that the synthesized precipitates show typical structure of LMHs. The chemical formulae, Ca{sub 2.04}Al{sub 1}(OH){sub 6}(NO{sub 3}){center_dot}5.25H{sub 2}O and Ca{sub 2.01}Fe{sub 1}(OH){sub 6}(NO{sub 3}){center_dot}4.75H{sub 2}O were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Particle morphology and thermal behavior for the synthesized LMHs were examined by field emission scanning electron microscopy and thermogravimetric differential scanning calorimetry

  1. Separation and recovery of sodium nitrate from low-level radioactive liquid waste by electrodialysis

    International Nuclear Information System (INIS)

    Meguro, Yoshihiro; Kato, Atsushi; Watanabe, Yoko; Takahashi, Kuniaki

    2011-01-01

    An advanced method, in which electrodialysis separation of sodium nitrate and decomposition of nitrate ion are combined, has been developed to remove nitrate ion from low-level radioactive liquid wastes including nitrate salts of high concentration. In the electrodialysis separation, the sodium nitrate was recovered as nitric acid and sodium hydroxide. When they are reused, it is necessary to reduce the quantity of impurities getting mixed with them from the waste fluid as much as possible. In this study, therefore, a cation exchange membrane with permselectivity for sodium ion and an anion exchange membrane with permselectivity for monovalent anion were employed. Using these membranes sodium and nitrate ions were effectively removed form a sodium nitrate solution of high concentration. And also it was confirmed that sodium ion was successfully separated from cesium and strontium ions and that nitrate ion was separated from sulfate and phosphate ions. (author)

  2. Flotation separation of arsenopyrite from several sulphide minerals with organic depressants

    Institute of Scientific and Technical Information of China (English)

    Wang Fuliang; Wang Ligang; Sun Chuanyao

    2008-01-01

    In this paper,the separation of arsenopyrite from chalcopyrite,pyrite,galena with organic depressants (guergum and sodium humic)was discussed,and the functioning mechanism of those organic depressants was dis-cussed.The experimental results of monomineral flotation indicated that both guergum and sodium humic have depress-ing effect on arsenopyrite in the presence of ethyl xanthate.Guergum and sodium humic showed different depressing a-bility to pyrite,chalcopyrite and galena,and the higher the pH value in pulp,the stronger the depressing ability.Ultra-violet-Visible Spectrophotometric study showed that the adsorption layer of xanthate on surface of minerals had been de-sorbed by the two organic depressants,and the selective desorption of the collector layer was found from different miner-als.The xanthate cover on minerals surface was set free when dosage of the organic depressants was high enough.For artificially-mixed minerals,the separation of arsenopyrite from other sulphides was successfully realized by controlling dosage of the organic depressants.And sodium humic had been used successfully to decrease arsenic content in sulphide concentr ates in a commercial Lead-Zinc concentrator.

  3. Characteristic and composition of smokes in sodium fires

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Torres, A.R.; Brito Aghina, L.O. de; Messere e Castro, P.

    1986-01-01

    The formation ratios of chemical principal compounds appear in smokes of fires up to 50 Kg of sodium in installations for fast reactor researches, were measured for a simulation in a scale of 1:1000. Relations of hydroxide concentrations, carbonate and bicarbonate appear in smokes retained in counter-current washing tower and in dry filters are presented. It is still presented the variation of the temperature profile and composition of burning wastes. (Author) [pt

  4. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere.

    Science.gov (United States)

    Watanabe, Nobuhisa; Takata, Mitsuyasu; Takemine, Shusuke; Yamamoto, Katsuya

    2018-03-01

    Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N 2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage.

  5. 21 CFR 582.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  6. Selective Separation of Fluorite, Barite and Calcite with Valonea Extract and Sodium Fluosilicate as Depressants

    Directory of Open Access Journals (Sweden)

    Zijie Ren

    2017-02-01

    Full Text Available Fluorite, barite and calcite are important industry minerals. However, they often co-exist, presenting difficulty in selectively separating them due to their similar surface properties. In this study, valonea extract and sodium fluosilicate were used as depressants to selectively separate them by flotation, with sodium oleate as the collector. The single mineral flotation results showed that valonea extract displayed the strongest depression on calcite, while sodium fluosilicate displayed the strongest depression on barite. These two depressants allowed selective separation of the three minerals through sequential flotation. The flotation of mixed minerals showed that 94% of the calcite was successfully depressed by the valonea extract, and 95% recovery of the fluorite was achieved in the subsequent flotation with sodium fluosilicate depressing barite. The different depressant–mineral interactions were investigated via electro-kinetic studies and molecular dynamics (MD simulations using the Materials Studio 6.0 program. The valonea extract exhibited the strongest adsorption on the calcite surface, and sodium fluosilicate exhibited the strongest adsorption on the barite surface, which prevented oleate species from reacting with Ca2+ or Ba2+ surface sites. This study provides useful guidance for how to process fluorite, barite and calcite resources.

  7. Development of Sodium Technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. H.; Nam, H. Y.; Kim, T. J. (and others)

    2007-03-15

    In the experiments to investigate the characteristics of the free surface fluctuation in a vessel, the experimental correlation was modeled to describe the free surface fluctuation in the upper plenum of a liquid metal reactor within 95% reliability and 2.4% error. The correlation was used to verify the computational model. The new conceptual flowmeters were suggested to measure the sodium flow for the reliability enhancement. The electromagnetic flowmeter with permanent magnet showed a good linearity and repeatability. For reuse of the sodium contaminated component, CO{sub 2} bubbling method was developed. Sodium in 0.3mm crevice specimen was removed completely. The optimum condition for the used sodium treatment was deduced to estimate which reaction is more safe and adequate for operation condition by analyzing the reactivity alleviation condition and the reaction rate with the control of sodium hydroxide concentration A series of tests were carried out to investigate the enlargement rate of the nozzle hole itself and the sodium-water reaction temperature associated with needle-like jets of a high-pressure water/steam into the sodium side of a steam generator. The size of the nozzle hole became larger with an increased duration of the steam injection both for the 2.25Cr-1Mo and M9Cr-1Mo steels by a self-wastage phenomenon. For developing the SWR acoustic leak detection technology, the tool prepared by the LabVIEW was installed with the system, and confirmed the performance of the on-line acoustic leak detection tool using the SWR leak signal acquired in the KAERI facility.

  8. Calculation of Site-specific Carbon-isotope Fractionation in Pedogenic Oxide Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, James R.; Zarzycki, Piotr

    2008-07-29

    Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO2(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO2(m) into (oxy)hydroxide crystal structures: one in which the C4+ substitutes for four H+ [CO2(m)A] and another in which C4+ substitutes for (Al3+,Fe3+) + H+ [CO2(m)B]. Calculations of isotope fractionation factors give large differences between the two structures, with the CO2(m)A being isotopically lighter than CO2(m)B by ≈10 per mil in the case of gibbsite and nearly 20 per mil in the case of goethite. The reduced partition function ratio of CO2(m)B structure in goethite differs from CO2(g) by <1 per mil. The predicted fractionation for gibbsite is >10 per mil higher, close to those measured for calcite and aragonite. The surprisingly large difference in the carbon-isotope fractionation factor between the CO2(m)A and CO2(m)B structures within a given mineral suggests that the isotopic signatures of soil (oxy)hydroxide could be heterogeneous.

  9. Synthesis Study Of Surfactants Sodium Ligno Sulphonate (SLS From Biomass Waste Using Fourier Transform Infra Red (FTIR

    Directory of Open Access Journals (Sweden)

    Priyanto Slamet

    2018-01-01

    Full Text Available Lignin from biomass waste (Black Liquor was isolated by using sulfuric acid 25% and sodium hydroxide solutions 2N. The obtained lignin was reacted with Sodium Bisulfite to Sodium Ligno Sulfonate (SLS. The best result was achieved at 80 ° C, pH 9, ratio of lignin and bisulfite 4: 1, for 2 hours, and 290 rpm stirring rate. The result of lignin formed was sulfonated using Sodium Bisulfite (NaHSO3 to Sodium Ligno Sulfonate (SLS whose results were tested by the role of groups in peak formation by FTIR and compared to the spectrum of Sodium Ligno Sulfonate made from pure Lignin (commercial reacted with the commercial Sodium Bisulfite. The result can be seen by the typical functional groups present in the SLS.

  10. Numerical simulation code for combustion of sodium liquid droplet and its verification

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1997-11-01

    The computer programs for sodium leak and burning phenomena had been developed based on mechanistic approach. Direct numerical simulation code for sodium liquid droplet burning had been developed for numerical analysis of droplet combustion in forced convection air flow. Distributions of heat generation and temperature and reaction rate of chemical productions, such as sodium oxide and hydroxide, are calculated and evaluated with using this numerical code. Extended MAC method coupled with a higher-order upwind scheme had been used for combustion simulation of methane-air mixture. In the numerical simulation code for combustion of sodium liquid droplet, chemical reaction model of sodium was connected with the extended MAC method. Combustion of single sodium liquid droplet was simulated in this report for the verification of developed numerical simulation code. The changes of burning rate and reaction product with droplet diameter and inlet wind velocity were investigated. These calculation results were qualitatively and quantitatively conformed to the experimental and calculation observations in combustion engineering. It was confirmed that the numerical simulation code was available for the calculation of sodium liquid droplet burning. (author)

  11. Preparation and investigation of ion exchange properties of sorbent based on activated carbon BAU and zirconium hydroxide

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Semenov, M.I.; Taushkanov, V.P.; Andronov, E.A.

    1978-01-01

    The method of obtaining the sorbent based on the activated carbon and zirconium hydroxide, performed by carbon soaking by zirconium salt solution, hydrolytic decomposition, being in salt pores by ammonia solution and drying of the obtained sorbet in the air at the temperature of 105-115 deg. The kinetic characteristics of the obtained sorbent in the wide range of pH value of solutions are studied; sodium, chloride, fluoride and phosphate ion sorbtion taken as examples. A high selectivity of the sorbent to phosphate and fluoride ions has been established. The usefullness of the obtained sorbent for extraction of phosphorus microquantities from 1M sodium chloride solution and its concentration at the elution stage is shown

  12. Preparation of Synthetic Zeolites from Myanmar Clay Mineral

    International Nuclear Information System (INIS)

    Phyu Phyu Win

    2004-04-01

    Faujasite type zeolite X was successfully synthesized from Myanmar clay mineral kaolinite, by treating with sodium hydroxide at 820 C followed by dissolution in water and hydrothermal treatment. It was found that the solution of fused clay powder can be crystallized at 90C under ambient pressure to synthesize faujasite type zeolite X. The effects of aging time and the amount of water on the formation of the product phase and Si/ Al ratios of the resulting products were investigated. Most of the Si and Al components in kaolinite might be dissolved into an alkaline solution and reacted to form ring-like structures. Then it was effectively transformed into zeolite materials. The maximum relative crystallinity of faujasite zeolite obtained was found to be 100%. Zeolite P was found to be a competitive phase present in some resulting products during hydrothermal treatment. The cation exchange capacity of kaolinite is very low, but increased after a proper treatment. It was found that the prepared faujasite type zeolite X, zeolite P and hydrogen zeolite (HZ) can reduce the hardness, the alkalinity, the total dissolved solid and the dissolved iron of raw water in the batch wise operation of water treatment. Therefore, it can be used as the cation exchanged resin for water treatment

  13. Effects of structural and textural grain characteristics on leaching of sulphide minerals from a polymetallic concentrate by sodium nitrate and sulphuric acid solution

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav D.

    2017-01-01

    Full Text Available In this paper, the influence of structural and textural characteristics of sulfide minerals on their leaching from a polymetallic concentrate by sulfuric acid and sodium nitrate solution is presented. The starting material was Pb–Zn–Cu sulphide polymetallic concentrate enriched during the flotation of a polymetallic ore in the "Rudnik" flotation plant (Rudnik – Serbia. Leaching experiments were carried out in a closed glass reactor, which provides stable hermetic conditions and allows heating at constant temperature. Chemical, XRD, qualitative and quantitative microscopic and SEM/EDX analyses were used to characterizes samples of the polymetallic concentrate and leach residue. It was determined that chalcopyrite, sphalerite, galena, pyrrhotite and quartz were present in the polymetallic concentrate. The content of sulphide minerals was 69.5%, of which 60.9% occurred as liberated grains: 88.3% of chalcopyrite, 59.3% of sphalerite, 25.1% of galena and 51.6% of pirrhotite. The rest of chalcopyrite, sphalerite, galena and pirrhotite grains were in the forms of inclusions, impregnations, and simple and complex intergrowths. During the leaching process by sodium nitrate and sulphuric acid solution, it was shown previously that the leaching rate of sulphide minerals decreased with time while a part of the sulphide minerals remained in the leach residue. After leaching at 80°C for 120 min, the yields were 69.8, 82.7 and 67.1% for Cu, Zn and Fe, respectively. Lead, in the form of insoluble anglesite, remained in the leach residue. In addition to the anglesite, unleached sulfide minerals and quartz, elemental sulfur was found in the solid residue. The content of sulphide minerals was 35% of which 33.7% minerals occur independently. In specific, 54.7% of chalcopyrite, 31.9% of sphalerite, 8.2% of galena and 37.6% of pyrrhotite appear as separate grains with highly corroded surfaces. Therefore, the structural assembly of sulphide grains in the

  14. Ion exchange of radionuclides on natural and modified micaceous minerals

    International Nuclear Information System (INIS)

    Kojvula, R.; Lekhto, Yu.

    1998-01-01

    Interaction of 134 Cs, 85 Sr and 60 Co with three micaceous minerals: muscovites, biotites and phlogopite is studied. Two types of micaceous minerals: natural ones, wherein potassium is an exchange cation, and samples, converted into sodium form, are studied/ It is found that biotite and phlogopite in the sodium form are specified by high selectivity to cobalt with distribution coefficient above 10 5 ml/g, whereas the muscovite potassium form is characterized by high selectivity to cesium. Neither of the micaceous minerals is characterized by selectivity to strontium. Distribution coefficients strongly depend on pH of the medium

  15. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  16. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  17. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    International Nuclear Information System (INIS)

    Wang Ji; Wei Min; Rao Guoying; Evans, D.G.; Duan Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation

  18. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    Science.gov (United States)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  19. A microbial-mineralization-inspired approach for synthesis of manganese oxide nanostructures with controlled oxidation states and morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Manabu; Oaki, Yuya; Imai, Hiroaki [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-12-21

    Manganese oxide nanostructures are synthesized by a route inspired by microbial mineralization in nature. The combination of organic molecules, which include antioxidizing and chelating agents, facilitates the parallel control of oxidation states and morphologies in an aqueous solution at room temperature. Divalent manganese hydroxide (Mn(OH){sub 2}) is selectively obtained as a stable dried powder by using a combination of ascorbic acid as an antioxidizing agent and other organic molecules with the ability to chelate to manganese ions. The topotactic oxidation of the resultant Mn(OH){sub 2} leads to the selective formation of trivalent manganese oxyhydroxide ({beta}-MnOOH) and trivalent/tetravalent sodium manganese oxide (birnessite, Na{sub 0.55}Mn{sub 2}O{sub 4}.1.5H{sub 2}O). For microbial mineralization in nature, similar synthetic routes via intermediates have been proposed in earlier works. Therefore, these synthetic routes, which include in the present study the parallel control over oxidation states and morphologies of manganese oxides, can be regarded as new biomimetic routes for synthesis of transition metal oxide nanostructures. As a potential application, it is demonstrated that the resultant {beta}-MnOOH nanostructures perform as a cathode material for lithium ion batteries. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Transformation using peroxide of a crude thorium hydroxide in nitrate for mantle grade

    International Nuclear Information System (INIS)

    Freitas, Antonio Alves de; Carvalho, Fatima Maria Sequeira de; Ferreira, Joao Coutinho; Abrao, Alcidio

    2002-01-01

    An alternative process for the recovery and purification of thorium starting from a crude thorium hydroxide as the precursor is outlined in this paper. Its composition is 60.1% thorium oxide (ThO 2 ), 18.6% rare earth oxides (TR 2 O 3 ), and common impurities like silicium, iron, titanium, lead and sodium. This material was produced industrially from the monazite processing in Brazil and has been stocked since several years. The crude thorium hydroxide is treated with hot nitric acid and after the digestion and addition of floculant it is filtered for the separation of the insoluble fraction. Using this nitrate solution, the thorium peroxide is precipitated after adjustment of pH and controlled addition of hydrogen peroxide. The final thorium peroxide is dissolved with nitric acid and the resulting thorium nitrate is mantle grade quality. Rare earth elements are recovered from the thorium peroxide filtrate. The main process parameters for the peroxide precipitation, like pH and temperature and main the results are presented and discussed. (author)

  1. Investigation for the sodium leak Monju. Sodium fire test-II

    International Nuclear Information System (INIS)

    Uchiyama, Naoki; Takai, Toshihide; Nishimura, Masahiro; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    2000-08-01

    Composition of Sodium Burning Compounds : The deposits on the floor liner were spread flat with a maximum thickness of about 5 cm. The main compounds of the deposits were sodium hydroxide and a compound oxide of iron and sodium (Na 5 FeO 4 ). A deliquescence pool of water with a depth of approximately 1 cm was observed on the floor liner far from the area where the leakage occurred, and the main compounds besides water were NaOH and Na 2 CO 3 . Furthermore, a silicon compound (Na 2 SiO 3 , Na 4 SiO 4 , etc.) was detected in the deposits on the floor concrete. (author)

  2. In-vitro digestible energy of some agricultural residues, as influenced by gamma irradiation and sodium hydroxide

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1999-01-01

    The effect of various doses of gamma irradiation (0,100,150,200 KGy) and different concentrations of sodium hydroxide on crude fibre (CF), Cell-wall constituents (NDF, ADF, ADL), in vitro organic matter digestibility (IVOMD), gross energy (GE), in vitro digestible energy (IVDE) of wheat straw (W.S) cotton seed shall (C.S.S), peanut shell (P.S), soybean shell (SB.S), extracted olive cake (O.C.E) and extracted sunflower of unpeeled seeds (S.U.E) were investigated. Results indicated that HaOH in the concentrations at (4 and 6%) had significant effects on the CF content of W.S and P.S, E.U.E, SB.S, C.S.S, O.C.E; respectively. Treating S.U.E, W.S and all other residues with NaoH (2,4 and 6%) respectively, decreased the NDF level. Irradiation dose of 200 KGy decreased CF for all residues, and it reduced the NDF for S.U.E and SB.S. However, lower irradiation dose (150 KGy) was good enough to reduce the NDF for W.S, C.S.S, P.S and O.C.E. Combined treatment resulted in better effects in reducing the concentrations of the cell-wall constituents. The digestible energy values (kJ/Kg DM) increased by 1120,1 220, 2110 (W.S); 620, 830, 1000 for P.S; 240, 500, 580 for O.C.E; 500, 850, 870 for S.U.E; 550, 1060, 1200 for SB.S and 1260, 1710, 2070 for C.S.S using 100, 150, 200, KGy respectively, in comparison to unirradiated controls. Also, the IVDE values (Kj/Kg DM) increased by 560, 1050, 1590 for W.S; 310, 460, 650 for P.S; 170, 760, 1530 for C.S.S; 450, 990, 1190 for O.C.E using 2%, 4%, 6% NaOH respectively, in comparison to controls. No changes in the IVDE values for S.U.E and SB.S. Combined treatment resulted in an even better increase in the digestible energy, except S.U.E and SB.S. (Author)

  3. Dissolution mechanism of aluminum hydroxides in acid media

    Science.gov (United States)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  4. Hydroxamic acid interactions with solvated cerium hydroxides in the flotation of monazite and bastnäsite—Experiments and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Sarvaramini, A., E-mail: amin.sarvaramini.1@ulaval.ca; Azizi, D., E-mail: dariush.azizi.1@ulaval.ca; Larachi, F., E-mail: faical.larachi@gch.ulaval.ca

    2016-11-30

    Highlights: • Experimental and DFT studies of hydroxamic acid adsorption on monazite and bastnäsite. • Highest bastnäsite and monazite floatability observed at pH 7–9. • First solvation layer of cerium hydroxides consisted of up to 10 water molecules. • Solvated Ce(OH){sub 2}{sup +} and Ce(OH){sup 2+} cations interact with up to 3 collector anions. • Interaction of zero-charge solvated Ce(OH){sub 3} involves up to 2 collector anions. - Abstract: Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH){sup 2+} and Ce(OH){sub 2}{sup +} and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA){sub x}(H{sub 2}O){sub y}]{sup 2−x} (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH){sub 2}(HHA){sub x}(H{sub 2}O){sub y}]{sup 1−x} (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.

  5. Reactions of oxygen and hydrogen with liquid sodium - a critical survey

    International Nuclear Information System (INIS)

    Ullmann, H.

    1982-01-01

    The fundamentals of solvation chemistry are presented with appropriate components formulated. Methods of investigation and kinetics of the reactions are described. The hydrogen equilibrium pressure and saturation solubilities are described. The chemical equilibrium between O and H in solution is presented with detailed tabulation of the saturation solutions of oxygen, hydrogen and hydroxide in liquid sodium. Agreements and differences with the literature are presented

  6. Comparison contemporary methods of regeneration sodium-cationic filters

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  7. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The determination of specific surface of sodium polyuranates

    International Nuclear Information System (INIS)

    Bilgin, B.; Atun, G.

    2002-01-01

    Three different sodium polyuranates were prepared by titration of uranyl nitrate with a sodium hydroxide solution labeled with 22 Na as the radiotracer. Polyuranates whose composition was *Na 2 O.7,5UO 3 .11H 2 O (sample A), *Na 2 O.4,3 UO 3 .4,7H 2 O (sample B), and *Na 2 O.2UO 3 .4H 2 O (sample C) were precipitated at pH 5.6, 8.5 and 11.2, respectively. The specific surface areas of these samples were determined by the BET method using methylene blue (MB) as the adsorbate. The sodium polyuranate surfaces were saturated by sequential adsorption of MB. The adsorption data gave an S-shaped isotherm and were fitted to the BET equation. The specific surface areas calculated from the BET isotherm decreased in order A > B > C. The isotope and ion exchange reactions between the sodium polyuranates and Li + , Na + , K + , Rb + , Cs + , Ca 2+ , Sr 2+ , and Ba 2+ ions were compared before and after MB coverage. The results showed that the isotope and ion exchange fractions decrease on the covered surfaces indicating particle diffusion mechanism dominated exchange reactions

  9. COMPOSITION OF MINERAL PHASES OF THE GHIDIRIM DIATOMITE

    Directory of Open Access Journals (Sweden)

    Vasile Rusu

    2007-06-01

    Full Text Available Studies of the mineralogical composition of diatomite from the Ghidirim location of RM, as well as of the extracted clay phase are presented. The mineral phase of the diatomite contains a number of clay minerals, like montmorillonite (in a mixture with insignificant quantities of slightly chloritized montmorillonite, illite and kaolinite. Diatomite contains also non-clay components as fine-dispersed quartz and amorphous material, the more probable sources of which are opal, amorphous alumosilicates, aluminum and iron hydroxides. The applied procedure for separation of clay fractions by sizing settling in liquid media proves to be very useful, enabling possibilities for more accurate identification of the clay constituents of diatomic material. Procedure allows to separate very clean clay fraction especially rich in montmorillonite, which can be utilized itself as mineral adsorbent for practical purposes.

  10. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    Science.gov (United States)

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. 21 CFR 73.2326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and specifications.The color additive chromium hydroxide green shall conform in identity and specifications to the...

  12. Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: A reaction modeling approach

    Science.gov (United States)

    Spycher, Nicolas F.; Issarangkun, Montarat; Stewart, Brandy D.; Sevinç Şengör, S.; Belding, Eileen; Ginn, Tim R.; Peyton, Brent M.; Sani, Rajesh K.

    2011-08-01

    One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO 2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO 2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO 2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO 2, and for this reason the relative rates of sulfide and UO 2 oxidation play a key role on whether or not UO 2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe +2 activity in solution and increasing the potential for both sulfide and UO 2 reoxidation. The greater (and unintuitive) UO 2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO 2 reoxidation through formation of uranyl carbonate aqueous complexes.

  13. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)

  14. Mechanisms of scale formation and carbon dioxide partial pressure influence. Part II. Application in the study of mineral waters of reference.

    Science.gov (United States)

    Gal, Jean-Yves; Fovet, Yannick; Gache, Nathalie

    2002-02-01

    In the first part, we have designed a new model of evolution for the calco-carbonic system which includes the hydrated forms of CaCO3: CaCO3 amorphous, CaCO3 x 6H2O (ikaite) and CaCO3 x H2O (monohydrate) (J. Eur. Hydr. 30 (1999) 47). According to this model, it is the precipitation of one or other of these hydrated forms which could be responsible for the breakdown of the metastable state. After this first step, the precipitates evolve to dehydrated solid forms. Through the elaboration of computer programs in which the CaCO3(0) (aq) ion pair formation was considered, this model was compared to experimental data obtained by the critical pH method applied to synthetic solutions. In the present article, the same method was applied for four French mineral waters, at 25 degrees C under study. Three samples formed a precipitation during the sodium hydroxide addition. For these three cases, this precipitation began for the CaCO3 H2O saturation. The added volume of sodium hydroxide was more than what was required for neutralizing free CO2 initially in solution. These results indicate that during a spontaneous scaling phenomenon, the pH rises at the same time by loss of the initial free CO2 and of the one produced by the hydrogen carbonate ions decomposition. Then we calculated, at various temperatures for the three studied scaling waters: CO2 partial pressures and loss of total carbon corresponding to the solubility products of CaCO3 hydrated forms. The results show that the partial pressure monitoring of the carbon dioxide is important in managing the behavior of scaling waters.

  15. Fracture resistance and histological findings of immature teeth treated with mineral trioxide aggregate

    DEFF Research Database (Denmark)

    Hatibovic-Kofman, S.; Raimundo, L.; Zheng, L.

    2008-01-01

    The objective of the present study was to test the hypothesis that the fracture strength of calcium hydroxide and mineral trioxide aggregate (MTA)-filled immature teeth decreased over time. Immature mandibular incisors from sheep were extracted and the pulps were extirpated using an apical approach...

  16. Effect of a calcium hydroxide-based root canal dressing on periapical repair in dogs: a histological study.

    Science.gov (United States)

    Leonardo, Mario R; Hernandez, Maria E F T; Silva, Léa A B; Tanomaru-Filho, Mário

    2006-11-01

    To compare the periapical repair of teeth with periapical lesion following root canal treatment by using a calcium hydroxide-based intracanal dressing for several time periods or filling in a single visit. After induction of periapical lesions in 4 dogs, the root canals were prepared using 5.25% sodium hypochlorite for irrigation, and animals were separated into 4 experimental groups; in group I, root canals were filled in a single session; in groups II, III, and IV, a calcium hydroxide-based dressing was kept in place for 15, 30, or 180 days, respectively. Root canals from groups I, II, and III were filled with gutta-percha cones and AH Plus sealer. After 180 days, animals were killed and histological sections were stained with hematoxylin-eosin to evaluate periapical repair. Periapical repair was better in groups II, III, and IV (intracanal dressing) compared with group I (single session; P session treatment.

  17. 21 CFR 73.1326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O...

  18. Cold trap dismantling and sodium removal at a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Anja; Petrick, Holger; Stutz, Uwe [WAK GmbH, Eggenstein-Leopoldshafen (Germany). Hauptabt. Dekontaminationsbetriebe Rueckbau Kompakte Natriumgekuehlte Kernreaktoranlage (KNK); Hosking, Paul [Nuclear Decommissioning Services Limited (NDSL), Sutherland, Dornoch (United Kingdom)

    2013-11-15

    The first German prototype Fast Breeder Nuclear Reactor (KNK) is currently being dismantled after being the only operating Fast Breeder-type reactor in Germany. As this reactor type used sodium as a coolant in its primary and secondary circuit, 7 cold traps containing various amounts of partially activated sodium needed to be disposed of as part of the dismantling. The resulting combined difficulties of radioactive contamination and high chemical reactivity were handled by treating the cold traps differently depending on their size and the amount of sodium contained inside. Six small cold traps were processed on-site by cutting them up into small parts using a band saw under a protective atmosphere. The sodium was then converted to sodium hydroxide by using water. The remaining large cold trap could not be handled in the same way due to its dimensions (2.9 m x 1.1 m) and the declared amount of sodium inside (1,700 kg). It was therefore manually dismantled inside a large box filled with a protective atmosphere, while the resulting pieces were packaged for later burning in a special facility. The experiences gained by KNK during this process may be advantageous for future dismantling projects in similar sodium-cooled reactors worldwide. (orig.)

  19. Sodium to sodium carbonate conversion process

    Science.gov (United States)

    Herrmann, Steven D.

    1997-01-01

    A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.

  20. SODIUM TITANATE NANOBELT AS A MICROPARTICLE TO INDUCE CLAY FLOCCULATION WITH CPAM

    Directory of Open Access Journals (Sweden)

    Wenxia Liu

    2010-07-01

    Full Text Available Sodium titanate nanobelt was synthesized by treating titanium dioxide hydrothermally in concentrated sodium hydroxide solution. The product was characterized by SEM analysis and zeta potential measurement. It served as a microparticle to constitute a microparticle retention system with cationic polyacrylamide (CPAM, while the microparticle system was employed to induce the flocculation of kaolin clay. The flocculation behavior of kaolin clay in such a system was investigated by using a photometric dispersion analyzer connected with a dynamic drainage jar. It was found that the sodium titanate nanobelt carried negative charges and had a lower zeta potential at higher pH. It gave a large synergistic flocculation effect with CPAM at a very low dosage, and showed higher flocculation effect with CPAM under neutral and weak alkaline conditions. A suitably high shear level was helpful for the re-flocculation of clay by sodium titanate nanobelt. The clay flocculation induced by CPAM/titanate nanobelt system demonstrated high shear resistance and also generated dense flocs.

  1. Specificity of pyrometamorphic minerals of the ellestadite group

    Science.gov (United States)

    Zateeva, S. N.; Sokol, E. V.; Sharygin, V. V.

    2007-12-01

    Numerous rare and new mineral species are synthesized during the process of pyrometamorphism (Gross, 1977; Chesnokov et al., 1987; Chesnokov and Shcherbakova, 1991; Chesnokov, 1999), including silicooxides, chloride-, fluoride, and sulfate-silicates, carbonate-sulfides, chloride-oxides, etc. Having made sense of numerous findings of compounds of this type, Chesnokov (1999) set forth the concept of the crystallochemical transition at extreme temperatures attaining 1200-1450°C in pyrogenic systems. First of all, intertype transitions (oxygen-bearing-oxygen-free) and interclass transitions (chloride-silicate, carbonate-sulfide, chlorideoxide) are realized. The specificity of pyrometamorphic mineral assemblages consists in the abundance of silicates with additional anions (F-, Cl-, (CO3)2-) (Sokol et al., 2005). Minerals of the ellestadite group Ca10(SiO4)3 - x (SO4)3 - x (PO4)2 x (OH,F,Cl)2 are a spectacular example of these features. In the general case, they are silicate-sulfate-phosphate-hydroxide-chlorides-fluorides. The detailed description of these minerals based on the study of the original collection of pyrometamorphic minerals is presented in this paper.

  2. Direct determination of calcium, sodium and potassium in fermented milk products

    Directory of Open Access Journals (Sweden)

    Kravić Snežana Ž.

    2012-01-01

    Full Text Available The aim of this study was the investigation of the possibilities of direct determination of calcium, sodium and potassium in the commercial and kombucha-based fermented milk products by flame photometry. Two procedures were used for sample preparation: simple dilution with water (direct method and extraction with mineral acid. Calcium, sodium and potassium levels determined after mentioned sample preparation methods were compared. The results showed that the differences between the values obtained for the different sample treatment were within the experimental error at the 95% confidence level. Compared to the method based on extraction with mineral acid, the direct method is efficient, faster, simpler, cheaper, and operates according to the principles of Green Chemistry. Consequently, the proposed method for the direct determination of calcium, sodium and potassium could be applied for the rapid routine analysis of the mineral content in the fermented dairy products. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  3. Preparation of crystalline sodium norcarnitine: an easily handled precursor for the preparation of carnitine analogs and radiolabeled carnitine.

    Science.gov (United States)

    Colucci, W J; Turnbull, S P; Gandour, R D

    1987-05-01

    A procedure by which crystalline sodium norcarnitine can be prepared in large quantities and high yields has been developed. Carnitine is selectively demethylated by thiophenoxide ion in N,N-dimethylethanolamine. The reactive thiophenoxide ion is generated in situ by addition of thiophenol to this basic reaction solvent. Hence, sodium thiophenoxide, which has been used in similar applications, but is difficult to prepare, can be avoided. Accordingly, reaction of (R,S)-carnitine followed by aqueous azeotropic distillation of byproducts as well as excess starting materials and then by neutralization with sodium hydroxide gave sodium norcarnitine in 89% yield. (R)-Carnitine gave 91% yield of (R)-norcarnitine zwitterion before neutralization. A method for the facile preparation of radiolabeled (R)-carnitine is also described. Thus, methylation of sodium norcarnitine with methyl iodide in methanolic acetone produced carnitine, which precipitated, and sodium iodide, which was soluble.

  4. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    International Nuclear Information System (INIS)

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO 2 from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide [Ba(OH) 2 ] or calcium hydroxide [Ca(OH) 2 ]. Such a process would be applied to scrub 14 CO 2 from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH) 2 slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH) 2 . Overall reaction mechanisms are postulated

  5. Measurement of the Residual Sodium and Reaction Compounds on a Cleaned Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun Nam

    2006-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either a intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, a chemical, physical, or mechanical damage, and external effects. It is important to determine the levels of residual sodium that can be accepted so that those deleterious effects will not negate the reuse of the component. The purpose of this paper is to measure the amount of the sodium and the reaction compounds remaining on a component after a cleaning and prepare acceptable criteria for the reuse of components which have been subjected to a sodium cleaning

  6. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and pH control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg L (as acetic acid), with acetic (28 %), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L d (0.84m{sup 3}m{sup 3} d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3 % in the total solids, chemical oxygen demand and total Kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%). (author)

  7. Wood quality changes caused by mineral fertilization

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Sette Jr

    2014-06-01

    Full Text Available The diverse and important use of wood from fast growth eucalyptus plantations requires the analysis of the effect of mineral fertilizers on wood quality. The objective of this study was to evaluate the anatomical characteristics and wood density from Eucalyptus grandis trees (3 m x 2 m spacing fertilized with potassium and sodium (at planting, 6 th and 12th month. Fifteen (15 6 years old eucalyptus trees were selected (5 trees/treatment, cut and wood samples at DBH (1,3 m were taken for anatomical characteristics (fiber and vessels and wood density analysis. Results showed that eucalyptus trees treated with mineral fertilizers did not show significant alteration in average wood density, with radial profile model common to all three treatments, characterized by a values increase in the region next to the pith, toward to bark. Mineral fertilization influenced wood anatomical characteristics: treatment with sodium was characterized by thinner walls and lumen larger diameter; in treatment with potassium, larger vessels were detected.

  8. Internal reflection spectroscopic analysis of sulphide mineral surfaces

    International Nuclear Information System (INIS)

    Kaoma, J.

    1989-01-01

    To establish the reason for flotation of sulfide minerals in the absence of any conventional collector, internal reflection spectroscopic analysis (IRS) of their surfaces was conducted. sulfur, sulfates, thiosulfates, and hydrocarbonates have been detected on the surface of as-grand sulfide minerals. On sodium sulfide-treated surfaces, both sulfur and polysulfide have also been found to be present. From these findings, the flotation of sulfide minerals without collectors is discussed. (author). 26 refs

  9. Origin and nature of the aluminium phosphate-sulfate minerals (APS) associated with uranium mineralization in triassic red-beds (Iberian Range, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Marfil, R.; Iglesia, A. la; Estupinan, J.

    2013-10-01

    This study focuses on the mineralogical and chemical study of an Aluminium-phosphate-sulphate (APS) mineralization that occurs in a classic sequence from the Triassic (Buntsandstein) of the Iberian Range. The deposit is constituted by sandstones, mud stones, and conglomerates with arenaceous matrix, which were deposited in fluvial to shallow-marine environments. In addition to APS minerals, the following diagenetic minerals are present in the classic sequence: quartz, K-feldspar, kaolinite group minerals, illite, Fe-oxides-hydroxides, carbonate-sulphate cement-replacements and secondary uraniferous minerals. APS minerals were identified and characterized by optical microscopy, X-ray diffraction, scanning electron microscopy, and electron microprobe. Microcrystalline APS crystals occur replacing uraniferous minerals, associated with kaolinite, mica and filling pores, in distal fluvial-to-tidal arkoses-subarkoses. Given their Ca, Sr, and Ba contents, the APS minerals can be defined as a solid solution of crandallite- goyacite-gorceixite (0.53 Ca, 0.46 Sr and 0.01 Ba). The chemical composition, low LREE concentration and Sr > S suggest that the APS mineral were originated during the supergene alteration of the Buntsandstein sandstones due to the presence of the mineralizing fluids which causes the development of Ubearing sandstones in a distal alteration area precipitating from partially dissolved and altered detrital minerals. Besides, the occurrence of dickite associated with APS minerals indicates they were precipitated at diagenetic temperatures (higher than 80 degree centigrade), related to the uplifting occurred during the late Cretaceous post-rift thermal stage.(Author)

  10. Origin and nature of the aluminium phosphate-sulfate minerals (APS) associated with uranium mineralization in triassic red-beds (Iberian Range, Spain)

    International Nuclear Information System (INIS)

    Marfil, R.; Iglesia, A. la; Estupinan, J.

    2013-01-01

    This study focuses on the mineralogical and chemical study of an Aluminium-phosphate-sulphate (APS) mineralization that occurs in a classic sequence from the Triassic (Buntsandstein) of the Iberian Range. The deposit is constituted by sandstones, mud stones, and conglomerates with arenaceous matrix, which were deposited in fluvial to shallow-marine environments. In addition to APS minerals, the following diagenetic minerals are present in the classic sequence: quartz, K-feldspar, kaolinite group minerals, illite, Fe-oxides-hydroxides, carbonate-sulphate cement-replacements and secondary uraniferous minerals. APS minerals were identified and characterized by optical microscopy, X-ray diffraction, scanning electron microscopy, and electron microprobe. Microcrystalline APS crystals occur replacing uraniferous minerals, associated with kaolinite, mica and filling pores, in distal fluvial-to-tidal arkoses-subarkoses. Given their Ca, Sr, and Ba contents, the APS minerals can be defined as a solid solution of crandallite- goyacite-gorceixite (0.53 Ca, 0.46 Sr and 0.01 Ba). The chemical composition, low LREE concentration and Sr > S suggest that the APS mineral were originated during the supergene alteration of the Buntsandstein sandstones due to the presence of the mineralizing fluids which causes the development of Ubearing sandstones in a distal alteration area precipitating from partially dissolved and altered detrital minerals. Besides, the occurrence of dickite associated with APS minerals indicates they were precipitated at diagenetic temperatures (higher than 80 degree centigrade), related to the uplifting occurred during the late Cretaceous post-rift thermal stage.(Author)

  11. Enthalpies of Dissolution of Crystalline Naproxen Sodium in Water and Potassium Hydroxide Aqueous Solutions at 298 K

    Science.gov (United States)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Bychkova, S. A.; Volkov, A. V.; Skvortsov, I. A.

    2018-03-01

    The enthalpies of dissolution of crystalline naproxen sodium in water and aqueous solutions of KOH at 298.15 K are measured by direct calorimetric means in a wide range of concentrations. The acid-base properties of naproxen sodium at ionic strength I 0 and I = 0.1 (KNO3) and a temperature of 298.15 K are studied by spectrophotometric means. The concentration and thermodynamic dissociation constants are determined. The standard enthalpies of the formation of naproxen sodium and the products of its dissociation in aqueous solution are calculated.

  12. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  13. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  14. Preparation of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    International Nuclear Information System (INIS)

    Li Dianqing; Tuo Zhenjun; Evans, David G.; Duan Xue

    2006-01-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3 -LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability. - Graphical abstract: Intercalation of an organic UV absorber in a layered double hydroxide host leads to an enhancement of its photo- and thermal stability

  15. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...

  16. The Use of Backscattered Electron Imaging and Transmission Electron Microscopy to Assess Bone Architecture and Mineral Loci: Effect of Intermittent Slow-Release Sodium Fluoride Therapy

    Science.gov (United States)

    Zerwekh, Joseph E.; Bellotto, Dennis; Prostak, Kenneth S.; Hagler, Herbert K.; Pak, Charles Y. C.

    1996-04-01

    Backscattered electron imaging (BEI) and transmission electron microscopy (TEM) were used to examine the effects of treatment with intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate on bone architecture and crystallinity. Examination was performed in nondecalcified biopsies obtained from patients following up to four years of therapy (placebo or SRNaF) and compared to pretreatment biopsies from each patient, as well as to bone from young, normal subjects. BEI images disclosed increased areas of recent bone formation following fluoride administration. There was no evidence of a mineralization defect in any biopsy and both cortical and trabecular architecture remained normal. TEM analysis demonstrated intrafibrillar platelike crystals and extrafibrillar needlelike crystals for both the pre- and post-treatment biopsies as well as for the bone from young normal subjects. There was no evidence of increased crystal size or of an increase in extrafibrillar mineral deposition. These observations suggest that intermittent SRNaF and continuous calcium therapy exerts an anabolic action on the skeleton not accompanied by a mineralization defect or an alteration of bone mineral deposition. The use of BEI and TEM holds promise for the study of the pathophysiology and treatment of metabolic bone diseases.

  17. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    Directory of Open Access Journals (Sweden)

    Sergey Perevoznikov

    2016-10-01

    Full Text Available In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas–liquid flow model (sodium–hydrogen–sodium hydroxide. Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  18. Precipitation of the rare earth double sodium and rare earths from the sulfuric liquor and the conversion into rare earth hydroxides through meta ethic reaction; Precipitacao do sulfato duplo de terras raras e sodio a partir de licor sulfurico e sua conversao em hidroxido de terras raras mediante reacao metatetica

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Renata D.; Oliveira, Ester F.; Brito, Walter de; Morais, Carlos A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: rda@cdtn.br; esterfo@cdtn.br; britow@cdtn.br; cmorais@cdtn.br

    2007-07-01

    This work presents the purification study of the rare earths through precipitation of rare earth and sodium (Na TR (SO{sub 4}){sub 2}. x H{sub 2}O)) double sulfate and his conversion to rare earths hydroxide TR(OH){sub 3} by meta ethic reaction through the addition of sodium hydroxide solution to the solid double sulfate. The study used the sulfuric liquor as rare earth sample, generated in the chemical processing of the monazite with sulfuric acid by the Industrias Nucleares do Brasil - INB, Brazil, after the thorium and uranium extraction. The work investigated the influence of the main variables involved in the precipitation of Na TR(SO{sub 4}){sub 2}.xH{sub 2}O and in the conversion for the TR(OH){sub 3}, as follows: type and excess of the precipitation agent, temperature and time reaction. The obtained solid composites were characterized by X-ray diffraction, infrared and chemical analysis. The double sulfate diffractogram indicated the Na TR(SO{sub 4}){sub 2} mono-hydrated. The characterization of the metatese products has shown that, for obtaining the complete conversion of NaTR(SO{sub 4}){sub 2}.H{sub 2}O into TR(OH){sub 3}, the reaction must be hot processed ({approx}70 deg C) and with small excess of Na OH ({<=} 5 percent). (author)

  19. Colorimetric determination of selenium in mineral premixes .

    Science.gov (United States)

    Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G

    1997-01-01

    A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%.

  20. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    International Nuclear Information System (INIS)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando

    2016-01-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO 4 2− /g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO 4 2− /g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  1. Effect of relative humidity on growth of sodium oxide aerosols

    International Nuclear Information System (INIS)

    Sundarajan, A.R.; Mitragotri, D.S.; Mukunda Rao, S.R.

    1982-01-01

    Behavior of aerosol resulting from sodium fires in a closed vessel is investigated and the changes in the particle size distribution of the aerosol due to coagulation and humidity have been studied. The initial mass concentration is in the range of 80 -- 500 mg/m 3 and the relative humidity is varied between 50 to 98%. The initial size of the released aerosol is found to be 0.9 μm. Equilibrium diameters of particles growing in humid air have been computed for various humidity levels using water activity of sodium hydroxide. Both theoretical and experimental results have yielded growth ratios of about 3 at about 95% relative humidity. It is recommended that the computer codes dealing with aerosol coagulation behavior in reactor containment should include an appropriate humidity-growth function. (author)

  2. Assessing the nutritional potential of sodium in combination with ...

    African Journals Online (AJOL)

    The role of sodium (Na) in combination with potassium (K) in the growth and yield of tomato (Lycopersicon esculentum L.) was studied in soil culture. Sodium was applied at 0, 5, 10, 20 mg / kg soil as NaCl and K at 0, 20, 40, 80 mg / kg soil as KCl. Records of components of growth and mineral nutrient uptake and ...

  3. Cu sbnd Al sbnd Fe layered double hydroxides with CO32- and anionic surfactants with different alkyl chains in the interlayer

    Science.gov (United States)

    Trujillano, Raquel; Holgado, María Jesús; González, José Luis; Rives, Vicente

    2005-08-01

    Layered double hydroxides (LDHs), with the hydrotalcite-like structure containing Cu(II), Al(III) and Fe(III) in the layers, and different alkyl sulfonates in the interlayer, have been prepared and characterized by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Pure crystalline phases have been obtained in all cases. Upon heating, combustion of the organic chain takes place at lower temperature than the corresponding sodium salts.

  4. Layered double hydroxide-enhanced luminescence in a Fenton-like system for selective sensing of cobalt in Hela cells

    Science.gov (United States)

    Yu, Mei; Yuan, Zhiqin; Lu, Chao

    2017-09-01

    This work presented a facile and eco-friendly method for the determination of cobalt ions (Co(II)) in living cells based on layered double hydroxides (Mg-Al CO3-LDHs) enhanced chemiluminescence (CL) emission of a Co(II)-hydrogen peroxide-sodium hydroxide system. The enhanced CL emission was attributed to the large specific surface area of Mg-Al CO3-LDHs, which facilitates the generation of an excited-stated intermediate. The proposed method displayed high selectivity toward Co(II) over other metal ions. Under the optimal conditions, the increased CL intensity showed a linear response versus Co(II) concentration in the range of 5.0-1000 nM with a detection limit of 3.7 nM (S/N = 3). The relative standard deviation for nine repeated measurements of 100 nM Co(II) was 3.2%. Furthermore, the proposed method was successfully applied to detect Co(II) in living cell samples, and the results were agreed with those obtained by the standard ICP-MS method.

  5. Purifying oils

    Energy Technology Data Exchange (ETDEWEB)

    1930-04-15

    Gasoline, lamp oils, and lubricating or other mineral or shale oils are refined by contacting the vapor with a hot aqueous solution of salts of zinc, cadmium, or mercury, or mixtures thereof which may contain 0-5-3-0 percent of oxide or hydroxide in solution or suspension. Chlorides, bromides, iodides, sulfates, nitrates, and sulfonates of benzol, toluol, xylol, and petroleum are specified. Washing with a solution of sodium or potassium hydroxide or carbonate of calcium hydroxide may follow. The oil may first be purified by sulfuric acid or other known agent, or afterwards caustic alkali and sulfuric acid. The Specification as open to inspection under Sect. 91 (3) (a) describes also the use of salts of copper, iron, chromium, manganese, aluminum, nickel, or cobalt, with or without their oxides or hydroxides. This subject-matter does not appear in the Specification as accepted.

  6. Nucleation and growth kinetics of zirconium hydroxide by precipitation with ammonium hydroxide

    International Nuclear Information System (INIS)

    Carleson, T.E.; Chipman, N.A.

    1987-01-01

    The results of a study of the nucleation and growth kinetics of the precipitation of zirconium hydroxide from the reaction of hexafluorozirconate solution with ammonium hydroxide are reported. The McCabe linear growth rate model was used to correlate the results. The growth rate decreased with residence time and supersaturation for studies with 7 residence times (3.5 - 90 minutes and two supersaturation ratios (0.03 - 0.04, and 0.4). The nucleation rate increased with residence time and supersaturation. A negative kinetic order of nucleation was observed that may be due to the inhibition of particle growth by adsorption of reacting species on the crystal surfaces

  7. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    2016-11-15

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  8. Salivary mineral composition in patients with oral cancer.

    Science.gov (United States)

    Dziewulska, Anna; Janiszewska-Olszowska, Joanna; Bachanek, Teresa; Grocholewicz, Katarzyna

    2013-01-01

    To analyse the mineral content of saliva in patients with oral cancer in order to identify possible markers that might aid the diagnosis of oral cancer. The study group consisted of 34 patients, aged 35-72 years with a diagnosis of oral cancer, including seven women and 27 men, before the start of treatment. Samples of unstimulated saliva were collected in plastic containers. The concentrations of sodium and potassium were assessed using ion selective electrodes, and the concentrations of calcium, magnesium, iron and phosphorus were assessed using colorimetric methods. Statistically significant differences between the study and control groups were found only for the concentration of sodium--higher concentrations were found in the study group. When comparing different cancer localisations, the highest levels of salivary sodium were found in cases of cancer of the floor of the oral cavity, and the lowest levels in tongue or parotid gland cancer. The highest calcium levels were found in cancer of the floor of the oral cavity, and the lowest levels in tongue cancer. The highest levels of magnesium were found in cancer of the floor of the oral cavity, and the lowest in tongue cancer. As regards the different histological types, higher sodium and calcium levels were found in squamous cell carcinomas than in other types. Salivary mineral content in patients with oral squamous cell carcinoma is indicative of oral dehydration; however, we found no evidence of any salivary mineral markers that would be useful for the diagnosis of oral cancer.

  9. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    Science.gov (United States)

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  10. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  11. Evaluation of Nutritive Value, Phenolic Compounds and in vitro Digestion Charactristics of Barberry (Berberis Vulgaris Foliage

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Modaresi

    2016-11-01

    fiber, ether extract, total phenolic compounds, total tannins, condensed tannins, hydrolysable tannins and some mineral content (Na, Cl, Ca, K and P. The in vitro gas production method was used for estimation the DM fermentation parameters. Results and Discussion The chemical composition of foliage barberry is almost the same with the few studies conducted in this regard. Minor differences between the results of this study and the other results showed that the colleagues can be due to differences in climate and environmental conditions and physiological characteristics of the plant's genetics. The results showed that addition of urea, Sodium hydroxide and Calcium hydroxide led to a significant reduction of total phenolic compounds, total tannins and hydrolysable tannins compared with the control sample. The in vitro gas production and fermentative parameters were improved flowing urea, sodium hydroxide and calcium hydroxide treatment. The results showed that treatment with urea was more effective in reduction of tannins and improvement the fermentative parameters of branches and leaves of Barberry compared to other treatments. Conclusion Based on our results and high levels of phenolic compounds in the waste foliage barberry sprayed with a solution of 5% (based on dry matter of urea, sodium hydroxide and calcium hydroxide significantly reduced the amount of total phenolic compounds, tannins and hydrolysable tannin in the leaves of Berber is vulgaris lesions, but polyethylene glycol had no significant effect. On the contrary condensed tannin conditions and the maximum reduction in the concentration of condensed tannins were observed in the group had been sprayed with polyethylene glycol. The amount of gas produced in laboratory conditions, parameters of rumen fermentation and feed efficiency in experimental treatments with urea, sodium hydroxide and calcium hydroxide recovered.

  12. Mineral sources and transport pathways for arsenic release in a coastal watershed, USA

    Science.gov (United States)

    Foley, Nora K.; Ayuso, Robert A.

    2008-01-01

    reduction) of As-bearing secondary As and Fe hydroxide and sulphate minerals, carbonation and/or oxidation of As-sulphide minerals, and desorption of As from Fe-hydroxide mineral surfaces are all thought to be involved. All of these processes contribute to the occurrence of As in groundwaters in coastal Maine, as a result of variability in composition and in stability of the As source minerals. Arsenic contents of soils and groundwater thus reflect the predominant influence and integration of a spectrum of primary mineral reservoirs (instead of single or unique mineral reservoirs). Cycling of As through metasedimentary bedrock aquifers may therefore depend on consecutive stages of carbonation, oxidation and reductive dissolution of primary and secondary As host minerals.

  13. Silicic acid competes for dimethylarsinic acid (DMA) immobilization by the iron hydroxide plaque mineral goethite.

    Science.gov (United States)

    Kersten, Michael; Daus, Birgit

    2015-03-01

    A surface complexation modeling approach was used to extend the knowledge about processes that affect the availability of dimethylarsinic acid (DMA) in the soil rhizosphere in presence of a strong sorbent, e.g., Fe plaques on rice roots. Published spectroscopic and molecular modeling information suggest for the organoarsenical agent to form bidentate-binuclear inner-sphere surface complexes with Fe hydroxides similar to the inorganic As oxyanions. However, since also the ubiquitous silicic acid oxyanion form the same bidentate binuclear surface complexes, our hypothesis was that it may have an effect on the adsorption of DMA by Fe hydroxides in soil. Our experimental batch equilibrium data show that DMA is strongly adsorbed in the acidic pH range, with a steep adsorption edge in the circumneutral pH region between the DMA acidity constant (pKa=6.3) and the point of zero charge value of the goethite adsorbent (pHpzc=8.6). A 1-pK CD-MUSIC surface complexation model was chosen to fit the experimental adsorption vs. pH data. The same was done for silicic acid batch equilibrium data with our goethite adsorbent. Both model parameters for individual DMA and silicic acid adsorption were then merged into one CD-MUSIC model to predict the binary DMA+Si adsorption behavior. Silicic acid (500 μM) was thus predicted by the model to strongly compete for DMA with up to 60% mobilization of the latter at a pH6. This model result could be verified subsequently by experimental batch equilibrium data with zero adjustable parameters. The thus quantified antagonistic relation between DMA and silicic acid is discussed as one of factors to explain the increase of the DMA proportion in rice grains as observed upon silica fertilization of rice fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Layered zinc hydroxide salts: Delamination, preferred orientation of hydroxide lamellae, and formation of ZnO nanodiscs

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Pleštil, Josef; Bezdička, Petr; Janda, Pavel; Klementová, Mariana; Lang, Kamil

    2011-01-01

    Roč. 360, č. 2 (2011), s. 532-539 ISSN 0021-9797 R&D Projects: GA MŠk ME09058; GA ČR GAP207/10/1447 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505; CEZ:AV0Z40400503 Keywords : layered zinc hydroxide * delamination * exfoliation * hydroxide layer * ZnO Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011

  15. A study to evaluate therapeutic properties of minerals of manghopir hot spring, karachi

    International Nuclear Information System (INIS)

    Javed, A.; Iqbal, J.; Khan, F.A.; Siddiqui, I.

    2009-01-01

    European balneologists have extensively studied the therapeutic value of mineral water. Mineral springs with different mineral contents are recommended for various therapeutic uses. People have been using geothermal water for bathing and good health for many thousands of years A mineral hot spring has greater than 1000 mg/L (ppm) of naturally dissolved solids. Hot mineral spring water contains elements like calcium, magnesium, sodium, potassium as sulphates, bi- carbonates and chlorides, which are used externally to cure many diseases. Manghopir spring contain 38-84 mg/L calcium, 29-56 mg/L magnesium, 388-555 mg/L sodium, 411-599 mg/L chloride, 186-442 mg/L sulphate, 10-25 mg/L potassium, and 1509-2188 mg/L total dissolved solids while the pH was in the range of 7.2-7.8. The temperature of Manghopir Euthermal hot spring remains constant ranging between 40 to 47 degree C. (author)

  16. Polysulfide intercalated layered double hydroxides for metal capture applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  17. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    International Nuclear Information System (INIS)

    Kovtun, Maxim; Kearsley, Elsabe P.; Shekhovtsova, Julia

    2015-01-01

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator

  18. Iron oxi-hydroxides characterization and associated elements (S, Se, As, Mo, V, Zr) in the redox environments favorable for uranium deposits

    International Nuclear Information System (INIS)

    Pons, Tony

    2015-01-01

    This work presents a multi-scale and a multi-technical study for the characterization of iron oxi-hydroxides in three uranium-type deposits and host rock. The choice of sites has focused on a roll front deposit: Zoovch Ovoo in a Cretaceous basin of East Gobi (Mongolia); a tectonic-lithological type: Akola/Ebba in Tim Mersoi basin (Niger) and a Proterozoic unconformity type: Kiggavik in Thelon basin (Canada). A new approach has been implemented to characterize the iron oxi-hydroxides on macroscopic samples: field infrared spectroscopy using the ASD TerraSpec spectrometer. From the original indexes calculated on the spectra, it was possible both to characterize the iron oxi-hydroxides; only hematite and goethite were identified in the different parts of oxidized uranium fronts, and visualize the alteration zonation along the redox front. In addition, the visible part of spectrum was used to quantify the color of samples through the IHS system parameters (Intensity - Hue - Saturation) and the Munsell system. The color setting of the study identified a specific hue for mineralized samples studied: a mixture of yellow and red (2.5 to 10 Yr in Munsell notation). At the crystals scale, the iron-hydroxides were characterized by μ-Raman spectroscopy. The study highlighted a difference in crystallinity of hematite crystals in different fields. From a morphological point of view, the crystals of goethite in the Zoovch Ovoo deposit, is only authigenic iron oxi-hydroxides described in this uranium front, are twinned in the form of six-pointed star, reflecting a low crystallization temperature, compared to Niger and Kiggavik deposits. This crystallization is mainly controlled by the availability of Fe(III) ions in the fluid, released by pyrite dissolution in an oxidizing environment and pH. From a chemical point of view, iron oxi-hydroxides record the fluid passage owing their uranium content. Secondly, the composition in trace elements marks the type of deposit, for example

  19. Comparison Of Mineral Content Of Some Ripe And Unripe Fruits In ...

    African Journals Online (AJOL)

    The mineral contents of ripe and unripe banana (Musa sapientum), avocado pear (Pearsea americana), pineapple (Ananas cosmosus) and soursop (Anona muricata), were determined to ascertain the influence of ripening on the localization of minerals in these fruits. High levels of sodium and potassium were obtained in ...

  20. Exploring the potential of phyllosilicate minerals as potassium fertilizers using sodium tetraphenylboron and intensive cropping with perennial ryegrass

    Science.gov (United States)

    Li, Ting; Wang, Huoyan; Wang, Jing; Zhou, Zijun; Zhou, Jianmin

    2015-01-01

    In response to addressing potassium (K) deficiency in soil and decreasing agricultural production costs, the potential of K-bearing phyllosilicate minerals that can be directly used as an alternative K source has been investigated using sodium tetraphenylboron (NaTPB) extraction and an intensive cropping experiment. The results showed that the critical value of K-release rate and leaf K concentration was 3.30 g kg−1 h−1 and 30.64 g (kg dry matter)−1, respectively under the experimental conditions. According to this critical value, the maximum amount of released K that could be utilized by a plant with no K deficiency symptoms was from biotite (27.80 g kg−1) and vermiculite (5.58 g kg−1), followed by illite, smectite and muscovite with 2.76, 0.88 and 0.49 g kg−1, respectively. Ryegrass grown on phlogopite showed K deficiency symptoms during the overall growth period. It is concluded that biotite and vermiculite can be directly applied as a promising and sustainable alternative to the use of classical K fertilizers, illite can be utilized in combination with soluble K fertilizers, whereas muscovite, phlogopite and smectite may not be suitable for plant growth. Further field experiments are needed to assess the use of these phyllosilicate minerals as sources of K fertilizer. PMID:25782771

  1. Characterization of Chemically-Induced Bacterial Ghosts (BGs Using Sodium Hydroxide-Induced Vibrio parahaemolyticus Ghosts (VPGs

    Directory of Open Access Journals (Sweden)

    Hyun Jung Park

    2016-11-01

    Full Text Available Acellular bacterial ghosts (BGs are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH, acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 106 CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS, anti-inflammatory cytokine (IL-10, and dual activities (IL-6 in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning

  2. Agonistic and Antagonistic Interactions between Chlorhexidine and Other Endodontic Agents: A Critical Review.

    Science.gov (United States)

    Mohammadi, Zahed; Giardino, Luciano; Palazzi, Flavio; Asgary, Saeed

    2015-01-01

    Root canal irrigants play a significant role in elimination of the microorganisms, tissue remnants, and removal of the debris and smear layer. No single solution is able to fulfill all these actions completely; therefore, a combination of irrigants may be required. The aim of this investigation was to review the agonistic and antagonistic interactions between chlorhexidine (CHX) and other irrigants and medicaments. An English-limited Medline search was performed for articles published from 2002 to 2014. The searched keywords included: chlorhexidine AND sodium hypochlorite/ethylenediaminetetraacetic acid/calcium hydroxide/mineral trioxide aggregate. Subsequently, a hand search was carried out on the references of result articles to find more matching papers. Findings showed that the combination of CHX and sodium hypochlorite (NaOCl) causes color changes and the formation of a neutral and insoluble precipitate; CHX forms a salt with ethylenediaminetetraacetic acid (EDTA). In addition, it has been demonstrated that the alkalinity of calcium hydroxide (CH) remained unchanged after mixing with CHX. Furthermore, mixing CHX with CH may enhance its antimicrobial activity; also mixing mineral trioxide aggregate (MTA) powder with CHX increases its antimicrobial activity but this may negatively affect its mechanical properties.

  3. Mineral constraints on arctic caribou (Rangifer tarandus): a spatial and phenological perspective

    Science.gov (United States)

    Oster, K. W.; Barboza, P.S.; Gustine, David D.; Joly, Kyle; Shively, R. D.

    2018-01-01

    Arctic caribou (Rangifer tarandus) have the longest terrestrial migration of any ungulate but little is known about the spatial and seasonal variation of minerals in summer forages and the potential impacts of mineral nutrition on the foraging behavior and nutritional condition of arctic caribou. We investigated the phenology, availability, and mechanistic relationships of calcium, phosphorus, magnesium, sodium, potassium, iron, manganese, copper, and zinc in three species of woody browse, three species of graminoids, and one forb preferred by caribou over two transects bisecting the ranges of the Central Arctic (CAH) and Western Arctic (WAH) caribou herds in Alaska. Transects traversed three ecoregions (Coastal Plain, Arctic Foothills and Brooks Range) along known migration paths in the summer ranges of both herds. Concentrations of mineral in forages were compared to estimated dietary requirements of lactating female caribou. Spatial distribution of the abundance of minerals in caribou forage was associated with interactions of soil pH and mineral content, while temporal variation was related to plant maturity, and thus nitrogen and fiber content of forages. Concentrations of sodium were below caribou requirements in all forage species for most of the summer and adequate only on the Coastal Plain during the second half of summer. Phosphorus declined in plants from emergence to senescence and was below requirements in all forages by mid‐summer, while concentrations of copper declined to marginal concentrations at plant senescence. Interactions of sodium with potassium, calcium with phosphorus, and copper with zinc in forages likely exacerbate the constraints of low concentrations sodium, phosphorus, and copper. Forages on the WAH contained significantly more phosphorus and copper than forages collected on the CAH transect. We suspect that migrations of caribou to the Arctic Coastal Plain may allow parturient females to replenish sodium stores depleted by

  4. Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate

    Science.gov (United States)

    Li, Lixia; Hao, Haiqing; Yuan, Zhitao; Liu, Jiongtian

    2017-10-01

    Models of sodium oleate adsorption on siderite, hematite and quartz were investigated by molecular dynamic simulation, respectively. Surface energy was calculated to confirm the cleavage plan of hematite and quartz. Both natural cleavage plane of siderite and calculated plane were used to investigate the flotation of the three minerals. Based on the molecular simulation in solution with water as medium, adsorption quantity and interaction capability of oleate ions on the three minerals indicated that siderite could be collected efficiently by sodium oleate at neutral pH. Results of flotation experiments were further demonstrated by analysis of relative concentration of carbon atoms and oxygen atoms.

  5. Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.

    Science.gov (United States)

    Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T

    2014-05-01

    Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.

  6. Iodine mineral waters

    Directory of Open Access Journals (Sweden)

    Iluta Alexandru

    2011-11-01

    Full Text Available Iodine mineral waters are found especially in sub-Carpathian region, also in regions with Salif deposits. Waters are currently used iodine in drinking cure for chaps and Basedow. Are also indicated in balneology. Iodine water containing at least 1 mg L, there is pure iodine is usually given the nature of other types of mineral waters further: sodium chlorinated water (Bazna (50-70 mg iodine / l, Baile Govora (50 - 70 mg / l, Bălţăteşti (4-5 mg / l, salted Monteoru (30 mg / l, mine water mixed alkaline chlorination, sulphate, which are indicated for crenoterapie (hypo or isotonic to the bathrooms Olăneşti or Călimăneşti-Căciulata.

  7. Influence of lithium and boron ions on calcium sulfo-aluminate cement hydration: application for the conditioning of boron ion exchange resins

    International Nuclear Information System (INIS)

    Dhoury, Melanie

    2015-01-01

    In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one. In this PhD study, the potential of calcium sulfo-aluminate cements (CSAC) to solidify/stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye-elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study. Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye-elimite is strongly slowed

  8. 21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.

    Science.gov (United States)

    2010-04-01

    ... (C9-C15) benzene-sulfonate. Sodium dioctyl sulfosuccinate. Sodium distearyl phosphate. Sodium lauryl sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols... hydroxide (soaps). Propanol (esters). Propylene glycol (esters). Propylene oxide (esters). Sodium hydroxide...

  9. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    International Nuclear Information System (INIS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 °C, while the highest exothermic event in ZHN was at 366 °C, and in the LDH it was at 276 °C. Highlights: ► Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. ► ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. ► NH 3 molecules can be intercalated into ZHC. ► The amino group of amino acids limits the intercalation by ion-exchange.

  10. Espresso beverages of pure origin coffee: mineral characterization, contribution for mineral intake and geographical discrimination.

    Science.gov (United States)

    Oliveira, Marta; Ramos, Sandra; Delerue-Matos, Cristina; Morais, Simone

    2015-06-15

    Espresso coffee beverages prepared from pure origin roasted ground coffees from the major world growing regions (Brazil, Ethiopia, Colombia, India, Mexico, Honduras, Guatemala, Papua New Guinea, Kenya, Cuba, Timor, Mussulo and China) were characterized and compared in terms of their mineral content. Regular consumption of one cup of espresso contributes to a daily mineral intake varying from 0.002% (sodium; Central America) to 8.73% (potassium; Asia). The mineral profiles of the espresso beverages revealed significant inter- and intra-continental differences. South American pure origin coffees are on average richer in the analyzed elements except for calcium, while samples from Central America have generally lower mineral amounts (except for manganese). Manganese displayed significant differences (pworld coffee producers were achieved by applying canonical discriminant analysis. Manganese and calcium were found to be the best chemical descriptors for origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The corrosion of steels by hot sodium melts

    International Nuclear Information System (INIS)

    Currie, R.

    1996-01-01

    Considerable research has been performed by AEA Technology on the corrosion of steels by hot sodium melts containing sodium hydroxide and sodium oxide. This research has principally been in support of understanding the effects of sodium-water reactions on the internals of fast reactor steam generators. The results however have relevance to sodium fires. It has been determined that the rate of corrosion of steels by melts of pure NaOH can be significantly increased by the addition of Na 2 O. In the case of a sodium-water reaction jet created by a leak of steam into sodium, the composition of the jet varies from 100% sodium through to 100% steam, with a full range of concentrations of NaOH and Na 2 O, depending on axial and radial position. The temperature in the jet also varies with position, ranging from bulk sodium temperature on one boundary to expanded steam temperature on the other boundary, with internal temperatures ranging up to 1300 deg. C, depending on the local pre-reaction mole ratio of steam to sodium. In the case of sodium-water reaction jets, it has been possible to develop a model which predicts the composition of the reaction jet and then, using the data generated on the corrosivity of sodium melts, predict the rate of corrosion of a steel target in the path of the jet. In the case of a spray sodium fire, the sodium will initially contain a concentration of NaOH and the combustion process will generate Na 2 O. If there is sufficient humidity, conversion of some of the Na 2 O to NaOH will also occur. There is therefore the potential for aggressive mixtures of NaOH and Na 2 O to exist on the surface of the sodium droplets. It is therefore possible that the rate of corrosion of steels in the path of the spray may be higher than expected on the basis of assuming that only Na and Na 2 O were present. In the case of a pool sodium fire, potentially corrosive mixtures of NaOH and Na 2 O may be formed at some locations on the surface. This could lead to

  12. Polymethyl methacrylate and polystyrene with layered double hydroxide nano composites: In situ synthesis, morphology and thermal properties; Nanocompositos de polimetacrilato de metila e poliestireno com hidroxido duplo lamelar: sintese in situ, morfologia e propriedades termicas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Over the past decade, polymer nanocomposites have attracted interest, both in industry and in academia, because they often exhibit remarkable improvement in their properties when compared with pure polymer or conventional micro and macro-composites using low levels of reinforcements. In this work polymethyl methacrylate and polystyrene reinforced with layered double hydroxide, which was intercalated with sodium dodecyl sulfate were synthesized by in situ bulk polymerization. The nanocomposites were characterized and compared by X-ray diffraction, thermogravimetric analysis and flammability test. The X-ray diffraction demonstrated that synthesized nanocomposites showed a high global dispersion of layered double hydroxide, suggesting exfoliated morphology. The result of thermogravimetric analysis and flammability test for synthesized polystyrene/ layered double hydroxide nanocomposite presented a significant improvement in thermal stability and flammability property when compared with pure polymer. (author)

  13. The content of minerals and trace elements in meals

    International Nuclear Information System (INIS)

    Bognar, A.; Schelenz, R.; Gruenewald, T.; Frahm, H.; Heine, K.; Wiechen, A.; Bundesanstalt fuer Milchforschung, Kiel

    1981-07-01

    Within the frame work of the research programme 'School Feeding', 68 menu items of different producers were investigated for the content of the minerals calcium, chlorine, iron, potassium, magnesium, sodium and phosphorus, and for the trace elements antimony, barium, bromine, cesium, chromium, hafnium, iridium,cobalt, copper, manganese, mercury, rubidium, scandium, selenium, silver, strontium, tin and zinc. For the analytical determination of the elements, instrumental neutron activation analysis and X-ray fluorometry were applied. The studies showed that a calculation of the content of minerals and trace elements in meals on the basis of recipes and nutritive tables for raw foods is not justified, expect for sodium and phosphorus, because incorrect results can be obtained for the majority of meals. (orig./MG) [de

  14. Uranium ore processing minimizing reagent losses

    International Nuclear Information System (INIS)

    Shaogiang, Chen; Moret, J.; Lyaudet, G.

    1989-01-01

    The uranium ore is treated by sodium carbonates and the solution is divided in two parts: a production solution which is decarbonated by an acid before uranium precipitation with sodium hydroxide and a recycling solution directly treated by sodium hydroxide for precipitation of about 85% of uranium and total transformation of sodium bicarbonate into sodium carbonate, the quantity of sodium hydroxide used on the recycling solution brings sodium ions required for attack of the ore [fr

  15. First Time Determination of Important Catalyst Sodium Methoxide Used in Biodiesel by Colorimetric Method.

    Science.gov (United States)

    Khan, Sabir; Tubino, Matthieu; Vila, Marta M D C; Bastos, Flavio A

    2018-03-06

    A simple and selective spectrophotometric method has been developed for the first time for the determination of sodium methoxide in methanol solution in the presence of sodium hydroxide. The developed method involves the formation of a pink species by the reaction between sodium methoxide and α-santonin. The pink compound formed shows absorbance maximum at 513 nm. N, N-Dimethylformamide and methanol were used as solvents, and the reaction was performed at different temperatures and 25 °C was selected for further experiments. The pink compound formed was dried and then was studied using FTIR and mass spectrometry. The calibration curve was constructed from 0.10 to 0.30% (m/v) sodium methoxide in methanol, and the standard deviation is 0.010%. Similarly, the relative standard deviations of 28%, 26%, and 24% solutions of sodium methoxide were obtained in the range of 0.4 to 1.9%. The correlation coefficient of the analytical curve r = 0.9997; the limit of detection, LOD, is ca. 1.1 × 10 -3 % w/w; and the limit of quantification, LOQ, is ca. 3.2 × 10 -3 % w/w. The results of analysis were validated statistically.

  16. Alkaline autoclave leaching of refractory uranium-thorium minerals

    International Nuclear Information System (INIS)

    Milani, S. A.; Sam, S.

    2011-01-01

    This paper deals with the study of an innovative method for processing the Oman placer ores by alkaline leaching in ball mill autoclaves, where grinding and leaching of the refractory minerals take place simultaneously. This was followed by the selective separation of thorium and uranium from lanthanides by autoclave leaching of the hydroxide cake with ammonium carbonate-bicarbonate solutions. The introduced method is based on the fact that thorium and uranium form soluble carbonate complexes with ammonium carbonate, while lanthanides form sparingly soluble double carbonates. It was found that a complete alkaline leaching of Oman placer ores (98.0 P ercent ) was attained at 150 and 175 d egree C within 2.5 and 2h, respectively. Oman placer ores leaching was intensified and accelerated in a ball mill autoclaves as a result of the grinding action of steel balls, removal of the hydroxide layer covering ores grains and the continuous contact of fresh ore grains with alkaline solution. The study of selective carbonate processing of hydroxide cake with ammonium carbonate-bicarbonate solutions on autoclave under pressure revealed that the complete thorium recovery (97.5 P ercent ) with uranium recovery (90.8 P ercent ) and their separation from the lanthanides were attained at 70-80 d egree C during l-2h. The extraction of lanthanides in carbonate solution was low and did not exceed 4.6 P ercent .

  17. Preparation of plate-shape nano-magnesium hydroxide from asbestos tailings

    International Nuclear Information System (INIS)

    Du Gaoxiang; Zheng Shuilin

    2009-01-01

    To prepare magnesium hydroxide is one of the effective methods to the comprehensive utilization of asbestos tailings. Nano-scale magnesium hydroxide was prepared and mechanisms of in-situ surface modification were characterized in the paper. Process conditions of preparation of magnesium hydroxide from purified hydrochloric acid leachate of asbestos tailings were optimized and in-situ surface modification of the product was carried out. Results showed that optimum process conditions for preparing nano-scale magnesium hydroxide were as follows: initial concentration of Mg 2+ in the leachate was 22.75g/L, precipitant was NaOH solution (mass concentration 20%), reaction temperature was 50 deg. C, and reaction time was 5min. The diameter and thickness of the plate nano-scale magnesium hydroxide powder prepared under optimal conditions were about 100 nm and 10 nm, respectively. However, particle agglomeration was obvious, the particle size increased to micron-grade. Dispersity of the magnesium hydroxide powder could be elevated by in-situ modification by silane FR-693, titanate YB-502 and polyethylene glycol and optimum dosages were 1.5%, 1.5% and 0.75% of the mass of magnesium hydroxide, respectively. All of the modifiers adsorbed chemically on surfaces of magnesium hydroxide particles, among which Si-O-Mg bonds formed among silane FR-693 and the particle surfaces and Ti-O-Mg among titanate YB-502 and the surfaces.

  18. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults

    Directory of Open Access Journals (Sweden)

    Laura Toxqui

    2016-06-01

    Full Text Available Water intake is essential for health maintenance and disease prevention. The effects of an intervention with two mineral waters, sodium-bicarbonated mineral water (BW or control mineral water low in mineral content (CW, on cardiometabolic risk biomarkers were studied. In a randomised-controlled crossover-trial, sixty-four moderately hypercholesterolaemic adults were randomly assigned to consume 1 L/day of either BW (sodium, 1 g/L; bicarbonate, 2 g/L or CW with the main meals for eight weeks, separated by an eight-week washout period. Blood lipids, lipid oxidation, glucose, insulin, aldosterone, urine pH, urinary electrolytes, blood pressure, body weight, fluid intake, energy, and nutrients from total diet and beverages were determined. Total cholesterol, LDL cholesterol, and glucose decreased (p < 0.01, oxidised LDL tended to decrease (p = 0.073, and apolipoprotein B increased during the intervention, without water type effect. Energy and carbohydrates from beverages decreased since soft drinks and fruit juice consumptions decreased throughout the trial. BW increased urinary pH (p = 0.006 and reduced calcium/creatinine excretion (p = 0.011. Urinary potassium/creatinine decreased with both waters. Consumption of 1 L/day of mineral water with the main meals reduces cardiometabolic risk biomarkers, likely to be attributed to a replacement of soft drinks by water. In addition, BW does not affect blood pressure and exerts a moderate alkalizing effect in the body.

  19. Uranium mineral - groundwater equilibrium at the Palmottu natural analogue study site, Finland

    International Nuclear Information System (INIS)

    Ahonen, L.; Ruskeeniemi, T.; Blomqvist, R.; Ervanne, H.; Jaakkola, T.

    1993-01-01

    The redox-potential, pH, chemical composition of fracture waters, and uraninite alteration associated with the Palmottu uranium mineralization (a natural analogue study site for radioactive waste disposal in southwestern Finland), have been studied. The data have been interpreted by means of thermodynamic calculations. The results indicate equilibrium between uraninite, ferric hydroxide and groundwater in the bedrock of the study site. Partially oxidized uraninite (UO 2 .33) and ferric hydroxide are in equilibrium with fresh, slightly acidic and oxidized water type, while primary uraninite is stable with deeper waters that have a higher pH and lower Eh. Measured Eh-pH values of groundwater cluster within a relatively narrow range indicating buffering by heterogenous redox-processes. A good consistency between measured Eh and analyzed uranium oxidation states was observed

  20. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation

    International Nuclear Information System (INIS)

    Yan Wei; Wang Dan; Botte, Gerardine G.

    2012-01-01

    Nickel–Cobalt bimetallic hydroxide electrocatalysts, synthesized through a one-step electrodeposition method, were evaluated for the oxidation of urea in alkaline conditions with the intention of reducing the oxidation overpotential for this reaction. The Nickel–Cobalt bimetallic hydroxide catalysts were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, cyclic voltammetry (CV), and polarization techniques. A significant reduction in the overpotential (150 mV) of the reaction was observed with the Nickel–Cobalt bimetallic hydroxide electrode (ca. 43% Co content) when compared to a nickel hydroxide electrode. The decrease of the urea oxidation potential on the Nickel–Cobalt bimetallic hydroxide electrodes reveals great potential for future applications of urea electro-oxidation, including wastewater remediation, hydrogen production, sensors, and fuel cells.

  1. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Science.gov (United States)

    de Oliveira, Henrique Bortolaz; Wypych, Fernando

    2016-11-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.

  2. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    Science.gov (United States)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  3. Iodine Sequestration Using Delafossites and Layered Hydroxides

    International Nuclear Information System (INIS)

    J.D. Pless; J.B. Chwirka; J.L. Krumhansl

    2006-01-01

    The objective of this document is to report on early success for sequestering 129 I. Sorption coefficients (K d ) for I - and IO 3 - onto delafossites, spinels and layered metal hydroxides were measured in order to compare their applicability for sequestering 129 I. The studies were performed using a dilute fluid composition representative of groundwater indigenous to the Yucca mountain area. Delafossites generally exhibited relatively poor sorption coefficients ( 1.7 mL/g). In contrast, the composition of the layered hydroxides significantly affects their ability to sorb I. Cu/Al and Cu/Cr layered hydroxide samples exhibit K d 's greater than 10 3 mL/g for both I - and IO 3 -

  4. Mineralization dynamics of metakaolin-based alkali-activated cements

    International Nuclear Information System (INIS)

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler J.; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29 Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  5. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties

    Czech Academy of Sciences Publication Activity Database

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-01-01

    Roč. 499, AUG (2017), s. 138-144 ISSN 0021-9797 Institutional support: RVO:61388980 ; RVO:61389013 ; RVO:61388955 Keywords : Hydroxide nanosheets * Delamination * Exfoliation * Layered nickel hydroxide * Layered cobalt hydroxide * Electrode material Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W); CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W); Polymer science (UMCH-V) Impact factor: 4.233, year: 2016

  6. Aluminum hydroxide issue closure package

    International Nuclear Information System (INIS)

    Bergman, T.B.

    1998-01-01

    Aluminum hydroxide coatings on fuel elements stored in aluminum canisters in K West Basin were measured in July and August 1998. Good quality data was produced that enabled statistical analysis to determine a bounding value for aluminum hydroxide at a 99% confidence level. The updated bounding value is 10.6 kg per Multi-Canister Overpack (MCO), compared to the previously estimated bounding value of 8 kg/MCO. Thermal analysis using the updated bounding value, shows that the MCO generates oxygen concentrate that are below the lower flammability limits during the 40-year interim storage period and are, therefore, acceptable

  7. Experimental study of the tritium distribution in the effluents resulting from the sodium hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chassery, A. [CEA, DEN, Centre de Cadarache, Saint-Paul-lez-Durance (France); Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France); Lorcet, H.; Godlewski, J; Liger, K.; Latge, C. [CEA, DEN, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X. [Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    Within the framework of the dismantling of fast breeder reactors in France several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam. The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO (tritiated water). HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. A series of experiments have been performed in order to study the influence of water flow rate, argon flow rate, initial mass and specific activity of the hydrolyzed sodium sample. An important influence of the total tritium concentration in the hydrolyzed sample has been highlighted. As for the phenomena suspected to be responsible for the phase change of tritiated water, in the studied range of parameters, vaporization induced by the heat of reactions seems to be dominant over the evaporation induced by the inert gas flow rate.

  8. Nutritional composition, vitamins, minerals and toxic heavy metals ...

    African Journals Online (AJOL)

    , than retinol (0.81 mg/g). Among the macro minerals, potassium was present in high concentration (51.6 mg/g) than sodium (44.0 mg/g). The trace elements were assessed using atomic absorption spectrophotometer (AAS) and their ...

  9. Preliminary Study on the Dissolutions of Ce, Nd, Y and La from Mineral Cassiterite by Acid and Alkaline Leaching

    Science.gov (United States)

    Firdiyono, F.; Andriyah, L.; Aini, F. N.; Arini, T.; Lalasari, L. H.

    2018-03-01

    Rare Earth Metal is a rare element that its availability in nature is very small. In Indonesia, the potential of rare earth metals is generally found as the associated mineral in major commodities, especially gold and alluvial tin. These associated minerals can be processed using a particular technology so that the result is a by-product that can increase the added value of the mineral. This purpose of this research was to investigate the dissolution of Cerium (Ce), Neodymium (Nd), Yttrium (Y) and Lanthanum (La) from mineral cassiterite by leaching process using dilute hydrochloric acid (HCl), sulfate acid (H2SO4) and sodium hydroxide (NaOH). Firstly, cassiterite was grinded to -100 mesh of particle size and characterized by X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) techniques. Secondly, 10 gram of cassiterite was leached in 100 ml solution of 3.26 N HCl, H2SO4 and NaOH at variation leaching time of 2, 4, 6, 24 and 48 hours in atmospheric conditions. The products were then filtered to separate filtrate and residue of cassiterite. Finally, to investigate the dissolution of Ce, La, Nd and Y, filtrate from dissolved cassiterite was analyzed by Induced Coupled Plasma-Optical Emission Spectrometry (ICP-OES), while to know the chemical composition of cassiterite leached by dilute HCl, H2SO4 and NaOH, residue products of cassiterite was characterized by XRF analysis. The result of ICP-OES analysis showed the dissolution of Ce element higher than Nd, Y and La elements for leaching cassiterite using HCl, H2SO4 and NaOH. The increase of leaching time was accompanied by the rise in the amount of dissolved elements from cassiterite. The result of XRF analysis showed the chemistry composition of Ce, Nd, Y and La elements on residue decreased insignificantly from chemistry composition of cassiterite (raw mineral) in all conditions. However, the dissolution of Ce, La, Nd and Y was insignificant in all conditions.

  10. Aluminium hydroxide-induced granulomas in pigs

    DEFF Research Database (Denmark)

    Valtulini, S; Macchi, C; Ballanti, P

    2005-01-01

    The effect of intramuscular injection of 40 mg/2 ml aluminium hydroxide in the neck of pigs was examined in a number of ways. The investigation followed repeated slaughterhouse reports, according to which 64.8% of pigs from one particular farm were found at slaughter to have one or more nodules...... in the muscles of the neck (group slaughtered). The pigs had been injected with a vaccine containing 40 mg/2 ml dose of aluminium hydroxide as adjuvant. Research consisted of two phases: first, an epidemiological study was carried out, aimed at determining the risk factors for the granulomas. The results...... and adjuvant) to pigs inoculated twice with apyrogenic bi-distilled water (group water) and to pigs inoculated once with the adjuvant and once with apyrogenic bi-distilled water (group adjuvant/water). Both studies agreed in their conclusions, which indicate that the high amount of aluminium hydroxide...

  11. Behavior of hydroxide at the water/vapor interface

    Science.gov (United States)

    Winter, Bernd; Faubel, Manfred; Vácha, Robert; Jungwirth, Pavel

    2009-06-01

    Hydroxide and hydronium, which represent the ionic products of water autolysis, exhibit a peculiar surface behavior. While consensus has been established that the concentration of hydronium cations is enhanced at the surface with respect to the bulk, the affinity of hydroxide anions for the water/vapor interface has been a subject of an ongoing controversy. On the one hand, electrophoretic and titration measurements of air bubbles or oil droplets in water have been interpreted in terms of a dramatic interfacial accumulation of OH -. On the other hand, surface-selective non-linear spectroscopies, surface tension measurements, and molecular simulations show no or at most a weak surface affinity of hydroxide ions. Here, we summarize the current situation and provide new evidence for the lack of appreciable surface enhancement of OH -, based on photoelectron spectroscopy from a liquid jet and on molecular dynamics simulations with polarizable potentials at varying hydroxide concentrations.

  12. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  13. Behaviour of 29Si NMR and infrared spectra of aqueous sodium and potassium silica solutions as a function of (SiO2/M2+O) ratio

    International Nuclear Information System (INIS)

    Couty, R.; Fernandez, L.

    1996-01-01

    Sodium and potassium solutions of silica with silica concentration of 1,4 mo/kg and R ms = SiO 2 /M + 2 O ratios of 4.56 to 1.6 were obtained by depolymerization of amorphous silica gel in sodium and potassium hydroxide. Solutions have been characterized by 29 Si NMR and infrared spectroscopy. The results indicated that Na + and K + exhibit the same behaviour during the depolymerization of silica. (authors). 11 refs., 4 figs., 2 tabs

  14. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...

  15. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities....

  16. Preferential Treatment: Interaction Between Amino Acids and Minerals

    Science.gov (United States)

    Crapster-Pregont, E. J.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Amino acids are the building blocks of proteins and are important for some models of the origin of life. Polymerization of amino acids from dilute solution is unlikely without a scaffold or catalyst. The surfaces of early Earth minerals are the most likely candidates for this role. The surface adsorption behavior of 12 amino acids (L-alanine, L-serine, L-aspartic acid, L-proline, L- phenylalanine, L-valine, L-arginine, d-amino valeric acid, glycine, L-lysine, L-isoleucine, and B-alanine) on 21 minerals (quartz, calcite, enstatite, illite, olivine, pyrrhotite, pyrite, alkali basalt, albite, analcime, chlorite, barite, hydroxyl apatite, hematite, magnetite, aluminum hydroxide, kaolin, silica gel, corundum, rutile, and montmorillonite) was determined via batch adsorption experiments. Absorption was determined for concentrations between 10-4M and 10-6M in the presence of 0.1M NaCl, and between pH values of 3 and 9 at 25 degrees C. The equilibrated solutions were centrifuged, filtered, derivatized using a fluorescent amino group tag (dansyl-chloride) and analyzed by HPLC. Adsorption was standardized using BET surface area measurements for each mineral to give the number of mols of each amino acid adsorbed per square meter for each mineral. The results indicate an enormous difference in the adsorption of amino acids between minerals, along with major differences in the adsorption of individual amino acids on the same mineral surface. There is also a change in the absorbance of amino acids as the pH changes. Many previous studies of amino acid concentration and catalysis by minerals have used clay minerals because of their high surface areas, however, this data suggests that the surfaces of minerals such as calcite, quartz and pyrite have even higher affinities for amino acids. The results suggest mineral surfaces that could be optimal locations for the polymerization of molecules linked to the origin of life.

  17. Synthesis of polymer nanocomposites using layered hydroxide salts (LHS)

    International Nuclear Information System (INIS)

    Machado, Paula F. de M.P.B.; Lona, Liliane M.F.; Marangoni, Rafael; Wypych, Fernando

    2011-01-01

    In this work latexes of poly (methyl methacrylate) were synthesized via emulsion polymerization using layered hydroxide salts (LHS) as reinforcements: zinc hydroxide nitrate (Zn 5 (OH) 8 (NO 3 ) 2 ·2H 2 O) and copper hydroxide acetate (Cu 2 (OH) 3 CH 3 COO.H 2 O). The LHSs were characterized by X-ray powder diffraction (XRPD). Mastersizer analysis indicated the particle diameter of the latexes. Molecular weights and conversion data were also obtained. (author)

  18. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaojun, E-mail: guoxj6906@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China); Zhao Leihua; Zhang Li; Li Jing [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China)

    2012-01-15

    Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108 Degree-Sign and a well dispersion.

  19. Discharge Characteristics of the Nickel Hydroxide Electrode in 30% KOH

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1989-01-01

    The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH at 25 .deg. C. Two voltage plateaus are displayed on the discharge curve of C/20. It is shown that the impedance of the nickel hydroxide electrode increases with decrease of the discharge potential. The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH indicating the reduction of the β-NiOOH to the β-Ni(OH) 2 by proton diffusion process and hence the electronic conductivity change of the nickel hydroxide electrode. Furthermore, the γ-NiOOH, produced by prolonged oxidation of the β-NiOOH in 30% KOH, discharges at a slightly lower potential than the β-Ni(OH) 2 that could result in the life-limiting factor of several alkaline electrolyte storage batteries using the nickel hydroxide electrode as the positive plate

  20. Adsorption of procion red using layer double hydroxide Mg/Al

    Directory of Open Access Journals (Sweden)

    Muhammad Imron

    2017-07-01

    Full Text Available Layer double hydroxide Mg/Al was synthesized by inorganic synthetic method. Material was characterized using FTIR and XRD analyses and used as adsorbent of procion red dye in aqueous medium.  Factors that affect the adsorption process are adsorption time as the kinetic parameter; and the temperature and concentration of procion red as the thermodynamic parameter. FTIR spectra of layer double hydroxides showed unique vibration at wavenumber 1300 cm-1 and 1600 cm-1. Characterization using XRD shows diffraction angles at 29o, 27o, and 28o, which are typical of Mg/Al double layer hydroxides. Adsorption of procion red using layer double hydroxide Mg/Al resulted adsorption rate 7.1 minutes-1, maximum adsorption capacity 111.1 mg/g at 60 oC with increasing energy by increasing adsorption temperature.   Keywords: Layered double hydroxides, adsorption, procion red.

  1. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    Science.gov (United States)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  2. Composition and structure of an iron-bearing, layered double hydroxide (LDH) - Green rust sodium sulphate

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Balic-Zunic, T.; Petit, P. O.

    2009-01-01

    with Fe(II) and Fe(III) in an ordered distribution. The interlayers contain sulphate, water and sodium in an arrangement characteristic for the nikischerite group. The crystal structure is highly disordered by slacking faults. The composition, formula and crystallographic parameters are: NaFe(II)(6)Fe...

  3. Mineralization dynamics of metakaolin-based alkali-activated cements

    Science.gov (United States)

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  4. On reactions of polymerization of p-element hydroxides in aqueous solutions

    International Nuclear Information System (INIS)

    Tikavyj, V.F.; Lesnikovich, A.I.

    1978-01-01

    The tendency of p-element hydroxides towards polymerization in aqueous solutions has been considered with respect to their location in the Periodic Table. Stable hydroxides of d-elements are practically all polymerized; among s-elements only berillium and magnesium hydroxides polymerize as the least dissociated ones. Hydroxides of the elements located to the right of the 4 Group and above the 5-th Period do not polymerize in aqueous solutions. The structure and tendency towards polymerization of In, Te, and I compounds have been studied. The tendency to polymerization of all hydroxides of p-elements located below the 4-th Period is explained from the standpoint of electron structure and the simplest thermodynamic analysis (entropy, enthalpy)

  5. Turning into carbonate the residual sodium left in BN-350 circuits may alleviate concerns over their long term safe confinement

    International Nuclear Information System (INIS)

    Rahmani, L

    2000-01-01

    After the coolant is drained from the reactor vessel and from the primary and secondary circuits of the BN-350 nuclear power plant, what sodium is left in ponds and films may amount to hundreds of kilograms. For the long term safe storage period which is to follow, preliminary safety analyses (e.g. derived from those made for French sodium cooled reactors) might show that the risks incurred through loss of leaktightness are significant. The ingress of moisture into the circuits would generate, by reaction with the sodium, two undesirable products : sodium hydroxide and hydrogene. Even when considering that water would enter the circuits progressively, so that the heat of the reaction does not give rise to over-pressure, some main risk factors remain. The most promising solution to this challenge appears to be the carbonation of the sodium residues, by progressive diffusion of an appropriate association of carbon dioxyde and water vapour through the inert gaseous medium which fills the circuits. The desired product is porous sodium hydrogenocarbonate

  6. Controls on Fe reduction and mineral formation by a subsurface bacterium

    Science.gov (United States)

    Glasauer, Susan; Weidler, Peter G.; Langley, Sean; Beveridge, Terry J.

    2003-04-01

    The reductive dissolution of FeIII (hydr)oxides by dissimilatory iron-reducing bacteria (DIRB) could have a large impact on sediment genesis and Fe transport. If DIRB are able to reduce FeIII in minerals of high structural order to carry out anaerobic respiration, their range could encompass virtually every O 2-free environment containing FeIII and adequate conditions for cell growth. Previous studies have established that Shewanella putrefaciens CN32, a known DIRB, will reduce crystalline Fe oxides when initially grown at high densities in a nutrient-rich broth, conditions that poorly model the environments where CN32 is found. By contrast, we grew CN32 by batch culture solely in a minimal growth medium. The stringent conditions imposed by the growth method better represent the conditions that cells are likely to encounter in their natural habitat. Furthermore, the expression of reductases necessary to carry out dissimilatory Fe reduction depends on the method of growth. It was found that under anaerobic conditions CN32 reduced hydrous ferric oxide (HFO), a poorly crystalline FeIII mineral, and did not reduce suspensions containing 4 mM FeIII in the form of poorly ordered nanometer-sized goethite (α-FeOOH), well-ordered micron-sized goethite, or nanometer-sized hematite (α-Fe 2O 3) crystallites. Transmission electron microscopy (TEM) showed that all minerals but the micron-sized goethite attached extensively to the bacteria and appeared to penetrate the outer cellular membrane. In the treatment with HFO, new FeII and FeIII minerals formed during reduction of HFO-Fe in culture medium containing 4.0 mmol/L P i (soluble inorganic P), as observed by TEM with energy-dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The minerals included magnetite (Fe 3O 4), goethite, green rust, and vivianite [Fe 3(PO 4) 2 · 8H 2O]. Vivianite appeared to be the stable end product and the mean coherence length was influenced by the rate of Fe

  7. Small sodium-to-gas leak behavior in relation to LMFBR leak detection system design

    International Nuclear Information System (INIS)

    Hopenfeld, J.; Taylor, G.R.; James, L.A.

    1976-01-01

    Various aspects of sodium-to-gas leaks which must be considered in the design of leak detection systems for LMFBR's are discussed. Attention is focused primarily on small, weeping type leaks. Corrosion rates of steels in fused sodium hydroxide and corrosion damage observed at the site of small leaks lead to the conclusion that the sodium-gas reaction products could attack the primary hot leg piping at rates up to 0.08 mils per hour. Based on theoretical considerations of the corrosion mechanism and on visual observations of pipe topography following small sodium leak tests, it is concluded that pipe damage will be manifested by the formation of small detectable leaks prior to the appearance of larger leaks. The case for uniform pipe corrosion along the pipe circumference or along a vertical section of the pipe is also examined. Using a theoretical model for the gravity flow of sodium and reaction products along the pipe surface and a mass transport controlled corrosion process, it is shown that below sodium leak rates of about 30 g/hr for the primary piping corrosion damage will not extend beyond one radius distance from the leak site. A method of estimating the time delay between the initiation of such leaks and the development of a larger leak due to increased pipe stresses resulting from corrosion is presented

  8. Investigation into interaction of copper, magnesium, zinc, cadmium and nickel acetates with sodium hydroxide in aqueous solutions

    International Nuclear Information System (INIS)

    Gyunner, Eh.A.; Mel'nichenko, L.M.; Yakhkind, N.D.; Bobryshev, V.G.; Katseva, G.N.

    1978-01-01

    The composition of poorly soluble reaction products in five systems MA 2 -NaOH-H 2 O (A - -CH 3 COO - ; M 2+ -Cu 2+ , Mg 2+ , Zn 2+ , Cd 2+ , and Ni 2+ ) was determined by measuring the residual concentrations of M 2+ and OH - and the refraction index of the mother liquor (isomolal series). It was established that in systems with CuA 2 , ZnA 2 , and NiA 2 the formation of hydroxides is preceded by precipitation of hydroxoacetates Cu 2 (OH 3 )A, Zn 3 (OH) 5 A, and Ni 5 (OH) 9 A, MgA 2 and CdA 2 react with NaOH, forming only Mg(OH) 2 or Cd(OH) 2

  9. Alkali Silica Reaction In The Presence Of Metakaolin - The Significant Role of Calcium Hydroxide

    Science.gov (United States)

    Zapała-Sławeta, Justyna

    2017-10-01

    Reducing the internal corrosion, which is the result of reactions between alkalis and reactive aggregates is especially important in ensuring durability properties of concrete. One of the methods of inhibiting the reaction is using some mineral additives which have pozzolanic properties. This paper presents the efficacy of high-reactivity metakaolin in reducing expansion due to alkali-silica reaction. It was demonstrated that metakaolin in the amount from 5% to 20% by mass of Portland cement reduce linear expansion of mortar bars with opal aggregate. Nevertheless, the safe expansion level in the specimens, classified as non-destructive to concrete, was recorded for the mortars prepared with 20% addition of metakaolin. Depletion of free calcium hydroxide content was considered as one of the most beneficial effects of metakaolin in controlling alkali silica reaction. Based on thermogravimetric analysis (TGA) performed on mortar bars with and without metakaolin the differences in portlandite content were determined. Microstructural observation of the specimens containing metakaolin indicated the presence of a reaction products but fewer in number than those forming in the mortars without mineral additives.

  10. Rapid collection of iron hydroxide for determination of Th isotopes in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Ayako, E-mail: okubo.ayako@jaea.go.jp [Japan Atomic Energy Agency, Research Group for Analytical Chemistry (Japan); Obata, Hajime, E-mail: obata@aori.u-tokyo.ac.jp [Atmosphere Ocean Research Institute, The University of Tokyo (Japan); Magara, Masaaki, E-mail: magara.masaaki@jaea.go.jp [Japan Atomic Energy Agency, Research Group for Analytical Chemistry (Japan); Kimura, Takaumi, E-mail: kimura.takaumi@jaea.go.jp [Japan Atomic Energy Agency, Research Group for Analytical Chemistry (Japan); Ogawa, Hiroshi, E-mail: hogawa@aori.u-tokyo.ac.jp [Atmosphere Ocean Research Institute, The University of Tokyo (Japan)

    2013-12-04

    Graphical abstract: -- Highlights: •DIAION CR-20 chelating resin has successfully collected iron-hydroxide with Th isotopes. •Ferric ions in the iron hydroxide were bonded to functional groups of the chelating resin. •The time of preconcentration step was markedly reduced from a few days to 3–4 h. -- Abstract: This work introduces a novel method of recovery of iron hydroxide using a DIAION CR-20 chelating resin column to determine Th isotopes in seawater with a sector field (SF) inductively coupled plasma mass spectrometer (ICP-MS). Thorium isotopes in seawater were co-precipitated with iron hydroxide, and this precipitate was sent to chelating resin column. Ferric ions in the iron hydroxide were bonded to functional groups of the chelating resin directly, resulting in a pH increase of the effluent by release of hydroxide ion from the iron hydroxide. The co-precipitated thorium isotopes were quantitatively collected within the column, which indicated that thorium was retained on the iron hydroxide remaining on the chelating column. The chelating column quantitatively collected {sup 232}Th with iron hydroxide in seawater at flow rates of 20–25 mL min{sup −1}. Based on this flow rate, a 5 L sample was processed within 3–4 h. The >20 h aging of iron hydroxide tends to reduce the recovery of {sup 232}Th. The rapid collection method was successfully applied to the determination of {sup 230}Th and {sup 232}Th in open-ocean seawater samples.

  11. Acid mine water neutralisation with ammonium hydroxide and ...

    African Journals Online (AJOL)

    This study showed that NH4OH can be used for treatment of acid mine drainage rich in sulphates and NH4OH can be recycled in the process. Hydrated lime treatment resulted in removal of the remaining ammonia using a rotary evaporator. Keywords: acid mine water, ammonium hydroxide, barium hydroxide, sulphate ...

  12. Chemical changes of minerals trapped in the lichen Trapelia involuta. Implication for lichen effect on mobility of uranium and toxic metals

    International Nuclear Information System (INIS)

    Kasama, Takeshi; Murakami, Takashi; Ohnuki, Toshihiko

    2002-01-01

    To elucidate development of minerals trapped in a lichen, we examined the lichen Trapelia involuta growing directly on secondary uranyl minerals and U-enriched Fe oxide and hydroxide minerals. Sericite and other minerals in the underlying rock are trapped in the lichen T. involuta during its biological growth and chemically changed by lichen activities. The presence of chemically changed sericite accompanied by an Fe-bearing mineral in the lichen suggests that dissolution of sericite is promoted mainly by polysaccharides excreted by the lichen. Oxalic acid or lichen acids absent in the medulla may not play an important role in the dissolution. Our results suggest that lichens on metal-rich surface affect the mobility of uranium and other toxic metals through dissolution followed by trap of minerals from the underlying rock. (author)

  13. Synthesis Magnesium Hydroxide Nanoparticles and Cellulose Acetate- Mg(OH2-MWCNT Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Ghorbanali

    2015-04-01

    Full Text Available Mg(OH2 nanoparticles were synthesized by a rapid microwave reaction. The effect of sodium dodecyl sulfonate (SDS as anionic surfactant and cetyl tri-methyl ammonium bromide (CTAB as cationic surfactant on the morphology of magnesium hydroxide nanostructures was investigated. Multi wall carbon nano tubes was organo-modified for better dispersion in cellulose acetate matrix. The influence of Mg(OH2 nanoparticles and modified multi wall carbon nano tubes (MWCNT on the thermal stability of the cellulose acetate (CA matrix was studied using thermo-gravimetric analysis (TGA. Nanostructures were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and Fourier transform infrared (FT-IR spectroscopy. Thermal decomposition of the nanocomposites shift towards higher temperature in the presence of Mg(OH2 nanostructures. The enhancement of thermal stability of nanocomposites is due to the endothermic decomposition of Mg(OH2 and release of water which dilutes combustible gases.

  14. Characterization of Inclusions in Evolution of Sodium Sulfate Using Terahertz Time-domain Spectroscopy.

    Science.gov (United States)

    Bao, Rima; Wu, Zhikui; Li, Hao; Wang, Fang; Miao, Xinyang; Feng, Chengjing

    2017-01-01

    The study of fluid inclusion is one of the important means to understanding the evolution of mineral crystals, and can therefore provide original information of mineral evolution. In the process of evolution, outside factors such as temperature and pressure, directly affect the number and size of inclusions, and thus are related to the properties of crystals. In this paper, terahertz time-domain spectroscopy (THz-TDS) was used to detect sodium sulfate crystals with different growth temperatures, and absorption coefficient spectra of the samples were obtained. It is suggested that the evolution of sodium sulfate could be divided into two stages, and 80°C was the turning point. X-ray diffraction (XRD) and polarizing microscopy were used to support this conclusion. The research showed that THz-TDS could characterize the evolution of mineral crystals, and it had a unique advantage in terms of crystal evolution.

  15. Dehydration-rehydration behaviour of zirconium hydroxide and aluminium hydroxide coprecipitated hydrogel

    International Nuclear Information System (INIS)

    Mitra, N.K.; Guha, P.; Basumajumdar, A.

    1989-01-01

    Equilibrium dehydration loss experiments on zirconium and aluminium hydroxide coprecipitated hyrogels were carried out up to 600deg and the above heat treated samples were subjected to rehydration at various humidities in order to study the structural flexibilties of the above hydrogel with respect to orientation of water molecules. (author). 6 refs., 3 tabs

  16. Process for treating the dialyzed spent liquor from sulphonic acid containing sulfur minerals or tar oils or ammonium salts

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, E A

    1936-08-09

    Process for working up the dialyzate from sulfonic acid, sulfur-containing mineral or tar oils, or their ammonium salts, characterized by the combination of known steps, in the dialyzate being reacted with alkaline-earth oxide, hydroxide, or carbonate, and the resulting slightly soluble sulfate being filtered off and evaporated if necessary.

  17. Natural mineral waters: chemical characteristics and health effects

    Science.gov (United States)

    Quattrini, Sara; Pampaloni, Barbara; Brandi, Maria Luisa

    2016-01-01

    Summary Water contributes significantly to health and a daily intake of 1.5 to 2 liters of water should be guaranteed, because a good hydration is essential to maintain the body water equilibrium, although needs may vary among people. However, worldwide population is far from the Recommended Allowance for water intake. Among the waters for human uses, there are ‘waters (treated or not), intended for drinking, used for the food and beverages preparation or for other domestic purposes’ and natural mineral waters, that are ‘originated from an aquifer or underground reservoir, spring from one or more natural or bore sources and have specific hygienic features and, eventually, healthy properties’. According to the European Legislation (2009/54/EC Directive), physical and chemical characterization is used to make a classification of the different mineral waters, basing on the analysis of main parameters. Mineral composition enables to classify natural mineral waters as bicarbonate mineral waters, sulphate mineral waters, chloride mineral waters, calcic mineral waters, magnesiac mineral waters, fluorurate mineral waters, ferrous mineral waters and sodium-rich mineral waters. Although the concerns about bottled mineral waters (due to plasticizers and endocrine disruptors), many are the health effects of natural mineral waters and several studies explored their properties and their role in different physiological and pathological conditions. PMID:28228777

  18. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  19. Calcium hydroxide silylation reaction with trimethylchlorosilane

    Directory of Open Access Journals (Sweden)

    Novoselnov Anatoliy A.

    2016-01-01

    Full Text Available The silylation reaction of a calcium hydroxide with a trimethylchlorosilane is studied as a silylation model by the gas-liquid chromatography. The silylation process is divided into three stages. A material balance of these stages is calculated. The schemes of the reactions at each stage of the process are proposed. The modified calcium hydroxide obtained at three repetitive stages of the silylation reaction has been investigated by the x-ray phase analysis, IR spectroscopy, thermal analysis, electron microscopy in a combination with the elemental analysis. It has been determined that at the first stage of the interaction the processes of the trimethylchlorosilane hydrolysis and of the hydrolysis products condensation dominate, and at the same time an adsorption process of the trimethylchlorosilane and its derivatives starts. Further, the hydrolysis of the trimethylchlorosilane by the «new» portions of a water formed in the reaction of a calcium hydroxide with a hydrogen chloride takes place, simultaneously the secondary reactions of the Si-O-Ca – ties’ formation and cleavage occur including as a silylation-desilylation dynamic equilibrium process.

  20. Recovery of rare earth minerals, with emphasis on flotation process

    International Nuclear Information System (INIS)

    Houot, R.; Cuif, J.P.; Mottot, Y.; Samama, J.C.

    1991-01-01

    Bastnasite and monazite are the two major minerals used commercially to supply most of the rare earths. Monazite is often a by-product of the concentration of heavy minerals of zirconium and titanium in beach sands. Thus, the methods of concentration are gravity (spirals, Reichert cones and shaking tables), ending with magnetism, electrostatic and in certain cases, flotation. The two main deposits of bastnasite are Mountain Pass (U.S.A.) and Bayan Obo (China). The rock bastnasite content is within 15% and the recovery of rare earth minerals is made through flotation. The flowsheets are complex enough because the existence of accompanying minerals such as quartz, iron components, barite, fluorite, calcite, etc. The conditioning is done by heating and the frequently employed collector is a fatty acid associated with selective agents, as sodium silicate or fluosilicate, lignin sulphonate, sodium carbonate, aluminium salts, etc. Recent studies tempt to introduce the use of phosphoric esters, dicarboxilic, sulphonic and/or sulphosuccinic acids. Concentrates with 60% REO are then treated with acidic solution to eliminate residual calcite. The possibility of obtaining products enriched with rare earths are also noted: these are ores of uranium (Elliot Lake), pyrochlore, apatite, and other complex ores with euxenite, fergusonite or loparite. (author) 10 figs., 6 tabs., 57 refs

  1. Method of processing radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kikuchi, M; Funabashi, K; Yusa, H; Horiuchi, S

    1978-12-21

    Purpose: To decrease the volume of radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid. Method: The concentration ratio of sodium hydroxide to boric acid by weight in radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid is adjusted in the range of 0.28 - 0.4 by means of a pH detector and a sodium concentration detector. Thereafter, the radioactive liquid wastes are dried into powder and then discharged.

  2. Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth

    Directory of Open Access Journals (Sweden)

    Leandro Borges Araújo

    2018-02-01

    Full Text Available Abstract Objective: The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA, calcium hydroxide (CH and BiodentineTM (BD on stem cells from human exfoliated deciduous teeth (SHED in vitro. Material and Methods: SHED were cultured for 1 – 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL, and tested for viability (MTT assay and proliferation (SRB assay. Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1 was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning and culture medium supplemented with 20% FBS were used as controls. Results: MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA (p<0.05. In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH (p<0.05. A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Conclusion: Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population.

  3. Roentgen-phase analysis of sodium chloride of Khodja-Mumindeposit

    International Nuclear Information System (INIS)

    Nazarov, K.M.; Pulatov, M.S.; Isupov, S.D.

    1999-01-01

    With the purpose of determination of mineral composition of sodium chloride by authors was carried out the roentgen-phase analysis till its purification, after filtration and after purification from Ca 2 + , Mg 2 + a nd SO 4 2 + i ons by barium-carbonate and hydrochloride-acid methods

  4. Deactivation of nickel hydroxide-gold modified electrodes

    OpenAIRE

    Caram, Bruno; Tucceri, Ricardo

    2013-01-01

    The aim of the present work was to study how the charge-transport process of a nickel hydroxide film electrochemically synthesized on a gold substrate is modified when the electrode is stored for a long time. It was found that nickel hydroxide films are deactivated under storage, that is, films became less conductive than films immediately prepared (nondeactivated). This study was carried out in the context of the rotating disc electrode voltammetry when the modified electrode contacts an ele...

  5. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    Science.gov (United States)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  6. Luminescent materials based on Tb, Eu-containing layered double hydroxides

    International Nuclear Information System (INIS)

    Zhuravleva, N.G.; Eliseev, A.A.; Lukashin, A.V.; Kinast, U.; Tret'yakov, Yu.D.

    2004-01-01

    Luminescent materials on the basis of magnesium-aluminium layered double hydroxides with intercalated anionic complexes of terbium and europium picolinates were synthesized. Relying on data of spectroscopy, elementary and X-ray phase analyses, the change in the rare earth complex structure and metal/ligand ratio, depending on the hydroxide layer charge, determined by Mg/Al ratio in the double hydroxide, were ascertained. The values of quantum yields of luminescence for terbium-containing samples amounted to 30-50% [ru

  7. Thermochemical properties of the alkali hydroxides: A review

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Cordfunke, E.H.P.

    1989-01-01

    The formation of volatile alkali hydroxides as a result of high-temperature steam corrosion plays an important role in nuclear technology. For the modeling of the volatilization processes, reliable thermodynamic data are required. In the present paper recent physico-chemical experiments by the authors will be discussed and the thermochemical properties of the alkali hydroxide series will be evaluated. (orig.)

  8. Indirect spectrophotometric determination of sodium ceftriaxone with n-propyl alcohol-ammonium sulfate-water system by extraction flotation of copper(II).

    Science.gov (United States)

    Zhao, Wei; Zhang, Yan; Li, Quanmin

    2008-05-01

    Although the determination methods of sodium ceftriaxone has been increasingly reported, these methods have their inherent limits preventing them from being broadly applied in common laboratories. In order to circumvent this problem, a rapid and simple method for the indirect spectrophotometric determination of sodium ceftriaxone is reported. Sodium ceftriaxone was degraded completely in the presence of 0.20 mol/l sodium hydroxide in boiling water bath for 20 min. The thiol group (-SH) of the degradation product (I) of sodium ceftriaxone could reduce cupric to cuprous ions, and the resulting which was precipitated with the thiol group (-SH) of the degradation product (II) at pH 4.0. By determining the residual amount of copper (II), the indirect determination of sodium ceftriaxone can be achieved. Standard curve of sodium ceftriaxone versus the flotation yield of copper(II) showed that sodium ceftriaxone could be determined in low concentrations. The linear range of sodium ceftriaxone was 0.70-32 microg/ml and the detection limit evaluated by calibration curve (3sigma/k) was found to be 0.60 microg/ml. A simple and efficient method was developed and it has been successfully applied to the determination of sodium ceftriaxone in human serum and urine samples, respectively. It is expected that this method will find broad applications in the detection of cephalosporin derivatives with similar structure.

  9. Interaction of natural borates with potassium hydroxide solution

    International Nuclear Information System (INIS)

    Azarova, L.A.; Vinogradov, E.E.; Kudinov, I.B.; Panasyuk, G.P.; Danilov, V.P.

    2000-01-01

    Interaction of natural borates - inyoite, ulexite and hydroboracite MgCa[B 3 O 4 (OH) 3 ] 2 ·3H 2 O with KOH solution is studied at 50 Deg C by the methods of chemical, x- ray phase, differential thermal analyses and IR spectroscopy. IR spectra points out on island character of forming borates and confirms the data of x-ray phase and chemical analyses about presence of asharite and calcium hydrous borate in resulting products. Hydroboracite (chain structure) under the action of potassium hydroxide passes into borates of magnesium and calcium with island structure and in this case boron transforms partially into liquid phase. When potassium hydroxide interacts with inyoite and ulexite calcium hydroxide and roentgenoamorphous boron-containing product precipitate [ru

  10. Plutonic mobilization, sodium metasomatism, propylitic wall-rock alteration and element partitioning from Hoehensteinweg uranium occurrence (Northeast Bavaria, F.R.G.)

    International Nuclear Information System (INIS)

    Dill, H.

    1983-01-01

    The investigated U deposit near Poppenreuth (Hoehensteinweg) in northeast Bavaria is situated among Upper Proterozoic biotite gneisses and mica schists with ENE- to NE-striking foliation. In this paper, the element distribution is determined of the elements involved in the U-Th petrogenic cycle (Zr, Ce, Th, U, P and Na); as are the mineralogical changes of the primary U minerals. The problem of lithogene element supply is studied. The area abundant in U is compared with other U-bearing sodium enriched host rocks in order to improve the selection of exploration target areas. Content: the primary U and Th minerals; plutonic mobilizates; episyenites and sodium metasomatites; propylitic rocks; U minerals and their relation to the primary U minerals; the origin of Hoehensteinweg uranium deposits. (Auth.)

  11. Plutonic mobilization, sodium metasomatism, propylitic wall-rock alteration and element partitioning from Hoehensteinweg uranium occurrence (Northeast Bavaria, F. R. G. )

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H. (Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany, F.R.))

    1983-05-01

    The investigated U deposit near Poppenreuth (Hoehensteinweg) in northeast Bavaria is situated among Upper Proterozoic biotite gneisses and mica schists with ENE- to NE-striking foliation. In this paper, the element distribution is determined of the elements involved in the U-Th petrogenic cycle (Zr, Ce, Th, U, P and Na); as are the mineralogical changes of the primary U minerals. The problem of lithogene element supply is studied. The area abundant in U is compared with other U-bearing sodium enriched host rocks in order to improve the selection of exploration target areas. Content: the primary U and Th minerals; plutonic mobilizates; episyenites and sodium metasomatites; propylitic rocks; U minerals and their relation to the primary U minerals; the origin of Hoehensteinweg uranium deposits.

  12. DOUBLE-SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    International Nuclear Information System (INIS)

    OGDEN DM; KIRCH NW

    2007-01-01

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed

  13. Direct Pulp Capping with Calcium Hydroxide, Mineral Trioxide Aggregate, and Biodentine in Permanent Young Teeth with Caries: A Randomized Clinical Trial.

    Science.gov (United States)

    Brizuela, Claudia; Ormeño, Andrea; Cabrera, Carolina; Cabezas, Roxana; Silva, Carolina Inostroza; Ramírez, Valeria; Mercade, Montse

    2017-11-01

    Direct pulp capping treatment is intended to preserve pulp vitality, to avoid or retard root canal treatment, and, in cases with an open apex, to allow continued root development. Historically, calcium hydroxide (CH) was the gold standard material, but nowadays calcium silicate materials (CSMs) are displacing CH because of their high bioactivity, biocompatibility, sealing ability, and mechanical properties. However, more randomized clinical trials are needed to confirm the appropriateness of CSMs as replacement materials for CH in direct pulp capping procedures. A randomized clinical trial was conducted that included 169 patients (mean age, 11.3 years) from the Maipo district (Chile). The inclusion criterion was patients with 1 carious permanent tooth with pulpal exposure, a candidate for a direct pulp capping procedure. The patients were randomly allocated to one of the experimental groups (CH, Biodentine, or mineral trioxide aggregate [MTA]). Clinical follow-up examinations were performed at 1 week, 3 months, 6 months, and 1 year. The Fisher exact test was performed. At the follow-up examination at 1 week, the patients showed 100% clinical success. At 3 months, there was 1 failure in the CH group. At 6 months, there were 4 new failures (1 in the CH group and 3 in the MTA group). At 1 year, there was another failure in the CH group. There were no statistically significant differences among the experimental groups. CSMs appear to be suitable materials to replace CH. Although no significant differences were found among the materials studied, Biodentine and MTA offered some advantages over CH. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  15. Improvement of calcium mineral separation contrast using anionic reagents: electrokinetics properties and flotation

    Science.gov (United States)

    Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.

    2017-07-01

    The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.

  16. Behavior of Colorado Plateau uranium minerals during oxidation

    Science.gov (United States)

    Garrels, Robert Minard; Christ, C.L.

    1956-01-01

    Uranium occurs as U(VI) and U(IV) in minerals of the Colorado Plateau ores. The number of species containing U(VI) is large, but only two U(IV) minerals are known from the Plateau: uraninite, and oxide, and coffinite, a hydroxy-silicate. These oxidize to yield U(VI) before reacting significantly with other mineral constituents. Crystal-structure analysis has shown that U(VI) invariable occurs as uranyl ion, UO2+2. Uranyl ion may form complex carbonate or sulfate ions with resulting soluble compounds, but only in the absence of quinquevalent vanadium, arsenic, or phosphorous. In the presence of these elements in the +5 valence state, the uranyl ion is fixed in insoluble layer compounds formed by union of uranyl ion with orthovanadate, orthophosphate, or orthoarsenate. Under favorable conditions UO2+2 may react to form the relatively insoluble rutherfordine, UO2CO3, or hydrated uranyl hydroxides. These are rarely found on the Colorado Plateau as opposed to their excellent development in other uraniferous areas, a condition which is apparently related to the semiarid climate and low water table of the Plateau. Uranium may also be fixed as uranyl silicate, but little is known about minerals of this kind. In the present study emphasis has been placed on a detailing of the chemical and crystal structural changes which occur in the oxidation paragenetic sequence.

  17. TANINOS CONDENSADOS DA CASCA DE ANGICO-VERMELHO (Anadenanthera colubrina var. cebil EXTRAÍDOS COM SOLUÇÕES DE HIDRÓXIDO E SULFITO DE SÓDIO

    Directory of Open Access Journals (Sweden)

    JUAREZ BENIGNO PAES

    2013-01-01

    Full Text Available This research aimed to evaluate the tannins extracted content of Anadenanthera colubrina (Vell. Brenan var. cebil (Gris.. Alts. bark in aqueous solution of sodium hydroxide, sodium sulfite and hydroxide + sulfite having as comparison the amount extracted in distilled. A total of 25 g of dry sawdust and 3% of chemicals were used with relationship to dry weight of sawdust. To compare the effect of water with one of the other used solutions it was found that the addition of sodium hydroxide, sodium sulfite or hydroxide + sulfite caused an increase in solid total contents (TST of 60,17%, 28,45% and 60,17%, in condensed tannin contents (TTC of 34,5%, 20,02% and 18,02% and of no-tannins of 117,34%, 47,3% and 146,6% and a reduction in the Stiasny’s index of 15,62%, 5,53% and 24,51%, respectively. Statistical analyzes showed that the sodium hydroxide solution extracted a larger amount from tannic substances when compared with the water, having the sodium sulfite and the hydroxide + sodium sulfite solutions presented middlemen results. The distilled water extracted a lower solid total content than other solutions, but the extract contained a greater Stiasny’s index than those obtained by other solutions.

  18. Aluminum Removal From Hanford Waste By Lithium Hydrotalcite Precipitation - Laboratory Scale Validation On Waste Simulants Test Report

    International Nuclear Information System (INIS)

    Sams, T.; Hagerty, K.

    2011-01-01

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH) 4 ) as lithium hydrotalcite (Li 2 CO 3 .4Al(OH) 3 .3H 2 O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  19. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides

    International Nuclear Information System (INIS)

    Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E.

    2014-01-01

    Highlights: • Fe(III)–Cr(III) hydroxides enhance groundwater quality better than pure Cr(III) compounds. • Crystalline Cr(OH) 3 ·3H 2 O was unstable, with a solubility higher than 50 μg/l. • Amorphous Cr(OH) 3 (am) was stable with a solubility lower than 50 μg/l in the range 5.7 0.75 Cr 0.25 (OH) 3 , the stability region was extended to 4.8 3 ·xH 2 O whereas in the presence of iron the precipitate is a mixed Fe (1−x) Cr x (OH) 3 phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fe x ,Cr 1−x )(OH) 3 hydroxides as compared to the stability of Cr(OH) 3 . We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH) 3 ·3H 2 O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH) 3 (am) phase. Mixed Fe 0.75 Cr 0.25 (OH) 3 hydroxides were found to be of the ferrihydrite structure, Fe(OH) 3 , and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe(III)–Cr(III) hydroxides are more effective enhancers of groundwater quality, in comparison to the plain amorphous or crystalline Cr(III) hydroxides, the latter found to have a solubility typically higher than 50 μg/l (maximum EU permitted Cr level in drinking water), while the amorphous Cr(OH) 3 (am) phase was within the drinking water threshold in the range 5.7 0.75 Cr 0.25 (OH) 3 hydroxides studied were of extended stability in the 4.8 < pH < 13.5 range

  20. Nanostructured Layered Terbium Hydroxide Containing NASIDs: In Vitro Physicochemical and Biological Evaluations.

    Science.gov (United States)

    Gu, Qing-Yang; Qiu, Xiao; Liu, Jing-Jing; Fu, Min; Chao, Jian-Ping; Ju, Rui-Jun; Li, Xue-Tao

    2018-08-01

    Diclofenac sodium (abrr. DS) and indomethacin (abrr. IMC) have been intercalated into the layered terbium hydroxide (LTbH) by anion exchange method. Chemical compositions, thermostability, morphology, luminescence property, release behaviors and cytotoxic effects have been investigated. The DS molecules may embed between layers with a bilayered arrangement and the IMC may correspond to a monolayered arrangement. The Tb3+ luminescence in DS-LTbH and IMC-LTbH composites were enhanced compared with LTbH precusor and the luminescence intensity increases with the deprotonation degree. Drug release was measured with HPLC, and LTbH showed sustained release behavior on both drugs. Further In Vitro evaluation were carried out on cancer cells. Cytotoxic effect of LTbH was observed with a sulforhodamine B colorimetric assay on a variety of cancer cell lines, which revealed that the LTbH showed little cytotoxic effect. Results indicate LTbH may offer a potential vehicle as an effective drug delivery system along with diagnostic integration.

  1. Thermodynamic Properties of Alkali Metal Hydroxides. Part II. Potassium, Rubidium, and Cesium Hydroxides

    International Nuclear Information System (INIS)

    Gurvich, L.V.; Bergman, G.A.; Gorokhov, L.N.; Iorish, V.S.; Leonidov, V.Y.; Yungman, V.S.

    1997-01-01

    The data on thermodynamic and molecular properties of the potassium, rubidium and cesium hydroxides have been collected, critically reviewed, analyzed, and evaluated. Tables of the thermodynamic properties [C p circ , Φ=-(G -H(0)/T, S, H -H(0), Δ f H, Δ f G)] of these hydroxides in the condensed and gaseous states have been calculated using the results of the analysis and some estimated values. The recommendations are compared with earlier evaluations given in the JANAF Thermochemical Tables and Thermodynamic Properties of Individual Substances. The properties considered are: the temperature and enthalpy of phase transitions and fusion, heat capacities, spectroscopic data, structures, bond energies, and enthalpies of formation at 298.15 K. The thermodynamic functions in solid, liquid, and gaseous states are calculated from T=0 to 2000 K for substances in condensed phase and up to 6000 K for gases. copyright 1997 American Institute of Physics and American Chemical Society

  2. Trapped electron spectra in hydrates of sodium, potassium and tetraalkylammonium hydroxides of varying H2O content

    International Nuclear Information System (INIS)

    Zagorski, Z.P.; Grodkowski, J.; Bobrowski, K.

    1980-01-01

    Transient spectra of e - sub(t) in hydrates at room temperature obtained by pulse radiolysis with Cerenkov L.S.M. are presented. The decrease in number of H 2 O molecules n, in KOH.nH 2 O and NaOH.nH 2 O is accompanied by a blue shift of the absorption maximum. The same tendency is observed in concentrated solutions. The shifts in tetraalkylammonium hydroxides are not as extended as in KOH and NaOH systems, because TAAH's coordinate more H 2 O molecules and the preparation of solution of higher concentration is not possible. Freezing of hydrates does not change the e - sub(t) spectrum considerably. The concept of the trap containing one molecule of water and one electron is discussed in the general context of the phenomena. (author)

  3. Ion-exchange synthesis of compounds based on low-water niobium hydroxide

    International Nuclear Information System (INIS)

    Ivanova, N.E.; Sakharov, V.E.; Korovin, S.S.

    1977-01-01

    Ordinary physico-chemical methods have been used for studying the possibilities of the ion-exchange synthesis of niobates of alkaline and alkaline-earth elements based on low-water niobium hydroxide small at relatively low temperatures. It has been established that cation-exchange properties of low-water niobium hydroxide are revealed in a wide range of pH (from 8.95 to 12.4 for alkaline-earth elements and from 6.7 to 12.0 for alkaline elements). Physico-chemical study of solid phases points that there is a monophase with low-water niobium hydroxide. The rate of crystallization ageing of amorphous phases based on low-water niobium hydroxide is rather small for the samples with a M:Nb ratio less than 1.0 whereas mixed hydroxides with M:Nb ratio more than 1.0 reveal on X-ray diffraction patterns diffusion reflections after keeping in mother liquor for 5 hours-1 day

  4. Microbial Precipitation of Cr(III)-Hydroxide and Se(0) Nanoparticles During Anoxic Bioreduction of Cr(VI)- and Se(VI)-Contaminated Water.

    Science.gov (United States)

    Kim, Yumi; Oh, Jong-Min; Roh, Yul

    2017-04-01

    This study examined the microbial precipitations of Cr(III)-hydroxide and Se(0) nanoparticles during anoxic bioreductions of Cr(VI) and Se(VI) using metal-reducing bacteria enriched from groundwater. Metal-reducing bacteria enriched from groundwater at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT), Daejeon, S. Korea were used. Metal reduction and precipitation experiments with the metal-reducing bacteria were conducted using Cr(VI)- and Se(VI)-contaminated water and glucose as a carbon source under an anaerobic environment at room temperature. XRD, SEM-EDX, and TEM-EDX analyses were used to characterize the mineralogy, crystal structure, chemistry, shape, and size distribution of the precipitates. The metal-reducing bacteria reduced Cr(VI) of potassium chromate (K₂CrO₄) to Cr(III) of chromium hydroxide [Cr(OH)3], and Se(VI) of sodium selenate (Na₂SeO₄) to selenium Se(0), with changes of color and turbidity. XRD, SEM-EDX, and TEM-EDX analyses revealed that the chromium hydroxide [Cr(OH)₃] was formed extracellularly with nanoparticles of 20–30 nm in size, and elemental selenium Se(0) nanoparticles had a sphere shape of 50–250 nm in size. These results show that metal-reducing bacteria in groundwater can aid or accelerate precipitation of heavy metals such as Cr(VI) and Se(VI) via bioreduction processes under anoxic environments. These results may also be useful for the recovery of Cr and Se nanoparticles in natural environments.

  5. Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China.

    Science.gov (United States)

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2016-02-01

    The east Jilin Province in China, Jingyu County has been explored as a potential for enriching mineral water. In order to assess the water quality and quantity, it is of crucial importance to investigate the origin of the mineral water and its flow paths. In this study, eighteen mineral springs were sampled in May and September of 2012, May and September of 2013, and May 2014 and the environment, evolvement, and reaction mechanism of mineral water formation were analysed by hydrochemical data analysis, geochemical modelling and multivariate statistical analysis. The results showed that the investigated mineral water was rich in calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, fluoride, nitrate, total iron, silicate, and strontium, and mineral water ages ranged from 11.0 to more than 61.0 years. The U-shape contours of the mineral ages indicate a local and discrete recharge. The mineral compositions of the rocks were olivine, potassium feldspar, pyroxene, albite, and anorthite and were under-saturated in the mineral water. The origin of mineral water was from the hydrolysis of basalt minerals under a neutral to slightly alkaline and CO2-rich environment.

  6. The citotoxicity of calcium hydroxide intracanal dressing by MTT assay

    Directory of Open Access Journals (Sweden)

    Nanik Zubaidah

    2007-12-01

    Full Text Available Calcium hydroxide had been used as the intracanal dressing in endodontic treatment due to its high alkaline and high antimicrobial capacity. It also be able to dissolve the necrotic tissue, prevent the root resorbtion and regenerate a new hard tissue. The aim of this study is to identify the concentration of calcium hydroxide that has the lowest citotoxicity. There are 5 groups, each group had 8 samples with different concentration of calcium hydroxide. Group I: 50%, Group II: 55%, Group III: 60%, Group IV: 65% and Group V: 70%. The citotoxicity test by using enzymatic assay of MTT [3-(4.5- dimethylthiazol-2yl ]-2.5 diphenyl tetrazolium bromide, against fibroblast cell (BHK-21. The result of susceptibility test was showed by the citotoxicity detection of the survive cell of fibroblast that was measured spectrophotometrically using 595 nm beam. The data was analyzed using One-Way ANOVA test with significant difference α = 0.05 and subsequently LSD test. The result showed that in concentration 50%, 55%, 60%, 65%, and 70% calcium hydroxide had low toxicity, but calcium hydroxide 60%, had the lowest toxicity.

  7. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    Science.gov (United States)

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  8. Sorption of chromium(VI) and chromium(III) on aluminium hydroxide

    International Nuclear Information System (INIS)

    Music, S.

    1986-01-01

    Factors that influence the sorption of Cr(VI) and Cr(III) on aluminium hydroxide were investigated. The sorption of chromates decreases as the pH of the suspension increases. The mechanism of CrOsub(4)sup(2-) sorption was interpreted in terms of reactions between chromates and -OH and/or Hsub(2)O groups at the hydroxide/liquid interface. It was shown that chromates are more tightly sorbed on aluminium hydroxide compared to other anions, e.g. chlorides. On the other hand, specifically absorbed anions, such as molybdates, compete strongly with chromates for the sorption sites. The sorption of chromium(III) increases with the pH of the suspension. Also, the sorption of chromium(III) is suppressed in the presence of citrate ions. The best conditions for the fixation of Cr(VI) and Cr(III) by aluminium hydroxide are presented. (author)

  9. Influence of composition of the raw materials on phase formation in solid compounds based on slag and clay minerals

    International Nuclear Information System (INIS)

    Galkin, A.V.; Tolebaev, T.; Omarova, V.I.; Burkitbaev, M.; Blynskiy, A.P.; Bachilova, N.V.; Matsynina, V.I.

    2003-01-01

    Full text: Activation of solidification processes in a compound formed on the basis of slag and clay minerals using sodium hydroxide - the output product from processing the BN-350 sodium coolant it is expedient to form the final product with a phase composition representing (in terms of long term storage) hydro-alumino-silicates incorporating Na-22 and Cs-137 radionuclides, which isomorphly replace other atoms in the crystal lattice sites. Combination of mineral phases, such as alkaline and alkaline-earth hydro-alumino-silicates with zeolite-like structure, providing sorptive properties, and the tobermorite like low-base hydro silicates of calcium defining the physico-mechanical properties of compound is the necessary condition for the compound stability. Investigations of phase formation in the mixtures of Kazakhstan clay, slag materials and alkali have been conducted targeted to control the physico-chemical properties of solid compound. The mixtures of alkali, thermal power plant ashes and clays of various mineralogical genesis (kaolinite, bentonite, Ca-Na-smectite montmorillonite) have been studied. The ashes and phosphorous slag while interacting with alkali are determined to form the non-alkaline hydro-silicates of stavrolite and indianite (anortite) type with free alkali being found in an unbound state. Both alkaline and alkaline-alkaline-earth hydro-silicates of Na 2 Ca 2 Si 2 O 7 H 2 O type are only formed in a compounds containing metallurgical slag. Formation of alkaline hydro-alumino-silicates of NaAlSiO 4 H 2 0 type as well as tomsonite (Na 4 Ca 8 [Al 20S i 20 O 80 ] 24H 2 O) - the zeolite like mineral have been detected in a two-component alkali-clay mixtures. Besides the quantity of tomsonite was determined to be not only dependent on Al 2 O 3 content in clay component but is also defined by stoichiometric composition of the mixture, because zeolite synthesis takes place under conditions of gels co-deposition and high pH value. Maximum quantity of

  10. Inorganic and organic trace mineral supplementation in weanling pig diets

    Directory of Open Access Journals (Sweden)

    MARIA C. THOMAZ

    2015-06-01

    Full Text Available A study was conducted to evaluate the effects of dietary inorganic and organic trace minerals in two levels of supplementation regarding performance, diarrhea occurrence, hematological parameters, fecal mineral excretion and mineral retention in metacarpals and liver of weanling pigs. Seventy piglets weaned at 21 days of age with an average initial body weight of 6.70 ± 0.38 kg were allotted in five treatments: control diet (no added trace mineral premix; 50% ITMP (control diet with inorganic trace mineral premix supplying only 50% of trace mineral requirements; 50% OTMP (control diet with organic trace mineral premix supplying only 50% of trace mineral requirements; 100% ITMP (control diet with inorganic trace mineral premix supplying 100% of trace mineral requirements; and 100% OTMP (control diet with organic trace mineral premix supplying 100% of trace mineral requirements. Feed intake and daily weight gain were not affected by treatments, however, piglets supplemented by trace minerals presented better gain:feed ratio. No differences were observed at calcium, phosphorus, potassium, magnesium, sodium and sulfur excreted in feces per kilogram of feed intake. Treatments did not affect calcium, phosphorus, magnesium, sulfur and iron content in metacarpals. Trace mineral supplementation, regardless of level and source, improved the performance of piglets.

  11. Determination of sodium hyaluronate in pharmaceutical formulations by HPLC–UV

    Directory of Open Access Journals (Sweden)

    K. Ruckmani

    2013-10-01

    Full Text Available A liquid chromatography (HPLC method with UV detection was developed for determination of sodium hyaluronate in pharmaceutical formulation. Sodium hyaluronate is a polymer of disaccharides, composed of d-glucuronic acid and d-N-acetylglucosamine, linked via alternating β-1, 4 and β-1, 3 glycosidic bonds. Being a polymer compound it lacks a UV absorbing chromophore. In the absence of a UV absorbing chromophore and highly polar nature of compound, the analysis becomes a major challenge. To overcome these problems a novel method for the determination of sodium hyaluronate was developed and validated based on size exclusion liquid chromatography (SEC with UV detection. An isocratic mobile phase consisting of buffer 0.05 M potassium dihydrogen phosphate, pH adjusted to 7.0 using potassium hydroxide (10% was used. Chromatography was carried out at 25 °C on a BioSep SEC S2000, 300 mm×7.8 mm column. The detection was carried out using variable wavelength UV–vis detector set at 205 nm. The compounds were eluted isocratically at a steady flow rate of 1.0 mL/min. Sodium hyaluronate retention time was about 4.9 min with an asymmetry factor of 1.93. A calibration curve was obtained from 1 to 38 g/mL (r>0.9998. Within-day % RSD was 1.0 and between-day % RSD was 1.10. Specificity/selectivity experiments revealed the absence of interference from excipients, recovery from spiked samples for sodium hyaluronate was 99–102. The developed method was applied to the determination of sodium hyaluronate in pharmaceutical drug substance and product. Keywords: Sodium hyaluronate, Hyaluronic acid, Size exclusion chromatography, Derivatization, Chromophore

  12. Use of the sulfide mineral pyrite as electrochemical sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile, propionitrile and benzonitrile.

    Science.gov (United States)

    Mihajlović, Ljiljana; Nikolić-Mandić, Snezana; Vukanović, Branislav; Mihajlović, Randel

    2009-03-01

    Natural monocrystalline pyrite as a new indicator electrode for the potentiometric titration of weak acids in acetonitrile, propionitrile and benzonitrile was studied. The investigated electrode showed a linear dynamic response for p-toluenesulfonic acid concentrations in the range from 0.1 to 0.001 M, with a Nernstian slope of 74 mV per decade. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agent for this titration. The response time was less than (11 s) and the lifetime of the electrode is long. The advantages of the electrode are log-term stability, fast response, and reproducibility, while the sensor is easy to prepare and of low cost.

  13. Oxygen titration in sodium. The mercury method and its use for very low values; Dosage de l'oxygene dans le sodium. La methode au mercure : son utilisation dans le cas de tres faibles teneurs

    Energy Technology Data Exchange (ETDEWEB)

    Champeix, L; Darras, R; Duflo, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The mercury method for the oxygen titration in sodium has now been known for ten years and is probably the more frequently used. In this text, precision are given to what extent it is valuable when used in microanalysis. Details are given on the apparatus, its manipulation and its calibration. After testing, we have decided to use flame spectroscopy to titrate the sodium hydroxide formed. Discussions are exposed on the errors due to the presence of sodium chloride and calcium. Results are examined from the point of view of their reproducibility and accuracy. If great care is taken, this method allows oxygen titration in sodium even for values below 10 ppm with satisfactory precision. (author) [French] La methode au mercure pour le dosage de l'oxygene dans le sodium est connue depuis une dizaine d'annees, elle est probablement la plus utilisee. Nous avons voulu preciser dans quelle mesure elle etait valable dans le domaine des faibles teneurs avec une precision acceptable. Nous decrivons en detail l'appareil utilise pour l'analyse, le mode operatoire et la methode d'etalonnage. Nos essais nous ont conduit a adopter la spectrographie de flamme pour le dosage de la soude formee, les erreurs introduites par la presence de chlorure de sodium et de calcium sont discutes. Les resultats obtenus sont examines du point de vue de la reproductibilite, de la justesse. Moyennant un mode operatoire tres soigne, cette methode permet le dosage de l'oxygene dans le sodium, meme a des teneurs inferieures a 10 ppm avec une precision satisfaisante. (auteur)

  14. Effect of insulin combined alendronate sodium on bone mineral density and levels of serum BAP, TRAP-5b and BGP in aged patients with type 2 diabetes mellitus with osteoporosis

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2016-06-01

    Full Text Available Objective: To explore the effect of insulin combined alendronate sodium on bone mineral density and levels of serum BAP, TRAP-5b and BGP in aged patients with type 2 diabetes mellitus with osteoporosis. Methods: A total of 136 patients with type 2 diabetes mellitus with osteoporosis in January 2014 to January 2016 in our hospital for the treatment were selected, and randomly divided into 4 groups, each of 40 cases. Caltrate D was given as a basic treatment to all the patients, and the control group was given the treatment of insulin, and the metformin group was given the treatment of metformin, and the combination group was given the treatment of metformin combined alendronate, and the experiment group was given the treatment of insulin combined alendronate. BMD of the femoral neck and the serum levels of BAP, TRAP-5b and BGP were detected and recorded before the treatment and after one year’s treatment. Results: On index of bone mineral density, the control group and the metformin group showed no significant differences; the combination group was slightly improved, but showed no statistical significance; After the treatment, the bone mineral density of the experiment was significantly improved. On index of bone turnover, the levels of serum BAP and BGP all had been improved and the level of TRAP-5b all was reduced then before the treatment in the control group, the combination group and the experiment group, but only the experiment group showed significant differences; On index of bone turnover, the experiment group were better than other groups, the differences were statistical significant. Conclusions: It has greater clinical curative effect that insulin combined alendronate sodium in the treatment of aged patients with type 2 diabetes mellitus with osteoporosis, it can effectively balance the metabolism of bone, safe and reliable, and it is worthy of application.

  15. Crystallite size effects in stacking faulted nickel hydroxide and its electrochemical behaviour

    International Nuclear Information System (INIS)

    Ramesh, T.N.

    2009-01-01

    β-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH) 2 . Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC). This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide

  16. Delayed tooth replantation after root surface treatment with sodium hypochlorite and sodium fluoride: histomorphometric analysis in rats.

    Science.gov (United States)

    Sottovia, André Dotto; Sonoda, Celso Koogi; Poi, Wilson Roberto; Panzarini, Sônia Regina; Lauris, José Roberto Pereira

    2006-04-01

    In cases of delayed tooth replantation, non-vital periodontal ligament remnants have been removed with sodium hypochlorite in an attempt to control root resorption. Nevertheless, reports of its irritating potential in contact with the alveolar connective tissue have been described. Therefore, this study evaluated the healing process on delayed replantation of rat teeth, after periodontal ligament removal by different treatment modalities. Twenty-four rats, assigned to 3 groups (n=8), had their upper right incisor extracted and left on the workbench for desiccation during 60 min. Afterwards, the teeth in group I were immersed in saline for 2 min. In group II, root surfaces were scrubbed with gauze soaked in saline for 2 min; and in group III, scrubbing was done with gauze soaked in 1% sodium hypochlorite solution. Thereafter, root surfaces were etched with 37% phosphoric acid and immersed in 2% acidulate-phosphate sodium fluoride solution, at pH 5.5. Root canals were filled with a calcium hydroxide-based paste and the teeth were replanted. The animals were sacrificed 60 days postoperatively and the pieces containing the replanted teeth were processed and paraffin- embedded. Semi-serial transversally sections were obtained from the middle third of the root and stained with hematoxylin and eosin for histomorphometric analysis. Data were analyzed statistically using Kruskal-Wallis and Dunn's tests. The results showed that root structure and cementum extension were more affected by resorption in group III (p<0.05). All groups were affected by root resorption but the treatment performed in group III was the least effective for its control. The treatment accomplished in groups I and II yielded similar results to each other.

  17. Synthesis of hydroxide type sorbents from industry high-iron wastes

    International Nuclear Information System (INIS)

    Stepanenko, E.K.; Smirnov, A.L.

    1986-01-01

    Article presents the results of studies on possibility of using of technological iron containing wastes for the obtaining of hydroxide type sorbents in granular form. The scheme of technology of synthesis of hydroxide type sorbents from high-iron wastes is elaborated.

  18. Uranium (VI) chemistry at the interface solution/minerals (quartz and aluminium hydroxide): experiments and spectroscopic investigations of the uranyl surface species; Chimie de l'uranium (VI) a l'interface solution/mineraux (quartz et hydroxyde d'aluminium): experiences et caracterisations spectroscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Froideval, A.

    2004-09-15

    This study deals with the understanding of the uranyl chemistry at the 0.1 M NaNO{sub 3} solution/mineral (quartz and aluminium hydroxide) interface. The aims are:(i) to identify and to characterize the different uranyl surface species (mononuclear, polynuclear complexes and/or precipitates...), i.e. the coordination environments of sorbed/precipitated uranyl ions, by using X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) and time-resolved laser-induced fluorescence spectroscopy (TRLFS), and;(ii) to investigate the influence of pH, initial uranyl aqueous concentration and hydroxyl ligand concentration on the uranyl surface speciation. Our study on the speciation of uranyl ions at the quartz surface (i) confirms the formation of uranyl polynuclear/oligomers on quartz from moderate (1 {mu}mol/m{sup 2}) to high (26 {mu}mol/m{sup 2}) uranyl surface concentrations and (ii) show that theses polynuclear species coexist with uranyl mononuclear surface species over a pH range {approx_equal} 5-8.5 and a wide range of initial uranyl concentration o f the solutions (10-100 {mu}M). The uranyl concentration of these surface species depends on pH and on the initial uranyl aqueous concentration. Hydrate (surface-) precipitates and/or adsorbed polynuclear species and monomeric uranyl surface complexes are formed on aluminium hydroxide. Uranyl mononuclear complexes are predominant at acidic pH, as well as uranyl in solution or on the surface. Besides mononuclear species, precipitates and/or adsorbed polynuclear species are predominantly formed at neutral pH values on aluminium hydroxide. A main contribution of our investigations is that precipitation and/or adsorption of polynuclear species seem to occur at low uranyl surface concentrations (0.01-0.4 {mu}mol/m{sup 2}). The uranyl surface speciation is mainly dependent on the pH and the aluminol ligand concentration. (author)

  19. Exogenic and endogenic Europa minerals

    Science.gov (United States)

    Maynard-Casely, H. E.; Brand, H. E. A.; Wilson, S. A.

    2016-12-01

    The Galileo Near Infrared Mapping Spectrometer (NIMS) identified a significant `non-ice' component upon the surface of Jupiter's moon Europa. Current explanations invoke both endogenic and exogenic origins for this material. It has long been suggested that magnesium and sodium sulfate minerals could have leached from the rock below a putative ocean (endogenic) 1 and that sulfuric acid hydrate minerals could have been radiologically produced from ionised sulfur originally from Io's volcanoes (exogenic) 2. However, a more recent theory proposes that the `non-ice' component could be radiation damaged NaCl leached from Europa's speculative ocean 3. What if the minerals are actually from combination of both endogenic and exogenic sources? To investigate this possibility we have focused on discovering new minerals that might form in the combination of the latter two cases, that is a mixture of leached sulfates hydrates with radiologically produced sulfuric acid. To this end we have explored a number of solutions in the MgSO4-H2SO4-H2O and Na2SO4-H2SO4-H2O systems, between 80 and 280 K with synchrotron x-ray powder diffraction. We report a number of new materials formed in this these ternary systems. This suggests that it should be considered that the `non-ice' component of the Europa's surface could be a material derived from endogenic and exogenic components. 1 Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368-390 (1991). 2 Carlson, R. W., Anderson, M. S., Mehlman, R. & Johnson, R. E. Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus 177, 461-471, doi:10.1016/j.icarus.2005.03.026 (2005). 3 Hand, K. P. & Carlson, R. W. Europa's surface color suggests an ocean rich with sodium chloride. Geophysical Research Letters, 2015GL063559, doi:10.1002/2015gl063559 (2015).

  20. Application of solution-mineral equilibrium chemistry to solution mining of uranium ores

    International Nuclear Information System (INIS)

    Riese, A.C.; Propp, C.J.

    1980-01-01

    Modern methods of uranium solution mining are typically accompanied by gains and losses of mass through reagent consumption by rock-forming minerals, with subsequent formation of clay minerals, gypsum, carbonates, and iron oxyhydroxides. A systematic approach to alleviate such problems involves the application of leach solutions that are in equilibrium with the host-rock minerals but in disequilibrium with the ore-forming minerals. This partial equilibrium can be approximated by solution-composition adjustments within the systems K 2 O-Al 2 O 3 SiO 2 -H 2 O and Na 2 O 3 -Al 2 O 3 SiO 2 -H 2 O. Uranium ore containing 0.15 percent U 3 O 8 from the Gulf Mineral Resources Corporation's Mariano Lake mine, the Smith Lake district of the Grants mineral belt, was collected for investigation. Presented are a theoretical evaluation of leachate data and an experimental treatment of the ore, which contained mainly K-feldspar, plagioclase feldspar, and quartz (with lesser amounts of micas, clay minerals, and organic carbonaceous material). Small-scale (less than or equal to 1 kg) column-leaching experiments were conducted to model the results of conventional leaching operations and to provide leachate solutions that could be compared with solutions calculated to be in equilibrium with the matrix minerals. Leach solutions employed include: 1) sulfuric acid, 2) sodium bicarbonate, and 3) sulfuric acid with 1.0 molal potassium chloride. The uranium concentrations in the sodium-bicarbonate leach solution and the acid-leach solution were about a gram per liter at the termination of the tests. However, the permeability of the ore in the acid leach was greatly reduced, owing to the formation of clay minerals. Uranium solubility in the leach column stabilized with the potassium-chloride solution was calculated from leachate compositions to be limited by the solubility of carnotite

  1. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  2. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  3. Oxidation of sodium (2-14C) acetate with alkaline permanganate

    International Nuclear Information System (INIS)

    Zielinski, M.

    1983-01-01

    The mechanism and kinetics of the oxidation of sodium acetate with permanganate in alkile and neutral media have been investigated using (2- 14 C) acetate. The reaction is first order with respect to both permanganate and acetate ions. The initial second order rate constants depend linearly on the square of the hydroxide ion concentration. Arrhenius activation energy of the oxidation reaction carried out in 12M NaOH is 24.0 kcal/mole in the temperature interval of 50-100 deg C. The mechanism of the principal path leading to the oxalate formation and the mechanism of the side reaction resulting in the carbon dioxide production have been proposed and discussed. (author)

  4. Effects of gamma irradiation and sodium hydroxide of cell wall constituents and digestibility energy of some agricultural residues. Final report

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1996-06-01

    The effect of various doses of gamma irradiation (0,100,150,200 KGy) and different concentrations of sodium hydroxide on crude fibre (CF), Cell-wall constituents (NDF, ADF, ADL), in vitro organic matter digestibility (IVOMD), gross energy (GE), in vitro digestible energy (IVDE) of wheat straw (W.S) cotton seed shall (C.S.S), peanut shell (P.S), soybean shell (SB.S), extracted olive cake (O.C.E) and extracted sunflower of unpeeled seeds (S.U.E) were investigated. Results indicated that HaOH in the concentrations at (4 and 6%) had significant effects on the CF content of W.S and P.S, E.U.E, SB.S, C.S.S, O.C.E; respectively. Treating S.U.E, W.S and all other residues with NaoH (2,4 and 6%) respectively, decreased the NDF level. Irradiation dose of 200 KGy decreased CF for all residues, and it reduced the NDF for S.U.E and SB.S. However, lower irradiation dose (150 KGy) was good enough to reduce the NDF for W.S, C.S.S, P.S and O.C.E. Combined treatment resulted in better effects in reducing the concentrations of the cell-wall constituents. The digestible energy values (kJ/Kg DM) increased by 1120,1 220, 2110 (W.S); 620, 830, 1000 for P.S; 240, 500, 580 for O.C.E; 500, 850, 870 for S.U.E; 550, 1060, 1200 for SB.S and 1260, 1710, 2070 for C.S.S using 100, 150, 200, KGy respectively, in comparison to unirradiated controls. Also, the IVDE values (Kj/Kg DM) increased by 560, 1050, 1590 for W.S; 310, 460, 650 for P.S; 170, 760, 1530 for C.S.S; 450, 990, 1190 for O.C.E using 2%, 4%, 6% NaOH respectively, in comparison to controls. No changes in the IVDE values for S.U.E and SB.S. Combined treatment resulted in an even better increase in the digestible energy, except S.U.E and SB.S. (Author). 37 refs., 22 tabs., 18 figs

  5. Study of the Effect of Sodium Sulfide as a Selective Depressor in the Separation of Chalcopyrite and Molybdenite

    Directory of Open Access Journals (Sweden)

    Huiqing Peng

    2017-03-01

    Full Text Available Two kinds of collectors, sodium butyl xanthate and kerosene, and a depressor, sodium sulfide, were used in this research. The study applied flotation tests, pulp potential measurements, contact angle measurements, adsorption calculations, and Fourier Transform Infrared Spectroscopy (FTIR analyses to demonstrate the correlation between reagents and minerals. For xanthate collectors, the best flotation responses of chalcopyrite and molybdenite were obtained at pH = 8, and, for kerosene, these were obtained at pH = 4. The flotation of molybdenite seemed to be less influenced by xanthate than by kerosene, while that of chalcopyrite showed the opposite. The optimum concentration of sodium sulfide for separation was 0.03 mol/L, which rejected 83% chalcopyrite and recovered 82% molybdenite in the single mineral flotation. Pulp potential measurements revealed that the dixanthogen and xanthate were decomposed and desorbed, respectively, from the mineral surface in a reducing environment. The contact angle measurement and adsorption calculation conformed to the flotation response, indicating that few functions of the xanthate and sodium sulfide on the molybdenite flotation were due to their low adsorption densities. The FTIR results further clarified that the xanthate ion was adsorbed on chalcopyrite by forming cuprous xanthate and dixanthogen; however, on molybdenite the adsorption product was only dixanthogen. After conditioning with sodium sulfide, the chalcopyrite surface became clean, but the molybdenite surface still retained slight peaks of dixanthogen. Meanwhile, the possible mechanism was expounded in this research.

  6. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    Science.gov (United States)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  7. [Sodium, potassium and calcium content in regional dishes consumed in Sonora, Mexico].

    Science.gov (United States)

    Grijalva Haro, M I; Valencia, M E; Wyatt, J

    1990-06-01

    The content of sodium, potassium and calcium was determined in 15 regional dishes, by atomic absorption spectrophotometry. The Na:K ratio was high in most of the dishes due to the high sodium content and low content of potassium found. The higher sources of the studied minerals were "tortilla de harina" with 1,372.8 mg/100 g of sodium; "chorizo con papas" with 466 mg/100 g of potassium, and "calabacitas con queso" with 244.1 mg/100 g of calcium. Two of the dishes considered as desserts, "capirotada" and "arroz con leche" showed the lowest Na:K ratio (0.66 and 0.81, respectively).

  8. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Holm, René

    2013-01-01

    Amorphous forms of furosemide sodium salt and furosemide free acid were prepared by spray drying. For the preparation of the amorphous free acid, methanol was utilised as the solvent, whereas the amorphous sodium salt was formed from a sodium hydroxide-containing aqueous solvent in equimolar...... amounts of NaOH and furosemide. Information about the structural differences between the two amorphous forms was obtained by Fourier Transform Infrared Spectroscopy (FTIR), and glass transition temperature (Tg) was determined using Differential Scanning Calorimetry (DSC). The stability and devitrification...... tendency of the two amorphous forms were investigated by X-ray Powder Diffraction (XRPD). The apparent solubility of the two amorphous forms and the crystalline free acid form of furosemide in various gastric and intestinal stimulated media was determined. Moreover, the dissolution characteristics...

  9. Process of transformation of radioactive waste of metal sodium into soda solution by reaction with an alcohol followed by hydrolysis

    International Nuclear Information System (INIS)

    Chevalier, Gerard; Mathurin, Rene.

    1981-09-01

    Reviews of the literature and of the laboratory tests are followed by a presentation of the results obtained during experiments carried out on a model with some ten grams of sodium contaminated by radioactive materials and on an industrial pre-pilot with several kilograms of non-contaminated sodium. Sodium is converted into alcoholate through the action of ethylcarbitol (CH 3 CH 2 OCH 2 CH 2 OCH 2 OH) on liquid sodium in suspension in xylene at 110 deg C. Once the reaction is complete, xylene is distillated and the alcoholate is in solution in an axcess of alcohol. Hydrolysis by water gives out the initial alcohol which is then extracted from the aqueous phase by toluene. All these operations are carried out in inert atmosphere (nitrogen). Sodium is thus converted into a sodium hydroxide aqueous solution with emission of hydrogen, the intermediate products (alcohol, xylene, toluene) being recyled. The process is reliable and recycling of organic products is favourable economically. The advantage of the method is to concentrate nearly all the radioactivity of the contaminated sodium in the aqueous phase, thus avoiding the dispersion of activity especially with the gaseous effluents. Finally, data are given allowing to consider the realization of a pilot with a weekly capacity of 100 kg of sodium, in semi-continuous operation [fr

  10. Síntese de hidróxidos duplos lamelares do sistema Cu, Zn, Al-CO3: propriedades morfológicas, estruturais e comportamento térmico Synthesis of layered double hydroxides of the Cu, Zn, Al-CO3 system: morphological and structural properties and thermal behavior

    Directory of Open Access Journals (Sweden)

    S. S. dos Santos

    2011-09-01

    Full Text Available Hidrotalcitas são argilas aniônicas, também conhecidas como Hidróxidos Duplos Lamelares (HDLs e possuem estrutura semelhante ao mineral brucita. Os HDLs do sistema Cu, Zn, Al-CO3 foram sintetizados em condições que favorecem a formação de cristais pequenos e de elevada área superficial. A caracterização foi feita por difração de raios X, análise termogravimétrica, espectroscopia na região do infravermelho e microscopia eletrônica de varredura. A síntese foi feita pelo método de coprecipitação em pH variável, utilizando sulfatos de cobre e zinco, soluções de alumínio e solução de hidróxido sódio. Os difratogramas de raios X mostram que os compostos sintetizados possuem alta cristalinidade; a intensidade e a largura dos picos comprovam que os materiais se apresentam bem organizados e com empilhamento das lamelas. Os espectros de infravermelho apresentaram bandas associadas ao ânion carbonato presente na região interlamelar dos HDLs.Hydrotalcite-like compounds are anionic clays, also known as layered double hydroxides (LDH, which have structure similar to brucite mineral. The LDHs of the system Cu, Zn, Al-CO3 were synthesized under conditions to promote the formation of small crystals with high surface area. The characterization was done by X-ray diffraction, thermogravimetric analysis, FTIR spectroscopy, and scanning electron microscopy. The synthesis were based on the co-precipitation method, under different conditions (hydrothermal bath, titration time using copper and zinc sulfate, aluminum and sodium hydroxide solutions. The X-ray diffraction patterns show that synthesized compounds have high crystallinity, the peak intensities show that they are well organized and stacked with the lamellae. The infrared spectrum shows bands associated with carbonate anion in the interlayer region.

  11. Effects of Different Oral Doses of Sodium Chloride on the Basal Acid-Base and Mineral Status of Exercising Horses Fed Low Amounts of Hay.

    Science.gov (United States)

    Zeyner, Annette; Romanowski, Kristin; Vernunft, Andreas; Harris, Patricia; Müller, Ann-Marie; Wolf, Carola; Kienzle, Ellen

    2017-01-01

    The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i) persists beyond the immediate postprandial period, and ii) is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt) only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0), 50 (NaCl-50) or 100 (NaCl-100) g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50) at least met the most common recommendations for moderate work. Morning (7:00 AM) urine and venous blood samples were collected on days 0, 1-4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC) were determined. Mean apparent sodium digestibility ranged between 60-62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis.

  12. Effects of Different Oral Doses of Sodium Chloride on the Basal Acid-Base and Mineral Status of Exercising Horses Fed Low Amounts of Hay.

    Directory of Open Access Journals (Sweden)

    Annette Zeyner

    Full Text Available The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i persists beyond the immediate postprandial period, and ii is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0, 50 (NaCl-50 or 100 (NaCl-100 g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50 at least met the most common recommendations for moderate work. Morning (7:00 AM urine and venous blood samples were collected on days 0, 1-4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC were determined. Mean apparent sodium digestibility ranged between 60-62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P < 0.05. This suggests that a high proportion of the recommended salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis.

  13. The effectiveness of various chelates used alone or in combination with sodium hypochlorite in the removal of calcium hydroxide from root canals

    Directory of Open Access Journals (Sweden)

    Emel Uzunoglu

    2015-01-01

    Full Text Available Aim: To evaluate the effectiveness of various chelates used alone or in combination with sodium hypochlorite (NaOCl in the removal of calcium hydroxide (Ca(OH2 from root canals. Materials and Methods: The root canals of 72 mandibular incisors were prepared up to the ProTaper F2 file. Among these, six randomly selected teeth were used as negative and positive controls, while the root canals of the remaining 66 were filled with Ca(OH2 paste for 1 week. Then, the experimental group specimens were divided into six groups (n = 11. The access cavities were reopened and the Ca(OH2 paste in each group was removed using the following solutions: 2.5 mL ethylenediaminetetraacetic acid (EDTA; Group 1, 2.5 mL peracetic acid (PAA; Group 2, 2.5 mL QMix (Group 3, 2.5 mL NaOCl/2.5 mL EDTA (Group 4, 2.5 mL NaOCl/2.5 mL PAA (Group 5, and 2.5 mL NaOCl/2.5 mL QMix (Group 6. Digital photographs of longitudinally split specimens were imported into image analyzer software, and the amount of residual Ca (OH 2 was recorded as a percentage of the overall canal surface area. The results were analyzed using Kruskal–Wallis and Conover–Dunn tests. Results: The canal walls in the positive control group were completely covered with Ca(OH 2 compared with those in the negative control group. The lowest Ca(OH2 removal efficiency was observed for Group 4 (P < 0.001, while Group 6 showed favorable results (P < 0.05. Conclusions: QMix combined with NaOCl can remove Ca(OH2 from root canals as effectively as 17% EDTA and 1% PAA. The type and sequence of irrigants are more important than the total irrigant volume for effective Ca(OH 2 removal.

  14. Mineral and inorganic chemical composition of the Pernik coal, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Yossifova, Mariana G. [Geological Institute, Acad. G. Bonchev Str., Bl.24, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-11-22

    The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that

  15. Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.

    Science.gov (United States)

    Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K

    2009-01-01

    Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.

  16. Effect of Mineral Composition on Thermoluminescence Analysis of Irradiated Garlics

    International Nuclear Information System (INIS)

    Sookkasem, Atitaya; Wanwisa, Sudprasert; Vitittheeranon, Arag

    2009-07-01

    Full text: Thermoluminescence (TL) is one of the most popular techniques used for identification of irradiated foods such as spices, herbs and dried fruits in accordance with the Codex Standards. TL analysis is based on the determination of TL of adhering or contaminating minerals in foods. This research aimed to study the effect of mineral composition on the TL intensity. The composited minerals were extracted from 3 types of non-irradiated and irradiated garlic powders by sodium polytungstate solution. X-ray diffraction (XRD) spectroscopy was employed to investigate the type and amount of minerals present in garlic powders. TL of separated minerals were analysed using a Harshaw 4500 TL reader. The results showed that the mineral composition of garlic powders was mainly quartz of varying amounts depending on types of garlics. The TL intensity linearly increased with the amount of quartz present in the samples. It can be concluded that the amount of minerals affect the TL intensity which might influence the identification of irradiated tretment of garlics by thermoluminescence

  17. Mineral Elements Content of some Coarse Grains used as staple ...

    African Journals Online (AJOL)

    Analysis of mineral elements were carried out on some coarse grains used as staple food in Kano metropolis. The levels of Magnesium, Calcium, Manganese, Iron, Copper and Zinc were determined using atomic absorption spectrophotometer (AAS), and that of Sodium and Potassium were obtained using flame photometer ...

  18. Structure Integrity Testing of Mineral Feed by Means of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Jaroslav Začal

    2016-01-01

    Full Text Available This work deals with specific method of non-destructive testing – Acoustic emission (AE. Theoretical part of article is focused on underlying principle of this method and its applicability. The experimental part is focused on research of pressure resistance in mineral feed using the AE. Mineral feed is condensed cube of rock salt (sodium chloride with supplementary minerals, which is fed to livestock and game to supply the mineral elements necessary for their health and condition. Using the AE sensor is possible to provide monitoring of internal changes in the material. AE gives the overview of internal changes in material structure. With use of specific software we can interpret the acoustic signal and identify the current state of material integrity in real time.

  19. Preparation of Silicon by Calcium Reduction of Purified Rice Husk Ash

    International Nuclear Information System (INIS)

    Swe Zin Tun

    2011-12-01

    This research has studied on the possibility of production and preparation of silicon powder from rice husk ash (RHA) as raw material. RHA from gasifier, a waste product of the rice mill is rich in silica which contains 90.43% of silica. RHAs were purified by precipitation method using 1.5N, 2N, 2.5N and 3N of sodium hydroxide solution and 4.5N, 5N, 5.5N and 6.5N of sulphuric acid solution. The highest yield percent of silica was given by using 2.5N sodium hydroxide solution and 5N sulphuric acid solution X-ray fluoresence (XRF), X-rays diffraction (HRD) and Fourier transform infrared (FTRI) spectra were applied for determination of mineral content and chemical bonding in extracted silica and rice husk ash. Metallothermic reduction of purified extracted silica with calcium was investigated within the temperacture range of 700-900 C. The reduction product was characterized by XRD, XRF and scanning electron microcopy (SEM). The effect of temperature and reaction time in which reduction process was studied in this research.

  20. Theoretical and practical aspects of aqueous solution sodium silicate modifying

    Directory of Open Access Journals (Sweden)

    Mizuryaev Sergey

    2016-01-01

    Full Text Available This research deals with the use of liquid glass in industry particularly for porous filler production. The aim of this paper is to show the necessity liquid glass modification for the purpose of its rheological characteristics change for raw granules formation and providing given structure after porization. Data on chemical liquid glass modification are provided by adding sodium chloride. Moreover, inert mineral additives influence on porous filler properties are shown in this paper. The basic principles of light concrete composition selection are specified. Test results of light concrete on the developed porous sodium silicate filler are given.

  1. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    Science.gov (United States)

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  2. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    Directory of Open Access Journals (Sweden)

    Hirokazu Nakayama

    2014-07-01

    Full Text Available The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  3. Thermal and chemical interaction of hot liquid sodium with limestone concrete in argon atmosphere

    International Nuclear Information System (INIS)

    Fakir, Charan Parida; Sanjay, Kumar Das; Anil, Kumar Sharma; Ramesh, S.S.; Somayajulu, P.A.; Malarvizhi, B.; Kasinathan, N.; Rajan, M.

    2007-01-01

    Sodium cooled fast breeder reactors (FBRs) may experience accidental leakage of hot liquid sodium in the inert equipment cells and reactor cavity. The leaked sodium at temperature ranging from 120degC to 550degC can come in contact with the sacrificial layer of limestone concrete. In order to study the thermal and chemical impact of sodium on the limestone concrete, five experimental runs were carried out under different test conditions simulating accident scenarios as realistically as possible. In each experimental run, a given mass of liquid sodium preheated to a specified temperature was dumped on the surface of concrete specimen housed in a test vessel with argon atmosphere. The sodium pool formed on the concrete was heated with an immersion heater to maintain the pool temperature at pre-selected level. The temperatures at various strategic locations were continuously monitored throughout the test run. Online measurement of pressure, hydrogen gas and oxygen gas in argon atmosphere was conducted. The solid samples of sodium debris were retrieved from the posttest concrete specimen by manual core drilling device for chemical analysis of reacted and un-reacted sodium. After cleaning the sodium debris, a power-drilling machine was employed to collect powder samples at regular depth interval from the concrete block floor to determine residual free and bound water. This paper presents some of the dominant thermal and chemical features related to structural safety of the concrete. Among the thermal parameters, on-set time and residence period for Energetic Thermal Transients (ETT) along with peak and average heat generation rates are evaluated. Chemical parameters such as rate and extent of water release from concrete, sodium consumption, sodium hydroxide production and sodium emission into argon atmosphere are also elucidated. Physicochemical characteristics of post-test sodium and concrete debris were investigated. Moreover spatial distribution of sodium, free and

  4. A numerical design and feasibility study of self-wastage experiment using simulant material in a sodium fast reactor

    International Nuclear Information System (INIS)

    Jang, Sung Hyun; Takata, Takashi; Yamaguchi, Akira

    2016-01-01

    A sodium-water reaction takes place when high-pressured water vapor leaks into sodium through a tiny defect on the surface of the heat transfer tube in a steam generator of the sodium-cooled fast reactor. The sodium-water reaction brings deterioration of the mechanical strength of the heat transfer tube at the initial leakage site. As a result, it damages the crack itself, which may eventually enlarge into a larger opening. This self-enlargement is called 'self-wastage phenomenon.' In this study, a simulant experiment was proposed to reproduce the self-enlargement of a crack and to evaluate the mechanism of the self-wastage. The damage on the surface of the crack was simulated by making the neutralization reaction with hydrochloric acid solution and sodium hydroxide solution. A numerical investigation was carried out to validate the feasibility of the approach and to determine experimental conditions. From the computation results, it is observed that when 5M HCl is injected into 5M of NaOH with 0.05 m/s inlet velocity, the temperature at the surface near the crack increased over 319.26 K. The computational results show that the self-wastage phenomenon is capable of being reproduced by the simulant experiment

  5. A numerical design and feasibility study of self-wastage experiment using simulant material in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Hyun; Takata, Takashi [Graduate School of Engineering, Osaka University, Osaka (Japan); Yamaguchi, Akira [Nuclear Professional School, The University of Tokyo, Ibaraki (Japan)

    2016-04-15

    A sodium-water reaction takes place when high-pressured water vapor leaks into sodium through a tiny defect on the surface of the heat transfer tube in a steam generator of the sodium-cooled fast reactor. The sodium-water reaction brings deterioration of the mechanical strength of the heat transfer tube at the initial leakage site. As a result, it damages the crack itself, which may eventually enlarge into a larger opening. This self-enlargement is called 'self-wastage phenomenon.' In this study, a simulant experiment was proposed to reproduce the self-enlargement of a crack and to evaluate the mechanism of the self-wastage. The damage on the surface of the crack was simulated by making the neutralization reaction with hydrochloric acid solution and sodium hydroxide solution. A numerical investigation was carried out to validate the feasibility of the approach and to determine experimental conditions. From the computation results, it is observed that when 5M HCl is injected into 5M of NaOH with 0.05 m/s inlet velocity, the temperature at the surface near the crack increased over 319.26 K. The computational results show that the self-wastage phenomenon is capable of being reproduced by the simulant experiment.

  6. Diclofenac sodium entrapment and release from halloysite nanotubules.

    Science.gov (United States)

    Krejčová, Kateřina; Deasy, Patrick B; Rabišková, Miloslava

    2013-02-01

    Halloysite was found to have interesting nanotubular geometry viable for the entrapment of various active agents. In this experiment, the ability of hollow halloysite cylinders to entrap the anionic model drug diclofenac sodium and to retard drug dissolution rate was investigated. Drugs could be incorporated into layered tubules via three different mechanisms: adsorption, intercalation and tubular entrapment. Based on the adsorption studies, some diclofenac sodium was shown to be adsorbed to the polyionic mineral surface despite its permanent negative charge. The X-ray powder diffraction analysis (XRPD) results did not prove any intercalation reaction to occur. The most important drug-loading mechanism involved the tubular entrapment with encapsulation efficiency 48.1%. The drug release from halloysite was prolonged in comparison with the dissolution of pure drug. Halloysite itself as well as halloysite loaded with the drug proved to be appropriate material to form pellets by extrusion /spheronization method. halloysite diclofenac sodium drug entrapment pellets prolonged drug release.

  7. Optimization of sodium hydroxide pretreatment and enzyme loading for efficient hydrolysis of rice straw to improve succinate production by metabolically engineered Escherichia coli KJ122 under simultaneous saccharification and fermentation.

    Science.gov (United States)

    Sawisit, Apichai; Jampatesh, Surawee; Jantama, Sirima Suvarnakuta; Jantama, Kaemwich

    2018-07-01

    Rice straw was pretreated with sodium hydroxide (NaOH) before subsequent use for succinate production by Escherichia coli KJ122 under simultaneous saccharification and fermentation (SSF). The NaOH pretreated rice straw was significantly enhanced lignin removal up to 95%. With the optimized enzyme loading of 4% cellulase complex + 0.5% xylanase (endo-glucanase 67 CMC-U/g, β-glucosidase 26 pNG-U/g and xylanase 18 CMC-U/g dry biomass), total sugar conversion reached 91.7 ± 0.8% (w/w). The physicochemical analysis of NaOH pretreated rice straw indicated dramatical changes in its structure, thereby favoring enzymatic saccharification. In batch SSF, succinate production of 69.8 ± 0.3 g/L with yield and productivity of 0.84 g/g pretreated rice straw and 0.76 ± 0.02 g/L/h, respectively, was obtained. Fed-batch SSF significantly improved succinate concentration and productivity to 103.1 ± 0.4 g/L and 1.37 ± 0.07 g/L/h with a comparable yield. The results demonstrated a feasibility of sequential saccharification and fermentation of rice straw as a promising process for succinate production in industrial scale. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. [Antimicrobial effect of various calcium hydroxide on Porphyromonas endodontalis in vitro].

    Science.gov (United States)

    Du, Ting-ting; Qiu, Li-hong; Jia, Ge; Yang, Di; Guo, Yan

    2012-04-01

    To compare the antimicrobial activity of Endocal, calcium hydroxide paste, Calxyl, Vitapex on Porphyromonas endodontalis(P.e). (1) The antimicrobial activity of different calcium hydroxide on P.e was examined at different exposure times by dynamic nephelometry. (2) 85 freshly extracted single-rooted human teeth were selected and cut at the amelocemental junction. All roots were randomly divided into five groups. The bacteria were incubated in each canal and were sampled and counted before and after enveloping five kinds of intercanal medicine seeded. Student's t test, One-way ANOVA were used with SPSS11.0 software package for statistical analysis. The bacteria from each group were reduced significantly after intracanal medication (P<0.05). The antibacterial efficacy of Endocal and calcium hydroxide paste were superior to others under dynamic nephelometry test (P<0.05). Endocal, calcium hydroxide paste, Calxyl, Vitapex had strong inhibitory effect on P.e from infected root canals, and the rate of bacteria clearance was 95%. The antimicrobial activity of Endocal was significantly greater than others (P<0.05). Endocal, calcium hydroxide paste, Calxyl and Vitapex were effective for intercanal disinfection. The antibacterial activity of Endocal is greater than Vitapex.

  9. 3.7. Technical and economic aspects of the application of cement concretes obtained from local minerals

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    This article is devoted to technical and economic aspects of the application of cement concretes obtained from local minerals. The following composite materials obtained from local raw materials were considered: mineral (cement, lime), inorganic (phosphates, sodium silicate), organic (phenol formaldehyde, epoxide, urea-formaldehyde, carbamide, acryl, organosilicon, furfural aniline). It was concluded that from technical and economical points of view the most effective materials were: mineral composite materials, crude shale oils and ligno sulphonates.

  10. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    Science.gov (United States)

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  11. Preparation of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    Science.gov (United States)

    Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue

    2006-10-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.

  12. Development of technological modes for preparation of mineral water for sports drinks

    Directory of Open Access Journals (Sweden)

    I. Kovalenko

    2015-05-01

    Full Text Available Introduction. Conducted research study is devoted to development of technological modes of desalination of natural mineral medical-table sodium chloride water for water treatment technologies in the production of beverages for athletes. Materials and methods. Samples of initial water and water that has been desalinated using the experimental installation with different modes were investigated. Measuring of temperature mode of crystallizer was carried out using temperature sensors and digital thermometer. Quality indicators of the water samples using Photometer Palintest 7500 and standard techniques weredetermined. Resultsand discussion.The influence of different factors of the process of freezing on the quality of desalinated natural mineral medical-table sodium chloride water "Kuyalnik" was investigated. The patterns of distribution of components of initial water between the frozen solid phase, and a concentrated solution in the process of freezing are identified. For the majority of the investigated factors order of traffic was such: Ca 2+ >HCO -3 >(Na+>Cl- >(Mg2+>SO2-4 >K+, and with a decrease in water salinity so: Ca2+>SO2-4 >(Na+>Cl- >(HCO-3 >Mg2+>K+. Summary of the study results allowed to recommend the following technological parameters of the carrying out the process of desalination of natural mineral sodium chloride water by freeze: operating temperature mode of crystallizer, which is changing in the process from -2 to -4 ° C, the concentration of carbon dioxide in the water at the beginning of the process of freezing - 3,7 g/dm 3, duration of the desalination process (process without cooling - 60 minutes, one step of freezing, melting of solid phase under ambient conditions without prior separation of the frozen solid phase. With such technological modes of the carrying out the process of freezing it is possible to obtain water with mineral composition, mainly with existing relevant recommendations to the mineral composition of

  13. Preparation of a sinterable beryllium oxide through decomposition of beryllium hydroxide (1963)

    International Nuclear Information System (INIS)

    Bernier, M.

    1963-01-01

    In the course of the present study, we have attempted to precise the factors which among the ones effective in the course of the preparation of the beryllium hydroxide and oxide and during the sintering have an influence on the final result: the density and homogeneity of the sintered body. Of the several varieties of hydroxides precipitated from a sulfate solution the β-hydroxide only is always contaminated with beryllium sulfate and cannot be purified even by thorough washing. We noticed that those varieties of the hydroxide (gel, α, β) have different decomposition rates; this behaviour is used to identify and even to dose the different species in (α, β) mixtures. The various hydroxides transmit to the resulting oxides the shape they had when precipitated. Accordingly the history of the oxide is revealed by its behaviour during its fabrication and sintering. By comparing the results of the sintering operation with the various measurements performed on the oxide powders we are led to the conclusion that an oxide obtained from beryllium hydroxide is sinterable under vacuum if the following conditions are fulfilled: the particle size must lie between 0.1 and 0.2 μ and the BeSO 4 content of the powder must be less than 0.25 per cent wt (expressed as SO 3 /BeO). The best fitting is obtained with the oxide issued from an α-hydroxide precipitated as very small aggregates and with a low sulfur-content. We have observed that this is also the case for the oxide obtained by direct calcination of beryllium sulfate. (author) [fr

  14. Analysis of self-wastage phenomena of micro leak caused by sodium-water reaction in sodium-cooled fast breeder reactor through simulant experiment

    International Nuclear Information System (INIS)

    Jang, Sunghyon; Takata, Takashi; Yamaguchi, Akira

    2014-01-01

    Self-wastage phenomena are an enlargement of a leak on the heat transfer tube caused by a corrosive sodium-water reaction (SWR) in a steam generator (SG) of sodium-cooled fast breeder reactor (SFR). If the steam generator operates for sometimes under this condition, the self-wastage phenomena start from the sodium side and advance through the tube thickness. The leak rate stays almost constant level until the wastage reaches the sodium side, however, when the thin diaphragm of the tube wall is removed, the leak rate sharply increase, and it may bring a secondary failure of the surrounding heat transfer tubes. The design and safety concern is a possibility of the secondary failure of nearby SG tubes that could cause undesirable development of the accidents. One needs to evaluate the increased resultant leak rate due to the self-wastage phenomenon. Therefore, a quantification of the diameter of enlarged leak is needed to estimate the resultant leak rate. For this purpose, a simulant self-wastage experiment was proposed to investigate the self-enlargement of the leak so that evaluate the mechanism of the Self-wastage. In the experiment, high concentrated hydrochloric acid (HCl) is injected to the reaction tank that is filled sodium hydroxide (NaOH) solution through a nozzle made by paraffin wax. The self-enlargement of the leak was evaluated by considering the melted nozzle due to the reaction heat released from the Neutralization reaction. Also, a numerical investigation has been carried out to evaluate the enlarged nozzle and validate the results of experimental methodology. Based on the experimental and computational results, it is found that despite initial leak rate, there is an upper limit in the enlarged nozzle. These results show a similar tendency with the experimental result of SWAT-4 experiment carried out by Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan. Furthermore, the increased resultant leak rate is evaluated using the enlarged

  15. Comparative evaluation of different forms of calcium hydroxide in apexification

    Directory of Open Access Journals (Sweden)

    Subhankar Ghosh

    2014-01-01

    Full Text Available Background: One out of every two children sustains a dental injury most often between 8 and 10 years of age. Majority of these teeth subsequently become non-vital and most often with immature apex. Management of these teeth is an enormous challenge for lack of apical stop. Calcium hydroxide in various formulations has maximum literature support in favor of "successful apexification or induced apical closure." Aim: The aim of the following study is to determine the efficacy of calcium hydroxide in a different formulation to induce apexification. Materials and Methods: The present study was undertaken on 51 children of 8-10 years of age (both sexes at Dr. R Ahmed Dental College and Hospital from April 2006 to March 2007. All children had one or two maxillary permanent central incisor (s, non-vital and apices open. In all the cases, apexification was attempted with either calcium hydroxide mixed with sterile distilled water, or calcium hydroxide plus iodoform in methyl cellulose base, or calcium hydroxide plus iodoform in polysilicone oil base. The success of apexification was determined on the basis of clinical and radiographic criteria. Results: In the pre-operative asymptomatic cases (72.55%, failure occurred in only 5.45% cases and pre-operative symptomatic cases failure rate was as high as 35.71%. Success rate was 94.6% in cases with narrow open apices, whereas 64.28% in wide open apices. In cases with pre-existing apical radiolucencies, successful apexification occurred in 63.63% and success rate was 92.5% in the cases without pre-existing apical radiolucencies. Average time consumed for apexification was minimum with calcium hydroxide plus iodoform in polysilicone oil base. Conclusion: The overall success rate observed to be 86.27%, which is in close proximity to the findings of most of the previous studies across the globe.

  16. Comparative evaluation of different forms of calcium hydroxide in apexification.

    Science.gov (United States)

    Ghosh, Subhankar; Mazumdar, Dibyendu; Ray, Pradip Kumar; Bhattacharya, Bhaswar

    2014-01-01

    One out of every two children sustains a dental injury most often between 8 and 10 years of age. Majority of these teeth subsequently become non-vital and most often with immature apex. Management of these teeth is an enormous challenge for lack of apical stop. Calcium hydroxide in various formulations has maximum literature support in favor of successful apexification or induced apical closure. The aim of the following study is to determine the efficacy of calcium hydroxide in a different formulation to induce apexification. The present study was undertaken on 51 children of 8-10 years of age (both sexes) at Dr. R Ahmed Dental College and Hospital from April 2006 to March 2007. All children had one or two maxillary permanent central incisor (s), non-vital and apices open. In all the cases, apexification was attempted with either calcium hydroxide mixed with sterile distilled water, or calcium hydroxide plus iodoform in methyl cellulose base, or calcium hydroxide plus iodoform in polysilicone oil base. The success of apexification was determined on the basis of clinical and radiographic criteria. In the pre-operative asymptomatic cases (72.55%), failure occurred in only 5.45% cases and pre-operative symptomatic cases failure rate was as high as 35.71%. Success rate was 94.6% in cases with narrow open apices, whereas 64.28% in wide open apices. In cases with pre-existing apical radiolucencies, successful apexification occurred in 63.63% and success rate was 92.5% in the cases without pre-existing apical radiolucencies. Average time consumed for apexification was minimum with calcium hydroxide plus iodoform in polysilicone oil base. The overall success rate observed to be 86.27%, which is in close proximity to the findings of most of the previous studies across the globe.

  17. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  18. Staining Potential of Neo MTA Plus, MTA Plus, and Biodentine Used for Pulpotomy Procedures.

    Science.gov (United States)

    Camilleri, Josette

    2015-07-01

    Mineral trioxide aggregate (MTA) used for pulpotomy procedures in immature permanent teeth can reduce treatment to 1 session as opposed to classic calcium hydroxide therapy, which necessitates multiple appointments. The main disadvantage of MTA use is crown discoloration after treatment. The aim of this study was to characterize 3 materials that are used for pulpotomy procedures in immature permanent teeth and assess their color stability in the presence of sodium hypochlorite solution. Hydrated Neo MTA Plus (Avalon Biomed Inc, Bradenton, FL), MTA Plus (Avalon Biomed Inc), and Biodentine (Septodont, Saint-Maur-des-Fossés, France) were characterized after immersion in Hank's balanced salt solution for 1 day and 28 days using a combination of scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis. The color stability of the 3 materials in contact with water or sodium hypochlorite was evaluated by photography, spectrophotometry, and X-ray diffraction analysis. All the materials hydrated and produced calcium hydroxide as a by-product of hydration at early age. All materials interacted with synthetic tissue fluid, forming a calcium phosphate phase. MTA Plus exhibited discoloration in contact with sodium hypochlorite. All the materials tested are suitable to be used in the treatment of immature teeth because they all produced calcium hydroxide, which is necessary to induce dentin bridge formation and continued root formation. Neo MTA Plus and Biodentine are suitable alternatives to MTA, and they do not exhibit discoloration. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Identification of a green rust mineral in a reductomorphic soil by Mossbauer and Raman spectroscopies

    Science.gov (United States)

    Trolard, F.; Génin, J.-M. R.; Abdelmoula, M.; Bourrié, G.; Humbert, B.; Herbillon, A.

    1997-03-01

    Mössbauer and Raman spectroscopies are used to identify for the first time a green rust as a mineral in a reductomorphic soil from samples extracted in the forest of Fougères (Brittany-France). The Mossbauer spectrum displays two characteristic ferrous and ferric quadrupole doublets, the abundance ratio Fe(II)/Fe(Ill) of which is close to 1. Comparison with synthetic mixed valence Fe(II)Fe(HI) hydroxides supports the conclusion that the most probable formula is Fe2(OH)5, i.e., according to the pyroaurite-like crystal structure [Fe(n1Fe1III)(OH),]+o [OH] -. The microprobe Raman spectrum exhibits two bands at 518 and 427 cm-' as for synthetic green rusts. When exposed to the air, the new mineral goes rapidly from bluish-green to ochrous. The formula is compatible with the values of ionic activity products Q for equilibria between aqueous iron species and minerals obtained from soil waters, which suggests that this new mineral is likely to control the mobility of Fe in the environment.

  20. Comparison of the adjuvant activity of aluminum hydroxide and calcium phosphate on the antibody response towards Bothrops asper snake venom.

    Science.gov (United States)

    Olmedo, Hidekel; Herrera, María; Rojas, Leonardo; Villalta, Mauren; Vargas, Mariángela; Leiguez, Elbio; Teixeira, Catarina; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo; Montero, Mavis L

    2014-01-01

    The adjuvanticity of aluminum hydroxide and calcium phosphate on the antibody response in mice towards the venom of the snake Bothrops asper was studied. It was found that, in vitro, most of the venom proteins are similarly adsorbed by both mineral salts, with the exception of some basic phospholipases A2, which are better adsorbed by calcium phosphate. After injection, the adjuvants promoted a slow release of the venom, as judged by the lack of acute toxicity when lethal doses of venom were administered to mice. Leukocyte recruitment induced by the venom was enhanced when it was adsorbed on both mineral salts; however, venom adsorbed on calcium phosphate induced a higher antibody response towards all tested HPLC fractions of the venom. On the other hand, co-precipitation of venom with calcium phosphate was the best strategy for increasing: (1) the capacity of the salt to couple venom proteins in vitro; (2) the venom ability to induce leukocyte recruitment; (3) phagocytosis by macrophages; and (4) a host antibody response. These findings suggest that the chemical nature is not the only one determining factor of the adjuvant activity of mineral salts.

  1. Functionalization of lanthanum hydroxide nanowires by atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zhou Mi; Yuan Jinying; Yuan Weizhong; Yin Yingwu; Hong Xiaoyin

    2007-01-01

    Atom transfer radical polymerization (ATRP) has been used to prepare a core-shell hybrid nanostructure successfully: a hard core of single-crystalline lanthanum hydroxide nanowires and a soft shell of polystyrene (PS) brushes. Transmission electron microscopy (TEM) images indicated that the resulting products presented special structures and different thicknesses of polymer layers. The chemical components and grafted PS quantities of the samples were measured by Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The polymers showed narrow polydispersity, which proved that the lanthanum hydroxide nanowires initiated the 'living'/controlled polymerization of styrene. With the modifiability of lanthanum hydroxide nanowires, the solubility increased, which affords a new way to functionalize nanowires

  2. Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition.

    Science.gov (United States)

    Gattward, James N; Almeida, Alex-Alan F; Souza, José O; Gomes, Fábio P; Kronzucker, Herbert J

    2012-11-01

    In ecological setting, sodium (Na(+)) can be beneficial or toxic, depending on plant species and the Na(+) level in the soil. While its effects are more frequently studied at high saline levels, Na(+) has also been shown to be of potential benefit to some species at lower levels of supply, especially in C4 species. Here, clonal plants of the major tropical C3 crop Theobroma cacao (cacao) were grown in soil where potassium (K(+)) was partially replaced (at six levels, up to 50% replacement) by Na(+), at two concentrations (2.5 and 4.0 mmol(c) dm(-3)). At both concentrations, net photosynthesis per unit leaf area (A) increased more than twofold with increasing substitution of K(+) by Na(+). Concomitantly, instantaneous (A/E) and intrinsic (A/g(s)) water-use efficiency (WUE) more than doubled. Stomatal conductance (g(s)) and transpiration rate (E) exhibited a decline at 2.5 mmol dm(-3), but remained unchanged at 4 mmol dm(-3). Leaf nitrogen content was not impacted by Na(+) supplementation, whereas sulfur (S), calcium (Ca(2+)), magnesium (Mg(2+)) and zinc (Zn(2+)) contents were maximized at 2.5 mmol dm(-3) and intermediate (30-40%) replacement levels. Leaf K(+) did not decline significantly. In contrast, leaf Na(+) content increased steadily. The resultant elevated Na(+)/K(+) ratios in tissue correlated with increased, not decreased, plant performance. The results show that Na(+) can partially replace K(+) in the nutrition of clonal cacao, with significant beneficial effects on photosynthesis, WUE and mineral nutrition in this major perennial C3 crop. Copyright © Physiologia Plantarum 2012.

  3. Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant

    NARCIS (Netherlands)

    Regnier, M.; Metz, B.; Tilstra, W.; Hendriksen, C.; Jiskoot, W.; Norde, W.; Kersten, G.

    2012-01-01

    Aluminium-containing adjuvants are often used to enhance the potency of vaccines. In the present work we studied whether adsorption of diphtheria toxoid to colloidal aluminium hydroxide induces conformational changes of the antigen. Diphtheria toxoid has a high affinity for the aluminium hydroxide

  4. Absorption mechanisms for cationic and anionic mineral species on ferric iron polymer hydroxides and oxidation products of ferrous iron in aqueous media

    International Nuclear Information System (INIS)

    Gandon, Remi

    1982-01-01

    Adsorbents obtained by hydrolysing the Fe 3+ , 6H 2 O ion are made of polymers with aquo (H 2 O), hydroxo (-OH...) and oxo (...O...) ligands. Radioactive tracers reveal the importance of chemical mechanisms in adsorption phenomena on ferric oxide in aqueous media. Zn 2+ , Co 2+ and Mn 2+ cations are exchanged with hydrogen from hydroxo groups. CrO 4 2- , SeO 3 2- and Sb(OH) 6 - anions form covalent associations in place of iron ligands. The adsorption of hydrolyzed ions results in strong oxygen bridge bonds. In fresh water, Co and Mn participate alone in physical electrostatic adsorption. Iron II oxidation products generate chemical adsorptions. Zn 2+ and Sb(OH) 6 - associate with ferric hydroxides from oxidized Fe 2+ . 60 Co, 54 Mn and 51 Cr form covalent associations between unpaired 3d iron electrons and the adsorbed element. This process is not predominant with selenium IV or VI reduced to the metallic state or fixed on ferric hydroxide in the selenite form. These conclusions can be applied to pollutant analysis and to water purification and contribute to our understanding of the role of iron in the distribution of oligo-elements in aqueous media. (author) [fr

  5. Synthesis and characterization of [4-(2,4-dichlorophenoxybutyrate)-zinc layered hydroxide] nanohybrid

    Science.gov (United States)

    Hussein, Mohd Zobir; Hashim, Norhayati; Yahaya, Asmah Hj.; Zainal, Zulkarnain

    2010-05-01

    A new layered organic-inorganic nanohybrid material in which an agrochemical, 4-(2,4-dichlorophenoxy)butyrate (DPBA) is intercalated into inorganic interlayers of zinc layered hydroxide (ZLH) was synthesized by direct reaction of aqueous DPBA solution with zinc oxide. The resulting nanohybrid is composed of the organic moieties, DPBA sandwiched between ZLH inorganic interlayers. The nanohybrid afforded well ordered crystalline layered structure, a basal spacing of 29.6 Å, 23.5% carbon (w/w) and 47.9% (w/w) loading of DPBA. FTIR study shows that the absorption bands of the resulting nanohybrid composed the FTIR characteristics of both the DPBA and ZLH which further confirmed the intercalation episode. The intercalated organic moiety in the form of nanohybrid is thermally more stable than its sodium salt. Scanning electron micrograph shows the ZnO precursor has very fine granular structure and transformed into a flake-like when the nanohybrid is formed. This work shows that the nanohybrid of DPBA-ZLH can be synthesized using simple, direct reaction of ZnO and DPBA under aqueous environment for the formation of a new generation of agrochemical.

  6. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Kazuya, E-mail: kazuya.morimoto@aist.go.jp [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Tamura, Kenji [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Anraku, Sohtaro [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Sato, Tsutomu [Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Suzuki, Masaya [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Yamada, Hirohisa [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-08-15

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species.

  7. Continuing Studies on Direct Aqueous Mineral Carbonation of CO{sub 2} Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Gerdemann, S.J.; Rush, G.E.; Penner, L.R.; Walters, R.P.; Turner, P.C.

    2002-03-04

    Direct aqueous mineral carbonation has been investigated as a process to convert gaseous CO{sub 2} into a geologically stable, solid final form. The process utilizes a solution of sodium bicarbonate (NaHCO{sub 3}), sodium chloride (NaCl), and water, mixed with a mineral reactant, such as olivine (Mg{sub 2}SiO{sub 4}) or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. Carbon dioxide is dissolved into this slurry, by diffusion through the surface and gas dispersion within the aqueous phase. The process includes dissolution of the mineral and precipitation of the magnesium carbonate mineral magnesite (MgCO{sub 3}) in a single unit operation. Activation of the silicate minerals has been achieved by thermal and mechanical means, resulting in up to 80% stoichiometric conversion of the silicate to the carbonate within 30 minutes. Heat treatment of the serpentine, or attrition grinding of the olivine and/or serpentine, appear to activate the minerals by the generation of a non-crystalline phase. Successful conversion to the carbonate has been demonstrated at ambient temperature and relatively low (10 atm) partial pressure of CO{sub 2} (P{sub CO2}). However, optimum results have been achieved using the bicarbonate-bearing solution, and high P{sub CO2}. Specific conditions include: 185 C; P{sub CO2}=150 atm; 30% solids. Studies suggest that the mineral dissolution rate is not solely surface controlled, while the carbonate precipitation rate is primarily dependent on the bicarbonate concentration of the slurry. Current and future activities include further examination of the reaction pathways and pretreatment options, the development of a continuous flow reactor, and an evaluation of the economic feasibility of the process.

  8. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-01-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  9. Variation in photoreactivity of iron hydroxides taken from an acidic mountain stream

    International Nuclear Information System (INIS)

    Hrncir, D.C.; McKnight, D.

    1998-01-01

    The photoreduction of iron hydroxides is known to exert significant influence over many biogeochemical processes in streams impacted by acid main drainage. Using laboratory and in-stream measurements, the variation in reactivity of iron hydroxides taken from a stream receiving acid mine drainage (AMD) was studied. The reactivity decreased for material collected at sites progressively downstream from the AMD inflow. In the presence of two simple organic ligands, photoreduction increased for the fresher iron hydroxides but remained unchanged for the older hydroxides. The importance of ligand coordination to the enhancement of photoreduction in natural waters was further demonstrated in experiments using two types of fulvic acids. In-stream measurements of hydrogen peroxide concentration are consistent with the conclusions drawn from the batch experiments. Iron hydroxides were observed to age over time, becoming less photoreactive. This aging was accompanied by an increase in crystallinity. The loss of photoreactivity for the older material can be explained by a decrease in the number of active surface sites, a change in the nature of the surface sites, or a combination of both

  10. Intake and hedonics of calcium and sodium during pregnancy and lactation in the rat.

    Science.gov (United States)

    Leshem, M; Levin, T; Schulkin, J

    2002-03-01

    These experiments sought to distinguish whether increased calcium intake during pregnancy and lactation in the rat is due to arousal of a specific calcium appetite, with altered taste hedonics, as occurs with sodium depletion, to reduced taste sensitivity, or to the hyperdipsia of reproduction. We find that, during pregnancy and lactation, CaCl(2) intake is not increased more (in fact less) than intakes of control tastants, MgCl(2) and quinine HCl, and multiparous dams do not have a greater calcium intake than primaparous dams. Changes in taste reactivity to CaCl(2) and to NaCl do not correlate with changes in intake of these minerals during pregnancy or lactation, suggesting that alterations in hedonics or sensitivity do not explain the increased intake of these minerals. Taken together with the increased intake of all the tastants, it may be that the increased intakes of calcium and sodium during reproduction are not due to respective specific appetites or to a general mineral appetite but rather to the reproduction-increased ingestion that may meet all the dam's increased mineral and nutrient requirements. Differences in the degree of increased intakes of tastes may be due to specific alterations in their transduction during reproduction.

  11. Efficacy and safety of topical application of 15% and 10% potassium hydroxide for the treatment of Molluscum contagiosum.

    Science.gov (United States)

    Teixidó, Concepció; Díez, Olga; Marsal, Josep R; Giner-Soriano, Maria; Pera, Helena; Martinez, Mireia; Galindo-Ortego, Gisela; Schoenenberger, Joan A; Real, Jordi; Cruz, Ines; Morros, Rosa

    2018-02-26

    Molluscum contagiosum is the most common skin infection in children. One topical treatment used for Molluscum contagiosum is potassium hydroxide. The objective of this study was to compare the efficacy of potassium hydroxide topical treatment at different concentrations with that of placebo in terms of complete clearing of Molluscum contagiosum lesions and to assess the safety and tolerance of potassium hydroxide topical treatment. This was a double-blind randomized clinical trial of three treatments (potassium hydroxide 10%, potassium hydroxide 15%, placebo) applied once daily up to complete clearing of lesions (maximum duration 60 days) in 53 children aged 2-6 years in primary health care pediatric offices in Catalonia, Spain. In the intention-to-treat analysis, potassium hydroxide 10% (58.8%, P = .03) and potassium hydroxide 15% (64.3%, P = .02) had efficacy superior to that of placebo (18.8%). The number of Molluscum contagiosum lesions was significantly reduced with potassium hydroxide 10% and 15%. The main efficacy outcome was achieved in 58.8% of children in the potassium hydroxide 10% group (P = .03 vs placebo) and in 64.3% of children in the potassium hydroxide 15% group (P = .02 vs placebo). Potassium hydroxide 10% and 15% were not significantly different in efficacy from each other. Potassium hydroxide 10% and placebo were better tolerated than potassium hydroxide 15%. No adverse events were reported during the study period. Potassium hydroxide 10% and 15% demonstrated high rates of efficacy in clearing Molluscum contagiosum lesions, with potassium hydroxide 10% being better tolerated. © 2018 Wiley Periodicals, Inc.

  12. COMBINED ALUMINIUM SULFATE/HYDROXIDE PROCESS FOR ...

    African Journals Online (AJOL)

    sulfate, and used for fluoride removal from water by combining with Nalgonda Technique. ... effects on human health and could result in fluorosis. ... [23], nanoscale aluminium oxide hydroxide (AlOOH) [24] and natural zeolite [25], were among.

  13. F-radiographic study of uranium distribution in iron hydroxides from crusts of weathering

    International Nuclear Information System (INIS)

    Zhmodik, S.M.; Mironov, A.G.; Nemirovskaya, N.A.

    1980-01-01

    Presented are the results of study of uranium concentrations and peculiarities of its distribution in iron hydroxides from crusts of weathering of aluminium silicate and carbonate rocks. The age of one crusts of weathering is Quaternary, of others - Tertiary. The effect of climatic conditions, composition of source rocks, hydrochemical zoning of the crust of weathering on the uranium fixation by iron hydroxides has been studied. Gamma-spectroscopy, luminescence and autoradiography methods have been used. The mechanism of formation of increased uranium concentrations in iron hydroxides is considered. A conclusion is made that increased uranium concentrations in iron hydroxides may appear in the process of weathering both of aluminium-silicate and carbonate-containing rocks as a result of uranium sorption by fine dispersed iron hydrates. The use of iron hydroxides with increased (anomalous) uranium concentrations as a direct search feature without additional investigations can lead to wrong conclusions

  14. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  15. Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors

    International Nuclear Information System (INIS)

    Wu, M.-S.; Hsieh, H.-H.

    2008-01-01

    Nickel hydroxide powder prepared by directly chemical precipitation method at room temperature has a nanoplatelet-like morphology and could be converted into nickel oxide at annealing temperature higher than 300 deg. C, confirmed by the thermal gravimetric analysis and X-ray diffraction. Annealing temperature influences significantly both the electrical conductivity and the specific surface area of nickel oxide/hydroxide powder, and consequently determines the capacitor behavior. Electrochemical capacitive behavior of the synthesized nickel hydroxide/oxide film is investigated by cyclic voltammetry and electrochemical impedance spectroscope methods. After 300 deg. C annealing, the highest specific capacitance of 108 F g -1 is obtained at scan rate of 10 mV s -1 . When annealing temperature is lower than 300 deg. C, the electrical conductivity of nickel hydroxide dominates primarily the capacitive behavior. When annealing temperature is higher than 300 deg. C, both electrical conductivity and specific surface area of the nickel oxide dominate the capacitive behavior

  16. Improving anaerobic digestion of sugarcane straw for methane production: Combined benefits of mechanical and sodium hydroxide pretreatment for process designing

    International Nuclear Information System (INIS)

    Janke, Leandro; Weinrich, Sören; Leite, Athaydes F.; Terzariol, Filippi K.; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2017-01-01

    Highlights: • NaOH pretreatment was tested to improve degradation of SCS for methane production. • Low NaOH concentration accelerated AD of SCS but not increased the methane yield. • Mild and high NaOH concentrations accelerated and increased methane yield of SCS. • NaOH use increased OPEX but provided a higher profitability than the untreated SCS. • Anaerobic reactor price showed a high influence on sensitivity analysis. - Abstract: Sodium hydroxide (NaOH) as an alkaline pretreatment method to enhance the degradation kinetics of sugarcane straw (SCS) for methane production was investigated with a special focus on the benefits for designing the anaerobic digestion process. For that, SCS was previously homogenized by milling in 2 mm particle size and pretreated in NaOH solutions at various concentrations (0, 3, 6 and 12 g NaOH/100 g SCS) and the methane yields were determined in biochemical methane potential (BMP) tests. The obtained experimental data were used to simulate a large-scale semi-continuous process (100 ton SCS day"−"1) according to a first-order reaction model and the main economic indicators were calculated based on cash flows of each pretreatment condition. The BMP tests showed that by increasing the NaOH concentration the conversion of the fibrous fraction of the substrate to methane was not only accelerated (higher α value), but also increased by 11.9% (from 260 to 291 mL CH_4 gVS"−"1). By using the experimental data to simulate the large-scale process these benefits were translated to a reduction of up to 58% in the size of the anaerobic reactor (and consequently in electricity consumption for stirring), while the methane yield increased up to 28%, if the liquid fraction derived from the pretreatment process is also used for methane production. Although the use of NaOH for substrate pretreatment has considerably increased the operational expenditures (from 0.97 up to 1.97 € × 10"6 year"−"1), the pretreatment method was able to

  17. Magnesium hydroxide as the neutralizing agent for radioactive hydrochloric acid solutions

    International Nuclear Information System (INIS)

    Palmer, M.J.; Fife, K.W.

    1995-10-01

    The current technology at Los Alamos for removing actinides from acidic chloride waste streams is precipitation with approximately 10 M potassium hydroxide. Although successful, there are many inherent drawbacks to this precipitation technique which will be detailed in this paper. Magnesium hydroxide (K sp = 1.3 x 10 -11 ) has limited solubility in water and as a result of the common ion effect, cannot generate a filtrate with a pH greater than 9. At a pH of 9, calcium (K sp = 5.5 x 10 -6 ) will not coprecipitate as the hydroxide. This is an important factor since many acidic chloride feeds to hydroxide precipitation contain significant amounts of calcium. In addition, neutralization with Mg(OH) 2 produces a more filterable precipitate because neutralization occurs as the Mg(OH) 2 is dissolved by the acid rather than as a result of the much faster liquid/liquid reaction of KOH with the waste acid. This slower solid/liquid reaction allows time for crystal growth to occur and produces more easily filterable precipitates. On the other hand, neutralization of spent acid with strong KOH that yields numerous hydroxide ions in solution almost instantaneously forming a much larger volume of small crystallites that result in gelatinous, slow-filtering precipitates. Magnesium hydroxide also offers a safety advantage. Although mildly irritating, it is a weak base and safe and easy to handle. From a waste minimization perspective, Mg(OH) 2 offers many advantages. First, the magnesium hydroxide is added as a solid. This step eliminates the diluent water used in KOH neutralizations. Secondly, because the particle size of the precipitate is larger, more actinides are caught on the filter paper resulting in a smaller amount of actinide being transferred to the TA-50 Liquid Waste Treatment Facility. Third, the amount of solids that must be reprocessed is significantly smaller resulting in less waste generation from the downstream processes

  18. Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase

    NARCIS (Netherlands)

    Douglas, T.E.L.; Skwarczynska, A.; Modrzejewska, Z.; Balcaen, L.; Schaubroeck, D.; Lycke, S.; Vanhaecke, F.; Vandenabeele, P.; Dubruel, P.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2013-01-01

    Thermosensitive chitosan hydrogels containing sodium beta-glycerophosphate (beta-GP), whose gelation is induced by increasing temperature to body temperature, were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone. ALP incorporation led to

  19. Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2013-10-01

    Full Text Available The toxic element arsenic (As occurs widely in solid and liquid mine wastes. Aqueous forms of arsenic are taken up in As-bearing sulfides, arsenides, sulfosalts, oxides, oxyhydroxides, Fe-oxides, -hydroxides, -oxyhydroxides and -sulfates, and Fe-, Ca-Fe- and other arsenates. Although a considerable body of research has demonstrated that microbes play a significant role in the precipitation and dissolution of these As-bearing minerals, and in the alteration of the redox state of As, in natural and simulated mining environments, the molecular-scale mechanisms of these interactions are still not well understood. Further research is required using traditional and novel mineralogical, spectroscopic and microbiological techniques to further advance this field, and to help design remediation schemes.

  20. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  1. Microorganisms in the deposits of cold carbon mineral waters of the Russian Far East and their habitats

    Science.gov (United States)

    Kalitina, E. G.; Kharitonova, N. A.; Kuzmina, T. V.; Chelnokov, G. A.

    2018-01-01

    Study of the chemical composition of carbon mineral waters has shown the prevalence of calcium, magnesium and sodium among the cations, sulfate, nitrate and chloride ions among the anions, and ferric iron, strontium and manganese in the microelement composition. Results of the microbiological studies have revealed that carbon mineral waters contain various microorganisms that can transform the physical and chemical composition of mineral waters by interfering with geochemical cycles. The sanitary and microbiological properties of carbon mineral waters have been evaluated thus proving that the waters of Medvezhii (Shmakovskoe deposit) are microbiologically clean.

  2. Surface tension of calcium hydroxide associated with different substances Tensão superficial do hidróxido de cálcio associado a diferentes substâncias

    Directory of Open Access Journals (Sweden)

    Carlos Estrela

    2005-06-01

    Full Text Available The purpose of this study was to evaluate the surface tension of calcium hydroxide (CH associated with different substances (deionized distilled water, camphorated paramonochlorophenol, 2% chlorhexidine digluconate, Otosporin, 3% sodium lauryl ether sulphate; Furacin, PMC Furacin using tensiometer. The action of the substances studied on the dentinal structure enhances the property of surface tension. This method consists in the application of force to separate a platinum ring immersed in the substances. Thus, torsion was applied to the screw until the platinum ring separated during substances testing. Considering the methodology applied, the following can be concluded: distilled water alone or associated with CH presented a high surface tension (70.00 and 68.40 dynes/cm; calcium hydroxide in association with anionic detergent showed low surface tension (31.60 dynes/cm; camphorated paramonochlorophenol plus CH presented low surface tension (37.50 dynes/cm; 2% chlorhexidine associated with calcium hydroxide showed high surface tension values (58.00 dynes/cm; Otosporin plus calcium hydroxide showed low surface tension (35.40 dynes/cm; paramonochlorophenol Furacin mixed with calcium hydroxide presented surface tension equal to 45.50 dynes/cm; sodium hypochlorite presented high surface tension (75.00 dynes/cm. Antimicrobial agents more indicated in endodontics, i.e. CH, chlorhexidine and hypochlorite, presented the highest surface tension.Estudou-se a tensão superficial do hidróxido de cálcio associado a diferentes substâncias (água destilada deionizada, paramonoclorofenol canforado, digluconato de clorexidina 2%, Otosporin, sulfato éter lauril sódio 3%, furacin, PMC furacin usando tensiômetro. O modelo experimental consistiu na aplicação de uma força para separar um anel de platina imerso na superfície das substâncias, exercido por um tensiômetro. Considerando a metodologia aplicada, pode-se concluir: a água destilada isolada ou

  3. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  4. Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.

    Science.gov (United States)

    Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi

    2009-08-04

    We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).

  5. The effect of polymers onto the size of zinc layered hydroxide salt and its calcined product

    Science.gov (United States)

    Hussein, Mohd Zobir bin; Ghotbi, Mohammad Yeganeh; Yahaya, Asmah Hj; Abd Rahman, Mohd Zaki

    2009-02-01

    Zinc hydroxide nitrate, a brucite-like layered material was synthesized using pH control method. Poly(vinyl alcohol) and poly(ethylene glycol) were used at various percentages as size decreasing agents during the synthesis of zinc hydroxide nitrate. SEM and PXRD showed the decrease of size and thickness of the resultant zinc hydroxide nitrates. TG and surface area data confirmed the decrease of the particle sizes, too. When zinc hydroxide nitrates were heat treated at 500 °C, the physical properties of nano zinc oxides obtained depended on the parent material, zinc hydroxide nitrate.

  6. Effects of sodium hypochlorite on Agave tequilana Weber bagasse fibers used to elaborate cyto and biocompatible hydrogel films.

    Science.gov (United States)

    Tovar-Carrillo, Karla Lizette; Nakasone, Kazuki; Sugita, Satoshi; Tagaya, Motohiro; Kobayashi, Takaomi

    2014-09-01

    Waste bagasse of Agave tequilana-Weber fibers treated with sodium hydroxide was used to elaborate hydrogel films. The bagasse was offered in an alternative use for the preparation of hydrogel films by phase inversion method without crosslinking and further purification of cellulose. The effect on the properties of the obtained films was studied when the chemical treatment of the agave fibers was changed. It was found that the resultant hydrogels showed increment in tensile from 40 N/mm(2) to 56 N/mm(2) with the increase of sodium hypochlorite concentration from 1 to 10 vol.%, respectively. With regard to biocompatibility properties of the hydrogel films, platelet adhesion, clotting time and protein adsorption were investigated. Analysis of the morphology of adherent NIH3T3 fibroblast indicated that the projected cell area, aspect ratio and long axis gradually increased with the increment of sodium hypochlorite content in the agave treatment. It was presented that the chemical treatment affects cell adhesion and morphology and lignin content remains in the brown fibers. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. [Mineral waters from several Brazilian natural sources].

    Science.gov (United States)

    Rebelo, M A; Araujo, N C

    1999-01-01

    To divulge information on the chemical composition and physical-chemical features of some mineral waters from Brazilian natural sources that will be of useful protocol investigation and patient advice. The survey was based on bottle labels of non-gaseous mineral waters commercially available in the city of Rio de Janeiro. The íon concentration of each mineral was calculated from the salt content. 36 springs were enralled from different states of the country. The pH (25 degrees C), 4.1 to 9.3, varied on dependence of the source and it was linearey correlated with the cations calcium, magnesium and sodium and the anion bicarbonate. It was atributed to high alkalinity (about 70% of bicarbonate in the molecula-gram) of these salts. The calcium (0.3 to 42 mg/l), magnesium (0.0 to 18 mg/l) and bicarbonate (4 to 228 mg/l) contents are relatively low. The mineral content of the Brazilian springs enrolled in this survey is low; about 70% of the sources having calcium and magnesium less than 10 mg/l and 1.0 mg/l, respectively, similar to local tap water.

  8. Evaluation of dietary intake of vitamins and minerals in 13-15-years-old boys from a sport school in Warsaw.

    Science.gov (United States)

    Szczepańska, Beata; Malczewska-Lenczowska, Jadwiga; Wajszczyk, Bożena

    2016-01-01

    Insufficient intake of vitamins and minerals, in teenagers engaged in physical activity increases the risk of health disorders. The aim of this study was to evaluate selected vitamins and minerals intake in 13-15-year-old boys from sport school. The study of dietary intake was conducted among 44 boys from the School of Sport Championship (SSC). Nutritional data was collected using 24-hour recall for 3 days of week. Daily intake of minerals: sodium, potassium, calcium, phosphorus, magnesium, iron, zinc, copper, iodine and vitamins: A, E, D, B1, B2, B6, B12, C, folate and niacin was estimated. The probability of insufficient intake of nutrients in relation to the standard levels: Estimated Average Requirement (EAR) or Adequate Intake (AI) as well as excessive intake of them in relation to the Tolerable Upper Intake Level (UL) were assessed. The highest percentage of insufficient intake concerned vitamin D (100%), potassium (69%), folate (53%), and calcium (50%), slightly lower of magnesium (27%), vitamins C (24%) and E (15%). The risk of inadequate intake of other minerals: sodium, copper, iron, zinc, phosphorus, iodine and vitamins: B6, B1, B2, A, B12, niacin, was relatively lower and amounted from 0.3% to 5.4%. The disturbingly high probability of exceeding the UL for sodium (99.5%) was observed. A significant disproportion between the mean intake and the percentage of inadequate diets indicates a large diversity in the intake of vitamins and minerals in the group of studied boys, what was the reason of unbalanced diet. The insufficient intake concerns especially vitamin D, potassium, folate, calcium and a lesser extent magnesium, vitamins C and E. Sodium intake was disturbingly high. In order to avoid nutritional mistakes in the future education on the rational nutrition among students, their parents, and teachers is necessary.

  9. EFFICACY OF DIFFERENT ENDODONTIC IRRIGATION PROTOCOLS IN CALCIUM HYDROXIDE REMOVAL

    Directory of Open Access Journals (Sweden)

    Elka N. Radeva

    2016-10-01

    Full Text Available Introduction: Calcium hydroxide is widely used in the field of endodontics as a temporary root canal filling. This medicament significantly increases pH and optimizes the treatment outcome. Its total removal before final obturation is very important. Otherwise it could affect the hermetic filling and respectively the endodontic success. Aim: To evaluate the most effective irrigation protocol of calcium hydroxide removal from root canals. Materials and methods: In this study 36 single root canal teeth were observed. They were randomly divided into three groups (n=10 each group according to the technique applied for calcium hydroxide removal - manual irrigation, irrigation and Revo-S rotary instrumentation; and passive ultrasonic irrigation, and a control group (n=6 – irrigation with distilled water only. After calcium hydroxide removals following the procedures above, teeth were separated longitudinally in a buccal-lingual direction and remnants of medicaments were observed in the apical, middle and coronal part of each tooth. Then all of the specimens were observed using scanning electron microscopy and evaluated by a specified scale. The results have undergone statistical analysis. Results: In the case of calcium hydroxide in the apex and in the middle with highest average is Revo-S, followed by Ultrasonic and irrigation. In the coronal part the highest average belongs to Revo-S, irrigation and Ultrasonic. In all groups the highest average is represented by control group. Conclusion: There is not a universal technique for removal of intracanal medicaments and applying more than one protocol is required.

  10. Evaluation of the corrosion, reactivity and chemistry control aspects for the selection of an alternative coolant in the secondary circuit of sodium fast reactors

    International Nuclear Information System (INIS)

    Brissonneau, L.; Simon, N.; Balbaud-Celerier, F.; Courouau, J.L.; Martinelli, L.; Grabon, V.; Capitaine, A.; Conocar, O.; Blat, M.

    2009-01-01

    Full text of publication follows: Sodium Fast Reactors are promising fourth generation reactors as they can contribute to reduce resource demand in uranium and considerably reduce waste level due to their fast spectrum. However, progress can be obtained for these reactors on the investment cost and on safety improvement. To achieve these goals, one of the innovative solutions consists in eliminating the reaction of sodium with water in the steam generators, by replacing the sodium in the secondary circuit by another coolant. A work group composed of experts from CEA, Areva NP and EdF was in charge to evaluate several alternative coolants as Heavy Liquid Metals (HLM), nitrate salts and hydroxide mixtures, through a multi-criteria analysis. Three important criteria for the selection of one coolant are its 'Interactions with the structures', and its 'chemistry control', and 'Reactivity with fluids' which are strongly correlated. The assessment, mainly based on the state-of-art from published literature on these points, is detailed in this paper. The mechanisms of corrosion of steels by the HLM depend on the oxygen content. For Pb-Bi, it has been modelled for oxidation and release domains. The corrosion of steels by nitrate salts presents similarity with the oxidation induced by HLM. The highly corrosive hydroxide mixture requires the use of nickel base alloys, for which oxidation and mass transfer are nevertheless significant. The HLM requires a fine regulation of oxygen content, through measurements and control systems, both to prevent lead oxide precipitation at high level and release corrosion at low level. Nitrate salts decompose into nitrites at sufficiently high temperature, which might induce pressure build-up in the circuit. The hydroxides must be kept under reducing atmosphere to lower the corrosion rate. Though these coolants are relatively inert to air and water, one of the main drawbacks of HLM and nitrate salts are their reactivity with sodium. Bismuth

  11. Spectrophotometric Determination of Thorium in Low Grade Minerals and Ores

    Energy Technology Data Exchange (ETDEWEB)

    Arnfelt, A L; Edmundsson, I

    1960-08-15

    The following method is intended for the determination of microgram quantities of thorium in samples of minerals and ores. The mineral sample is decomposed by repeated sintering with sodium peroxide. After digestion with water thorium peroxide hydrate is recovered by centrifugation and dissolved in hydrochloric acid. Thorium is determined spectrophotometrically with naphtarson after its separation from metals forming chloro complexes which are adsorbed on a strongly basic anion exchange resin. Interferences from a few different ions have been studied. The time required for the analysis of one sample is about 4 hours, when analysing 12 samples simultaneously

  12. Spectrophotometric Determination of Thorium in Low Grade Minerals and Ores

    International Nuclear Information System (INIS)

    Arnfelt, A.L.; Edmundsson, I.

    1960-08-01

    The following method is intended for the determination of microgram quantities of thorium in samples of minerals and ores. The mineral sample is decomposed by repeated sintering with sodium peroxide. After digestion with water thorium peroxide hydrate is recovered by centrifugation and dissolved in hydrochloric acid. Thorium is determined spectrophotometrically with naphtarson after its separation from metals forming chloro complexes which are adsorbed on a strongly basic anion exchange resin. Interferences from a few different ions have been studied. The time required for the analysis of one sample is about 4 hours, when analysing 12 samples simultaneously

  13. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E., E-mail: gantipas@metal.ntua.gr

    2014-01-15

    Highlights: • Fe(III)–Cr(III) hydroxides enhance groundwater quality better than pure Cr(III) compounds. • Crystalline Cr(OH){sub 3}·3H{sub 2}O was unstable, with a solubility higher than 50 μg/l. • Amorphous Cr(OH){sub 3}(am) was stable with a solubility lower than 50 μg/l in the range 5.7 < pH < 11. • For mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3}, the stability region was extended to 4.8 < pH < 13.5. -- Abstract: Chromium is a common contaminant of soils and aquifers and constitutes a major environmental problem. In nature, chromium usually exists in the form of two oxidation states, trivalent, Cr(III), which is relatively innocuous for biota and for the aquatic environment, and hexavalent, Cr(VI) which is toxic, carcinogenic and very soluble. Accordingly, the majority of wastewater and groundwater treatment technologies, include a stage where Cr(VI) is reduced to Cr(III), in order to remove chromium from the aqueous phase and bind the element in the form of environmentally stable solid compounds. In the absence of iron the final product is typically of the form Cr(OH){sub 3}·xH{sub 2}O whereas in the presence of iron the precipitate is a mixed Fe{sub (1−x)}Cr{sub x}(OH){sub 3} phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fe{sub x},Cr{sub 1−x})(OH){sub 3} hydroxides as compared to the stability of Cr(OH){sub 3}. We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH){sub 3}·3H{sub 2}O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH){sub 3}(am) phase. Mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3} hydroxides were found to be of the ferrihydrite structure, Fe(OH){sub 3}, and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe

  14. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    Science.gov (United States)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  15. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    Energy Technology Data Exchange (ETDEWEB)

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  16. Geochemistry of fly ash from desulphurisation process performed by sodium bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Raclavska, Helena; Matysek, Dalibor; Raclavsky, Konstantin; Juchelkova, Dagmar [VSB - Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava, Poruba (Czech Republic)

    2010-02-15

    The application of NEUTREC {sup registered} technology - desulphurisation by means of sodium bicarbonate - has been tested at the Trebovice coal-fired power plant (Ostrava, Czech Republic). This technology significantly influences the chemical composition of fly ash and the leachability of total dissolved substances (TDS), e.g., sulphates, fluorides and oxyanions (Se, Sb, Cr, As), which are monitored according to the Council of the European Union Decision 2003/33/EC. An increase of TDS in the water leachate from the fly ash obtained at 60% desulphurisation was influenced by sodium content, which is present in the form of Na{sup +} ions (85-90%). The percentages of sodium sulphate and sodium carbonate were between 5 and 10% of the total sodium content. In order to decrease the leachability of TDS, sodium, sulphates and oxyanion mixtures were prepared containing a sorbent (60% bentonite) and mixed with desulphurised and non-desulphurised fly ash in various ratios. The addition of CaO resulted in the formation of a new mineral phase, burkeite. None of the applied technologies tested for the processed fly ash resulted in the preparation of a water leachate which complied in all monitored parameters to the requirements of Council Decision 2003/33 EC for nonhazardous wastes. (author)

  17. Fly ash/Kaolin based geopolymer green concretes and their mechanical properties

    Directory of Open Access Journals (Sweden)

    F.N. Okoye

    2015-12-01

    Full Text Available Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30 was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C, sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1].

  18. Comparative evaluation of platelet-rich fibrin, mineral trioxide aggregate, and calcium hydroxide as pulpotomy agents in permanent molars with irreversible pulpitis: A randomized controlled trial

    Science.gov (United States)

    Kumar, Varun; Juneja, Ruchi; Duhan, Jigyasa; Sangwan, Pankaj; Tewari, Sanjay

    2016-01-01

    Background: Pulpotomy has been proposed as an alternative for the management of irreversible pulpitis in permanent molars with closed apices. Aim: To compare the performances of calcium hydroxide (CH), mineral trioxide aggregate (MTA), and platelet-rich fibrin (PRF) as pulpotomy agents in mature permanent molars with irreversible pulpitis. Materials and Methods: Fifty-four permanent mandibular molars with carious exposure and symptoms of irreversible pulpitis were randomly allocated to three groups, and full pulpotomy was performed using CH, MTA, or PRF as pulpotomy agents. Pain intensity was recorded using numeric rating scale score at baseline, 24 h, 7 days, 6 months, and 1 year. Clinical and radiographic assessments were done at 6 months and 1 year. Statistical Analysis: Kruskal–Wallis test and Friedman test were used for intergroup and intragroup comparison of pain scores, respectively. The radiographic outcomes between the three study arms were compared using Chi-square test. Results: Clinical success rate was 94.4% at 7 days, which dropped to 85.4% at 12 months. All three agents were equally effective in providing pain relief at all the intervals tested, with no significant difference between them (P > 0.05 at all intervals). However, at 6 months and 12 months, 26.2% and 52.4% teeth depicted slight widening of periodontal ligament space. No significant difference was observed between the radiographic success rates observed with the three groups (P = 0.135 at 6 months, 0.717 at 12 months). Conclusion: Pulpotomy exhibited a high clinical success rate in mature molars with irreversible pulpitis and selection of biomaterial did not affect its outcome. PMID:27994420

  19. Synthesis of palm biodiesel using sodium methoxide catalyst

    International Nuclear Information System (INIS)

    Azhari; Robiah Yunus; Rasyid, S.A.; Abdullah, L.C.

    2006-01-01

    Synthesis of palm biodiesel (methyl ester) was successfully carried out from refined bleached deodorized palm oil (RBDPO) by transesterification reaction. Two kinds of alkali catalyst were selected for this reaction namely sodium hydroxide (NaOH) and sodium methoxide (NaOCH 3 ), and the effects of operating variables such as molar ratio, reaction temperature and quantity of catalyst were also investigated. The reaction was carried out under atmosphere pressure. The reaction temperature and time were varied between 55 to 70 degree C and 50 to 90 minutes respectively. The methanol to oil molar ratios were also varied at 6:1, 5:1, 4:1 and 3:1 to examine its effect on reaction yield. The reaction conversion was 99% by use of NaOCH 3 as a catalyst. However, with NaOH as catalyst, the conversion was slightly lower compared to using NaOCH 3 . The optimum conditions for NaOCH 3 as catalyst were reaction temperature, 65 degree C; reaction time, 60 minutes; molar ratio, 6:1; and catalyst amount, 1.0% w/w. The kinetics study on transesterification of RBDPO with methanol established that the reaction occurred via two stepwise and irreversible elementary reactions following second order model. A vacuum distillation process was used to reduce the pour point of palm biodiesel. The lowest pour point attainable for palm biodiesel was at 3 degree C. (Author)

  20. Association between sodium bicarbonate consumption and human health: A systematic review

    Directory of Open Access Journals (Sweden)

    Yadolah Fakhri

    2016-08-01

    Full Text Available Sodium bicarbonate or baking soda is a chemical compound dissolved in water which is widely used as an additive in foods and mineral water and as a medicine. In Iran, due to the introduction of harmful effects of this compound, using it in baking is prohibited. Therefore, we tried to search and evaluate all health effects of using this compound with a systematic review. In this study, all available evidences on the beneficial and harmful effects of sodium bicarbonate were searched. The method was based on systematic study of reputable databases including Embase, Ovid, Scopus, Pubmed and ISI Web of science. Invalid studies were found that shows the relationship of harmful effects of sodium bicarbonate on general health. In addition to that, the studies showed therapeutic aspects and useful effects of this material. Some studies showed the harmful effects of therapeutic using of sodium bicarbonate with high dose that randomly happened. Reviewing of credible studies showed that not only using sodium bicarbonate is not harmful for human health, but also using it as a drug can be useful in treatment and relief of some diseases

  1. Magnesium, Calcium, Potassium, and Sodium Intakes and Risk of Stroke in Male Smokers

    NARCIS (Netherlands)

    Larsson, S.C.; Virtanen, M.J.; Mars, M.; Mannisto, S.; Pietinen, P.; Albanes, D.; Virtamo, J.

    2008-01-01

    Background A high intake of magnesium, calcium, and potassium and a low intake of sodium have been hypothesized to reduce the risk of stroke. However, prospective data relating intake of these minerals to risk of stroke are inconsistent. Methods We examined the relationship of dietary magnesium,

  2. A randomized clinical trial on the use of medical Portland cement, MTA and calcium hydroxide in indirect pulp treatment.

    Science.gov (United States)

    Petrou, Marina Agathi; Alhamoui, Fadi Alhaddad; Welk, Alexander; Altarabulsi, Mohammed Basel; Alkilzy, Mohammed; H Splieth, Christian

    2014-01-01

    Studies on indirect pulp treatment (IPT) show varying success rates of 73 to 97 %. The necessity of re-opening the cavity and the question of the optimal capping material is still under debate. The aim of this prospective in vivo study was to compare the clinical and microbiological outcomes of mineral trioxide aggregate (MTA), medical Portland cement, and calcium hydroxide on the dentin-pulp complex of permanent and primary teeth treated with two-step IPT. In 86 regular patients (51 % men; 49 % women; age 17.2 years ±13.8), one deep carious lesion each was treated with incomplete caries removal, randomly selected capping with either calcium hydroxide (n = 31), medical Portland cement (29) or white MTA (26), and re-entry (6.3 months ±1.0). Clinical (color, humidity, and consistency of dentin) and microbiological (Lactobacilli/Mutans Strep. counts) parameters were recorded at the first and second treatment. The IPT had a high success rate of 90.3 % regardless of the material used (p = 0.72). The arrested lesions showed consistently darker, dry, and therefore, sclerotic dentine (p Portland cement. The findings of this study could promote the improvement of the IPT as a one-step treatment of deep carious lesions when the remaining demineralized dentin would be sealed with durable restorations.

  3. Zinc-stearate-layered hydroxide nanohybrid material as a precursor to produce carbon nanoparticles

    International Nuclear Information System (INIS)

    Ghotbi, Mohammad Yeganeh; Bagheri, Narjes; Sadrnezhaad, S.K.

    2011-01-01

    Research highlights: → In this work, a new organic-clay nanohybrid material, in which the organic moiety is intercalated between the inorganic layers, was synthesized using stearate anion as a guest and zinc hydroxide nitrate as an inorganic layered host by ion-exchange technique. Carbon nanoparticles were obtained by heat treating of the nanohybrid material, zinc-stearate-layered hydroxide. The proposed method is very simple, the chemicals used in the synthesis are cheap and the manner is economic and suitable for a large scale production of nano-sized carbon nanoparticles. - Abstract: Zinc-stearate-layered hydroxide nanohybrid was prepared using stearate anion as an organic guest, and zinc layered hydroxide nitrate, as a layered inorganic host by the ion-exchange method. Powder X-ray diffraction patterns and Fourier transform infrared results indicated that the stearate anion was actually intercalated into the interlayer of zinc layered hydroxide nitrate and confirmed the formation of the host-guest nanohybrid material. Also, surface properties data showed that the intercalation process has changed the porosity for the as-prepared nanohybrid material in comparison with that of the parent material, zinc hydroxide nitrate. The nanohybrid material was heat-treated at 600 deg. C under argon atmosphere. Stearate anion was chosen as a carbonaceous reservoir in the nanohybrid to produce carbon nanoparticles after heat-treating of the nanohybrid and subsequently acid washing process.

  4. 75 FR 28608 - Calcium Hydroxide; Receipt of Application for Emergency Exemption, Solicitation of Public Comment

    Science.gov (United States)

    2010-05-21

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0411; FRL-8826-7] Calcium Hydroxide; Receipt of... Department of Agriculture to use the pesticide calcium hydroxide (CAS No. 1305-62-0) to treat up to 1,000... Agriculture has requested the Administrator to issue a quarantine exemption for the use of calcium hydroxide...

  5. Efficacy and Safety of Photon Induced Photoacoustic Streaming for Removal of Calcium Hydroxide in Endodontic Treatment

    Directory of Open Access Journals (Sweden)

    Markus Laky

    2018-01-01

    Full Text Available Calcium hydroxide removal from the root canal by photon induced photoacoustic streaming (PIPS compared to needle irrigation and irrigation using sonic activation was investigated. Additionally, safety issues regarding apical extrusion were addressed. In endodontic treatment temporary intracanal medication like calcium hydroxide should be completely removed for long term success. For analysis, 60 artificial teeth were prepared, filled with calcium hydroxide, and divided into four groups. The teeth were assigned to needle irrigation, irrigation using a sonic device, PIPS with a lower energy setting (10 mJ, 15 Hz, or PIPS with a higher energy setting (25 mJ/40 Hz. For comparison the weight of each tooth was measured before and after calcium hydroxide incorporation, as well as after removing calcium hydroxide using the four different methods. Regarding safety issues another 24 samples were filled with stained calcium hydroxide and embedded in 0.4% agarose gel. Color changes in the agarose gel due to apical extrusion were digitally analysed using Photoshop. No significant differences were found for calcium hydroxide removal between the two laser groups. Sonic assisted removal and needle irrigation resulted in significant less calcium hydroxide removal than both laser groups, with significantly more calcium hydroxide removal in the ultrasonic group than in the needle irrigation group. For apical extrusion the higher laser (25 mJ/40 Hz group resulted in significant higher color changes of the periapical gel than all other groups. PIPS with the setting of 10 mJ/15 Hz achieved almost complete removal of calcium hydroxide without increasing apical extrusion of the irrigation solution.

  6. Environmental Impacts on the Strength Parameters of Mineral-Acrylic (PMMA/ATH Facade Panels

    Directory of Open Access Journals (Sweden)

    Aleksander Byrdy

    2015-01-01

    Full Text Available Composite mineral-acrylic panels consist in 80% of natural minerals produced from bauxite (aluminium hydroxides (ATH and in 20% from acrylic resin (polymethyl methacrylate (PMMA. This material due to high usability is widely used in interior finishes. Recently, the mineral-acrylic panels have been used as external claddings of buildings. So far, there are several dozen elevations realized worldwide. Due to the variability of the strength parameters of PMMA acrylic resins depending on the environmental influence, a number of tests on samples of mineral-acrylic panels to verify their suitability for use in climate conditions in Central Europe were performed. The studies determined the change of the material parameters after being subjected to aging process in conditions of high temperature, high relative humidity, freeze-thaw cycles, and UV radiation. In the studies parameters such as flexural strength and modulus of elasticity were measured at a reference temperature of 23°C. In raised and lowered temperatures only the tensile strength tests were conducted. Due to the lack of information in the available literature, the authors carried out tests of the temperature influence on the PMMA/ATH composite modulus of elasticity and flexural strength which is crucial in designing process.

  7. Characteristics of Cement Solidification of Metal Hydroxide Waste

    Directory of Open Access Journals (Sweden)

    Dae-Seo Koo

    2017-02-01

    Full Text Available To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  8. Characteristics of cement solidification of metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Sung, Hyun Hee; Kim, Seung Soo; Kim, Gye Nam; Choi, Jong Won [Dept. of Decontemination Decommission Technology Development, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  9. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  10. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  11. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  12. Aluminium hydroxide-the carrier for catalysts coating

    International Nuclear Information System (INIS)

    Normatov, I.Sh.; Mirsaidov, U.M.

    2003-01-01

    At present time several methods of receiving aluminium hydroxide are exist. But all they differ by much staging of process connected with preliminary receiving of intermediate compounds, with application of expensive metallic aluminium

  13. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...... equation showing maximum release at pH 5.2, reaching approximately 45% of the total Zn content. The Zn concentrations in the plants receiving the LDHs were between 2- and 9.5-fold higher than those in plants without Zn addition. A positive effect of the LDHs was also found in soil. This work documents...

  14. Chemometric analysis of minerals in gluten-free products.

    Science.gov (United States)

    Gliszczyńska-Świgło, Anna; Klimczak, Inga; Rybicka, Iga

    2018-06-01

    Numerous studies indicate mineral deficiencies in people on a gluten-free (GF) diet. These deficiencies may indicate that GF products are a less valuable source of minerals than gluten-containing products. In the study, the nutritional quality of 50 GF products is discussed taking into account the nutritional requirements for minerals expressed as percentage of recommended daily allowance (%RDA) or percentage of adequate intake (%AI) for a model celiac patient. Elements analyzed were calcium, potassium, magnesium, sodium, copper, iron, manganese, and zinc. Analysis of %RDA or %AI was performed using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Using PCA, the differentiation between products based on rice, corn, potato, GF wheat starch and based on buckwheat, chickpea, millet, oats, amaranth, teff, quinoa, chestnut, and acorn was possible. In the HCA, four clusters were created. The main criterion determining the adherence of the sample to the cluster was the content of all minerals included to HCA (K, Mg, Cu, Fe, Mn); however, only the Mn content differentiated four formed groups. GF products made of buckwheat, chickpea, millet, oats, amaranth, teff, quinoa, chestnut, and acorn are better source of minerals than based on other GF raw materials, what was confirmed by PCA and HCA. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Antimicrobial effect of calcium hydroxide as endo intracanal dressing on Streptococcus viridans

    Directory of Open Access Journals (Sweden)

    Nanik Zubaidah

    2008-03-01

    Full Text Available Calcium hydroxide had been used as the intra-canal dressing in endodontic treatment due to its high alkaline and antimicrobial capacity. It can also dissolve the necrotic tissue, prevent dental root resorbtion and regenerate a new hard tissue. The aim of this study was to determine the concentration of calcium hydroxide which had the highest antimicrobial effect on Streptococcus viridans. Samples were divided into 5 groups; each group consisted of 8 samples with different concentration of calcium hydroxide. Group I: 50%, group II: 55, Group III: 60%, Group IV: 65%, Group V: 70%. The antimicrobial testing was performed using diffusion method against Streptococcus viridans. The result of susceptibility test was showed by the inhibition zone diameter which measured with caliper (in millimeter. We analyzed the data using One-Way ANOVA test with significant difference 0.05 and subsequently LSD test. The study showed that calcium hydroxide with concentration 60% has the highest antimicrobial effect.

  16. Mineral content analysis of root canal dentin using laser-induced breakdown spectroscopy

    Science.gov (United States)

    2018-01-01

    Objectives This study aimed to introduce the use of laser-induced breakdown spectroscopy (LIBS) for evaluation of the mineral content of root canal dentin, and to assess whether a correlation exists between LIBS and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods by comparing the effects of irrigation solutions on the mineral content change of root canal dentin. Materials and Methods Forty teeth with a single root canal were decoronated and longitudinally sectioned to expose the canals. The root halves were divided into 4 groups (n = 10) according to the solution applied: group NaOCl, 5.25% sodium hypochlorite (NaOCl) for 1 hour; group EDTA, 17% ethylenediaminetetraacetic acid (EDTA) for 2 minutes; group NaOCl+EDTA, 5.25% NaOCl for 1 hour and 17% EDTA for 2 minutes; a control group. Each root half belonging to the same root was evaluated for mineral content with either LIBS or SEM/EDS methods. The data were analyzed statistically. Results In groups NaOCl and NaOCl+EDTA, the calcium (Ca)/phosphorus (P) ratio decreased while the sodium (Na) level increased compared with the other groups (p LIBS and SEM/EDS analyses (r = 0.84, p LIBS method proved to be reliable while providing data for the elemental composition of root canal dentin. PMID:29487841

  17. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    International Nuclear Information System (INIS)

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    2004-01-01

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), 29 Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhaps stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type

  18. The effect of magnesium hydroxide, hydromagnesite and layered double hydroxide on the heat stability and fire performance of plasticized poly(vinyl chloride)

    CSIR Research Space (South Africa)

    Molefe, DM

    2015-09-01

    Full Text Available . The other samples contained, in addition, minor amounts of iron, manganese nickel and calcium as impurities. Table 2. XRF composition analysis data of samples roasted at 1000 C Concentration, wt.% SiO2 Al2O3 Fe2O3 MnO MgO CaO NiO MgAl-LDH 1.59 36.85 0... additives aluminium trihydrate, magnesium hydroxide (MH), hydromagnesite (HM) and layered double hydroxide (LDH) have utility as endothermic flame retardants and smoke suppressants for PVC as well as other polymers (10-14). Their flame retardant action...

  19. Improvement of the process for electrochemical impregnation of nickel hydroxide electrodes

    Science.gov (United States)

    Comtat, M.; Lafage, B.; Leonardi, J.

    1986-01-01

    Nickel hydroxide electrodes containing 11g/dsqm hydroxide, with capacities of 3.6 to 3.8 Ah/dsqm were prepared at 353 K by electrochemical impregnation. The reproducibility of the results is obtained by readjusting the pH before each preparation. The control of each electrode is done during two cycles of charge and discharge following the manufacture by a potential relaxation method.

  20. Synthesis of zeolite-like crystals by means of sorption of bases on polysilicic acids

    Energy Technology Data Exchange (ETDEWEB)

    Belyakova, L A; Il' in, V G; Peresun' ko, T F; Kryuchkova, I I; Neymark, I E [AN Ukrainskoj SSR, Kiev. Inst. Fizicheskoj Khimii

    1974-11-21

    Investigation into the sorption of bases on crystalline polysilicic acids is of particular interest from the viewpoint of synthesis of new types of porous zeolite-like materials. A synthesis of polysilicate acids was carried out by treating respective sodium polysilicates with mineral acid solutions. The sorption of alkali metal hydroxides in the neutral and alkaline pH region was studied by the method of potentiometric titration of individual weighed quantities. A marked sorption of alkali metal hydroxides on polysilicic acids starts in the weakly acid and neutral regions and reaches saturation at pH=10.5. The process of ion exchange is accompanied by a change in the crystal structure of polysilicic acids. The sorption of bases on polysilicic acids may be used as a method of synthesis of zeolite-like porous crystals in different cationic forms.