WorldWideScience

Sample records for sodium hydrogen vacuum

  1. The determination of hydrogen in sodium by vacuum extraction

    International Nuclear Information System (INIS)

    Qi Linkun; Wan Gang; Wen Ximeng; Sun Shiping; Jia Yunteng

    1993-05-01

    A method to determine the hydrogen in sodium is introduced. The sodium sample, which is less than 7 g, is put into a thin iron capsule in argon atmosphere, the capsule is sealed by electron beam welding and heated to 700 degree C in a vacuum system with pressure less than 10 -5 Pa, then the hydrogen released from the vacuum system can be determined. The determining limit by this method is 20 ∼ 150 μg and the standard deviation is 20%. This method uses electron beam welding to replace the argon are welding and combines the off-line sampling with on-line measuring. It is an easier off-line measurement to determine hydrogen in sodium

  2. Hydrogen detector for sodium cooled reactors

    International Nuclear Information System (INIS)

    Roy, P.; Rodgers, D.N.

    1975-01-01

    An improved hydrogen detector for use in sodium cooled reactors is described. The improved detector basically comprises a diffusion tube of either pure nickel or stainless steel having a coating on the vacuum side (inside) of a thin layer of refractory metal, e.g., tungsten or molybdenum. The refractory metal functions as a diffusion barrier in the path of hydrogen diffusing from the sodium on the outside of the detector into the vacuum on the inside, thus by adjusting the thickness of the coating, it is possible to control the rate of permeation of hydrogen through the tube, thereby providing a more stable detector. (U.S.)

  3. Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method

    International Nuclear Information System (INIS)

    Funada, T.; Nihei, I.; Yuhara, S.; Nakasuji, T.

    1979-01-01

    A technique was developed to measure the hydrogen level in liquid sodium using an inert gas carrier method. Hydrogen was extracted into an inert gas from sodium through a thin nickel membrane in the form of a helically wound tube. The amount of hydrogen in the inert gas was analyzed by gas chromatography. The present method is unique in that it can be used over the wide range of sodium temperatures (150 to 700 0 C) and has no problems associated with vacuum systems. The partial pressure of hydrogen in sodium was determined as a function of cold-trap temperature (T/sub c/). Sieverts' constant (K/sub s/) was determined as a function of sodium temperature (T). From Sieverts' constant, the solubility of hydrogen in sodium is calculated. It was found that other impurities in sodium, such as (O) and (OH), have little effect on the hydrogen pressure in the sodium loop

  4. Hydrogen determination in magnesium, zirconium, sodium and lithium using installation, C2532

    International Nuclear Information System (INIS)

    Malikova, E.D.; Velyukhanov, V.P.; Makhinova, L.O.; Kunin, L.L.

    1980-01-01

    Techniques of hydrogen determination in magnesium, lithium, sodium and zirconium using the S 2532 installation are developed. The method of oxidizing melting using lead borate has been used for hydrogen determination in lithium and sodium and the method of vacuum extraction - for hydrogen determination in zirconium and magnesium. Zr and Mg extraction has been carried out in steel reactor at the temperatures of 1000 and 650 deg C, the time of extraction being 30 and 10 minutes respectively. A quartz reactor, temperatures of oxidizing melting of 700-800 deg C, the time of analysis 10 and 20 minutes have been used for sodium and lithium. A possibility to determine volumetric content of hydrogen in magnesium at the existing surface contaminations with hydrogen-containing compounds is shown [ru

  5. Quantitative determination of a hydrogen impurity in a sodium coolant by hydride thermal dissociation

    Science.gov (United States)

    Ivanovskiy, M. N.; Pavlova, G. D.; Shmatko, B. A.; Milovidova, A. V.; Konovalov, E. YE.; Arnoldov, M. N.; Pleshivtsev, A. D.

    1988-01-01

    A molten sodium coolant containing hydrogen was heated in a vacuum at 450 C, and the gases generated pumped through a liquid nitrogen trap, and the H2 was then oxidized on a copper oxide substrate heated to 400 C. The accuracy of the method is 1.5 percent and the sensitivity is 1x10 to the -5 wt percent hydrogen.

  6. Emission of muonic hydrogen isotopes from solid hydrogen layers into vacuum

    International Nuclear Information System (INIS)

    Marshall, G.M.; Bailey, J.M.; Beer, G.A.

    1989-10-01

    An attempt was made to create in vacuum free muonic hydrogen atoms, muonic protium and muonic deuterium. The method was based on slowing a beam of μ - in a layer of solid hydrogen in vacuum frozen to a cold gold foil substrate. Muonic hydrogen formed near the surface is emitted from it into the vacuum with an energy spectrum determined by the formation and subsequent scattering processes. For a typical total cross section of 10 -19 cm 2 the interaction probability is 0.43 μm -1 . For emission at an energy of order 1 eV, the muonic atom travels about 10 mm in vacuum prior to decay. No corresponding signal was observed with a deuterium layer of 6 mg/cm 2 . The natural abundance of deuterons in hydrogen leads to transfer of the muon in a mean time of about 500 ns, and because of the reduced mass difference, the m u - d obtains a kinetic energy of 45 eV, from which the atom will scatter and slow until the energy of the Ramsauer-Townsend minimum is reached and the hydrogen film becomes nearly transparent to μ - d. The Ramsauer-Townsend effect is also expected to show up for tritium in protium, which means a source of μ - t in vacuum should be possible

  7. Hydrogen meter for service in liquid sodium

    International Nuclear Information System (INIS)

    McCown, J.J.

    1983-11-01

    This standard establishes the requirements for the design, materials, fabrication, quality assurance, examination, and acceptance testing of a hydrogen meter and auxiliary equipment for use in radioactive or nonradioactive liquid sodium service. The meter shall provide a continuous and accurate indication of the hydrogen impurity concentration over the range 0.03 to 10 ppM hydrogen in sodium at temperatures between 800 and 1000 0 F (427 and 538 0 C). The meter may also be used to rapidly monitor changes in hydrogen concentration, over the same concentration range, and, therefore can be used as a sensor for sodium-water reactions in LMFBR steam generators

  8. The kinetics of hydrogen removal from liquid sodium

    International Nuclear Information System (INIS)

    Gwyther, J.R.; Whittingham, A.C.

    1981-01-01

    The rates of hydrogen removal from liquid sodium-sodium hydride mixtures have been measured as a function of sodium stirring rate at temperatures up to 420 0 C. Two techniques have been employed - removal under continuous evacuation in which hydrogen flow rates were measured using a capillary flow technique and by argon purging in which hydrogen concentrations in the argon carrier gas were measured by gas chromatography. The results have been used to assess the feasibility of thermal decomposition of sodium hydride for the regeneration of hydride-laden LMFBR cold traps. Studies on the kinetics of desorption of hydrogen from solution in liquid sodium at temperatures up to 400 0 C are also presented and possible kinetic mechanisms discussed. (orig.)

  9. Sodium hydrazinidoborane: a chemical hydrogen-storage material.

    Science.gov (United States)

    Moury, Romain; Demirci, Umit B; Ichikawa, Takayuki; Filinchuk, Yaroslav; Chiriac, Rodica; van der Lee, Arie; Miele, Philippe

    2013-04-01

    Herein, we present the successful synthesis and full characterization (by (11) B magic-angle-spinning nuclear magnetic resonance spectroscopy, infrared spectroscopy, powder X-ray diffraction) of sodium hydrazinidoborane (NaN2 H3 BH3 , with a hydrogen content of 8.85 wt %), a new material for chemical hydrogen storage. Using lab-prepared pure hydrazine borane (N2 H4 BH3 ) and commercial sodium hydride as precursors, sodium hydrazinidoborane was synthesized by ball-milling at low temperature (-30 °C) under an argon atmosphere. Its thermal stability was assessed by thermogravimetric analysis and differential scanning calorimetry. It was found that under heating sodium hydrazinidoborane starts to liberate hydrogen below 60 °C. Within the range of 60-150 °C, the overall mass loss is as high as 7.6 wt %. Relative to the parent N2 H4 BH3 , sodium hydrazinidoborane shows improved dehydrogenation properties, further confirmed by dehydrogenation experiments under prolonged heating at constant temperatures of 80, 90, 95, 100, and 110 °C. Hence, sodium hydrazinidoborane appears to be more suitable for chemical hydrogen storage than N2 H4 BH3 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-12-01

    Full Text Available The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5 were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel in hydrogen cyanide in the presence of sodium benzoate/sodium sulphite inhibitive mixtures range 0.322mmpy to 1.1269mmpy across the three volumetric ratios considered. The 15ml5ml sodium benzoatesodium sulphite mixture had the best average corrosion rate of 0.5123mmpy.The corrosion rate followed reducing pattern after the first 200 hours of immersion. The average corrosion rate in the sodium benzoate / sodium sulphite mixture is less than the rate in sodium sulphite and the mixture is only effective after long time exposure.It is concluded that adding sodium benzoate to sodium sulphite in the volumetric ratio 155ml improves the inhibitive strength of sodium sulphite on the corrosion of mild steel in hydrogen cyanide environment.

  11. An electrochemical hydrogen meter for measuring hydrogen in sodium using a ternary electrolyte mixture

    CERN Document Server

    Sridharan, R; Nagaraj, S; Gnanasekaran, T; Periaswami, G

    2003-01-01

    An electrochemical sensor for measuring hydrogen concentration in liquid sodium that is based on a ternary mixture of LiCl, CaCl sub 2 and CaHCl as the electrolyte has been developed. DSC experiments showed the eutectic temperature of this ternary system to be approx 725 K. Impedance spectroscopic analysis of the electrolyte indicated ionic conduction through a molten phase at approx 725 K. Two electrochemical hydrogen sensors were constructed using the ternary electrolyte of composition 70 mol% LiCl:16 mol% CaHCl:14 mol% CaCl sub 2 and tested at 723 K in a mini sodium loop and at hydrogen levels of 60-250 ppb in sodium. The sensors show linear response in this concentration range and are capable of detecting a change of 10 ppb hydrogen in sodium over a background level of 60 ppb. Identification of this electrolyte system and its use in a sensor for measuring hydrogen in sodium are described in this paper.

  12. Economical Aspects of Sodium Borohydride for Hydrogen Storage

    International Nuclear Information System (INIS)

    Ture, I. Engin; Tabakoglu, F. Oznur; Kurtulus, Gulbahar

    2006-01-01

    Hydrogen is the best fuel among others, which can minimize the cause to global warming. Turkey has an important location with respect to hydrogen energy applications. Moreover, Turkey has 72.2% of the world's total boron reserves. Sodium borohydride (NaBH 4 ) which can be produced from borax has high hydrogen storage capacity. Hence, it is important for Turkey to lead studies about sodium borohydride to make it one of the most feasible hydrogen storage methods. In this paper an approximate process cost analysis of a NaBH 4 -H 2 system is given, starting with NaBH 4 production till recycling of it. It is found that, the usage of NaBH 4 as hydrogen storage material is relatively an expensive method but after improving reactions and by-product removal in the system and reducing the energy and reactant costs, sodium borohydride is one of the best candidates among hydrogen storage technologies. (authors)

  13. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  14. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  15. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    OpenAIRE

    Muhammed Olawale Hakeem AMUDA; Olusegun Olusoji SOREMEKUN; Olakunle Wasiu SUBAIR; Atinuke OLADOYE

    2008-01-01

    The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5) were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel i...

  16. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  17. The reactions of oxygen and hydrogen with liquid sodium

    International Nuclear Information System (INIS)

    Ullmann, H.

    1981-01-01

    Results so far available as to the reactions and chemical equilibrium of oxygen and hydrogen with liquid sodium have been analyzed critically. The enthalpy values of the reactions have been discussed and supplemented on the basis of corresponding BORN-HABER cycles. The concentration and temperature functions of the hydrogen equilibrium pressure were deduced from experimental results. In relation to the solubility data the solid phases coexisting with liquid sodium in the ternary system Na-O-H have been discussed. The reaction of oxygen with hydrogen in diluted solution in liquid sodium has been investigated in more detail. Interaction coefficients, and the temperature functions of the free energy of formation and the equilibrium constant have been determined. (orig.)

  18. Cleaning of the equipment of residual sodium by means of water-vacuum technology

    International Nuclear Information System (INIS)

    Klykov, B.P.; Lednev, A.I.

    1997-01-01

    Results of investigation into a problem of equipment decontamination from sodium, that have been conducted in OKBM since 1960 are given. The investigations performed have shown that a water-vacuum washing process is the most optimal method for equipment decontamination from sodium residues. The essence of the method is in conduction of sodium-water reaction under reduced pressure in a leak-tight tank. Boundary conditions are selected experimentally which not allow sodium to be melted during the process, that gives possibility to control the sodium-water reaction. Continuous removal of H 2 and reaction products creates safe conditions for the process conduction. More that 20-year period of operation of a stationary water-vacuum facility and washing the electromagnetic pump for BN-350 fast nuclear reactor directly at is test rig are the best proofs of the proposed method. This method is well suitable for washing the equipment contaminated by radioactive sodium, because by-products of the process are simply utilized. The method is used in a number of Russian enterprises, and recommended for implementation at BN-350 and BN-600 reactor plants. (author)

  19. The influence of hydrogen on the fatigue life of metallic leaf spring components in a vacuum environment

    NARCIS (Netherlands)

    Kouters, M.H.M.; Slot, H.M.; Zwieten, W. van; Veer, J. van der

    2014-01-01

    Hydrogen is used as a process gas in vacuum environments for semiconductor manufacturing equipment. If hydrogen dissolves in metallic components during operation it can result in hydrogen embrittlement. In order to assess if hydrogen embrittlement occurs in such a vacuum environment a special

  20. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  1. The equilibrium hydrogen pressure-temperature diagram for the liquid sodium-hydrogen-oxygen system

    International Nuclear Information System (INIS)

    Knights, C.F.; Whittingham, A.C.

    1982-01-01

    The underlying equilibria in the sodium-hydrogen-oxygen system are presented in the form of a completmentary hydrogen equilibrium pressure-temperature diagram, constructed by using published data and supplemented by experimental measurements of hydrogen equilibrium pressures over condensed phases in the system. Possible applications of the equilibrium pressure-temperature phase diagram limitations regarding its use are outlined

  2. Hot vacuum outgassing to ensure low hydrogen content in MOX fuel pellets for thermal reactors

    International Nuclear Information System (INIS)

    Majumdar, S.; Nair, M.R.; Kumar, Arun

    1983-01-01

    Hot vacuum outgassing treatment to ensure low hydrogen content in Mixed Oxide Fuel (MOX) pellets for thermal reactors has been described. Hypostoichiometric sintered MOX pellets retain more hydrogen than UO 2 pellets. The hydrogen content further increases with the addition of admixed lubricant and pore formers. However, low hydrogen content in the MOX pellets can be ensured by a hot vacuum outgassing treatment at a temperature between 773K to 823K for 2 hrs. (author)

  3. Response of secondary containment to presence of sodium and hydrogen

    International Nuclear Information System (INIS)

    Gleikler, E.L.; Huang, T.C.

    1979-07-01

    As part of an effort to demonstrate that the risk to the public from extremely low probability events in liquid metal fast breeder reactors is bound within an acceptable envelope, containment pressurization by sodium and hydrogen was evaluated. Temperature and pressure histories are presented for typical sodium spray and pool fires and sodium vapor reactions. A review of mechanisms for hydrogen generation and recombination as well as limit for flammability and autocatalytic recombination is provided, and general containment design options to reduce risk are discussed

  4. Pulsed laser ablation of borax target in vacuum and hydrogen DC glow discharges

    Science.gov (United States)

    Kale, A. N.; Miotello, A.; Mosaner, P.

    2006-09-01

    The aim of our experiment was to produce a material with B sbnd H bonds for applications in hydrogen storage and generation. By using KrF excimer laser ( λ = 248 nm) ablation of borax (Na 2B 4O 7) target, thin films were deposited on KBr and silicon substrates. Ablation was performed both in vacuum and in hydrogen atmosphere. DC glow discharge technique was utilized to enhance hydrogen gas ionization. Experiments were performed using laser fluence from 5 to 20 J/cm 2. Films were deposited under gas pressure of 1 × 10 -5 to 5 × 10 -2 mbar and substrate temperatures of 130-450 °C. Scanning electron microscopy analysis of films showed presence of circular particulates. Film thickness, roughness and particulates number increased with increase in laser fluence. Energy dispersive X-ray spectroscopy analysis shows that sodium content in the particulates is higher than in the target. This effect is discussed in terms of atomic arrangements (both at surface and bulk) in systems where ionic and covalent bonds are present and by looking at the increased surface/bulk ratio of the particulates with respect to the deposited films. The Fourier transform infrared spectroscopy measurements showed presence of B sbnd O stretching and B sbnd O sbnd B bending bonds. Possible reasons for absence of B sbnd H bonds are attributed to binding enthalpy of the competing molecules.

  5. Sodium sampling and impurities determination

    International Nuclear Information System (INIS)

    Docekal, J.; Kovar, C.; Stuchlik, S.

    1980-01-01

    Samples may be obtained from tubes in-built in the sodium facility and further processed or they are taken into crucibles, stored and processed later. Another sampling method is a method involving vacuum distillation of sodium, thus concentrating impurities. Oxygen is determined by malgamation, distillation or vanadium balance methods. Hydrogen is determined by the metal diaphragm extraction, direct extraction or amalgamation methods. Carbon is determined using dry techniques involving burning a sodium sample at 1100 degC or using wet techniques by dissolving the sample with an acid. Trace amounts of metal impurities are determined after dissolving sodium in ethanol. The trace metals are concentrated and sodium excess is removed. (M.S.)

  6. Selective hydrogenation of 4-isobutylacetophenone over a sodium-promoted Pd/C catalyst

    International Nuclear Information System (INIS)

    Cho, Hong-Baek; Lee, Bae Uk; Nakayama, Tadachika; Park, Yeung-Ho; Ryu, Chung-Han

    2013-01-01

    The effect of sodium promotion on the selective hydrogenation of 4-isobutylacetophenone, 4-IBAP, was investigated over a Pd/C catalyst. A precipitation and deposition method was used to prepare the catalyst, and sodium was promoted on the Pd/C catalyst via post-impregnation while varying the sodium content. The sodium-promoted Pd/C catalyst resulted in a significantly improved yield greater than 96% of the desired product, 1-(4-isobutylphenyl) ethanol (4-IBPE), compared with the non-patented literature results under a mild hydrogenation condition. A detailed hydrogenation network over the Pd/C catalyst was suggested. The reaction mechanism for the yield and selectivity enhancement of 4-IBPE induced-by the promoted Pd/C was elucidated in relation to the geometric and electronic effects of reactant molecules in the microporous support depending on the reaction steps

  7. EBR-II water-to-sodium leak detection system

    International Nuclear Information System (INIS)

    Wrightson, M.M.; McKinley, K.; Ruther, W.E.; Holmes, J.T.

    1976-01-01

    The water-to-sodium leak detection system installed at EBR-II in April, 1975, is described in detail. Topics covered include operational characteristics, maintenance problems, alarm functions, background hydrogen level data, and future plans for refinements to the system. Particular emphasis is given to the failures of eight of the ten leak detectors due to sodium-to-vacuum leakage, and the program anticipated for complete recovery of the system

  8. Pulsed laser ablation of Germanium under vacuum and hydrogen environments at various fluences

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Hassan [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Dawood, Asadullah; Akram, Mahreen; Mahmood, Khaliq; Hayat, Asma; Ahmad, Riaz; Hussain, Tousif [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics (NILOP), Islamabad (Pakistan)

    2015-07-30

    Highlights: • Germanium targets were exposed under vacuum and H{sub 2} environment by nanosecond laser pulses. • The effect of laser fluence and ambient environment has been investigated. • The surface morphology is investigated by SEM analysis. • Raman and FTIR Spectroscopy are performed to reveal structural modification. • Electrical conductivity is probed by four probe method. - Abstract: Laser fluence and ambient environment play a significant role for the formation and development of the micro/nano-structures on the laser irradiated targets. Single crystal (1 0 0) Germanium (Ge) has been ablated under two environments of vacuum (10{sup −3} Torr) and hydrogen (100 Torr) at various fluences ranging from 4.5 J cm{sup −2} to 6 J cm{sup −2}. For this purpose KrF Excimer laser with wavelength of 248 nm, pulse duration of 18 ns and repetition rate of 20 Hz has been employed. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets was explored by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. Electrical conductivity of the irradiated Ge is measured by four probe method. SEM analysis exhibits the formation of laser-induced periodic surface structures (LIPSS), cones and micro-bumps in both ambient environments (vacuum and hydrogen). The formation as well as development of these structures is strongly dependent upon the laser fluence and environmental conditions. The periodicity of LIPSS or ripples varies from 38 μm to 60 μm in case of vacuum whereas in case of hydrogen environment, the periodicity varies from 20 μm to 45 μm. The difference in number of ripples and periodicity as well as in shape and size of cones and bumps in vacuum and hydrogen is explained on the basis of confinement and shielding effect of plasma. FTIR spectroscopy reveals that no new bands are formed for laser ablated Ge under vacuum, whereas C−H stretching vibration band is

  9. Determination of lithium in sodium by vacuum distillation-graphite furnace atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Xie Chun; Sun Shiping; Jia Yunteng; Wen Ximeng

    1996-12-01

    When sodium is used as a coolant in China Experimental Fast Reactor, the lithium content in sodium has an effect on the nuclear property of reactor. A method has been developed to determine the trace lithium in sodium metal at the level of less than ten parts per million. About 0.4 g sodium is placed into a high-purity tantalum crucible, then it is placed in a stainless-steel still to distill at 360 degree C under vacuum (0.01 Pa). After the sodium has been removed, the residue is dissolved by nitric acid (1:2) and analyzed with Graphite Furnace Atomic Absorption Spectroscopy at 671.0 nm wavelength. The distillation conditions, working conditions of the instrument and interferences from matrix sodium, acid and concomitant elements have been studied. Standard addition experiments are carried out with lithium chloride and lithium nitrate. The percentage recoveries are 96.8% and 97.4% respectively. The relative standard deviation is less than +- 5%. The method has been used to determine lithium content in high pure sodium and industrial grade sodium. (11 refs., 5 figs., 5 tabs.)

  10. Sodium removal of fuel elements by vacuum distillation

    International Nuclear Information System (INIS)

    Buescher, E.; Haubold, W.; Jansing, W.; Kirchner, G.

    1978-01-01

    Cleaning of sodium-wetted core components can be performed by using either lead, moist nitrogen, or alcohol. The advantages of these methods for cleaning fuel elements without causing damage are well known. The disadvantage is that large amounts of radioactive liquids are formed during handling in the latter two cases. In this paper a new method to clean components is described. The main idea is to remove all liquid metal from the core components within a comparatively short period of time. Fuel elements removed from the reactor must be cooled because of high decay heat release. To date, vacuum distillation of fuel elements has not yet been applied

  11. Contribution to the study of hydrogenated and oxygenated impurities in liquid sodium

    International Nuclear Information System (INIS)

    Naud, G.

    1964-07-01

    This study is made up essentially of two parts. The first is devoted to the development of dosage methods for selectively determining the oxygenated and hydrogenated impurities present in sodium, that is the oxide, the hydride and the hydroxide. The second makes use of these methods for a study of the Na-H 2 -O 2 system, as well as of the related problem of the attack of pyrex glass by molten sodium. The conventional method for dosing oxygen by amalgamation was first adapted to the simultaneous measurement of the hydride. We then developed a method for dosing the total hydrogen by measuring successively the concentrations of gas present in the hydride and hydroxide form. This method is based on the thermal decomposition of the hydride and the reaction between sodium and the hydroxide. Our contribution to the study of the Na-H 2 -O 2 System consists first of all in the study of the reaction between hydrogen and sodium in the temperature range from 150 to 250 deg C and at a pressure of about 150 mm of mercury. The study of the thermal decomposition of the hydride in sodium was then studied. It was possible to make some qualitative observations concerning the reaction between sodium and sodium hydroxide. Finally some complementary tests made it possible to define the nature of the phenomena occurring during the attack of pyrex glass by sodium. (author) [fr

  12. The monitoring of oxygen, hydrogen and carbon in the sodium circuits of the PFR

    International Nuclear Information System (INIS)

    Mason, L.; Morrison, N.S.; Robertson, C.M.; Trevillion, E.A.

    1984-01-01

    The paper reviews the instrumentation available for monitoring oxygen, hydrogen, tritium and carbon impurity levels on the primary and secondary circuits of PFR. Circuit oxygen levels measured using electrochemical oxygen meters are compared to estimates from circuit plugging meters. The data are interpreted in the light of information from cold trap temperatures. Measurements of secondary circuit hydrogen levels using both the sodium and gas phase hydrogen detection equipment are compared to estimates of circuit hydrogen levels from plugging meters and variations in sodium phase hydrogen levels during power operation are discussed. (author)

  13. Automatic torque magnetometer for vacuum-to-high-pressure hydrogen environments

    International Nuclear Information System (INIS)

    Larsen, J.W.; Livesay, B.R.

    1979-01-01

    An automatic torque magnetometer has been developed for use in high-pressure hydrogen. It will contain pressures ranging from vacuum to 200 atm of hydrogen gas at sample temperatures greater than 400 0 C. This magnetometer, which uses an optical lever postion sensor and a restoring force technique has an operating range of 2.0 x 10 3 dyn cm to l.6 x 10 -4 dyn cm. An accompanying digital data collection system extends the sensitivity to 1 x 10 -5 dyn cm as well as increasing the data handling capacity of the system. The magnetic properties of thin films in high-temperature and high-pressure hydrogen environments can be studied using this instruments

  14. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  15. Evaporation of tungsten in vacuum at low hydrogen and water vapor pressures

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Galkin, E.A.; Khromonozhkin, V.V.

    1981-01-01

    The results of experimental investigations of tungsten evaporation rates in the temperature range 1650-2500 K, partial hydrogen and water vapours pressures 1x10 -5 -10 Pa are presented. Experi-- mental plant, equipment employed and radiometric technique of tungsten evaporation study are described. The dependences of evaporation rate and probabilities of tungsten oxidation by residual vacuum water vapours and dependences of tungsten evaporation rate on partial hydrogen and water vapours pressures are determined [ru

  16. Wustite-based photoelectrodes with lithium, hydrogen, sodium, magnesium, manganese, zinc and nickel additives

    Science.gov (United States)

    Carter, Emily Ann; Toroker, Maytal Caspary

    2017-08-15

    A photoelectrode, photovoltaic device and photoelectrochemical cell and methods of making are disclosed. The photoelectrode includes an electrode at least partially formed of FeO combined with at least one of lithium, hydrogen, sodium, magnesium, manganese, zinc, and nickel. The electrode may be doped with at least one of lithium, hydrogen, and sodium. The electrode may be alloyed with at least one of magnesium, manganese, zinc, and nickel.

  17. Operation of the water-to-sodium leak detection system at the experimental breeder reactor II

    International Nuclear Information System (INIS)

    Osterhout, M.M.

    1978-01-01

    A water-to-sodium leak detection system was installed at the Experimental Breeder Reactor II in April 1975. The system is designed for early detection of steam generator leaks, using hydrogen meters at the sodium outlets of the evaporators and superheaters. The leak detectors operate by measuring the rate of diffusion of hydrogen from the liquid sodium through a nickel membrane into a dynamic vacuum system. The advantages of this detection system are rapid response time, high sensitivity, stability, and reliability. The system was operated on an experimental basis for the first two years. During this period, data were obtained on detector stability, reliability, maintenance needs, computer interface requirements, calibration, and background hydrogen-level fluctuations. A generic defect in the original detectors was also discovered, requiring redesign of the units. When the new units were installed and proven to be reliable, the system was made fully operational. The data from the hydrogen meters are now used as the primary basis for detection of water-to-sodium leaks

  18. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  19. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst

    International Nuclear Information System (INIS)

    Ozkar, S.; Zahmakiran, M.

    2005-01-01

    Sodium borohydride is stable in aqueous alkaline solution, however, it hydrolyses in water to hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. Generating H 2 catalytically from NaBH 4 solutions has many advantages: NaBH 4 solutions are nonflammable, reaction products are environmentally benign, rate of H 2 generation is easily controlled, the reaction product NaBO 2 can be recycled, H 2 can be generated even at low temperatures. All of the catalysts that has been used in hydrolysis of sodium borohydride are bulk metals and they act as heterogeneous catalysts. The limited surface area of the heterogeneous catalysts causes lower catalytic activity as the activity of catalyst is directly related to its surface area. Thus, the use of metal nanoparticles with large surface area provides potential route to increase the catalytic activity. Here, we report, for the first time, the use of ruthenium(0) nanoclusters as catalyst in the hydrolysis of sodium borohydride liberating hydrogen gas. The ruthenium nanoparticles are generated from the reduction of ruthenium(III) chloride by sodium borohydride in water and stabilized by specific ligand. The ruthenium(0) nanoclusters are found to be highly active catalyst for the hydrolysis of sodium borohydride

  20. Design and test of a vacuum distillation method for determining carbon in sodium

    International Nuclear Information System (INIS)

    Irmisch, R.; Rettig, D.; Woelke, K.

    1976-08-01

    A method is described for determining total and carbonate carbon in sodium samples until 10 g. Sodium is removed by vacuum distillation at 300 0 C and the carbon in the residue is converted to carbon dioxide by combustion in a stream of air or thermic splitting in a stream of cover gas at 1000 0 C. The carbon dioxide is measured manometrically. It is therefore not necessary to carry out calibration. Distillation and combustion rig are combined with inertgas filled transfer box. Therefore the sodium sample does not get into touch with air. Test of this method was carried out with Na 2 CO 3 and WC. Carbon recoveries were for Na 2 CO 3 between 103 and 107% and for WC between 92 and 96%. The blank value found being 9 μg C and sensitivity 3 μg C. (author)

  1. Hydrogen poisoning of the CO oxidation reaction on Pt and Pd under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Strozier, J.A.

    1977-01-01

    The poisoning by hydrogen of the catalyzed oxidation of CO on Pt and Pd under ultrahigh vacuum conditions was investigated. ac pulsing techniques are used in which the pressure of the reactant CO in the reaction chamber is modulated periodically by means of a fast piezoelectric ultrahigh vacuum valve, and the ac component of the product CO 2 is recorded mass spectroscopically by phase-sensitive techniques. The ac CO 2 production rate is measured as a function of hydrogen pressure (1 - 10 x 10 -9 toor) at constant CO and O 2 pressures (approximately equal to 5 x 10 -8 torr), and constant temperature (approximately equal to 700 K). Exact theoretical calculations of CO 2 production rates were carried out employing several models, i.e., oxygen burn-off by hydrogen, incorporating both the Eley-Rideal and Langmuir-Hinshelwood mechanisms. From a comparison with the experimental results, the probable reaction is of the Langmuir-Hinshelwood type and the relevant rate constant is also determined. These results are compared with other results in the literature on hydrogen oxidation on the surface of Pt

  2. Computational study of pristine and titanium-doped sodium alanates for hydrogen storage applications

    Science.gov (United States)

    Dathar, Gopi Krishna Phani

    The emphasis of this research is to study and elucidate the underlying mechanisms of reversible hydrogen storage in pristine and Ti-doped sodium aluminum hydrides using molecular modeling techniques. An early breakthrough in using complex metal hydrides as hydrogen storage materials is from the research on sodium alanates by Bogdanovic et al., in 1997 reporting reversible hydrogen storage is possible at moderate temperatures and pressures in transition metal doped sodium alanates. Anton reported titanium salts as the best catalysts compared to all other transition metal salts from his further research on transition metal doped sodium alanates. However, a few questions remained unanswered regarding the role of Ti in reversible hydrogen storage of sodium alanates with improved thermodynamics and kinetics of hydrogen desorption. The first question is about the position of transition metal dopants in the sodium aluminum hydride lattice. The position is investigated by identifying the possible sites for titanium dopants in NaAlH4 lattice and studying the structure and dynamics of possible compounds resulting from titanium doping in sodium alanates. The second question is the role of titanium dopants in improved thermodynamics of hydrogen desorption in Ti-doped NaAlH4. Though it is accepted in the literature that formation of TiAl alloys (Ti-Al and TiAl3) is favorable, reaction pathways are not clearly established. Furthermore, the source of aluminum for Ti-Al alloy formation is not clearly understood. The third question in this area is the role of titanium dopants in improved kinetics of hydrogen absorption and desorption in Ti-doped sodium alanates. This study is directed towards addressing the three longstanding questions in this area. Thermodynamic and kinetic pathways for hydrogen desorption in pristine NaAlH4 and formation of Ti-Al alloys in Ti-doped NaAlH 4, are elucidated to understand the underlying mechanisms of hydrogen desorption. Density functional theory

  3. Water leak detection in sodium heated steam generators through measurement of hydrogen concentration in sodium

    International Nuclear Information System (INIS)

    Cambillard, E.; Lacroix, A.; Martin, P.; Viala, J.

    1980-07-01

    This report includes a description of apparatus for measuring hydrogen concentration in the secondary sodium system of the PHENIX reactor. The calibration method and results obtained since the commissioning of the reactor are also described. Mention is made of improvements to be built into SUPER PHENIX [fr

  4. Correlation between hydrogen release and degradation of limestone concrete exposed to hot liquid sodium in inert atmosphere

    International Nuclear Information System (INIS)

    Parida, F.C.; Das, S.K.; Sharma, A.K.; Ramesh, S.S.; Somayajulu, P.A.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: Concrete is used as a structural material in a Fast Breeder Reactor (FBR) plant for the construction of its foundation, containment, radiation shield and equipment support structures. An accidental leakage of hot sodium on these civil structures can bring about thermo-chemical reactions, with concrete producing hydrogen gas and causing structural degradation. The concrete damage and hydrogen generation take place concurrently due to conduction of heat from sodium into the concrete and migration of steam / moisture in counter current direction towards sodium. In a series of experiments conducted with limestone concrete for two different types of design corresponding to composition and geometry, were exposed to liquid sodium (∼2 kg) at initial temperatures varying from 180 deg. C to 500 deg. C in an inerted test vessel (Capacity = 203 L). Immersion heater was employed to heat the sodium pool on the concrete cavity during the test period in some test runs. On-line continuous measurement of pressure, temperature, hydrogen gas and oxygen gas was carried out. Pre- and post- test nondestructive testing such as colour photography, spatial profiling of ultrasonic pulse velocity and measurement of dimensions were also conducted. Solid samples were collected from sodium debris by manual core drilling machine and from concrete block by hand held electric drilling machine. These samples were subjected to chemical analysis for the determination of free and bound water along with unburnt and burnt sodium. The hydrogen generation parameters such as average and peak release rate as well as release efficiency are derived from measured test variables. These test variables include temperature, pressure and hydrogen concentration in the argon atmosphere contained in the test vessel. The concrete degradation parameters encompass percentage reduction in ultrasonic pulse velocity, depth of physical and chemical dehydration and sodium penetration. These

  5. Experimental determination of the phase diagram of the system sodium-sodium hydride up to 9000C and hydrogen pressures up to 800 bar

    International Nuclear Information System (INIS)

    Klostermeier, W.

    1978-01-01

    In the present work part of the sodium-sodium hydride system phase diagram has been studied at high temperatures (up to 900 0 C) and high hydrogen pressures (up to 1000 bar). The absorption isothermal curves recorded at temperatures between 650 0 C and 900 0 C show an increase in hydride solubility in sodium from 5.5 mol% at 650 0 to 19 mol% at 900 0 C. The melting point of sodium hydride has been measured giving the value 632 0 C with a hydrogen equilibrium pressure of 106 bar. In the mixing gap region the plateau equilibrium pressure, which is independent of composition, and his temperature dependence have been obtained. The enthalpy and entropy of melting are determined. (GSCH) [de

  6. Thermal Decomposition of Sodium Hydrogen Carbonate and Textural Features of Its Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Pohořelý, Michael; Šyc, Michal

    2013-01-01

    Roč. 52, č. 31 (2013), s. 10619-10626 ISSN 0888-5885 R&D Projects: GA MŠk(CZ) 7C11009 Grant - others:RFCS(XE) RFCR-CT-2010-00009 Institutional support: RVO:67985858 Keywords : thermal decomposition * sodium hydrogen carbonate * sodium bicarbonate Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.235, year: 2013

  7. Reactions of oxygen and hydrogen with liquid sodium - a critical survey

    International Nuclear Information System (INIS)

    Ullmann, H.

    1982-01-01

    The fundamentals of solvation chemistry are presented with appropriate components formulated. Methods of investigation and kinetics of the reactions are described. The hydrogen equilibrium pressure and saturation solubilities are described. The chemical equilibrium between O and H in solution is presented with detailed tabulation of the saturation solutions of oxygen, hydrogen and hydroxide in liquid sodium. Agreements and differences with the literature are presented

  8. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material.

    Science.gov (United States)

    Yang, Lijun; Guo, Jing; Yu, Yue; An, Qingda; Wang, Liyan; Li, Shenglin; Huang, Xuelin; Mu, Siyang; Qi, Shanwei

    2016-05-20

    Sodium alginate/Antarctic krill protein composite material (SA/AKP) was successfully obtained by blending method. The hydrogen bonds of SA/AKP composite material were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance hydrogen spectrum (HNMR). Experiment manifested the existence of intermolecular and intramolecular hydrogen bonds in SA/AKP system; strength of intermolecular hydrogen bond enhanced with the increase of AKP in the composite material and the interaction strength of hydrogen bonding followed the order: OH…Ether O>OH…π>OH…N. The percentage of intermolecular hydrogen bond decreased with increase of pH. At the same time, the effect of hydrogen bonds on properties of the composite material was discussed. The increase of intermolecular hydrogen bonding led to the decrease of crystallinity, increase of apparent viscosity and surface tension, as well as obvious decrease of heat resistance of SA/AKP composite material. SA/AKP fiber SEM images and energy spectrum showed that crystallized salt was separated from the fiber, which possibly led to the fibrillation of the composite fibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Vacuum tight sodium resistant compound between ThO2 ceramic and metal

    International Nuclear Information System (INIS)

    Reetz, T.

    A method for evaluating the mechanical tensions for metal/ ceramic joinings was applied to the selection of metal components for a highly vacuum tight, sodium-resistant metal/ThO 2 ceramic solder joining. The metal component selected was the iron--nickel alloy Dilasil which is joined to the ceramic using a nickel-based solder. The wetting of the cearamic could be carried out using the titanium hydride technique or after the formation of a W-cerium layer on the surface of this ceramic. (U.S.)

  10. Hydrogen permeation measurement of the reduced activation ferritic steel F82H by the vacuum thermo-balance method

    International Nuclear Information System (INIS)

    Yoshida, Hajime; Enoeda, Mikio; Abe, Tetsuya; Akiba, Masato

    2005-03-01

    Hydrogen permeation fluxes of the reduced activation ferritic steel F82H were quantitatively measured by a newly proposed method, vacuum thermo-balance method, for a precise estimation of tritium leakage in a fusion reactor. We prepared sample capsules made of F82H, which enclosed hydrogen gas. The hydrogen in the capsules permeated through the capsule wall, and subsequently desorbed from the capsule surface during isothermal heating. The vacuum thermo-balance method allows simultaneous measurement of the hydrogen permeation flux by two independent methods, namely, the net weight reduction of the sample capsule and exhaust gas analysis. Thus the simultaneous measurements by two independent methods increase the reliability of the permeability measurement. When the gas pressure of enclosed hydrogen was 0.8 atm at the sample temperature of 673 K, the hydrogen permeation flux of F82H obtained by the net weight reduction and the exhaust gas analysis was 0.75x10 18 (H 2 /m 2 s) and 2.2x10 18 (H 2 /m 2 s), respectively. The ratio of the hydrogen permeation fluxes obtained by the net weight reduction to that measured by the exhaust gas analysis was in the range from 1/4 to 1/1 in this experiment. The temperature dependence of the estimated permeation flux was similar in both methods. Taking the uncertainties of both measurements into consideration, both results are supposed to be consistent. The enhancement of hydrogen permeation flux was observed from the sample of which outer surface was mechanically polished. Through the present experiments, it has been demonstrated that the vacuum thermo-balance method is effective for the measurement of hydrogen permeation rate of F82H. (author)

  11. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vessel that is Cooled by Liquid Hydrogen in Film Boiling

    International Nuclear Information System (INIS)

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-01-01

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels

  12. System design study of a membrane reforming hydrogen production plant using a small sized sodium cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Y.; Konomura, M.; Hori, T.; Sato, H.; Uchida, S.

    2004-01-01

    In this study, a membrane reforming hydrogen production plant using a small sized sodium cooled reactor was designed as one of promising concepts. In the membrane reformer, methane and steam are reformed into carbon dioxide and hydrogen with sodium heat at a temperature 500 deg-C. In the equilibrium condition, steam reforming proceeds with catalyst at a temperature more than 800 deg-C. Using membrane reformers, the steam reforming temperature can be decreased from 800 to 500 deg-C because the hydrogen separation membrane removes hydrogen selectively from catalyst area and the partial pressure of hydrogen is kept much lower than equilibrium condition. In this study, a hydrogen and electric co-production plant has been designed. The reactor thermal output is 375 MW and 25% of the thermal output is used for hydrogen production (70000 Nm 3 /h). The hydrogen production cost is estimated to 21 yen/Nm 3 but it is still higher than the economical goal (17 yen/Nm 3 ). The major reason of the high cost comes from the large size of hydrogen separation reformers because of the limit of hydrogen separation efficiency of palladium membrane. A new highly efficient hydrogen separation membrane is needed to reduce the cost of hydrogen production using membrane reformers. There is possibility of multi-tube failure in the membrane reformers. In future study, a design of measures against tube failure and elemental experiments of reaction between sodium and reforming gas will be needed. (authors)

  13. Contribution to the study of hydrogenated and oxygenated impurities in liquid sodium; Contribution a l'etude des impuretees hydrogenees et oxygenees dans le sodium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Naud, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-15

    This study is made up essentially of two parts. The first is devoted to the development of dosage methods for selectively determining the oxygenated and hydrogenated impurities present in sodium, that is the oxide, the hydride and the hydroxide. The second makes use of these methods for a study of the Na-H{sub 2}-O{sub 2} system, as well as of the related problem of the attack of pyrex glass by molten sodium. The conventional method for dosing oxygen by amalgamation was first adapted to the simultaneous measurement of the hydride. We then developed a method for dosing the total hydrogen by measuring successively the concentrations of gas present in the hydride and hydroxide form. This method is based on the thermal decomposition of the hydride and the reaction between sodium and the hydroxide. Our contribution to the study of the Na-H{sub 2}-O{sub 2} System consists first of all in the study of the reaction between hydrogen and sodium in the temperature range from 150 to 250 deg C and at a pressure of about 150 mm of mercury. The study of the thermal decomposition of the hydride in sodium was then studied. It was possible to make some qualitative observations concerning the reaction between sodium and sodium hydroxide. Finally some complementary tests made it possible to define the nature of the phenomena occurring during the attack of pyrex glass by sodium. (author) [French] Cette etude comporte essentiellement deux parties. La premiere est consacree a la mise au point de methodes de dosages permettant de determiner selectivement les impuretes oxygenees et hydrogenees presentes dans le sodium, a savoir l'oxyde, l'hydrure et l'hydroxyde. La seconde met a profit ces methodes en vue de l'etude du systeme Na-H{sub 2}-O{sub 2}. ainsi que du phenomene connexe d'attaque du verre pyrex par le sodium fondu. La methode classique de dosage de l'oxygene par amalgamation a d'abord ete adaptee au dosage simultane de l'hydrure. Nous avons ensuite mis au point le dosage de l'hydrogene

  14. High-vacuum pumping out of hydrogen isotopes by compressed and electrophysical pumps

    International Nuclear Information System (INIS)

    Bychkova, A.D.; Ershova, Z.V.; Saksaganskij, G.L.; Serebrennikov, D.V.

    1982-01-01

    To explain the selection of parameters of vacuum systems of projected thermonuclear devices, experiments are performed on the pumping-out of deuterium and tritium by high-vacuum pumps of different types. The values of the fast response of turbomolecular, diffusion vapour-mercury, magneto-discharge and titanium getter pumps in the operation pressure range are determined. The rate of sorption of hydrogen isotopes by non-spraying gas absorber of cial alloy depending on the amount of the gas absorbed and temperature, is measured. Gas current is determined by the pressure drop on the diagram of the known conductivity. Individual calibration of manometric converters for different gases using a mercury burette is performed preliminarily. The means of high-vacuum pumping-out that have been studied have the following values of fast response for tritium (relatively to protium): turbomolecular pump-0.95; evaporation getter pump-0.25; magneto-discharge pumps-0.65-0.9; cial alloy-0.1...0.5

  15. Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride

    Science.gov (United States)

    Koska, Anais; Toshikj, Nikola; Hoett, Sandra; Bernaud, Laurent; Demirci, Umit B.

    2017-01-01

    In the field of "hydrogen energy", sodium borohydride (NaBH[subscript 4]) is a potential hydrogen carrier able to release H[subscript 2] by hydrolysis in the presence of a metal catalyst. Our laboratory experiment focuses on this. It is intended for thirdyear undergraduate students in order to have hands-on laboratory experience through…

  16. Hot vacuum extraction-isotopic dilution mass spectrometry for determination of hydrogen isotopes in zircaloys

    International Nuclear Information System (INIS)

    Shi, Y.; Leeson, P.K.; Wilkin, D.; Britton, A.; Macleod, R.

    2016-01-01

    A hot vacuum extraction-isotope dilution mass spectrometry (HVE-IDMS) was studied for determination of hydrogen isotopes in zirconium metal and alloys as nuclear reactor materials. A theoretical assessment of the completeness of the extraction of hydrogen isotopes under the chosen condition was carried out based on the hydrogen and deuterium solubility data for zirconium. The optimal isotopic spiking condition for conventional IDMS was further explored for the special case IDMS where the isotope abundance of the samples is varied and non-natural. Applying the optimal conditions, the accurate IDMS determination was realized. The agreement between the measured values and the certified or prepared values of standard reference materials and homemade standard materials validate the method developed. (author)

  17. Continuous analyzers of hydrogen and carbon in liquid sodium and of hydrocarbon total in protective atmosphere above sodium

    International Nuclear Information System (INIS)

    Pitak, O.; Fresl, M.

    1980-01-01

    The principle is described of a leak detector for detecting water penetration into sodium in a steam generator. The device operates as a diffusion H-meter with an ion pump. Ni or Fe diffusion diaphragm is washed with sodium while diffused hydrogen is pumped and also monitored with the ion pump. Another detector uses the principle of analyzing hydrocarbons in the cover gas above the sodium level. The carrier gas flow for the analyzer divided into measuring and reference parts is passed through a chamber housing the diffusion standard. For measuring carbon content in sodium, the detector analytical part may be completed with a chamber with moisturizing filling for scrubbing gas. Carbon passing through the diffusion Fe diaphragm is scrubbed on the inner wall in the form of CO which is reduced to methane and measured using the detector C-meter. (M.S.)

  18. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Onwudili, Jude A.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2009-07-15

    The role of sodium hydroxide as a promoter of hydrogen gas production during the hydrothermal gasification of glucose and other biomass samples has been investigated. Experiments were carried out in a batch reactor with glucose and also in the presence of the alkali from 200 C, 2 MPa to 450 C, 34 MPa at constant water loading. Without sodium hydroxide, glucose decomposed to produce mainly carbon dioxide, water, char and tar. Furfural, its derivatives and reaction products dominated the ethyl acetate extract of the water (organic fraction) at lower reaction conditions. This indicated that the dehydration of glucose to yield these products was unfavourable to hydrogen gas production. In the presence of sodium hydroxide however, glucose initially decomposed to form mostly alkylated and hydroxylated carbonyl compounds, whose further decomposition yielded hydrogen gas. It was observed that at 350 C, 21.5 MPa, half of the optimum hydrogen gas yield had formed and at 450 C, 34 MPa, more than 80 volume percent of the gaseous effluent was hydrogen gas, while the balance was hydrocarbon gases, mostly methane ({>=}10 volume percent). Other biomass samples were also comparably reacted at the optimum conditions observed for glucose. The rate of hydrogen production for the biomass samples was in the following order; glucose > cellulose, starch, rice straw > potato > rice husk. (author)

  19. Clinical findings and effect of sodium hydrogen carbonate in patients with glutathione synthetase deficiency.

    Science.gov (United States)

    Gündüz, Mehmet; Ünal, Özlem; Kavurt, Sumru; Türk, Emrecan; Mungan, Neslihan Önenli

    2016-04-01

    Glutathione synthetase (GS) deficiency is a rare inborn error of glutathione (GSH) metabolism manifested by severe metabolic acidosis, hemolytic anemia, neurological problems and massive excretion of pyroglutamic acid (5-oxoproline) in the urine. The disorder has mild, moderate, and severe clinical variants. We aimed to report clinical and laboratory findings of four patients, effect of sodium hydrogen carbonate treatment and long-term follow up of three patients. Urine organic acid analysis was performed with gas chromatography-mass spectrometry. Molecular genetic analysis was performed in three patients, mutation was found in two of them. Enzyme analysis was performed in one patient. Clinical and laboratory findings of four patients were evaluated. One patient died at 4 months old, one patient's growth and development are normal, two patients have developed intellectual disability and seizures in the long term follow up period. Three patients benefited from sodium hydrogen carbonate treatment. The clinical picture varies from patient to patient, so it is difficult to predict the prognosis and the effectiveness of treatment protocols. We reported long term follow up of four patients and demonstrated that sodium hydrogen carbonate is effective for treatment of chronic metabolic acidosis in GS deficieny.

  20. Chemisorption of a hydrogen adatom on metal doped α-Zr (0 0 0 1 surfaces in a vacuum and an implicit solvation environment

    Directory of Open Access Journals (Sweden)

    Cheng Zeng

    2017-12-01

    Full Text Available First-principles calculations have been carried out to investigate the adsorption of a hydrogen adatom on 24 metal doped α-Zr (0 0 0 1 surfaces in both a vacuum and an implicit solvation environment. The dopant are the elements in the 4th and 5th periods in the periodic table. Doping elements at the tail of the 4th and 5th periods can significantly reduce the hydrogen pickup in a vacuum environment. A weighted d-band center theory is used to analyze the doping effect. On the other hand, the hydrogen adsorption energies in water are relatively lower for all doped slabs and the surface adsorption of hydrogen adatom is stronger than that in a vacuum environment, especially, for the slabs with doping elements at the tail of the 4th and 5th periods. In the solvation environment, electronegativity difference affects the adsorption. Doping elements Ag, Ga, Ge, Sn, and Sb can reduce the hydrogen pickup in vacuum, while Ag and Cu can reduce the hydrogen pickup of the zirconium alloys in solvent environment.

  1. Use of nuclear method analysis in ultrahigh vacuum. Application to the hydrogen dosage in solids

    International Nuclear Information System (INIS)

    Chartoire, M.

    1982-01-01

    It is possible to determine hydrogen by the 1 H( 15 N,αγ) 12 C nuclear reaction, in an ultra-high vacuum and with sample temperature monitoring, without reducing the detection efficiency of the γ rays emitted. This method is sensitive on the surface of the samples as well as in the core. Further, its resolution in depth on the surface is less than 50 x 10 -4 μm for elements with an atomic number above that of silicon. This surface analysis technique competes with and supplements the performance of the Auger and ESCA spectrometries. The cooling or heating of the samples in-situ from -150 0 C to +450 0 C enables an initial approach to be made to the phenomena of adsorption of the hydrogenated species on the surface of the samples. The possibility of plotting concentration profiles to depths of around a micrometer, also provides a means for studying the sorption of hydrogen in solids. The importance is brought to light of the quality of the residual vacuum and mainly of the partial steam pressure in the curves showing the change in the concentration of surface contamination hydrogen according to the quantity of incident ions. At temperatures above 300 0 C, the radiolysis and desorption phenomena of the species thus created become very significant. These were obtained only by making a study in greater depth of the validity conditions of the model used for describing the effusion of hydrogen under the analytical beam [fr

  2. 1 kWe sodium borohydride hydrogen generation system Part II: Reactor modeling

    OpenAIRE

    Zhang, Jinsong; Zheng, Yuan; Gore, Jay P; Mudawar, Issam; Fisher, Timothy

    2007-01-01

    Sodium borohydride (NaBH4) hydrogen storage systems offer many advantages for hydrogen storage applications. The physical processes inside a NaBH4 packed bed reactor involve multi-component and multi-phase flow and multi-mode heat and mass transfer. These processes are also coupled with reaction kinetics. To guide reactor design and optimization, a reactor model involving all of these processes is desired. A onedimensional numerical model in conjunction with the assumption of homogeneous cata...

  3. Measurement of percent hydrogen in the mechanical vacuum pump gas stream during BWR startup

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    All U.S BWRs use a Mechanical Vacuum Pump (MVP) to establish condenser vacuum during start-ups, normally from the initial heat-up to the point where sufficient reactor steam pressure and flow is available to place the Steam Jet Air Ejector (SJAE) and off-gas treatment system in service. MVP operation is restricted to <5% power and gas stream concentrations of <4% H 2 , the lower flammability limit (LFL) for hydrogen/air mixtures. For a particular plant startup prior to hydrogen injection for hydrogen water chemistry (HWC), the MVP %H 2 would depend on the air in-leakage rate, the H 2 gas generation rate from radiolysis and the gas/steam transport rate from the reactor vessel to the main condenser. The radiolysis rate at low power, which is not precisely known and has not been modeled for the BWR, is normally assumed to increase in proportion to thermal power. Two thirds of the radiolytic gas by volume would be H 2 and one third O 2 . The MVP is not equipped with %H 2 sampling and measurement capability, and many MVP systems include no flow measurement. No U.S plant or literature data on MVP %H 2 were found. The industry-first Early Hydrogen Water Chemistry (EHWC) demonstration at the Peach Bottom 3 nuclear power plant involved hydrogen gas injection into the reactor vessel during startup while the MVP was in service. To support the EHWC project, it was necessary to collect baseline MVP %H 2 data during a startup without hydrogen injection and to monitor MVP %H 2 during the startup with EHWC. The MVP system had no normal sample point, but included test taps in the suction and discharge piping. A sampling method and apparatus was invented (EPRI patent pending), designed, built and applied to obtain %H 2 measurements in the MVP gas stream. The apparatus allowed a gas sample stream to be taken from either the suction (vacuum) or discharge side of the MVP. The gas sample stream was preconditioned to remove moisture (the MVP uses water as a liquid compressant), flowed to

  4. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    Science.gov (United States)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  5. τ - hydrogen phosphate of zirconia in sodium salt form and some of its properties

    International Nuclear Information System (INIS)

    Fernandez V, S.M.; Ordonez R, E.

    2004-01-01

    It is reported the obtaining and characterization in the sodium salt form of the τ-hydrogen phosphate of zirconium in sodium form, this compound it was synthesized, for a new technique developed in the laboratory of Dept. of Chemistry of the ININ. The characterization was carried out for XRD, IR, Sem and EDS the thermal gravimetric analysis is also reported. (Author)

  6. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  7. By-Product Carrying Humidified Hydrogen: An Underestimated Issue in the Hydrolysis of Sodium Borohydride.

    Science.gov (United States)

    Petit, Eddy; Miele, Philippe; Demirci, Umit B

    2016-07-21

    Catalyzed hydrolysis of sodium borohydride generates up to four molecules of hydrogen, but contrary to what has been reported so far, the humidified evolved gas is not pure hydrogen. Elemental and spectroscopic analyses show, for the first time, that borate by-products pollute the stream as well as the vessel. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.M.F.R.; Falcao, D.S. [Departamento de Eng. Quimica, Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, R.A.; Rangel, C.M. [Instituto Nacional de Engenharia e Tecnologia e Inovacao, Paco do Lumiar 22, 1649-038 (Portugal)

    2006-08-15

    The catalytic hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution was studied using a non-noble; nickel-based powered catalyst exhibiting strong activity even after long time storage. This easy-to-prepare catalyst showed an enhanced activity after being recovered from previous use. The effects of temperature, NaBH{sub 4} concentration, NaOH concentration and pressure on the hydrogen generation rate were investigated. Particular importance has the effect of pressure, since the maximum reached pressure of hydrogen is always substantially lower than predictions (considering 100% conversion) due to solubility effects. The solubility of hydrogen is greatly enhanced by the rising pressure during reaction, leading to storage of hydrogen in the liquid phase. This effect can induce new ways of using this type of catalyst and reactor for the construction of hydrogen generators and even containers for portable and in situ applications. (author)

  9. TNO experience on sodium cleaning of large plant components by vacuum distillation

    Energy Technology Data Exchange (ETDEWEB)

    Smit, C Ch [MT-TNO Dept. 50-MW Sodium Component Test Facility, Hengelo (Netherlands)

    1978-08-01

    The Intermediate Heat Exchanger and Steam generators developed within the framework of the SNR-programme are being tested in the 50 MW Test facility at Hengelo - The Netherlands. The facility was designed and built by Neratoom, and is operated by TNO, the Dutch Organisation for Applied Scientific Research. Sodium technology work, such as reported in this paper, is done in close cooperation with Neratoom and with TNO-laboratories at Apeldoorn, where several smaller sodium rigs and other facilities are available. The operation and maintenance of a large sodium test facility and sodium rigs lead to frequent cleaning of small plant components, test sections and sampling devices. The choice of method usually depends on the size of the component and the cleaning quality needed. The results are predictable and satisfactory. For large components, however, the situation is different. Although the basic cleaning methods using alcohol and moist gas are well-known, and procedures for the cleaning of small components are available, complete cleaning of tight crevices and threaded bolds cannot be guaranteed, and consequently the requalification procedure needs to include a complete disassembly and inspection of the cleaned component. For large components this policy cannot always be followed. In those cases for instance where an in-between internal inspection is required, or where only small modifications of the test object are necessary, other possibilities have to be considered. For this reason some work has been done to develop reliable vacuum distillation procedures for large components, based on the cleaning experience with small plant components. The results of these procedures applied to large plant components are reported in this paper.

  10. TNO experience on sodium cleaning of large plant components by vacuum distillation

    International Nuclear Information System (INIS)

    Smit, C.Ch.

    1978-01-01

    The Intermediate Heat Exchanger and Steam generators developed within the framework of the SNR-programme are being tested in the 50 MW Test facility at Hengelo - The Netherlands. The facility was designed and built by Neratoom, and is operated by TNO, the Dutch Organisation for Applied Scientific Research. Sodium technology work, such as reported in this paper, is done in close cooperation with Neratoom and with TNO-laboratories at Apeldoorn, where several smaller sodium rigs and other facilities are available. The operation and maintenance of a large sodium test facility and sodium rigs lead to frequent cleaning of small plant components, test sections and sampling devices. The choice of method usually depends on the size of the component and the cleaning quality needed. The results are predictable and satisfactory. For large components, however, the situation is different. Although the basic cleaning methods using alcohol and moist gas are well-known, and procedures for the cleaning of small components are available, complete cleaning of tight crevices and threaded bolds cannot be guaranteed, and consequently the requalification procedure needs to include a complete disassembly and inspection of the cleaned component. For large components this policy cannot always be followed. In those cases for instance where an in-between internal inspection is required, or where only small modifications of the test object are necessary, other possibilities have to be considered. For this reason some work has been done to develop reliable vacuum distillation procedures for large components, based on the cleaning experience with small plant components. The results of these procedures applied to large plant components are reported in this paper

  11. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection.

    Science.gov (United States)

    Mentzer, Robert M; Lasley, Robert D; Jessel, Andreas; Karmazyn, Morris

    2003-02-01

    Although the mechanisms underlying ischemia/reperfusion injury remain elusive, evidence supports the etiologic role of intracellular calcium overload and oxidative stress induced by reactive oxygen species. Activation of the sodium hydrogen exchanger (NHE) is associated with intracellular calcium accumulation. Inhibition of the NHE-1 isoform may attenuate the consequences of this injury. Although there is strong preclinical and early clinical evidence that NHE inhibitors may be cardioprotective, definitive proof of this concept in humans awaits the results of ongoing clinical trials.

  12. Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis.

    Science.gov (United States)

    Budroni, M A; Biosa, E; Garroni, S; Mulas, G R C; Marchettini, N; Culeddu, N; Rustici, M

    2013-11-14

    The hydrolysis of borohydride salts represents one of the most promising processes for the generation of high purity molecular hydrogen under mild conditions. In this work we show that the sodium borohydride hydrolysis exhibits a fingerprinting periodic oscillatory transient in the hydrogen flow over a wide range of experimental conditions. We disproved the possibility that flow oscillations are driven by supersaturation phenomena of gaseous bubbles in the reactive mixture or by a nonlinear thermal feedback according to a thermokinetic model. Our experimental results indicate that the NaBH4 hydrolysis is a spontaneous inorganic oscillator, in which the hydrogen flow oscillations are coupled to an "oscillophor" in the reactive solution. The discovery of this original oscillator paves the way for a new class of chemical oscillators, with fundamental implications not only for testing the general theory on oscillations, but also with a view to chemical control of borohydride systems used as a source of hydrogen based green fuel.

  13. The problems of using a high-temperature sodium coolant in nuclear power plants for the production of hydrogen and other innovative applications

    Science.gov (United States)

    Sorokin, A. P.; Alexeev, V. V.; Kuzina, Ju. A.; Konovalov, M. A.

    2017-11-01

    The intensity of the hydrogen sources arriving from the third contour of installation in second in comparison with the hydrogen sources on NPP BN-600 increases by two - three order at using of high-temperature nuclear power plants with the sodium coolant (HT-NPP) for drawing of hydrogen and other innovative applications (gasification and a liquefaction of coal, profound oil refining, transformation of biomass to liquid fuel, in the chemical industry, metallurgy, the food-processing industry etc.). For these conditions basic new technological solutions are offered. The main condition of their implementation is raise of hydrogen concentration in the sodium coolant on two - three order in comparison with the modern NPP, in a combination to hydrogen removal from sodium and its pumping out through membranes from vanadium or niobium. The researches with use diffusive model have shown possibility to expel a casium inflow in sodium through a leakproof shell of fuel rods if vary such parameters as a material of fuel rods shell, its thickness and maintenance time at design of fuel rods for high-temperature NPP. However maintenance of high-temperature NPP in the presence of casium in sodium is inevitable at loss of leakproof of a fuel rods shell. In these conditions for minimisation of casium diffusion in structural materials it is necessary to provide deep clearing of sodium from cesium.

  14. Hydrolysis and regeneration of sodium borohydride (NaBH4) - A combination of hydrogen production and storage

    Science.gov (United States)

    Chen, W.; Ouyang, L. Z.; Liu, J. W.; Yao, X. D.; Wang, H.; Liu, Z. W.; Zhu, M.

    2017-08-01

    Sodium borohydride (NaBH4) hydrolysis is a promising approach for hydrogen generation, but it is limited by high costs, low efficiency of recycling the by-product, and a lack of effective gravimetric storage methods. Here we demonstrate the regeneration of NaBH4 by ball milling the by-product, NaBO2·2H2O or NaBO2·4H2O, with MgH2 at room temperature and atmospheric pressure without any further post-treatment. Record yields of NaBH4 at 90.0% for NaBO2·2H2O and 88.3% for NaBO2·4H2O are achieved. This process also produces hydrogen from the splitting of coordinate water in hydrated sodium metaborate. This compensates the need for extra hydrogen for generating MgH2. Accordingly, we conclude that our unique approach realizes an efficient and cost-effective closed loop system for hydrogen production and storage.

  15. User's manual of BISHOP. A Bi-Phase, Sodium-Hydrogen-Oxygen system, chemical equilibrium calculation program

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira

    2001-07-01

    In an event of sodium leakage in liquid metal fast breeder reactors, liquid sodium flows out of piping, and droplet combustion might occur under a certain environmental condition. The combustion heat and reaction products should be evaluated in the sodium fire analysis codes for investigating the influence of the sodium leak age and fire incident. In order to analyze the reaction heat and products, the multi-phase chemical equilibrium calculation program for a sodium, oxygen and hydrogen system has been developed. The developed numerical program is named BISHOP, which denotes 'Bi-Phase, Sodium-Hydrogen-Oxygen, Chemical Equilibrium Calculation Program'. The Gibbs free energy minimization method is used because of the following advantages. Chemical species are easily added and changed. A variety of thermodynamic states, such as isothermal and isentropic changes, can be dealt with in addition to constant temperature and pressure processes. In applying the free energy minimization method to solve the multi-phase sodium reaction system, three new numerical calculation techniques are developed. One is theoretical simplification of phase description in equation system, the other is to extend the Gibbs free energy minimization method to a multi-phase system, and the last is to establish the efficient search for the minimum value. The reaction heat and products at the equilibrium state can be evaluated from the initial conditions, such as temperature, pressure and reactants, using BISHOP. This report describes the thermochemical basis of chemical equilibrium calculations, the system of equations, simplification models, and the procedure to prepare input data and usage of BISHOP. (author)

  16. The design and commissioning of cold trap purifying system of hydrogen meter sodium loop

    International Nuclear Information System (INIS)

    Zhao Zhaoyi; Jia Baoshan; Chen Xiaoming; Pan Fengguo

    1993-01-01

    The design feature and parameters of cold trap purifying system of hydrogen meter sodium loop and its commissioning results are reported and discussed. In order to adjust the flow easily,. the cold trap purifying system is arranged in the exit of the electromagnetic pump. It is composed of regenerator and the cold trap. The regenerator is above the cold trap. The high temperature sodium in the main-loop flows through the regenerator, in the entrance of the cold trap, its temperature is reduced to 180 degree C. After entering into the cold trap, the sodium flows to the purifying region by side, when it arrives the bottom of the trap, its temperature is reduced to 110 degree C. The cold trap is cooled by air. The temperature of the clean sodium rises nearby the main-loop's by the regenerator, and then it returns to the entrance of the electromagnetic pump. According to the commissioning results, the sodium's temperature of the cold trap could be reduced to 110 degree C by reducing the flow of the cold trap purifying system and the temperature of the main-loop, or increasing the air flow and cutting off the power supply of its heating. The authors think that the latter is more conformable with the design stipulation and with the requirement of the hydrogen meter experiment, and it can meet the requirements of the operation of the Nuclear Power Plant

  17. Efficacy of formalin, hydrogen-peroxide, and sodium-chloride on fungal-infected rainbow-trout eggs

    Science.gov (United States)

    Schreier, Theresa M.; Rach, J.J.; Howe, G.E.

    1996-01-01

    Antifungal agents are essential for the maintenance of healthy stocks of fish and their eggs in intensive aquaculture operations. In the usa, formalin is the only fungicide approved for use in fish culture, however, hydrogen peroxide and sodium chloride have been granted low regulatory priority drug status by the united states food and drug administration (fda) and their use is allowed. We evaluated the efficacy of these fungicides for controlling fungal infections on rainbow trout eggs. A pilot study was conducted to determine the minimum water flow rate required to administer test chemicals accurately in heath incubators. A minimum water flow rate of 7.6 1 min(-1) was necessary to maintain treatment concentrations during flow-through chemical exposures, the antifungal activity of formalin, hydrogen peroxide, and sodium chloride was evaluated by treating uninfected and 10% fungal-infected (saprolegnia parasitica) rainbow trout eggs (oncorhynchus mykiss) for 15 min every other day until hatch. There were no significant differences among treatments in percent hatch or final infection for uninfected eggs receiving prophylactic chemical treatments, eggs of the negative control group (uninfected and untreated) had a mean hatch exceeding 86%, all chemical treatments conducted on the infected egg groups controlled the spread of fungus and improved hatching success compared with the positive control groups (infected and untreated), formalin treatments of 1000 and 1500 mu l 1(-1) and hydrogen peroxide treatments of 500 and 1000 mu l 1(-1) were the most effective. Sodium chloride treatments of 30000 mg 1(-1) improved fry hatch, but the compound was less effective at inhibiting fungal growths compared with hydrogen peroxide and formalin treatments.

  18. A recovery installation for sodium sulfates, thiosulfates and sulfides from waste water resulting from hydrogen sulfide fabrication

    International Nuclear Information System (INIS)

    Mazilu, Mihai; Costescu, Sanda

    2002-01-01

    An installation for recovery of sodium sulfate and sulfur suspensions from waste water was conceived. It consists from a preheater, vacuum evaporator and a refrigerating system with drum and scraper. This equipment concentration the solution by eliminating in the first stage the water in the vacuum evaporator. The water resulting at this stage is chemically pure and can be discharged in the sewage sludge system. The concentrated solution is then directed to the refrigerating system with drum and scrapper. Here the sodium sulfates, thiosulfates and sulfides get crystallized onto the drum surface. The resulting aqueous solution to be discharged in the sewage sludge system is previously analyzed as in case of the absent of the recovery installation, but the amount of pollutants will be much lower because sulfates, thiosulfates and sulfides were already recovered as scales from the drum. These solid scales can be used in detergent industry

  19. A new concept of hydrogen production system for sodium cooled FBR

    International Nuclear Information System (INIS)

    Nakagiri, Toshio; Aoto, Kazumi; Hoshiya, Taiji

    2004-01-01

    A new thermo-chemical and electrolytic hybrid hydrogen production process (thermo-chemical and electrolytic Hybrid Hydrogen process in Lower Temperature range: HHLT) is newly proposed by the Japan Nuclear Cycle Development Institute (JNC) to realize the hydrogen production from water by using the heat generation of sodium cooled Fast Breeding Reactor (FBR). The HHLT process is based on the sulfuric acid (H 2 SO 4 ) synthesis and decomposition processes developed earlier (Westinghouse process), and sulfur trioxide (SO 3 ) decomposition process of HHLT is facilitated by electrolysis with ionic oxygen conductive solid electrolyte to reduce operating temperature 200degC-300degC lower than Westinghouse process. Decomposition processes of SO 3 were confirmed with the cell voltage lower than 0.5 V at 500degC-600degC using 8mol yttria stabilized zirconia (8molYSZ) solid electrolyte and platinum electrode. Therefore, total voltage required for HHLT is expected to be lower than 1.0 V, because the voltage required for sulfuric acid synthesis is about 0.5V. Thermal efficiency of HHLT based on chemical reactions was roughly estimated to be within the range of 35% to 55% under the influence of H 2 SO 4 concentration and heat recovery. These results show the possibility of development of a new hydrogen production process which needs low splitting voltage and has high efficiency at around 500degC, utilizing the heat generation of sodium cooled FBR. SO 3 splitting with the voltage lower than 0.5V was confirmed at about 500degC experimentally, and ideal thermal efficiency of the cycle based on chemical reactions was evaluated. Furthermore, test apparatus to substantiate whole process of HHLT was manufactured. (author)

  20. The effect of sage, sodium erythorbate and a mixture of sage and sodium erythorbate on the quality of turkey meatballs stored under vacuum and modified atmosphere conditions.

    Science.gov (United States)

    Karpińska-Tymoszczyk, M

    2010-12-01

    1. The combined effect of sage (S), sodium erythorbate (SE), a mixture of sage and sodium erythorbate (MIX) and vacuum packaging (VP) and modified atmosphere packaging (MAP) on the quality of cooked turkey meatballs stored at 4°C was investigated. The physicochemical properties (colour, MDA, AV, pH, water activity), microbiological quality characteristics (counts of mesophilic and psychrotrophic bacteria, fungi, coliforms and Clostridium sp.) and flavour attributes of meatballs were determined. 2. The values of the colour parameters L*, a* and b* were affected by the additives and packaging method. The colour of meatballs was better protected by sodium erythorbate than by sage or a mixture of sage and sodium erythorbate. The additives effectively stabilised lipids against oxidation and slowed down hydrolytic changes in turkey meatballs. Sage and a mixture of sage and sodium erythorbate showed stronger antioxidant properties than sodium erythorbate added alone. Products with additives were characterised by better sensory quality than control samples. Sage and MIX prevented the growth of mesophilic and psychrotrophic bacteria. All additives inhibited the growth of coliforms. 3. MAP was more effective than VP in maintaining the microbial and sensory quality stability of cooked turkey meatballs. However, VP appears to be a better method as regards the maintaining of lipid stability in turkey meatballs.

  1. Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Liu, Xinmin; Cao, Changqing; Guo, Qingjie [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-08-01

    Low cost transition metal catalysts with high performance are attractive for the development of on-board hydrogen generation systems by catalytic hydrolysis of sodium borohydride (NaBH{sub 4}) in fuel cell fields. In this study, hydrogen production from alkaline NaBH{sub 4} via hydrolysis process over carbon-supported cobalt catalysts was studied. The catalytic activity of the supported cobalt catalyst was found to be highly dependent on the calcination temperatures. The hydrogen generation rate increases with calcination temperatures in the range of 200-400 C, but a high calcination temperature above 500 C led to markedly decreased activity. X-ray diffraction patterns reveal that the catalysts experience phase transition from amorphous Co-B to crystalline cobalt hydroxide with increase in calcination temperatures. The reaction performance is also dependent on the concentration of NaBH{sub 4}, and the hydrogen generation rate increases for lower NaBH{sub 4} concentrations and decreases after reaching a maximum at 10 wt.% of NaBH{sub 4}. (author)

  2. The influence of the water chemistry regime of the third circuit on the corrosion hydrogen burden to the secondary sodium circuit in the steam generator model of BN-800 reactor

    International Nuclear Information System (INIS)

    Smykov, V.B.; Ermolaev, N.P.; Kolesnik, A.I.; Egorov, V.A.; Shevchenko, N.N.

    1994-01-01

    An experimental program was conducted to determine the influence of water chemistry on the corrosion hydrogen burden from the III circuit to the secondary sodium in sodium-heated rig of OTSG of NPP BN-800. Combined water chemistry has given the best passivative effect on steam-generating surfaces and smallest hydrogen burden to secondary sodium during start-up. Common hydrogen increasing in secondary sodium was less then 0.2 ppm. In case of AVT water chemistry (NH 3 +N 2 H 4 ) in III side of OTSG-rig the hydrogen level in secondary sodium was 1.0-1.2 ppm. It means that during first start-up at NPP BN-800 the common hydrogen level in secondary sodium may reaches 0.80-0.85 ppm. 4 figs.; 4 tabs

  3. Sodium tetra-hydro-borate as energy/hydrogen carrier, its history

    International Nuclear Information System (INIS)

    Demirci, U.B.; Miele, Ph.

    2009-01-01

    Sodium tetra-hydro-borate NaBH 4 is considered as being a promising energy/hydrogen carrier. NaBH 4 is not a new compound. It has been discovered in 1940's by Prof. H.C. Brown, Nobel Laureate in Chemistry in 1979. NaBH 4 has thus a history and this history distinguishes the NaBH 4 utilisation as hydrogen carrier from that as energy carrier. In fact, the history of NaBH 4 (for both utilizations) can be divided into three periods, each period being characterised by specific societal challenges. Whereas during the first period the challenges were military and political, the challenges in the third period (i.e. at present) are energetic, environmental, civilian, social and political. The second period was rather calm for NaBH 4 even if it was intensively used as a reducing agent in organic chemistry. (authors)

  4. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  5. Kinetic Models Study of Hydrogenation of Aromatic Hydrocarbons in Vacuum Gas Oil and Basrah Crude Oil Reaction

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibraheem

    2013-05-01

    Full Text Available             The aim of this research is to study the kinetic reaction models for catalytic hydrogenation of aromatic content for Basrah crude oil (BCO and vacuum gas oil (VGO derived from Kirkuk crude oil which has the boiling point rang of (611-833K.            This work is performed using a hydrodesulphurization (HDS pilot plant unit located in AL-Basil Company. A commercial (HDS catalyst cobalt-molybdenum (Co-Mo supported in alumina (γ-Al2O3 is used in this work. The feed is supplied by North Refinery Company in Baiji. The reaction temperatures range is (600-675 K over liquid hourly space velocity (LHSV range of (0.7-2hr-1 and hydrogen pressure is 3 MPa with H2/oil ratio of 300 of Basrah Crude oil (BCO, while the corresponding conditions for vacuum gas oil (VGO are (583-643 K, (1.5-3.75 hr-1, 3.5 MPa and 250  respectively .            The results showed that the reaction kinetics is of second order for both types of feed. Activation energies are found to be 30.396, 38.479 kJ/mole for Basrah Crude Oil (BCO and Vacuum Gas Oil (VGO respectively.

  6. Evaluation of determinative methods for sodium impurities

    International Nuclear Information System (INIS)

    Molinari, Marcelo; Guido, Osvaldo; Botbol, Jose; Ares, Osvaldo

    1988-01-01

    Sodium, universally accepted as heat transfer fluid in fast breeder reactors, requires a special technology for every operation involved in any applicable methodology, due to its well known chemical reactivity. The purpose of this work is: a) to study the sources and effects of chemical species which, as traces, accompany sodium used in the nuclear field; b) to classify, taking into account, the present requirements and resources of the National Atomic Energy Commission (CNEA), the procedures found in the literature for determination of the most important impurities which exist in experimental liquid sodium systems and c) to describe the principles of the methods and to evaluate them in order to make a selection. It was concluded the convenience to develop, as a first stage, laboratory procedures to determine carbon, oxygen, hydrogen and non-volatile impurities, which besides serving present needs, will be referential for direct methods with undeferred response. The latter are needed in liquid sodium experimental loops and require, primarily, more complex and extended development. Additionally, a description is made of experimental work performed up-to-now in this laboratory, consisting of a transfer device for sodium sampling and a sodium distillation device, adapted from a previous design, with associated vacuum and inert gas systems. It is intended as a separative technique for indirect determination of oxygen and non-volatile impurities. (Author) [es

  7. Evaluation of steam-to-sodium leak detectors in the sodium components test installation (SCTI)

    Energy Technology Data Exchange (ETDEWEB)

    McKee, J M; Simmons, W R

    1975-07-01

    Two nickel diffusion-membrane type hydrogen detectors were installed in the secondary sodium system of the Sodium Components Test Installation and evaluated during the 12-month performance test of the Modular Steam Generator (MSG). Hydrogen in the expansion tank cover gas was monitored with a gas chromatograph. During this period, numerous steam and hydrogen injections were made, simulating steam leaks into the sodium of an LMFBR steam generator. The response of the detectors was evaluated for leak sizes ranging from 10{sup -6} to 10{sup -4} 1b H{sub 2}O/sec, injection periods of 0.5 to 300 min, secondary sodium flow rates of 0.2 x 10{sup 6} to 1.5 x 10{sup 6} 1b/hr, and sodium temperatures of 400 to 950 deg. F. The response of the leak detection system was influenced significantly by two regimes of sodium temperature. Below 600 deg. F, the cover gas hydrogen detector gave the largest response; this is attributed to the long dissolution time of hydrogen bubbles relative to the transit time of hydrogen to the expansion tank. Above 600 deg. F, the hydrogen apparently dissolved rapidly and the detectors were much more effective in the sodium than in the cover gas. At least 75% of the hydrogen and 50% of the oxygen content of injected steam appeared as detectable activity if the reaction products were dispersed in the sodium stream and the sodium was above 600 deg. F. Hydrogen injections into semi-stagnant sodium at the MSG tube sheets were detected with better sensitivity than steam injections into the main sodium stream. It appeared that high local concentrations of hydrogen were quickly carried to the nearest detector by upward currents created by the injected gas. The alarm system functioned as expected, 2.1 ppb/min being the smallest rate-of-rise in hydrogen concentration to give an automatic alarm. With more sensitive rate-of-rise alarm settings, leaks as small as 2 x 10{sup -5} 1b H{sub 2}O/sec could be detected in a system such as the Clinch River Breeder

  8. Evaluation of steam-to-sodium leak detectors in the sodium components test installation (SCTI)

    International Nuclear Information System (INIS)

    McKee, J.M.; Simmons, W.R.

    1975-01-01

    Two nickel diffusion-membrane type hydrogen detectors were installed in the secondary sodium system of the Sodium Components Test Installation and evaluated during the 12-month performance test of the Modular Steam Generator (MSG). Hydrogen in the expansion tank cover gas was monitored with a gas chromatograph. During this period, numerous steam and hydrogen injections were made, simulating steam leaks into the sodium of an LMFBR steam generator. The response of the detectors was evaluated for leak sizes ranging from 10 -6 to 10 -4 1b H 2 O/sec, injection periods of 0.5 to 300 min, secondary sodium flow rates of 0.2 x 10 6 to 1.5 x 10 6 1b/hr, and sodium temperatures of 400 to 950 deg. F. The response of the leak detection system was influenced significantly by two regimes of sodium temperature. Below 600 deg. F, the cover gas hydrogen detector gave the largest response; this is attributed to the long dissolution time of hydrogen bubbles relative to the transit time of hydrogen to the expansion tank. Above 600 deg. F, the hydrogen apparently dissolved rapidly and the detectors were much more effective in the sodium than in the cover gas. At least 75% of the hydrogen and 50% of the oxygen content of injected steam appeared as detectable activity if the reaction products were dispersed in the sodium stream and the sodium was above 600 deg. F. Hydrogen injections into semi-stagnant sodium at the MSG tube sheets were detected with better sensitivity than steam injections into the main sodium stream. It appeared that high local concentrations of hydrogen were quickly carried to the nearest detector by upward currents created by the injected gas. The alarm system functioned as expected, 2.1 ppb/min being the smallest rate-of-rise in hydrogen concentration to give an automatic alarm. With more sensitive rate-of-rise alarm settings, leaks as small as 2 x 10 -5 1b H 2 O/sec could be detected in a system such as the Clinch River Breeder Reactor Plant. A preliminary

  9. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  10. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  11. 3.2.1. Synthesis, crystal and molecular structure of catena-(bis(µ1-oxalic acid-µ3-hydrogen oxalate-di-aqua-sodium(I.

    Directory of Open Access Journals (Sweden)

    Olga Kovalchukova*, Sergey Aldoshin, Andrey Utenyshev, Konstantin Bogenko, Valeriy Tkachev

    2015-07-01

    Full Text Available The crystal and molecular structure of catena-(bis(µ- oxalic acid-µ-hydrogen oxalate-di-aqua-sodium(I was detected by X-Ray analysis. The compound crystallizes in the triclinic space group P-1, with a(Å 6.2378(12; b(Å 7,1115(14; c(Å 10.489(2; α(° 94.65(3; β(° 100.12(3; γ(° 97.78(3. The sodium cation in the title compound is eight coordinated and forms a square antiprism. It is surrounded by two molecules of oxalic acid, one hydrogen oxalate anion and one water molecule. Both oxalic acid and hydrogen oxalate anion act as polydentate bridging ligands. Centrosymmetric sodium cations are bounded by hydrogen oxalate anions through a system of H bonds involving the molecules of oxalic acid. In the lattice, the 3D structure stabilized by H bonds is formed.

  12. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    Science.gov (United States)

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  13. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    Science.gov (United States)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  14. Study of structural, surface and hydrogen storage properties of boric acid mediated metal (sodium)-organic frameworks

    Science.gov (United States)

    Ozer, Demet; Köse, Dursun A.; Sahin, Onur; Oztas, Nursen A.

    2018-04-01

    Three boric acid mediated metal organic frameworks were synthesized by solution method with using succinic acid, fumaric acid and acetylene dicarboxylic acid as a ligand source and sodium as a metal source. The complexes were characterized by FT-IR, powder XRD, elemental analyses and single crystal measurements. The complexes with the formula, C4H18B2Na2O14, C4H16B2Na2O14 and C4H14B2Na2O14 were successfully obtained. BET surface area of complexes were calculated and found as 13.474 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-succinato)-di-sodium boric acid solvate), 1.692 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-fumarato)-di-sodium boric acid solvate) and 5.600 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-acetylenedicarboxylato)-di-sodium boric acid solvate). Hydrogen storage capacities of the complexes were also studied at 77 K 1 bar pressure and found as 0.108%, 0.033%, 0.021% by mass. When different ligands were used, the pore volume, pore width and surface area of the obtained complexes were changed. As a consequence, hydrogen storage capacities also changed.

  15. Ni(0-CMC-Na Nickel Colloids in Sodium Carboxymethyl-Cellulose: Catalytic Evaluation in Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Abdallah Karim

    2011-01-01

    Full Text Available A recyclable catalyst, Ni(0-CMC-Na, composed of nickel colloids dispersed in a water soluble bioorganic polymer, sodium carboxymethylcellulose (CMC-Na, was synthesized by a simple procedure from readily available reagents. The catalyst thus obtained is stable and highly active in alkene hydrogenations.

  16. Liquid hydrogen and deuterium targets

    International Nuclear Information System (INIS)

    Bougon, M.; Marquet, M.; Prugne, P.

    1961-01-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [fr

  17. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  18. Liquid hydrogen and deuterium targets; Cibles a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Bougon, M; Marquet, M; Prugne, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [French] Description de: 1) Cible a pression atmospherique; hydrogene liquide, 400 mm d'epaisseur; l'isolement thermique: styrofoam; on utilise les vapeurs d'hydrogene pour ameliorer le refroidissement de la cible; hublots en Mylar. 2) Cible sous vide; contenance 12 litres; hydrogene ou deuterium; epaisseur du liquide 400 mm; l'isolement thermique est assure par une cuve a vide et un ecran d'azote liquide. Recuperation et liquefaction des vapeurs de deuterium sont effectuees dans la cuve a vide contenant la cible. Le systeme de vidange pour la cible est concu pour fonctionner en quelques minutes. (auteur)

  19. Determination of occluded oxygen, nitrogen and hydrogen in zircalloy-4 by vacuum extraction coupled to gas chromatography

    International Nuclear Information System (INIS)

    Vega, O.; Imakuma, K.

    1983-01-01

    The technique of vacuum extraction at high temperatures was used for the liberation of gases from zircalloy-4 samples; oxygen, nitrogen and hydrogen were quantitatively analysed by gas chromatography. Two different sets of zircalloy-4 samples were examined. The results for O 2 , N 2 and H 2 quantitative analyses satisfy the requirements for the characterization of the zircalloy-4 quality. (C.L.B.) [pt

  20. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    Science.gov (United States)

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  1. Methodology for Extraction of Remaining Sodium of Used Sodium Containers

    International Nuclear Information System (INIS)

    Jung, Minhwan; Kim, Jongman; Cho, Youngil; Jeong, Jiyoung

    2014-01-01

    Sodium used as a coolant in the SFR (Sodium-cooled Fast Reactor) reacts easily with most elements due to its high reactivity. If sodium at high temperature leaks outside of a system boundary and makes contact with oxygen, it starts to burn and toxic aerosols are produced. In addition, it generates flammable hydrogen gas through a reaction with water. Hydrogen gas can be explosive within the range of 4.75 vol%. Therefore, the sodium should be handled carefully in accordance with standard procedures even though there is a small amount of target sodium remainings inside the containers and drums used for experiment. After the experiment, all sodium experimental apparatuses should be dismantled carefully through a series of draining, residual sodium extraction, and cleaning if they are no longer reused. In this work, a system for the extraction of the remaining sodium of used sodium drums has been developed and an operation procedure for the system has been established. In this work, a methodology for the extraction of remaining sodium out of the used sodium container has been developed as one of the sodium facility maintenance works. The sodium extraction system for remaining sodium of the used drums was designed and tested successfully. This work will contribute to an establishment of sodium handling technology for PGSFR. (Prototype Gen-IV Sodium-cooled Fast Reactor)

  2. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO₂ Nanoflowers via Vacuum Annealing Treatment.

    Science.gov (United States)

    Liu, Gao; Wang, Zhao; Chen, Zihui; Yang, Shulin; Fu, Xingxing; Huang, Rui; Li, Xiaokang; Xiong, Juan; Hu, Yongming; Gu, Haoshuang

    2018-03-23

    In this work, SnO₂ nanoflowers synthesized by a hydrothermal method were employed as hydrogen sensing materials. The as-synthesized SnO₂ nanoflowers consisted of cuboid-like SnO₂ nanorods with tetragonal structures. A great increase in the relative content of surface-adsorbed oxygen was observed after the vacuum annealing treatment, and this increase could have been due to the increase in surface oxygen vacancies serving as preferential adsorption sites for oxygen species. Annealing treatment resulted in an 8% increase in the specific surface area of the samples. Moreover, the conductivity of the sensors decreased after the annealing treatment, which should be attributed to the increase in electron scattering around the defects and the compensated donor behavior of the oxygen vacancies due to the surface oxygen adsorption. The hydrogen sensors of the annealed samples, compared to those of the unannealed samples, exhibited a much higher sensitivity and faster response rate. The sensor response factor and response rate increased from 27.1% to 80.2% and 0.34%/s to 1.15%/s, respectively. This remarkable enhancement in sensing performance induced by the annealing treatment could be attributed to the larger specific surface areas and higher amount of surface-adsorbed oxygen, which provides a greater reaction space for hydrogen. Moreover, the sensors with annealed SnO₂ nanoflowers also exhibited high selectivity towards hydrogen against CH₄, CO, and ethanol.

  3. Solubility of hydrogen in aqueous solutions of sodium and potassium bicarbonate from 293 to 333 K

    NARCIS (Netherlands)

    Engel, D.C.; Engel, D.C.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    An experimental study is presented of the hydrogen solubility in aqueous salt solutions containing sodium and potassium bicarbonate from 293 to 333 K. For this purpose, gas consumption measurements have been performed by determining the ultimate pressure decrease in an intensively stirred, high

  4. Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K

    NARCIS (Netherlands)

    Engel, Dico C.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1996-01-01

    An experimental study is presented of the hydrogen solubility in aqueous salt solutions containing sodium and potassium bicarbonate from 293 to 333 K. For this purpose, gas consumption measurements have been performed by determining the ultimate pressure decrease in an intensively stirred, high

  5. Investigation of Inner Vacuum Sucking method for degassing of molten aluminum

    International Nuclear Information System (INIS)

    Zeng, Jianmin; Gu, Ping; Wang, Youbing

    2012-01-01

    Hydrogen is a harmful gas element that is appreciably soluble in aluminum and its alloys. Removal of hydrogen from molten aluminum has been one of the most important tasks in aluminum melt processing. In this paper, a patented degassing process, which is based on principle of vacuum metallurgy, is proposed. A porous head that connects a vacuum system is immersed in the molten aluminum. The vacuum is created within the porous head and the dissolved hydrogen will diffuse unidirectionally towards the porous head according to Sievert's law. In this way, the hydrogen in the molten aluminum can be removed. The Fick's diffusion equation is used to explain hydrogen transfer in the molten aluminum. RPT experiments are carried out to evaluate the effectiveness of the new degassing process. The experiments indicate that the hydrogen content can be dramatically reduced by use of this process.

  6. Effect of controlled deactivation on the thermochemical characteristics of hydrogen adsorption on skeletal nickel from sodium hydroxide-water solutions

    Science.gov (United States)

    Prozorov, D. A.; Lukin, M. V.; Ulitin, M. V.

    2013-04-01

    Differential heats of adsorption in a wide range of surface coverage and maximum amounts of adsorbed hydrogen are determined by adsorption calorimetry on partially deactivated skeletal nickel from aqueous solutions of sodium hydroxide. The effect of the composition of solutions on the values of limiting adsorption and adsorption equilibria of individual forms of hydrogen is shown.

  7. Tin and tin-titanium as catalyst components for reversible hydrogen storage of sodium aluminium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Qi Jia Fu; Shik Chi Tsang [University of Reading, Reading (United Kingdom). Surface and Catalysis Research Centre, School of Chemistry

    2006-10-15

    This paper is concerned with the effects of adding tin and/or titanium dopant to sodium aluminium hydride for both dehydrogenation and re-hydrogenation reactions during their reversible storage of molecular hydrogen. Temperature programmed decomposition (TPD) measurements show that the dehydrogenation kinetics of NaAlH{sub 4} are significantly enhanced upon doping the material with 2 mol% of tributyltin hydride, Sn(Bu)3H but the tin catalyst dopant is shown to be inferior than titanium. On the other hand, in this preliminary work, a significant synergetic catalytic effect is clearly revealed in material co-doped with both titanium and tin catalysts which shows the highest reversible rates of dehydrogenation and re-hydrogenation (after their hydrogen depletion). The re-hydrogenation rates of depleted Sn/Ti/NaAlH{sub 4} evaluated at both 9.5 and 140 bars hydrogen are also found to be favourable compared to the Ti/NaAlH{sub 4}, which clearly suggest the importance of the catalyst choice. Basing on these results some mechanistic insights for the catalytic reversible dehydrogenation and re-hydrogenation processes of Sn/Ti/NaAlH{sub 4} are therefore made. 31 refs., 8 figs., 2 tabs.

  8. Thermometric titration of cadmium with sodium diethyldithiocarbamate, with oxidation by hydrogen peroxide as indicator reaction.

    Science.gov (United States)

    Hattori, T; Yoshida, H

    1987-08-01

    A new method of end-point indication is described for thermometric titration of cadmium with sodium diethyldithiocarbamate (DDTC). It is based on the redox reaction between hydrogen peroxide added to the system before titration, and the first excess of DDTC. Amounts of cadmium in the range 10-50 mumoles are titrated within 1% error.

  9. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH{sub 4}-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.H. [Department of Materials and Engineering, Zhejiang University (China); Li, Z.P.; Chen, L.L. [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-05-15

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH{sub 4} gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH{sub 4} concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl{sub 2} catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH{sub 4} gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH{sub 4} solution. The NaBH{sub 4} gel also successfully powered a NaBH{sub 4}-air battery. (author)

  10. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  11. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries.

    Science.gov (United States)

    He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang

    2017-10-27

    Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.

  12. Sodium/hydrogen-exchanger inhibition during cardioplegic arrest and cardiopulmonary bypass: an experimental study.

    Science.gov (United States)

    Cox, Charles S; Sauer, Henning; Allen, Steven J; Buja, L Maximilian; Laine, Glen A

    2002-05-01

    We sought to determine whether pretreatment with a sodium/hydrogen-exchange inhibitor (EMD 96 785) improves myocardial performance and reduces myocardial edema after cardioplegic arrest and cardiopulmonary bypass. Anesthetized dogs (n = 13) were instrumented with vascular catheters, myocardial ultrasonic crystals, and left ventricular micromanometers to measure preload recruitable stroke work, maximum rate of pressure rise (positive and negative), and left ventricular end-diastolic volume and pressure. Cardiac output was measured by means of thermodilution. Myocardial tissue water content was determined from sequential biopsy. After baseline measurements, hypothermic (28 degrees C) cardiopulmonary bypass was initiated. Cardioplegic arrest (4 degrees C Bretschneider crystalloid cardioplegic solution) was maintained for 2 hours, followed by reperfusion-rewarming and separation from cardiopulmonary bypass. Preload recruitable stroke work and myocardial tissue water content were measured at 30, 60, and 120 minutes after bypass. EMD 96 785 (3 mg/kg) was given 15 minutes before bypass, and 2 micromol was given in the cardioplegic solution. Control animals received the same volume of saline vehicle. Arterial-coronary sinus lactate difference was similar in both animals receiving EMD 96 785 and control animals, suggesting equivalent myocardial ischemia in each group. Myocardial tissue water content increased from baseline in both animals receiving EMD 96 785 and control animals with cardiopulmonary bypass and cardioplegic arrest but was statistically lower in animals receiving EMD 96 785 compared with control animals (range, 1.0%-1.5% lower in animals receiving EMD 96 785). Preload recruitable stroke work decreased from baseline (97 +/- 2 mm Hg) at 30 (59 +/- 6 mm Hg) and 60 (72 +/- 9 mm Hg) minutes after cardiopulmonary bypass and cardioplegic arrest in control animals; preload recruitable stroke work did not decrease from baseline (98 +/- 2 mm Hg) in animals receiving

  13. Multiple (Two) Met Bel 601 In Series Ultimate Vacuum Testing

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    SRNL Environmental and Chemical Process Technology (E&CPT) was requested to perform testing of vacuum pumps per a verbal request from the Customer, SRNL Hydrogen Processing Technology. Tritium Operations is currently having difficulties procuring the Normetex™® Model 15 m3/hr (9 CFM) vacuum pump (formerly Normetex Pompes, now EumecaSARL). One possible solution proposed by Hydrogen Processing Technology personnel is to use two Senior Aerospace Metal Bellows MB-601 vacuum pumps piped with the heads in series, and the pumps in series (Figure 1 below). This memorandum documents the ultimate vacuum testing that was performed to determine if this concept was a viable alternate vacuum pump strategy. This testing dovetails with previous pump evaluations documented in references 1 and 2.

  14. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  15. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  16. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  17. Vacuum injection system for hydrogen micro-spheres in the CELSIUS storage ring

    International Nuclear Information System (INIS)

    Tinoco, Hernan.

    1990-01-01

    The use of hydrogen micro-spheres as internal targets in the CELSIUS storage ring has been proposed for light meson rare decay measurements. The target generation apparatus design is based on that developed for refueling of fusion tokamak reactors. The micro-spheres are produced by acoustic excitation of a liquid hydrogen jet, and are injected into vacuum for the experiments by means of a hydrogen gas flow through an injection nozzle. The work reported here is an analysis of the gas flow in the injection nozzle, of the entrained motion of the micro-spheres considered as spherical particles, and of the heat transfer between them and the gas. The computation of the heat transfer allows the determination of the conditions under which the evaporation of the micro-spheres is negligible. It is shown that the gas must be cooled to temperatures near that of the micro-spheres for these to survive. Together with the computation of the gas flow and particle motion, the analysis includes the design of the injection nozzle. The requirements of well defined mass flow rate and low perturbation level suggest a nozzle consisting of a contraction region and a straight region with constant cross-sectional area. This nozzle is to be operated with stagnation conditions near the triple point conditions and choked flow at the exit. The condition of a limiting mass flow rate of the order of 10 -6 kg/s together with the operating conditions bound the exit diameter to values of 200-250 μm. Other geometrical parameters have only a subordinate importance on the injection nozzle design

  18. Vacuum pumping for controlled thermonuclear reactors

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.

    1976-01-01

    Thermonuclear reactors impose unique vacuum pumping problems involving very high pumping speeds, handling of hazardous materials (tritium), extreme cleanliness requirements, and quantitative recovery of pumped materials. Two principal pumping systems are required for a fusion reactor, a main vacuum system for evacuating the torus and a vacuum system for removing unaccelerated deuterium from neutral beam injectors. The first system must pump hydrogen isotopes and helium while the neutral beam system can operate by pumping only hydrogen isotopes (perhaps only deuterium). The most promising pumping techniques for both systems appear to be cryopumps, but different cryopumping techniques can be considered for each system. The main vacuum system will have to include cryosorption pumps cooled to 4.2 0 K to pump helium, but the unburned deuterium-tritium and other impurities could be pumped with cryocondensation panels (4.2 0 K) or cryosorption panels at higher temperatures. Since pumping speeds will be limited by conductance through the ducts and thermal shields, the pumping performance for both systems will be similar, and other factors such as refrigeration costs are likely to determine the choice. The vacuum pumping system for neutral beam injectors probably will not need to pump helium, and either condensation or higher temperature sorption pumps can be used

  19. Experimental study of hydrogen jet ignition and jet extinguishment

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1979-04-01

    Two phases are described of an experimental study that investigated: (1) the ignition characteristics of hydrogen--sodium jets, (2) the formation of hydrogen in sodium--humid air atmospheres, and (3) the extinguishment characteristics of burning hydrogen--sodium jets. Test conditions were similar to those postulated for highly-improbable breeder reactor core melt-through accidents and included: jet temperature, jet velocity, jet hydrogen concentration, jet sodium concentration, atmospheric oxygen concentration, and atmospheric water vapor concentration

  20. 3.2.1. Synthesis, crystal and molecular structure of catena-(bis(µ1-oxalic acid)-µ3-hydrogen oxalate-di-aqua-sodium(I)).

    OpenAIRE

    Olga Kovalchukova*, Sergey Aldoshin, Andrey Utenyshev, Konstantin Bogenko, Valeriy Tkachev

    2015-01-01

    The crystal and molecular structure of catena-(bis(µ- oxalic acid)-µ-hydrogen oxalate-di-aqua-sodium(I)) was detected by X-Ray analysis. The compound crystallizes in the triclinic space group P-1, with a(Å) 6.2378(12); b(Å) 7,1115(14); c(Å) 10.489(2); α(°) 94.65(3); β(°) 100.12(3); γ(°) 97.78(3). The sodium cation in the title compound is eight coordinated and forms a square antiprism. It is surrounded by two molecules of oxalic acid, one hydrogen oxalate anion and one water molecule. Both ox...

  1. Sodium removal disassembly and examination of the Fermi secondary sodium pump

    International Nuclear Information System (INIS)

    Maffei, H.P.; Funk, C.W.; Ballif, J.L.

    1974-01-01

    The Fermi secondary pump is a centrifugal single stage design. The pump had been operated more than 42,000 hours between 450 and 800 0 F. Sodium was drained from the pump in 1973 and the system was back filled with carbon dioxide. The pump was fabricated for 2.25 Cr-1 Mo Croloy steel. Prior to cleaning the pump was inerted and heated with 150 0 F nitrogen using the pump casing as the containment vessel. The water-vapor-nitrogen process was used in three increasing stages of water concentration. The hydrogen concentration in the discharge line was followed as an indicator of the sodium-water reaction rate. Upon completion of the hydrogen evolution, the pump was rinsed several times with hot water. Six pounds of sodium were removed from the pump during a process cycle of 79 hours including rinsing. The maximum pump temperature recorded was 175 0 F with no variation exceeding 10 0 F. The hydrogen concentration in the effluent provided a very satisfactory index for control of the reaction by adjustment of the water-vapor concentration feed to the system. Rinsing effectiveness was limited by a pool of water in the volute that was not drainable with the available system hook up. Sodium and its compounds were removed from all internal surfaces that could be observed by the first stage of disassembly. All such surfaces were coated with a black deposit. Areas above the sodium liquid level were coated with a vermillion colored oxide. Sodium was found on the (1) threads of the impeller nut lock screw, (2) impeller nut-tapered shaft interface, and (3) vapor deposited sodium was found in the oil seal

  2. Vacuum polarization in Coulomb field revisited

    Energy Technology Data Exchange (ETDEWEB)

    Zamastil, J., E-mail: zamastil@karlov.mff.cuni.cz; Šimsa, D.

    2017-04-15

    Simplified derivation of Wichmann–Kroll term is presented. The derivation uses two formulas for hypergeometric functions, but otherwise is elementary. It is found that Laplace transform of the vacuum charge density diverges at zero momentum transfer. This divergence has nothing to do with known ultraviolet divergence. The latter is related to the large momentum behavior of the pertinent integral, while the former to the small momentum behavior. When these divergences are removed, the energy shift caused by vacuum polarization for an ordinary hydrogen obtained here is in an exact agreement with the result obtained by Wichmann and Kroll. Also, for muonic hydrogen the result obtained here reasonably agrees with that given in literature.

  3. Calculation of hydrogen outgassing rate of LHD by recombination limited model

    International Nuclear Information System (INIS)

    Akaishi, K.; Nakasuga, M.

    2002-04-01

    To simulate hydrogen outgassing in the plasma vacuum vessel of LHD, the recombination limited model is presented, where the time evolution of hydrogen concentration in the wall of the plasma vacuum vessel is described by a one-dimensional diffusion equation. The hydrogen outgassing rates when the plasma vacuum vessel is pumped down at room temperature and baked at 100 degC are calculated as a function of pumping time. The calculation shows that the hydrogen outgassing rate of the plasma vacuum vessel can be reduced at least by one order of magnitude due to pumping and baking. This prediction is consistent with the recent result of outgassing reduction observed in the pumping-down and baking of the plasma vacuum vessel in LHD. (author)

  4. Transformation of sodium from the Rapsodie fast breeder reactor into sodium hydroxide

    International Nuclear Information System (INIS)

    Roger, J.; Latge, C.; Rodriguez, G.

    1994-01-01

    One of the major problems raised by decommissioning a fast breeder reactor (FBR) concerns the disposal of the sodium coolant. The Desora operation was undertaken to eliminate the Rapsodie primary sodium as part of the partial decommissioning program, and to develop an operational sodium treatment unit for other needs. The process involves reacting small quantities of sodium in water inside a closed vessel, producing aqueous sodium hydroxide and hydrogen gas. It is described in this work. (O.L.). 4 figs

  5. The various sodium purification techniques

    International Nuclear Information System (INIS)

    Courouau, J.L.; Masse, F.; Rodriguez, G.; Latge, C.; Redon, B.

    1997-01-01

    In the framework of sodium waste treatment, the sodium purification phase plays an essential role in the chain of operations leading to the transformation of the active sodium, considered as waste, into a stable sodium salt. The objectives of the purification operations are: To keep a low impurity level, particularly a low concentration in oxygen and hydrogen, in order to allow its transfer to a processing plant, and in order to avoid risks of plugging and/or corrosion in sodium facilities; To reduce the sodium activity in order to limit the dose rate close to the facilities, and in order to reduce the activity of the liquid and gaseous effluents. After a recall of the different kind of impurities that can be present in sodium, and of the different purification methods that could be associated with, the following points are highlighted: (i) Oxygen and hydrogen purification needs, and presentation of some selection criteria for a purification unit adapted to a sodium processing plant, as well as 2 cold trap concepts that are in accordance with these criteria: PSICHOS and PIRAMIDE. (ii) Tritium reduction in a bulk of liquid sodium by swamping, isotopic exchange, or permeation throughout a membrane. (iii) Caesium trapping on carbonaceous matrix. The main matrices used at present are R.V.C. (Reticulated Vitreous Carbon) and Actitex/Pica products. Tests in the laboratory and on an experimental device have demonstrated the performances of these materials, which are able to reduce sodium activity in Cs 134 and Cs 137 to very low values. The sodium purification processes as regards to the hydrogen, oxygen and caesium, that are aimed at facilitating the subsequent treatment of sodium, are therefore mastered operations. Regarding the operations associated with the reduction of the tritium activity, the methods are in the process of being qualified, or to be qualified. (author)

  6. Influence of sodium dodecyl sulfate on the reaction between Nile Blue A and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    IVANA A. JANKOVIC

    1999-05-01

    Full Text Available The influence of the anionic surfactant sodium dodecyl sulfate on the rate of the reaction between the cationic form of Nile Blue A and hydrogen peroxide was investigated in the pH range from 5 to 8.5. A retardation of the oxidation of Nile Blue A with hydrogen peroxide of three orders of magnitude was observed at pH 8.5 in the presence of anionic micelles compared to the kinetic data in water. The retardation effect was less pronounced at lower pH values. These effects were explained by the electrostatic interaction of the species involved in the reaction with the negatively charged micellar surface and their effective separation in the vicinity of the micellar surface.

  7. Material-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  8. Radiation-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  9. Reaction of Hydrogen Chloride Gas with Sodium Carbonate and Its Deep Removal in a Fixed-Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Pohořelý, Michael; Šyc, Michal; Chen, Po-Ch.

    2014-01-01

    Roč. 53, č. 49 (2014), s. 19145-19158 ISSN 0888-5885 R&D Projects: GA ČR GC14-09692J Grant - others:NSC(TW) 102WBS0300011 Institutional support: RVO:67985858 Keywords : hot fuel gas purification * hydrogen chloride gas * active sodium carbonate Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.587, year: 2014

  10. KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION

    Directory of Open Access Journals (Sweden)

    AbdulMunem A. Karim

    2013-05-01

    Full Text Available    This study deals with  kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K.   The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt.           The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.

  11. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling.

    Science.gov (United States)

    Redondo-Solano, Mauricio; Valenzuela-Martinez, Carol; Cassada, David A; Snow, Daniel D; Juneja, Vijay K; Burson, Dennis E; Thippareddi, Harshavardhan

    2013-09-01

    The effect of nitrite and erythorbate on Clostridium perfringens spore germination and outgrowth in ham during abusive cooling (15 h) was evaluated. Ham was formulated with ground pork, NaNO2 (0, 50, 100, 150 or 200 ppm) and sodium erythorbate (0 or 547 ppm). Ten grams of meat (stored at 5 °C for 3 or 24 h after preparation) were transferred to a vacuum bag and inoculated with a three-strain C. perfringens spore cocktail to obtain an inoculum of ca. 2.5 log spores/g. The bags were vacuum-sealed, and the meat was heat treated (75 °C, 20 min) and cooled within 15 h from 54.4 to 7.2 °C. Residual nitrite was determined before and after heat treatment using ion chromatography with colorimetric detection. Cooling of ham (control) stored for 3 and 24 h, resulted in C. perfringens population increases of 1.46 and 4.20 log CFU/g, respectively. For samples that contained low NaNO2 concentrations and were stored for 3 h, C. perfringens populations of 5.22 and 2.83 log CFU/g were observed with or without sodium erythorbate, respectively. Residual nitrite was stable (p > 0.05) for both storage times. Meat processing ingredients (sodium nitrite and sodium erythorbate) and their concentrations, and storage time subsequent to preparation of meat (oxygen content) affect C. perfringens spore germination and outgrowth during abusive cooling of ham. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride

    International Nuclear Information System (INIS)

    Cai, Haokun; Liu, Liping; Chen, Qiang; Lu, Ping; Dong, Jian

    2016-01-01

    Efficient non-precious metal catalysts are crucial for hydrogen production from borohydride compounds in aqueous media via hydrogen atoms in water. A method for preparing magnetic polymer nanoparticles is developed in this study based on the chemical deposition of nickel onto hydrophilic polymer nanogels. High-resolution transmission electron microscopic and XPS analyses show that Ni exists mainly in the form of NiO in nanogels. Excellent catalytic activities of the nanoparticles are demonstrated for hydrogen generation from the hydrolysis of dimethylamine-borane and sodium borohydride in which the initial TOF (turn-over frequencies) are 376 and 1919 h"−"1, respectively. Kinetic studies also reveal an Arrhenius activation energy of 50.96 kJ mol"−"1 for the hydrolysis of dimethylamine-borane and 47.82 kJ mol"−"1 for the hydrolysis of sodium borohydride, which are lower than those catalyzed by Ru metal. Excellent reusability and the use of water for hydrogen production from dimethylamine-borane provide the additional benefit of using a hybrid catalyst. The principle illustrated in the present study offers a new strategy to explore polymer-transition metal hybrid particles for hydrogen energy technology. - Highlights: • Electroless Ni plating on polymer nanogels generated recyclable catalysts. • The Ni particles proved efficient for H_2 production from borohydride compounds. • The catalysts have lower activation energies than Ru for the hydrolysis. • Borohydride hydrolysis is more beneficial than dehydrogenation in organic solvent.

  13. Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Ryan A.; Zhu, Wenhua H.; Payne, Robert U.; Cahela, Donald R.; Tatarchuk, Bruce J. [Center for Microfibrous Materials Manufacturing, Department of Chemical Engineering, 230 Ross Hall, Auburn University, Auburn, AL 36849 (United States)

    2006-10-27

    The Hg/HgO electrode is usually utilized as a reference electrode in alkaline solution such as for development of an alkaline hydrogen electrode. The reference electrode provides a suitable reference point but is available from few commercial vendors and suffers from inadequate documentation on potential in varying electrolytes. A new numerical method uses activity, activity coefficients, and a few correlated empirical equations to determine the potential values in both dilute and concentrated sodium hydroxide solutions at temperatures of 0-90{sup o}C and at concentrations of 0.100-12.8mol kg{sub H{sub 2}O}{sup -1}. The computed potentials of the Hg/HgO electrodes versus a normal hydrogen electrode (NHE) at 25{sup o}C and 1atm are 0.1634V for 0.100m, 0.1077V for 1.00m, and 0.0976V for 1.45m NaOH solutions. The Hg/HgO reduction potential further changes to -0.0751V versus NHE and hydrogen evolution potential changes to -0.9916V versus NHE in a solution of 30.0wt.% NaOH at 80{sup o}C. The calculated values are compared with the measured data at 25 and 75{sup o}C. The experimental data agree well with the numerical values computed from the theoretical and empirical equations. (author)

  14. Computer analysis of sodium cold trap design and performance

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1983-11-01

    Normal steam-side corrosion of steam-generator tubes in Liquid Metal Fast Breeder Reactors (LMFBRs) results in liberation of hydrogen, and most of this hydrogen diffuses through the tubes into the heat-transfer sodium and must be removed by the purification system. Cold traps are normally used to purify sodium, and they operate by cooling the sodium to temperatures near the melting point, where soluble impurities including hydrogen and oxygen precipitate as NaH and Na 2 O, respectively. A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions

  15. Steam generators of Phenix: Measurement of the hydrogen concentration in sodium for detecting water leaks in the steam generator tubes; Generateurs de vapeur de Phenix-mesure de la concentration d'hydrogene du sodium pour la surveillance de l'etancheite des tubes d'eau-vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E; Lacroix, A; Langlois, J; Viala, J

    1975-07-01

    The Phenix secondary circuits are provided with measurement systems of hydrogen concentration in sodium, that allow for the detection of possible water leaks in steam generators and the location of a faulty module. A measurement device consists of : a detector with nickel membranes of 0, 3 mm wall thickness, an ion pump with a 200 l/s flow rate, a quadrupole mass spectrometer and a calibrated hydrogen leak. The temperature correction is made automatically. The main tests carried out on the leak detection systems are reported. Since the first system operation (October 24, 1973), the measurements allowed us to obtain the hydrogen diffusion rates through the steam generator tube walls. (author)

  16. Kinetics and mechanism of the furan peroxide formation in the reaction of furfural with hydrogen peroxide in the presence and absence of sodium molybdate

    International Nuclear Information System (INIS)

    Grunskaya, E.P.; Badovskaya, L.A.; Kaklyugina, T.Ya.; Poskonin, V.V.

    2000-01-01

    Kinetics of the initial stage of the reaction of furfural with hydrogen peroxide are studied in the presence of Na 2 MoO 4 in water and without catalytic additions in n-butanol. Organic peroxide having in its disposal Mo(6), which is the only product on the initial stage of the reaction, is formed since the first minutes of oxidation of furfural by hydrogen peroxide with the presence of Na 2 MoO 4 . The mechanisms of conversion of furfural in the Na 2 MoO 4 - H 2 O system and its oxidation by peroxide without sodium molybdate are discussed. Schemes of formation of furfural complexes based on the results of kinetic studies are suggested. Comparison of obtained data demonstrates that presence of the sodium molybdates in the reaction medium trends to change of reaction procedure in the hydrogen peroxide [ru

  17. Vacuum vessel of thermonuclear device and manufacturing method thereof

    International Nuclear Information System (INIS)

    Kurita, Genichi; Nagashima, Keisuke; Uchida, Takaho; Shibui, Masanao; Ebisawa, Katsuyuki; Nakagawa, Satoshi.

    1997-01-01

    The present invention provides a vacuum vessel of a thermonuclear device using, as a material of a plasma vacuum vessel, a material to be less activated and having excellent strength as well as a manufacturing method thereof. Namely, the vacuum vessel is made of titanium or a titanium alloy. In addition, a liner layer comprising a manganese alloy, nickel alloy, nickel-chromium alloy or aluminum or aluminum alloy is formed. With such a constitution, the wall substrate made of titanium or a titanium alloy can be isolated by the liner from hydrogen or plasmas. As a result, occlusion of hydrogen to titanium or the titanium alloy can be prevented thereby enabling to prevent degradation of the material of the wall substrate of the vacuum vessel. In addition, since the liner layer has relatively high electric resistance, a torus circumferential resistance value required for plasma ignition can be ensured by using it together with the vessel wall made of titanium alloy. (I.S.)

  18. Effect of sodium borohydride synthesis on NaBH4-H2 system economics

    International Nuclear Information System (INIS)

    Tabakoglu, F. oeznur; Kurtulus, Guelbahar

    2007-01-01

    The hazards and negative impacts of fossil fuel usage on environment and the prospect of fossil fuel depletion in near future have urged scientists to search for and use clean energy sources and alternative fuels. Hydrogen is the best fuel among others, which can minimize the effects of global warming. Although it is currently more expensive than other fuels, it will be cheaper following further developments in hydrogen technologies from production till end-use. Hydrogen storage is a critical issue in terms of safety and economics of hydrogen energy system. Chemical hydrides are an attractive hydrogen storage method due to their potential of achieving high volumetric and gravimetric storage densities. Among chemical hydrides, sodium borohydride (NaBH 4 ) is given a big attention, due to its 10.8% theoretical hydrogen storage capacity. Hydrogen, which can be released by sodium borohydride hydrolysis reaction on-site, can be used in a proton exchange membrane fuel cell (PEMFC) at anode. on the other hand, sodium borohydride solution can be used directly in a borohydride fuel cell (DBFC) at anode. Like the other chemical hydrides, sodium borohydride has been an expensive material up to now, constituting a major obstacle to commercialization of sodium borohydride as a hydrogen storage method. This paper aims to give an approximate estimation process cost of the NaBH 4 -H 2 system by taking into account both the energy and raw material costs, starting with sodium borohydride production till recycling of it. Two different methods to synthesize sodium borohydride are analyzed and their effects on total cost are compared. It was found that the usage of Bayer process to synthesize sodium borohydride makes the overall sodium borohydride - hydrogen system cost higher than the total cost of the alternative process which starts with the production of sodium borohydride from borax decahydrate. (authors)

  19. Steam generators of Phenix: Measurement of the hydrogen concentration in sodium for detecting water leaks in the steam generator tubes

    International Nuclear Information System (INIS)

    Cambillard, E.; Lacroix, A.; Langlois, J.; Viala, J.

    1975-01-01

    The Phenix secondary circuits are provided with measurement systems of hydrogen concentration in sodium, that allow for the detection of possible water leaks in steam generators and the location of a faulty module. A measurement device consists of : a detector with nickel membranes of 0, 3 mm wall thickness, an ion pump with a 200 l/s flow rate, a quadrupole mass spectrometer and a calibrated hydrogen leak. The temperature correction is made automatically. The main tests carried out on the leak detection systems are reported. Since the first system operation (October 24, 1973), the measurements allowed us to obtain the hydrogen diffusion rates through the steam generator tube walls. (author)

  20. Dynamics of the Vacuum and Casimir Analogs to the Hydrogen Atom

    Science.gov (United States)

    White, Harold; Vera, Jerry; Bailey, Paul; March, Paul; Lawrence, Tim; Sylvester, Andre; Brady, David

    2015-01-01

    This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL(trademark), and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.

  1. Liquid metal purification device

    International Nuclear Information System (INIS)

    Sakai, Takao; Shimoyashiki, Shigehiro.

    1992-01-01

    The device of the present invention concerns a liquid metal purification device for removing and purifying impuries in liquid metal sodium used as coolants of an FBR type reactor. A vessel having a group of pipes made of hydrogen permeable metal at the inside thereof is disposed to the inlet pipeline of a cold trap. The group of hydrogen permeable metal pipes is connected to an exhaust pipe and a vacuum pump, so that the inside of the pipes is exhausted. Liquid metal sodium branched from the main pipeline of a coolant system passes through the outer side of the group of the hydrogen permeable metal pipes. In this cae, hydrogen contained as impurities in the liquid metal sodium diffuses and permeates the hydrogen permeation metal pipes and enters into the pipe group and is discharged out of the system by the vacuum pump. This can mitigate the hydrogen removing burden of the cold trap, to extend the device life time. (I.N.)

  2. Diffusion of hydrogen in yttrium

    International Nuclear Information System (INIS)

    Vorobyov, V.V.; Ryabchikov, L.N.

    1966-01-01

    In this work the diffusion coefficients of hydrogen in yttrium were determined from the rate at which the hydrogen was released from yttrium samples under a vacuum at temperatures of 450 to 850 0 C and from the quantity of hydrogen retained by yttrium at hydrogen pressures below 5 x 10 - 4 mm Hg in the same temperature range

  3. An investigation of sodium iodide solubility in sodium-stainless steel systems

    International Nuclear Information System (INIS)

    Sagawa, Norihiko; Tashiro, Suguru

    1996-01-01

    Sodium iodide and major constituents of stainless steel in sodium are determined by using the steel capsules to obtain a better understanding on contribution of the constituents to the apparent iodide solubility in sodium. The capsule loaded with 20 g sodium and 0.1 - 0.3 g powder of sodium iodide is heated at its upper part in a furnace and cooled at its bottom on brass plates to establish a large temperature gradient along the capsule tube. After a given period of equilibration, the iodide and constituents are fixed in solidified sodium by quick quenching of the capsules. Sodium samples are taken from the sectioned capsule tube and submitted to sodium dissolution by vaporized water for determination of the iodine and to vacuum distillation for determination of the metal elements. Iron and nickel concentrations are observed to be lower in the samples at higher iodine concentrations. Chromium and manganese concentrations are seen to be insensitive to the iodine concentrations. The observations can be interpreted by a model that sodium oxide combines with metal iodide in sodium to form a complex compound and with consideration that the compound will fall and deposit onto the bottom of the capsule by thermal diffusion. (author)

  4. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    Science.gov (United States)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  5. Specialists meeting on sodium removal and decontamination. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-08-01

    This report covers experiences on sodium removal techniques developed or gained in a number of countries running sodium cooled reactors. This experience has created confidence that complex components can be cleaned of sodium, maintenance or repair operations carried out, and the components successfully re-used. Cleaning of sodium wetted components or fuel assemblies was achieved by applying different techniques including vacuum distillation, using different alcohols or evaporation processes.

  6. Specialists meeting on sodium removal and decontamination. Summary report

    International Nuclear Information System (INIS)

    1978-08-01

    This report covers experiences on sodium removal techniques developed or gained in a number of countries running sodium cooled reactors. This experience has created confidence that complex components can be cleaned of sodium, maintenance or repair operations carried out, and the components successfully re-used. Cleaning of sodium wetted components or fuel assemblies was achieved by applying different techniques including vacuum distillation, using different alcohols or evaporation processes

  7. Methods for the sodium cooled fast reactor fire safety provisions

    International Nuclear Information System (INIS)

    Gryaznov, B.V.; Dergachev, N.P.

    1983-01-01

    Problems of fire safety provision on NPPs with sodium cooled fast reactor are under discussion. Methods of sodium leak localization, measures eliminating sodium flaring up during leaks and main means of sodium fire extinguishing are considered. An extinguishing of sodium flaring up is performed by means of sodium temperatUre decrease and by limitation of hydrogen access to the flaring up surface. A conclusion is made that the most effective methods of extinguishing are the following: self-extinguishing (due to hydrogen burning out in a limiting volume); extinguishing by a gas mixture of nitrogen and carbonic acid (initial filling and blowing of rooms during sodium flaring up); extinguishing by special powders

  8. Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    OpenAIRE

    Liu, Jiang-Qin; Manouchehri, Namdar; Lee, Tze-Fun; Yao, Mingzhu; Bigam, David L.; Cheung, Po-Yin

    2012-01-01

    Background The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H2O2) generation in the resuscitation of hypoxic newborn animals with severe acidosis. Methods Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocap...

  9. Experimental investigations and modelling of sodium-concrete interaction

    International Nuclear Information System (INIS)

    Schultheiss, G.F.; Deeg, H.J.

    1990-01-01

    The use of sodium as a coolant in liquid metal fast breeder reactors, fusion reactors, and solar plants requires special consideration of its chemical reactivity and related safety problems in the case of sodium leckage. On contact between hot sodium and concrete an interaction takes place resulting in energy release and hydrogen generation, which may contribute to containment loading by pressurization in a hypothetical accident situation. For this reason, sodium-concrete interactions were investigated experimentally and theoretically. The experiments revealed important effects of quartzitic material within the concrete and of the sodium temperature on the interaction mechanisms, the energy release and the consequent hydrogen production. The numerical model shows good agreement with the experimental results. (orig.) [de

  10. Determination of diffusion coefficients of hydrogen and deuterium in Zr–2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Komal Chandra, E-mail: komal@barc.gov.in [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kulkarni, A.S.; Ramanjaneyulu, P.S. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sunil, Saurav [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Saxena, M.K. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.N. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tomar, B.S.; Ramakumar, K.L. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-06-15

    The diffusion coefficients of hydrogen and deuterium in Zr–2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr–2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H{sub 2}/D{sub 2} content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick’s second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as D{sub H} = 1.41 × 10{sup −7} exp(−36,000/RT) and D{sub D} = 6.16 × 10{sup −8} exp(−35,262/RT) for hydrogen and deuterium, respectively.

  11. Baking results of KSTAR vacuum vessel

    International Nuclear Information System (INIS)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M.

    2009-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported

  12. Baking results of KSTAR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported.

  13. Poly[μ-(1-azaniumylethane-1,1-diyl)- bis(hydrogen phosphonato)sodium]: A powder X-ray diffraction study

    International Nuclear Information System (INIS)

    Rukiah, M.; Assaad, T.

    2015-01-01

    The title two-dimensional coordination polymer, [Na(C2H8NO6P2)]n, was characterized using powder X-ray diffraction data and its structure refined using the Rietveld method. The asymmetric unit contains one Na(+) cation and one (1-azaniumylethane-1,1-diyl)bis(hydrogen phosphonate) anion. The central Na(+) cation exhibits distorted octahedral coordination geometry involving two deprotonated O atoms, two hydroxy O atoms and two double-bonded O atoms of the bisphosphonate anion. Pairs of sodium-centred octahedra share edges and the pairs are in turn connected to each other by the biphosphonate anion to form a two-dimensional network parallel to the (001) plane. The polymeric layers are connected by strong O-H...O hydrogen bonding between the hydroxy group and one of the free O atoms of the bisphosphonate anion to generate a three-dimensional network. Further stabilization of the crystal structure is achived by N-H...O and O-H...O hydrogen bonding.(author)

  14. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  15. Sodium distiller II

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Castro, P.M. e; Torres, A.R.; Correa, S.M.

    1990-01-01

    A sodium distiller allows the evaluation of the sodium purity, contained in plants and circuits of Fast Reactors. The sodium distillers of the IEN Reactor's Department was developed initially as a prototype, for the testing of the distillation process and in a second step, as a equipment dedicated to attendance the operation of these circuits. This last one was build in stainless steel, with external heat, rotating crucible of nickel for four samples, purge system for pipe cleaning and a sight glass that permits the observation of the distillation during all the operation. The major advantage of this equipment is the short time to do a distillation operation, which permits its routine utilization. As a consequence of the development of the distillers and its auxiliary systems an important amount of new information was gathered concerning components and systems behaviour under high temperature, vacuum and sodium. (author)

  16. Hydrogen vacancies facilitate hydrogen transport kinetics in sodium hydride nanocrystallites

    NARCIS (Netherlands)

    Singh, S.; Eijt, S.W.H.

    2008-01-01

    We report ab initio calculations based on density-functional theory, of the vacancy-mediated hydrogen migration energy in bulk NaH and near the NaH(001) surface. The estimated rate of the vacancy mediated hydrogen transport, obtained within a hopping diffusion model, is consistent with the reaction

  17. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  18. Sodium-doping as a reference to study the influence of intracluster chemistry on the fragmentation of weakly-bound clusters upon vacuum ultraviolet photoionization

    OpenAIRE

    Litman Jessica H; Yoder Bruce L; Schläppi Bernhard; Signorell Ruth

    2012-01-01

    The fragmentation of methanol water dimethyl ether and acetic acid clusters upon photoionization with a single vacuum ultraviolet (VUV) photon of 10.1 eV 13.3 eV or 17.5 eV energy is studied with mass spectrometry. The sodium doping method is used as an independent approximate measure of the original cluster size distribution providing information on the degree of fragmentation upon VUV ionization. The experimental results show strong fragmentation for (CH3)2O and CH3CO2H clusters but minor f...

  19. Non-aqueous removal of sodium from reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Welch, F H; Steele, O P [Rockwell International, Atomics International Division, Canoga Park (United States)

    1978-08-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component.

  20. Non-aqueous removal of sodium from reactor components

    International Nuclear Information System (INIS)

    Welch, F.H.; Steele, O.P.

    1978-01-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component

  1. Gas-controlled dynamic vacuum insulation with gas gate

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  2. Preservation of Steamed Fish (Rastrelliger Sp With Combine Method Using Sodium Acetate, Lactic Acid Bacteria Culture and Vacuum Packaging

    Directory of Open Access Journals (Sweden)

    Betty Sri Laksmi Jenie, . Nuratifa, . Suliantari

    2001-04-01

    Full Text Available This study was carried out to improve the safety and shelf life of cooked kembung fish (Rastrelliger sp, a traditional food called pindang fish. Fresh eviscerated fish was fisrt soaked in 2% NaCl solution for 15 minutes, drained, washed with tap water and drained again. Sodium chloride at 12% concentration (w/w was distributed on the whole surface of the fish. Fish was then laid on a wooden basket inside a clay pot, steamed for 30 minutes, and then cooled. Combine method applied to the steamed fish (pindang was soaking in a mixed culture of Lactobacillus plantarum kik and Lactococcus lactis subsp. cremoris in the ratio of 2 : 1 (v/v containing 4% Na-acetate for 2 hrs and after draining, the product was vacuum packed. The result showed that the combine method using mixed culture of lactic acid bacteria containing 4% Na-acetate could reduce the growth of Staphylococcus aureus by 3-6 log units, decrease the TMA (Trimethylamine content and maintain the organoleptic properties (texture, appearance and odor of pindang fish during 6 days storage at room temperature. Control treatment without 4% Na-acetate could only keep the pindang fish for 4 days. Vacuum and nonvacuum packaging did not show any significant difference.

  3. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  4. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  5. {tau} - hydrogen phosphate of zirconia in sodium salt form and some of its properties; {tau} - hidrogenofosfato de zirconio en forma sodica y algunas de sus propiedades

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez V, S.M.; Ordonez R, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    It is reported the obtaining and characterization in the sodium salt form of the {tau}-hydrogen phosphate of zirconium in sodium form, this compound it was synthesized, for a new technique developed in the laboratory of Dept. of Chemistry of the ININ. The characterization was carried out for XRD, IR, Sem and EDS the thermal gravimetric analysis is also reported. (Author)

  6. Identification of impurities in sodium and its purification

    International Nuclear Information System (INIS)

    Subbotin, B.I.; Voltchkov, L.G.; Kozlov, F.A.; Zagorulko, Yu.I.; Kuznetsov, E.K.

    1976-01-01

    The paper presents some investigation results on sodium technology. In particular, a description is given of a calculation method for evaluation of sodium-cover gas-impurities equilibrium compositions as well as experimental results on development of methods for sodium sampling, equipment for non-metallic impurities (oxygen, hydrogen, carbon) constant control in sodium. The investigation results on sodium purification with cold traps are presented

  7. Thermodesorption of gases from various vacuum materials

    International Nuclear Information System (INIS)

    Beavis, L.C.

    1979-06-01

    A number of materials are commonly used as vacuum system walls. The desorption of gases from these materials may contribute significantly to the internal pressure of an unpumped device or to the gas load which a pump must handle in a dynamic system. This report describes the thermodesorption measurements made on a number of metals (molybdenum, nickel, Kovar alloy, copper, copper-2% beryllium alloy) and two insulators (molybdenum sealing glass ceramic and high alumina ceramic). All of the materials after typical cleaning and air exposure contain considerable gas. With a long 400 0 to 500 0 vacuum bake, however, all can be cleaned sufficiently so that they will not contribute appreciable gas to their surrounding when vacuum stored at room temperature for many years. Most materials display desorption kinetics which are first order (a single bond or trap energy must be overcome for desorption). It appears that the desorption of CO from Kovar is rate limited by carbon diffusion (D 0 approx. = .4 cm 2 /s and E/sub d/ approx. = 27,000 cal/mol). The desorption of hydrogen from glass ceramic also appears to be diffusion rate limited (D 0 approx. = 1 x 10 -3 cm 2 /s and E/sub d/ approx. = 11,000 cal/mol). Carbon monoxide is the major gas desorbed from metals, except copper for which hydrogen is the major desorbing species. The insulators desorb hydrogen primarily

  8. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  9. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  10. Fe(CO)5-catalyzed coprocessing of coal and heavy oil vacuum residue using syngas-water as a hydrogen source; Fe(CO)5 shokubai ni yoru gosei gas-mizu wo suisogen to suru sekitan-jushitsuyu no coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hata, K.; Wada, K.; Mitsudo, T. [Kyoto University, Kyoto (Japan)

    1996-10-28

    Improvement in efficiency and profitability of hydrogenation reaction of heavy hydrocarbon resources is the most important matter to be done. In this study, coprocessing of coal and heavy oil vacuum residue was conducted using syngas-water as a hydrogen source. For the investigation of effect of the reaction temperature during the coprocessing of Wandoan coal and Arabian heavy vacuum residue using Fe(CO)5 as a catalyst, the conversion, 66.0% was obtained at 425{degree}C. For the investigation of effect of reaction time, the yield of light fractions further increased during the two stage reaction at 400{degree}C for 60 minutes and at 425{degree}C for 60 minutes. Finally, almost 100% of THF-soluble matter was obtained through the reaction using 2 mmol of Fe(CO)5 catalyst at 400{degree}C for 60 minutes, and hydrogenation of heavy oil was proceeded simultaneously. When comparing coprocessing reactions using three kinds of hydrogen sources, i.e., hydrogen, CO-water, and syngas-water, the conversion yield and oil yield obtained by using syngas-water were similar to those obtained by using hydrogen, which demonstrated the effectiveness of syngas-water. 2 refs., 2 figs., 2 tabs.

  11. [Applications of self-renewing coatings to improved vacuum materials, hydrogen permeation barriers and sputter-resistant materials

    International Nuclear Information System (INIS)

    1985-01-01

    The phenomena of Gibbsian segregation, radiation-induced segregation and radiation-induced precipitation modify the surface composition and properties of alloys and compounds. In some cases, the change in properties is both substantial and useful, the most notable example being that of stainless steel. When surface-modifying phenomena are investigated as a class, a number of additional materials emerge as candidates for study, having potential applications in a number of technologically important areas. These materials are predicted to produce self-sustaining coatings which provide hydrogen permeation barriers, low-sticking and stimulated desorption coefficients for vacuum applications, and low-Z, sputtering-resistant surfaces for fusion applications. Several examples of each type of material are presented, along with a discussion of the experimental verification of their properties and the status of the corresponding applications development program

  12. Experiments with background gas in a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    1996-01-01

    Since promising isotope separation results were first reported by Krishnan et al. in 1981, a range of vacuum arc centrifuge experiments have been conducted in laboratories around the world. The PCEN (Plasma CENtrifuge) vacuum arc centrifuge at the Brazilian National Institute for Space Research has been used for isotope separation studies with cathode materials of carbon and magnesium and also to investigate the performance in terms of the rotational velocity attained for different cathode materials. Here, a vacuum arc centrifuge has been operated with an initial filling gas of either argon or hydrogen for pressures ranging from 10 -3 to 10 -1 Pa. The angular velocity ω of the plasma has been determined by cross-correlating the signals from potential probes, and the electron temperature T has been deduced from Langmuir probe data. At high gas pressures and early times during the 14 ms plasma lifetime, high-frequency nonuniformities frequently observed in the vacuum discharge disappear, suggesting that the associated instability is suppressed. Under the same conditions, nonuniformities rotating with much lower angular velocities are observed in the plasma. Temperatures are reduced in the presence of the background gas, and the theoretical figure of merit for separation proportional to ω 2 /T is increased compared to its value in the vacuum discharge for both argon and hydrogen gas fillings

  13. Palladium coated fibre Bragg grating based hydrogen sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Kishore, S.; Elumalai, V.; Krishnan, R.; Babu Rao, C.; Dash, Sitaram; Murali, N.; Jayakumar, T.

    2011-01-01

    Detection of steam generator leaks in fast nuclear reactors is carried out by monitoring hydrogen in argon cover-gas. Hydrogen released during sodium cleaning of fast reactor components is required to be monitored. Hydrogen sensors with good sensitivity, stability and response time are required for all the above applications. We report a new type of hydrogen sensor with a Fibre Bragg Grating (FBG) coated with palladium thin film which is used to detect the leak of hydrogen gas in the Steam Generator (SG) module of the Fast Breeder Reactor (FBR). If water leaks into sodium, it results in sodium-water reaction. In this reaction hydrogen and sodium hydroxide are formed. Due to the explosive risk of hydrogen system, hydrogen sensors are of great interest in this case. It is known that hydrogen forms an explosive mixture with air once its concentration exceeds beyond the explosion limit of four percent. The advantages of FBG based hydrogen sensor over the other hydrogen sensors are its inherent property of safety from sparking, immunity to ambient electromagnetic interference. The sensing mechanism in this device is based on mechanical strain that is induced in the palladium coating when it absorbs hydrogen. This process physically stretches the grating and causes the grating period and grating's refractive index, to change. The Bragg wavelength shift is directly proportional to the strain induced and can be directly related to the percentage of hydrogen exposure. The online monitoring of palladium thin film coating on FBG is carried out and recorded the wavelength change and strain induced on the FBG. A hydrogen sensor set up have been fabricated which consists of SS vessel of capacity 10 litres, provided with pressure gauge, Argon filling line with a valve, Hydrogen injection line with flange, a vent line with valve and Hydrogen sensor fixing point. The Palladium coated FBG based Hydrogen sensor is tested in this experimental facility in the exposure of hydrogen in

  14. Experimental study of hydrogen formation and recombination under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Wierman, R.W.; Hilliard, R.K.

    1976-01-01

    The report describes an experimental study of hydrogen jets burning in air, hydrogen formation by sodium in humid air atmospheres, and the effects of nitrogen, water vapor sodium vapor/aerosol, jet velocity, and jet temperature on ignition of hydrogen jets. The results show that hydrogen jets above 1450 0 F (788 0 C) issuing into an air atmosphere need no ignition source for ignition, a hydrogen jet temperature higher than 500 0 F (260 0 C) and containing more than six grams of sodium per cubic meter of jet gas will auto-ignite in an air atmosphere, the burning efficiency of a hydrogen jet decreases rapidly to zero when the oxygen concentration outside the flame region approaches 10 percent, and hydrogen does not form from a sodium-nitrogen jet issuing into a humid air atmosphere until the ratio O 2 /(H 2 O + O 2 ) is less than 0.5

  15. INTERATOM experience of cleaning sodium-wetted components

    International Nuclear Information System (INIS)

    Haubold, W.

    1978-01-01

    INTERATOM has been concerned since 1967 with the development, testing, and application of methods to clean sodium wetted components by moist nitrogen, vacuum distillation or alcohol. The activities of INTERATOM in this area have been reported at the IAEA Specialists Meeting on 'Decontamination of Plant Components from Sodium and Radioactivity' in Dounreay, April 9-12, 1973. The three cleaning methods mentioned above are practised at present, too - with minor modifications - by INTERATOM and in the facilities of the SNR project. This note summarizes the experiences of INTERATOM with methods of sodium removal since 1973

  16. Thin-thick hydrogen target for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  17. Hydrogen effect on different melts of steel 03Cr10Ni10Mo2(Ti,Al)

    International Nuclear Information System (INIS)

    Hruby, J.; Novosad, P.; Axamit, R.

    1984-01-01

    The effect of hydrogen on martensitic 03Cr10Ni10Mo2(Ti,Al) steel was studied following vacuum induction melting and electroslag remelting with and without the effect of radiation. Under the influence of hydrogen and under the same parameters of catodic hydrogen charging of steel after vacuum induction melting shows a 20 - 30% reduction in total ductility. Steels after electroslag remelting show a higher reduction in total ductility - within the range of 26 - 33%, i.e., 33 - 43% for different melts, and contraction Z shows a reduction of 23 - 59%. Electroslag remelted steels show a greater reduction in plasticity owing to hydrogen than steels melted in vacuum induction furnaces. The reduction of the yield point and the breaking strength owing to hydrogen are more explicit than in steel after vacuum melting. In non-irradiated hydrogenated samples a higher yield point was evident. (B.S.)

  18. ELETTRA vacuum system

    International Nuclear Information System (INIS)

    Bernardini, M.; Daclon, F.; Giacuzzo, F.; Miertusova, J.; Pradal, F.; Kersevan, R.

    1993-01-01

    Elettra is a third-generation synchrotron light source which is being built especially for the use of high brilliance radiation from insertion devices and bending magnets. The UHV conditions in a storage ring lead to a longer beam lifetime - one of the most important criterion. The Elettra vacuum system presents some pecularities which cannot be found in any already existing machine. The final version of bending magnet vacuum chamber is presented. After chemical and thermal conditioning the specific outgassing rate of about 1.5e-12 Torr. liters sec -1 cm -2 was obtained. A microprocessor-controlled system has been developed to perform bake-out at the uniform temperature. The etched-foil type heaters are glued to the chamber and Microtherm insulation is used. UHV pumps based on standard triode sputter-ion pumps were modified with ST 707 NEG (Non Evaporable Getter) modules. A special installation enables the resistive activation of getters and significantly increases pumping speed for hydrogen and other residual gases (except methane and argon). All these technological innovations improve vacuum conditions in Elettra storage ring and consequently also the other parameters of the light source

  19. A novel sodium iodide and ammonium molybdate co-catalytic system for the efficient synthesis of 2-benzimidazoles using hydrogen peroxide under ultrasound irradiation.

    Science.gov (United States)

    Bai, Guo-Yi; Lan, Xing-Wang; Chen, Guo-Feng; Liu, Xiao-Fang; Li, Tian-Yu; Shi, Ling-Juan

    2014-03-01

    The reaction of aldehydes and o-phenylenediamine for the preparation of 2-benzimidazoles has been studied using hydrogen peroxide as an oxidant under ultrasound irradiation at room temperature in this paper. The combination of substoichiometric sodium iodide and ammonium molybdate as co-catalysts, together with using small amounts of hydrogen peroxide, makes this transformation very efficient and attractive under ultrasound. Thus, a mild, green and efficient method is established to carry out this reaction in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Construction, assembling and operation of an equipment for sodium purity

    International Nuclear Information System (INIS)

    Becquart, E.T.; Botbol, J.; Echenique, P.N.; Fruchtenicht, F.W.; Gil, D.A.; Perillo, P.; Vardich, R.N.; Vigo, D.E.

    1993-01-01

    The purpose of this work is the production of high purity metallic sodium for bench-scale, research studies. A stainless steel equipment was built and assembled, including high vacuum, heating and cooling systems. It was satisfactorily operated in two successive steps, filtration and vacuum distillation, with a good yield. (Author). 5 refs., 5 figs

  1. Reactive extraction of carboxylic acids from apolar hydrocarbons using aqueous solutions of sodium hydrogen carbonate with back-recovery using carbon dioxide under pressure

    NARCIS (Netherlands)

    Kuzmanovic, B.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2005-01-01

    A combination of using an aqueous solution of sodium hydrogen carbonate for forward-extraction of carboxylic acids from a dilute apolar organic solvent, and carbon dioxide under pressure for its back-recovery, is studied. Used in combination, these two steps might provide a technique for the

  2. Behaviour of oxygen in liquid sodium

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la

    1975-01-01

    In this work, the vacuum distillation method has been used for the determination of oxygen concentration in liquid sodium. During this investigation, more than 800 analyses have been made and a fluctuation of between 15 and 20$ has been noted in the results. The performance of a cold trap to remove oxygen from sodium has been studied and the corresponding mass transfer coefficient evaluated. The value of this coefficient was in good agreement with those achieved by other workers. (Authors) 69 refs

  3. Hydrogen formation and control under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Armstrong, G.R.; Wierman, R.W.

    1976-09-01

    The objective of this study is to experimentally investigate the potential for autoignition and combustion of hydrogen-sodium mixtures which may be produced in LMFBR accidents. The purpose and ultimate usefulness of this work is to provide data that will establish the validity and acceptability of mechanisms inherent to the LMFBR that could either prevent or delay the accumulation of hydrogen gas to less than 4 percent (V) in the Reactor Containment Building (RCB) under accident conditions. The results to date indicate that sodium and sodium-hydrogen mixtures such as may be expected during LMFBR postulated accidents will ignite upon entering an air atmosphere and that the hydrogen present will be essentially all consumed until such time that the oxygen concentration is depleted

  4. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-01

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load

  5. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  6. Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum

    CERN Document Server

    Zurlo, N.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C.L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R.S.; Jorgensen, L.V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi Rizzini, E.; Macri, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L.G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; der Werf, D.P.Van; Variola, A.; Venturelli, L.; Yamazaki, Y.

    2006-01-01

    We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.

  7. Determination of chloride and sulphur in sodium by ion chromatography and its application to PFBR sodium samples

    International Nuclear Information System (INIS)

    Vijayalakshmi, S.; Ushalakshmi, K.

    2011-01-01

    Analytical method using ion chromatography was developed for the determination of chloride and sulphur in sodium. In this method, sodium was dissolved in water and various sulphur species present in the sample was oxidized to sulphate using hydrogen peroxide. Carbon dioxide gas was passed through the solution to convert sodium hydroxide to carbonate solution. The resulting sample solution was analysed using suppressed Ion chromatography employing carbonate eluent. This method was applied to the analysis of sodium samples procured for prototype fast breeder reactor. (author)

  8. Unsteady aspects of sodium-water reaction. Water clearing of sodium containing equipments

    International Nuclear Information System (INIS)

    Carnevali, Sofia

    2012-01-01

    Sodium fast Reactor (FSR) is one of the most promising nuclear reactor concepts in the frame of Generation IV Systems to be commercialised in the next decades. One important safety issue about this technology is the highly exothermal chemical reaction of sodium when brought in contact with liquid water. This situation is likely, in particular during decommissioning, when sodium needs to be firstly converted ('destroyed') into non-reactive species. This is achieved by water washing: the major products are then gaseous hydrogen and corrosive soda. Today, such operations are performed in confined chambers to mitigate the consequences of any possible abnormal conditions. It has for long been believed that the main safety problem was the combustion of hydrogen in the surrounding air despite some pioneering works suggested that even without air the reaction could be explosive. It is extremely important to clarify the phenomenology of sodium-water interactions since available knowledge does not allow a robust extrapolation of existing data/model to full scale plants. The primary objective of this work is to identify and assess the details of the phenomenology, especially at the sodium/water interface, to isolate the leading mechanisms and to propose a robust and innovative modelling approach. A large body of yet unreleased experimental data extracted from the files of the French Commissariat a l'Energie Atomique (CEA) was collated and analysed on the basis of 'explosion' physics. Some additional experiments were also performed to fill some gaps, especially about the kinetics of the reaction. The results strongly suggest that the fast expansion of gas producing a blast wave in certain conditions is a kind of vapour explosion. It also appears that any potential hydrogen-air explosion should be strongly mitigated by the large quantity of water vapour emanating also from the reaction zone. The limitations of existing modelling approaches are clearly

  9. Ultra high vacuum systems for accelerators

    International Nuclear Information System (INIS)

    Loefgren, P.

    2001-01-01

    Full text: In order to perform controlled, stable, and reproducible experiments, several research areas today require very low pressures. Maybe the most important example is the research that is performed in storage rings and accelerators where the lifetime and stability of particle beams depends critically on the vacuum conditions. Although the vacuum requirements ultimately depend on the kind of experiments that is performed, the studies of more and more rare and exotic species in storage rings and accelerators today pushes the demands on the vacuum conditions towards lower and lower pressures. The final pressure obtained in the vacuum system can often be the key factor for the outcome of an experiment. Pioneering work in vacuum technology has therefore often been performed at storage rings and accelerator facilities around the world. In order to reach pressures in the low UHV regime and lower (below 10 -11 mbar), several aspects have to be considered which implies choosing the proper materials, pumps and vacuum gauges. In the absence of gases inleaking from the outside, the rate of gas entering a vacuum system is determined by the release of molecules adsorbed on the surfaces and the outgassing from the bulk of the vacuum chamber walls. This means that the choice of material and, equally important, the pre treatment of the material, must be such that these rates are minimised. Today the most widely used material for vacuum applications are stainless steel. Besides its many mechanical advantages, it is resistant to corrosion and oxidation. If treated correctly the major gas source in a stainless steel chamber is hydrogen outgassing from the chamber walls. The hydrogen outgassing can be decreased by vacuum firing at 950 deg. C under vacuum. In addition to choosing the right materials the choice of vacuum pumps is important for the final pressure. Since no vacuum pump is capable of taking care of all kinds of gases found in the rest gas at pressures below 10 -11

  10. Local stabilization of single-walled carbon nanotubes on Si(100)-2 x 1:H via nanoscale hydrogen desorption with an ultrahigh vacuum scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Albrecht, Peter M; Lyding, Joseph W

    2007-01-01

    An ultrahigh vacuum scanning tunnelling microscope (UHV-STM) was used to modify the interface between isolated ∼10 A-diameter single-walled carbon nanotubes (SWNTs) and the hydrogen-passivated Si(100) surface. Room-temperature UHV-STM desorption of hydrogen at the SWNT/H-Si(100) interface resulted in the local mechanical stabilization of tubes originally perturbed by the rastered STM tip under nominal imaging conditions. For the section of the SWNT contacted by depassivated Si, a topographic depression of 1.5 A (1 A) was measured in the case of parallel (nearly perpendicular) alignment between the tube axis and the Si dimer rows, in agreement with existing first-principles calculations. The compatibility of hydrogen-resist UHV-STM nanolithography with SWNTs adsorbed on H-Si(100) would enable the atomically precise placement of single molecules in proximity to the tube for the bottom-up fabrication of molecular electronic devices

  11. Hydrogen embrittlement in power plant steels

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    cause of blistering is well-known, handling and finishing techniques have been developed to minimize this form of damage. Vacuum melting and degassing minimize the quantity of hydrogen in the steels. Acid pickling and other such processes that may introduce hydrogen are avoided when practical, and possible moisture ...

  12. Hydrogen environment embrittlement

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1975-01-01

    Exposure of many metals to gaseous hydrogen causes losses in elongation, reduction of area, and fracture toughness, and causes increases in slow crack growth rate or fatigue life compared with values obtained in air or vacuum. Hydrogen pressure, temperature, and purity significantly influence deleterious effects. The strength and structural characteristics of the metal influence the degradation of its properties by hydrogen. Several theories have been proposed to explain the loss of properties in hydrogen, but none has gained wide acceptance. The embrittlement mechanism and the role of diffusion are, therefore, open questions and need more quantitative experimental data both to test the proposed theories and to allow the development of realistic preventive measures. (U.S.)

  13. Method of processing waste sodium

    International Nuclear Information System (INIS)

    Shimoyashiki, Shigehiro; Takahashi, Kazuo.

    1982-01-01

    Purpose: To enable safety store of waste sodium in the form of intermetallic compounds. Method: Waste sodium used in a reactor is mixed with molten metal under an inert gas atmosphere and resulted intermetallic compounds are stored in a closely sealed container to enable quasi-permanent safety store as inert compound. Used waste sodium particularly, waste sodium in the primary system containing radioactive substances is charged in a waste sodium melting tank having a heater on the side, the tank is evacuated by a vacuum pump and then sealed with gaseous argon supplied from a gaseous argon tank, and waste sodium is melted under heating. The temperature and the amount of the liquid are measured by a thermometer and a level meter respectively. While on the other hand, molten metal such as Sn, Pb and Zn having melting point above 300 0 C are charged in a metal melting tank and heated by a heater. The molten sodium and the molten metals are charged into a mixing tank and agitated to mix by an induction type agitator. Sodium vapors in the tank are collected by traps. The air in the tank is replaced with gaseous argon. The molten mixture is closely sealed in a drum can and cooled to solidify for safety storage. (Seki, T.)

  14. Spectroscopic studies of hydrogen collisions

    International Nuclear Information System (INIS)

    Kielkopf, J.

    1991-01-01

    Low energy collisions involving neutral excited states of hydrogen are being studied with vacuum ultraviolet spectroscopy. Atomic hydrogen is generated by focusing an energetic pulse of ArF, KrF, or YAG laser light into a cell of molecular hydrogen, where a plasma is created near the focal point. The H 2 molecules in and near this region are dissociated, and the cooling atomic hydrogen gas is examined with laser and dispersive optical spectroscopy. In related experiments, we are also investigating neutral H + O and H + metal - atom collisions in these laser-generated plasmas

  15. LLNL Tandem Mirror Experiment (TMX) upgrade vacuum system

    International Nuclear Information System (INIS)

    Pickles, W.L.; Chargin, A.K.; Drake, R.P.

    1981-01-01

    TMX Upgrade is a large, tandem, magnetic-mirror fusion experiment with stringent requirements on base pressure (10 -8 torr), low H reflux from the first walls, and peak gas pressure (5 x 10 -7 torr) due to neutral beam gas during plasma operation. The 225 m 3 vacuum vessel is initially evacuated by turbopumps. Cryopumps provide a continuous sink for gases other than helium, deuterium, and hydrogen. The neutral beam system introduces up to 480 l/s of H or D. The hydrogen isotopes are pumped at very high speed by titanium sublimed onto two cylindrical radially separated stainless steel quilted liners with a total surface area of 540 m 2 . These surfaces (when cooled to about 80 0 K) provide a pumping speed of 6 x 10 7 l/s for hydrogen. The titanium getter system is programmable and is used for heating as well as gettering. The inner plasma liner can be operated at elevated temperatures to enhance migration of gases away from the surfaces close to the plasma. Glow discharge cleaning is part of the pumpdown procedure. The design features are discussed in conjunction with the operating procedures developed to manage the dynamic vacuum conditions

  16. Vacuum system for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Lange, W.J.; Green, D.; Sink, D.A.

    1976-01-01

    The vacuum system for TFTR is described. Insofar as possible, conventional and ultrahigh vacuum (UHV) components and technology will be employed. Subassemblies will be prebaked in vacuum to reduce subsequent outgassing, and assembly will employ TIG welding and metal gaskets. It is not anticipated that the totally assembled torus with its numerous diagnostic appendages will be baked in situ to a high temperature, however a lower bakeout temperature (approximately 250 0 C) is under consideration. Final vacuum conditioning will be performed using discharge cleaning to obtain a specific outgassing rate of less than or = to 10 -10 Torr liter/sec cm 2 hydrogen isotopes and less than or = to 10 -12 Torr liter/sec cm 2 of other gases, and a base pressure of less than or = to 5 x 10 -8 Torr

  17. Fluorinated cobalt for catalyzing hydrogen generation from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Akdim, O.; Demirci, U.B.; Brioude, A.; Miele, P. [Laboratoire des Multimateriaux et Interfaces, UMR 5615 CNRS Universite Lyon 1, Universite de Lyon, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2009-07-15

    The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH{sub 4}). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209-12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co. (author)

  18. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  19. Technology for sodium purity control

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Kim, B. H.; Kim, T. J. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    When sodium is used as heat transfer fluid, the plugging in coolant flow, the corrosion of structure material and the transfer of radioactive material caused by the impurities in sodium are worth considerable. Accordingly, these impurities must be monitored and controlled continuously by sodium purification devices in the heat transfer system which sodium is used as coolant. Sodium purification loop was constructed for the purpose of accumulating the technology for purity control of the coolant, developing and verifying further efficient instruments for sodium purification. The plugging meter and the cold trap is used as the implement for measuring and controlling the oxygen and the hydrogen, the main impurities in sodium coolant. They are capable of excellent performance as the implements which could detect and monitor the impurities to the concentration limit required for nuclear reactor. Sodium purification loop could be used variably according to the experimental purpose. 18 refs., 34 figs., 8 tabs. (Author)

  20. Antimicrobial susceptibility and internalization of Salmonella Typhimurium in vacuum-tumbled marinated beef products.

    Science.gov (United States)

    Pokharel, S; Brooks, J C; Martin, J N; Brashears, M M

    2016-12-01

    As the incidence of multidrug resistance (MDR) Salmonella enterica serotype Typhimurium is increasing, data regarding the antimicrobial interventions and pathogen internalization in marinated meat products are important. This study evaluated the antimicrobial intervention and internalization of Salm. Typhimurium in marinated beef sirloin steaks. Beef bottom sirloin flaps (IMPS #185A; USDA Select) inoculated (10 8  log 10  CFU ml -1 ) with Salm. Typhimurium were sprayed (lactic acid (4%) and buffered vinegar (2%)) prior to vacuum-tumbled marination (0·35% sodium chloride and 0·45% sodium tripolyphosphate) for 30 min. Pathogen presence after antimicrobial spray, vacuum-tumbled marination, and translocation was determined by direct plating on Xylose Lysine Deoxycholate (XLD) agar with tryptic soy agar (TSA) overlay. The data imply varied internalization and antimicrobial susceptibility pattern of Salm. Typhimurium in marinated meat. Lactic acid (4%) spray (P internalization and potential survival of Salmonella spp. in marinated beef products is a major concern. These results highlight the internalization of pathogens in vacuum-tumbled meat products and emphasize the importance of considering these products as nonintact. Similarly, these data confirm the efficacy and utility of interventions prior to vacuum-tumbled marination. Further research is needed to identify additional strategies to mitigate internalization and translocation of pathogens into vacuum-marinated meat products. © 2016 The Society for Applied Microbiology.

  1. Computer simulation for sodium-concrete reactions

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou

    2006-01-01

    In the liquid metal cooled fast breeder reactors (LMFBRs), direct contacts between sodium and concrete is unavoidable. Due to sodium's high chemical reactivity, sodium would react with concrete violently. Lots of hydrogen gas and heat would be released then. This would harm the ignorantly of the containment. This paper developed a program to simualte sodium-conrete reactions across-the-board. It could give the reaction zone temperature, pool temperature, penetration depth, penetration rate, hydrogen flux and reaction heat and so on. Concrete was considered to be composed of silica and water only in this paper. The variable, the quitient of sodium hydroxide, was introduced in the continuity equation to simulate the chemical reactions more realistically. The product of the net gas flux and boundary depth was ably transformed to that of penetration rate and boundary depth. The complex chemical kinetics equations was simplified under some hypothesises. All the technique applied above simplified the computer simulation consumedly. In other words, they made the computer simulation feasible. Theoretics models that applied in the program and the calculation procedure were expatiated in detail. Good agreements of an overall transient behavior were obtained in the series of sodium-concrete reaction experiment analysis. The comparison between the analytical and experimental results showed the program presented in this paper was creditable and reasonable for simulating the sodium-concrete reactions. This program could be used for nuclear safety judgement. (authors)

  2. Effects of the fermionic vacuum polarization in QED

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, M.F.X.P.; Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil); Barone, F.E.

    2018-01-15

    Some effects of vacuum polarization in QED due to the presence of field sources are investigated. We focus on effects with no counter-part in Maxwell electrodynamics. The Uehling interaction energy between two stationary point-like charges is calculated exactly in terms of Meijer-G functions. Effects induced on a hydrogen atom by the vacuum polarization in the vicinity of a Dirac string are considered. We also calculate the interaction between two parallel Dirac strings and corrections to the energy levels of a quantum particle constrained to move on a ring circumventing a solenoid. (orig.)

  3. Vacuum system design considerations of the Los Alamos Accelerator Test Stand (ATS)

    International Nuclear Information System (INIS)

    Wilson, N.G.

    1986-01-01

    The accelerator test stand (ATS), in operation at the Los Alamos National Laboratory, includes a hydrogen ion source, low- and high-energy beam-transport sections, and a 425-MHz radio-frequency quadrupole (RFQ) linear accelerator. A 425-MHz drift-tube linac (DTL) and a powered ''buncher'' matching section have been constructed and will be installed on the ATS. The vacuum systems required for the various sections of the ATS are designed to provide: (1) high gas-load capability, as required in the ion source, and (2) high-vacuum capability in the high-power, radio-frequency accelerator sections (where fast vacuum-system response time is of importance) through the use of distributed, differential pumping as a principal vacuum-system feature. This paper describes properties of accelerator materials, vacuum-systems engineering and analysis, vacuum equipment used, and ATS vacuum-system performance

  4. Optimization of the cold trap design for the KASOLA sodium facility

    International Nuclear Information System (INIS)

    Onea, Alexandru; Lux, Martin; Hering, Wolfgang

    2012-01-01

    The KASOLA (KArlsruhe SOdium LAboratory) experimental facility is currently under construction at Karlsruhe Institute of Technology. The facility serves for research activities on thermal-hydraulics for liquid metal operated systems for transmutation (fast systems, normal operation, transient behaviour, testing of emergency cooling systems), accelerator target development, applications and development of free surface liquid metal targets for accelerators, as well as feasibility studies of liquid metals for solar applications. Supporting heat transfer studies regarding the development of turbulent liquid metal heat transfer models for CFD tools are also foreseen. In sodium operated facilities several impurities can be released during operation, e.g. argon, oxygen, hydrogen, carbon etc., with several adverse effects such as reducing the thermal performance and/or damaging structural materials. The major impurities monitored are sodium oxide Na 2 O and sodium hydride NaH. Hydrogen can diffuse through the steel pipes of the sodium-air heat exchanger or, in a worse case can be generated by a sodium-water reaction, denoting therefore a leak in the tubes of the heat exchanger. Oxygen may origin from the contact with air during maintenance or from the oxide layer of metallic structures initially exposed to sodium during set into operation procedures. The oxygen as an impurity leads to the corrosion of the steel surfaces, therefore values < 2 ppm have to be ensured, while for hydrogen the accepted amount is about 50 ppb (Hemanath et al.). The sodium purification is performed in a cold trap that allows the agglomeration of sodium oxide and sodium hydride on the large surface of a wire mesh. (orig.)

  5. Research and application of sampling and analysis method of sodium aerosol

    International Nuclear Information System (INIS)

    Yu Xiaochen; Guo Qingzhou; Wen Ximeng

    1998-01-01

    Method of sampling-analysis for sodium aerosol is researched. The vacuum sampling technology is used in the sampling process, and the analysis method adopted is volumetric analysis and atomic absorption. When the absolute content of sodium is in the rang of 0.1 mg to 1.0 mg, the deviation of results between volumetric analysis and atomic absorption is less than 2%. The method has been applied in a sodium aerosol removal device successfully. The analysis range, accuracy and precision can meet the requirements for researching sodium aerosol

  6. Catalase and sodium fluoride mediated rehabilitation of enamel bleached with 37% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ruchi Thakur

    2015-01-01

    Full Text Available Background: Bleaching agents bring about a range of unwanted changes in the physical structure of enamel which needs to be restored qualitatively and timely. Catalase being an antioxidant ensures the effective removal of free radicals and improvement in fluoride mediated remineralization from the enamel microstructure which if retained may harm the integrity and affect the hardness of enamel. Materials and Methods: Thirty freshly extracted incisors were sectioned to 6 slabs which were divided into 5 groups: Group A, control; Group B, treatment with 37% hydrogen peroxide (HP; Group C, treatment with 37% HP and catalase, Group D, treatment with 37% HP and 5% sodium fluoride application, Group E, treatment with 37% HP followed by catalase and 5% sodium fluoride. Scanning electron microscope and microhardness analysis were done for all slabs. One-way ANOVA test was applied among different groups. Results: Vicker′s microhardness number (VHN of Group B and C was significantly lower. No significant difference between VHN of Group B and C. VHN of Group D was significantly higher than Group A, B, and C; but significantly lower than Group E. VHN of Group E was significantly higher than any other experimental group. One-way ANOVA revealed a highly significant P value (P = 0.0001 and so Tukey′s post-hoc Test for the group comparisons was employed. Conclusion: Subsequent treatment of bleached enamel with catalase and fluoride varnish separately results in repairing and significantly increasing the microhardness.

  7. Analysis of hydrogen in zirconium metallic

    International Nuclear Information System (INIS)

    Rodrigues, A.N.; Vega Bustillos, J.O.W.

    1991-02-01

    Determination of hydrogen in zirconium metallic have been performed using the hot vacuum extraction system and the gas chromatographic technique. The zirconium metallic samples were hydrieded by electrolitic technique at difference temperatures and times, then the samples were annealing at vacuum and eatching by fluoridric acid solution. The details of the hydrieded process, analytical technique and the data obtained are discussed. (author)

  8. Cyclic crack resistance of magnesium alloys in vacuum, humid an highly desiccated air

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.

    1986-01-01

    Investigation results on cyclic crack resistance of four structural magnesium alloys in vacuum, humid and highly desiccated air are presented. The regularities obtained are discussed at the background of the known data, using the data on crack closing and hydrogen concenration near its vertex. Diagrams of fatigue fracture of magnesium alloys MA2-1, MA15, MA8 and MA18, produced in vacuum, dry and humid air, on the whole obey the previously established regularities for aluminium alloys and steels. The diagrams of fatigue fracture plotted taking into account crack closing (v-ΔK eff ) for dry and humid air are quite similar. An increase in cyclic crack resistance of the materials in vacuum can not be explained by the change in the crack closing and is evidently conditioned by the absence of hydrogen absorption as the main factor accelerating the crack growth. Effect of vacuum on the threshold K th increases with the increase in σ 0.2 , which testifies to a strong effect of medium on the rate of fatigue crack growth in near the threshold region

  9. Some techniques for sodium removal in CIAE

    International Nuclear Information System (INIS)

    Yuan Waimai; Ding Dejun; Guo Huanfang; Hong Shuzhang; Zhou Shuxia; Shen Fenyang; Yang Zhongmin; Xu Yongxing

    1997-01-01

    In this paper the experiment and application on sodium removal and sodium disposal are presented. Steam-nitrogen process was used in CIAE for cleaning cold traps, sodium vapor traps, a sodium tank. Atomized water-nitrogen process was used for cleaning dummy fuel assembly for CEFR and a sintered stainless steel filter. Sprinkle process was used for cleaning some tubes. Bultylcellosolve was used for cleaning sintered stainless steel filter and sodium flow measurement device. Ethanol alcohol was used for cleaning electromagnetic pump. Paraffin, transformer-oil or their mixture was used for cleaning sodium valves, a sodium vapor trap and sodium-potassium alloy absorber. A small sintered stainless steel filter was distillated in vacuum. A simple sodium disposal device has been served for several years in CIA.E. It can dispose about 10 Kg sodium each time and the disposal process is no-aerosol. It operates in open air for non-radioactive sodium. In recent years a small sodium cleaning plant has been built. It can use atomized water, steam or organic alcohol to removal of sodium. The LAVEL cleaning plant and SLAPSO cleaning plant were introduced from Italy. And CEFR preliminary design on sodium cleaning for spent fuel assembly and on sodium removal-decontamination for large reactor components is introduced. Vapour-nitrogen process is planned to use in them. (author)

  10. Hydrogen and helium adsorption on potassium

    International Nuclear Information System (INIS)

    Garcia, R.; Mulders, N.; Hess, G.

    1995-01-01

    A previous quartz microbalance study of adsorption of helium on sodium indicates that the inert layer is surprisingly small. Similar experiments with hydrogen on sodium show layer by layer growth below a temperature of 7K. These results motivated the authors to extend the experiments to lower temperatures. A suitable apparatus, capable of reaching 0.45 K, while still enabling them to do in situ alkali evaporation, has been constructed. The authors will report on the results of microbalance adsorption experiments of helium and hydrogen on potassium

  11. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  12. Discharge behavior of vacuum arc ion source working in pulse mode

    International Nuclear Information System (INIS)

    Tang Pingying; Dai Jingyi; Tan Xiaohua; Jin Dazhi; Liu Tie; Ding Bonan

    2005-01-01

    Discharge behavior of the vacuum arc ion source working in pulse mode was investigated using high-speed photography and spectrum diagnosis. The evolvement of cathode spot on hydrogen-impregnated electrode was captured by high-speed photography, and the emission spectra of cathode spot at different pulse currents were analyzed. The experimental results show that in most cases, only one cathode spot can be found in the discharge zone of vacuum arc ion source, and the spot moves a little during the same discharge. Temperature of the cathode spot may rise while the discharge current increases, and ultimately the density of hydrogen ion will be increased. At the same time, sputtering of the electrode is enhanced and the quality of ion plasma will be reduced. (authors)

  13. Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment

    Science.gov (United States)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.

    1994-09-01

    Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.

  14. Status of sodium removal and component decontamination technology in the SNR programme

    Energy Technology Data Exchange (ETDEWEB)

    Haubold, W [INTERATOM GmbH, Bergisch Gladbach (Germany); Smit, C Ch [MT-TNO Dept. 50-MW Sodium Component Test Facility, Hengelo (Netherlands); Stade, K Ch [Kernkraftwerk-Betriebsgesellschaft mbH, Eggenstein-Leopoldshafen (Germany)

    1978-08-01

    This paper summarizes the experience with sodium removal and component decontamination processes within the framework of the SNR project since the IAEA Specialists Meeting on 'Decontamination of Plant Components from Sodium and Radioactivity' at Dounreay, April 9-12, 1973. The moist nitrogen process has been successfully applied to remove sodium from all 66 fuel elements of the KNK I core. Progress has been obtained in removing sodium from fuel elements and large components by vacuum distillation. Areas where future development is required are identified. (author)

  15. Status of sodium removal and component decontamination technology in the SNR programme

    International Nuclear Information System (INIS)

    Haubold, W.; Smit, C.Ch.; Stade, K.Ch.

    1978-01-01

    This paper summarizes the experience with sodium removal and component decontamination processes within the framework of the SNR project since the IAEA Specialists Meeting on 'Decontamination of Plant Components from Sodium and Radioactivity' at Dounreay, April 9-12, 1973. The moist nitrogen process has been successfully applied to remove sodium from all 66 fuel elements of the KNK I core. Progress has been obtained in removing sodium from fuel elements and large components by vacuum distillation. Areas where future development is required are identified. (author)

  16. Effect of ambient hydrogen sulfide on the physical properties of vacuum evaporated thin films of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Beer Pal [Department of Physics, C.C.S. University, Meerut 250004 (India)], E-mail: drbeerpal@gmail.com; Singh, Virendra [Forensic Science Laboratory, Malviya Nagar, New Delhi 110017 (India); Tyagi, R.C.; Sharma, T.P. [Department of Physics, C.C.S. University, Meerut 250004 (India)

    2008-02-15

    Evaporated thin films of zinc sulfide (ZnS) have been deposited in a low ambient atmosphere of hydrogen sulfide (H{sub 2}S {approx}10{sup -4} Torr). The H{sub 2}S atmosphere was obtained by a controlled thermal decomposition of thiourea [CS(NH{sub 2}){sub 2}] inside the vacuum chamber. It has been observed that at elevated substrates temperature of about 200 deg. C helps eject any sulfur atoms deposited due to thermal decomposition of ZnS during evaporation. The zinc ions promptly recombine with H{sub 2}S to give better stoichiometry of the deposited films. Optical spectroscopy, X-ray diffraction patterns and scanning electron micrographs depict the better crystallites and uniformity of films deposited by this technique. These deposited films were found to be more adherent to the substrates and are pinhole free, which is a very vital factor in device fabrication.

  17. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  18. The combination of sodium perborate and water as intracoronal teeth bleaching agent

    Directory of Open Access Journals (Sweden)

    Ananta Tantri Budi

    2008-12-01

    Full Text Available Background: The color change on post-endodontic treated teeth can be overcome by intracoronal tooth bleaching using walking bleach. Some agents used in walking bleach are combination of sodium peroxide and hydrogen peroxide, and combination of sodium perborate and water. Purpose: The objective of this review is to provide information and consideration of using safe and effective bleaching agents in the field of dentistry. Reviews: On one side, the use of sodium perborate and water combination does not cause the reduction of dentin hardness, enamel decay, and root resorbtion. On the other side, the use of sodium perborate and 30% hydrogen peroxide combination indicates that it takes longer time in yielding the proper color of teeth. Conclusion: The use of sodium perborate and water combination as bleaching agents is effective and safe.

  19. Effect of Coil Current on the Properties of Hydrogenated DLC Coatings Fabricated by Filtered Cathodic Vacuum Arc Technique

    Science.gov (United States)

    Liao, Bin; Ouyang, Xiaoping; Zhang, Xu; Wu, Xianying; Bian, Baoan; Ying, Minju; Jianwu, Liu

    2018-01-01

    We successfully prepared hydrogenated DLC (a-C:H) with a thickness higher than 25 μm on stainless steel using a filtered cathode vacuum arc (FCVA) technique. The structural and mechanical properties of DLC were systematically analyzed using different methods such as x-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, Vickers hardness, nanohardness, and friction and wear tests. The effect of coil current on the arc voltage, ion current, and mechanical properties of resultant films was systematically investigated. The novelty of this study is the fabrication of DLC with Vickers hardness higher than 1500 HV, in the meanwhile with the thickness higher than 30 μm through varying the coil current with FCVA technique. The results indicated that the ion current, deposition rate, friction coefficient, and Vickers hardness of DLC were significantly affected by the magnetic field inside the filtered duct.

  20. Observation of the Phononic Lamb Shift with a Synthetic Vacuum

    Directory of Open Access Journals (Sweden)

    T. Rentrop

    2016-11-01

    Full Text Available In contrast to classical empty space, the quantum vacuum fundamentally alters the properties of embedded particles. This paradigm shift allows one to explain the discovery of the celebrated Lamb shift in the spectrum of the hydrogen atom. Here, we engineer a synthetic vacuum, building on the unique properties of ultracold atomic gas mixtures, offering the ability to switch between empty space and quantum vacuum. Using high-precision spectroscopy, we observe the phononic Lamb shift, an intriguing many-body effect originally conjectured in the context of solid-state physics. We find good agreement with theoretical predictions based on the Fröhlich model. Our observations establish this experimental platform as a new tool for precision benchmarking of open theoretical challenges, especially in the regime of strong coupling between the particles and the quantum vacuum.

  1. Special hydrogen target (Prop. 210)

    International Nuclear Information System (INIS)

    Halliday, C.E.

    1979-11-01

    This guide contains a description of the electrical control and automatic vacuum systems for the Special Hydrogen Target (Prop. 210) together with the flow diagram and the mimic control panel layout for the system. (U.K.)

  2. Sodium technology at EBR-II

    International Nuclear Information System (INIS)

    Holmes, J.T.; Smith, C.R.F.; Olson, W.H.

    1976-01-01

    Since the installation of purity monitoring systems in 1967, the control of the purity of the primary and secondary sodium and cover gas systems at the Experimental Breeder Reactor II (EBR-II) has been excellent. A rigorous monitoring program is being used to assure that operating limits for more than 25 chemical and radioactive impurities are not exceeded. The program involves the use of sophisticated sampling and analysis techniques and on-line monitors for both sodium and cover gas systems. Sodium purity control is accomplished by essentially continuous cold trapping of a small side stream of the total circulating sodium. The cold traps have been found to be very effective for the removal of the major chemical impurities (oxygen and hydrogen) and tritium but are almost ineffective for 131 I and 137 Cs that enter the sodium from fuel cladding breaks. Purging with pure argon maintains the cover gas purity

  3. Bose–Einstein condensation in a vapor of sodium atoms in an electric field

    International Nuclear Information System (INIS)

    You, Pei-Lin

    2016-01-01

    Bose–Einstein condensation (BEC) at normal temperature (T=343K) has been observed because an electric field was first applied. There are two ways to achieve phase transition: lower the temperature of Bose gas or increase its density. This article provides more appropriate method: increase the voltage. In theory, 3s and 3p states of sodium are not degenerate, but Na may be polar atom doesnot conflict with quantum mechanics because it is hydrogen-like atom. Our innovation lies in we applied an electric field used for the orientation polarization. Na vapor was filled in a cylindrical capacitor. In order to determine the polarity of sodium, we measured the capacitance at different temperatures. If Na is non-polar atom, its capacitance should be independent of temperature because the nucleus of atom is located at the center of the electron cloud. But our experiment shows that its capacitance is related to temperature, so Na is polar atom. In order to achieve Na vapor phase transition, we measured the capacitance at different voltages. From the entropy of Na vapor S=0, the critical voltage V_c=68volts. When V 0; when V>V_c, the atoms become aligned with the field S<0, phase transition occurred. When V=390 volts »V_c, the capacitance decreased from C=1.9C_0 to C≈C_0 (C_0 is the vacuum capacitance), this result implies that almost all the Na atoms (more than 98%) are aligned with the field, Na vapor entered quasi-vacuum state. We create a BEC with 2.506×10"1"7 atoms, condensate fraction reached 98.9%. This is BEC in momentum space. Our experiment shows that if a Bose gas enters quasi-vacuum state, this also means that it underwent phase transition and generates BEC. Therefore, quasi-vacuum state of alkali gas is essentially large-scale BEC. This is an unexpected discovery. BEC and vacuum theory are two unrelated research areas, but now they are closely linked together. The maximum induced dipole moment d_i_n_d≤7.8×10"−"1"5 e cm can be neglected. Ultra

  4. Development of a Hydrogen Uptake-Release Mg-Based Alloy by Adding a Polymer CMC (Carboxymethylcellulose, Sodium Salt) via Reaction-Accompanying Milling

    Science.gov (United States)

    Kwak, Young Jun; Choi, Eunho; Song, Myoung Youp

    2018-03-01

    The addition of carboxymethylcellulose, sodium salt (CMC) might improve the hydrogen uptake and release properties of Mg since it has a relatively low melting point and the melting of CMC during milling in hydrogen (reaction-accompanying milling) may make the milled samples be in good states to absorb and release hydrogen rapidly and to have a large hydrogen-storage capacity. Samples with compositions of 95 w/o Mg + 5 w/o CMC (named Mg-5CMC) and 90 w/o Mg + 10 w/o CMC (named Mg-10CMC) were prepared by adding CMC via reaction-accompanying milling. Activation of Mg-10CMC was completed after about 3 hydrogen uptake-release cycles. Mg-10CMC had a higher initial hydrogen uptake rate and a larger amount of hydrogen absorbed in 60 min, U (60 min), than Mg-5CMC before and after activation. At the cycle number of three (CN = 3), Mg-10CMC had a very high initial hydrogen uptake rate (1.56 w/o H/min) and a large U (60 min) (5.57 w/o H) at 593 K in hydrogen of 12 bar, showing that the activated Mg-10CMC has an effective hydrogen-storage capacity of about 5.6 w/o at 593 K in hydrogen of 12 bar at CN = 3. At CN = 2, Mg-10CMC released 1.00 w/o H in 2.5 min, 4.67 w/o H in 10 min, and 4.76 w/o H in 60 min at 648 K in hydrogen of 1.0 bar. The milling in hydrogen of Mg with CMC is believed to generate imperfections and cracks and reduce the particle size. The addition of 10 w/o CMC was more effective on the initial hydrogen uptake rate and U (60 min) compared with the 10 w/o additions of NbF5, TaF5, Fe2O3, and MnO, and the 10 w/o simultaneous addition of Ni, Fe, and Ti. To the best of our knowledge, this study is the first in which a polymer CMC is added to Mg by reaction-accompanying milling to improve the hydrogen storage properties of Mg.

  5. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    It is important to safely treat the waste sodium which was produced from the sodium cooled fast reactors and the sodium facilities. About 1.3 tons of sodium waste has accumulated at KAERI from the sodium experiments which have been carried out since 1990. Also, large scaled sodium experiments are scheduled to verify the design of the sodium cooled fast reactor. As a treatment method for the waste sodium produced at the sodium facility, an investigation of the reaction procedure of the waste sodium with the sodium hydroxide aqueous has been developed. The NOAH process was developed in France for the treatment of waste sodium produced from sodium facilities and reactors. In the NOAH process, a small amount of sodium waste is continuously injected into the upper space which is formed on the free surface of the aqueous and slowly reacted with sodium hydroxide aqueous. Since the density of the sodium is lower than that of the aqueous, the injected sodium waste sometimes accumulates above the free surface of the sodium hydroxide aqueous, and its reaction rate becomes slow or suddenly increases. In the improved process, the sodium was injected into a reaction vessel filled with a sodium hydroxide aqueous through an atomizing nozzle installed on a lower level than that of the aqueous to maintain the reaction uniformly. Fig.1 shows the sodium waste process which was proposed in KAERI. The aqueous is composed of 60% sodium hydroxide, and its temperature is about 60 .deg. C. The process is an exothermic reaction. The hydrogen gas is generated, and the concentration of the sodium hydroxide increases in this process. It needs several systems for the process, i.e. a waste sodium injection, a cooling of the aqueous, hydrogen ventilation, and neutralization with nitric acid. The atomizing nozzle was designed to inject the sodium with the nitrogen gas which supplies a heat to the sodium to prevent its solidification and to uniformly mix the sodium with the aqueous. There are

  6. Leak detection in Phenix and Super Phenix steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E [Centre d' Etudes Nucleaires de Saclay, Gif-sur-Yvette (France)

    1978-10-01

    Water leak detection Phenix and Super Phenix steam generators is based on measurement of the hydrogen produced by the reaction of sodium with water. The hydrogen evolves in the sodium in which the steam generator tubes are completely immersed. Depending on service conditions, however (sodium temperature and flow velocity), the hydrogen may appear in the argon existing above the free levels. This is why, although the Phenix steam generators do not feature free levels, measurement systems were added to measure the hydrogen concentration in the argon in the expansion tanks. Super Phenix steam generators are fitted at their outlet with systems for measuring hydrogen in the sodium, and above their free level with a system for measuring hydrogen in the argon. The measurement systems have nickel tube probes connected to circuits kept under vacuum by an ion pump. The hydrogen partial pressure is measured by a mass spectrometer. Super Phenix measurement systems differ from Phenix systems essentially in the temperature regulation of the sodium reaching the nickel tube probes, and in the centralization of the supply and measurement systems of the ion pumps and mass spectrometers. This paper deals with description, calibration and operating conditions of the hydrogen detection systems in sodium and argon in Phenix and Super Phenix steam generators. (author)

  7. Sodium-water reaction product flow system

    Energy Technology Data Exchange (ETDEWEB)

    Shirataki, K; Wada, H

    1978-11-18

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system.

  8. Sodium-water reaction product flow system

    International Nuclear Information System (INIS)

    Shirataki, Koji; Wada, Hozumi.

    1978-01-01

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system. (Yoshihara, H.)

  9. Using Sodium Hydrogen Carbonate for Foaming Polymers

    Directory of Open Access Journals (Sweden)

    Satin Lukáš

    2016-09-01

    Full Text Available All plastics products are made of the essential polymer mixed with a complex blend of materials known collectively as additives. Without additives, plastics would not work, but with them, they can be made safer, cleaner, tougher and more colourful. Additives cost money, but by reducing production costs and making products live longer, they help us save money and conserve the world's precious raw material reserves. In fact, our world would be a lot less safe, a lot more expensive and a great deal duller without the additives that turn basic polymers into useful plastics. One of these additives is sodium bicarbonate. Influence of sodium bicarbonate on properties of the product made of polystyrene was observed in the research described in this paper. Since polystyrene is typically used as a material for electrical components, the mechanical properties of tensile strength and inflammability were measured as a priority. Inflammability parameters were measured using a cone calorimeter.

  10. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Passador, F. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Pessan, L. A., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br [Dep. de Engenharia de Materiais, Federal University of São Carlos (Brazil)

    2014-05-15

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH{sub 4}) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  11. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  12. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    NARCIS (Netherlands)

    Vankan, P.J.W.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.A.H.; Schram, D.C.; Döbele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has

  13. 40 CFR 180.130 - Hydrogen Cyanide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hydrogen Cyanide; tolerances for... § 180.130 Hydrogen Cyanide; tolerances for residues. (a) General. A tolerance for residues of the insecticide hydrogen cyanide from postharvest fumigation as a result of application of sodium cyanide is...

  14. Experience on sodium removal from various components

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, M; Kanbe, M; Yagisawa, H; Sasaki, S; Kataoka, H; Fukada, T; Ishii, Y; Saito, R; Mimoto, Y [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  15. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.; Fukada, T.; Ishii, Y.; Saito, R.; Mimoto, Y.

    1978-01-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  16. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.

    1978-02-01

    Since 1970, OEC (O-arai Engineering Center) has been investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of ''JOYO'' and Dummy fuel assembly of ''JOYO'', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of ''JOYO'', a sector model of Sodium-to-Air cooler of ''JOYO'' and a proto-type Isolation valve of ''JOYO'' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental subassemblies, the Fuel Handling Machine of ''MONJU'' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of Sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a ''JOYO'' prototype pump by reinstalling it after sodium removal five times. (author)

  17. Dosage of trace carbon in sodium (1963)

    International Nuclear Information System (INIS)

    Sannier, J.; Vasseur, A.

    1963-01-01

    A wet method for dosing carbon in sodium has been developed. The carbon is oxidised in a vacuum using Van SLYKE'S solution. The carbonic acid formed is measured volumetrically; its purity can be controlled by chromatographic analysis. The results obtained show that this method makes it possible to measure carbon in concentrations of about 10 ppm. (authors) [fr

  18. Atom probe, AFM and STM study on vacuum fired stainless steel

    International Nuclear Information System (INIS)

    Stupnik, A.; Frank, P.; Leisch, M.

    2008-01-01

    Full text: Stainless steel is one of the most commonly used structural materials for vacuum equipment. An efficient method to reduce the outgassing rate from stainless steel is a high temperature bakeout in vacuum (vacuum firing). This procedure reduces significantly the amount of dissolved hydrogen in the bulk. For the outgassing process the recombination rate of hydrogen atoms to the molecules plays the determining role and recombination is strongly related to the surface structure and composition. To get more detailed information about the surface morphology and composition AFM, STM and atom probe studies were carried out. Experiments on AISI 304L stainless steel samples show that the surface reconstructs completely during vacuum firing and large atomically flat terraces bounded by bunched steps and facets are formed. The large flat terraces can be assigned to (111) planes. The bunched steps and facets are corresponding in orientation almost to (110) planes and (100) planes. Surface inspection after vacuum firing by Auger electron spectroscopy (AES) gives reason for a composition change indicated by a reduction of the chromium signal in relation to the iron and nickel signal. Since the information depth of AES covers several atomic layers not only the top atomic layer of the sample surface is probed. For this reason 3D atom probe was used as well suited tool to investigate the segregation behavior of this alloy with the goal to examine the change in local chemical composition due to the high temperature treatment. As a result of vacuum firing the atom probe experiments show a significant enrichment of nickel at the top surface layer. In the second atomic layer chromium enrichment is detected. After vacuum firing the average composition below the second atomic layer shows certain chromium depletion up to 2 nm in depth. The observed changes in surface chemistry influence recombination and desorption probability from the surface and may contribute to the present

  19. Photosensitized production of hydrogen by Halobacterium halobium MMT sub 22 coupled to Escherichia coli in reversed micelles of sodium lauryl sulfate in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.M.T.; Bhatt, J.P. (Central Salt and Marine Research Inst., Bhavnagar (India))

    1991-01-01

    Observation on the enhanced production of hydrogen by Halobacterium halobium MMT{sub 22} coupled to Escherichia coli entrapped inside the reversed micelles formed by sodium lauryl sulfate in various organic solvents, namely benzene, carbon tetrachloride, toluene, n-heptane, nitrobenzene, chlorobenzene, are reported. In the present system, a hundred fold increase in activity as compared to the activity in the usual aqueous medium was observed. (author).

  20. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    International Nuclear Information System (INIS)

    Fulvio, D.; Brieva, A. C.; Jäger, C.; Cuylle, S. H.; Linnartz, H.; Henning, T.

    2014-01-01

    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O 2 actinometry experiments allow us to estimate the quantum yield (QY) values QY 122  = 0.44 ± 0.16 and QY 160  = 0.87 ± 0.30 for solid-phase O 2 actinometry.

  1. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    Energy Technology Data Exchange (ETDEWEB)

    Fulvio, D., E-mail: daniele.fulvio@uni-jena.de, E-mail: dfu@oact.inaf.it; Brieva, A. C.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Cuylle, S. H.; Linnartz, H. [Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. box 9513, 2300 RA Leiden (Netherlands); Henning, T. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-07-07

    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O{sub 2} actinometry experiments allow us to estimate the quantum yield (QY) values QY{sub 122} = 0.44 ± 0.16 and QY{sub 160} = 0.87 ± 0.30 for solid-phase O{sub 2} actinometry.

  2. Co3O4 nanowires as efficient catalyst precursor for hydrogen generation from sodium borohydride hydrolysis

    Science.gov (United States)

    Wei, Lei; Cao, Xurong; Ma, Maixia; Lu, Yanhong; Wang, Dongsheng; Zhang, Suling; Wang, Qian

    Hydrogen generation from the catalytic hydrolysis of sodium borohydride has many advantages, and therefore, significant research has been undertaken on the development of highly efficient catalysts for this purpose. In our present work, Co3O4 nanowires were successfully synthesized as catalyst precursor by employing SBA-15 as a hard template. For material characterization, high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and N2 adsorption isotherms were employed, respectively. To measure the catalyst activity, typical water-displacement method was carried out. Using a reaction solution comprising 10wt.% NaBH4 and 2wt.% NaOH, the hydrogen generation rate (HGR) was observed to be as high as 7.74L min-1 g-1 at 25∘C in the presence of Co3O4 nanowires, which is significantly higher than that of CoB nanoparticles and commercial Co3O4 powder. Apparent activation energy was calculated to be 50.9kJ mol-1. After recycling the Co3O4 nanowires six times, HGR was decreased to be 72.6% of the initial level.

  3. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pae, Jae Huem; Min, Byung Hoon; Lee, Joon Sik; Lee, Choong Hui; Chung, Ki Hong; Keum, Choong Ki [Suwon University, Suwon (Korea, Republic of)

    1994-07-15

    Sodium is commonly used as a coolant in liquid metal reactor. A large amount of its leakage may be possible in hypothetical accidents, even though the possibility is very low. In case that the leaked hot sodium comes in direct contact with structural concrete of liquid metal reactor, the reactor`s integrity can be challenged by the rupture of structure materials, hydrogen generation and its explosion, and release of radioactive aerosols due to sodium-concrete reaction. The knowledge of sodium-concrete reaction is evaluated to be one of the important and indispensable technologies for the establishment of safety measure in liquid metal reactor. In this study, the experimental facility of sodium-concrete reaction is to be designed, constructed and operated. And the reaction phenomena of sodium-concrete reaction is also to be analyzed through the experimental results. The aim of this study is to establish the measure of safety and protection for sodium-related facilities and to secure one of the fundamental technologies of liquid metal reactor safety. 47 refs., 7 figs., 13 tab.

  4. Hydrogen dynamics in Na3AlH6: A combined density functional theory and quasielastic neutron scattering study

    DEFF Research Database (Denmark)

    Voss, Johannes; Shi, Qing; Jacobsen, Hjalte Sylvest

    2007-01-01

    alanate with TiCl3, and here we study hydrogen dynamics in doped and undoped Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. The hydrogen dynamics is found to be vacancy mediated and dominated by localized jump events, whereas long-range bulk......Understanding the elusive catalytic role of titanium-based additives on the reversible hydrogenation of complex hydrides is an essential step toward developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed effects of doping sodium...... defect motion in sodium alanate could result from vacancy-mediated sodium diffusion....

  5. Preliminary tension effect on low-cycle fatigue of 40Kh13 steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, A.N.

    1984-01-01

    Comparative bending tests of specimens deformed by tension at 65, 18 and 30% in hydrogen and vacuum were accomplished to reveal the effect of preliminary tension on low-cycle fatigue strength of 40Kh13 martensitic steel. It was found that small amounts of preliminary strains induced a considerable decrease in low-cycle durability in vacuum and hydrogen which was connected with developing defects arising at the early stages of plastic deformation. A rather high degree of preliminary tension promoted steel homogenization, hydrogen embrittlement decrease and service behaviour improvement

  6. System level permeability modeling of porous hydrogen storage materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  7. Tube tightness survey during Phenix steam generator operation

    International Nuclear Information System (INIS)

    Cambillard, E.

    1976-01-01

    Phenix steam generators are once-through vessels with single-wall heat-exchange tubes. This design means that any leakage of water into the sodium must be detected as quickly as possible so that the installation can be shut down before extensive damage occurs. The detection of water leaks in Phenix steam generators is based on measurement of the concentration in the sodium, of hydrogen produced by the sodium-water reaction. Since the various modules--evaporators, superheaters, and reheaters--have no free sodium surfaces, detection of hydrogen in argon is not used in Phenix steam generators. The measurement systems employ a probe made of nickel tubes 0.3 mm thick. Hydrogen in the sodium diffuses into a chamber kept under vacuum by an ion pump. The hydrogen pressure in the chamber is measured by a quadrupole mass spectrometer. The nine measurement systems (three per steam generator) are calibrated by injecting hydrogen into the sodium of the secondary circuits. The data-processing computer calculates the hydrogen concentration in the sodium from the spectrometer signals and the probe temperatures, which are not regulated in Phenix; it generates instructions that enable the operator to act if a leak appears. So far, no leaks have been detected. These systems also make it possible to determine rates of hydrogen diffusion caused by corrosion of the steel walls on the water side

  8. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  9. Evidence for hydrogen-assisted recovery of cold-worked palladium: hydrogen solubility and mechanical properties studies

    Directory of Open Access Journals (Sweden)

    Maria Ferrer

    2017-07-01

    Full Text Available The influence of hydrogen as an agent to accelerate the thermal recovery of cold-worked palladium has been investigated. The techniques used to characterize the effects of hydrogen on the thermal recovery of palladium were hydrogen solubility and mechanical property measurements. Results show that the presence of modest amounts of hydrogen during annealing of cold-worked palladium does enhance the degree of thermal recovery, with a direct correlation between the amount of hydrogen during annealing and the degree of recovery. The results indicate that the damage resulting from cold-working palladium can be more effectively and efficiently reversed by suitable heat treatments in the presence of appropriate amounts of hydrogen, as compared to heat treatment in vacuum. The somewhat novel technique of using changes in the hydrogen solubility of palladium as an indicator of thermal recovery has been validated and complements the more traditional technique of mechanical property measurements.

  10. Duplex-tube sodium-indication steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1984-01-01

    The steam generator with duplex tubes and sodium indication is connected to the main sodium input and output via the inlet and outlet chambers and has indication spaces connected to the interspaces of the duplex tubes. The first indication space is linked with the auxiliary inlet pipe to the inlet chamber and the second indication space is connected with the auxiliary pipe to the outlet chamber. Mounted to the auxiliary inlet pipe is at least one closure, i.e., a valve or electromagnetic stop. Mounted on the auxiliary outlet pipe is an indication sensor, e.g., a sodium flow sensor. At least one indication space is provided with an alarm sensor, e.g., a thermocouple, a pressure gauge and one sensor to monitor the hydrogen content of sodium. (J.P.)

  11. JOYO coolant sodium and cover gas purity control database (MK-II core)

    International Nuclear Information System (INIS)

    Ito, Kazuhiro; Nemoto, Masaaki

    2000-03-01

    The experimental fast reactor 'JOYO' served as the MK-II irradiation bed core for testing fuel and material for FBR development for 15 years from 1982 to 1997. During the MK-II operation, impurities concentrations in the sodium and the argon gas were determined by 67 samples of primary sodium, 81 samples of secondary sodium, 75 samples of primary argon gas, 89 samples of secondary argon gas (the overflow tank) and 89 samples of secondary argon gas (the dump tank). The sodium and the argon gas purity control data were accumulated from in thirty-one duty operations, thirteen special test operations and eight annual inspections. These purity control results and related plant data were compiled into database, which were recorded on CD-ROM for user convenience. Purity control data include concentration of oxygen, carbon, hydrogen, nitrogen, chlorine, iron, nickel and chromium in sodium, concentration of oxygen, hydrogen, nitrogen, carbon dioxide, methane and helium in argon gas with the reactor condition. (author)

  12. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Xie, Yun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Du, Liang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); School of Radiation Medicine and Protection (SRMP), School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou 215000 (China); Li, Weiyi [School of Physics and Chemistry, Xihua University, Chengdu 610065 (China); Tan, Zhaoyi, E-mail: zhyitan@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-04-28

    Highlights: • This is the first theoretical investigation about T–H exchange in vacuum oil. • T–H isotope exchange is accomplished through two different change mechanisms. • Isotope exchange is selective, molecules with −OH and −COOH exchange more easily. • The methyl and methylene radicals in waste oil were observed by {sup 1}HNMR. - Abstract: The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium–hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T–H exchange mechanism and the hyrogenation–dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation–dehydrogenation exchange mechanism, the T–H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with −OH and −COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T–H isotope exchange can be determined by the hydrogenation of T{sub 2} or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products.

  13. Development of sodium technology

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D.

    2000-05-01

    pressure transient transferred to the IHX will be analyzed. The experimental data will be used for the primary verification of SPIKE code. The verified SPIKE code will be applied to the design of KALIMER secondary ststem an used to analyze the safety of equipment in sodium-water reaction. The hydrogen detector showed the characteristics of hydrogen leak detection delay. In the development of acoustic leak detection technology, considering the design conditions of the KALIMER steam generator, we predicted the limitation of water leak detection, the selection of acoustic sensor, and the construction of the DSP instrument. The experimental and simulated results on the frequencies of acoustic signal according to the leak level were compared

  14. Development of sodium technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Nam, H Y; Choi, Y D [and others

    2000-05-01

    of pressure propagation and gas flow, and pressure transient transferred to the IHX will be analyzed. The experimental data will be used for the primary verification of SPIKE code. The verified SPIKE code will be applied to the design of KALIMER secondary ststem an used to analyze the safety of equipment in sodium-water reaction. The hydrogen detector showed the characteristics of hydrogen leak detection delay. In the development of acoustic leak detection technology, considering the design conditions of the KALIMER steam generator, we predicted the limitation of water leak detection, the selection of acoustic sensor, and the construction of the DSP instrument. The experimental and simulated results on the frequencies of acoustic signal according to the leak level were compared.

  15. Hydrogen/hydrocarbon explosions in the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Goranson, P.L.

    1992-01-01

    The consequences of H 2 /hydrocarbon detonations in the vacuum vessel (torus) of the International Thermonuclear Experimental Reactor (ITER) have been studied. The most likely scenario for such a detonation involves a water leak into the torus and a vent of the torus to atmosphere, permitting the formation of an explosive fuel-air mixture. The generation of fuel gases and possible sources of air or oxygen are reviewed, and the severity and effects of specific fuel-air mixture explosions are evaluated. Detonation or deflagration of an explosive mixture could result in pressures exceeding the maximum allowable torus pressure. Further studies to examine the design details and develop an event-tree study of events following a gas detonation are recommended

  16. Hydrogen production by sodium borohydride in NaOH aqueous solution

    Science.gov (United States)

    Wang, Q.; Zhang, L. F.; Zhao, Z. G.

    2018-01-01

    The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.

  17. Interaction of atomic hydrogen with ethylene adsorbed on nickel films

    International Nuclear Information System (INIS)

    Korchak, V.N.; Tret'yakov, I.I.; Kislyuk, M.U.

    1976-01-01

    The reactivity of ethylene adsorbed on the pure films of nickel at various temperatures was studied with respect to hydrogen atoms generated in the gaseous phase. The experiments were conducted in a glass vacuum apparatus enabling one to obtain the highest vacuum up to 2x20 -10 torr. The catalyst, nickel films, was produced by their deposition onto the walls of the glass reactor at a pressure of the residual gas of 10 -9 torr and a temperature of the walls of 25 deg C. Gas purity was analyzed by the mass spectrometric method. The ethylene adsorbed at the temperatures below 173 deg K reacted readily with the hydrogen atoms to yield ethane. The process ran without practically any activation energy involved and was limited by the attachment of the first hydrogen atom to the ethylene molecule. The efficiency of this interaction was 0.02 of the number of the hydrogen atoms collisions against the surface occupied by the ethylene. The adsorption of the ethylene at room and higher temperatures was accompanied by its disproportioning with the release of the hydrogen into the gaseous phase and a serious destruction of the ethylene molecules adsorbed to produce hydrogen residues interacting with neither molecular nor atomic hydrogen [ru

  18. Single step vacuum-free and hydrogen-free synthesis of graphene

    Directory of Open Access Journals (Sweden)

    Christian Orellana

    2017-08-01

    Full Text Available We report a modified method to grow graphene in a single-step process. It is based on chemical vapor deposition and considers the use of methane under extremely adverse synthesis conditions, namely in an open chamber without requiring the addition of gaseous hydrogen in any of the synthesis stages. The synthesis occurs between two parallel Cu plates, heated up via electromagnetic induction. The inductive heating yields a strong thermal gradient between the catalytic substrates and the surrounding environment, promoting the enrichment of hydrogen generated as fragments of the methane molecules within the volume confined by the Cu foils. This induced density gradient is due to thermo-diffusion, also known as the Soret effect. Hydrogen and other low mass molecular fractions produced during the process inhibit oxidative effects and simultaneously reduce the native oxide on the Cu surface. As a result, high quality graphene is obtained on the inner surfaces of the Cu sheets as confirmed by Raman spectroscopy.

  19. FFTF sodium and cover gas characterization and purification

    International Nuclear Information System (INIS)

    McCown, J.J.; Bloom, G.R.; Meadows, G.E.; Mettler, G.W.

    1980-02-01

    The FFTF Primary and Secondary Heat Transport System (HTS) sodium is purified with cold traps which have packed crystallizers and external economizers. The Primary HTS cold trap is NaK cooled and the Secondary HTS cold traps are air cooled. The FFTF cold traps have maintained high purity in the sodium since sodium fill. Plant operational procedures during fill and initial sodium heatup to 800 0 F were controlled to assure low release rates of impurities to the sodium. The FFTF sodium systems are monitored by plugging temperature indicators and by several sampling methods. During reactor fill and non-fueled operations at 400 to 800 0 F, impurity changes in the sodium were followed by continuous plugging indicator coverage, by exposing wires and foils to measure carbon, hydrogen and oxygen, and by bulk sample analysis of all other trace constituents. The sampling and analysis methods and data are presented, impurity excursions in the cover gas and sodium are described, and impurity trends are discussed

  20. Dosage of trace carbon in sodium (1963); Dosage de traces de carbone dans le sodium (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Sannier, J; Vasseur, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    A wet method for dosing carbon in sodium has been developed. The carbon is oxidised in a vacuum using Van SLYKE'S solution. The carbonic acid formed is measured volumetrically; its purity can be controlled by chromatographic analysis. The results obtained show that this method makes it possible to measure carbon in concentrations of about 10 ppm. (authors) [French] Une methode de dosage par voie humide du carbone dans le sodium a ete mise au point. L'oxydation du carbone par la solution de Van SLYKE est realisee sous vide. Le gaz carbonique forme est dose volumetriquement; sa purete peut etre controlee par analyse chromatographique. Les resultats obtenus montrent que cette methode permet de doser des teneurs en carbone de l'ordre de 10 ppm. (auteurs)

  1. Role of Outgassing of ITER Vacuum Vessel In-Wall Shielding Materials in Leak Detection of ITER Vacuum Vessel

    Science.gov (United States)

    Maheshwari, A.; Pathak, H. A.; Mehta, B. K.; Phull, G. S.; Laad, R.; Shaikh, M. S.; George, S.; Joshi, K.; Khan, Z.

    2017-04-01

    ITER Vacuum Vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with In-Wall Shielding Blocks (IWS) and Water. The main purpose of IWS is to provide neutron shielding during ITER plasma operation and to reduce ripple of Toroidal Magnetic Field (TF). Although In-Wall Shield Blocks (IWS) will be submerged in water in between the walls of the ITER Vacuum Vessel (VV), Outgassing Rate (OGR) of IWS materials plays a significant role in leak detection of Vacuum Vessel of ITER. Thermal Outgassing Rate of a material critically depends on the Surface Roughness of material. During leak detection process using RGA equipped Leak detector and tracer gas Helium, there will be a spill over of mass 3 and mass 2 to mass 4 which creates a background reading. Helium background will have contribution of Hydrogen too. So it is necessary to ensure the low OGR of Hydrogen. To achieve an effective leak test it is required to obtain a background below 1 × 10-8 mbar 1 s-1 and hence the maximum Outgassing rate of IWS Materials should comply with the maximum Outgassing rate required for hydrogen i.e. 1 x 10-10 mbar 1 s-1 cm-2 at room temperature. As IWS Materials are special materials developed for ITER project, it is necessary to ensure the compliance of Outgassing rate with the requirement. There is a possibility of diffusing the gasses in material at the time of production. So, to validate the production process of materials as well as manufacturing of final product from this material, three coupons of each IWS material have been manufactured with the same technique which is being used in manufacturing of IWS blocks. Manufacturing records of these coupons have been approved by ITER-IO (International Organization). Outgassing rates of these coupons have been measured at room temperature and found in acceptable limit to obtain the required Helium Background. On the basis of these measurements, test reports have been generated and got

  2. Calculation of noise attenuation coefficient for leaks in the system sodium-water

    International Nuclear Information System (INIS)

    Yugaj, V.S.; Kozlov, F.A.; Sorokina, T.G.

    1986-01-01

    In this report the authors present the calculation results for sound attenuation coefficient on hydrogen bubbles in sodium and show a calculation method of attenuation coefficient for different temperatures of sodium in the 1-200 kHz range frequencies [fr

  3. Iron-titanium-mischmetal alloys for hydrogen storage

    Science.gov (United States)

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  4. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Panwar, O.S.; Khan, Mohd. Alim; Kumar, Mahesh; Shivaprasad, S.M.; Satyanarayana, B.S.; Dixit, P.N.; Bhattacharyya, R.; Khan, M.Y.

    2008-01-01

    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp 3 bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp 3 content and sp 3 /sp 2 ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp 3 (80%) bonding and sp 3 /sp 2 (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp 3 (87-91%) bonding and sp 3 /sp 2 (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications

  5. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India)], E-mail: ospanwar@mail.nplindia.ernet.in; Khan, Mohd. Alim [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Kumar, Mahesh; Shivaprasad, S.M. [Surface Physics and Nanostructures Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Satyanarayana, B.S. [MIT Innovation Centre and Electronics and Communication Department, Manipal Institute of Technology, Manipal-579104 (India); Dixit, P.N. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Bhattacharyya, R. [Emeritus Scientist, National Physical Laboratory, New Delhi-110012 (India); Khan, M.Y. [Department of Physics, Jamia Millia Islamia, Central University, New Delhi-110025 (India)

    2008-02-29

    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp{sup 3} bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp{sup 3} content and sp{sup 3}/sp{sup 2} ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp{sup 3} (80%) bonding and sp{sup 3}/sp{sup 2} (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp{sup 3} (87-91%) bonding and sp{sup 3}/sp{sup 2} (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications.

  6. Bose–Einstein condensation in a vapor of sodium atoms in an electric field

    Energy Technology Data Exchange (ETDEWEB)

    You, Pei-Lin, E-mail: youpeli@163.com

    2016-06-15

    Bose–Einstein condensation (BEC) at normal temperature (T=343K) has been observed because an electric field was first applied. There are two ways to achieve phase transition: lower the temperature of Bose gas or increase its density. This article provides more appropriate method: increase the voltage. In theory, 3s and 3p states of sodium are not degenerate, but Na may be polar atom doesnot conflict with quantum mechanics because it is hydrogen-like atom. Our innovation lies in we applied an electric field used for the orientation polarization. Na vapor was filled in a cylindrical capacitor. In order to determine the polarity of sodium, we measured the capacitance at different temperatures. If Na is non-polar atom, its capacitance should be independent of temperature because the nucleus of atom is located at the center of the electron cloud. But our experiment shows that its capacitance is related to temperature, so Na is polar atom. In order to achieve Na vapor phase transition, we measured the capacitance at different voltages. From the entropy of Na vapor S=0, the critical voltage V{sub c}=68volts. When V0; when V>V{sub c}, the atoms become aligned with the field S<0, phase transition occurred. When V=390 volts »V{sub c}, the capacitance decreased from C=1.9C{sub 0} to C≈C{sub 0} (C{sub 0} is the vacuum capacitance), this result implies that almost all the Na atoms (more than 98%) are aligned with the field, Na vapor entered quasi-vacuum state. We create a BEC with 2.506×10{sup 17} atoms, condensate fraction reached 98.9%. This is BEC in momentum space. Our experiment shows that if a Bose gas enters quasi-vacuum state, this also means that it underwent phase transition and generates BEC. Therefore, quasi-vacuum state of alkali gas is essentially large-scale BEC. This is an unexpected discovery. BEC and vacuum theory are two unrelated research areas, but now they are closely linked together. The maximum

  7. Development of a transfer model for design of sodium purification systems for Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Khatcheressian, N.

    2013-01-01

    Operating a Sodium Fast Reactor (SFR) in reliable and safe conditions requires to master the quality of the sodium fluid coolant, regarding oxygen and hydrogen impurities contents. A cold trap is a purification unit in SFR, designed for maintaining oxygen and hydrogen contents within acceptable limits. The purification of these impurities is based on crystallization of sodium hydride on cold walls and sodium oxide or hydride on wire mesh packing. Indeed, as oxygen and hydrogen solubilities are nearly nil at temperatures close to the sodium fusion point, i.e. 97.8 C, on line sodium purification can be performed by crystallization of sodium oxide and hydride from liquid sodium flows. However, the management of cold trap performances is necessary to prevent from unforeseen maintenance operations, which could induce shut-down of the reactor. It is thus essential to understand how a cold trap fills up with impurities crystallization in order to optimize the design of this system and to overcome any problems during nominal operation. The objective is to develop a design and simulation tool for cold traps able to predict the location and the amount of the impurities deposited. Crystallization model involve phenomena coupling in a porous medium with hydrodynamics, heat and mass transfer, distinguishing nucleation and growth phases for each impurity. It enables to understand how thermo hydraulic conditions and growing impurities interact on each other. This analysis will adapt operating and management conditions in order to optimize purification requirements. (author) [fr

  8. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  9. Charge changing and excitation cross sections for 1-25 KeV hydrogen ions and atoms incident on sodium

    International Nuclear Information System (INIS)

    Howald, A.M.

    1983-01-01

    Measurements of charge changing and excitation cross sections for 1-25 keV beams of hydrogen atoms and ions incident on a sodium vapor target are reported. The charge changing cross sections are for reactions in which the incident H ion or atom gains or loses an electron during a collision with a Na atoms to form a hydrogen ion or atom in a different charge state. The six cross sections measured are sigma/sub +0/ and sigma/sub +-/ for incident protons, sigma/sub -0/ and sigma/sub -+/ for incident H - ions, and sigma/sub g-/ and sigma/sub g+/ for incident H(1s) atoms. Measurements are also reported for the negative, neutral, and positve equilibrium fractions for H beams in thick Na targets. The excitation cross sections are for reactions in which the Na target atom is excited to the 3p level by a collision with a H atom or ion. The five cross sections measured are for incident H + , H 2 + , H 3 + , and H - ions, and for H(1s) atoms. These cross sections are measured using a new technique that compares them directly to the known cross section for excitation by electron impact

  10. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  11. Vakuumski baloni: at bicentenary of Vega's death: ob dvestoletnici Vegove smrti: Vacuum balloons:

    OpenAIRE

    Južnič, Stanislav

    2002-01-01

    We described the vacuum balloons that were developed in the 17th and 18th centuries parallel with the hot air and hydrogen balloons. We find the technological problems that postponed their effective use in the first place. At the bicentenary of Vega's death we discussed his opinion about the vacuum ballonns. We discussed some difficulties of their modern development. Opisujemo vakuumske balone, ki so jih razvijali vzporedno s toplozračnimi in vodikovimi v 17. in 18. stoletju. Izpostavljamo...

  12. Transformation of Sodium Bicarbonate and CO2 into Sodium Formate over NiPd Nanoparticle Catalyst

    Science.gov (United States)

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-09-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  13. Effect of Various Pretreatments on Quality Attributes of Vacuum-Fried Shiitake Mushroom Chips

    Directory of Open Access Journals (Sweden)

    Aiqing Ren

    2018-01-01

    Full Text Available The objective of this study is to investigate the effects of pretreatments on the quality of vacuum-fried shiitake mushroom slices. Four different pretreatments addressed in this study were (1 blanching as control, (2 blanching and osmotic dehydration with maltodextrin (MD solution, (3 blanching, osmotic dehydration, and coating with sodium carboxymethyl cellulose (CMC, (4 blanching and osmotic dehydration, followed by freezing. All samples were pretreated and then fried in palm oil at 90°C with vacuum degree of −0.095 MPa for 30 min. The results showed that pretreatments significantly (p0.05 differences of fried chip in the texture among the four different pretreatments. The aw values of all the fried chips were less than 0.38, indicating that the products had a long shelf life. Therefore, the blanching, osmotic dehydration, and coating pretreatment before vacuum frying was the most suitable pretreatment for vacuum-fried shiitake mushroom chips.

  14. Effects of sodium tartrate anodizing on fatigue life of TA15 titanium alloy

    Directory of Open Access Journals (Sweden)

    Fu Chunjuan

    2015-08-01

    Full Text Available Anodizing is always used as an effective surface modification method to improve the corrosion resistance and wear resistance of titanium alloy. The sodium tartrate anodizing is a new kind of environmental anodizing method. In this work, the effects of sodium tartrate anodizing on mechanical property were studied. The oxide film was performed on the TA15 titanium alloy using sodium tartrate as the film former. The effects of this anodizing and the traditional acid anodizing on the fatigue life of TA15 alloy were compared. The results show that the sodium tartrate anodizing just caused a slight increase of hydrogen content in the alloy, and had a slight effect on the fatigue life. While, the traditional acid anodizing caused a significant increase of hydrogen content in the substrate and reduced the fatigue life of the alloy significantly.

  15. Depth profiling of hydrogen in ferritic/martensitic steels by means of a tritium imaging plate technique

    International Nuclear Information System (INIS)

    Otsuka, Teppei; Tanabe, Tetsuo

    2013-01-01

    Highlights: ► We applied a tritium imaging plate technique to depth profiling of hydrogen in bulk. ► Changes of hydrogen depth profiles in the steel by thermal annealing were examined. ► We proposed a release model of plasma-loaded hydrogen in the steel. ► Hydrogen is trapped at trapping sites newly developed by plasma loading. ► Hydrogen is also trapped at surface oxides and hardly desorbed by thermal annealing. -- Abstract: In order to understand how hydrogen loaded by plasma in F82H is removed by annealing at elevated temperatures in vacuum, depth profiles of plasma-loaded hydrogen were examined by means of a tritium imaging plate technique. Owing to large hydrogen diffusion coefficients in F82H, the plasma-loaded hydrogen easily penetrates into a deeper region becoming solute hydrogen and desorbs by thermal annealing in vacuum. However the plasma-loading creates new hydrogen trapping sites having larger trapping energy than that for the intrinsic sites beyond the projected range of the loaded hydrogen. Some surface oxides also trap an appreciable amount of hydrogen which is more difficult to remove by the thermal annealing

  16. The sodium level. An inconspicuous but very important parameter in all-volatile treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bursik, Albert [PowerPlant Chemistry GmbH, Neulussheim (Germany)

    2011-07-15

    Boiler tube failure due to ''lack of sodium''? This is certainly not a common concern, yet this contribution stresses the importance of the presence of sodium in the boiler water even when applying all-volatile treatment (AVT) as a method of boiler water treatment. Sodium in the cycle (either unintentionally via sodium-contaminated makeup or intentionally through sodium hydroxide additions) may neutralize the possible acidic contaminations and help to avoid boiler tube failures due to hydrogen damage. (orig.)

  17. Adsorption of hydrogen isotopes by metals in non-equilibrium conditions

    International Nuclear Information System (INIS)

    Livshits, A.I.; Notkin, M.E.; Pustovojt, Yu.M.

    1982-01-01

    To study the interaction of thermonuclear plasma and additions with metallic walls, nonequilibrium system of thermal atomary hydrogen - ''cold'' (300-1100 K) metal is experimentally investigated. Atomary hydrogen was feeded to samples of Ni and Pd in the shape of atomic beam, coming into vacuum from high-frequency gaseous discharge. It is shown that hydrogen solubility under nonequilibrium conditions increases with surface passivation (contamination); in this case it surpasses equilibrium solubility by value orders. Nickel and iron dissolve more hydrogen than palladium at a certain state of surface ( passivation) and gas (atomary hydrogen). The sign of the temperature dependence of hydrogen solubility in passivated N 1 and Fe changes when alterating molecular hydrogen by atomary hydrogen

  18. Microcontroller based instrumentation for heater control circuit of tin oxide based hydrogen sensor

    International Nuclear Information System (INIS)

    Premalatha, S.; Krithika, P.; Gunasekaran, G.; Ramakrishnan, R.; Ramanarayanan, R.R.; Prabhu, E.; Jayaraman, V.; Parthasarathy, R.

    2015-01-01

    A thin film sensor based on tin oxide developed in IGCAR is used to monitor very low levels of hydrogen (concentration ranging from 2 ppm to 80 ppm). The heater and the sensor patterns are integrated on a miniature alumina substrate and necessary electrical leads are taken out. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350°C. The sensor output (voltage signal) varies with H 2 concentration. In fast breeder reactors, liquid sodium is used as coolant. The sensor is used to detect water/steam leak in secondary sodium circuit. During the start up of the reactor, steam leak into sodium circuit generates hydrogen gas as a product that doesn't dissolve in sodium, but escapes to the surge tank containing argon i.e. in cover gas plenum of sodium circuit. On-line monitoring of hydrogen in cover gas is done to detect an event of water/steam leakage. The focus of this project is on the instrumentation pertaining to the temperature control for the sensor heater. The tin oxide based hydrogen sensor is embedded in a substrate which consists of a platinum heater, essentially a resistor. There is no provision of embedding a temperature sensor on the heater surface due to the physical constraints, without which maintaining a constant heater temperature is a complex task

  19. Vacuum system of the Tokamak Novillo

    International Nuclear Information System (INIS)

    Valencia Alvarado, R.; Lopez Callejas, R.; Melendez Lugo, L.; Chavez Alarcon, E.

    1990-01-01

    A toroidal vacuum chamber of 28 access ports was constructed from four stainless steel 316L elbows joined together with dielectric seals to provide voltage break in the toroidal direction. All vacuum seals were viton O-rings. A 500 1/s turbomolecular pump provide a base pressure of 4 x 10 -8 mbar with light backing (∼ 60 deg C). In the regime of cleaning discharge the toroidal chamber is filled with H 2 to a pressure of 0.2 + 0.4 mbar. The ohmic heating coils are pulsed with a AF oscillator (10 kW, 17.5 kHz) for 60-80 msec, at a repetition rate of about 2 Hz. A toroidal magnetic field of roughly 600 G is added to generate the cleaning discharge. According to a residual gas analyzer installed in the system, 80% of the base pressure was given by water; the other components were hydrogen and mon- and dioxides of carbon. (Author)

  20. Lactulose mediates suppression of dextran sodium sulfate-induced colon inflammation by increasing hydrogen production.

    Science.gov (United States)

    Chen, Xiao; Zhai, Xiao; Shi, Jiazi; Liu, Wen Wu; Tao, Hengyi; Sun, Xuejun; Kang, Zhimin

    2013-06-01

    Molecular hydrogen (H2) is a potent antioxidant and able to protect organs from oxidative stress injuries. Orally administered lactulose, a potent H2 inducer, is digested by colon microflora and significantly increases H2 production, indicating its potential anti-inflammatory action. To evaluate the anti-inflammatory effects of lactulose on dextran sodium sulfate (DSS)-induced colitis in mice. Mice were randomly assigned into seven groups, receiving regular distilled water, H2-rich saline (peritoneal injection), DSS, oral lactulose (0.1, 0.15, 0.2 ml/10 g, respectively), and lactulose (0.2 ml/10 g) + oral antibiotics. The mouse model of human ulcerative colitis was established by supplying mice with water containing DSS. The H2 breath test was used to determine the exhaled H2 concentration. Body weight, colitis score, colon length, pathological features and tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), maleic dialdehyde (MDA) and marrow peroxidase (MPO) levels in colon lesions were evaluated. After 7 days, DSS-induced loss of body weight, increase of colitis score, shortening of colon length, pathological changes and elevated levels of TNF-α, IL-1β, MDA, and MPO in colon lesions, were significantly suppressed by oral lactulose administration and intraperitoneally injected H2-rich saline. Ingestion of antibiotics significantly compromised the anti-inflammatory effects of lactulose. The H2 breath test showed that lactulose administration significantly induced hydrogen production and that antibiotics administration could inhibit H2 production. Lactulose can prevent the development of DSS-induced colitis and alleviate oxidative stress in the colon, as measured by MDA and MPO, probably by increasing endogenous H2 production.

  1. Sodium benzyl(monoethanol)ammonium bis(gluconatoborate)

    International Nuclear Information System (INIS)

    Tel'zhenskaya, P.N.; Shvarts, E.M.; Vitola, I.M.

    1990-01-01

    Boron compounds with gluconic acid and monoethanol- and benzylamines are synthesized and investigated by physicochemical methods (IR-spectroscopy, thermal decomposition, conductometry, Fischer titration). Tetracoordinated boron has two free hydroxyl groups, dimer of boron-gluconate anion is held by hydrogen bonds, sodium ions and ammonium protonated salts are cations

  2. Transformation of Sodium Bicarbonate and CO2 into Sodium Formate over NiPd Nanoparticle Catalyst

    Directory of Open Access Journals (Sweden)

    Mengnan eWang

    2013-09-01

    Full Text Available The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs. Ni NPs and eight NiM (M stands for a second metal NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  3. Corrosion and cleaning aspects of sodium side crevices in components of LMFBR's

    International Nuclear Information System (INIS)

    Chirer, E.G.

    1978-01-01

    Although the presence of crevices is excluded in critical areas of sodium components by design, their occurrence in other areas cannot be eliminated completely. During the lifetime of a component high concentrations of sodium compounds, such as caustics, may be formed in crevices. These compounds can remain within the crevices for some time. In this respect the following situations are recognized: - Reaction products from initial contaminants such as oxide scales. The component with crevices containing oxide scale either from the manufacturing process or insufficient cleaning after water pressure testing is exposed to sodium during actual operation. - Reaction products formed during or after cleaning. Sodium in the crevices of a drained component reacts with water vapour or water during cleaning or during subsequent storing or handling under non-perfect conditions. Before refilling with sodium the component is heated to preheat temperature. Same situation as above, however the component is exposed to sodium at operating temperature. These cycles can be repeated several times. - Products from a small sodium-water reaction. Caustic products from a small sodium-water reaction may be present in crevices or dead ends of a component which is exposed to high temperature during sodium operation or during vacuum distillation. The aims of the investigations are: determination of the corrosive aspects of high concentration of caustic reaction products of sodium in crevices on the structural materials of the component; comparison of the effectiveness of different cleaning procedures in respect to removal of sodium from crevices, e.g. water, steam, alcohol cleaning, vacuum distillation. Concerning the first item, in particular the possibility of the occurrence of intercrystalline corrosion and stress corrosion cracking is investigated. Materials investigated are the Cr-Mo steels 2 1/4Cr1Mo stabilized with Nb, 9Cr1Mo, 12Cr1Mo and the austenitic stainless steal AISI 304. The

  4. In Situ Hall Effect Monitoring of Vacuum Annealing of In2O3:H Thin Films

    Directory of Open Access Journals (Sweden)

    Hans F. Wardenga

    2015-02-01

    Full Text Available Hydrogen doped In2O3 thin films were prepared by room temperature sputter deposition with the addition of H2O to the sputter gas. By subsequent vacuum annealing, the films obtain high mobility up to 90 cm2/Vs. The films were analyzed in situ by X-ray photoelectron spectroscopy (XPS and ex situ by X-ray diffraction (XRD, optical transmission and Hall effect measurements. Furthermore, we present results from in situ Hall effect measurements during vacuum annealing of In2O3:H films, revealing distinct dependence of carrier concentration and mobility with time at different annealing temperatures. We suggest hydrogen passivation of grain boundaries as the main reason for the high mobility obtained with In2O3:H films.

  5. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  6. Thermal Vacuum Integrated System Test at B-2

    Science.gov (United States)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  7. A technique for measuring hydrogen and water in inert gases and the hydrogen concentration in liquid sodium

    International Nuclear Information System (INIS)

    Smith, C.A.

    1978-04-01

    A method is described of measuring the hydrogen and water content of an inert gas. It is based upon the use of an electrochemical oxygen cell and has a high sensitivity at low hydrogen and water levels. The following possible applications of the method are described together with supporting experimental measurements: improving the sensitivity and range of the present PFR secondary circuit hydrogen detection instruments; the measurement of hydrogen diffusion coefficients in steels; the measurement of waterside corrosion rates of boiler steels; on-line monitoring of waterside boiler corrosion. Attention is given to the characteristics of diffusion barriers in relation to the first and last of these. (author)

  8. Analysis of the sodium concrete interactions with the NABE code

    International Nuclear Information System (INIS)

    Soule, N.

    1989-01-01

    Experimental studies have been performed in France to investigate sodium-concrete interactions: thermal decomposition of concrete, specific chemical reactions, experimentation in liquid and vapour phase, sodium-concrete interaction without liner protection. Simultaneously computer codes have been developed in order to study the response of the containment building of a liquid metal fast breeder reactor to a sodium pool fire worsened by a sodium-concrete interaction: the NABE code. This code takes into account: a) sodium combustion; b) thermal decomposition of concrete with associated chemical reactions: (liquid sodium-vapour water reaction, liquid sodium-carbon dioxide reaction, liquid sodium-solid compounds of concrete, hydrogen combustion); c) chemical reactions in vapour phase; d) decay heat; e) gas aerosol inlets/outlets; f) aerosol behaviour (sedimentation, diffusion, leak); g) thermal exchanges. An example of a situation, typical of assessment of beyond design basis situations in LMFBR, is given. (author)

  9. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  10. Changes in Hydrogen Content During Steelmaking

    Directory of Open Access Journals (Sweden)

    Vrbek K.

    2015-04-01

    Full Text Available Štore Steel produces steel grades for spring, forging and engineering industry applications. Steelmaking technology consists of scrap melting in Electric Arc Furnace (EAF, secondary metallurgy in Ladle Furnace (LF and continuous casting of billets (CC. Hydrogen content during steelmaking of various steel grades and steelmaking technologies was measured. Samples of steel melt from EAF, LF and CC were collected and investigated. Sampling from Electric Arc Furnace and Ladle Furnace was carried out using vacuum pin tubes. Regular measurements of hydrogen content in steel melt were made using Hydris device. Hydrogen content results measured in tundish by Hydris device were compared with results from pin tube samples. Based on the measurement results it was established that hydrogen content during steelmaking increases. The highest values were determined in tundish during casting. Factors that influence the hydrogen content in liquid steel the most were steelmaking technology and alloying elements.

  11. Determination of hydrogen in metals and alloys

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Ramakumar, K.L.

    2008-01-01

    Hydrogen will be invariably present in all materials. Its presence in excess is harmful and sometimes calamitous. Hydrogen embrittlement can occur quite readily in most high strength materials, irrespective of their composition or structure. It is therefore essential to maintain low levels of hydrogen. To know the amount of hydrogen present in the materials, it is essential to determine it with high degree of precision and accuracy. It is required to give the uncertainty associated with the measurement to increase the confidence on measurements. Several methodologies are available for the determination of hydrogen. It its isotope, deuterium, also co-exists it becomes all the more difficult to determine these individually. Hot vacuum extraction cum quadrupole mass spectrometry (HVE-QMS) developed in our laboratory to determine hydrogen and deuterium is routinely employed for the determination of hydrogen and deuterium in metals and alloys. The present paper deals in detail about our experiences with HVE-QMS and estimation of uncertainty associated in this methodology. (author)

  12. Summary of HEDL sodium fire tests

    International Nuclear Information System (INIS)

    Hillard, R.K.

    1978-10-01

    The sodium fire test program and related studies at the Hanford Engineering Development Laboratory (HEDL) are described. The program is analytical and experimental in scope, with computer code development and experimental verification. Tests have ranged in size from gram quantity laboratory tests to 1600-kg sodium spills. The experimental work is performed in two facilities: the Large Sodium Fire Facility (LSFF) and the Containment Systems Test Facility (CSTF). Sodium fire extinguishment tests which verified the Fast Flux Test Facility (FFTF) secondary sodium fire protection system are described and related informaion on sodium burning rates and smoke release rates are correlated. The burning rates are compared to theoretical predictions based on heat and mass transfer analogy, with good agreement. Comparisons with the SOFIRE-II code are also made. Sodium combustion aerosol properties are defined as to chemical and physical nature, settling in closed vessels and effect of added water vapor. The HAA-3B aerosol behavior computer code is compared to tests in the 850-m 3 CSTF containment vessel. Sodium spray tests in the CSTF are compared with the SPRAY computer code. An air cleaning program is described, which has the objective of removing high mass concentration sodium combustion aerosols from vented cells and containment buildings. The aerosol mass holding capacity of commercial filters was measured and an aqueous scrubber system is described. The effects of sodium spills on cell structures were investigated, including water release from heated concrete, the reaction of sodium with concrete, the formation and spontaneous recombination of hydrogen, and the ability of steel cell liners to withstand large spills of high temperature sodium without leaking

  13. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1989-01-01

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide, and menadione. The known antioxidant properties of heme catabolites taken together with the observation of a high level of induction of the enzyme in cells from an organ not involved in hemoglobin breakdown strongly supports the proposal that the induction of heme oxygenase may be a general response to oxidant stress and constitutes an important cellular defense mechanism against oxidative damage

  14. Studies of effects on determination of trace hydrogen in U-Nb alloy

    International Nuclear Information System (INIS)

    Zou Lexi; Li Yingqiu; Liu Jun; Wu Lunqiang; Qi Lianzhu; Bian Min

    2002-01-01

    The affecting factors for determination of trace hydrogen in U-Nb alloy are studied. The status of samples affects greatly the measured hydrogen content, which has the higher value for scrap sample than cylinder sample. The hydrogen content in cylinder is closer to real value in U-Nb alloy. The hydrogen in U-Nb alloy is mainly from surface adsorption. The results of hydrogen determined by vacuum thermal evolved method, in which the relative standard uncertainty is less than 28%, are in agreement with those by inert-gas fusion method

  15. Reversible effects of acute hypertension on proximal tubule sodium transporters

    DEFF Research Database (Denmark)

    Zhang, Y; Magyar, C E; Norian, J M

    1998-01-01

    Acute hypertension provokes a rapid decrease in proximal tubule sodium reabsorption with a decrease in basolateral membrane sodium-potassium-ATPase activity and an increase in the density of membranes containing apical membrane sodium/hydrogen exchangers (NHE3) [Y. Zhang, A. K. Mircheff, C. B....... Renal cortex lysate was fractionated on sorbitol gradients. Basolateral membrane sodium-potassium-ATPase activity (but not subunit immunoreactivity) decreased one-third to one-half after BP was elevated and recovered after BP was normalized. After BP was elevated, 55% of the apical NHE3 immunoreactivity......, smaller fractions of sodium-phosphate cotransporter immunoreactivity, and apical alkaline phosphatase and dipeptidyl-peptidase redistributed to membranes of higher density enriched in markers of the intermicrovillar cleft (megalin) and endosomes (Rab 4 and Rab 5), whereas density distributions...

  16. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  17. Development of a Microwave Regenerative Sorbent-Based Hydrogen Purifier

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Dewberry, Ross H.; McCurry, Bryan D.; Abney, Morgan B.; Greenwood, Zachary W.

    2016-01-01

    This paper describes the design and fabrication of a Microwave Regenerative Sorbent-based Hydrogen Purifier (MRSHP). This unique microwave powered technology was developed for the purification of a hydrogen stream produced by the Plasma Pyrolysis Assembly (PPA). The PPA is a hydrogen recovery (from methane) post processor for NASA's Sabatier-based carbon dioxide reduction process. Embodied in the Carbon dioxide Reduction Assembly (CRA), currently aboard the International Space Station (ISS), the Sabatier reaction employs hydrogen to catalytically recover oxygen, in the form of water, from respiratory carbon dioxide produced by the crew. This same approach is base-lined for future service in the Air Revitalization system on extended missions into deep space where resupply is not practical. Accordingly, manned exploration to Mars may only become feasible with further closure of the air loop as afforded by the greater hydrogen recovery permitted by the PPA with subsequent hydrogen purification. By utilizing the well-known high sorbate loading capacity of molecular sieve 13x, coupled with microwave dielectric heating phenomenon, MRSHP technology is employed as a regenerative filter for a contaminated hydrogen gas stream. By design, freshly regenerated molecular sieve 13x contained in the MRSHP will remove contaminants from the effluent of a 1-CM scale PPA for several hours prior to breakthrough. By reversing flow and pulling a relative vacuum the MRSHP prototype then uses 2.45 GHz microwave power, applied through a novel coaxial antenna array, to rapidly heat the sorbent bed and drive off the contaminants in a short duration vacuum/thermal contaminant desorption step. Finally, following rapid cooling via room temperature cold plates, the MRSHP is again ready to serve as a hydrogen filter.

  18. A metal foil vacuum pump for the fuel cycle of fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Giegerich, Thomas; Day, Christian [Karlsruher Institut fuer Technologie (KIT), Institut fuer Technische Physik (ITEP), Eggenstein-Leopoldshafen (Germany)

    2013-07-01

    At KIT Karlsruhe, a new vacuum pump based on the physical principle of superpermeation is under development. This metal foil pump shall be used in the fuel cycle of a fusion reactors and forms the central part of the Direct Internal Recycling concept (DIR), a shortcut between the machine exhaust pumping and the fuelling systems. This vacuum pump simplifies the fusion fuel cycle dramatically and provides two major functions simultaneously: A separating and pumping function. It separates a hydrogen isotopes and impurities containing gas flow sharply into a pure H-isotopes flow that is also being compressed. The remaining impurity enriched gas flow passes the pump without being pumped. For superpermeability, a source of molecular hydrogen is needed. This can be achieved by different methods inside of the pump. Most important are plasma based or hot rod (atomizer) based methods. In this talk, the physical working principle and the modeling of this pump is presented and the development towards a technical separator pumping module is shown up.

  19. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  20. ASME Section VIII Recertification of a 33,000 Gallon Vacuum-jacketed LH2 Storage Vessel for Densified Hydrogen Testing at NASA Kennedy Space Center

    Science.gov (United States)

    Swanger, Adam M.; Notardonato, William U.; Jumper, Kevin M.

    2015-01-01

    The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) has been developed at NASA Kennedy Space Center in Florida. GODU-LH2 has three main objectives: zero-loss storage and transfer, liquefaction, and densification of liquid hydrogen. A cryogenic refrigerator has been integrated into an existing, previously certified, 33,000 gallon vacuum-jacketed storage vessel built by Minnesota Valley Engineering in 1991 for the Titan program. The dewar has an inner diameter of 9.5 and a length of 71.5; original design temperature and pressure ranges are -423 F to 100 F and 0 to 95 psig respectively. During densification operations the liquid temperature will be decreased below the normal boiling point by the refrigerator, and consequently the pressure inside the inner vessel will be sub-atmospheric. These new operational conditions rendered the original certification invalid, so an effort was undertaken to recertify the tank to the new pressure and temperature requirements (-12.7 to 95 psig and -433 F to 100 F respectively) per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. This paper will discuss the unique design, analysis and implementation issues encountered during the vessel recertification process.

  1. Behaviour of oxygen in liquid sodium; Comportamiento del oxigeno disuelto en sodio liquido

    Energy Technology Data Exchange (ETDEWEB)

    Torre Cabezas, M. de la

    1975-07-01

    In this work, the vacuum distillation method has been used for the determination of oxygen concentration in liquid sodium. During this investigation, more than 800 analyses have been made and a fluctuation of between 15 and 20$ has been noted in the results. The performance of a cold trap to remove oxygen from sodium has been studied and the corresponding mass transfer coefficient evaluated. The value of this coefficient was in good agreement with those achieved by other workers. (Authors) 69 refs.

  2. ABOUT FACTORS INFLUENCING ON ELIMINATION OF HYDROGEN IN CIRCULATING VACUUMATOR OF RUP “BMZ” FOR KILLED AND UNKILLED STEELS

    Directory of Open Access Journals (Sweden)

    A. A. Chichko

    2006-01-01

    Full Text Available The characteristics of the vacuum degassing process in RH-vacuumator of RUP are experimentally investigated. The profiles of vacuumator pressure, discharge of argon, metal temperatures and others for different melting processes of cord steel assortment are determined.

  3. Influence of the evaporation rate and the evaporation mode on the hydrogen sorption kinetics of air-exposed magnesium films

    International Nuclear Information System (INIS)

    Leon, A.; Knystautas, E.J.; Huot, J.; Schulz, R.

    2006-01-01

    It has been shown that the hydrogen sorption properties of air-exposed magnesium films are influenced by the deposition parameters such as the evaporation rate or the evaporation mode used during their preparation. As the evaporation rate increases, the structure of the film tends to be highly oriented along the [002] direction and the kinetics of hydrogen absorption and desorption are faster. Moreover, the hydrogen sorption kinetics of magnesium films prepared with an electron beam source under a high vacuum are faster by almost a factor of two compared to those prepared using resistive heating under low vacuum. These two parameters reduce drastically the activation and the incubation period during hydrogen absorption and desorption, respectively

  4. Container for hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-12

    A container is described for storage, shipping and and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same. The container is compact, safe against fracture or accident, and is reusable. It consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and is retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  5. Container for hydrogen isotopes

    International Nuclear Information System (INIS)

    1976-01-01

    A container is described for storage, shipping and and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same. The container is compact, safe against fracture or accident, and is reusable. It consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and is retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates

  6. Container for hydrogen isotopes

    International Nuclear Information System (INIS)

    Solomon, D.E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable is described. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates

  7. Water leaks in sodium-heated fast reactor boilers

    International Nuclear Information System (INIS)

    Hayes, D.J.

    1978-01-01

    Constraints on plant design which may result from considerations of leak behaviour and leak detection limits are briefly considered. The sodium-water interface and reactions, the behaviour of small leaks, hydrogen bubbles and detection methods, including galvanic cell methods, are included. (UK)

  8. Parametric assessments on hydrogenic species transport in CVD-diamond vacuum windows used in ITER ECRH

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, C.; Sedano, L.A.; Fernandez, A. [EURATOM-CIEMAT Association, Madrid (Spain)

    2007-07-01

    Insulators used as H and CD and Diagnostic vacuum windows (VW) in ITER may become modified by surface intake and bulk transport of hydrogenic species. VW, operating under severe radiation levels, have a primary safety role as tritium confinement barriers. Ionizing radiation enhances the (H') uptake and release at surfaces and diffusion rates in the bulk. Radiation damage modifies the material's bulk trapped inventories by increasing steady state trapping centre concentrations. An experimental programme is ongoing at CIEMAT, to quantify radiation effects on H transport characteristics and also the possible impact on the VW. The reference material for ECRH VW is CVD diamond. As a parallel activity, parametric transport assessments are being made in order to obtain a wide evaluation of permeation fluxes, ranges, and soluted/trapped inventories in CVD diamond. Transport models have been developed based on extended capabilities of finite differences integrator tool TMAP7. Special attention is paid to radiation parameters defining inputs acting on transport magnitudes. These inputs have been analysed by using ionizing/damage radiation transport tools such as MCNPX/SRIM. VW operational scenarios are discussed with special attention being paid to the ITER design assumptions for the values of H-species source terms (neutrals and implanted) in the ECRH system. The available material transport database with and without radiation is discussed and taken as reference for this parametric exercise. Permeation fluxes through base materials are shown to be below DRG limits established for ITER. (orig.)

  9. Annual report 1974. Sodium technology development programme

    International Nuclear Information System (INIS)

    1975-01-01

    The sodium technology development program comprises a number of separate research programs in the field of designing and testing parts and components for the SNR-300 reactor. Design studies and theoretical studies on cold trapping and the behavior of hydrogen in sodium circuits are reported. A preliminary test program for fighting sodium fires is completed. Results of research done on vibration measurements and counter-current mixing in a dummy tube bundle of a S.N.R. spiralized steam generator with counter-current flow are reported briefly. Research done in the field of heat transfer, pressure drop and bubble dynamics of a straight pipe steam generator are also briefly reported. To determine the influence of spiral diameter of the spiralized pipe on heat transfer in a spiralized pipe heat exchanger, a second testsection will be built in 1975. Research was reported on pump viscoseals, bearing stability, rotordynamics and bearing materials for sodium pumps. Research done on the properties of SNR-construction materials at high temperature and long time exposure and corrosion in sodium are reported. Fundamental research on corrosion accompanied this research. The report closes with results of weldability, mechanized-welding and remote welding of sodium-wetted surfaces

  10. Summary of HEDL sodium fire tests

    International Nuclear Information System (INIS)

    Hilliard, R.K.

    1979-01-01

    The sodium fire test program and related studies at the Hanford Engineering Development Laboratory (HEDL), covering the period from 1972 to 1978, are described. The program is analytical and experimental in scope, with computer code development and experimental verification. Tests have ranged in size from gram quantity laboratory tests to 1600-kg sodium spills. The experimental work is performed in two facilities: the Large Sodium Fire Facility (LSFF) and the Containment Systems Test Facility (CSTF). The facilities are described and the experimental results summarized. Sodium fire extinguishment tests which verified the Fast Flux Test Facility (FFTF) secondary sodium fire protection system are described and related information on sodium burning rates and smoke release rates are correlated. The burning rates are compared to theoretical predictions based on heat and mass transfer analogy, with good agreement. Comparisons with the SOFIRE-II code are also made. Sodium combustion aerosol properties are defined as to chemical and physical nature, settling in closed vessels and effect of added water vapor. The HAA-38 aerosol behaviour computer code is compared to tests in the 850-m 3 CSTF containment vessel. Sodium spray tests in the CSTF are compared with the SPRAY computer code. An air cleaning program is described, which has the objective of removing high mass concentration sodium combustion aerosols from vented cells and containment buildings. The aerosol mass holding capacity of commercial filters was measured and an aqueous scrubber system is described. The effects of sodium spills on cell structures were investigated, including water release from heated concrete, the reaction of sodium with concrete, the formation and spontaneous recombination of hydrogen, and the ability of steel cell liners to withstand large spills of high temperature sodium without leaking. (author)

  11. Summary of HEDL sodium fire tests

    Energy Technology Data Exchange (ETDEWEB)

    Hilliard, R K [Hanford Engineering Development Laboratory, Richland, WA (United States)

    1979-03-01

    The sodium fire test program and related studies at the Hanford Engineering Development Laboratory (HEDL), covering the period from 1972 to 1978, are described. The program is analytical and experimental in scope, with computer code development and experimental verification. Tests have ranged in size from gram quantity laboratory tests to 1600-kg sodium spills. The experimental work is performed in two facilities: the Large Sodium Fire Facility (LSFF) and the Containment Systems Test Facility (CSTF). The facilities are described and the experimental results summarized. Sodium fire extinguishment tests which verified the Fast Flux Test Facility (FFTF) secondary sodium fire protection system are described and related information on sodium burning rates and smoke release rates are correlated. The burning rates are compared to theoretical predictions based on heat and mass transfer analogy, with good agreement. Comparisons with the SOFIRE-II code are also made. Sodium combustion aerosol properties are defined as to chemical and physical nature, settling in closed vessels and effect of added water vapor. The HAA-38 aerosol behaviour computer code is compared to tests in the 850-m{sup 3} CSTF containment vessel. Sodium spray tests in the CSTF are compared with the SPRAY computer code. An air cleaning program is described, which has the objective of removing high mass concentration sodium combustion aerosols from vented cells and containment buildings. The aerosol mass holding capacity of commercial filters was measured and an aqueous scrubber system is described. The effects of sodium spills on cell structures were investigated, including water release from heated concrete, the reaction of sodium with concrete, the formation and spontaneous recombination of hydrogen, and the ability of steel cell liners to withstand large spills of high temperature sodium without leaking. (author)

  12. On the purity assessment of solid sodium borohydride

    Science.gov (United States)

    Botasini, Santiago; Méndez, Eduardo

    2012-01-01

    Since sodium borohydride has become extensively used as chemical hydrogen storage material in fuel cells, many techniques have been proposed to assess the purity of this substance. However, all of them are developed in aqueous media, where the reagent is unstable. In addition, its hygroscopic nature was difficults in any attempt to make precise quantifications. The present work compares three different methods, namely, voltammetric, titrimetric, and Fourier transformed infrared spectroscopy (FTIR) in order to assess the purity of sodium borohydride, using an expired and a new sodium borohydride samples as references. Our results show that only the FTIR measurements provide a simple and semi-quantitative means to assess the purity of sodium borohydride due to the fact that it is the only one that measures the sample in the solid state. A comparison between the experimental data and theoretical calculation reveals the identification of the absorption bands at 1437 cm-1 of sodium metaborate and 2291 cm-1 of sodium borohydride which represent a good fingerprint for the qualitative assessment of the sample quality.

  13. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    International Nuclear Information System (INIS)

    Meezan, N. B.; Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.

    2015-01-01

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10 15 neutrons, 40% of the 1D simulated yield

  14. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.

  15. Preliminary analysis of hydrogen risk caused by dust in ITER

    International Nuclear Information System (INIS)

    Cheng Kun; Tong Lili; Cao Xuewu

    2012-01-01

    A lot of dust will be generated during ITER operation,and hydrogen will be produced by the interaction of hot dust with water in the case of coolant ingress accident. The accumulated hydrogen will bring risk of combustion and explosion,which will damage the device. CFD method has been used to analyze the produced hydrogen in 'wet bypass' scenario, and come to the results that hydrogen will burn and explode at the beginning of the accident, different hydrogen risk will be brought by different coolant leakage, and hydrogen risk will be inert if the leakage is massive.Injecting CO 2 to inert the vacuum vessel has also been discussed, the risk of hydrogen will be suppressed by injecting CO 2 with a large rate at the beginning of accident. (authors)

  16. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Wada, Tetsuyuki; Yoshida, Shigeru; Tokuyama, Shogo

    2016-07-01

    We recently demonstrated that the cerebral sodium-glucose transporter (SGLT) is involved in postischaemic hyperglycaemia-induced exacerbation of cerebral ischaemia. However, the associated SGLT-mediated mechanisms remain unclear. Thus, we examined the involvement of cerebral SGLT-induced excessive sodium ion influx in the development of cerebral ischaemic neuronal damage. [Na+]i was estimated according to sodium-binding benzofuran isophthalate fluorescence. In the in vitro study, primary cortical neurons were prepared from fetuses of ddY mice. Primary cortical neurons were cultured for 5 days before each treatment with reagents, and these survival rates were assessed using biochemical assays. In in vivo study, a mouse model of focal ischaemia was generated using middle cerebral artery occlusion (MCAO). In these experiments, treatment with high concentrations of glucose induced increment in [Na+]i, and this phenomenon was suppressed by the SGLT-specific inhibitor phlorizin. SGLT-specific sodium ion influx was induced using a-methyl-D-glucopyranoside (a-MG) treatments, which led to significant concentration-dependent declines in neuronal survival rates and exacerbated hydrogen peroxide-induced neuronal cell death. Moreover, phlorizin ameliorated these effects. Finally, intracerebroventricular administration of a-MG exacerbated the development of neuronal damage induced by MCAO, and these effects were ameliorated by the administration of phlorizin. Hence, excessive influx of sodium ions into neuronal cells through cerebral SGLT may exacerbate the development of cerebral ischaemic neuronal damage. © 2016 Royal Pharmaceutical Society.

  17. Detection of hot muonic hydrogen atoms emitted in vacuum using x-rays

    International Nuclear Information System (INIS)

    Jacot-Guillarmod, R.; Bailey, J.M.; Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A.; Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M.; Huber, T.M.; Kammel, P.; Zmeskal, J.; Petitjean, C.

    1992-01-01

    Negative muons are stopped in solid layers of hydrogen and neon. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. It was found that the time structure of the muonic neon X-rays follows the exponential law where the rate is the same as the disappearance rate of μ - p atoms. The ppμ-formation rate and the muon transfer rate to deuterium are deduced

  18. Design and fabrication of a vacuum ultraviolet monochromator using Seya-Namioka mount

    International Nuclear Information System (INIS)

    Krishnamurty, G.; Sarma, Y.A.; Meenakshi Raja Rao, P.; Bhattacharya, S.S.

    1983-01-01

    The design and fabrication of a one meter vacuum ultraviolet monochromator in the Seya-Namioka mounting is described. The monochromator consists of a concave replica grating (1200 grooves/mm) blazed at 1500 A. The grating rotates about a vertical axis through the center of grating by means of sine drive mechanism. An EMI 6256 photomultiplier coupled with a VUV scintillator, sodium salicylate, is used to detect the radiation. (author)

  19. A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples

    Science.gov (United States)

    Carr, R. H.; Bustin, R.; Gibson, E. K.

    1987-01-01

    A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen.

  20. Leybold vacuum handbook

    CERN Document Server

    Diels, K; Diels, Kurt

    1966-01-01

    Leybold Vacuum Handbook presents a collection of data sets that are essential for numerical calculation of vacuum plants and vacuum processes. The title first covers vacuum physics, which includes gas kinetics, flow phenomena, vacuum gauges, and vapor removal. Next, the selection presents data on vacuum, high vacuum process technology, and gas desorption and gettering. The text also deals with materials, vapor pressure, boiling and melting points, and gas permeability. The book will be of great interest to engineers and technicians that deals with vacuum related technologies.

  1. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  2. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  3. A windowless frozen hydrogen target system

    International Nuclear Information System (INIS)

    Knowles, P.E.; Beer, G.A.; Beveridge, J.L.

    1995-06-01

    A cryogenic target system has been constructed in which gaseous mixtures of all three hydrogen isotopes have been frozen onto a thin, 65 mm diameter gold foil. The foil is cooled to 3 K while inside a 70 K radiation shield, all of which is mounted in a vacuum system maintained at 10 -9 torr. Stable multi-layer hydrogen targets of known uniformity and thickness have been maintained for required measurement times of up to several days. To date, hundreds of targets have been successfully used in muon-catalyzed fusion experiments at TRIUMF. (author). 12 refs., 6 figs

  4. An efficient and high-yielding one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones catalyzed by sodium hydrogen carbonate under solvent-free conditions

    OpenAIRE

    Asieh Vafaee; Abolghasem Davoodnia; Mehdi Pordel; Mohammad Reza Bozorgmehr

    2015-01-01

    Sodium hydrogen carbonate, NaHCO3, efficiently catalyzes the one-pot, three-component reaction of phthalhydrazide, an aromatic aldehyde, and malononitrile or ethyl cyanoacetate under solvent-free conditions, to afford the corresponding 1H-pyrazolo[1,2-b]phthalazine-5,10-diones in high yields. Easy work‐up, inexpensive and readily available catalyst and avoiding the use of harmful organic solvents are other advantages of this simple procedure.

  5. Development of sodium leak detection technology using laser resonance ionization mass spectrometry. Design and functional test using prototype sodium detection system

    International Nuclear Information System (INIS)

    Aoyama, Takafumi; Ito, Chikara; Harano, Hideki; Okazaki, Koki; Watanabe, Kenichi; Iguchi, Tetsuo

    2009-01-01

    In a sodium-cooled fast reactor, highly sensitive technology is required to detect small amounts of sodium leaking from the cooling system piping or components. The conventional sodium leak detectors have a fundamental difficulty in improving the detection sensitivity for a sodium leak because of the presence of salinity ( 23 NaCl) in the atmosphere around the components and piping of cooling systems. In order to overcome this problem, an innovative technology has been developed to selectively detect the radioactive sodium ( 22 Na) produced by a neutron reaction in the primary cooling system using Laser Resonance Ionization Mass Spectrometry (RIMS). In this method, sodium ions produced with the two processes of (1) atomization of sodium aerosols and (2) resonance ionization of sodium atom, are detected selectively using a time-of-flight mass spectrometer. The 22 Na can be distinguished from the stable isotope ( 23 Na) by mass spectrometry, which is the advantage of RIMS comparing to the other methods. The design and the construction of the prototype system based on fundamental experiments are shown in the paper. The aerodynamic lens was newly introduced, which can transfer aerosols at atmospheric pressure into a vacuum chamber while increasing the aerosol density at the same time. Furthermore, the ionization process was applied by using the external electric field after resonance exciting from the ground level to the Rydberg level in order to increase the ionization efficiency. The preliminary test results using the stable isotope ( 23 Na) showed that prototype system could easily detect sodium aerosol of 100 ppb, equivalent to the sensitivity of the conventional detectors. (author)

  6. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Chuang, K.-J.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ip, W.-H., E-mail: yujung@usc.edu [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He), and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.

  7. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    International Nuclear Information System (INIS)

    Chen, Y.-J.; Wu, C.-Y. R.; Chuang, K.-J.; Chu, C.-C.; Yih, T.-S.; Muñoz Caro, G. M.; Nuevo, M.; Ip, W.-H.

    2014-01-01

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H 2 molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H 2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H 2 versus H 2 seeded in He), and the optical properties of the window used (MgF 2 versus CaF 2 ). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H 2 molecular emission ranges.

  8. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores.

    Science.gov (United States)

    Barbut, F; Menuet, D; Verachten, M; Girou, E

    2009-06-01

    To compare a hydrogen peroxide dry-mist system and a 0.5% hypochlorite solution with respect to their ability to disinfect Clostridium difficile-contaminated surfaces in vitro and in situ. Prospective, randomized, before-after trial. Two French hospitals affected by C. difficile. In situ efficacy of disinfectants was assessed in rooms that had housed patients with C. difficile infection. A prospective study was performed at 2 hospitals that involved randomization of disinfection processes. When a patient with C. difficile infection was discharged, environmental contamination in the patient's room was evaluated before and after disinfection. Environmental surfaces were sampled for C. difficile by use of moistened swabs; swab samples were cultured on selective plates and in broth. Both disinfectants were tested in vitro with a spore-carrier test; in this test, 2 types of material, vinyl polychloride (representative of the room's floor) and laminate (representative of the room's furniture), were experimentally contaminated with spores from 3 C. difficile strains, including the epidemic clone ribotype 027-North American pulsed-field gel electrophoresis type 1. There were 748 surface samples collected (360 from rooms treated with hydrogen peroxide and 388 from rooms treated with hypochlorite). Before disinfection, 46 (24%) of 194 samples obtained in the rooms randomized to hypochlorite treatment and 34 (19%) of 180 samples obtained in the rooms randomized to hydrogen peroxide treatment showed environmental contamination. After disinfection, 23 (12%) of 194 samples from hypochlorite-treated rooms and 4 (2%) of 180 samples from hydrogen peroxide treated rooms showed environmental contamination, a decrease in contamination of 50% after hypochlorite decontamination and 91% after hydrogen peroxide decontamination (P disinfection system is significantly more effective than 0.5% sodium hypochlorite solution at eradicating C. difficile spores and might represent a new

  9. Comparison of hydrogen isotope exchange reactions between HTO vapor and the sodium salts of o-, m-, and p-aminobenzoic acid

    International Nuclear Information System (INIS)

    Okada, Minoru; Imaizumi, Hiroshi; Itoh, Tomoko

    1991-01-01

    Hydrogen isotope exchange reaction between HTO vapor and one of the sodium salts of o-, m-, and p-aminobenzoic acid (solid) was observed at 50 ∼ 80 degC. The acidity (acidity based on kinetic logic) for the materials at each temperature has been obtained with the A''-McKay plots based on the respective data obtained. The followings have been clarified by comparing these acidities (and the acidities obtained previously). 1) The acidity of aromatic amines can be expressed in terms of the acidity based on kinetic logic. 2) The reactivity of aromatic amine is strongly affected by both I-effect and R-effect. 3) It can be deduced that aromatic amines are more reactive than aliphatic amines. (author)

  10. Air exposure and sample storage time influence on hydrogen release from tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Moshkunov, K.A., E-mail: moshkunov@gmail.co [National Research Nuclear University ' MEPhI' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Schmid, K.; Mayer, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Kurnaev, V.A.; Gasparyan, Yu.M. [National Research Nuclear University ' MEPhI' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation)

    2010-09-30

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D{sub 2}O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of {approx}300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  11. Air exposure and sample storage time influence on hydrogen release from tungsten

    International Nuclear Information System (INIS)

    Moshkunov, K.A.; Schmid, K.; Mayer, M.; Kurnaev, V.A.; Gasparyan, Yu.M.

    2010-01-01

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D 2 O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of ∼300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  12. Air exposure and sample storage time influence on hydrogen release from tungsten

    Science.gov (United States)

    Moshkunov, K. A.; Schmid, K.; Mayer, M.; Kurnaev, V. A.; Gasparyan, Yu. M.

    2010-09-01

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D 2O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of ˜300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  13. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers.

    Science.gov (United States)

    Zhang, Rui; Guo, Jing; Liu, Yuanfa; Chen, Shuang; Zhang, Sen; Yu, Yue

    2018-06-01

    Sodium alginate (SA) and antarctic krill protein (AKP) were blended to fabricate the SA/AKP composite fibers by the conventional wet spinning method using 5% CaCl 2 as coagulation solution. The sodium salt was added to the SA/AKP solution to adjust the ionization degree and intermolecular interaction of composite system. The main purpose of this study is to investigate the influences of sodium salt types (NaCl, CH 3 COONa, Na 2 SO 4 ) on the intermolecular interaction of SA/AKP composite fibers. The intermolecular interaction, morphology, crystallinity, thermal stability and mechanical properties of SA/AKP composite fibers were analyzed by fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), x-ray diffraction (XRD), thermogravimetric analysis (TGA). The results show that the types of sodium salt have obvious influences on the content of both β-sheet, intermolecular hydrogen bond, breaking strength and surface morphology in SA/AKP composite fibers, but have a negligible effect on the crystallinity and thermal stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes

    Science.gov (United States)

    Cruden, Brett A.

    2016-01-01

    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  15. Determination of hydrogen in milligram quantities of titanium and its alloys

    Science.gov (United States)

    Otterson, D. A.; Smith, R. J.

    1973-01-01

    An accurate, versatile, and sensitive method for the determination of hydrogen in milligram-size titanium samples is presented. It involves extraction of hydrogen at 1070 K while a mercury diffusion pump transfers the evolved gases into the inlet of a mass spectrometer. All the evolved gases may then be positively identified and determined. This method can be readily adapted for use with other metals and for the study of the slow evolution of hydrogen. Reduction of interferences due to the evolution of hydrogen by reactions involving vapors such as those of water, acetone, and vacuum grease is discussed.

  16. Improvement of crystalline silicon surface passivation by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Martin, I.; Vetter, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.; Kharchenko, A.V.; Roca i Cabarrocas, P.

    2004-01-01

    A completely dry low-temperature process has been developed to passivate 3.3 Ω cm p-type crystalline silicon surface with excellent results. Particularly, we have investigated the use of a hydrogen plasma treatment, just before hydrogenated amorphous silicon carbide (a-SiC x :H) deposition, without breaking the vacuum. We measured effective lifetime, τ eff , through a quasi-steady-state photoconductance technique. Experimental results show that hydrogen plasma treatment improves surface passivation compared to classical HF dip. S eff values lower than 19 cm s -1 were achieved using a hydrogen plasma treatment and an a-SiC x :H film deposited at 300 deg. C

  17. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying.

    Science.gov (United States)

    Chen, He; Chen, Shiwei; Li, Chuanna; Shu, Guowei

    2015-01-01

    The individual and interactive effects of skimmed milk powder, lactose, and sodium ascorbate on the number of viable cells and freeze-drying survival for vacuum freeze-dried powder formulation of Lactobacillus bulgaricus were studied by response surface methodology, and the optimal compound lyoprotectant formulations were gained. It is shown that skim milk powder, lactose, and sodium ascorbate had a significant impact on variables and survival of cultures after freeze-drying. Also, their protective abilities could be enhanced significantly when using them as a mixture of 28% w/v skim milk, 24% w/v lactose, and 4.8% w/v sodium ascorbate. The optimal freeze-drying survival rate and the number of viable cells of Lactobacillus bulgaricus were observed to be (64.41±0.02)% and (3.22±0.02)×10(11) colony-forming units (CFU)/g using the optimal compound protectants, which were very close to the expected values 64.47% and 3.28×10(11) CFU/g.

  18. Method of reprocessing nuclear fuel using vacuum freeze-drying method

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Kondo, Isao.

    1989-01-01

    Solutions of plutonium nitrate and uranyl nitrate, spent solvents and liquid wastes separated by the treatment in the solvent extractant steps in the wet processing steps of re-processing plants or fuel fabrication plants are processed by means of freeze-drying under vacuum. Then, the solutions of plutonium nitrate and uranyl nitrate are separated into nitrates and liquid condensates and the spent solvents are freeze-dried. Thus, they are separated into tri-n-butyl phosphate, diester, monoester and n-dodecane and the liquid wastes are processed by means of freeze-drying and separated into liquids and residues. In this way, since sodium carbonate, etc. are not used, the amount of resultant liquid wastes is reduced and sodium is not contained in liquid wastes sent to an asphalt solidification step and a vitrification step, the processing steps can be simplified. (S.T.)

  19. Hydrogen generation from the hydrolysis of sodium borohydride using chemically modified multiwalled carbon nanotubes with pyridinium based ionic liquid and decorated with highly dispersed Mn nanoparticles

    Science.gov (United States)

    Chinnappan, Amutha; Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2015-10-01

    Multiwalled carbon nanotubes (MWCNTs)/Ionic liquid (IL)/Mn nanohybrids are synthesized and their catalytic activity is examined for hydrogen generation from the hydrolysis of sodium borohydride (NaBH4). Transmission electron microscopy reveals that Mn nanoparticles well-distributed on the MWCNTs surface. Energy dispersive x-ray spectrometer and x-ray photoelectron spectroscopy confirms the presence of Mn and Ni atom in the nanohybrids. The nanohybrids exhibit excellent catalytic lifetime and gives the total turnover number of 18496 mol H2/mol catalyst in the hydrolysis of NaBH4, which can be attributed to the presence of Mn atom and IL containing nickel halide anion. It is worthy of note that a very small amount of catalyst is used for this hydrolysis reaction. The activation energy is found to be 40.8 kJ/mol by MWCNTs/IL/Mn nanohybrids from the kinetic study of the hydrogen generation from the hydrolysis of NaBH4. The improved hydrogen generation rate, lower activation energy, and less expensive make the nanohybrids promising candidate as catalyst for the hydrogen generation from NaBH4 solution. The nanohybrids are easy to prepare, store and yet catalytically active. The recycling process is very simple and further purification is not tedious.

  20. Study of hydrogen interaction with SiO2/Si(100) system using positrons

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Lynn, K.G.; Leung, T.C.; Nielsen, B.; Wu, X.Y.

    1991-01-01

    We describe positron annihilation studies of SiO 2 /Si(100) structures having 100-nm-thick oxide grown by plasma enhanced chemical vapor deposition. A normalized shape parameter is used to characterize the positron annihilation spectra. Activation and passivation of interface states by atomic hydrogen are demonstrated by repeated vacuum anneal and atomic hydrogen exposure. Hydrogen activation energy is derived for one of the samples as 2.02±0.07 eV

  1. Chemical sensors for monitoring non-metallic impurities in liquid sodium coolant

    International Nuclear Information System (INIS)

    Ganesan, Rajesh; Jayaraman, V.; Rajan Babu, S.; Sridharan, R.; Gnanasekaran, T.

    2011-01-01

    Liquid sodium is the coolant of choice for fast breeder reactors. Liquid sodium is highly compatible with structural steels when the concentration of dissolved non-metallic impurities such as oxygen and carbon are low. However, when their concentrations are above certain threshold limits, enhanced corrosion and mass transfer and carburization of the steels would occur. The threshold concentration levels of oxygen in sodium are determined by thermochemical aspects of various ternary oxides of Na-M-O systems (M alloying elements in steels) which take part in corrosion and mass transfer. Dissolved carbon also influences these threshold levels by establishing relevant carbide equilibria. An event of steam leak into sodium at the steam generator, if undetected at its inception itself, can lead to extensive wastage of the tubes of the steam generator and prolonged shutdown. Air ingress into the argon cover gas and leak of hydrocarbon oil used as cooling fluids of the shafts of the centrifugal pumps of sodium are the sources of oxygen and carbon impurities in sodium. Continuous monitoring of the concentration of dissolved hydrogen, carbon and oxygen in sodium coolant will help identifying their ingress at inception itself. An electrochemical hydrogen sensor based on CaHBr-CaBr 2 hydride ion conducting solid electrolyte has been developed for detecting the steam leak during normal operating conditions of the reactor. A nickel diffuser based sensor system using thermal conductivity detector (TCD) and Pd-doped tin oxide thin film sensor has been developed for use during low power operations of the reactor or during its start up. For monitoring carbon in sodium, an electrochemical sensor with molten Na 2 CO 3 -LiCO 3 as the electrolyte and pure graphite as reference electrode has been developed. Yttria Doped Thoria (YDT) electrolyte based oxygen sensor is under development for monitoring dissolved oxygen levels in sodium. Fabrication, assembly, testing and performance of

  2. Recent results on cleaning and conditioning the ATF vacuum system

    International Nuclear Information System (INIS)

    Langley, R.A.; Clark, T.L.; Glowienka, J.C.; Goulding, R.H.; Mioduszewski, P.K.; Rasmussen, D.A.; Rayburn, T.F.; Schaich, C.R.; Shepard, T.D.; Simpkins, J.E.; Yarber, J.L.

    1990-01-01

    Techniques for cleaning and conditioning the vacuum vessel of the Advanced Toroidal Facility (ATF) and its internal components are described. The vacuum vessel cleaning technique combines baking to 150 degree C and glow discharges with hydrogen gas. Chromium gettering is used to further condition the system. The major internal components are the anodized aluminum baffles in the Thomson scattering system, a graphite-shielded ICRF antenna, two graphite limiters, and a diagnostic graphite plate. Three independent heating systems are used to bake some of the major components of the system. The major characteristics used for assessing cleanliness and conditioning progress are the maximum pressure attained during bakeout, the results of gas analysis, and revelant plasma parameters (e.g., time to radiative decay). Details of the various cleaning and conditioning procedures and results are presented

  3. Diuretic Action of Exogenous Hydrogen Sulfide in Spontaneously ...

    African Journals Online (AJOL)

    HP

    Keywords: Spontaneously hypertensive rats, Diabetes, Hydrogen sulphide, Diuretic, Sodium excretion,. Urine output ... molecule H2S can be generated in many types of mammalian .... 96-well plate reader (Bio-Tek instruments, INC,. USA).

  4. Numerical thermal-hydraulics study on sodium-water reaction phenomena

    International Nuclear Information System (INIS)

    Takashi, Takata; Akira, Yamaguchi

    2003-01-01

    A new computational program SERAPHIM (Sodium-watEr Reaction Analysis: PHysics of Interdisciplinary Multi-phase flow) is developed to investigate the Sodium-Water Reaction (SWR) phenomena based on parallel computation technology. A compressible three-fluid (liquid water, liquid sodium and mixture gas) and one-pressure model is adopted for multi-phase calculation. The Highly Simplified Maker And Cell (HSMAC) method considering with compressibility is implemented as the numerical solution. The Message-Passing Interface (MPI) is used for the parallel computation. Two types of reactions are considered for the SWR modeling; one is a surface reaction and the other is a gas phase reaction. The surface reaction model assumes that liquid sodium reacts with water vapor on the surface of liquid sodium. An analogy of heat transfer and mass transfer is applied in this model. Reaction heating vaporizes liquid sodium resulting in the gas phase reaction. The ab initio molecular orbital method is applied to investigate the reaction mechanism and evaluate the reaction rate described by the Arrhenius law. A performance of parallel computation is tested on the cluster-PC (16 CPUs) system. The execution time becomes 17.1 times faster in case of 16 CPUs. It seems promising that the SERAPHIM code is practicable for large-scale analysis of the SWR phenomena. Three-dimensional SWR analyses are also carried out to investigate the characteristics of the thermal-hydraulics with the SWR and an influence of initial pressure (0.2 MPa and 0.6 MPa) on an early stage of the SWR phenomenon. As a result, distribution of a gas region, in which water vapor or product of the SWR such as hydrogen and sodium hydroxide exits, velocity and high temperature region differs by 0.2 MPa and 0.6 MPa conditions. However, the maximum gas temperature has an upper bounding and is almost constant both in the analyses. The reason of the upper bounding is attributed to the fact that a hydrogen gas covers up a liquid

  5. Development of KALIMER auxiliary sodium and cover gas management system

    International Nuclear Information System (INIS)

    Kwon, Sang Woon; Hwang, Sung Tae

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author)

  6. Development of KALIMER auxiliary sodium and cover gas management system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Woon; Hwang, Sung Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author).

  7. Determination of microamounts of potassium in sodium iodide by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ogasawara, Ken; Ohta, Masatoshi; Abe, Kenzo

    1980-01-01

    Microdetermination of potassium in sodium iodide was developed by the standard addition method. Twenty grams of sample were dissolved in 50 ml of water in a quartz beaker. To the solution, 30 ml of concentrated hydrochloric acid and 30 ml of 30% hydrogen peroxide were added, and evaporated to dryness. By this process sodium iodide was converted into sodium chloride. The cake thus obtained was dissolved in water and diluted to exactly 200 ml. To 25 ml aliquots of the solution, the standard potassium and cesium chloride solutions were added and diluted to 50 ml with water; the concentration of potassium was 0 -- 1 mg/l and that of cesium 4 mM. These solutions were introduced into an air-propane flame and the absorbances were measured at 769.9 nm. During the conversion reaction, hydrochloric acid was completely decomposed, and remained hydrogen peroxide had no influence for absorbance, and other backgrounds were negligible. The linear calibration curve was obtained in the range 0 -- 2 mg of potassium per liter. Potassium in sodium iodide was determined by this method within the coefficient of variation of +-(20 -- 3)% in the range (1.7 -- 32.5) ppm. (author)

  8. Be{sub 2}C formation in beryllium-carbon binary system by vacuum heating

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, Kan; Watanabe, Kuniaki [Toyama Univ. (Japan). Hydrogen Isotope Research Center

    1998-01-01

    The surface chemical states of beryllium and carbon binary systems at elevated temperature were investigated by means of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The XPS measurements revealed that the mixed subsurface layers containing Be and C readily yield Be{sub 2}C layers by vacuum heating and ion bombardment. The SIMS measurements showed that hydrogen isotope atoms are trapped by three distinct sites; namely Be, C, and O-sites on the sample surface. The SIMS measurements also showed that carbon atoms lose its ability to bind with hydrogen isotope atoms on forming Be{sub 2}C. It would be a key to control hydrogen inventory when Be and C are used together as PFM. (author)

  9. Development of tantalum–zirconium alloy for hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay, E-mail: sanjay.barc@gmail.com [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India); IAMR, Hiroshima University, Higashihiroshima 739-8530 (Japan); Singh, Anamika [GSASM Hiroshima University, Higashihiroshima 739-8530 (Japan); Jain, Uttam; Dey, Gautam Kumar [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India)

    2016-11-01

    Highlights: • Terminal solid solubility of Ta increases with Zr addition. • Increase in lattice parameters of Ta due to Zr addition may be the possible reason. • Enhance H solubility could also be explained on the change in e-DOS of Ta–Zr alloys. • Ta–Zr alloys could be possible combination for hydrogen purification membrane. - Abstract: Terminal solid solubility of hydrogen in Ta–Zr alloys has been studied in connection with the development of tantalum based metallic membrane for hydrogen/tritium purification. The alloys were prepared by vacuum arc melting technique and subsequently cold rolled to 0.2 mm thickness. The terminal solid solubility of hydrogen in these cold rolled samples was investigated in a modified Sieverts apparatus. The terminal solid solubility of hydrogen was marginally increased with zirconium content. The change in the lattices parameter of tantalum upon zirconium addition and the higher affinity of zirconium for hydrogen as compared to tantalum could be the possible reasons.

  10. Vacuum Drying Tests for Storage of Aluminum Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Chen, K.F.; Large, W.S.; Sindelar, R.L.

    1998-05-01

    A total inventory of up to approximately 32,000 aluminum-based spent nuclear fuel (Al SNF) assemblies are expected to be shipped to Savannah River Site (SRS) from domestic and foreign research reactors over the next several decades. Treatment technologies are being developed as alternatives to processing for the ultimate disposition of Al SNF in the geologic repository. One technology, called Direct/Co-disposal of Al SNF, would place the SNF into a canister ready for disposal in a waste package, with or without canisters containing high-level radioactive waste glass logs, in the repository. The Al SNF would be transferred from wet storage and would need to be dried in the Al SNF canister. The moisture content inside the Al SNF canister is limited to avoid excessive Al SNF corrosion and hydrogen buildup during interim storage before disposal. A vacuum drying process was proposed to dry the Al SNF in a canister. There are two major concerns for the vacuum drying process. One is water inside the canister could become frozen during the vacuum drying process and the other one is the detection of dryness inside the canister. To vacuum dry an irradiated fuel in a heavily shielded canister, it would be very difficult to open the lid to inspect the dryness during the vacuum drying operation. A vacuum drying test program using a mock SNF assembly was conducted to demonstrate feasibility of drying the Al SNF in a canister. These tests also served as a check-out of the drying apparatus for future tests in which irradiated fuel would be loaded into a canister under water followed by drying for storage

  11. Determination of activation energy of hydrogen diffusion in Zr-2.5%Nb alloy

    International Nuclear Information System (INIS)

    Chandra, Komal; Kulkarni, A.S.; Ramanjaneyulu, P.S.; Yadav, C.S.; Saxena, M.K.; Tomar, B.S.; Ramakumar, K.L.; Sunil, Sourav; Singh, R.N.

    2013-01-01

    The present paper describes the study on the determination of diffusion coefficient of hydrogen in Zr-2.5%Nb alloy. Hydrogen was charged on Zr-2.5% Nb alloy electrolytically. After annealing at required temperature, hydrogen concentration at various depths from the charged end was determined employing hot vacuum extraction-quadrupole mass spectrometer (HVE-QMS). The depth profile was used to obtain the diffusion coefficient employing Fick's second law of diffusion. From the Arrhenius relation between diffusion coefficient and temperature, activation energy of hydrogen diffusion was calculated. (author)

  12. Surface chemistry of tribochemical reactions explored in ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Lara-Romero, Javier; Maya-Yescas, Rafael; Rico-Cerda, Jose Luis; Rivera-Rojas, Jose Luis; Castillo, Fernando Chinas; Kaltchev, Matey; Tysoe, Wilfred T.

    2006-01-01

    The thermal decomposition of model extreme-pressure lubricant additives on clean iron was studied in ultrahigh vacuum conditions using molecular beam strategies. Methylene chloride and chloroform react to deposit a solid film consisting of FeCl 2 and carbon, and evolve only hydrogen into the gas phase. No gas-phase products and less carbon on the surface are detected in the case of carbon tetrachloride. Dimethyl and diethyl disulfide react on clean iron to deposit a saturated sulfur plus carbon layer at low temperatures (∼600 K) and an iron sulfide film onto a Fe + C underlayer at higher temperatures (∼950 K). Methane is the only gas-phase product when dimethyl disulfide reacts with iron. Ethylene and hydrogen are detected when diethyl disulfide is used

  13. Comparative Analysis of Hydrogen Production Methods with Nuclear Reactors

    International Nuclear Information System (INIS)

    Morozov, Andrey

    2008-01-01

    Hydrogen is highly effective and ecologically clean fuel. It can be produced by a variety of methods. Presently the most common are through electrolysis of water and through the steam reforming of natural gas. It is evident that the leading method for the future production of hydrogen is nuclear energy. Several types of reactors are being considered for hydrogen production, and several methods exist to produce hydrogen, including thermochemical cycles and high-temperature electrolysis. In the article the comparative analysis of various hydrogen production methods is submitted. It is considered the possibility of hydrogen production with the nuclear reactors and is proposed implementation of research program in this field at the IPPE sodium-potassium eutectic cooling high temperature experimental facility (VTS rig). (authors)

  14. Fiscal 1997 survey report. Subtask 5 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen transportation/storage technology. 2. development of the liquid hydrogen transportation tanker); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5 suiso yuso chozo gijutsu no kaihatsu dai 2 hen ekitai suiso yuso tanker no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Technology development is being conducted for construction of the long distance transportation tanker of large quantity liquid hydrogen. In fiscal 1997, test pieces of thermal insulating materials to be planned for fiscal 1998 were designed and studied. The purpose of the test is to confirm thermal insulating performance and behaviors of each material under the temperature of liquid hydrogen. The inside of the outer tank of the experimental equipment was held at vacuum of 10{sup -6} to 10{sup -7} Torr to exclude thermal convection effects and evaluate only heat coming from heater through the test piece. The heat from the heater at the lower part of the test piece is through the test piece and makes the liquid hydrogen of the upper tank evaporate. Thermal conductivity of the test piece is calculated from the evaporation quantity. As to PUF (polyurethane foam) panels, studied were reformation preventive measures, influential evaluation of the side transfer heat quantity, and the time required for vacuuming. In the vacuum panel, study subjects were extracted on the selection of core materials, reformation preventive measures, deterioration with age, the practical manufacturing method of experimental panels, etc. As to the super insulation, subjects were studied on the performance measuring method/accuracy, measures against heat transfer from the inside of the experimental equipment, control of the vacuum degree, etc. 10 refs., 45 figs., 6 tabs.

  15. pKa values of hyodeoxycholic and cholic acids in the binary mixed micelles sodium-hyodeoxycholate-Tween 40 and sodium-cholate-Tween 40: Thermodynamic stability of the micelle and the cooperative hydrogen bond formation with the steroid skeleton.

    Science.gov (United States)

    Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita

    2017-01-01

    Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary

  16. Analyses of hydrodynamic effects of large sodium-water reactions

    International Nuclear Information System (INIS)

    Sakano, K.; Shindo, Y.; Koishikawa, A.; Maekawa, I.

    1977-01-01

    Large leak sodium-water reactions that would occur in a steam generator of LMFBR causes abrupt changes of pressure and velocity of fluid in a secondary sodium system and relief system. This paper describes SOWACS-III together with its model and method. Results of analyses are also given, the comparison with experimental results of initial pressure spike being included. SOWACS-III treats the system which consists of the steam generator, vessel, valve, pump and pipe, and uses the following models and methods. (1) Components are assumed to be one-dimensional. (2) Pressure wave propagation near a reaction zone, where hydrogen is generated, is analyzed with the spherical co-ordinate (sphere-cylinder model). (3) A moving boundary is formed by contact of sodium with other fluid such as hydrogen and nitrogen. The boundary travels without mixing of sodium and another fluid through the boundary (boundary tracking model). The boundary can be treated not to move from the original place (fixed boundary model). (4) Pressure wave propagation is analyzed by the explicit method of characteristics in one-dimensional Eulerian co-ordinate. (5) Flow-induced force is analyzed by momentum balance. (6) The lateral motion of relief piping caused by the force is analyzed by NASTRAN code. Analyses were carried out for large sodium-water reaction experiments in SWAT-3 rig of PNC by using the sphere-cylinder model. The calculated pressure spike in the reaction vessel was compared with the measured one for a few milliseconds after water injection. The calculated value and measured one were 6.4 ata and 6.7 ata for peak pressure and 0.6 ms and 2.8 ms for rising time, respectively

  17. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 9. Development of liquid hydrogen transportation and storage technologies - 1; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 9. Ekitai suiso yuso chozo gijutsu no kaihatsu - 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the development of liquid hydrogen transportation and storage technologies. Discussions were given on the following three types of specimens as the heat insulation performance test structures: the vacuum panel type (polyurethane foam coated with SUS sheet, while the inside is kept in the vacuum state); the solid vacuum type (combination of polyurethane foam with vacuum heat insulation); and the powder under normal pressure type (a structure in which the ambient of powder pearlite heat insulating material becomes the atmospheric pressure, whereas a SUS case is set up to separate vacuum layer of the test apparatus from atmosphere layer of the specimen, with the SUS case filled with pearlite). Adding the two types of specimens used in the previous fiscal year, five test specimens in total were discussed on the result of the performance tests to advance the database management. As a low temperature strength test for the insulating materials, the compression test was performed on a microsphere being a kind of solid vacuum (normal pressure) heat insulating materials at room temperature, the liquid nitrogen temperature and in liquid hydrogen atmosphere. The compression strength under liquid hydrogen is 1,044 MPa, which is two times greater than the normal temperature strength of 496 MPa, representing the compression strength rising in proportion with temperature drop. Problems were extracted in developing a small capacity liquid hydrogen transportation and storage system. (NEDO)

  18. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  19. High-temperature vacuum distillation separation of plutonium waste salts

    International Nuclear Information System (INIS)

    Garcia, E.

    1996-01-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen

  20. Recycling of chemical hydrogen storage materials

    International Nuclear Information System (INIS)

    Lo, C.F.; Davis, B.R.; Karan, K.

    2004-01-01

    'Full text:' Light weight chemical hydrides such as sodium borohydride (NaBH4) and lithium borohydride (LiBH4) are promising hydrogen storage materials. They offer several advantages including high volumetric storage density, safe storage, practical storage and operating condition, controlled and rapid hydrogen release kinetics in alkaline aqueous media in the presence of catalysts. In addition, borate or borax, the reaction by-product, is environmentally friendly and can be directly disposed or recycled. One technical barrier for utilizing borohydrides as hydrogen storage material is their high production cost. Sodium borohydride currently costs $90 per kg while lithium borohydride costs $8000 per kg. For commercialization, new and improved technology to manufacture borohydrides must be developed - preferably by recycling borates. We are investigating different inorganic recycling routes for regenerating borohydrides from borates. In this paper, the results of a chlorination-based recycling route, incorporating multi-step reactions, will be discussed. Experiments were conducted to establish the efficiency of various steps of the selected regeneration process. The yields of desired products as a function of reaction temperature and composition were obtained from multi-phase batch reactor. Separation efficiency of desired product was also determined. The results obtained so far appear to be promising. (author)

  1. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    International Nuclear Information System (INIS)

    Schubert, David; Neiner, Doinita; Bowden, Mark; Whittemore, Sean; Holladay, Jamie; Huang, Zhenguo; Autrey, Tom

    2015-01-01

    Highlights: • Adjusting ratio of Q = Na/B will maximize H 2 storage capacity of liquid carrier. • Mixtures of hydrolysis products are desirable to maximize solubility. • 6.5 wt.% hydrogen and remains liquid from beginning to end. - Abstract: In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH) 3 ) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mol ratio of NaOH to B(OH) 3 , M/B = 1, the ratio of the hydrolysis product formed from NaBH 4 hydrolysis, the sole borate species formed and observed by 11 B NMR is sodium metaborate, NaB(OH) 4 . When the ratio is 1:3 NaOH to B(OH) 3 , M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11 B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB 3 H 8 , can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt.% NaB 3 H 8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 M ratio of NaOH and B(OH) 3 and releases >8 eq of H 2 . By optimizing the M/B ratio a complex mixture of soluble products, including B 3 O 3 (OH) 5 2− , B 4 O 5 (OH) 4 2− , B 3 O 3 (OH) 4 − , B 5 O 6 (OH) 4 − and B(OH) 3 , can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB 3 H 8 can provide a 40% increase in H 2 storage density compared to the hydrolysis of NaBH 4 given the decreased solubility of sodium metaborate

  2. Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis

    Science.gov (United States)

    Jones, Kelley, M.

    2013-01-01

    Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.

  3. Recent results on cleaning and conditioning the ATF vacuum system

    International Nuclear Information System (INIS)

    Langley, R.A.; Clark, T.L.; Glowienka, J.C.

    1989-01-01

    Techniques for cleaning and conditioning the vacuum vessel of the Advanced Toroidal Facility (ATF) and its internal components are described. The vacuum vessel cleaning technique combines baking to 150/degree/C and glow discharges with hydrogen gas. Chromium gettering is used to further condition the system. The major internal components are the anodized aluminum baffles in the Thomson scattering system, a graphite-shielded ICRF antenna, two graphite limiters, and a diagnostic graphite plate. Three independent heating systems are used to bake some of the major components of the system. The major characteristics used for assessing cleanliness and conditioning progress are the maximum pressure attained during bakeout, the results of gas analysis, and relevant plasma parameters (e.g., time to radiative decay). Details of the various cleaning and conditioning procedures and results are presented. 5 refs., 8 figs., 3 tabs

  4. Development of on-line monitoring device to detect the presence/absence of sodium vapor

    International Nuclear Information System (INIS)

    Wolson, R.D.; McPheeters, C.C.; Kremesec, V.J.; Kolba, V.M.

    1983-03-01

    A process is being developed by the Sodium Waste Technology Program at ANL-W to remove metallic sodium from scrap and waste. The final step in the process is the removal of residual metallic sodium by evaporation at temperatures up to 482 0 C (900 0 F) and at pressures of about 10 - 2 torr (1.3 Pa). Efficient operation of this process requires that the operators have a method to indicate the completion of the evaporation. This end point would signify when the chamber and scrap and waste is free of metallic sodium. It was determined that a measure of the vacuum was not sufficiently sensitive, and a research effort was undertaken to select an on-line monitoring device. In this effort, three promising methods were reviewed. The use of quadrupole mass spectrometer was recommended and an on-line device was designed for use in a Sodium Process Demonstration (SPD) Plant

  5. Determination of oxygen in liquid sodium

    International Nuclear Information System (INIS)

    Torre, M. de la; Lapena, J.; Galindo, F.; Couchoud, M.; Celis, B. de; Lopez-Araquistain, J.L.

    1976-01-01

    The behaviour is analysed of a device for 'in-line' sampling and vacuum distillation. With this procedure 95 results were obtained for the solubility of oxygen in liquid sodium at temperatures between 125 0 and 300 0 C. The correlation between the concentration of oxygen in a saturation state and the corresponding temperature is represented by: 1g C = 6,17 - 2398/T, where C expressed ppm of oxygen by weight and T is the saturation temperature in 0 K. Reference is also made to the first results obtained with the electrochemical oxygen meter and the system for taking and recording data. (author)

  6. Uptake of hydrogen from some carbon fibres examined by Secondary Ion Mass Spectrometry

    International Nuclear Information System (INIS)

    Madronero, A.; Aguado, J.; Blanco, J.M.; Lopez, A.

    2011-01-01

    The use of carbonaceous materials for hydrogen storage is not as simple as it may seem. Hydrogen atoms have different bonding energies and are incorporated into different types of these materials. Therefore, it is particularly important to distinguish between the surfacial atoms and those that are embedded in the bulk of the sample. SIMS spectrograph with periodical interruptions of the ion beam enables us to appreciate that at room temperature and in high vacuum, some outgassing of the surfacial hydrogen takes place.

  7. Interactions between kaolinite Al−OH surface and sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yonghua, E-mail: hyh19891102@163.com [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Liu, Wenli; Zhou, Jia [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chen, Jianhua [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China)

    2016-11-30

    Highlights: • Sodium hexametaphosphate (NaHMP) can adsorb on kaolinite Al−OH terminated (001) surface easily. • The oxygen atoms of hexametaphosphate form strong hydrogen bonds with the hydrogen atoms of kaolinite Al−OH surface. • The electrostatic force is the main interaction between NaHMP and Al−OH surface. • The linear hexaphosphate −[PO{sub 3}]{sub m}− chains adsorb stably than −[HPO{sub 3}]{sub m}− chains. - Abstract: To investigate the dispersion mechanism of sodium hexametaphosphate on kaolinite particles, we simulated the interaction between linear polyphosphate chains and kaolinite Al−OH terminated surface by molecular dynamics, as well as the interaction between the [HPO{sub 4}]{sup 2−} anion and kaolinite Al−OH surface by density functional theory (DFT). The calculated results demonstrate that hexametaphosphate can be adsorbed by the kaolinite Al−OH surface. The oxygen atoms of hexametaphosphate anions may receive many electrons from the Al−OH surface and form hydrogen bonds with the hydrogen atoms of surface hydroxyl groups. Moreover, electrostatic force dominates the interactions between hexametaphosphate anions and kaolinite Al−OH surface. Therefore, after the adsorption of hexametaphosphate on kaolinite Al−OH surface, the kaolinite particles carry more negative charge and the electrostatic repulsion between particles increases. In addition, the adsorption of −[PO{sub 3}]{sub m}− species on the Al−OH surface should be more stable than the adsorption of −[HPO{sub 3}]{sub m}− species.

  8. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses.......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...

  9. Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process

    Science.gov (United States)

    Holko, K. H. (Inventor)

    1974-01-01

    Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.

  10. Effects of neutral sodium hydrogen phosphate on setting reaction and mechanical strength of hydroxyapatite putty.

    Science.gov (United States)

    Ishikawa, K; Miyamoto, Y; Takechi, M; Ueyama, Y; Suzuki, K; Nagayama, M; Matsumura, T

    1999-03-05

    The setting reaction and mechanical strength in terms of diametral tensile strength (DTS) of hydroxyapatite (HAP) putty made of tetracalcium phosphate, dicalcium phosphate anhydrous, and neutral sodium hydrogen phosphate (Na1.8H1.2PO4) solution containing 8 wt % sodium alginate were evaluated as a function of the Na1.8H1.2PO4 concentration. In one condition, HAP putty was placed in an incubator kept at 37 degrees C and 100% relative humidity. In the other condition, immediately after mixing HAP putty was immersed in serum kept at 37 degrees C. Longer setting times and lower DTS values were observed when HAP putty was immersed in serum regardless of the Na1.8H1.2PO4 concentration. The setting times of the HAP putty in both conditions became shorter with an increase in the Na1. 8H1.2PO4 concentration, reaching approximately 7-13 min when the Na1. 8H1.2PO4 concentration was 0.6 mol/L or higher. The DTS value of HAP putty was relatively constant (10 MPa) regardless of the Na1.8H1. 2PO4 concentration (0.2-1.0 mol/L) when HAP putty was kept in an incubator. In contrast, when HAP putty was immersed in serum, the DTS value was dependent on the Na1.8H1.2PO4 concentration. It increased with the Na1.8H1.2PO4 concentration and reached approximately 5 MPa when the Na1.8H1.2PO4 concentration was 0.6 mol/L, after which it showed a relatively constant DTS value. We therefore would recommend a HAP putty that uses 0.6 mol/L Na1.8H1. 2PO4 since at that concentration the putty's setting time (approximately 10 min) is proper for clinical use and it shows good DTS value (approximately 5 MPa) even when it is immersed in serum immediately after mixing. Copyright 1999 John Wiley & Sons, Inc.

  11. Research regarding the vacuuming of liquid steel on steel degassing

    Science.gov (United States)

    Magaon, M.; Radu, M.; Şerban, S.; Zgripcea, L.

    2018-01-01

    When the liquid steel comes in contact with the atmosphere of the elaboration aggregates, a process of gas diffusion into the metal bath takes place on the one hand, and on the other hand a process that allows them to pass from the metal bath into the atmosphere. The meaning of these processes is determined by a number of factors as follows: the quality of raw and auxiliary materials (moisture content, oils, etc.), the boiling intensity, the evacuation duration, the properties of used slags, the values of the casting ladle processing parameters (bubbling, vacuuming, etc.). The research was carried out at an electrical steelwork, equipped with an electric arc furnace type EBT (Electric Bottom Tapping) capacity 100t, LF (Ladle-Furnace) and VD (Vacuum Degassing) facilities, establishing some correlations between the vacuuming parameters from the V.D.facility and the amounts of hydrogen and nitrogen removed from the metal bath, as well as their removal efficiency, were taken into consideration. The obtained data was processed in MATLAB calculation program, the established correlations form was presented both in analytical and graphical form. The validity of these correlations was verified in practice, being particularly useful in research.

  12. Development of NdFeB magnet through hydrogen decrepitation

    International Nuclear Information System (INIS)

    Akhtar, S.; Farooque, M.; Haider, A.; Ahmad, Z.

    2009-01-01

    Neodymium based magnets are the powerful permanent magnet of today. This paper will discuss iron based rare earth magnets. NdFeB sintered magnet material has been developed. The magnets are produced by powder metallurgy route involving hydrogen decrepitation technique for making fine powder. After melting and casting, the NdFeB alloy is subject to hydrogen atmosphere. Hydrogen slowly absorbs into the solid alloy and makes it brittle, which upon milling becomes fine powder. Hydrogen is then removed by placing the powder at temperature around 800 deg. C under vacuum. Then the powders are pressed under isostatic conditions and sintered at temperature range of 1020-1050 deg. C. Post sintering is done at 800 deg. C and 580 deg. C followed by quenching. Energy product in the range of 8 MGOe is achieved. (author)

  13. Hydrogen interaction with oxidized Si(111) probed with positrons

    International Nuclear Information System (INIS)

    Lynn, K.G.; Nielsen, B.; Welch, D.O.

    1989-01-01

    A variable-energy positron beam was utilized to study the interface action of hydrogen with Si(111) covered by an ultrahigh-vacuum thermally grown oxide of 2-3 nm thickness. It was observed that positrons implanted at shallow depth (< 100 nm) after diffusion are trapped either at the interface between the oxide and the Si or in the oxide. The positron-annihilation characteristics of these trapped positrons are found to be very sensitive to hydrogen exposure. The momentum distribution of the annihilating positron-electron pair, as observed in the Doppler broadening of the annihilation line, broadens considerably after exposure to hydrogen. The effect recovers after annealing at ≅ 1100 K, suggesting a hydrogen binding at the interface of ∼ 3 ± 0.3 eV. (author). 18 refs., 3 figs

  14. Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure.

    Science.gov (United States)

    Packer, Milton

    2017-10-17

    The mechanisms underlying the progression of diabetes mellitus and heart failure are closely intertwined, such that worsening of one condition is frequently accompanied by worsening of the other; the degree of clinical acceleration is marked when the 2 coexist. Activation of the sodium-hydrogen exchanger in the heart and vasculature (NHE1 isoform) and the kidneys (NHE3 isoform) may serve as a common mechanism that links both disorders and may underlie their interplay. Insulin insensitivity and adipokine abnormalities (the hallmarks of type 2 diabetes mellitus) are characteristic features of heart failure; conversely, neurohormonal systems activated in heart failure (norepinephrine, angiotensin II, aldosterone, and neprilysin) impair insulin sensitivity and contribute to microvascular disease in diabetes mellitus. Each of these neurohormonal derangements may act through increased activity of both NHE1 and NHE3. Drugs used to treat diabetes mellitus may favorably affect the pathophysiological mechanisms of heart failure by inhibiting either or both NHE isoforms, and drugs used to treat heart failure may have beneficial effects on glucose tolerance and the complications of diabetes mellitus by interfering with the actions of NHE1 and NHE3. The efficacy of NHE inhibitors on the risk of cardiovascular events may be enhanced when heart failure and glucose intolerance coexist and may be attenuated when drugs with NHE inhibitory actions are given concomitantly. Therefore, the sodium-hydrogen exchanger may play a central role in the interplay of diabetes mellitus and heart failure, contribute to the physiological and clinical progression of both diseases, and explain certain drug-drug and drug-disease interactions that have been reported in large-scale randomized clinical trials. © 2017 American Heart Association, Inc.

  15. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements

    Science.gov (United States)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10-5 to 10-7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  16. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements.

    Science.gov (United States)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD 2 ) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H 2 ) and deuterium (D 2 ), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10 -5 to 10 -7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  17. Nuclear reaction analysis of hydrogen in materials: Principals and applications

    International Nuclear Information System (INIS)

    Lanford, W.A.

    1991-01-01

    Analysis for hydrogen in materials is difficult by most traditional analytic methods. Because hydrogen has no Auger transitions, no X-ray transitions, does not neutron activate, and does not backscatter ions, it is invisible in analytical methods based on these effects. In addition, since hydrogen is a universal contaminant in vacuum systems, techniques based on mass spectrometry are difficult unless extreme measures are taken to reduce hydrogen backgrounds. Because of this situation, methods have been developed for analyzing for hydrogen in solid materials based on nuclear reactions between bombarding ions and hydrogen atoms (protons) in the samples. The nuclear reaction methods are now practiced at laboratories around the world. The basic principals of nuclear reaction analysis will be briefly presented. This method will be illustrated by applications to problems ranging from basic physics, to geology, to materials science, and to art history and archeology

  18. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  19. Effect of Dipping and Vacuum Impregnation Coating Techniques with Alginate Based Coating on Physical Quality Parameters of Cantaloupe Melon.

    Science.gov (United States)

    Senturk Parreidt, Tugce; Schmid, Markus; Müller, Kajetan

    2018-04-01

    Edible coating based on sodium alginate solution was applied to fresh-cut cantaloupe melon by dipping and vacuum impregnation coating methods. One aim of this work is to produce more technical information concerning these conventional and novel coating processes. For this purpose, the effect of various coating parameters (dipping time, draining time, time length of the vacuum period, vacuum pressure, atmospheric restoration time) with several levels on physical quality parameters (percentage of weight gain, color, and texture) of noncoated and coated samples were determined in order to define adequate coating process parameters to achieve a successful coating application. Additionally, the effects of dipping and vacuum impregnation processes were compared. Both processes improved the firmness of the melon pieces. However, vacuum impregnation application had higher firmness and weight gain results, and had significant effect (P coating technique and the parameters used significantly affect the physical quality characteristics of coated food products. The work presented produced more technical information concerning dipping and vacuum impregnation coating techniques, along with evaluating the effects of various coating parameters with several levels. The results revealed that vacuum impregnation technique is a successful coating method; however the effects should be carefully assessed for each product. © 2018 Institute of Food Technologists®.

  20. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    International Nuclear Information System (INIS)

    Vankan, P.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.; Schram, D.C.; Doebele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has a bandwith of 0.15 cm -1 . The wavelength of the laser radiation is calibrated by simultaneous recording of the two-photon laser induced fluorescence spectrum of nitric oxide. The excited hydrogen populations are calibrated on the basis of coherent anti-Stokes Raman scattering measurements. A population distribution is measured in the shock region of a pure hydrogen plasma expansion. The higher rotational levels (J>5) show overpopulation compared to a Boltzmann distribution determined from the lower rotational levels (J≤5)

  1. The hydrogen market in refining and petrochemicals in France

    International Nuclear Information System (INIS)

    Lutz, P.; Borel, P.

    1991-11-01

    The french hydrogen market on industrial sites can be divided into three main parts. Captive hydrogen is produced by thermofor catalytic reforming, catalytic cracking and hydrotreating of vacuum distillates, and is consumed in hydrotreating of petrol, hydrodesulfurization of gasoil and domestic fuel oil, hydrocracking and hydrofining of lubricants. By-product hydrogen is burnt in boilers and flare stacks. Merchant hydrogen is sold to users on the open market. Currently, thirteen refineries belonging to six companies produce 73 million tonnes of petroleum products each year in France and release annually a surplus of some 100,000 tonnes of hydrogen. The future of refining industry in France depends on the quality of the crude oil, the specific characteristics of the end products, and the developments in user markets. The refining process is likely to become more complex by 2005 with an increase in hydrogen requirements. Refineries could then undergo an annual deficit between 140,000 and 230,000 tonnes of hydrogen. The choice of the appropriate process to cover this shortfall depends mostly on oil companies strategy. (author). 1 fig., 3 tabs., 3 diagrams

  2. Enhanced gelation of chitosan/β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated.

    Science.gov (United States)

    Deng, Aipeng; Kang, Xi; Zhang, Jing; Yang, Yang; Yang, Shulin

    2017-09-01

    The application of chitosan/β-sodium glycerophosphate (β-GP) thermosensitive hydrogel has been limited by the relatively slow gelation, weak mechanical resistance and poor cytocompatibility. In this study, sodium hydrogen carbonate (NaHCO 3 ) was applied with β-GP as gel agents to produce high-strength hydrogel. The hydrogels prepared with high NaHCO 3 concentration or more gel agents showed shorter gelation time, better thermostability, drastically enhanced resistance in compression. Meanwhile, the hydrogels presented obvious porous structures and excellent biocompatibility to HUVEC and NIH 3T3 cultured in vitro with higher NaHCO 3 concentration and moderate concentration of β-GP. Overall, appropriate concentration of β-GP combined with NaHCO 3 can be a good gel regent to improve properties of chitosan thermosensitive hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.

    Science.gov (United States)

    Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2014-07-01

    The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.

  4. The study of hydrogen removal

    International Nuclear Information System (INIS)

    Yasufuku, Katsumi; Fukuhara, Masashi; Izaki, Takashi; Nakase, Takeshi

    1979-01-01

    Two methods of hydrogen removal from the helium coolant for high temperature helium gas-cooled nuclear reactor plants were investigated; the one is the process absorbing hydrogen with titanium sponges and the other is the water removal with zeolite, after hydrogen is converted to water utilizing copper oxide (CuO). The special feature of these two hydrogen removal methods is to treat the very low hydrogen concentration in helium about 0.06 mm Hg (2 Vpm, 41 ata). As for the titanium sponge method, a preliminary experimental facility was constructed to test the temperature dependences of the quantity of equilibrium absorption of hydrogen and the diffusion velocity inside titanium sponge by the batch type constant volume process. The temperature of titanium sponge was 800 deg C, the vacuum was from 2 to 3 x 10 -7 mm Hg and hydrogen partial pressure was from 1.0 to 10 -4 mm Hg in the experiment. The measured hydrogen absorption rate and the diffusion velocity data are presented, and the experimental conditions were evaluated. After the preliminary experiment, a mini-loop was constructed to confirm the temperature and velocity dependences of overall capacity factor, and the overall capacity factor and the regenerating characteristics of titanium sponge were tested. These experimental data are shown, and were evaluated. Concerning the hydrogen removal method utilizing CuO, the experiment was carried out under the following test conditions: the temperature from 400 to 265 deg C, the linear velocity from 50.3 to 16.7 cm/sec and the hydrogen concentration from 12.0 to 1.93 mm/Hg. The hydrogen removal rate and capacity were obtained in this experiment, and the data are presented and explained. (Nakai, Y.)

  5. On-line sodium and cover as purity monitors gas operating tools at EBR-II

    International Nuclear Information System (INIS)

    Smith, C.R.F.; Richardson, W.J.; Holmes, J.T.

    1976-01-01

    Plugging temperature indicators, electrochemical oxygen meters and hydrogen diffusion meters are the on-line sodium purity monitors now in use at EBR-II. On-line gas chromatographs are used to monitor helium, hydrogen, oxygen and nitrogen impurities in the argon cover gases. Monitors for tritium-in-sodium and for hydrocarbons-in-cover gas have been developed and are scheduled for installation in the near future. An important advantage of on-line monitors over the conventional grab-sampling techniques is the speed of response to changing reactor conditions. This helps us to identify the source of the impurity, whether the cause may be transient or constant, and take corrective action as necessary. The oxygen meter is calibrated monthly against oxygen in sodium determined by the vanadium wire equilibration method. The other instruments either do not require calibration or are self-calibrating. The ranges, sensitivity and response times of all of the on-line purity monitors has proven satisfactory under EBR-II operating conditions

  6. Formation of H a - hydrogen centers upon additive coloration of alkaline-earth fluoride crystals

    Science.gov (United States)

    Radzhabov, E. A.; Egranov, A. V.; Shendrik, R. Yu.

    2017-06-01

    The mechanism of coloration of alkaline-earth fluoride crystals CaF2, SrF2, and BaF2 in calcium vapors in an autoclave with a cold zone is studied. It was found that the pressure in the autoclave upon constant evacuation by a vacuum pump within the temperature range of 500-800°C increases due to evaporation of metal calcium. In addition to the optical-absorption bands of color centers in the additively colored undoped crystals or to the bands of divalent ions in the crystals doped with rare-earth Sm, Yb, and Tm elements, there appear intense bands in the vacuum ultraviolet region at 7.7, 7.0, and 6.025 eV in CaF2, SrF2, and BaF2, respectively. These bands belong to the Ha - hydrogen centers. The formation of hydrogen centers is also confirmed by the appearance of the EPR signal of interstitial hydrogen atoms after X-ray irradiation of the additively colored crystals. Grinding of the outer edges of the colored crystals leads to a decrease in the hydrogen absorption-band intensity with depth to complete disappearance. The rate of hydrogen penetration inside the crystal is lower than the corresponding rate of color centers (anion vacancies) by a factor of tens. The visible color density of the outer regions of the hydrogen-containing crystals is several times lower than that of the inner region due to the competition between the color centers and hydrogen centers.

  7. Structure of sodium perbromate monohydrate

    International Nuclear Information System (INIS)

    Blackburn, A.C.; Gallucci, J.C.; Gerkin, R.E.; Reppart, W.J.

    1992-01-01

    NaBrO 4 .H 2 O, M r =184.90, monoclinic, C2/c, a=15.7575(19), b=5.7373(15), c=11.3390(19) A, β=111.193(10)deg. In this structure, there are two inequivalent Na ions, each coordinated by six O atoms. In each of the two types of distorted octahedra, there are three inequivalent Na-O distances; the average Na(1)-O and Na(2)-O distances are 2.379(10) and 2.405(23) A, respectively. The perbromate ion in this structure displays very nearly regular tetrahedral geometry, although it is subject to no symmetry constraints; the average observed Br-O distance is 1.601(4) A, while the average observed O-Br-O angle is 109.5(9)deg. These values agree well with previously reported values. The perbromate ion, but neither of the sodium coordination polyhedra, shows rigid-body behavior. The average rigid-body corrected Br-O distance in the perbromate ion is 1.624(3) A. Refinement of the two inequivalent H atoms permitted detailed analysis of the hydrogen bonding, which is slightly different from that reported for the isomorphic sodium perchlorate monohydrate. Dynamic disordering of the H atoms as detailed by magnetic resonance methods for sodium perchlorate monohydrate is not clearly indicated in our X-ray study of sodium perbromate monohydrate. (orig./GSCH)

  8. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump.

    Science.gov (United States)

    Dong, Liang; Xie, Yun; Du, Liang; Li, Weiyi; Tan, Zhaoyi

    2015-04-28

    The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium-hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T-H exchange mechanism and the hyrogenation-dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation-dehydrogenation exchange mechanism, the T-H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with OH and COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T-H isotope exchange can be determined by the hydrogenation of T2 or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of 10% sodium bicarbonate on bond strength of enamel and dentin after bleaching with 38% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Fernanda Medeiros Darzé

    Full Text Available AbstractIntroductionBy-products of hydrogen peroxide degradation released during dental bleaching influence the polymerization of adhesive systems and composite resins, causing a reduction in shear bond strength to the tooth.Objectivethe aim of this article was to evaluate the effect of 10% sodium bicarbonate (SB, applied for different lengths of time, on the shear bond strength to enamel and dentin after bleaching.Material and methodEnamel and dentin blocks were divided into groups (n=10: (1 control: no bleaching; (2 immediate: bleaching immediately followed by restoration; (3 14-day: bleaching, restoration 14 days later; (4 SB for 10 minutes: bleaching, SB gel for 10 minutes, immediately followed by restoration; (5 SB for 20 minutes: bleaching, SB gel for 20 minutes, immediately followed by restoration. A 38% hydrogen peroxide gel (Opalescence Boost/Ultradent was used. After application of the adhesive system, composite resin cylinders were mounted on the surface of the substrates in order to test shear bond strength. Result: ANOVA and Tukey tests showed significantly higher mean enamel bond strength values for the 14-day follow-up group and without significant differences for control group. Mean bond strength values obtained for the other groups were intermediate. When testing dentin, the Tukey test revealed a significantly higher mean bond strength value for the 14-day follow-up group when compared with application of SB for 20 minutes.ConclusionSB gel applied was unable to reverse the low bond strength to enamel and dentin after bleaching treatment.

  10. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States); Zidan, Ragaiy, E-mail: ragaiy.zidan@srnl.doe.gov [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States)

    2013-12-15

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C{sub 60} from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na{sub 6}C{sub 60} or Li{sub 6}C{sub 60}. Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H{sub 2} while the lithium doped material can reversibly store 5.0 wt.% H{sub 2} through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  11. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    International Nuclear Information System (INIS)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent; Zidan, Ragaiy

    2013-01-01

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C 60 from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na 6 C 60 or Li 6 C 60 . Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H 2 while the lithium doped material can reversibly store 5.0 wt.% H 2 through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  12. Development of Automotive Liquid Hydrogen Storage Systems

    Science.gov (United States)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  13. MEA vacuum system

    International Nuclear Information System (INIS)

    Stroo, R.; Schwebke, H.; Heine, E.

    1984-01-01

    This report describes construction and operation of the MEA vacuum system of NIKHEF (Netherlands). First, the klystron vacuum system, beam transport system, diode pump and a triode pump are described. Next, the isolation valve and the fast valves of the vacuum system are considered. Measuring instruments, vacuum system commands and messages of failures are treated in the last chapter. (G.J.P.)

  14. Microcomputer-aided monitor for liquid hydrogen target system

    International Nuclear Information System (INIS)

    Kitami, T.; Watanabe, K.

    1983-03-01

    A microcomputer-aided monitor for a liquid hydrogen target system has been designed and tested. Various kinds of input data such as temperature, pressure, vacuum, etc. are scanned in a given time interval. Variation with time in any four items can be displayed on CRT and, if neccessary, printed out on a sheet of recording paper. (author)

  15. A Study on the Development of Nonglass Solar Vacuum Tube Collector

    International Nuclear Information System (INIS)

    Oh, Seung Jin

    2008-02-01

    Nature has been providing us energy from the beginning of the world. However human has hardly used it wisely. Solar energy is a kind of renewable energy from the nature. This study has been carried out to study the use of solar energy as it is harnessed in the form of thermal energy. Solar energy is one of the most promising energy resources such as hydrogen, biomass, wind and geothermal energy, because it is clean and inexhaustible. Space heating in buildings can be provided from solar energy by systems that are similar in many respects to water heater systems. By tapping into solar energy, we can not only solve the problem of energy shortage, but also can protect the environment and benefit the human beings. There are currently two types of evacuated tube; a single glass tube and a double glass tube. The former consists of a single glass tube which contains a flat or curved aluminium plate attached to a copper heat pipe or water flow pipe. The latter consists of rows of parallel transparent glass tubes, each of which contains an absorber tube. Evacuated tube collectors introduced above, however, pose some problems as they break rather easily under mechanical stresses. This paper introduces some preliminary results in design and fabrication of a non-glass solar vacuum tube collector in which the thermosyphon(heat pipe)made of copper is used as a heat transfer device. A series of tests have been performed to assess the ability of a non-glass solar vacuum tube collector. The series of experiments are as follows: 1)Vacuum level inside a vacuum tube. 2)Effects of the air remaining inside a vacuum tube on the temperature on the absorber plate. 3)Comparison of a non-glass vacuum solar collector with a single glass evacuated tube(SEIDO 5). Different vacuum levels inside non-glass vacuum tubes were applied to check any leakage or unexpected physical or chemical developments with time. The vacuum level changed from 10 -2 torr to 5torr in 5 days due to air infiltration from

  16. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  17. Cleaning of small components of complex geometry by means of the sodium-alcohol reaction

    International Nuclear Information System (INIS)

    De Luca, B.; Grasso, C.; Spadoni, M.

    1978-01-01

    The results of some experiments on the vacuum reaction between butylcellosolve and sodium, contained in small diameter capillaries, are reported. The effects on the cleaning rate of the temperature, amount of solvent, diameter and position of the capillaries are analyzed. The facility, used for the cleaning of small components of complex geometry, is described. (author)

  18. Hydrogen sulfide prevents hydrogen peroxide-induced activation of epithelial sodium channel through a PTEN/PI(3,4,5P3 dependent pathway.

    Directory of Open Access Journals (Sweden)

    Jianing Zhang

    Full Text Available Sodium reabsorption through the epithelial sodium channel (ENaC at the distal segment of the kidney plays an important role in salt-sensitive hypertension. We reported previously that hydrogen peroxide (H2O2 stimulates ENaC in A6 distal nephron cells via elevation of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5P3 in the apical membrane. Here we report that H2S can antagonize H2O2-induced activation of ENaC in A6 cells. Our cell-attached patch-clamp data show that ENaC open probability (PO was significantly increased by exogenous H2O2, which is consistent with our previous finding. The aberrant activation of ENaC induced by exogenous H2O2 was completely abolished by H2S (0.1 mM NaHS. Pre-treatment of A6 cells with H2S slightly decreased ENaC P(O; however, in these cells H2O2 failed to elevate ENaC PO . Confocal microscopy data show that application of exogenous H2O2 to A6 cells significantly increased intracellular reactive oxygen species (ROS level and induced accumulation of PI(3,4,5P3 in the apical compartment of the cell membrane. These effects of exogenous H2O2 on intracellular ROS levels and on apical PI(3,4,5P3 levels were almost completely abolished by treatment of A6 cells with H2S. In addition, H2S significantly inhibited H2O2-induced oxidative inactivation of the tumor suppressor phosphatase and tensin homolog (PTEN which is a negative regulator of PI(3,4,5P3. Moreover, BPV(pic, a specific inhibitor of PTEN, elevated PI(3,4,5P3 and ENaC activity in a manner similar to that of H2O2 in A6 cells. Our data show, for the first time, that H2S prevents H2O2-induced activation of ENaC through a PTEN-PI(3,4,5P3 dependent pathway.

  19. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  20. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  1. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  2. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    Science.gov (United States)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  3. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    International Nuclear Information System (INIS)

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user's risk and may lead to rejection of the whole assembly

  4. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, David; Neiner, Doinita [U.S. Borax Inc., Rio Tinto, Greenwood Village, CO (United States); Bowden, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA (United States); Whittemore, Sean; Holladay, Jamie [Pacific Northwest National Laboratory, Richland, WA (United States); Huang, Zhenguo [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2500 (Australia); Autrey, Tom [Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-10-05

    Highlights: • Adjusting ratio of Q = Na/B will maximize H{sub 2} storage capacity of liquid carrier. • Mixtures of hydrolysis products are desirable to maximize solubility. • 6.5 wt.% hydrogen and remains liquid from beginning to end. - Abstract: In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH){sub 3}) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mol ratio of NaOH to B(OH){sub 3}, M/B = 1, the ratio of the hydrolysis product formed from NaBH{sub 4} hydrolysis, the sole borate species formed and observed by {sup 11}B NMR is sodium metaborate, NaB(OH){sub 4}. When the ratio is 1:3 NaOH to B(OH){sub 3}, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the {sup 11}B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB{sub 3}H{sub 8}, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt.% NaB{sub 3}H{sub 8} solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 M ratio of NaOH and B(OH){sub 3} and releases >8 eq of H{sub 2}. By optimizing the M/B ratio a complex mixture of soluble products, including B{sub 3}O{sub 3}(OH){sub 5}{sup 2−}, B{sub 4}O{sub 5}(OH){sub 4}{sup 2−}, B{sub 3}O{sub 3}(OH){sub 4}{sup −}, B{sub 5}O{sub 6}(OH){sub 4}{sup −} and B(OH){sub 3}, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB{sub 3}H{sub 8} can provide a 40% increase in H{sub 2} storage density compared to the hydrolysis

  5. Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao

    2015-01-01

    Full Text Available The development of new practical hydrogen storage materials with high volumetric and gravimetric hydrogen densities is necessary to implement fuel cell technology for both mobile and stationary applications. NaBH4, owing to its low cost and high hydrogen density (10.6 wt%, has received extensive attention as a promising hydrogen storage medium. However, its practical use is hampered by its high thermodynamic stability and slow hydrogen exchange kinetics. Recent developments have been made in promoting H2 release and tuning the thermodynamics of the thermal decomposition of solid NaBH4. These conceptual advances offer a positive outlook for using NaBH4-based materials as viable hydrogen storage carriers for mobile applications. This review summarizes contemporary progress in this field with a focus on the fundamental dehydrogenation and rehydrogenation pathways and properties and on material design strategies towards improved kinetics and thermodynamics such as catalytic doping, nano-engineering, additive destabilization and chemical modification.

  6. Study of the influence of liquid sodium on the mechanical behavior of T91 steel in liquid sodium

    International Nuclear Information System (INIS)

    Hemery, S.

    2013-01-01

    We studied the sensitivity of T91 steel to embrittlement by liquid sodium. An experimental procedure was set up to proceed to mechanical testing in sodium under an inert atmosphere. The introduction of a liquid sodium pre-exposure step prior to mechanical testing enabled the study of both the wettability of T91 by sodium and the structure of the sodium steel/interface as a function of the exposure parameters. The mechanical properties of T91 steel are significantly reduced in liquid sodium provided the wetting conditions are good. The use of varying oxygen and hydrogen concentrations suggests that oxygen plays a major role in enhancing the wettability of T91. The sensitivity of the embrittlement to strain rate and temperature was characterized. These results showed the existence of a ductile to brittle transition depending on both parameters. Its characterization suggests that a diffusion step is the limiting rate phenomenon of this embrittlement case. TEM and EBSD analysis of arrested cracks enabled us to establish that the fracture mode is inter-lath or intergranular. This characteristic is coherent with the crack path commonly reported in liquid metal embrittlement. A similar procedure was applied to the unalloyed XC10 steel. The results show a behavior which is similar to the one of T91 steel and suggest a common mechanism for liquid sodium embrittlement of body centered cubic steels. Moreover, they confirm that the ductile to brittle transition seems associated with a limited crack propagation rate. The propagation is thermally activated with activation energy of about 50 kJ/mol. Finally, it was shown that 304L austenitic steel is sensitive to liquid sodium embrittlement as well. Some fracture surfaces testify of an intergranular fracture mode, but some questions still remain about the crack path. (author) [fr

  7. A blend of Sodium Humate/SLES/Herbal Oils

    Directory of Open Access Journals (Sweden)

    Yeliz Akyiğit

    2013-08-01

    Full Text Available A blend of sodium humate (SH with anionic surfactants such as sodium lauryl ether sulfate (SLES was prepared by solution mixing at medium of herbal oils at 25, 50 and 75°C. Its miscibility studies were carried out by using physical techniques over an extended range of concentration and composition in buffer solution. In addition, to ascertain the state of miscibility of the blends, they were investigated by using UV-visible spectrophotometer and Fourier transform infrared (FTIR. These values revealed that the blend is miscible when the sodium humate content is more than %60 in the blend at all temperatures. There were no important differences in the characteristics of the blends at different temperatures.It was thought that the mechanism ofthe complex formation is realized by making strong intermolecular interaction like hydrogen bonds between the carbonyl groups in humic acid and hydroxyl groups in fatty acids.

  8. The corrosion of steels in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Newman, R.N.; Smith, C.A.; Smith, R.J.

    1976-09-01

    The role of sodium hydroxide corrosion is discussed in relation to the wastage of materials observed in fast reactor boilers under fault conditions in the vicinity of a water leak into sodium. An experimental technique to study the corrosion under varying conditions is described. The results presented are for 2 1/4Cr 1Mo obtained in static sodium hydroxide in a closed volume over the temperature range 1033K to 1273K. It is found that the corrosion rate can be followed by monitoring the hydrogen produced by the reaction, which can be written as: Fe + 2NaOH = NaFeO 2 + NaH + 1/2H 2 . After an initial acceleration period the rate law is parabolic. The effect on the corrosion rate of melt and cover gas composition has been in part investigated, and the relevance of mass flow of reactants is discussed. (author)

  9. Tritium handling and vacuum considerations for the STARFIRE commercial tokamak reactor

    International Nuclear Information System (INIS)

    Finn, P.A.; Clemmer, R.G.; Maroni, V.A.; Dillow, C.

    1979-01-01

    Tritium processing and vacuum pumping requirements were analyzed for the STARFIRE commercial fusion reactor design. It was found that vacuum pumps having a helium capture probability of 0.5 (total helium pump speed 1.2 x 10 4 m 3 /s) in combination with the proposed STARFIRE limiter-vacuum concept is sufficient to achieve plasma impurity control and, simultaneously, high fractional burnup (11%). The high fractional burnup and minimum fuel recycle time result in a very low fuel cycle tritium inventory, approx. 1300 g. A Lean-T burn method that can further reduce the fuel cycle inventory by 30 to 50% is discussed. D 2 O is proposed as a first wall coolant from considerations of plasma contamination (due to hydrogen isotope permeation through coolant tubes) and enrichment of recycled tritium from the coolant circuit. Tritium recovery from solid breeders, under realistic structural and breeder materials constraints, appears to represent a formidable task. The tritium inventory in the solid breeder is estimated to be as high as 10 kg, which would make the blanket the largest single hold-up point for tritium in the plant

  10. Design of the US-CRBRP sodium/water reaction pressure relief system

    International Nuclear Information System (INIS)

    Kruger, G.B.; Murdock, T.B.; Rodwell, E.; Sane, J.O.

    1976-01-01

    Protection against intermediate sodium system overpressure from the sodium/water reaction associated with large leaks within the CRBRP Steam Generators is provided by the sodium/water reaction pressure relief system (SWRPRS). This system consists of rupture disks connected to the intermediate sodium piping adjacent to the inlet to the superheater and outlet from the evaporator modules. The rupture discs relieve into piping that leads to reaction produce separator tanks, which in turn are vented to a centrifugal separator and flare stack arranged to burn hydrogen gas exhausting into the atmosphere. Analyses have been conducted using the TRANSWRAP Computer Code to predict the system pressures and flow rates during the large leak event. Experimental tests to be conducted in the large leak test rig (LLTR) will be used to confirm the analysis techniques used in the design

  11. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  12. Conditioning of vacuum chamber by RF plasma

    International Nuclear Information System (INIS)

    Elizondo, J.I.; Nascimento, I.C. do

    1985-01-01

    A new conditioning vaccum chamber system is presented. It consists in hydrogen plasm generation by microwaves with low electronic temperature (Te approx. 5eV) and low ionization degree. The ions and neutral atoms generated in the reaction: e + H 2 -> H+ H+ e, bomb the chamber walls combinig themselves to impurities of surface and generating several compounds: H 2 O, CO, CH 4 , CO 2 etc. The vacuum system operates continuosly and remove these compounds. A microwave system using magnetron valve (f=2,45 GHz, P=800W) was constructed for TBR (Brazilian tokamak). The gas partial pressures were monitored before, during and after conditioning showing the efficiency of the process. (M.C.K.) [pt

  13. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  14. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 5. Development of hydrogen transport/storage technology (development of tanker for liquid hydrogen); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (ekitai suiso yuso tanker no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the tanker for liquid hydrogen transport was studied. In fiscal 1996, some experiments and numerical analyses were proposed which are necessary to solve technological issues extracted in fiscal 1995 for heat insulation structure. The issue was roughly classified into vacuum and non-vacuum insulation, and their basic functions and required performance were arranged. Boil-off rate of 0.2-0.4%/d was targeted. The insulation system which applies polyurethane form (PUF) to tank surfaces and injects atmospheric N2 gas into the surrounding hold space, could achieve the targeted insulation performance by PUF of 1m in thickness. The system of vacuum panel insulation and atmospheric N2 gas injection into a hold space required the panel of 500mm in thickness because of the large effect of metallic outer panel material. The system of vacuum hold and PUF panels was faced with the essential issue for realizing and maintaining vacuum hold. The super insulation system featured by layered insulation materials and vacuum layer spaces was also strongly affected by degree of vacuum. 23 figs., 8 tabs.

  15. Fuel and fission product release from sodium

    International Nuclear Information System (INIS)

    Sauter, H.

    1992-01-01

    The NALA program at Kernforschungszentrum Karlsruhe is concerned with the release of fuel and fission products from hot or boiling sodium pools (radiological secondary source term) in a liquid-metal fast breeder reactor accident scenario with tank failure. The main concern is to determine retention factors (RF), to uncover the most essential parameters that influence the RF values, and to describe the way they do it. In the framework of the last NALA series, NALA IIIc, the influence of sodium-concrete interaction was investigated, partly with subsequent sodium burning. In our experiments, ∼3 kg of sodium and added pieces of concrete reaching from 4 to 40 g was used. The composition of the concrete was suitable for shielding and construction as used in the SNR-300 reactor. Fuel was simulated by 20-μm particles of depleted UO 2 , and CeO 2 , NaI, and TeO 2 were used as fission products. Most experiments were performed in an inert argon gas atmosphere with monitored hydrogen development. In some cases, the preheated pool was allowed to come into contact with ambient air, which caused an ordinary sodium fire. For the latter case, we used the 220-m 3 FAUNA vessel as an outer containment and collected the fire aerosols by a trap and subsequent filters for analysis

  16. Vacuum characteristics of the RF-cavity for TRISTAN main ring

    International Nuclear Information System (INIS)

    Mizuno, H.

    1987-10-01

    Vacuum characteristics of the RF-cavity for TRISTAN main ring were tested. An APS (Alternating Periodic Structure) 18-cell cavity unit was made of low carbon steel S25C, and inner surface was electro-plated with copper of 100 μm in a pyrophosphorous-acid bath. After 24-hours bake-out at 140 deg C by a boiler, the outgassing rate of a test cavity was mainly dominated by the hydrogen permeation from the cooling water channel through the low carbon steel wall into the vacuum. By the use of anti-corrosion agent, the outgassing rate of the test cavity was decreased down to 1 x 10 -13 Torr · l/sec · cm 2 , after the bake-out at 140 deg C for 24 hours. After hydrogen degassing at 140 deg C for 10-days, the APS cavity unit was baked at 140 deg C for 24 hours, the ultimate pressure of the cavity reached down to 6 x 10 -10 Torr, and 2.7 x 10 -10 Torr, pumped by four 300 l/sec ion-pumps and by two 300 l/sec ion-pumps and two Ti-sublimation pumps with liquid nitrogen shroud respectively. The APS cavity unit was conditioned up to 250 kW/9-cell for 36 hours pumped by four 300 l/sec ion pumps, the ultimate pressure of the cavity was 5 x 10 -9 Torr with the RF power of 150 kW/9-cell on. (author)

  17. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  18. Hydrogen absorption kinetics of niobium with an ion-plated nickel overlayer

    International Nuclear Information System (INIS)

    Nakamura, K.

    1981-01-01

    The hydrogen absorption rate for nickel-ion-plated niobium was measured as a function of hydrogen pressure and temperature. The observed absorption curves of c(mean)/csub(e) against time (c(mean) and csub(e) are the mean and equilibrium hydrogen concentrations respectively) exhibited a marked hydrogen pressure dependence below 628 K but this was less marked above 723 K. The results were analysed on the basis of the proposed model that the rate-determining step is the hydrogen permeation through the nickel overlayer and that the permeation is driven by the hydrogen activity difference between the two interfaces, namely the H 2 -Ni and Ni-Nb interfaces. The marked pressure dependence can be attributed to the fact that the hydrogen activity coefficient in nickel is constant and that in niobium it varies markedly with concentration, i.e. with hydrogen pressure and temperature. It was also found that the change in the nickel overlayer structure caused by the dilatation of bulk niobium during hydrogen absorption enhances the hydrogen absorption rates. The temperature dependence of the hydrogen absorption rate is also discussed in comparison with that for tantalum with a vacuum-deposited nickel overlayer. (Auth.)

  19. Formation of Cu, Ag and Au nanofiims under the influence of hydrogen atoms

    Directory of Open Access Journals (Sweden)

    Zhavzharov E. L.

    2015-12-01

    Full Text Available Due to their electrical properties, thin metallic films are widely used in modern micro- and nanoelectronics. These properties allow solving fundamental problems of surface and solid state physics. Up-to-date methods of producing thin films involve high vacuum or multi-stage processes, which calls for complicated equipment. The authors propose an alternative method of producing thin metallic films using atomic hydrogen. Exothermal reaction of atoms recombination in a molecule (about 4.5 eV / recombination act initiated on the solid surface by atomic hydrogen may stimulate local heating, spraying and surface atoms transfer. We investigated the process of atomic hydrogen treatment of Cu, Ag and Au metal films, obtained by thermal vacuum evaporation. There are two methods of obtaining nanofilms using atomic hydrogen treatment: sputtering and vapor-phase epitaxy. In the first method, a film is formed by reducing the thickness of the starting film. This method allows obtaining a film as thick as the monolayer. In the second method, a nanofilm is formed by deposition of metal atoms from the vapor phase. This method allows obtaining a film thickness from monolayer to ~10 nm. These methods allow creating nanofilms with controlled parameters and metal thickness. Such films would be technologically pure and have good adhesion.

  20. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  1. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  2. Comparison of sodium borohydride hydrolysis kinetics on Co-based nanocomposite catalysts

    International Nuclear Information System (INIS)

    Hristov, Georgi; Chorbadzhiyska, Elitsa; Mitov, Mario; Rashkov, Rashko; Hubenova, Yolina

    2011-01-01

    In this study, we compared the results, obtained with several Co-based nanocomposites (CoMnB, CoNiMnB and CoNiMoW) produced by electrodeposition on Ni-foam, as catalysts for the sodium borohydride hydrolysis reaction. Based on the comparative analyses, we propose CoNiMnB electrodeposits as most suitable catalysts for development of Hydrogen-on-Demand (HOD) system, while CoNiMoW ones as potential anodes for Direct Borohydride Fuel Cells (DBFCs). Keywords: Hydrogen-on-Demand (HOD), Nanocomposites, Hydrolysis, Catalyst, Kinetic

  3. Effect of reversible hydrogen alloying and plastic deformation on microstructure development in titanium alloys

    International Nuclear Information System (INIS)

    Murzinova, M.A.

    2011-01-01

    Hydrogen leads to degradation in fracture-related mechanical properties of titanium alloys and is usually considered as a very dangerous element. Numerous studies of hydrogen interaction with titanium alloys showed that hydrogen may be considered not only as an impurity but also as temporary alloying element. This statement is based on the following. Hydrogen stabilizes high-temperature β-phase, leads to decrease in temperature of β→α transformation and extends (α + β )-phase field. The BCC β-phase exhibits lower strength and higher ductility in comparison with HCP α -phase. As a result, hydrogen improves hot workability of hard-to-deform titanium alloys. Hydrogen changes chemical composition of the phases, kinetics of phase transformations, and at low temperatures additional phase transformation (β→α + TiH 2 ) takes place, which is accompanied with noticeable change in volumes of phases. As a result, fine lamellar microstructure may be formed in hydrogenated titanium alloys after heat treatment. It was shown that controlled hydrogen alloying improves weldability and machinability of titanium alloys. After processing hydrogenated titanium preforms are subjected to vacuum annealing, and the hydrogen content decreases up to safe level. Hydrogen removal is accompanied with hydrides dissolution and β→α transformation that makes possible to control structure formation at this final step of treatment. Thus, reversible hydrogen alloying of titanium alloys allows to obtain novel microstructure with enhanced properties. The aim of the work was to study the effect of hydrogen on structure formation, namely: i) influence of hydrogen content on transformation of lamellar microstructure to globular one during deformation in (α+β)-phase field; ii) effect of dissolved hydrogen on dynamic recrystallization in single α- and β- phase regions; iii) influence of vacuum annealing temperature on microstructure development. The work was focused on the optimization of

  4. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  5. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  6. Revisiting the Hydrogen Storage Behavior of the Na-O-H System

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao

    2015-04-01

    Full Text Available Solid-state reactions between sodium hydride and sodium hydroxide are unusual among hydride-hydroxide systems since hydrogen can be stored reversibly. In order to understand the relationship between hydrogen uptake/release properties and phase/structure evolution, the dehydrogenation and hydrogenation behavior of the Na-O-H system has been investigated in detail both ex- and in-situ. Simultaneous thermogravimetric-differential thermal analysis coupled to mass spectrometry (TG-DTA-MS experiments of NaH-NaOH composites reveal two principal features: Firstly, an H2 desorption event occurring between 240 and 380 °C and secondly an additional endothermic process at around 170 °C with no associated weight change. In-situ high-resolution synchrotron powder X-ray diffraction showed that NaOH appears to form a solid solution with NaH yielding a new cubic complex hydride phase below 200 °C. The Na-H-OH phase persists up to the maximum temperature of the in-situ diffraction experiment shortly before dehydrogenation occurs. The present work suggests that not only is the inter-phase synergic interaction of protic hydrogen (in NaOH and hydridic hydrogen (in NaH important in the dehydrogenation mechanism, but that also an intra-phase Hδ+… Hδ– interaction may be a crucial step in the desorption process.

  7. Vacuum performance of a carbon fibre cryosorber for the LHC LSS beam screen

    CERN Document Server

    Anashin, V V; Dostovalov, R V; Korotaeva, Z A; Krasnov, A A; Malyshev, O B; Poluboyarov, V A

    2004-01-01

    A new carbon fibre material was developed at the Institute of Solid State Chemistry and Mechanochemistry at the Siberian Branch of the Russian Academy of Science (SB RAS) to meet the large hadron collider (LHC) vacuum chamber. The material must have a large sorbing capacity, a certain pumping speed, a working temperature range between 5 and 20K, a low activation temperature (below room temperature), a certain size in order to fit into the limited space available and it should be easy to mount. The vacuum parameters of the LHC vacuum chamber prototype with a carbon fibre cryosorber mounted onto the beam screen were studied in the beam screen temperature range from 14 to 25K at the Budker Institute of Nuclear Physics SB RAS. This carbon fibre material has shown sufficient sorption capacity for hydrogen at operational temperatures of the beam screen in the LHC long straight sections. It is also very important that this material does not crumble and makes a convenient fixation onto the beam screen in comparison t...

  8. Lamb shift in muonic hydrogen-II. Analysis of the discrepancy of theory and experiment

    International Nuclear Information System (INIS)

    Jentschura, U.D.

    2011-01-01

    Research highlights: → Various theoretical explanation for the recently observed experimental-theoretical discrepancy in the muonic hydrogen Lamb shift are explored. → These include a dip in the proton form factor slope, nonperturbative vacuum polarization and millicharged virtual particles, as well as process-dependent screening corrections. → Screening corrections may need to be explored further. → The need for an alternative determination of the Rydberg constant is highlighted. - Abstract: Currently, both the g factor measurement of the muon as well as the Lamb shift 2S-2P measurement in muonic hydrogen are in disagreement with theory. Here, we investigate possible theoretical explanations, including proton structure effects and small modifications of the vacuum polarization potential. In particular, we investigate a conceivable small modification of the spectral function of vacuum polarization in between the electron and muon energy scales due to a virtual millicharged particle and due to an unstable vector boson originating from a hidden sector of an extended standard model. We find that a virtual millicharged particle which could explain the muonic Lamb shift discrepancy alters theoretical predictions for the muon anomalous magnetic moment by many standard deviations and therefore is in conflict with experiment. Also, we find no parameterizations of an unstable virtual vector boson which could simultaneously explain both 'muonic' discrepancies without significantly altering theoretical predictions for electronic hydrogen, where theory and experiment currently are in excellent agreement. A process-dependent correction involving electron screening is evaluated to have the right sign and order-of-magnitude to explain the observed effect in muonic hydrogen. Additional experimental evidence from light muonic atoms and ions is needed in order to reach further clarification.

  9. SOCON: a computer model for analyzing the behavior of sodium-concrete reactions

    International Nuclear Information System (INIS)

    Nguyen, D.G.; Muhlestein, L.D.

    1985-03-01

    Guided by experimental evidence available to date, ranging from basic laboratory studies to large scale tests, a mechanistic computer model (the SOCON model) has been developed to analyze the behavior of SOdium-CONcrete reactions. The model accounts for the thermal, chemical and mechanical phenomena which interact to determine the consequences of the reactions. Reaction limiting mechanisms could be any process which reduces water release and sodium transport to fresh concrete; the buildup of the inert reaction product layer would increase the resistance to sodium transport; water dry-out would decrease the bubble agitation transport mechanism. However, stress-induced failure of concrete, such as spalling, crushing and cracking, and a massive release of gaseous products (hydrogen, water vapor and CO 2 ) would increase the transport of sodium to the reaction zone. The results of SOCON calculations are in excellent agreement with measurements obtained from large-scale sodium-limestone concrete reaction tests of duration up to 100 hours conducted at the Hanford Engineering Development Laboratory. 8 refs., 7 figs

  10. Pyro-oxidation of plutonium spent salts with sodium carbonate

    International Nuclear Information System (INIS)

    Bourges, G.; Godot, A.; Valot, C.; Devillard, D.

    2001-01-01

    The purification of plutonium generates spent salts, which are temporarily stored in a nuclear building. A development programme for pyrochemical treatment is in progress to stabilize and concentrate these salts in order to reduce the quantities for long-term disposal. The treatment, inspired by work previously done by LANL, consists of a pyro-oxidation of the salt with sodium carbonate to convert the actinides into oxides, then of a vacuum distillation to separate the oxides from the volatile salt matrix. Pyro-oxidation of NaCl/KCl base spent salts first produces a 'black salt' which contains more than 97% of the initial actinides. XRD analyses indicate PuO 2 as major plutonium species and sodium plutonates or plutonium sub-oxides PuO 2-x can also be identified. Next appears a 'white salt' containing less than 500 ppm of plutonium, which meets the operational criterion for LLW discard. For these salts, the pyro-oxidation process in and of itself is expected to reduce the quantities to be stored on-site by more than one-third. The pyro-oxidation of CaCl 2 /NaCl base americium extraction salts leads to oxides PuO 2 and probably AmO 2 , but the yield of concentration in the black salt is lower and the white salt cannot be discarded as LLW. During vacuum distillation, excess carbonate can dissociate and damage the efficiency of the process. Appropriate chlorine sparging at the end of the oxidation can eliminate this carbonate. (authors)

  11. Accident alarm equipment for steam generator, especially liquid sodium heated steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Jung, J.; Banovec, J.

    1982-01-01

    The alarm equipment consists of a system of sensors mounted onto the steam generator and its accessories. Each of the sensors is used for a different accident characteristic, such as the flow of sodium, the acoustic spectrum, the concentration of hydrogen in sodium. The system of sensors is connected to the common accident alarm system. The equipment will not issue the alarm signal if it receives a message from only one sensor, only when the message is confirmed from other sensors. This excludes false alarm. (M.D.)

  12. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  13. Magnetically induced vacuum decay

    International Nuclear Information System (INIS)

    Xue Shesheng

    2003-01-01

    We study the fermionic vacuum energy of vacua with and without application of an external magnetic field. The energetic difference of two vacua leads to the vacuum decaying and the vacuum energy being released. In the context of quantum field theories, we discuss why and how the vacuum energy can be released by spontaneous photon emission and/or paramagnetically screening the external magnetic field. In addition, we quantitatively compute the vacuum energy released, the paramagnetic screening effect, and the rate and spectrum of spontaneous photon emission. The possibilities of experimentally detecting such an effect of vacuum-energy release and that this effect accounts for the anomalous x-ray pulsar are discussed

  14. The Hydrogen Detection Technique for SG Protection System

    International Nuclear Information System (INIS)

    Lv Mingyu; Pei Zhiyong; Yu Huajin

    2015-01-01

    SG that is pressure boundary between secondary loop and triple loop is the key equipment of fast reactor, in which heat in secondary loop is transferred to water or steam in triple loop. According to data from IAEA, SG is the highest failure rate equipment in fast reactor, especially because of failure of heat transfer tube. In order to monitor failure of heat transfer tube, Fast Reactor Engineering Department develops diffusion type hydrogen detection system, which is used to detect sodium-water reaction in time. This paper firstly introduces experimental research scheme and results of this hydrogen detection technique; Subsequently, it is described that how this technique can be engineering realized in CEFR; Moreover, through developing a series of calibration tests and hydrogen injection tests, it is obtained that sensitivity, response time and calibration curse for hydrogen detection system of CEFR. (author)

  15. Mechanism of obtaining carbon monoxide and hydrogen during brown coal radiolysis. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rustamov, V R; Kurbanov, M A; Dzantiev, B T; Kerimov, V K; Musaeva, P F

    1982-05-01

    This article analyzes effects of gamma radiation on the yield of products of coal gasification: hydrogen and carbon monoxide. Samples of brown coal from the Kansk-Achins basin were treated by gamma radiation with cobalt 60 radiation source. Analyses show that accumulation of hydrogen and carbon monoxide in brown coal under influence of gamma radiation is characterized by a constant rate. Yields of carbon monoxide and hydrogen amount to 0.16 molecule/100 electro volt and 0.21 molecule/electro volt respectively. Reducing radiation dose from 2.5 to 0.7 millirad/h reduces yields of hydrogen and carbon monoxide. Increasing temperature of vacuum brown coal pyrolysis from 200 to 600 C causes decrease of hydrogen yield. Hydrogen yield decrease during temperature increase is caused by a high content of aromatic nuclei in the samples used in the radiolysis. (5 refs.)

  16. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  17. Effect of alternative salt use on broiler breast meat yields, tenderness, flavor, and sodium concentration.

    Science.gov (United States)

    Broadway, P R; Behrends, J M; Schilling, M W

    2011-12-01

    Fresh chicken breast fillets were marinated with gourmet-style salts: Himalayan pink salt, Sonoma gourmet salt, sel gus de Guerande, and Bolivian rose salt to evaluate their effects on marination and cook loss yields, tenderness, sensory attributes, and sodium concentration. Fresh chicken breast fillets (48-h postmortem) were vacuum tumbled (137 kPa at 20 rpm for 17 min) in a solution of water, salt, and sodium tripolyphosphate at a level of 20% of the meat weights. Instrumental analyses showed no significant difference (P > 0.05) in meat quality with respect to marination yield, cook yield, or shear-force value. There were also no significant differences (P > 0.05) in sensory descriptors between salt treatments. However, Sonoma gourmet salt showed a tendency (P = 0.0693) to score increased savory note values from panelists, whereas Bolivian rose salt received the lowest score. There were no significant differences (P > 0.05) in sodium concentrations between salt treatments, but numerically, sel gus de Guerande had the lowest sodium concentration, which could be important in producing reduced sodium products. Understanding different salts and sodium concentrations allows the poultry industry to use gourmet salts in products and maintain overall meat quality and flavor.

  18. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .

  19. Vacuum system for ISABELLE

    International Nuclear Information System (INIS)

    Hobson, J.P.

    1975-01-01

    An analysis is presented of the proposed vacuum system for the planned ISABELLE storage rings with respect to acceptability and practicality from the vacuum viewport. A comparison is made between the proposed vacuum system and the vacuum system at the CERN ISR, and some comments on various design and operational parameters are made

  20. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  1. Hydrogen sulfide accelerates wound healing in diabetic rats.

    Science.gov (United States)

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF).

  2. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two-part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validation of the developed OSATS scale for vac...

  3. Study of the influence of adsorption of oxygen, hydrogen and water on radiation-induced thermally activated currents of magnesium oxide

    International Nuclear Information System (INIS)

    Wysocki, S.

    1985-01-01

    Recently, radiation-induced thermally activated currents (RITAC) have been studied in purified and magnesium-doped lithium fluoride. In the RITAC method, the electric field is applied at low temperature, only during irradiation. The present paper deals with the dipolar complexes generated by γ-radiations in the surface region of magnesium oxide in vacuum and in the presence of oxygen, hydrogen and water. Spectrally pure MgO single crystal spectrally pure oxygen and hydrogen and doubly distilled water were used. The electrodes were deposited on the (100) surface of MgO single crystal by vacuum evaporation of gold. Experimental details are given. A figure shows the thermally activated depolarization (TAD) curve for MgO in vacuum. In a TAD experiment, the sample was subjected to a constant electric field at 700 K and cooled. Upon reaching room temperature the electric field was removed In this case we observed a single peak at Tsub(max) = 511 K. A figure shows RITAC curves for an MgO sample in vacuum after irradiation. The results are shown and discussed. (author)

  4. High Sodium Simulant Testing To Support SB8 Sludge Preparation

    International Nuclear Information System (INIS)

    Newell, J. D.

    2012-01-01

    Scoping studies were completed for high sodium simulant SRAT/SME cycles to determine any impact to CPC processing. Two SRAT/SME cycles were performed with simulant having sodium supernate concentration of 1.9M at 130% and 100% of the Koopman Minimum Acid requirement. Both of these failed to meet DWPF processing objectives related to nitrite destruction and hydrogen generation. Another set of SRAT/SME cycles were performed with simulant having a sodium supernate concentration of 1.6M at 130%, 125%, 110%, and 100% of the Koopman Minimum Acid requirement. Only the run at 110% met DWPF processing objectives. Neither simulant had a stoichiometric factor window of 30% between nitrite destruction and excessive hydrogen generation. Based on the 2M-110 results it was anticipated that the 2.5M stoichiometric window for processing would likely be smaller than from 110-130%, since it appeared that it would be necessary to increase the KMA factor by at least 10% above the minimum calculated requirement to achieve nitrite destruction due to the high oxalate content. The 2.5M-130 run exceeded the DWPF hydrogen limits in both the SRAT and SME cycle. Therefore, testing of this wash endpoint was halted. This wash endpoint with this minimum acid requirement and mercury-noble metal concentration profile appears to be something DWPF should not process due to an overly narrow window of stoichiometry. The 2M case was potentially processable in DWPF, but modifications would likely be needed in DWPF such as occasionally accepting SRAT batches with undestroyed nitrite for further acid addition and reprocessing, running near the bottom of the as yet ill-defined window of allowable stoichiometric factors, potentially extending the SRAT cycle to burn off unreacted formic acid before transferring to the SME cycle, and eliminating formic acid additions in the frit slurry

  5. Parameter study on Japanese proposal of ITER hydrogen isotope separation system

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Enoeda, Mikio; Tanaka, Shigeru; Ohokawa, Yoshinao; Ohara, Atsushi; Nagakura, Masaaki; Naito, Taisei; Nagashima, Kazuhiro.

    1991-01-01

    As part of Japanese design contribution in the ITER activity, conceptual design of an entire ITER tritium system and their safety analysis have been carried out through the three-year period since 1988. The tritium system includes the following subsystems; - Fuelling (gas puffing and pellet injection) subsystem, - Torus vacuum pumping subsystem, - Plasma exhaust gas purification subsystem, - Hydrogen isotope separation subsystem, - NBI gas processing subsystem, - Blanket tritium recovery subsystem, - Tritiated water processing subsystem, - Tritium safety subsystem. Hydrogen isotope separation system is a key subsystem in the ITER tritium system because it is connected to all above subsystems. This report describes an analytical study on the Japanese concept of hydrogen isotope separation system. (author)

  6. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    International Nuclear Information System (INIS)

    Ouyang, Y.J.; Yu, G.; Ou, A.L.; Hu, L.; Xu, W.J.

    2011-01-01

    Highlights: → Designed an amperometric hydrogen sensor with double electrolytes. → Explained the principle of determining hydrogen permeation rate. → Verified good stability, reproducibility and correctness of the developed sensor. → Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm -3 KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  7. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  8. Adsorption of hydrogen in titanium

    International Nuclear Information System (INIS)

    Martinez R, T.

    1995-01-01

    In this work the absorption of hydrogen in titanium plates using a constant volume system has been realized. The changes of temperature and pressure were used to monitor the progress of the absorption. A stainless steel vacuum chamber with volume of 4,333 cm 3 was used. A titanium sample of 45 x 5.4 x 0.3 cm was located in the center of the chamber. The sample was heated by an electrical source connected to the system. The sample was preconditioned with a vacuum-thermal treatment at 10 -6 mbar and 800 Centigrade degrees for several days. Absorption was observed at room temperature and also at higher temperatures. The room temperature absorption was in the pressure range of 1.0 x 10 3 to 2.5 x 10 3 mbar, and other absorptions were from 180 to 630 Centigrade degrees at 3.5 x 10 -1 to 1.3 x 10 3 mbar. It was found that the gas absorbed was function of the vacuum-thermal pre-conditioned treatment, pressure and temperature. When the first absorption was developed, additional absorptions were realized in short time. We measured the electrical resistivity of the sample in the experiments but we could not see important changes due to the absorption. (Author)

  9. Lamb shift in muonic hydrogen-I. Verification and update of theoretical predictions

    International Nuclear Information System (INIS)

    Jentschura, U.D.

    2011-01-01

    Research highlights: → The QED theory of muonic hydrogen energy levels is verified and updated. → Previously obtained results of Pachucki and Borie are confirmed. → The influence of the vacuum polarization potential onto the Bethe logarithm is calculated nonperturbatively. → A model-independent estimate of the Zemach moment correction is given. → Parametrically, the observed discrepancy of theory and experiment is shown to be substantial and large. - Abstract: In view of the recently observed discrepancy of theory and experiment for muonic hydrogen [R. Pohl et al., Nature 466 (2010) 213], we reexamine the theory on which the quantum electrodynamic (QED) predictions are based. In particular, we update the theory of the 2P-2S Lamb shift, by calculating the self-energy of the bound muon in the full Coulomb + vacuum polarization (Uehling) potential. We also investigate the relativistic two-body corrections to the vacuum polarization shift, and we analyze the influence of the shape of the nuclear charge distribution on the proton radius determination. The uncertainty associated with the third Zemach moment 3 > 2 in the determination of the proton radius from the measurement is estimated. An updated theoretical prediction for the 2S-2P transition is given.

  10. Hydrogen permeation through sol-gel-coated iron during galvanostatic charging

    International Nuclear Information System (INIS)

    Zakorchemna, I.; Carmona, N.; Zakroczymski, T.

    2008-01-01

    One-layer sol-gel silica-zirconia and two-layer silica-zirconia and zirconia coatings were deposited on one side of iron membranes by spin-coating, densified in air and annealed up to 800 deg. C in vacuum. Hydrogen permeation through the membranes, coated and uncoated, polarised cathodically under galvanostatic control in 0.1 M NaOH solution was studied using the electrochemical permeation technique. During the initial period, the effect of the sol-gel coatings was insignificant. However, the coatings quite efficiently prevented the iron surface become more active to hydrogen entry during a long-lasting cathodic polarisation. In addition, the electrochemical-corrosion behaviour of the coated iron and the effect of the sol-gel coatings on the effective diffusivity of hydrogen in the coated membranes were studied. On the basis of the polarisation curves and the hydrogen permeation data it was proved that the sol-gel coatings blocked the iron surface for the hydrogen evolution reaction and, consequently, for the hydrogen entry into iron. The effective coating coverage was determined by comparison of the hydrogen fluxes permeating the coated and uncoated membranes. Finally the real concentration of hydrogen beneath the uncoated iron sites and the amount of hydrogen stored in a membrane were evaluated

  11. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, H.; Hammer, M. U.; Reuter, S. [Center for Innovation Competence plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von [Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  12. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  13. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  14. Thermodesorption examination of interaction of hydrogen with traps in silver

    International Nuclear Information System (INIS)

    Gabis, I.E.; Kurdyumov, A.A.; Ovsvannikova, T.A.

    1992-01-01

    The authors have previously examined the interaction of hydrogen with silver by the methods of thermal desorption spectrometry (TDS) and hydrogen permeability. The results showed that the TDS spectra contained a high-temperature phase linked with hydrogen which left the volume of the specimen during heating. It was assumed that hydrogen was captured and released by structural defects acting as traps. These traps can be represented by vacancies and their clusters. In this work, the high-temperature desorption of hydrogen from silver was studied. The experimental setup consisted of an all-metal vacuum system, a time-of-flight mass spectrometer, a DVK-2M computing system, and a Camac system. The described model of a local equilibrium should be regarded only as a first approximation. The results provide unambiguous information on the processes of permeability and desorption, and make it possible to assume that the formation of the high-temperature phase in TD spectra was caused by the generation of hydrogen from the traps. The parameters of the interaction of hydrogen with the traps were determined by the concentration wave method. 7 refs., 2 figs

  15. Acoustic sodium-water reaction detection of the Phenix steam generators

    International Nuclear Information System (INIS)

    Carminati, M.; Martin, L.; Sauzaret, A.

    1990-01-01

    The systems for acoustic sodium-water reaction detection and hydrogen detection of the Phenix steam generators as well as systems for monitoring signals analysis and processing are described. It is reported that the results obtained during operation and calibration phases are very encouraging and that industrial equipment showing the same performance are being examined. 6 figs

  16. EUV tools: hydrogen gas purification and recovery strategies

    Science.gov (United States)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  17. Hydrogen peroxide as pre-treatment stressor in experimental immer-sion challenge of rainbow trout fry with Flavobacterium psychrophilum

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi; Madsen, Lone; Dalsgaard, Inger

    2012-01-01

    . Non-medical therapeutic substances are routinely used against pathogens in aquacultures, including copper sulphate, chloramine-T, sodium carbonates, sodium chloride, formalin and hydrogen peroxide (H2O2). One of the more successful immersion models used formalin as a stressor, but a less harmful...

  18. Formation of free hydrogen during radiolysis in a bed of clay

    International Nuclear Information System (INIS)

    Eriksen, T.; Lind, J.

    1983-01-01

    Measurements of the amount of molecular hydrogen formed radiolytically in γ-irradiated sodium bentonite with varying water content have been carried out. Experiments have been carried out with 0.1 to 5 MPa Ar pressure and 2 to 5 MPa mechanical (mercury) pressure applied to the bentonite. The results clearly show that a water content and pressure-dependent equilibrium is obtained with hydrogen concentrations well below the hydrogen solubility in water. Titrations of slurries of 10 g irradiated and unirradiated bentonite in 100 g water with NaOH show a dose dependent increase in the surface acidity of the bentonite

  19. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  20. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  1. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, David [U.S. Borax Inc., Rio Tinto, CO (United States); Neiner, Doinita [U.S. Borax Inc., Rio Tinto, CO (United States); Bowden, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whittemore, Sean [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenguo [Univ. of Wollongong, NSW (Australia); Autrey, Tom [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of

  2. Vacuum level effects on gait characteristics for unilateral transtibial amputees with elevated vacuum suspension.

    Science.gov (United States)

    Xu, Hang; Greenland, Kasey; Bloswick, Donald; Zhao, Jie; Merryweather, Andrew

    2017-03-01

    The elevated vacuum suspension system has demonstrated unique health benefits for amputees, but the effect of vacuum pressure values on gait characteristics is still unclear. The purpose of this study was to investigate the effects of elevated vacuum levels on temporal parameters, kinematics and kinetics for unilateral transtibial amputees. Three-dimensional gait analysis was conducted in 9 unilateral transtibial amputees walking at a controlled speed with five vacuum levels ranging from 0 to 20inHg, and also in 9 able-bodied subjects walking at self-preferred speed. Repeated ANOVA and Dunnett's t-test were performed to determine the effect of vacuum level and limb for within subject and between groups. The effect of vacuum level significantly affected peak hip external rotation and external knee adduction moment. Maximum braking and propulsive ground reaction forces generally increased for the residual limb and decreased for the intact limb with increasing vacuum. Additionally, the intact limb experienced an increased loading due to gait asymmetry for several variables. There was no systematic vacuum level effect on gait. Higher vacuum levels, such as 15 and 20inHg, were more comfortable and provided some relief to the intact limb, but may also increase the risk of osteoarthritis of the residual limb due to the increased peak external hip and knee adduction moments. Very low vacuum should be avoided because of the negative effects on gait symmetry. A moderate vacuum level at 15inHg is suggested for unilateral transtibial amputees with elevated vacuum suspension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    International Nuclear Information System (INIS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-01-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm–1 μm) with metal-oxide core–shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg–Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  4. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    International Nuclear Information System (INIS)

    Salabat, Alireza; Sadeghi, Rahmat; Moghadam, Somayeh Tiani; Jamehbozorg, Bahman

    2011-01-01

    Highlights: → Thermodynamics parameters for partitioning of L-methionine in ATPS. → Investigation of different effects on partition coefficient of the amino acid. → Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H 2 O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH 2 PO 4 ), di-sodium hydrogen phosphate (Na 2 HPO 4 ) and tri-sodium phosphate (Na 3 PO 4 ). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH o , ΔS o and ΔG o ) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na 3 PO 4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  5. Biogeochemistry of molecular hydrogen in sulfate-reducing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.

    1987-01-01

    Concentrations of molecular hydrogen (H{sub 2}) have been measured using an equilibration-vacuum transfer method coupled to mercuric oxide reduction. In hemipelagic sediments (Eastern Tropical North Pacific (ETNP)) and bioturbated sediments (Princess Louisa Inlet, BC (PLI), and Buzzards Bay, MA (BB)) hydrogen levels were lowest in surface sediments and increased with depth. Sharp increases in H{sub 2} concentrations were observed just below the zone of bioturbation (PLI and BB), or below the depth of nitrate depletion (ETNP). Apparent hydrogen production rates were determined in laboratory incubations of sediments amended with inhibitors of sulfate reduction and methanogenesis. Hydrogen production ranged from 30 nmol 1{sup {minus}1} h{sup {minus}1} to 20 {times} 10{sup 3} nmol 1{sup {minus}1} h{sup {minus}1}. Apparent hydrogen production rates generally decreased in parallel with measured sulfate reduction rates. Experiments examined the response of apparent H{sub 2} production rates to additions of both specific organic chemicals and to additions of naturally occurring, complex organic materials. Organic sources typically considered labile (sucrose, and algae) stimulated apparent production up to a factor of 70. More refractory compounds (humic acids, chitin), stimulated rates of hydrogen production only slightly or not at all. These results show that hydrogen production is, in part, a function of the type of organic matter being degraded.

  6. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  7. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Kim, Taegyu

    2014-01-01

    A proton exchange membrane fuel cell system integrated with a NaBH 4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH 4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH 4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  8. Introduction to vacuum technology: supplementary study material developed for IVS sponsored vacuum courses

    International Nuclear Information System (INIS)

    Bhusan, K.G.

    2008-01-01

    Vacuum technology has advanced to a large extent mainly from the demands of experimental research scientists who have more than ever understood the need for clean very low pressure environments. This need only seems to increase as the lowest pressures achievable in a laboratory setup are dropping down by the decade. What is not usually said is that conventional techniques of producing ultrahigh vacuum have also undergone a metamorphosis in order to cater to the multitude of restrictions in modern day scientific research. This book aims to give that practical approach to vacuum technology. The basics are given in the first chapter with more of a definition oriented approach - which is practically useful. The second chapter deals with the production of vacuum and ultrahigh vacuum with an emphasis on the working principles of several pumps and their working pressure ranges. Measurement of low pressures, both total and partial is presented in the third chapter with a note on leak detection and mass spectrometric techniques. Chapter 4 gives an overview of the materials that are vacuum compatible and their material properties. Chapter 5 gives the necessary methods to be followed for cleaning of vacuum components especially critical if ultrahigh vacuum environment is required. The practical use of a ultrahigh vacuum environment is demonstrated in Chapter 6 for production of high quality thin films through vapour deposition

  9. Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Oh, Taek Hyun; Gang, Byeong Gyu; Kim, Hyuntak; Kwon, Sejin

    2015-01-01

    The response characteristics of electroless-deposited Co–P/Ni foam catalysts for sodium borohydride hydrolysis were investigated. The effect of nickel foam geometry on the properties of the catalysts was evaluated. As the PPI (pores per inch) of the nickel foam increased, the hydrogen generation rate per gram of the deposited catalyst increased due to an increase in surface area. The response characteristics of various catalysts were compared under real operating conditions. When a thin nickel foam with high PPI was used, the response characteristics of the catalyst improved due to an increase in the amount of the deposited catalyst and surface area. Finally, a 200 W PEMFC (proton exchange membrane fuel cell) system using electroless-deposited Co–P/Ni foam (110 PPI) catalyst was investigated. The response time to reach a hydrogen generation rate sufficient for a 200 W PEMFC was 71 s, and the energy density of a 200 W fuel cell system for producing 600 Wh was 252.1 Wh/kg. A fuel cell system using Co–P/Ni foam catalysts can be widely used as a power source for mobile applications due to fast response characteristics and high energy density. - Highlights: • Response characteristics of Co–P/Ni foam catalysts are investigated. • Catalytic activity is improved with increase in PPI (pores per inch) of Ni foam. • Co–P/Ni foam (110 PPI) catalyst has improved response characteristics. • The energy density of a 200 W PEMFC system for producing 600 Wh is 252.1 Wh/kg. • Co–P/Ni foam (110 PPI) catalyst is suitable for fuel cell system.

  10. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  11. Development of sodium leak detectors for PFBR

    International Nuclear Information System (INIS)

    Sylvia, J.I.; Rao, P. Vijayamohana; Babu, B.; Madhusoodanan, K.; Rajan, K.K.

    2012-01-01

    Highlights: ► Sodium leak detection system developed for PFBR using diverse principle. ► Miniature, remotely locatable diverse leak detector developed for Main Vessel. ► Mutual inductance type leak detectors designed and adapted for different locations. ► Sodium Ionisation detectors used for area monitoring. ► Crosswire type leak detector designed, developed and tested. - Abstract: The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam near Chennai in India. The wide and high operating temperature, highly chemically active nature of sodium and its reaction with air make the sodium instrumentation complex over the conventional instrumentation. Over the years, traditional instruments such as wire type leak detectors, spark plug type leak detectors were developed and used in different sodium systems. The redundant and diverse leak detection method calls for development of special instrumentation for sodium systems which include sodium ionization (leak) detector for detecting minute sodium leak in addition to those systems based on mutual inductance principle. For detection of sodium leak from reactor Main Vessel (MV), diverse methods are used such as miniature, remotely locatable, Mutual Inductance type Leak Detector(MILD) and specially modified spark plug type leak detector. The design of MILD is suitably modified for detecting leak in double wall pipes and Diverse Safety Rod drive Mechanism (DSRDM). Steam/water leak in steam generator produces hydrogen and leads to high pressure and temperature in the system. Rupture disc is used as a safety device which punctures itself due to sudden pressure rise. To detect the discharge of sodium and its reaction products at the downstream of the rupture disc due to bursting of the rupture disc, cross wire type leak detector has been designed, developed and tested. The selection of the leak detection system depends on the location where leak has to be detected. This paper

  12. Realization of a liquid hydrogen target

    International Nuclear Information System (INIS)

    Libin, J.F.; Gangnant, F.

    1997-01-01

    Experiments by the SPEG facility at GANIL need liquid hydrogen targets of some cm 3 . To achieve such targets, temperatures lower than 20 K must be obtained while their thin windows must withstand to pressures higher than 1000 m bars at these temperatures. Havar windows of 4.4 μm thickness met these requirements. A RW5 type Leybold cryo-generator was used as well as a system of ohmic heaters allowing regaining the initial state in a time equivalent with time elapsed for cooling. The working regime was chosen to be constant volume - variable pressure. The various components of this equipment (cryogenic head, buffer volume, hydrogen reservoir and vacuum pump) were coupled through 'aeroquip' allowing by dismantling and changes to keep the hydrogen isolated from the ambient atmosphere. The tests confirmed the accuracy of estimations done for the buffer volume and pressure. The only uncertainty is related to the window deformations. The time of cooling and reheating of target is around one hour. This allows during an experiment to aerate the chamber as the target was accessible to any necessary intervention

  13. Ultrahigh vacuum and high-pressure coadsorption of CO and H2 on Pd(111): A combined SFG, TDS, and LEED study

    Science.gov (United States)

    Morkel, Matthias; Rupprechter, Günther; Freund, Hans-Joachim

    2003-11-01

    Sum frequency generation (SFG) vibrational spectroscopy was carried out in conjunction with thermal desorption spectroscopy, low-energy electron diffraction, and Auger electron spectroscopy to examine the coadsorption of CO and H2 on Pd(111). Sequential dosing as well as various CO/H2 mixtures was utilized to study intermolecular interactions between CO and H2. Preadsorbed CO effectively prevented the dissociative adsorption of hydrogen for CO coverages ⩾0.33 ML. While preadsorbed hydrogen was able to hinder CO adsorption at low temperature (100 K), hydrogen was replaced from the surface by CO at 150 K. When 1:1 mixtures of CO/H2 were used at 100 K, hydrogen selectively hindered CO adsorption on on-top sites, while above ˜125 K no blocking of CO adsorption was observed. The observations are explained in terms of mutual site blocking, of a CO-H phase separation, and of a CO-assisted hydrogen dissolution in the Pd bulk. The temperature-dependent site blocking effect of hydrogen is attributed to the ability (inability) of surface hydrogen to diffuse into the Pd bulk above (below) ˜125 K. Nonlinear optical SFG spectroscopy allowed us to study these effects not only in ultrahigh vacuum but also in a high-pressure environment. Using an SFG-compatible ultrahigh vacuum-high-pressure cell, spectra of 1:10 CO/H2 mixtures were acquired up to 55 mbar and 550 K, with simultaneous gas chromatographic and mass spectrometric gas phase analysis. Under reaction conditions, CO coverages ⩾0.5 ML were observed which strongly limit H2 adsorption and thus may be partly responsible for the low CO hydrogenation rate. The high-pressure and high-temperature SFG spectra also showed indications of a reversible surface roughening or a highly dynamic (not perfectly ordered) CO adsorbate phase. Implications of the observed adsorbate structures on catalytic CO hydrogenation on supported Pd nanoparticles are discussed.

  14. Ultrahigh vacuum and high-pressure coadsorption of CO and H2 on Pd(111): A combined SFG, TDS, and LEED study

    International Nuclear Information System (INIS)

    Morkel, Matthias; Rupprechter, Guenther; Freund, Hans-Joachim

    2003-01-01

    Sum frequency generation (SFG) vibrational spectroscopy was carried out in conjunction with thermal desorption spectroscopy, low-energy electron diffraction, and Auger electron spectroscopy to examine the coadsorption of CO and H 2 on Pd(111). Sequential dosing as well as various CO/H 2 mixtures was utilized to study intermolecular interactions between CO and H 2 . Preadsorbed CO effectively prevented the dissociative adsorption of hydrogen for CO coverages ≥0.33 ML. While preadsorbed hydrogen was able to hinder CO adsorption at low temperature (100 K), hydrogen was replaced from the surface by CO at 150 K. When 1:1 mixtures of CO/H 2 were used at 100 K, hydrogen selectively hindered CO adsorption on on-top sites, while above ∼125 K no blocking of CO adsorption was observed. The observations are explained in terms of mutual site blocking, of a CO-H phase separation, and of a CO-assisted hydrogen dissolution in the Pd bulk. The temperature-dependent site blocking effect of hydrogen is attributed to the ability (inability) of surface hydrogen to diffuse into the Pd bulk above (below) ∼125 K. Nonlinear optical SFG spectroscopy allowed us to study these effects not only in ultrahigh vacuum but also in a high-pressure environment. Using an SFG-compatible ultrahigh vacuum-high-pressure cell, spectra of 1:10 CO/H 2 mixtures were acquired up to 55 mbar and 550 K, with simultaneous gas chromatographic and mass spectrometric gas phase analysis. Under reaction conditions, CO coverages ≥0.5 ML were observed which strongly limit H 2 adsorption and thus may be partly responsible for the low CO hydrogenation rate. The high-pressure and high-temperature SFG spectra also showed indications of a reversible surface roughening or a highly dynamic (not perfectly ordered) CO adsorbate phase. Implications of the observed adsorbate structures on catalytic CO hydrogenation on supported Pd nanoparticles are discussed

  15. Investigation of vacuum deposited hybrid coatings of protic organic UV absorbers embedded in a silica matrix used for the UV protection of Polycarbonate glazing

    OpenAIRE

    Weber, C.; Schulz, U.; Mühlig, C.; Kaiser, N.; Tünnermann, A.

    2016-01-01

    A study of vacuum-deposited organic-inorganic hybrid coatings for UV protection of polycarbonate is presented. UV-absorbing compounds, which are commonly used for polycarbonate, were embedded in a silica matrix by thermal co-evaporation under high vacuum. In addition to the optical properties of the coatings, the influence of the silica network on the organic UV absorber and the stability of the intramolecular hydrogen bond (IMHB) are discussed. A model is presented to show the interaction be...

  16. The design, construction, commissioning and operation of a plant at Dounreay to dispose of sodium from KNKII

    International Nuclear Information System (INIS)

    Bowser, R.; Farquhar, J.; Currie, R.

    1997-01-01

    In a competitive bidding exercise, AEA Technology at Dounreay won a contract to dispose of 88 tonnes of fast reactor sodium from the KNKII reactor at KarIsruhe, Germany. This sodium comprises of 36 tonnes of 'primary' sodium containing traces of caesium-137 and sodium-22 and 52 tonnes of lightly tritiated 'secondary' sodium. The sodium has been transported solid to Dounreay in 200 litre drums. To fulfil this contract a sodium disposal plant has been designed, constructed, commissioned and put into operation. Following an option study, an aqueous reaction plant design was selected. In this process, sodium is reacted with aqueous caustic soda, producing hydrogen gas and more caustic soda. The hydrogen is diluted with air and vented to atmosphere, and the caustic is neutralised with hydrochloric acid before discharge to the site low-active drain. All effluents - gaseous or liquid - are filtered and treated to remove as much radioactivity as possible before discharge. The main reasons for choosing this design option were that the process was well proven, the reaction is easily controlled by controlling the supply of sodium into the reaction vessel, reaction temperatures are relatively low and the effluent can be easily prepared for discharge. It was also felt that an aqueous reaction plant could be designed to be operated remotely by one operator. The sodium in the drums is melted in a sodium melting station and then drained to a sodium buffer tank, prior to being injected into the reaction vessel. By collecting sodium in the buffer tank, sodium melting can proceed in parallel with sodium disposal allowing a high throughput to be achieved. This plant has been designed to dispose of 100 kg of sodium per hour, requiring a small operating team, suitably shielded from the radiological hazard. The design also ensures that the rate of reaction is controlled and that the effluent discharged to the low-active drain has been properly neutralised. The construction was performed

  17. Sodium benzyl(monoethanol)ammonium bis(gluconatoborate). Bis(glyukonatoborat) natriya-benzil(monoehtanol)ammoniya

    Energy Technology Data Exchange (ETDEWEB)

    Tel' zhenskaya, P N; Shvarts, E M; Vitola, I M [AN Latvijskoj SSR, Riga (USSR). Inst. Neorganicheskoj Khimii

    1990-01-01

    Boron compounds with gluconic acid and monoethanol- and benzylamines are synthesized and investigated by physicochemical methods (IR-spectroscopy, thermal decomposition, conductometry, Fischer titration). Tetracoordinated boron has two free hydroxyl groups, dimer of boron-gluconate anion is held by hydrogen bonds, sodium ions and ammonium protonated salts are cations.

  18. Modelling of discrete TDS-spectrum of hydrogen desorption

    Science.gov (United States)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  19. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  20. Feasibility of direct reactivity measurement in multi-canister overpacks at the Cold Vacuum Drying Facility

    International Nuclear Information System (INIS)

    Cowan, R.G.

    1997-01-01

    A proposed method for measuring the chemical reaction rate (power) of breached N-Reactor fuel elements with water in a Multi-canister overpack (MCO) based on hydrogen release rate is evaluated. The reaction rate is measured at 50 C in an oxygen free water by applying a vacuum to boil the water and adding a low, measured flow of helium. The ratio of helium to hydrogen is used to infer the reaction rate. A test duration of less than 8 hours was found to provide sufficient accuracy for confidence in the measurement results. A more rigorous treatment of system measurement accuracy, which may yield shorter test durations, should be performed if this reactivity measurement is to be employed

  1. Hydrogen Contamination of Niobium Surfaces

    International Nuclear Information System (INIS)

    Viet Nguyen-Tuong; Lawrence Doolittle

    1993-01-01

    The presence of hydrogen is blamed for dramatic reductions in cavity Q's. Hydrogen concentration is difficult to measure, so there is a great deal of Fear, Uncertainty, and Doubt (FUD) associated with the problem. This paper presents measurements of hydrogen concentration depth profiles, commenting on the pitfalls of the methods used and exploring how material handling can change the amount of hydrogen in pieces of niobium. Hydrogen analysis was performed by a forward scattering experiment with Helium used as the primary beam. This technique is variously known as FRES (Forward Recoil Elastic Scattering), FRS, HFS (Hydrogen Forward Scattering), and HRA (Hydrogen Recoil Analysis). Some measurements were also made using SIMS (Secondary Ion Mass Spectrometry). Both HFS and SIMS are capable of measuring a depth profile of Hydrogen. The primary difficulty in interpreting the results from these techniques is the presence of a surface peak which is due (at least in part) to contamination with either water or hydrocarbons. With HFS, the depth resolution is about 30 nm, and the maximum depth profiled is about 300 nm. (This 10-1 ratio is unusually low for ion beam techniques, and is a consequence of the compromises that must be made in the geometry of the experiment, surface roughness, and energy straggling in the absorber foil that must be used to filter out the forward scattered helium.) All the observed HFS spectra include a surface peak which includes both surface contamination and any real hydrogen uptake by the niobium surface. Some contamination occurs during the analysis. The vacuum in the analysis chamber is typically a few times 10(sup -6) torr, and some of the contamination is in the form of hydrocarbons from the pumping system. Hydrocarbons normally form a very thin (less than a monolayer) film which is in equilibrium between arrival rate and the evaporation rate. In the presence of the incoming ion beam, however, these hydrocarbons crack on the surface into non

  2. Atomic hydrogen cleaning of GaAs photocathodes

    International Nuclear Information System (INIS)

    Poelker, M.; Price, J.; Sinclair, C.

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs

  3. Thermo analytic investigation of hydrogen effusion behavior - sensor evaluation and calibration

    Energy Technology Data Exchange (ETDEWEB)

    Ried, P.; Gaber, M.; Beyer, K.; Mueller, R.; Kipphardt, H.; Kannengiesser, T. [BAM, Federal Institute for Material Research and Testing, Berlin (Germany)

    2011-01-15

    The well established carrier gas analysis (CGA) method was used to test different hydrogen detectors comprising a thermal conductivity detector (TCD) and a metal oxide semiconducting (MOx) sensor. The MOx sensor provides high hydrogen sensitivity and selectivity, whereas the TCD exhibits a much shorter response time and a linear hydrogen concentration dependency. Therefore, the TCD was used for quantitative hydrogen concentration measurements above 50 {mu}mol/mol. The respective calibration was made using N{sub 2}/H{sub 2} gas mixtures. Furthermore, the hydrogen content and degassing behaviour of titanium hydride (TiH{sub 2-x}) was studied. This material turned out to be a potential candidate for a solid sample calibration. Vacuum hot extraction (VHE) coupled with a mass spectrometer (MS) was then calibrated with TiH{sub 2-x} as transfer standard. The calibration was applied for the evaluation of the hydrogen content of austenitic steel samples (1.4301) and the comparison of CGA-TCD and VHE-MS. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Fusion reactor high vacuum pumping

    International Nuclear Information System (INIS)

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M.

    1992-01-01

    This paper reports on recent experiments which have shown the practicality of using activated carbon (coconut charcoal) at 4K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were satisfactory. The long-term effects of tritium on the charcoal/cement system developed by Grumman and LLNL was now known; therefore a program was undertaken to see what, if any, effect long-term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77 K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately one-third way through, and after the exposure. Modest effects were noted which would not seriously restrict the use of charcoal as a cryosorber for fusion reactor high-vacuum pumping applications

  5. Nickel hydrogen multicell common pressure vessel battery development update

    Science.gov (United States)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1992-01-01

    The technology background and design qualification of the multicell common pressure vessel nickel hydrogen battery are described. The results of full flight qualification, including random vibration at 19.5 g for two minutes in each axis, electrical characterization in a thermal vacuum chamber, and mass spectroscopy vessel leak detection are reviewed and 12.7 cm qualification and 25.4 cm design adaptation are discussed.

  6. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    Science.gov (United States)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  7. Sodium removal from CSRDM lower part by water vapour - CO2 process

    International Nuclear Information System (INIS)

    Sundar Raj, S.I.; Sreedhar, B.K.; Gurumoorthy, K.; Rajan, K.K.; Kalyanasundaram, P.; Rajan, M.; Vaidyanathan, G.

    2006-01-01

    Sodium is the primary and secondary coolant in fast reactors. Primary and secondary circuits components like Control and Safety Rod Drive Mechanism (CSRDM), pumps, heat exchangers etc. handle liquid sodium. Sodium has good affinity to oxygen and reacts vigorously with water. Hence sodium cleaning is the first and important activity in the maintenance of the components. In reactor components this cleaning process also helps in removing a major part of radioactive contaminants after which they are subjected to chemical decontamination. There are several methods available for removing sodium from components. Out of these, the water vapour-CO 2 process is selected for large components such as pumps, heat exchangers etc. while steam cleaning is used for the core sub assemblies. The cleaning processes are to be closely monitored to ensure safety because the release of hydrogen is to be kept below 4 % during the process. This paper discusses the in house facility and the experience in the successful use of the process in the cleaning of CSRDM. (author)

  8. Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes.

    Science.gov (United States)

    Zhang, Di; Li, Bin; Wang, Shuai; Yang, Shubin

    2017-11-22

    Metallic sodium is a promising anode for sodium-based batteries, owing to its high theoretical capacity (1165 mAh g -1 ) and low potential (-2.714 V vs standard hydrogen electrode). However, the growth of sodium dendrites and the infinite volume change of metallic sodium during sodium striping/plating result in a low Coulombic efficiency and poor cycling stability, generating a safety hazard of sodium-based batteries. Here, an efficient approach was proposed to simultaneously generate an artificial SEI film and 3D host for metallic sodium based on a conversion reaction (CR) between sodium and MoS 2 (4Na + MoS 2 = 2Na 2 S + Mo) at room temperature. In the resultant sodium-MoS 2 hybrid after the conversion reaction (Na-MoS 2 (CR)), the production Na 2 S is homogeneously dispersed on the surface of metallic sodium, which can act as an artificial SEI film, efficiently preventing the growth of sodium dendrites; the residual MoS 2 nanosheets can construct a 3D host to confine metallic sodium, accommodating largely the volume change of sodium. Consequently, the Na-MoS 2 (CR) hybrid exhibits very low overpotential of 25 mV and a very long cycle stability more than 1000 cycles. This novel strategy is promising to promote the development of metal (lithium, sodium, zinc)-based electrodes.

  9. Kinetic Effect on the Freezing of Ammonium-Sodium-Carbonate-Chloride Brines and Implications for Origin of Ceres' Bright Spots

    Science.gov (United States)

    Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.

    2017-12-01

    Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.

  10. a Study of Using Hydrogen Gas for Steam Boiler in CHOLOR- Alkali Manufacturing

    Science.gov (United States)

    Peantong, Sasitorn; Tangjitsitcharoen, Somkiat

    2017-06-01

    Main products of manufacturing of Cholor - Alkali, which commonly known as industrial chemical, are chlorine gas (Cl2), Sodium Hydroxide (NaOH) and hydrogen gas (H2). Chorine gas and sodium hydroxide are two main products for commercial profit; where hydrogen gas is by product. Most industries release hydrogen gas to atmosphere as it is non-profitable and less commercial scale. This study aims to make the most use of hydrogen as a substitute energy of natural gas for steam boiler to save energy cost. The second target of this study is to reduce level of CO2 release to air as a consequence of boiler combustion. This study suggests to install boiler that bases on hydrogen as main power with a high turndown ratio of at least 1:6. However, this case study uses boiler with two mode such as natural gas (NG) mode and mixed mode as they need to be flexible for production. Never the less, the best boiler selection is to use single mode energy of hydrogen. The most concerned issue about hydrogen gas is explosion during combustion stage. Stabilization measures at emergency stop is introduced to control H2 pressure to protect the explosion. This study varies ratio of natural gas to hydrogen gas to find the optimal level of two energy sources for boiler and measure total consumption through costing model; where CO2 level is measured at the boiler stack. The result of this study shows that hydrogen gas can be a substitute energy with natural gas and can reduce cost. Natural gas cost saving is 248,846 baht per month and reduce level of NOx is 80 ppm 7% O2 and 2 % of CO2 release to air as a consequence of boiler combustion.

  11. Design and construction of hydrogen pellet injector by droplet-method

    International Nuclear Information System (INIS)

    Noda, Etsuo; Iida, Yoshiyuki; Sekiguchi, Tadashi; Suemori, Nobuo; Imaizumi, Hideki.

    1984-01-01

    A hydrogen pellet injector by a droplet-method has been constructed and studied, in order to realize a hydrogen-isotope pellet injector for refueling into nuclear fusion reactors, which can inject pellets into plasma repetitively. Preliminary experiments with oxygen gas, instead of hydrogen gas, has been systematically carried out. Assuming the liquid concerned as viscous fluid, theoretical predictions about droplet-diameter, its ejected velocity and optimum frequency of ejecting-nozzle vibration for stable droplet production has been made, and it is found that theoretical results are in good agreement with experimental ones. It is found that the stable droplet train can be obtained when the value of Reynolds number is in the range of 1,100--1,300. In the hydrogen experiments based upon the oxygen results, the production of a stable hydrogen liquid-droplet train, their self-solidification and transfer into a vacuum space through an orifice (with the diameter of 1 mm) have been successfully realized, by maintaining the gas pressure around the droplets at 45--50 Torr. (author)

  12. Japanese position paper on sodium-water reaction testing and design

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Tanabe, H.; Miyake, O.; Kuroha, M.; Hoshi, Y.

    1984-01-01

    PNC has been developing the steam generator with helically coiled heat transfer tube bundle and downcommer tubes for the prototype fast reactor Monju since 1968. To establish the safety design against the sodium-water reaction accident was one of the most important R and D items at the start of the development. PNC started the experimental study initially in the large leak region in 1970. Until now, during twelve years, the experimental studies have been performed, which covers the phenomena from a micro leak to a large one, with the use of the SWAT-1 rig, SWAT-2 loop, SWAT-3 loop, and SWAT-4 rigs. The reliable leak detection system is necessary to minimize the damage by the sodium-water reaction. Two groups of efforts have been paid for developing the detection system. One is to develop the leak detector itself, and another is to grasp the hydrogen transport behavior in the sodium in the steam generator and the secondary piping system. Four sodium loops have been used for the development. The development of computer codes has also progressed in parallel with the sodium-water reaction experiments. Three codes have been accomplished for the design tools against the sodium-water reaction. Through the efforts mentioned above, sufficient experiences were obtained for designing and operating the Monju steam generator system

  13. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  14. Extreme hydrogen plasma densities achieved in a linear plasma generator

    NARCIS (Netherlands)

    Rooij, van G.J.; Veremiyenko, V.P.; Goedheer, W.J.; Groot, de B.; Kleyn, A.W.; Smeets, P.H.M.; Versloot, T.W.; Whyte, D.G.; Engeln, R.A.H.; Schram, D.C.; Lopes Cardozo, N.J.

    2007-01-01

    A magnetized hydrogen plasma beam was generated with a cascaded arc, expanding in a vacuum vessel at an axial magnetic field of up to 1.6 T. Its characteristics were measured at a distance of 4 cm from the nozzle: up to a 2 cm beam diameter, 7.5×1020 m-3 electron density, ~2 eV electron and ion

  15. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  16. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2012-09-30

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  17. Development of analysis model for mid and long-term effects of sodium water reaction event in LMR

    International Nuclear Information System (INIS)

    Eoh, Jae Hyuk; Sim, Yoon Sub; Kim, Seong O; Kim, Yeon Sik; Kim, Eui Kwang; Wi, Myung Hwan

    2002-04-01

    The Sodium-Water Reaction(SWR) is important in the design consideration of a LMR steam generator. To develop the analysis code for long-term effects of SWR, investigation on the characteristics of various SWR analysis code and the assessment of an analysis model for long term effects were performed. In an event of SWR, pressure spikes of wave propagation occur at its initial stage and last for a very short time, and then bulk motion of fluid and reaction products is progressed and lasts for a long time. In a case SWR occurs, a number of hydrogen bubbles produced and sodium is entrained into the bubbles through the gas-liquid bubble interfaces by evaporation or diffusion. The partial pressure of the sodium in a hydrogen bubble is determined as a function of the bubble size, temperature, and pressure, and is rapidly decreased as its size increased. From this, it can be considered that the bulk motion in the later phase of SWR is an axial motion caused by expansion of a single-phase hydrogen gas bubble produced by a reaction in the vicinity of the leak site. Through this investigation, a preliminary simple analysis model for long-term effects of SWR was set up and sensitivity study using the system design parameters such as pressure and temperature of IHTS for KALIMER was performed. Also, a simpler analysis model using the cover gas pressure change related to the production of a hydrogen bubble in a steam generator was developed from the analyses results. These simple analysis models of the reaction site and the pressure behavior with hydrogen production can be used to develop the mid and long-term analysis code for SWR in the KALIMER steam generator design

  18. Experience of the use of γ photon activation analysis for the determination of oxygen in sodium

    International Nuclear Information System (INIS)

    Hislop, J.S.; Wood, D.A.; Thompson, R.

    1981-01-01

    The use of γ photon activation analysis for determination of the oxygen content of sodium in an experimental rig used for evaluation of electrochemical oxygen meters is described. A sampling procedure has been developed, using a thin walled nickel tube to act both as the sample collector and irradiation container, which does not require the sophisticated sampling facilities necessary when using more conventional methods of analysis. Results have been obtained for oxygen content of sodium over the nominal temperature range 125-250 0 C and the resulting oxygen solubility relationship compared with literature values. Good agreement has been obtained with previous UK vacuum distillation data. (orig.)

  19. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    already use hydrogen for weather balloons . Besides cost, hydrogen has other advantages over helium. Hydrogen has more lift than helium, so larger...of water vapor entering the gas stream, and avoid damaging the balloon /aerostat (aerostats typically have an operational temperature range of -50 to...Aerostats: “Gepard” Tethered Aerostats with Mobile Mooring Systems. Available at http://rosaerosystems.com/aero/obj7. Accessed June 4, 2015. 11

  20. Sodium removal and requalification of secondary loop cold trap

    International Nuclear Information System (INIS)

    Rajan, M.; Veerasamy, R.; Gurumoorthy, K.; Rajan, K.K.; Kale, R.D.

    1997-01-01

    The secondary loop cold trap of the Fast Breeder Test Reactor got plugged prematurely and was not removing impurities from the sodium. This cold trap was taken up for cleaning and modification of the internals. The cleaning operation was carried out successfully by hydride decomposition and vacuum distillation followed by steam cleaning method. Without dismantling, the cold trap internals were washed by circulating water. Subsequently the wire mesh was removed, examined and replaced, the internal modifications were carried (nit and the cold trap way qualified for reuse. The procedures followed and the experience gained are discussed. (author)