WorldWideScience

Sample records for sodium channel scn5a

  1. A new sodium channel {alpha}-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, M.C.; Ernst, E.; Gros, P. [McGill Univ., Montreal (Canada)

    1996-08-15

    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an {alpha}-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel {alpha}-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2. 17 refs., 1 fig., 3 tabs.

  2. Mutations in sodium channel {beta}-subunit SCN3B are associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Olesen, Morten Salling; Jespersen, Thomas; Nielsen, Jonas Bille

    2011-01-01

    AIMS: Atrial fibrillation (AF) is the most frequent arrhythmia. Screening of SCN5A-the gene encoding the a-subunit of the cardiac sodium channel-has indicated that disturbances of the sodium current may play a central role in the mechanism of lone AF. We tested the hypothesis that lone AF in young...... across species. Electrophysiological studies on the SCN3B mutation were carried out and all three SCN3B mutations caused a functionally reduced sodium channel current. One synonymous variant was found in SCN4B. CONCLUSION: In 192 young lone AF patients, we found three patients with suspected disease...

  3. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions.

    Science.gov (United States)

    Lin, Guo-Wang; Lu, Ping; Zeng, Tao; Tang, Hui-Ling; Chen, Yong-Hong; Liu, Shu-Jing; Gao, Mei-Mei; Zhao, Qi-Hua; Yi, Yong-Hong; Long, Yue-Sheng

    2017-02-01

    Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia

    Directory of Open Access Journals (Sweden)

    Vargas-Alarcon Gilberto

    2012-02-01

    Full Text Available Abstract Background A consistent line of investigation suggests that autonomic nervous system dysfunction may explain the multi-system features of fibromyalgia (FM; and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG are key sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7 act as molecular gatekeepers for pain detection. Nav1.7 is encoded in gene SCN9A of chromosome 2q24.3 and is predominantly expressed in the DRG pain-sensing neurons and sympathetic ganglia neurons. Several SCN9A sodium channelopathies have been recognized as the cause of rare painful dysautonomic syndromes such as paroxysmal extreme pain disorder and primary erythromelalgia. The aim of this study was to search for an association between fibromyalgia and several SCN9A sodium channels gene polymorphisms. Methods We studied 73 Mexican women suffering from FM and 48 age-matched women who considered themselves healthy. All participants filled out the Fibromyalgia Impact Questionnaire (FIQ. Genomic DNA from whole blood containing EDTA was extracted by standard techniques. The following SCN9A single-nucleotide polymorphisms (SNP were determined by 5' exonuclease TaqMan assays: rs4371369; rs4387806; rs4453709; rs4597545; rs6746030; rs6754031; rs7607967; rs12620053; rs12994338; and rs13017637. Results The frequency of the rs6754031 polymorphism was significantly different in both groups (P = 0.036 mostly due to an absence of the GG genotype in controls. Interestingly; patients with this rs6754031 GG genotype had higher FIQ scores (median = 80; percentile 25/75 = 69/88 than patients with the GT genotype (median = 63; percentile 25/75 = 58/73; P = 0.002 and the TT genotype (median = 71; percentile 25/75 = 64/77; P = 0.001. Conclusion In this ethnic group; a disabling form of FM is associated to a particular SCN9A sodium channel gene variant. These preliminary results raise the possibility that

  5. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression.

    Science.gov (United States)

    Kwan, Patrick; Poon, Wai Sang; Ng, Ho-Keung; Kang, David E; Wong, Virginia; Ng, Ping Wing; Lui, Colin H T; Sin, Ngai Chuen; Wong, Ka S; Baum, Larry

    2008-11-01

    Many antiepileptic drugs (AEDs) prevent seizures by blocking voltage-gated brain sodium channels. However, treatment is ineffective in 30% of epilepsy patients, which might, at least in part, result from polymorphisms of the sodium channel genes. We investigated the association of AED responsiveness with genetic polymorphisms and correlated any association with mRNA expression of the neuronal sodium channels. We performed genotyping of tagging and candidate single nucleotide polymorphisms (SNPs) of SCN1A, 2A, and 3A in 471 Chinese epilepsy patients (272 drug responsive and 199 drug resistant). A total of 27 SNPs were selected based on the HapMap database. Genotype distributions in drug-responsive and drug-resistant patients were compared. SCN2A mRNA was quantified by real-time PCR in 24 brain and 57 blood samples. Its level was compared between patients with different genotypes of an SCN2A SNP found to be associated with drug responsiveness. SCN2A IVS7-32A>G (rs2304016) A alleles were associated with drug resistance (odds ratio = 2.1, 95% confidence interval: 1.2-3.7, P=0.007). Haplotypes containing the IVS7-32A>G allele A were also associated with drug resistance. IVS7-32A>G is located within the putative splicing branch site for splicing exons 7 and 9. PCR of reverse-transcribed RNA from blood or brain of patients with different IVS7-32A>G genotypes using primers in exons 7 and 9 showed no skipping of exon 8, and real-time PCR showed no difference in SCN2A mRNA levels among genotypes. Results of this study suggest an association between SCN2A IVS7-32A>G and AED responsiveness, without evidence of an effect on splicing or mRNA expression.

  6. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  7. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  8. Sodium channel SCN8A (Nav1.6: properties and de novo mutations in epileptic encephalopathy and intellectual disability

    Directory of Open Access Journals (Sweden)

    Janelle Elizabeth O'Brien

    2013-10-01

    Full Text Available The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 years. Only within the past year has the role of SCN8A in human disease become apparent from whole exome and genome sequences of patients with sporadic disease. Unique features of Nav1.6 include its contribution to persistent current, resurgent current, repetitive neuronal firing, and subcellular localization at the axon initial segment and nodes of Ranvier. Loss of Nav1.6 activity results in reduced neuronal excitability, while gain-of-function mutations can increase neuronal excitability. Mouse Scn8a (med mutants exhibit movement disorders including ataxia, tremor and dystonia. Thus far, more than ten human de novo mutations have been identified in patients with two types of disorders, epileptic encephalopathy and intellectual disability. We review these human mutations as well as the unique features of Nav1.6 that contribute to its role in determining neuronal excitability in vivo. A supplemental figure illustrating the positions of amino acid residues within the 4 domains and 24 transmembrane segments of Nav1.6 is provided to facilitate the location of novel mutations within the channel protein.

  9. Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation

    DEFF Research Database (Denmark)

    Holst, Anders G; Liang, Bo; Jespersen, Thomas

    2010-01-01

    father carried the same mutation, but had a milder phenotype, presenting with progressive cardiac conduction later in life. The mutation was found to result in a loss-of-function in the sodium current. In conclusion, the same SCN5A mutation can result in a wide array of clinical phenotypes and perhaps......Mutations in the cardiac sodium channel encoded by the gene SCN5A can result in a wide array of phenotypes. We report a case of a young male with a novel SCN5A mutation (R121W) afflicted by sick sinus syndrome, progressive cardiac conduction disorder, atrial flutter and ventricular tachycardia. His...

  10. Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    Full Text Available Brugada syndrome (BrS is an inherited arrhythmogenic syndrome leading to sudden cardiac death, partially associated with autosomal dominant mutations in SCN5A, which encodes the cardiac sodium channel alpha-subunit (Nav1.5. To date some SCN5A mutations related with BrS have been identified in voltage sensor of Nav1.5. Here, we describe a dominant missense mutation (R1629Q localized in the fourth segment of domain IV region (DIV-S4 in a Chinese Han family. The mutation was identified by direct sequencing of SCN5A from the proband's DNA. Co-expression of Wild-type (WT or R1629Q Nav1.5 channel and hβ1 subunit were achieved in human embryonic kidney cells by transient transfection. Sodium currents were recorded using whole cell patch-clamp protocols. No significant changes between WT and R1629Q currents were observed in current density or steady-state activation. However, hyperpolarized shift of steady-state inactivation curve was identified in cells expressing R1629Q channel (WT: V1/2 = -81.1 ± 1.3 mV, n = 13; R1629Q: V1/2 = -101.7 ± 1.2 mV, n = 18. Moreover, R1629Q channel showed enhanced intermediate inactivation and prolonged recovery time from inactivation. In summary, this study reveals that R1629Q mutation causes a distinct loss-of-function of the channel due to alter its electrophysiological characteristics, and facilitates our understanding of biophysical mechanisms of BrS.

  11. Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome

    DEFF Research Database (Denmark)

    Petitprez, Séverine; Jespersen, Thomas; Pruvot, Etienne

    2008-01-01

    S SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C......AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel Br....... The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant...

  12. SCN8A encephalopathy: Research progress and prospects.

    Science.gov (United States)

    Meisler, Miriam H; Helman, Guy; Hammer, Michael F; Fureman, Brandy E; Gaillard, William D; Goldin, Alan L; Hirose, Shinichi; Ishii, Atsushi; Kroner, Barbara L; Lossin, Christoph; Mefford, Heather C; Parent, Jack M; Patel, Manoj; Schreiber, John; Stewart, Randall; Whittemore, Vicky; Wilcox, Karen; Wagnon, Jacy L; Pearl, Phillip L; Vanderver, Adeline; Scheffer, Ingrid E

    2016-07-01

    On April 21, 2015, the first SCN8A Encephalopathy Research Group convened in Washington, DC, to assess current research into clinical and pathogenic features of the disorder and prepare an agenda for future research collaborations. The group comprised clinical and basic scientists and representatives of patient advocacy groups. SCN8A encephalopathy is a rare disorder caused by de novo missense mutations of the sodium channel gene SCN8A, which encodes the neuronal sodium channel Nav 1.6. Since the initial description in 2012, approximately 140 affected individuals have been reported in publications or by SCN8A family groups. As a result, an understanding of the severe impact of SCN8A mutations is beginning to emerge. Defining a genetic epilepsy syndrome goes beyond identification of molecular etiology. Topics discussed at this meeting included (1) comparison between mutations of SCN8A and the SCN1A mutations in Dravet syndrome, (2) biophysical properties of the Nav 1.6 channel, (3) electrophysiologic effects of patient mutations on channel properties, (4) cell and animal models of SCN8A encephalopathy, (5) drug screening strategies, (6) the phenotypic spectrum of SCN8A encephalopathy, and (7) efforts to develop a bioregistry. A panel discussion of gaps in bioregistry, biobanking, and clinical outcomes data was followed by a planning session for improved integration of clinical and basic science research. Although SCN8A encephalopathy was identified only recently, there has been rapid progress in functional analysis and phenotypic classification. The focus is now shifting from identification of the underlying molecular cause to the development of strategies for drug screening and prioritized patient care. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  13. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, H. L.; Bink-Boelkens, M. T.; Bezzina, C. R.; Viswanathan, P. C.; Beaufort-Krol, G. C.; van Tintelen, P. J.; van den Berg, M. P.; Wilde, A. A.; Balser, J. R.

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening; however, a

  14. Efficacy of sodium channel blockers in SCN2A early infantile epileptic encephalopathy.

    Science.gov (United States)

    Dilena, Robertino; Striano, Pasquale; Gennaro, Elena; Bassi, Laura; Olivotto, Sara; Tadini, Laura; Mosca, Fabio; Barbieri, Sergio; Zara, Federico; Fumagalli, Monica

    2017-04-01

    Recent clinical evidence supports a targeted therapeutic approach for genetic epileptic encephalopathies based on the molecular dysfunction. A 2-day-old male infant presented with epileptic encephalopathy characterized by burst-suppression EEG background and tonic-clonic migrating partial seizures. The condition was refractory to phenobarbital, pyridoxine, pyridoxal phosphate and levetiracetam, but a dramatic response to an intravenous loading dose of phenytoin was documented by video-EEG monitoring. Over weeks phenytoin was successfully switched to carbamazepine to prevent seizure relapses associated with difficulty in maintaining proper blood levels of phenytoin. Genetic analysis identified a novel de novo heterozygous mutation (c.[4633A>G]p.[Met1545Val]) in SCN2A. At two years and three months of age the patient is still seizure-free on carbamazepine, although a developmental delay is evident. Sodium channel blockers represent the first-line treatment for confirmed or suspected SCN2A-related epileptic encephalopathies. In severe cases with compatible electro-clinical features we propose a treatment algorithm based on a test trial with high dose intravenous phenytoin followed in case of a positive response by carbamazepine, more suitable for long-term maintenance treatment. Because of their rarity, collaborative studies are needed to delineate shared therapeutic protocols for EIEE based on the electro-clinical features and the presumed underlying genetic substrate. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, HL; Bink-Boelkens, MTE; Bezzina, CR; Viswanathan, PC; Beaufort-Krol, GCM; van Tintelen, PJ; van den Berg, MP; Wilde, AAM; Balser, [No Value

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening(1-3); however, a

  16. Functional Na(V)1.8 Channels in Intracardiac Neurons The Link Between SCN10A and Cardiac Electrophysiology

    NARCIS (Netherlands)

    Verkerk, Arie O.; Remme, Carol Ann; Schumacher, Cees A.; Scicluna, Brendon P.; Wolswinkel, Rianne; de Jonge, Berend; Bezzina, Connie R.; Veldkamp, Marieke W.

    2012-01-01

    Rationale: The SCN10A gene encodes the neuronal sodium channel isoform Na(V)1.8. Several recent genome-wide association studies have linked SCN10A to PR interval and QRS duration, strongly suggesting an as-yet unknown role for Na(V)1.8 in cardiac electrophysiology. Objective: To demonstrate the

  17. The phenotypic spectrum of SCN8A> encephalopathy

    DEFF Research Database (Denmark)

    Larsen, Jan; Carvill, Gemma L; Gardella, Elena

    2015-01-01

    OBJECTIVE: SCN8A encodes the sodium channel voltage-gated α8-subunit (Nav1.6). SCN8A mutations have recently been associated with epilepsy and neurodevelopmental disorders. We aimed to delineate the phenotype associated with SCN8A mutations. METHODS: We used high-throughput sequence analysis of t...

  18. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  19. A comprehensive approach to identifying repurposed drugs to treat SCN8A epilepsy.

    Science.gov (United States)

    Atkin, Talia A; Maher, Chani M; Gerlach, Aaron C; Gay, Bryant C; Antonio, Brett M; Santos, Sonia C; Padilla, Karen M; Rader, JulieAnn; Krafte, Douglas S; Fox, Matthew A; Stewart, Gregory R; Petrovski, Slavé; Devinsky, Orrin; Might, Matthew; Petrou, Steven; Goldstein, David B

    2018-04-01

    Many previous studies of drug repurposing have relied on literature review followed by evaluation of a limited number of candidate compounds. Here, we demonstrate the feasibility of a more comprehensive approach using high-throughput screening to identify inhibitors of a gain-of-function mutation in the SCN8A gene associated with severe pediatric epilepsy. We developed cellular models expressing wild-type or an R1872Q mutation in the Na v 1.6 sodium channel encoded by SCN8A. Voltage clamp experiments in HEK-293 cells expressing the SCN8A R1872Q mutation demonstrated a leftward shift in sodium channel activation as well as delayed inactivation; both changes are consistent with a gain-of-function mutation. We next developed a fluorescence-based, sodium flux assay and used it to assess an extensive library of approved drugs, including a panel of antiepileptic drugs, for inhibitory activity in the mutated cell line. Lead candidates were evaluated in follow-on studies to generate concentration-response curves for inhibiting sodium influx. Select compounds of clinical interest were evaluated by electrophysiology to further characterize drug effects on wild-type and mutant sodium channel functions. The screen identified 90 drugs that significantly inhibited sodium influx in the R1872Q cell line. Four drugs of potential clinical interest-amitriptyline, carvedilol, nilvadipine, and carbamazepine-were further investigated and demonstrated concentration-dependent inhibition of sodium channel currents. A comprehensive drug repurposing screen identified potential new candidates for the treatment of epilepsy caused by the R1872Q mutation in the SCN8A gene. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  20. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion

    Science.gov (United States)

    House, Carrie D.; Vaske, Charles J.; Schwartz, Arnold M.; Obias, Vincent; Frank, Bryan; Luu, Truong; Sarvazyan, Narine; Irby, Rosalyn; Strausberg, Robert L.; Hales, Tim G.; Stuart, Joshua M.; Lee, Norman H.

    2010-01-01

    Voltage-gated Na+ channels (VGSCs) have been implicated in the metastatic potential of human breast, prostate and lung cancer cells. Specifically, the SCN5A gene encoding the VGSC isotype Nav1.5 has been defined as a key driver of human cancer cell invasion. In this study, we examined the expression and function of VGSCs in a panel of colon cancer cell lines by electrophysiological recordings. Na+ channel activity and invasive potential were inhibited pharmacologically by tetrodotoxin or genetically by siRNAs specifically targeting SCN5A. Clinical relevance was established by immunohistochemistry of patient biopsies, where there was strong Nav1.5 protein staining in colon cancer specimens but little to no staining in matched-paired normal colon tissues. We explored the mechanism of VGSC-mediated invasive potential on the basis of reported links between VGSC activity and gene expression in excitable cells. Probabilistic modeling of loss-of-function screens and microarray data established an unequivocal role of VGSC SCN5A as a high level regulator of a colon cancer invasion network, involving genes that encompass Wnt signaling, cell migration, ectoderm development, response to biotic stimulus, steroid metabolic process and cell cycle control. siRNA-mediated knockdown of predicted downstream network components caused a loss of invasive behavior, demonstrating network connectivity and its function in driving colon cancer invasion. PMID:20651255

  1. Progress in Understanding and Treating SCN2A-Mediated Disorders

    DEFF Research Database (Denmark)

    Sanders, Stephan J.; Campbell, Arthur J.; Cottrell, Jeffrey R.

    2018-01-01

    Advances in gene discovery for neurodevelopmental disorders have identified SCN2A dysfunction as a leading cause of infantile seizures, autism spectrum disorder, and intellectual disability. SCN2A encodes the neuronal sodium channel NaV1.2. Functional assays demonstrate strong correlation between...... of neurodevelopmental disorders more generally. Here, we discuss the progress made, through the concerted efforts of a diverse group of academic and industry scientists as well as policy advocates, in understanding and treating SCN2A-related disorders....

  2. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2.

    Science.gov (United States)

    XiYang, Yan-Bin; Wang, You-Cui; Zhao, Ya; Ru, Jin; Lu, Bing-Tuan; Zhang, Yue-Ning; Wang, Nai-Chao; Hu, Wei-Yan; Liu, Jia; Yang, Jin-Wei; Wang, Zhao-Jun; Hao, Chun-Guang; Feng, Zhong-Tang; Xiao, Zhi-Cheng; Dong, Wei; Quan, Xiong-Zhi; Zhang, Lian-Feng; Wang, Ting-Hua

    2016-03-01

    The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.

  3. Autosomal dominant SCN8A mutation with an unusually mild phenotype.

    Science.gov (United States)

    Anand, G; Collett-White, F; Orsini, A; Thomas, S; Jayapal, S; Trump, N; Zaiwalla, Z; Jayawant, S

    2016-09-01

    Mutations in SCN8A, coding for the voltage-gated sodium channel Nav 1.6, have been described in relation to infantile onset epilepsy with developmental delay and cognitive impairment, in particular early onset epileptic encephalopathy (EIEE) type 13. Here we report an infant and his father with early onset focal epileptic seizures but without cognitive or neurological impairment in whom next generation sequence analysis identified a heterozygous mutation (c.5630A > G, p. (Asn1877Ser)) in the SCN8A gene. This mutation, confirmed by Sanger sequence analysis, affects a highly conserved amino acid and in silico tools predicts that it may be pathogenic. The reported infant has a normal developmental profile at 16-month follow-up. His father also had normal development and has no cognitive impairment at 42 years. This is the second known SCN8A mutation associated with a phenotype of benign familial infantile epilepsy. Good seizure control was achieved in our patients with sodium channel blockers. Based on our proband and a recently described group of families with benign familial infantile epilepsy and SCN8A variant we suggest expanding testing to patients with infantile epilepsy and no cognitive impairment. In addition, the same SCN8A variant (c.5630A > G, p. (Asn1877Ser)) is also found in patients with epilepsy and developmental delay highlighting the phenotypic variability and the possible role of other protective genetic factors. Copyright © 2016. Published by Elsevier Ltd.

  4. Epidural Analgesia with Ropivacaine during Labour in a Patient with a SCN5A Gene Mutation

    Directory of Open Access Journals (Sweden)

    A. L. M. J. van der Knijff-van Dortmont

    2016-01-01

    Full Text Available SCN5A gene mutations can lead to ion channel defects which can cause cardiac conduction disturbances. In the presence of specific ECG characteristics, this mutation is called Brugada syndrome. Many drugs are associated with adverse events, making anesthesia in patients with SCN5A gene mutations or Brugada syndrome challenging. In this case report, we describe a pregnant patient with this mutation who received epidural analgesia using low dose ropivacaine and sufentanil during labour.

  5. Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model.

    Science.gov (United States)

    Shy, Diana; Gillet, Ludovic; Abriel, Hugues

    2013-04-01

    The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Pathophysiological mechanisms of sino-atrial dysfunction and ventricular conduction disease associated with SCN5A deficiency: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Christopher L-H Huang

    2012-07-01

    Full Text Available Genetically modified mice provide a number of models for studying cardiac channelopathies related to cardiac Na+ channel (SCN5A abnormalities. We review key pathophysiological features in these murine models that may underlie clinical features observed in sinus node dysfunction and progressive cardiac conduction disease, thereby providing insights into their pathophysiological mechanisms. We describe loss of Na+ channel function and fibrotic changes associated with both loss and gain-of-function Na+ channel mutations. Recent reports further relate the progressive fibrotic changes to upregulation of TGF-β1 production and the transcription factors, Atf3, a stress-inducible gene, and Egr1, to the presence of heterozygous Scn5a inactivation. Both changes are thus directly implicated in the clinically observed disruptions in sino-atrial node pacemaker function, and sino-atrial and ventricular conduction, and their progression with age. Murine systems with genetic modifications in Scn5a thus prove a useful tool to address questions concerning roles of genetic and environmental modifiers on human SCN5A disease phenotypes.

  7. Comparison and optimization of in silico algorithms for predicting the pathogenicity of sodium channel variants in epilepsy.

    Science.gov (United States)

    Holland, Katherine D; Bouley, Thomas M; Horn, Paul S

    2017-07-01

    Variants in neuronal voltage-gated sodium channel α-subunits genes SCN1A, SCN2A, and SCN8A are common in early onset epileptic encephalopathies and other autosomal dominant childhood epilepsy syndromes. However, in clinical practice, missense variants are often classified as variants of uncertain significance when missense variants are identified but heritability cannot be determined. Genetic testing reports often include results of computational tests to estimate pathogenicity and the frequency of that variant in population-based databases. The objective of this work was to enhance clinicians' understanding of results by (1) determining how effectively computational algorithms predict epileptogenicity of sodium channel (SCN) missense variants; (2) optimizing their predictive capabilities; and (3) determining if epilepsy-associated SCN variants are present in population-based databases. This will help clinicians better understand the results of indeterminate SCN test results in people with epilepsy. Pathogenic, likely pathogenic, and benign variants in SCNs were identified using databases of sodium channel variants. Benign variants were also identified from population-based databases. Eight algorithms commonly used to predict pathogenicity were compared. In addition, logistic regression was used to determine if a combination of algorithms could better predict pathogenicity. Based on American College of Medical Genetic Criteria, 440 variants were classified as pathogenic or likely pathogenic and 84 were classified as benign or likely benign. Twenty-eight variants previously associated with epilepsy were present in population-based gene databases. The output provided by most computational algorithms had a high sensitivity but low specificity with an accuracy of 0.52-0.77. Accuracy could be improved by adjusting the threshold for pathogenicity. Using this adjustment, the Mendelian Clinically Applicable Pathogenicity (M-CAP) algorithm had an accuracy of 0.90 and a

  8. Large-scale structural alteration of brain in epileptic children with SCN1A mutation

    OpenAIRE

    Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung

    2017-01-01

    Objective: Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic chil...

  9. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

    NARCIS (Netherlands)

    Wolff, Markus; Johannesen, Katrine M; Hedrich, Ulrike B S; Masnada, Silvia; Rubboli, Guido; Gardella, Elena; Lesca, Gaetan; Ville, Dorothée; Milh, Mathieu; Villard, Laurent; Afenjar, Alexandra; Chantot-Bastaraud, Sandra; Mignot, Cyril; Lardennois, Caroline; Nava, Caroline; Schwarz, Niklas; Gérard, Marion; Perrin, Laurence; Doummar, Diane; Auvin, Stéphane; Miranda, Maria J; Hempel, Maja; Brilstra, Eva; Knoers, Nine; Verbeek, Nienke; van Kempen, Marjan; Braun, Kees P; Mancini, Grazia; Biskup, Saskia; Hörtnagel, Konstanze; Döcker, Miriam; Bast, Thomas; Loddenkemper, Tobias; Wong-Kisiel, Lily; Baumeister, Friedrich M; Fazeli, Walid; Striano, Pasquale; Dilena, Robertino; Fontana, Elena; Zara, Federico; Kurlemann, Gerhard; Klepper, Joerg; Thoene, Jess G; Arndt, Daniel H; Deconinck, Nicolas; Schmitt-Mechelke, Thomas; Maier, Oliver; Muhle, Hiltrud; Wical, Beverly; Finetti, Claudio; Brückner, Reinhard; Pietz, Joachim; Golla, Günther; Jillella, Dinesh; Linnet, Karen M; Charles, Perrine; Moog, Ute; Õiglane-Shlik, Eve; Mantovani, John F; Park, Kristen; Deprez, Marie; Lederer, Damien; Mary, Sandrine; Scalais, Emmanuel; Selim, Laila; Van Coster, Rudy; Lagae, Lieven; Nikanorova, Marina; Hjalgrim, Helle; Korenke, G Christoph; Trivisano, Marina; Specchio, Nicola; Ceulemans, Berten; Dorn, Thomas; Helbig, Katherine L; Hardies, Katia; Stamberger, Hannah; de Jonghe, Peter; Weckhuysen, Sarah; Lemke, Johannes R; Krägeloh-Mann, Ingeborg; Helbig, Ingo; Kluger, Gerhard; Lerche, Holger; Møller, Rikke S

    2017-01-01

    Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with

  10. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

    DEFF Research Database (Denmark)

    Wolff, Markus; Johannesen, Katrine M.; Hedrich, Ulrike B. S.

    2017-01-01

    Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infa...

  11. Common and rare variants in SCN10A modulate the risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Jabbari, Javad; Olesen, Morten S; Yuan, Lei

    2015-01-01

    BACKGROUND: Genome-wide association studies have shown that the common single nucleotide polymorphism rs6800541 located in SCN10A, encoding the voltage-gated Nav1.8 sodium channel, is associated with PR-interval prolongation and atrial fibrillation (AF). Single nucleotide polymorphism rs6800541...... is in high linkage disequilibrium with the nonsynonymous variant in SCN10A, rs6795970 (V1073A, r(2)=0.933). We therefore sought to determine whether common and rare SCN10A variants are associated with early onset AF. METHODS AND RESULTS: SCN10A was sequenced in 225 AF patients in whom there was no evidence...... of other cardiovascular disease or dysfunction (lone AF). In an association study of the rs6795970 single nucleotide polymorphism variant, we included 515 AF patients and 2 control cohorts of 730 individuals free of AF and 6161 randomly sampled individuals. Functional characterization of SCN10A variants...

  12. β1-C121W Is Down But Not Out: Epilepsy-Associated Scn1b-C121W Results in a Deleterious Gain-of-Function

    Science.gov (United States)

    Kruger, Larisa C.; O'Malley, Heather A.; Hull, Jacob M.; Kleeman, Amanda; Patino, Gustavo A.

    2016-01-01

    Voltage-gated sodium channel (VGSC) β subunits signal through multiple pathways on multiple time scales. In addition to modulating sodium and potassium currents, β subunits play nonconducting roles as cell adhesion molecules, which allow them to function in cell–cell communication, neuronal migration, neurite outgrowth, neuronal pathfinding, and axonal fasciculation. Mutations in SCN1B, encoding VGSC β1 and β1B, are associated with epilepsy. Autosomal-dominant SCN1B-C121W, the first epilepsy-associated VGSC mutation identified, results in genetic epilepsy with febrile seizures plus (GEFS+). This mutation has been shown to disrupt both the sodium-current-modulatory and cell-adhesive functions of β1 subunits expressed in heterologous systems. The goal of this study was to compare mice heterozygous for Scn1b-C121W (Scn1b+/W) with mice heterozygous for the Scn1b-null allele (Scn1b+/−) to determine whether the C121W mutation results in loss-of-function in vivo. We found that Scn1b+/W mice were more susceptible than Scn1b+/− and Scn1b+/+ mice to hyperthermia-induced convulsions, a model of pediatric febrile seizures. β1-C121W subunits are expressed at the neuronal cell surface in vivo. However, despite this, β1-C121W polypeptides are incompletely glycosylated and do not associate with VGSC α subunits in the brain. β1-C121W subcellular localization is restricted to neuronal cell bodies and is not detected at axon initial segments in the cortex or cerebellum or at optic nerve nodes of Ranvier of Scn1bW/W mice. These data, together with our previous results showing that β1-C121W cannot participate in trans-homophilic cell adhesion, lead to the hypothesis that SCN1B-C121W confers a deleterious gain-of-function in human GEFS+ patients. SIGNIFICANCE STATEMENT The mechanisms underlying genetic epilepsy syndromes are poorly understood. Closing this gap in knowledge is essential to the development of new medicines to treat epilepsy. We have used mouse models to

  13. Common and rare variants in SCN10A> modulate the risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Jabbari, Javad; Olesen, Morten S.; Yuan, Lei

    2015-01-01

    Background: Genome-wide assocn. studies have shown that the common single nucleotide polymorphism rs6800541 located in SCN10A, encoding the voltage-gated Nav1.8 sodium channel, is assocd. with PR-interval prolongation and atrial fibrillation (AF). Single nucleotide polymorphism rs6800541 is in hi...

  14. A case of recurrent encephalopathy with SCN2A missense mutation.

    Science.gov (United States)

    Fukasawa, Tatsuya; Kubota, Tetsuo; Negoro, Tamiko; Saitoh, Makiko; Mizuguchi, Masashi; Ihara, Yukiko; Ishii, Atsushi; Hirose, Shinichi

    2015-06-01

    Voltage-gated sodium channels regulate neuronal excitability, as well as survival and the patterning of neuronal connectivity during development. Mutations in SCN2A, which encodes the Na(+) channel Nav1.2, cause epilepsy syndromes and predispose children to acute encephalopathy. Here, we report the case of a young male with recurrent acute encephalopathy who carried a novel missense mutation in the SCN2A gene. He was born by normal delivery and developed repetitive apneic episodes at 2days of age. Diffusion-weighted imaging revealed high-intensity areas in diffuse subcortical white matter, bilateral thalami, and basal nuclei. His symptoms improved gradually without any specific treatment, but he exhibited a motor milestone delay after the episode. At the age of 10months, he developed acute cerebellopathy associated with a respiratory syncytial viral infection. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy and seemed to have no obvious sequelae after the episode. He then developed severe diffuse encephalopathy associated with gastroenteritis at the age of 14months. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy but was left with severe neurological sequelae. PCR-based analysis revealed a novel de novo missense mutation, c.4979T>G (p.Leu1660Trp), in the SCN2A gene. This case suggests that SCN2A mutations might predispose children to repetitive encephalopathy with variable clinical and imaging findings. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome.

    Directory of Open Access Journals (Sweden)

    Junhong Gui

    2010-06-01

    Full Text Available To identify molecular mechanisms underlying SCN5A-related sick sinus syndrome (SSS, a rare type of SSS, in parallel experiments we elucidated the electrophysiological properties and the cell surface localization of thirteen human Na(v1.5 (hNa(v1.5 mutant channels previously linked to this disease.Mutant hNa(v1.5 channels expressed by HEK293 cells and Xenopus oocytes were investigated by whole-cell patch clamp and two-microelectrode voltage clamp, respectively. HEK293 cell surface biotinylation experiments quantified the fraction of correctly targeted channel proteins. Our data suggested three distinct mutant channel subtypes: Group 1 mutants (L212P, P1298L, DelF1617, R1632H gave peak current densities and cell surface targeting indistinguishable from wild-type hNa(v1.5. Loss-of-function of these mutants resulted from altered channel kinetics, including a negative shift of steady-state inactivation and a reduced voltage dependency of open-state inactivation. Group 2 mutants (E161K, T220I, D1275N gave significantly reduced whole-cell currents due to impaired cell surface localization (D1275N, altered channel properties at unchanged cell surface localization (T220I, or a combination of both (E161K. Group 3 mutant channels were non-functional, due to an almost complete lack of protein at the plasma membrane (T187I, W1421X, K1578fs/52, R1623X or a probable gating/permeation defect with normal surface localisation (R878C, G1408R.This study indicates that multiple molecular mechanisms, including gating abnormalities, trafficking defects, or a combination of both, are responsible for SCN5A-related familial SSS.

  16. Linkage between increased nociception and olfaction via a SCN9A haplotype.

    Directory of Open Access Journals (Sweden)

    Dirk Heimann

    Full Text Available BACKGROUND AND AIMS: Mutations reducing the function of Nav1.7 sodium channels entail diminished pain perception and olfactory acuity, suggesting a link between nociception and olfaction at ion channel level. We hypothesized that if such link exists, it should work in both directions and gain-of-function Nav1.7 mutations known to be associated with increased pain perception should also increase olfactory acuity. METHODS: SCN9A variants were assessed known to enhance pain perception and found more frequently in the average population. Specifically, carriers of SCN9A variants rs41268673C>A (P610T; n = 14 or rs6746030C>T (R1150W; n = 21 were compared with non-carriers (n = 40. Olfactory function was quantified by assessing odor threshold, odor discrimination and odor identification using an established olfactory test. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (punctate and blunt mechanical pressure, heat and electrical stimuli. RESULTS: The number of carried alleles of the non-mutated SCN9A haplotype rs41268673C/rs6746030C was significantly associated with the comparatively highest olfactory threshold (0 alleles: threshold at phenylethylethanol dilution step 12 of 16 (n = 1, 1 allele: 10.6±2.6 (n = 34, 2 alleles: 9.5±2.1 (n = 40. The same SCN9A haplotype determined the pain threshold to blunt pressure stimuli (0 alleles: 21.1 N/m(2, 1 allele: 29.8±10.4 N/m(2, 2 alleles: 33.5±10.2 N/m(2. CONCLUSIONS: The findings established a working link between nociception and olfaction via Nav1.7 in the gain-of-function direction. Hence, together with the known reduced olfaction and pain in loss-of-function mutations, a bidirectional genetic functional association between nociception and olfaction exists at Nav1.7 level.

  17. The incidence of SCN1A-related Dravet syndrome in Denmark is 1:22,000

    DEFF Research Database (Denmark)

    Bayat, Allan; Hjalgrim, Helle; Møller, Rikke S.

    2015-01-01

    Dravet syndrome is a severe infantile-onset epileptic encephalopathy associated with mutations in the sodium channel alpha-1 subunit gene SCN1A. We aimed to describe the incidence of Dravet syndrome in the Danish population. Based on a 6-year birth cohort from 2004 to 2009, we propose an incidenc...

  18. Localisation of SCN10A gene product Na(v)1.8 and novel pain-related ion channels in human heart.

    Science.gov (United States)

    Facer, Paul; Punjabi, Prakash P; Abrari, Andleeb; Kaba, Riyaz A; Severs, Nicholas J; Chambers, John; Kooner, Jaspal S; Anand, Praveen

    2011-01-01

    We have shown that the gene SCN10A encoding the sodium channel Na(v)1.8 is a susceptibility factor for heart block and serious ventricular arrhythmia. Since Na(v)1.8 is known to be present in nerve fibres that mediate pain, it may be related to both cardiac pain and dysrhythmia. The localisation of Na(v)1.8 and other key nociceptive ion channels, including Na(v)1.7, Na(v)1.9, capsaicin receptor TRPV1, and purinergic receptor P2X(3), have not been reported in human heart. The aim of this study was to determine the distribution of Na(v)1.8, related sodium and other sensory channels in human cardiac tissue, and correlate their density with sympathetic nerves, regenerating nerves (GAP-43), and vascularity. Human heart atrial appendage tissues (n = 13) were collected during surgery for valve disease. Tissues were investigated by immunohistology using specific antibodies to Na(v)1.8 and other markers. Na(v)1.8 immunoreactivity was detected in nerve fibres and fascicles in the myocardium, often closely associated with small capillaries. Na(v)1.8 nerve fibres per mm(2) correlated significantly with vascular markers. Na(v)1.8-immunoreactivity was present also in cardiomyocytes with a similar distribution pattern to that seen with connexins, the specialised gap junction proteins of myocardial intercalated discs. Na(v)1.5-immunoreactivity was detected in cardiomyocytes but not in nerve fibres. Na(v)1.7, Na(v)1.9, TRPV1, P2X(3)/P2X(2), and GAP43 positive nerve fibres were relatively sparse, whereas sympathetic innervation and connexin43 were abundant. We conclude that sodium channel Na(v)1.8 is present in sensory nerves and cardiomyocytes of human heart. Na(v)1.8 and other pain channels provide new targets for the understanding and treatment of cardiac pain and dysrhythmia.

  19. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders.

    Science.gov (United States)

    Wolff, Markus; Johannesen, Katrine M; Hedrich, Ulrike B S; Masnada, Silvia; Rubboli, Guido; Gardella, Elena; Lesca, Gaetan; Ville, Dorothée; Milh, Mathieu; Villard, Laurent; Afenjar, Alexandra; Chantot-Bastaraud, Sandra; Mignot, Cyril; Lardennois, Caroline; Nava, Caroline; Schwarz, Niklas; Gérard, Marion; Perrin, Laurence; Doummar, Diane; Auvin, Stéphane; Miranda, Maria J; Hempel, Maja; Brilstra, Eva; Knoers, Nine; Verbeek, Nienke; van Kempen, Marjan; Braun, Kees P; Mancini, Grazia; Biskup, Saskia; Hörtnagel, Konstanze; Döcker, Miriam; Bast, Thomas; Loddenkemper, Tobias; Wong-Kisiel, Lily; Baumeister, Friedrich M; Fazeli, Walid; Striano, Pasquale; Dilena, Robertino; Fontana, Elena; Zara, Federico; Kurlemann, Gerhard; Klepper, Joerg; Thoene, Jess G; Arndt, Daniel H; Deconinck, Nicolas; Schmitt-Mechelke, Thomas; Maier, Oliver; Muhle, Hiltrud; Wical, Beverly; Finetti, Claudio; Brückner, Reinhard; Pietz, Joachim; Golla, Günther; Jillella, Dinesh; Linnet, Karen M; Charles, Perrine; Moog, Ute; Õiglane-Shlik, Eve; Mantovani, John F; Park, Kristen; Deprez, Marie; Lederer, Damien; Mary, Sandrine; Scalais, Emmanuel; Selim, Laila; Van Coster, Rudy; Lagae, Lieven; Nikanorova, Marina; Hjalgrim, Helle; Korenke, G Christoph; Trivisano, Marina; Specchio, Nicola; Ceulemans, Berten; Dorn, Thomas; Helbig, Katherine L; Hardies, Katia; Stamberger, Hannah; de Jonghe, Peter; Weckhuysen, Sarah; Lemke, Johannes R; Krägeloh-Mann, Ingeborg; Helbig, Ingo; Kluger, Gerhard; Lerche, Holger; Møller, Rikke S

    2017-05-01

    Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that

  20. SCN5A mutations and polymorphisms in patients with ventricular fibrillation during acute myocardial infarction.

    Science.gov (United States)

    Boehringer, Tim; Bugert, Peter; Borggrefe, Martin; Elmas, Elif

    2014-10-01

    Mutations in the SCN5A gene encoding the Nav1.5 channel α-subunit are known to be risk factors of arrhythmia, including Brugada Syndrome and Long QT syndrome subtype 3. The present study focused on the role of SCN5A variants in the development of ventricular fibrillation (VF) during acute myocardial infarction (AMI). Since VF during AMI is the major cause of sudden death in the Western world, SCN5A mutations represent genetic risk factors for sudden death. By exon re-sequencing, the entire coding region and flanking intron regions were sequenced in 46 AMI/VF+ patients. In total, nine single nucleotide variants were identified of which four represented common single nucleotide polymorphisms (SNPs; 87G>A, 1673A>G, IVS16‑6C>T and 5457T>A). Only five rare variants were identified, each in only one patient. Only two of the rare variants represented missense mutations (3578G>A and 4786T>A). The common SNPs and the missense mutations were also genotyped using polymerase chain reaction methods in 79 AMI/VF‑ patients and 480 healthy controls. The SNPs did not demonstrate significant differences in allele and genotype frequencies between the study groups. The 3578G>A mutation was identified in one out of the 480 controls, whereas the 4786T>A mutation was not present in AMI/VF- patients and controls. In conclusion, the majority of AMI/VF+ patients demonstrated a wild type sequence or common SNPs in SCN5A. Only two out of 46 (4.3%) AMI/VF+ patients revealed mutations that may be involved in Nav1.5 dysfunction and VF. However, this requires further functional validation.

  1. Large-scale structural alteration of brain in epileptic children with SCN1A mutation.

    Science.gov (United States)

    Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung

    2017-01-01

    Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS +) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic children with SCN1A mutation compared to healthy control subjects. We obtained cortical morphology (thickness, and surface area) and brain volume (global, subcortical, and regional) measurements using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu) and compared measurements of children with epilepsy and SCN1A gene mutation ( n  = 21) with those of age and gender matched healthy controls ( n  = 42). Compared to the healthy control group, children with epilepsy and SCN1A gene mutation exhibited smaller total brain, total gray matter and white matter, cerebellar white matter, and subcortical volumes, as well as mean surface area and mean cortical thickness. A regional analysis revealed significantly reduced gray matter volume in the patient group in the bilateral inferior parietal, left lateral orbitofrontal, left precentral, right postcentral, right isthmus cingulate, right middle temporal area with smaller surface area and white matter volume in some of these areas. However, the regional cortical thickness was not significantly different in two groups. This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  2. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission.

    Science.gov (United States)

    Han, Sung; Tai, Chao; Westenbroek, Ruth E; Yu, Frank H; Cheah, Christine S; Potter, Gregory B; Rubenstein, John L; Scheuer, Todd; de la Iglesia, Horacio O; Catterall, William A

    2012-09-20

    Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel Na(V)1.1 causes Dravet's syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome are poorly understood. Here we report that mice with Scn1a haploinsufficiency exhibit hyperactivity, stereotyped behaviours, social interaction deficits and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odours and social odours are aversive to Scn1a(+/-) mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of Na(V)1.1 channels in forebrain interneurons is sufficient to cause these behavioural and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABA(A) receptors, completely rescued the abnormal social behaviours and deficits in fear memory in the mouse model of Dravet's syndrome, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for Na(V)1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome.

  3. Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures

    Science.gov (United States)

    Mantegazza, Massimo; Gambardella, Antonio; Rusconi, Raffaella; Schiavon, Emanuele; Annesi, Ferdinanda; Cassulini, Rita Restano; Labate, Angelo; Carrideo, Sara; Chifari, Rosanna; Canevini, Maria Paola; Canger, Raffaele; Franceschetti, Silvana; Annesi, Grazia; Wanke, Enzo; Quattrone, Aldo

    2005-01-01

    Febrile seizures (FS) affect 5–12% of infants and children up to 6 years of age. There is now epidemiological evidence that FS are associated with subsequent afebrile and unprovoked seizures in ≈7% of patients, which is 10 times more than in the general population. Extensive genetic studies have demonstrated that various loci are responsible for familial FS, and the FEB3 autosomal-dominant locus has been identified on chromosome 2q23–24, where the SCN1A gene is mapped. However, gene mutations causing simple FS have not been found yet. Here we show that the M145T mutation of a well conserved amino acid in the first transmembrane segment of domain I of the human Nav1.1 channel α-subunit cosegregates in all 12 individuals of a large Italian family affected by simple FS. Functional studies in mammalian cells demonstrate that the mutation causes a 60% reduction of current density and a 10-mV positive shift of the activation curve. Thus, M145T is a loss-of-function mutant. These results show that monogenic FS should also be considered a channelopathy. PMID:16326807

  4. Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant

    Directory of Open Access Journals (Sweden)

    Slat Emily A

    2007-07-01

    Full Text Available Abstract Background Voltage-gated Na+ channel β1 (Scn1b subunits are multi-functional proteins that play roles in current modulation, channel cell surface expression, cell adhesion, cell migration, and neurite outgrowth. We have shown previously that β1 modulates electrical excitability in vivo using a mouse model. Scn1b null mice exhibit spontaneous seizures and ataxia, slowed action potential conduction, decreased numbers of nodes of Ranvier in myelinated axons, alterations in nodal architecture, and differences in Na+ channel α subunit localization. The early death of these mice at postnatal day 19, however, make them a challenging model system to study. As a first step toward development of an alternative model to investigate the physiological roles of β1 subunits in vivo we cloned two β1-like subunit cDNAs from D. rerio. Results Two β1-like subunit mRNAs from zebrafish, scn1ba_tv1 and scn1ba_tv2, arise from alternative splicing of scn1ba. The deduced amino acid sequences of Scn1ba_tv1 and Scn1ba_tv2 are identical except for their C-terminal domains. The C-terminus of Scn1ba_tv1 contains a tyrosine residue similar to that found to be critical for ankyrin association and Na+ channel modulation in mammalian β1. In contrast, Scn1ba_tv2 contains a unique, species-specific C-terminal domain that does not contain a tyrosine. Immunohistochemical analysis shows that, while the expression patterns of Scn1ba_tv1 and Scn1ba_tv2 overlap in some areas of the brain, retina, spinal cord, and skeletal muscle, only Scn1ba_tv1 is expressed in optic nerve where its staining pattern suggests nodal expression. Both scn1ba splice forms modulate Na+ currents expressed by zebrafish scn8aa, resulting in shifts in channel gating mode, increased current amplitude, negative shifts in the voltage dependence of current activation and inactivation, and increases in the rate of recovery from inactivation, similar to the function of mammalian β1 subunits. In

  5. Metaflumizone is a novel sodium channel blocker insecticide.

    Science.gov (United States)

    Salgado, V L; Hayashi, J H

    2007-12-15

    Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide.

  6. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death

    DEFF Research Database (Denmark)

    Bezzina, Connie; Barc, Julien; Mizusawa, Yuka

    2013-01-01

    Brugada syndrome is a rare cardiac arrhythmia disorder, causally related to SCN5A mutations in around 20% of cases. Through a genome-wide association study of 312 individuals with Brugada syndrome and 1,115 controls, we detected 2 significant association signals at the SCN10A locus (rs10428132) a...

  7. Thyrotoxic periodic paralysis associated with a mutation in the sodium channel gene SCN4A.

    Science.gov (United States)

    Lane, Andrew H; Markarian, Katherine; Braziunene, Ieva

    2004-12-01

    Thyrotoxic hypokalemic periodic paralysis (THypoKPP) is an uncommon disorder with an unknown etiology. We describe a family in which the proband presented with paralysis and thyrotoxicosis. Because of similarities between familial hypokalemic periodic paralysis (FHypoKPP) and THypoKPP, we sequenced exon 12 of the SCN4A gene, which is known to be mutated in FHypoKPP. We identified an Arg672Ser mutation in the proband and his affected father, as well as the proband's brother. As the brother has paralysis without thyrotoxicosis, our finding suggests that the genetic spectrum of FHypoKPP and THypoKPP overlap. We speculate that thyroid hormone may exert a threshold or permissive effect in hypokalemic periodic paralysis. Non-thyrotoxic family members of individuals with THypoKPP may have an unrecognized risk for paralysis.

  8. Preliminary Plugging tests in Narrow Sodium Channels by Sodium and Carbon Dioxide reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This report is on the investigation of the physical/chemical phenomena that a slow loss of CO{sub 2} inventory into sodium after the sodium-CO{sub 2} boundary failure in PCHEs in realistic operating conditions. The first phenomenon is potential channel plugging inside the narrow PCHE channel. Unlike a conventional shell and- tube type HXs, failures in a PCHE are expected to be small cracks. If the faulted channel is blocked, it may have a positive function for plant safety because the pressure boundary would automatically recover due to this self-plugging. The other one is damage propagation on pressure boundary, which is referred to as potential wastage with combined corrosion/erosion effect. Physical/chemical phenomena that a slow loss of CO{sub 2} inventory into sodium after the sodium-CO{sub 2} boundary failure in printed circuit heat exchangers (PCHEs) were investigated. Our preliminary experimental results of plugging show that sodium flow immediately stopped as CO{sub 2} was injected through the nozzle at 300-400 .deg. C in 3 mm sodium channels, whereas sodium flow stopped about 60 min after CO{sub 2} injection in 5 mm sodium channels.

  9. Identification of SCN1A and PCDH19 mutations in Chinese children with Dravet syndrome.

    Directory of Open Access Journals (Sweden)

    Anna Ka-Yee Kwong

    Full Text Available BACKGROUND: Dravet syndrome is a severe form of epilepsy. Majority of patients have a mutation in SCN1A gene, which encodes a voltage-gated sodium channel. A recent study has demonstrated that 16% of SCN1A-negative patients have a mutation in PCDH19, the gene encoding protocadherin-19. Mutations in other genes account for only a very small proportion of families. TSPYL4 is a novel candidate gene within the locus 6q16.3-q22.31 identified by linkage study. OBJECTIVE: The present study examined the mutations in epileptic Chinese children with emphasis on Dravet syndrome. METHODS: A hundred children with severe epilepsy were divided into Dravet syndrome and non-Dravet syndrome groups and screened for SCN1A mutations by direct sequencing. SCN1A-negative Dravet syndrome patients and patients with phenotypes resembling Dravet syndrome were checked for PCDH19 and TSPYL4 mutations. RESULTS: Eighteen patients (9 males, 9 females were diagnosed to have Dravet syndrome. Among them, 83% (15/18 had SCN1A mutations including truncating (7, splice site (2 and missense mutations (6. The truncating/splice site mutations were associated with moderate to severe degree of intellectual disability (p<0.05. During the progression of disease, 73% (11/15 had features fitting into the diagnostic criteria of autism spectrum disorder and 53% (8/15 had history of vaccination-induced seizures. A novel PCDH19 p.D377N mutation was identified in one SCN1A-negative female patient with Dravet syndrome and a known PCDH19 p.N340S mutation in a female non-Dravet syndrome patient. The former also inherited a TSPYL4 p.G60R variant. CONCLUSION: A high percentage of SCN1A mutations was identified in our Chinese cohort of Dravet syndrome patients but none in the rest of patients. We demonstrated that truncating/splice site mutations were linked to moderate to severe intellectual disability in these patients. A de novo PCDH19 missense mutation together with an inherited TSPYL4 missense

  10. Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3

    Czech Academy of Sciences Publication Activity Database

    Christé, G.; Chahine, M.; Chevalier, P.; Pásek, Michal

    2008-01-01

    Roč. 96, - (2008), s. 281-293 ISSN 0079-6107 Institutional research plan: CEZ:AV0Z20760514 Keywords : cardiac cell * SCN5A mutation * Long QT syndrome * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 6.388, year: 2008

  11. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Nnamdi Edokobi

    2018-04-01

    Full Text Available Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs. Voltage-gated sodium channels (NaVs are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.

  12. Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes

    DEFF Research Database (Denmark)

    Lal, Dennis; Reinthaler, Eva M; Dejanovic, Borislav

    2016-01-01

    OBJECTIVE: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are...

  13. Targeting sodium channels in cardiac arrhythmia

    NARCIS (Netherlands)

    Remme, Carol Ann; Wilde, Arthur A. M.

    2014-01-01

    Cardiac voltage-gated sodium channels are responsible for proper electrical conduction in the heart. During acquired pathological conditions and inherited sodium channelopathies, altered sodium channel function causes conduction disturbances and ventricular arrhythmias. Although the clinical,

  14. Amiloride-Sensitive Sodium Channels and Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Mike Althaus

    2011-01-01

    Full Text Available The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.

  15. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system

    NARCIS (Netherlands)

    Bezzina, Connie R.; Rook, Martin B.; Groenewegen, W. Antoinette; Herfst, Lucas J.; van der Wal, Allard C.; Lam, Jan; Jongsma, Habo J.; Wilde, Arthur A. M.; Mannens, Marcel M. A. M.

    2003-01-01

    Cardiac conduction defects associate with mutations in SCN5A, the gene encoding the cardiac Na+ channel. In the present study, we characterized a family in which the proband was born in severe distress with irregular wide complex tachycardia. His older sister died at 1 year of age from severe

  16. Pseudohalide (SCN(-))-Doped MAPbI3 Perovskites: A Few Surprises.

    Science.gov (United States)

    Halder, Ansuman; Chulliyil, Ramya; Subbiah, Anand S; Khan, Tuhin; Chattoraj, Shyamtanu; Chowdhury, Arindam; Sarkar, Shaibal K

    2015-09-03

    Pseudohalide thiocyanate anion (SCN(-)) has been used as a dopant in a methylammonium lead tri-iodide (MAPbI3) framework, aiming for its use as an absorber layer for photovoltaic applications. The substitution of SCN(-) pseudohalide anion, as verified using Fourier transform infrared (FT-IR) spectroscopy, results in a comprehensive effect on the optical properties of the original material. Photoluminescence measurements at room temperature reveal a significant enhancement in the emission quantum yield of MAPbI3-x(SCN)x as compared to MAPbI3, suggestive of suppression of nonradiative channels. This increased intensity is attributed to a highly edge specific emission from MAPbI3-x(SCN)x microcrystals as revealed by photoluminescence microscopy. Fluoresence lifetime imaging measurements further established contrasting carrier recombination dynamics for grain boundaries and the bulk of the doped material. Spatially resolved emission spectroscopy on individual microcrystals of MAPbI3-x(SCN)x reveals that the optical bandgap and density of states at various (local) nanodomains are also nonuniform. Surprisingly, several (local) emissive regions within MAPbI3-x(SCN)x microcrystals are found to be optically unstable under photoirradiation, and display unambiguous temporal intermittency in emission (blinking), which is extremely unusual and intriguing. We find diverse blinking behaviors for the undoped MAPbI3 crystals as well, which leads us to speculate that blinking may be a common phenomenon for most hybrid perovskite materials.

  17. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    Science.gov (United States)

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  18. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    Remme, Carol Ann; Bezzina, Connie R.

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation

  19. Molecular and kinetic determinants of local anaesthetic action on sodium channels.

    Science.gov (United States)

    French, R J; Zamponi, G W; Sierralta, I E

    1998-11-23

    (1) Local anaesthetics (LA) rely for their clinical actions on state-dependent inhibition of voltage-dependent sodium channels. (2) Single, batrachoxin-modified sodium channels in planar lipid bilayers allow direct observation of drug-channel interactions. Two modes of inhibition of single-channel current are observed: fast block of the open channels and prolongation of a long-lived closed state, some of whose properties resemble those of the inactivated state of unmodified channels. (3) Analogues of different parts of the LA molecule separately mimic each blocking mode: amines--fast block, and water-soluble aromatics--closed state prolongation. (4) Interaction between a mu-conotoxin derivative and diethylammonium indicate an intrapore site of fast, open-state block. (5) Site-directed mutagenesis studies suggest that hydrophobic residues in transmembrane segment 6 of repeat domain 4 of sodium channels are critical for both LA binding and stabilization of the inactivated state.

  20. Investigation of Plugging of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong; Kim, Tae-joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The supercritical CO{sub 2} Brayton cycle system is known to be a promising power conversion system for improving the efficiency and preventing the sodium water reaction (SWR) of the current SFR concept using a Rankine steam cycle. PCHEs are known to have potential for reducing the volume occupied by the sodium-to-CO{sub 2} exchangers as well as the heat exchanger mass relative to traditional shell-and-tube heat exchangers. Here, we report a study on a plugging test by the interaction of sodium and CO{sub 2} to investigate design parameters of sodium channels in the realistic operating conditions. We investigated a plugging test by an interaction of sodium and CO{sub 2} with different cross sectional areas of the sodium channels. It was found that the flow rate of sodium decreased earlier and faster with a narrower cross sectional area compared to a wider one. Our experimental results are expected to be used for determining the sodium channel areas of PCHEs.

  1. Cardiac safety implications of hNav1.5 blockade and a framework for preclinical evaluation

    Directory of Open Access Journals (Sweden)

    Gul eErdemli

    2012-01-01

    Full Text Available The human cardiac sodium channel (hNav1.5, encoded by the SCN5A gene is critical for action potential generation and propagation in the heart. Drug-induced sodium channel inhibition decreases the rate of cardiomyocyte depolarization and consequently conduction velocity and can have serious implications for cardiac safety. Genetic mutations in hNav1.5 have also been linked to a number of cardiac diseases. Therefore, off-target hNav1.5 inhibition may be considered a risk marker for a drug candidate. Given the potential safety implications for patients and the costs of late stage drug development, detection and mitigation of hNav1.5 liabilities early in drug discovery and development becomes important. In this review, we describe a preclinical strategy to identify hNav1.5 liabilities that incorporates in vitro, in vivo, and in silico techniques and the application of this information in the integrated risk assessment at different stages of drug discovery and development.

  2. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.

    Science.gov (United States)

    Hallaq, Haifa; Wang, Dao W; Kunic, Jennifer D; George, Alfred L; Wells, K Sam; Murray, Katherine T

    2012-02-01

    Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.

  3. Cation gating and selectivity in a purified, reconstituted, voltage-dependent sodium channel

    International Nuclear Information System (INIS)

    Barchi, R.L.; Tanaka, J.C.

    1984-01-01

    In excitable membranes, the voltage-dependent sodium channel controls the primary membrane conductance change necessary for the generation of an action potential. Over the past four decades, the time- and voltage-dependent sodium currents gated by this channel have been thoroughly documented with increasingly sophisticated voltage-clamp techniques. Recent advances in the biochemistry of membrane proteins have led to the solubilization and purification of this channel protein from nerve (6) and from muscle (4) or muscle-derived (1) membranes, and have provided an approach to the correlation of the channel's molecular structure with its functional properties. Each of these sodium channel preparations appears to contain a large glycoprotein either as its sole component (2) or in association with several small subunits (6, 3). Evidence that these purified proteins represent the excitable membrane sodium channel is presented. 8 refs., 1 fig., 1 tab

  4. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    Science.gov (United States)

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  5. Visualizing individual sodium channels on the move.

    Science.gov (United States)

    Heinemann, Stefan H

    2012-07-27

    Visualization of voltage-gated sodium channels at work is an important requirement for the understanding of rapid electrical signaling in nerve cells. In this issue of Chemistry & Biology, Ondrus and colleagues have mastered this challenge by chemical synthesis of a fluorescent antagonist and by monitoring single sodium channels in living cells with unprecedented optical resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Slack, Slick, and Sodium-Activated Potassium Channels

    Science.gov (United States)

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  7. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Yuzhe Du

    2016-10-01

    Full Text Available Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr, in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel.

  8. Reduced Penetrance and Variable Expression of SCN5A Mutations and the Importance of Co-inherited Genetic Variants: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    T. Robyns, MD.

    2014-05-01

    Full Text Available Mutations in the SCN5A gene are responsible for multiple phenotypical presentations including Brugada syndrome, long QT syndrome, progressive familial heart block, sick sinus syndrome, dilated cardiomyopathy, lone atrial fibrillation and multiple overlap syndromes. These different phenotypic expressions of a mutation in a single gene can be explained by variable expression and reduced penetrance. One of the possible explanations of these phenomena is the co-inheritance of genetic variants. We describe a family where the individuals exhibit a compound heterozygosity in the SCN5A gene including a mutation (R1632H and a new variant (M858L. Individuals with both the mutation and new variant present with a more severe phenotype including spontaneous atrial tachyarrhythmia at young age. We give an overview of the different phenotypes of "SCN5A disease" and discuss the importance of co-inherited genetic variants in the expression of SCN5A disease.

  9. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    Science.gov (United States)

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  10. Simplified numerical simulation of hot channel in sodium cooled reactor

    International Nuclear Information System (INIS)

    Fonseca, F. de A.S. da; Silva Filho, E.

    1988-12-01

    The thermal-hydraulic parameter values that restrict the operation of a liquid sodium cooled reactor are not established by the average conditions of the coolant in the reactor core but by the extreme conditions of the hot channel. The present work was developed to analysis of hot channel of a sodium cooled reactor, adapting to this reactor an existent simplified model for hot channel of pressurized water reactor. The model was applied for a standard sodium reactor and the results are considered satisfatory. (author) [pt

  11. Role of aquaporin and sodium channel in pleural water movement.

    Science.gov (United States)

    Jiang, Jinjun; Hu, Jie; Bai, Chunxue

    2003-12-16

    The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.

  12. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism

    International Nuclear Information System (INIS)

    Saxena, Sunil K.; Horiuchi, Hisanori; Fukuda, Mitsunori

    2006-01-01

    Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins

  13. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique

    Science.gov (United States)

    Chen, Wanjuan; Liu, Jingxin; Zhang, Longmei; Xu, Huijuan; Guo, Xiaogang; Deng, Sihao; Liu, Lipeng; Yu, Daiguan; Chen, Yonglong; Li, Zhiyuan

    2014-06-01

    Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However, such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs), which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods, we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening.

  14. Voltage-gated sodium channels: action players with many faces

    NARCIS (Netherlands)

    Koopmann, Tamara T.; Bezzina, Connie R.; Wilde, Arthur A. M.

    2006-01-01

    Voltage-gated sodium channels are responsible for the upstroke of the action potential and thereby play an important role in propagation of the electrical impulse in excitable tissues like muscle, nerve and the heart. Duplication of the sodium channels encoding genes during evolution generated the

  15. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    International Nuclear Information System (INIS)

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-01-01

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  16. Vibrational Analysis of (SCN)2 and the Transient (SCN)2

    DEFF Research Database (Denmark)

    Jensen, N. H.; Wilbrandt, Robert Walter; Pagsberg, Palle Bjørn

    1979-01-01

    The vibrational spectra of thiocyanogen and the transient radical anion (SCN)2− are interpreted in detail through molecular orbital and normal coordinate calculations. The results support the assignment of (SCN)2− to the anion of thiocyanogen and indicate a substantial weakening of the S–S and C......≡N bonds in going from the parent molecule to its radical anion....

  17. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X

    2006-01-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull......-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn...... does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5....

  18. (Liquid + liquid) equilibria for benzene + cyclohexane + N,N-dimethylformamide + sodium thiocyanate

    International Nuclear Information System (INIS)

    Dong, Hongxing; Yang, Xiaoguang; Yue, Guojun; Zhang, Wei; Zhang, Jin

    2013-01-01

    Graphical abstract: On the left, the figure was phase diagram about the LLE date. On the right, the figure was about the effects of mass fraction of benzene in the raffinate phase to the selectivity(S) coefficient under different salt concentration. ■, the NaSCN and DMF in ratio of 5/95; • , the NaSCN and DMF in ratio of 10/90; ▴, the NaSCN and DMF in ratio of 15/85; ★, the NaSCN and DMF in ratio of 20/80; ▾, the NaSCN and DMF in ratio of 23/77. ♦, only DMF was used extractant (the selectivity coefficient was calculated by literature 17). w 22 , refer to the mass fraction of benzene in the raffinate phase (cyclohexane-rich phase). Highlights: • (Liquid + liquid) equilibrium for quaternary system was measured. • The components include benzene, cyclohexane, N,N-dimethylformamide, sodium thiocyanate. • The (liquid + liquid) equilibrium data can be well correlated by the NRTL model. • Separation of benzene and cyclohexane by NaSCN + DMF was discussed. -- Abstract: (Liquid + liquid) equilibrium (LLE) data for benzene + cyclohexane + N,N-dimethylformamide (DMF) + sodium thiocyanate (NaSCN) were measured experimentally at atmospheric pressure and 303.15 K. The selectivity coefficients from these LLE data were calculated and compared to those previously reported in the literature for the systems (benzene + cyclohexane + DMF) and (benzene + cyclohexane + DMF + KSCN). The NRTL equation was used to correlate the experimental data. The agreement between the predicted and experimental results was good. It was found that the selectivity coefficients of DMF + NaSCN for benzene ranged from 2.45 to 11.99. Considering the relatively high extraction capacity and selectivity for benzene, DMF + NaSCN may be used as a potential extracting solvent for the separation of benzene from cyclohexane

  19. Intracellular calcium modulation of voltage-gated sodium channels in ventricular myocytes

    NARCIS (Netherlands)

    Casini, Simona; Verkerk, Arie O.; van Borren, Marcel M. G. J.; van Ginneken, Antoni C. G.; Veldkamp, Marieke W.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2009-01-01

    AIMS: Cardiac voltage-gated sodium channels control action potential (AP) upstroke and cell excitability. Intracellular calcium (Ca(i)(2+)) regulates AP properties by modulating various ion channels. Whether Ca(i)(2+) modulates sodium channels in ventricular myocytes, is unresolved. We studied

  20. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin.

    Science.gov (United States)

    McCall, Jennifer R; Jacocks, Henry M; Niven, Susan C; Poli, Mark A; Baden, Daniel G; Bourdelais, Andrea J

    2014-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels.

  1. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se [Department of Pharmaceutical Biosciences, Uppsala University (Sweden); Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma [AstraZeneca R and D Södertälje (Sweden); Cebers, Gvido [AstraZeneca R and D, iMed, 141 Portland Street, Cambridge, MA 02139 (United States); Hellmold, Heike; Gustafson, Anne-Lee [AstraZeneca R and D Södertälje (Sweden); Webster, William S [Department of Anatomy and Histology, University of Sydney (Australia)

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.

  2. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    International Nuclear Information System (INIS)

    Nilsson, Mats F; Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma; Cebers, Gvido; Hellmold, Heike; Gustafson, Anne-Lee; Webster, William S

    2013-01-01

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development

  3. On conduction in a bacterial sodium channel.

    Directory of Open Access Journals (Sweden)

    Simone Furini

    Full Text Available Voltage-gated Na⁺-channels are transmembrane proteins that are responsible for the fast depolarizing phase of the action potential in nerve and muscular cells. Selective permeability of Na⁺ over Ca²⁺ or K⁺ ions is essential for the biological function of Na⁺-channels. After the emergence of the first high-resolution structure of a Na⁺-channel, an anionic coordination site was proposed to confer Na⁺ selectivity through partial dehydration of Na⁺ via its direct interaction with conserved glutamate side chains. By combining molecular dynamics simulations and free-energy calculations, a low-energy permeation pathway for Na⁺ ion translocation through the selectivity filter of the recently determined crystal structure of a prokaryotic sodium channel from Arcobacter butzleri is characterised. The picture that emerges is that of a pore preferentially occupied by two ions, which can switch between different configurations by crossing low free-energy barriers. In contrast to K⁺-channels, the movements of the ions appear to be weakly coupled in Na⁺-channels. When the free-energy maps for Na⁺ and K⁺ ions are compared, a selective site is characterised in the narrowest region of the filter, where a hydrated Na⁺ ion, and not a hydrated K⁺ ion, is energetically stable.

  4. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  5. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel.

    Science.gov (United States)

    Muroi, Yukiko; Chanda, Baron

    2009-01-01

    Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.

  6. Ligand-based design and synthesis of novel sodium channel blockers from a combined phenytoin–lidocaine pharmacophore

    OpenAIRE

    Wang, Yuesheng; Jones, Paulianda J.; Batts, Timothy W.; Landry, Victoria; Patel, Manoj K.; Brown, Milton L.

    2008-01-01

    The voltage-gated sodium channel remains a rich area for the development of novel blockers. In this study we used comparative molecular field analysis (CoMFA), a ligand-based design strategy, to generate a 3D model based upon local anesthetics, hydantoins, and α-hydroxyphenylamides to elucidate a SAR for their binding site in the neuronal sodium channel. Correlation by partial least squares (PLS) analysis of in vitro sodium channel binding activity (expressed as pIC50) and the CoMFA descripto...

  7. A Novel SCN5A Mutation in a Patient with Coexistence of Brugada Syndrome Traits and Ischaemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Anders G. Holst

    2009-01-01

    Full Text Available Brugada syndrome (BrS is a primary electrical heart disease, which can lead to sudden cardiac death. In older patients with BrS, the disease may coexist with ischaemic heart disease (IHD and recent studies support a synergistic proarrhythmic effect of the two disease entities. We report a case that illustrates this. The index patient was a middle-aged patient with BrS traits, IHD, and aborted sudden cardiac death. Mutation analysis discovered a novel mutation P468L in the NaV1.5 sodium channel. Surprisingly, voltage-clamp experiments on the wild-type and mutant NaV1.5 channels expressed in HEK cells revealed no functional effect of the mutation. In a patient like ours, the distinction between IHD and BrS as the cause of an aborted sudden cardiac death is hard to establish and mounting evidence shows that coexistence of the two may have a synergistic proarrhythmic effect.

  8. Differential effects of common variants in SCN2A on general cognitive ability, brain physiology, and messenger RNA expression in schizophrenia cases and control individuals.

    Science.gov (United States)

    Dickinson, Dwight; Straub, Richard E; Trampush, Joey W; Gao, Yuan; Feng, Ningping; Xie, Bin; Shin, Joo Heon; Lim, Hun Ki; Ursini, Gianluca; Bigos, Kristin L; Kolachana, Bhaskar; Hashimoto, Ryota; Takeda, Masatoshi; Baum, Graham L; Rujescu, Dan; Callicott, Joseph H; Hyde, Thomas M; Berman, Karen F; Kleinman, Joel E; Weinberger, Daniel R

    2014-06-01

    One approach to understanding the genetic complexity of schizophrenia is to study associated behavioral and biological phenotypes that may be more directly linked to genetic variation. To identify single-nucleotide polymorphisms associated with general cognitive ability (g) in people with schizophrenia and control individuals. Genomewide association study, followed by analyses in unaffected siblings and independent schizophrenia samples, functional magnetic resonance imaging studies of brain physiology in vivo, and RNA sequencing in postmortem brain samples. The discovery cohort and unaffected siblings were participants in the National Institute of Mental Health Clinical Brain Disorders Branch schizophrenia genetics studies. Additional schizophrenia cohorts were from psychiatric treatment settings in the United States, Japan, and Germany. The discovery cohort comprised 339 with schizophrenia and 363 community control participants. Follow-up analyses studied 147 unaffected siblings of the schizophrenia cases and independent schizophrenia samples including a total of an additional 668 participants. Imaging analyses included 87 schizophrenia cases and 397 control individuals. Brain tissue samples were available for 64 cases and 61 control individuals. We studied genomewide association with g, by group, in the discovery cohort. We used selected genotypes to test specific associations in unaffected siblings and independent schizophrenia samples. Imaging analyses focused on activation in the prefrontal cortex during working memory. Brain tissue studies yielded messenger RNA expression levels for RefSeq transcripts. The schizophrenia discovery cohort showed genomewide-significant association of g with polymorphisms in sodium channel gene SCN2A, accounting for 10.4% of g variance (rs10174400, P = 9.27 × 10(-10)). Control individuals showed a trend for g/genotype association with reversed allelic directionality. The genotype-by-group interaction was also genomewide

  9. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.

    Science.gov (United States)

    Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J

    2016-12-01

    Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. High Prevalence of Long QT Syndrome Associated SCN5A Variants in Patients with Early-Onset Lone Atrial Fibrillation

    DEFF Research Database (Denmark)

    Olesen, Morten S; Yuan, Lei; Liang, Bo

    2012-01-01

    a mechanistic overlap between LQTS3 and early-onset lone AF. In 9 of 10 identified mutations and rare variants, we observed compromised biophysical properties affecting the transient peak current. CONCLUSIONS: In a cohort of patients with early-onset lone AF, we identified a high prevalence of SCN5A mutations...

  11. Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.

    Science.gov (United States)

    Kasimova, M A; Granata, D; Carnevale, V

    2016-01-01

    Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS

    Science.gov (United States)

    Miller, Thomas M.; Viggiano, Albert A.; Shuman, Nicholas S.

    2018-05-01

    The kinetics of thermal electron attachment to methyl thiocyanate (CH3SCN), methyl isothiocyanate (CH3NCS), and ethyl thiocyanate (C2H5SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH3SCN and C2H5SCN undergo inefficient dissociative attachment to yield primarily SCN- at 300 K (k = 2 × 10-10 cm3 s-1), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH3SCN) and 0.14 eV (C2H5SCN). CN- product is formed at product but at a rate at 300 K that is below our detection threshold (k differentiating the two mechanisms. The kinetic modeling reproduces the CH3NCS data only if dissociation through the transient anion is considered.

  13. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    Science.gov (United States)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  14. Synthesis and characterizations of AgSCN nanospheres using AgCl as the precursor

    International Nuclear Information System (INIS)

    Yang Ming; Ma Jing

    2009-01-01

    Nanospheres of AgSCN with an average radius of 30-80 nm have been prepared by a simple reaction between AgCl suspension and KSCN in the presence of gelatin. Gelatin played a decisive role as an inhibitor of the direct attack of SCN - ions to AgCl surfaces and coagulation of the growing AgSCN in producing the spherical AgSCN nanoparticles. The products were characterized by X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectra techniques. The electrical conductivity of thin films of as-prepared AgSCN nanoparticles and polyethylene oxide (PEO) at room temperature was measured. The maximum value of electrical conductivity of as-prepared AgSCN-PEO was 1.53 x 10 -5 S cm -1 .

  15. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    International Nuclear Information System (INIS)

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M.

    1990-01-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of [ 3 H]batrachotoxinin A 20α-benzoate ([ 3 H]BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of [ 3 H]BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited [ 3 H]BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealed that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents

  16. Physiological regulation of epithelial sodium channel by proteolysis

    DEFF Research Database (Denmark)

    Svenningsen, Per; Friis, Ulla G; Bistrup, Claus

    2011-01-01

    PURPOSE OF REVIEW: Activation of epithelial sodium channel (ENaC) by proteolysis appears to be relevant for day-to-day physiological regulation of channel activity in kidney and other epithelial tissues. Pathophysiogical, proteolytic activation of ENaC in kidney has been demonstrated in proteinuric...

  17. Brugada syndrome with a novel missense mutation in SCN5A gene: A case report from Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Zahidus Sayeed

    2014-01-01

    Full Text Available Brugada syndrome is an inherited cardiac arrhythmia that follows autosomal dominant transmission and can cause sudden death. We report a case of Brugada syndrome in a 55-year-old male patient presented with recurrent palpitation, atypical chest pain and presyncope. ECG changes were consistent with type 1 Brugada. Gene analysis revealed a novel missense mutation in SCN5A gene with a genetic variation of D785N and a nucleotide change at 2353G-A. One of his children also had the same mutation. To our knowledge this is the first genetically proved case of Brugada syndrome in Bangladesh.

  18. The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/- mice

    DEFF Research Database (Denmark)

    von Schoubye, Nadia Lybøl; Frederiksen, Kristen; Kristiansen, Uffe

    2018-01-01

    Mental disorders such as schizophrenia are associated with impaired firing properties of fast spiking inhibitory interneurons (FSINs) causing reduced task-evoked gamma-oscillation in prefrontal cortex. The voltage-gated sodium channel NaV1.1 is highly expressed in PV-positive interneurons, but only...... at low levels in principal cells. Positive modulators of Nav1.1 channels are for this reason considered potential candidates for the treatment of cognitive disorders. Here we examined the effect of the novel positive modulator of voltage-gated sodium channels Lu AE98134. We found that Lu AE98134...... facilitated the sodium current mediated by NaV1.1 expressed in HEK cells by shifting its activation to more negative values, decreasing its inactivation kinetics and promoting a persistent inward current. In a slice preparation from the brain of adult mice, Lu AE98134 promoted the excitability of fast spiking...

  19. β1 subunit stabilises sodium channel Nav1.7 against mechanical stress.

    Science.gov (United States)

    Körner, Jannis; Meents, Jannis; Machtens, Jan-Philipp; Lampert, Angelika

    2018-06-01

    The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress. Using whole-cell patch-clamp experiments, we discovered that the sodium channel subunit β1 is able to prevent the impact of mechanical stress on Nav1.7. An intramolecular disulfide bond of β1 was identified to be essential for stabilisation of inactivation, but not activation, against mechanical stress using molecular dynamics simulations, homology modelling and site-directed mutagenesis. Our results highlight the role of segment 6 of domain IV in fast inactivation. We present a candidate mechanism for sodium channel stabilisation against mechanical stress, ensuring reliable channel functionality in living systems. Voltage-gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co-expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site-directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21-Cys43) which is partially involved in this process: the β1-C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be

  20. Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Smith Paula L

    2011-09-01

    Full Text Available Abstract Background Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. Results Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. Conclusions Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

  1. Distribution and function of voltage-gated sodium channels in the nervous system.

    Science.gov (United States)

    Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie

    2017-11-02

    Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.

  2. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants.

    Science.gov (United States)

    Tikhonov, Denis B; Zhorov, Boris S

    2017-04-03

    Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. © 2017 Tikhonov and Zhorov.

  3. Ab initio study of structural, electronic and optical properties of MnHg(SCN)4 and FeHg(SCN)4

    International Nuclear Information System (INIS)

    He, K.H.; Zheng, G.; Chen, G.; Lue, T.; Wan, M.; Ji, G.F.

    2007-01-01

    The structural, electronic and optical properties of MnHg(SCN) 4 and FeHg(SCN) 4 were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN) 4 have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN) 4 . The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN) 4 lag behind those of MnHg(SCN) 4 and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena

  4. Substituted 4-phenyl-2-aminoimidazoles and 4-phenyl-4,5-dihydro-2-aminoimidazoles as voltage-gated sodium channel modulators.

    Science.gov (United States)

    Zidar, Nace; Jakopin, Žiga; Madge, David J; Chan, Fiona; Tytgat, Jan; Peigneur, Steve; Dolenc, Marija Sollner; Tomašić, Tihomir; Ilaš, Janez; Mašič, Lucija Peterlin; Kikelj, Danijel

    2014-03-03

    Voltage-gated sodium channels play an integral part in neurotransmission and their dysfunction is frequently a cause of various neurological disorders. On the basis of the structure of marine alkaloid clathrodin, twenty eight new analogs were designed, synthesized and tested for their ability to block human NaV1.3, NaV1.4 and NaV1.7 channels, as well as for their selectivity against human cardiac isoform NaV1.5, using automated patch clamp electrophysiological assay. Several compounds exhibited promising activities on different NaV channel isoforms in the medium micromolar range and some of the compounds showed also moderate isoform selectivities. The most promising results were obtained for the NaV1.3 channel, for which four compounds were found to possess IC₅₀ values lower than 15 μM. All of the active compounds bind to the open-inactivated states of the channels and therefore act as state-dependent modulators. The obtained results validate the approach of using natural products driven chemistry for drug discovery starting points and represent a good foundation for future design of selective NaV modulators. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development

    Directory of Open Access Journals (Sweden)

    Siguang Xu

    2016-01-01

    Full Text Available The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC and acid sensitive ionic channel (ASIC. ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na+ across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics.

  6. Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying

    DEFF Research Database (Denmark)

    Tureson, Nina; Van Nong, Ngo; Fournier, Daniele

    2017-01-01

    ) orientation. The crystal structure, morphology, thermal conductivity, and thermoelectric and electrical properties were investigated. The ScN reference film exhibited a Seebeck coefficient of −45 μV/K and a power factor of 6 × 10−4 W/m K2 at 750 K. Estimated from room temperature Hall measurements, all...... samples exhibit a high carrier density of the order of 1021 cm−3. Inclusion of heavy transition metals into ScN enables the reduction in thermal conductivity by an increase in phonon scattering. The Nb inserted ScN thin films exhibited a thermal conductivity lower than the value of the ScN reference (10.......5 W m−1 K−1) down to a minimum value of 2.2 Wm−1 K−1. Insertion of Nb into ScN thus resulted in a reduction in thermal conductivity by a factor of ∼5 due to the mass contrast in ScN, which increases the phonon scattering in the material....

  7. Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia

    DEFF Research Database (Denmark)

    Zakrzewska, Joanna M; Palmer, Joanne; Morisset, Valerie

    2017-01-01

    BACKGROUND: Current standard of care for trigeminal neuralgia is treatment with the sodium channel blockers carbamazepine and oxcarbazepine, which although effective are associated with poor tolerability and the need for titration. BIIB074, a Nav1.7-selective, state-dependent sodium-channel blocker...

  8. Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition

    Czech Academy of Sciences Publication Activity Database

    Khan, M. A. H.; Pavlov, T. S.; Christain, S. V.; Neckář, Jan; Staruschenko, A.; Gauthier, K. M.; Capdevila, J. H.; Falck, J. R.; Campbell, W. B.; Imig, J. D.

    2014-01-01

    Roč. 127, č. 7 (2014), s. 463-474 ISSN 0143-5221 Institutional support: RVO:67985823 Keywords : angiotensin II * epithelial sodium channel (ENaC) * epoxyeicosatrienoic acid analogue * hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.598, year: 2014

  9. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.

    Science.gov (United States)

    Tang, Cheng; Zhou, Xi; Nguyen, Phuong Tran; Zhang, Yunxiao; Hu, Zhaotun; Zhang, Changxin; Yarov-Yarovoy, Vladimir; DeCaen, Paul G; Liang, Songping; Liu, Zhonghua

    2017-07-01

    Voltage-gated sodium channels (Na V s) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial Na V s have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial Na V s. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic Na V s Ns V Ba (nonselective voltage-gated Bacillus alcalophilus ) and NaChBac (bacterial sodium channel from Bacillus halodurans ) (IC 50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of Ns V Ba, whereas the local anesthetic drug lidocaine was shown to antagonize Ns V Ba without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of Ns V Ba, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of Ns V Ba in one of the deactivated states. In mammalian Na V s, JZTx-27 preferably inhibited the inactivation of Na V 1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic Na V s. More important, we proposed that JZTx-27 stabilized the Ns V Ba VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of Na V s.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. © FASEB.

  10. Molecular Surface of JZTX-V (β-Theraphotoxin-Cj2a Interacting with Voltage-Gated Sodium Channel Subtype NaV1.4

    Directory of Open Access Journals (Sweden)

    Ji Luo

    2014-07-01

    Full Text Available Voltage-gated sodium channels (VGSCs; NaV1.1–NaV1.9 have been proven to be critical in controlling the function of excitable cells, and human genetic evidence shows that aberrant function of these channels causes channelopathies, including epilepsy, arrhythmia, paralytic myotonia, and pain. The effects of peptide toxins, especially those isolated from spider venom, have shed light on the structure–function relationship of these channels. However, most of these toxins have not been analyzed in detail. In particular, the bioactive faces of these toxins have not been determined. Jingzhaotoxin (JZTX-V (also known as β-theraphotoxin-Cj2a is a 29-amino acid peptide toxin isolated from the venom of the spider Chilobrachys jingzhao. JZTX-V adopts an inhibitory cysteine knot (ICK motif and has an inhibitory effect on voltage-gated sodium and potassium channels. Previous experiments have shown that JZTX-V has an inhibitory effect on TTX-S and TTX-R sodium currents on rat DRG cells with IC50 values of 27.6 and 30.2 nM, respectively, and is able to shift the activation and inactivation curves to the depolarizing and the hyperpolarizing direction, respectively. Here, we show that JZTX-V has a much stronger inhibitory effect on NaV1.4, the isoform of voltage-gated sodium channels predominantly expressed in skeletal muscle cells, with an IC50 value of 5.12 nM, compared with IC50 values of 61.7–2700 nM for other heterologously expressed NaV1 subtypes. Furthermore, we investigated the bioactive surface of JZTX-V by alanine-scanning the effect of toxin on NaV1.4 and demonstrate that the bioactive face of JZTX-V is composed of three hydrophobic (W5, M6, and W7 and two cationic (R20 and K22 residues. Our results establish that, consistent with previous assumptions, JZTX-V is a Janus-faced toxin which may be a useful tool for the further investigation of the structure and function of sodium channels.

  11. The human Nav1.5 F1486 deletion associated with long QT syndrome leads to impaired sodium channel inactivation and reduced lidocaine sensitivity

    Science.gov (United States)

    Song, Weihua; Xiao, Yucheng; Chen, Hanying; Ashpole, Nicole M; Piekarz, Andrew D; Ma, Peilin; Hudmon, Andy; Cummins, Theodore R; Shou, Weinian

    2012-01-01

    The deletion of phenylalanine 1486 (F1486del) in the human cardiac voltage-gated sodium channel (hNav1.5) is associated with fatal long QT (LQT) syndrome. In this study we determined how F1486del impairs the functional properties of hNav1.5 and alters action potential firing in heterologous expression systems (human embryonic kidney (HEK) 293 cells) and their native cardiomyocyte background. Cells expressing hNav1.5-F1486del exhibited a loss-of-function alteration, reflected by an 80% reduction of peak current density, and several gain-of-function alterations, including reduced channel inactivation, enlarged window current, substantial augmentation of persistent late sodium current and an increase in ramp current. We also observed substantial action potential duration (APD) prolongation and prominent early afterdepolarizations (EADs) in neonatal cardiomyocytes expressing the F1486del channels, as well as in computer simulations of myocyte activity. In addition, lidocaine sensitivity was dramatically reduced, which probably contributed to the poor therapeutic outcome observed in the patient carrying the hNav1.5-F1486del mutation. Therefore, despite the significant reduction in peak current density, the F1486del mutation also leads to substantial gain-of-function alterations that are sufficient to cause APD prolongation and EADs, the predominant characteristic of LQTs. These data demonstrate that hNav1.5 mutations can have complex functional consequences and highlight the importance of identifying the specific molecular defect when evaluating potential treatments for individuals with prolonged QT intervals. PMID:22826127

  12. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy.

    Science.gov (United States)

    Ma, Chun-Lai; Wu, Xun-Yi; Jiao, Zheng; Hong, Zhen; Wu, Zhi-Yuan; Zhong, Ming-Kang

    2015-01-01

    Associations between the effects of SCN1A, SCN2A, ABCC2 and UGT2B7 genetic polymorphisms and oxcarbazepine (OXC) maintenance doses in Han Chinese epileptic patients were investigated. Genetic polymorphisms were detected in 184 epileptic patients receiving OXC monotherapy by high-resolution melting curve and TaqMan method. Carriers of the SCN1A IVS5-91G>A, UGT2B7 c.802T>C and ABCC2 c.1249G>A variant alleles required significantly higher OXC maintenance doses than noncarriers (p GA > AA. SCN1A, UGT2B7 and ABCC2 genetic polymorphisms are associated with OXC maintenance doses and may be useful for the personalization of OXC therapy in epileptic patients. Further studies are needed. Original submitted 6 June 2014; Revision submitted 5 September 2014.

  13. Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes.

    Science.gov (United States)

    Lal, Dennis; Reinthaler, Eva M; Dejanovic, Borislav; May, Patrick; Thiele, Holger; Lehesjoki, Anna-Elina; Schwarz, Günter; Riesch, Erik; Ikram, M Arfan; van Duijn, Cornelia M; Uitterlinden, Andre G; Hofman, Albert; Steinböck, Hannelore; Gruber-Sedlmayr, Ursula; Neophytou, Birgit; Zara, Federico; Hahn, Andreas; Gormley, Padhraig; Becker, Felicitas; Weber, Yvonne G; Cilio, Maria Roberta; Kunz, Wolfram S; Krause, Roland; Zimprich, Fritz; Lemke, Johannes R; Nürnberg, Peter; Sander, Thomas; Lerche, Holger; Neubauer, Bernd A

    2016-01-01

    The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10-4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.

  14. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  15. Increased renal sodium absorption by inhibition of prostaglandin synthesis during fasting in healthy man. A possible role of the epithelial sodium channels

    Directory of Open Access Journals (Sweden)

    Graffe Carolina C

    2010-10-01

    Full Text Available Abstract Background Treatment with prostaglandin inhibitors can reduce renal function and impair renal water and sodium excretion. We tested the hypotheses that a reduction in prostaglandin synthesis by ibuprofen treatment during fasting decreased renal water and sodium excretion by increased absorption of water and sodium via the aquaporin2 water channels and the epithelial sodium channels. Methods The effect of ibuprofen, 600 mg thrice daily, was measured during fasting in a randomized, placebo-controlled, double-blinded crossover study of 17 healthy humans. The subjects received a standardized diet on day 1, fasted at day 2, and received an IV infusion of 3% NaCl on day 3. The effect variables were urinary excretions of aquaporin2 (u-AQP2, the beta-fraction of the epithelial sodium channel (u-ENaCbeta, cyclic-AMP (u-cAMP, prostaglandin E2 (u-PGE2. Free water clearance (CH2O, fractional excretion of sodium (FENa, and plasma concentrations of vasopressin, angiotensin II, aldosterone, atrial-, and brain natriuretic peptide. Results Ibuprofen decreased u-AQP2, u-PGE2, and FENa at all parts of the study. During the same time, ibuprofen significantly increased u-ENaCbeta. Ibuprofen did not change the response in p-AVP, u-c-AMP, urinary output, and free water clearance during any of these periods. Atrial-and brain natriuretic peptide were higher. Conclusion During inhibition of prostaglandin synthesis, urinary sodium excretion decreased in parallel with an increase in sodium absorption and increase in u-ENaCbeta. U-AQP2 decreased indicating that water transport via AQP2 fell. The vasopressin-c-AMP-axis did not mediate this effect, but it may be a consequence of the changes in the natriuretic peptide system and/or the angiotensin-aldosterone system Trial Registration Clinical Trials Identifier: NCT00281762

  16. Ionizing radiation alters the properties of sodium channels in rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, M J; Hunt, W A; Harris, R A

    1986-08-01

    The effect of ionizing radiation on neuronal membrane function was assessed by measurement of neurotoxin-stimulated /sup 22/Na/sup +/ uptake by rat brain synaptosomes. High-energy electrons and gamma photons were equally effective in reducing the maximal uptake of /sup 22/Na/sup +/ with no significant change in the affinity of veratridine for its binding site in the channel. Ionizing radiation reduced the veratridine-stimulated uptake at the earliest times measured (3 and 5 s), when the rate of uptake was greatest. Batrachotoxin-stimulated /sup 22/Na/sup +/ uptake was less sensitive to inhibition by radiation. The binding of (/sup 3/H)saxitoxin to its receptor in the sodium channel was unaffected by exposure to ionizing radiation. The effect of ionizing radiation on the lipid order of rat brain synaptic plasma membranes was measured by the fluorescence polarization of the molecular probes 1,6-diphenyl-1,3,5-hexatriene and 1-(4-(trimethylammonium)phenyl)-6-phenyl-1,3,5-hexatriene. A dose of radiation that reduced the veratridine-stimulated uptake of /sup 22/Na/sup +/ had no effect on the fluorescence polarization of either probe. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive sodium channels in rat brain synaptosomes. This effect of radiation is not dependent on changes in the order of membrane lipids.

  17. Divergent actions of the pyrethroid insecticides S-bioallethrin, tefluthrin, and deltamethrin on rat Nav1.6 sodium channels

    International Nuclear Information System (INIS)

    Tan Jianguo; Soderlund, David M.

    2010-01-01

    We expressed rat Na v 1.6 sodium channels in combination with the rat β 1 and β 2 auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 μM), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were ∼ 9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 μM), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 μM), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin ∼ 15-fold and that tefluthrin was ∼ 10-fold more potent than deltamethrin as a use-dependent modifier of Na v 1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Na v 1.2 sodium channel coexpressed with the rat β 1 and β 2 subunits in oocytes showed that the Na v 1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Na v 1.2 isoform. These results implicate sodium channels containing the Na v 1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.

  18. Action potential generation requires a high sodium channel density in the axon initial segment

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Ilschner, Susanne U.; Kampa, Björn M.; Williams, Stephen R.; Ruben, Peter C.; Stuart, Greg J.

    2008-01-01

    The axon initial segment ( AIS) is a specialized region in neurons where action potentials are initiated. It is commonly assumed that this process requires a high density of voltage-gated sodium ( Na(+)) channels. Paradoxically, the results of patch-clamp studies suggest that the Na(+) channel

  19. Loss-of-Function Sodium Channel Mutations in Infancy A Pattern Unfolds

    NARCIS (Netherlands)

    Chockalingam, Priya; Wilde, Arthur A. M.

    2012-01-01

    The role of channelopathies in the pathogenesis of sudden cardiac death (SCD) in patients with structurally normal hearts is a rapidly evolving story.(1) Many ion channels are involved, including loss-of-function sodium channelopathies of which the phenotypic spectrum ranges from lethal arrhythmias

  20. Ab initio study of structural, electronic and optical properties of MnHg(SCN){sub 4} and FeHg(SCN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    He, K.H. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: he23981006@126.com; Zheng, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: gzheng25@yahoo.com; Chen, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Lue, T. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Wan, M. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Ji, G.F. [Laboratory for Shock Wave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2007-03-01

    The structural, electronic and optical properties of MnHg(SCN){sub 4} and FeHg(SCN){sub 4} were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN){sub 4} have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN){sub 4}. The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN){sub 4} lag behind those of MnHg(SCN){sub 4} and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena.

  1. Luminescence studies of Sm(III) and Cm(III) complexes in NaSCN/DHDECMP extraction systems

    CERN Document Server

    Chung, D Y; Kimura, T

    1999-01-01

    Laser-induced fluorescence (LIF) studies of Sm(III) and Cm(III) complexes in the NaSCN/DHDECMP solvent extraction system were carried out. Luminescence lifetimes were measured to determine the number of water molecules coordinated to Sm(III), Tb(III), Dy(III), and Cm(III) in the sodium thiocyanate solution and in the DHDECMP phase. The hydration number of Sm(III), Tb(III), Dy(III), and Cm(III) in the sodium thiocyanate solution decreased linearly with increasing sodium thiocyanate concentration. The hydration numbers of Sm(III), Dy(III), and Cm(III) in the DHDECMP phase decreased with increasing sodium thiocyanate concentration. The water molecules in the inner coordination sphere of Sm(III) and Dy(III) extracted into the DHDECMP were not completely removed at low sodium thiocyanate concentration but decreased with increasing sodium thiocyanate concentration. However, in the case of Cm(III) extracted into the DHDECMP phase from the sodium thiocyanate solution, there was no water in the inner coordination sphe...

  2. Pitfalls in genetic testing: the story of missed SCN1A mutations.

    Science.gov (United States)

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa; Guerrini, Renzo; Hämäläinen, Eija; Hartmann, Corinna; Hernandez-Hernandez, Laura; Hjalgrim, Helle; Koeleman, Bobby P C; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R; Leu, Costin; Marini, Carla; McMahon, Jacinta M; Mei, Davide; Møller, Rikke S; Muhle, Hiltrud; Myers, Candace T; Nava, Caroline; Serratosa, Jose M; Sisodiya, Sanjay M; Stephani, Ulrich; Striano, Pasquale; van Kempen, Marjan J A; Verbeek, Nienke E; Usluer, Sunay; Zara, Federico; Palotie, Aarno; Mefford, Heather C; Scheffer, Ingrid E; De Jonghe, Peter; Helbig, Ingo; Suls, Arvid

    2016-07-01

    Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. We sent out a survey to 16 genetic centers performing SCN1A testing. We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

  3. To4, the first Tityus obscurus β-toxin fully electrophysiologically characterized on human sodium channel isoforms.

    Science.gov (United States)

    Duque, Harry Morales; Mourão, Caroline Barbosa Farias; Tibery, Diogo Vieira; Barbosa, Eder Alves; Campos, Leandro Ambrósio; Schwartz, Elisabeth Ferroni

    2017-09-01

    Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or β-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked β-type effect on different sodium channel subtypes (hNa v 1.1-hNa v 1.7) at low concentrations, and has more pronounced activity on hNa v 1.1, hNa v 1.2 and hNa v 1.4. By comparing To4 primary structure with other Tityus β-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes.

    Directory of Open Access Journals (Sweden)

    Dennis Lal

    Full Text Available The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic.We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients.We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%. Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1 are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10-4; OR = 0.32, fishers exact test, previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.

  5. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    Science.gov (United States)

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  6. Cognitive performance as a zeitgeber: cognitive oscillators and cholinergic modulation of the SCN entrain circadian rhythms.

    Directory of Open Access Journals (Sweden)

    Howard J Gritton

    Full Text Available The suprachiasmatic nucleus (SCN is the primary circadian pacemaker in mammals that can synchronize or entrain to environmental cues. Although light exerts powerful influences on SCN output, other non-photic stimuli can modulate the SCN as well. We recently demonstrated that daily performance of a cognitive task requiring sustained periods of attentional effort that relies upon basal forebrain (BF cholinergic activity dramatically alters circadian rhythms in rats. In particular, normally nocturnal rats adopt a robust diurnal activity pattern that persists for several days in the absence of cognitive training. Although anatomical and pharmacological data from non-performing animals support a relationship between cholinergic signaling and circadian rhythms, little is known about how endogenous cholinergic signaling influences SCN function in behaving animals. Here we report that BF cholinergic projections to the SCN provide the principal signal allowing for the expression of cognitive entrainment in light-phase trained animals. We also reveal that oscillator(s outside of the SCN drive cognitive entrainment as daily timed cognitive training robustly entrains SCN-lesioned arrhythmic animals. Ablation of the SCN, however, resulted in significant impairments in task acquisition, indicating that SCN-mediated timekeeping benefits new learning and cognitive performance. Taken together, we conclude that cognition entrains non-photic oscillators, and cholinergic signaling to the SCN serves as a temporal timestamp attenuating SCN photic-driven rhythms, thereby permitting cognitive demands to modulate behavior.

  7. Antiepileptic drugs targeting sodium channels: subunit and neuron-type specific interactions

    NARCIS (Netherlands)

    Qiao, X.

    2013-01-01

    Certain antiepileptic drugs (e.g. carbamazepine and lamotrigine) block sodium channels in an use-dependent manner and this mechanism contributes to the anti-convulsant properties of these drugs. There are, however, subtle differences in sodium current blocking properties of the antiepileptic drugs

  8. Deletion of FoxO1 Leads to Shortening of QRS by Increasing Na+ Channel Activity through Enhanced Expression of both Cardiac NaV1.5 and β3 Subunit

    OpenAIRE

    Cai, Benzhi; Wang, Ning; Mao, Weike; You, Tao; Lu, Yan; Li, Xiang; Ye, Bo; Li, Faqian; Xu, Haodong

    2014-01-01

    Our in vitro studies revealed that a transcription factor, Forkhead box protein O1 (FoxO1), negatively regulates the expression of NaV1.5, a main α subunit of the cardiac Na+ channel, by altering the promoter activity of SCN5a in HL-1 cardiomyocytes. The in vivo role of FoxO1 in the regulation of cardiac NaV1.5 expression remains unknown. The present study aimed to define the role of FoxO1 in the regulation of NaV1.5 expression and cardiac Na+ channel activity in mouse ventricular cardiomyocy...

  9. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells.

    Science.gov (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine

    2007-11-23

    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  10. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

    Science.gov (United States)

    Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron

    2012-02-14

    Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.

  11. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  12. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Weiyun Huang

    2017-02-01

    Full Text Available ABSTRACT Voltage-gated sodium (Nav channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.

  13. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.

    Science.gov (United States)

    Huang, Weiyun; Liu, Minhao; Yan, S Frank; Yan, Nieng

    2017-06-01

    Voltage-gated sodium (Na v ) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Na v channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Na v channels, with Na v 1.1 and Na v 1.5 each harboring more than 400 mutations. Na v channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Na v channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Ca v ) channel Ca v 1.1 provides a template for homology-based structural modeling of the evolutionarily related Na v channels. In this Resource article, we summarized all the reported disease-related mutations in human Na v channels, generated a homologous model of human Na v 1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Na v channels, the analysis presented here serves as the base framework for mechanistic investigation of Na v channelopathies and for potential structure-based drug discovery.

  14. Slick (Kcnt2 Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia

    Directory of Open Access Journals (Sweden)

    Danielle L Tomasello

    2017-09-01

    Full Text Available The Slick (Kcnt2 sodium-activated potassium (K Na channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs, we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs, and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  15. Deriving freshwater quality criteria of sulphocyanic sodium for the protection of aquatic life in China

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The freshwater quality criteria of sulphocyanic sodium(NaSCN) were studied on the basis of the features of the aquaticbiota in China, and with Reference to U.S.EPA's guidelines. Acutetests were performed on twelve different domestic species todetermine 48h-EC50/96h-EC50 (or 96h-LC50) values for NaSCN. 21dsurvival-reproduction test with Daphnia magna, 60d fry-juvenilepart life stage test with Carassius auratus gibelio and 96h growthinhibition test with Lemna minor were also conducted to estimatelower chronic limit/upper chronic limit values. In the acute tests,D.magna was the most sensitive species to NaSCN followed by Tilapiamossambia, Cyprinus carpio and C.auratus gibelio in turn. The finalacute value of NaSCN was 2.699 mg/L. In the chronic tests,reproduction of daphnids were significantly reduced by NaSCN at 1.0mg/L. Acute-to-chronic ratios ranged from 5.96 to 19.1. A finalchronic value of 0.2530 mg/L was obtained and a final plant valuewas 1346 mg/L. A criterion maximum concentration (1.349 mg/L) anda criterion continuous concentration (0.2530 mg/L) were derivedrespectively. The results of this study may provide useful data toderive national WQC for NaSCN as well as the procedures of derivingWQC of other chemicals for the protection of aquatic biota in China.

  16. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Science.gov (United States)

    Rong, Mingqiang; Duan, Zhigui; Chen, Juliang; Li, Jianglin; Xiao, Yuchen; Liang, Songping

    2013-01-01

    Huwentoxin-IV (HWTX-IV), a tetrodotoxin-sensitive (TTX-s) sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV), having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms), mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms). Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  17. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Directory of Open Access Journals (Sweden)

    Mingqiang Rong

    Full Text Available Huwentoxin-IV (HWTX-IV, a tetrodotoxin-sensitive (TTX-s sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV, having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms, mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms. Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  18. A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response.

    Directory of Open Access Journals (Sweden)

    John R Bankston

    2007-12-01

    Full Text Available SCN5A encodes the alpha-subunit (Na(v1.5 of the principle Na(+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS variant 3 (LQT-3 in adults by disrupting inactivation of the Na(v1.5 channel. Pharmacological targeting of mutation-altered Na(+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults.Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na(+ channel blockers flecainide and mexiletine. Our goal was to determine the Na(+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na(+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C and a common variant in KCNH2 (K897T. Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na(+ channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically.The results of our study provide further evidence of the grave vulnerability of newborns to Na(+ channel defects and suggest that both genetic background and age are

  19. Marine Toxins That Target Voltage-gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Robert J. French

    2006-04-01

    Full Text Available Abstract: Eukaryotic, voltage-gated sodium (NaV channels are large membrane proteins which underlie generation and propagation of rapid electrical signals in nerve, muscle and heart. Nine different NaV receptor sites, for natural ligands and/or drugs, have been identified, based on functional analyses and site-directed mutagenesis. In the marine ecosystem, numerous toxins have evolved to disrupt NaV channel function, either by inhibition of current flow through the channels, or by modifying the activation and inactivation gating processes by which the channels open and close. These toxins function in their native environment as offensive or defensive weapons in prey capture or deterrence of predators. In composition, they range from organic molecules of varying size and complexity to peptides consisting of ~10-70 amino acids. We review the variety of known NaV-targeted marine toxins, outlining, where known, their sites of interaction with the channel protein and their functional effects. In a number of cases, these natural ligands have the potential applications as drugs in clinical settings, or as models for drug development.

  20. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation.

    Science.gov (United States)

    Yuan, Junhui; Matsuura, Eiji; Higuchi, Yujiro; Hashiguchi, Akihiro; Nakamura, Tomonori; Nozuma, Satoshi; Sakiyama, Yusuke; Yoshimura, Akiko; Izumo, Shuji; Takashima, Hiroshi

    2013-04-30

    To identify the clinical features of Japanese patients with suspected hereditary sensory and autonomic neuropathy (HSAN) on the basis of genetic diagnoses. On the basis of clinical, in vivo electrophysiologic, and pathologic findings, 9 Japanese patients with sensory and autonomic nervous dysfunctions were selected. Eleven known HSAN disease-causing genes and 5 related genes were screened using a next-generation sequencer. A homozygous mutation, c.3993delGinsTT, was identified in exon 22 of SCN9A from 2 patients/families. The clinical phenotype was characterized by adolescent or congenital onset with loss of pain and temperature sensation, autonomic nervous dysfunctions, hearing loss, and hyposmia. Subsequently, this mutation was discovered in one of patient 1's sisters, who also exhibited sensory and autonomic nervous system dysfunctions, with recurrent fractures being the most predominant feature. Nerve conduction studies revealed definite asymmetric sensory nerve involvement in patient 1. In addition, sural nerve pathologic findings showed loss of large myelinated fibers in patient 1, whereas the younger patient showed normal sural nerve pathology. We identified a novel homozygous mutation in SCN9A from 2 Japanese families with autosomal recessive HSAN. This loss-of-function SCN9A mutation results in disturbances in the sensory, olfactory, and autonomic nervous systems. We propose that SCN9A mutation results in the new entity of HSAN type IID, with additional symptoms including hyposmia, hearing loss, bone dysplasia, and hypogeusia.

  1. Voltage-gated sodium channels as targets for pyrethroid insecticides.

    Science.gov (United States)

    Field, Linda M; Emyr Davies, T G; O'Reilly, Andrias O; Williamson, Martin S; Wallace, B A

    2017-10-01

    The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity.

  2. Probing the early stages of salt nucleation—Experimental and theoretical investigations of sodium/potassium thiocyanate cluster anions

    Science.gov (United States)

    Deng, S. H. M.; Kong, Xiang-Yu; Wang, Xue-Bin

    2015-01-01

    Due to the fast solvent evaporation in electrospray ionization (ESI), the concentration of initially dilute electrolyte solutions rapidly increases to afford the formation of supersaturated droplets and generation of various pristine anhydrous salt clusters in the gas phase. The size, composition, and charge distributions of these clusters, in principle, witness the nucleation evolution in solutions. Herein, we report a microscopic study on the initial stage of nucleation and crystallization of sodium/potassium thiocyanate salt solutions simulated in the ESI process. Singly charged M x (SCN)x + 1 - , doubly charged M y (SCN)y + 2 2 - (M = Na, K), and triply charged K z (SCN)z + 3 3 - anion clusters (x, y, and z stand for the number of alkali atoms in the singly, doubly, and triply charged clusters, respectively) were produced via electrospray of the corresponding salt solutions and were characterized by negative ion photoelectron spectroscopy (NIPES). The vertical detachment energies (VDEs) of these sodium/potassium thiocyanate cluster anions were obtained, and theoretical calculations were carried out for the sodium thiocyanate clusters in assisting spectral identification. The measured VDEs of singly charged anions M x (SCN)x + 1 - (M = Na and K) demonstrate that they are superhalogen anions. The existence of doubly charged anions M y (SCN)y + 2 2 - (y = 2x, x ≥ 4 and 3 for M = Na and K, respectively) and triply charged anions K z (SCN)z + 3 3 - (z = 3x, x ≥ 6) was initially discovered from the photoelectron spectra for those singly charged anions of M x (SCN)x + 1 - with the same mass-to-charge ratio (m/z), and later independently confirmed by the observation of their distinct mass spectral distributions and by taking their NIPE spectra for those pure multiply charged anions with their m/z different from the singly charged species. For large clusters, multiply charged clusters were found to become preferred, but at higher temperatures, those multiply charged

  3. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Directory of Open Access Journals (Sweden)

    Zhong Tao P

    2007-07-01

    Full Text Available Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish. Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3 and duplicate genes for beta4 (zbeta4.1, zbeta4.2. Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The

  4. Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: a comparison with carbamazepine, oxcarbazepine and lacosamide.

    Science.gov (United States)

    Hebeisen, Simon; Pires, Nuno; Loureiro, Ana I; Bonifácio, Maria João; Palma, Nuno; Whyment, Andrew; Spanswick, David; Soares-da-Silva, Patrício

    2015-02-01

    This study aimed at evaluating the effects of eslicarbazepine, carbamazepine (CBZ), oxcarbazepine (OXC) and lacosamide (LCM) on the fast and slow inactivated states of voltage-gated sodium channels (VGSC). The anti-epileptiform activity was evaluated in mouse isolated hippocampal slices. The anticonvulsant effects were evaluated in MES and the 6-Hz psychomotor tests. The whole-cell patch-clamp technique was used to investigate the effects of eslicarbazepine, CBZ, OXC and LCM on sodium channels endogenously expressed in N1E-115 mouse neuroblastoma cells. CBZ and eslicarbazepine exhibit similar concentration dependent suppression of epileptiform activity in hippocampal slices. In N1E-115 mouse neuroblastoma cells, at a concentration of 250 μM, the voltage dependence of the fast inactivation was not influenced by eslicarbazepine, whereas LCM, CBZ and OXC shifted the V0.5 value (mV) by -4.8, -12.0 and -16.6, respectively. Eslicarbazepine- and LCM-treated fast-inactivated channels recovered similarly to control conditions, whereas CBZ- and OXC-treated channels required longer pulses to recover. CBZ, eslicarbazepine and LCM shifted the voltage dependence of the slow inactivation (V0.5, mV) by -4.6, -31.2 and -53.3, respectively. For eslicarbazepine, LCM, CBZ and OXC, the affinity to the slow inactivated state was 5.9, 10.4, 1.7 and 1.8 times higher than to the channels in the resting state, respectively. In conclusion, eslicarbazepine did not share with CBZ and OXC the ability to alter fast inactivation of VGSC. Both eslicarbazepine and LCM reduce VGSC availability through enhancement of slow inactivation, but LCM demonstrated higher interaction with VGSC in the resting state and with fast inactivation gating. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Molecular Basis of Paraltyic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    Science.gov (United States)

    1985-10-14

    of 9,700 daltons isolated from the coral Goni2oora gy. (1). The toxin enhances neurally mediated contraction of blood vessels and taenia coli of the...sites on the solium channel and to identify the site of GPT action within the structure of the sodium channel protein. 2. Site of Action of Brvyetoxin

  6. Prevalence of SCN1A-related dravet syndrome among children reported with seizures following vaccination: a population-based ten-year cohort study.

    Directory of Open Access Journals (Sweden)

    Nienke E Verbeek

    Full Text Available OBJECTIVES: To determine the prevalence of Dravet syndrome, an epileptic encephalopathy caused by SCN1A-mutations, often with seizure onset after vaccination, among infants reported with seizures following vaccination. To determine differences in characteristics of reported seizures after vaccination in children with and without SCN1A-related Dravet syndrome. METHODS: Data were reviewed of 1,269 children with seizures following immunization in the first two years of life, reported to the safety surveillance system of the Dutch national immunization program between 1 January 1997 and 31 December 2006. Selective, prospective follow-up was performed of children with clinical characteristics compatible with a diagnosis of Dravet syndrome. RESULTS: In 21.9% (n = 279 of children, a diagnosis of Dravet syndrome could not be excluded based on available clinical data (median age at follow-up 16 months. Additional follow-up data were obtained in 83.9% (n = 234 of these children (median age 8.5 years. 15 (1.2% of 1,269; 95%CI:0.6 to 1.8% children were diagnosed with SCN1A-related Dravet syndrome. Of all reported seizures following vaccinations in the first year of life, 2.5% (95%CI:1.3 to 3.6% were due to SCN1A-related Dravet syndrome, as were 5.9% of reported seizures (95%CI:3.1 to 8.7% after 2(nd or 3(rd DTP-IPV-Hib vaccination. Seizures in children with SCN1A-related Dravet syndrome occurred more often with a body temperature below 38.5°C (57.9% vs. 32.6%, p = 0.020 and reoccurred more often after following vaccinations (26.7% vs. 4.0%, p = 0.003, than in children without a diagnosis of SCN1A-related Dravet Syndrome. CONCLUSIONS: Although Dravet syndrome is a rare genetic epilepsy syndrome, 2.5% of reported seizures following vaccinations in the first year of life in our cohort occurred in children with this disorder. Knowledge on the specific characteristics of vaccination-related seizures in this syndrome might promote early diagnosis

  7. The genetic basis of Brugada syndrome: a mutation update

    DEFF Research Database (Denmark)

    Hedley, Paula L; Jørgensen, Poul; Schlamowitz, Sarah

    2009-01-01

    of inheritance with an average prevalence of 5:10,000 worldwide. Currently, more than 100 mutations in seven genes have been associated with BrS. Loss-of-function mutations in SCN5A, which encodes the alpha-subunit of the Na(v)1.5 sodium ion channel conducting the depolarizing I(Na) current, causes 15-20% of Br......S cases. A few mutations have been described in GPD1L, which encodes glycerol-3-phosphate dehydrogenase-1 like protein; CACNA1C, which encodes the alpha-subunit of the Ca(v)1.2 ion channel conducting the depolarizing I(L,Ca) current; CACNB2, which encodes the stimulating beta2-subunit of the Ca(v)1.2 ion...

  8. Individual variation and hormonal modulation of a sodium channel beta subunit in the electric organ correlate with variation in a social signal.

    Science.gov (United States)

    Liu, He; Wu, Ming-Ming; Zakon, Harold H

    2007-09-01

    The sodium channel beta1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate beta1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the beta1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of beta1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the beta1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish alpha and coexpressed beta1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel beta subunits in regulating cellular excitability.

  9. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome.

    Science.gov (United States)

    Hsiao, J; Yuan, T Y; Tsai, M S; Lu, C Y; Lin, Y C; Lee, M L; Lin, S W; Chang, F C; Liu Pimentel, H; Olive, C; Coito, C; Shen, G; Young, M; Thorne, T; Lawrence, M; Magistri, M; Faghihi, M A; Khorkova, O; Wahlestedt, C

    2016-07-01

    Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT). Using oligonucleotide-based compounds (AntagoNATs) targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome

    Directory of Open Access Journals (Sweden)

    J. Hsiao

    2016-07-01

    Full Text Available Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT. Using oligonucleotide-based compounds (AntagoNATs targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology.

  11. Actions of the pyrethroid insecticide bifenthrin on sodium channels expressed in rat cerebral cortical neurons.

    Science.gov (United States)

    Yang, Lin; Li, Li

    2015-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. Here, we studied the mode of action of bifenthrin on the native sodium channels in cerebral cortical neurons prepared from newborn rat brain, where the toxic effects are largely generated. Bifenthrin caused a pronounced late current that persisted at the end of a depolarizing pulse, a slowly-decaying tail current following repolarization and significant resting modification (25.3% modification at 10 μM). No significant bifenthrin-induced effect was observed at the peak current. Bifenthrin also caused a concentration-dependent hyperpolarizing shift in steady-state activation and inactivation as well as slowed recovery from channel inactivation. Repetitive depolarization increased the potency of bifenthrin with high frequency. There was approximately 64% inhibition of modification upon repetitive activation by 10-Hz trains of depolarizing pulses. These results suggest that bifenthrin binds to and modifies sodium channels in both the closed and open states and exhibits the behavior between type I and type II.

  12. Differential gene expression of cardiac ion channels in human dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Maria Micaela Molina-Navarro

    Full Text Available BACKGROUND: Dilated cardiomyopathy (DCM is characterized by idiopathic dilation and systolic contractile dysfunction of the cardiac chambers. The present work aimed to study the alterations in gene expression of ion channels involved in cardiomyocyte function. METHODS AND RESULTS: Microarray profiling using the Affymetrix Human Gene® 1.0 ST array was performed using 17 RNA samples, 12 from DCM patients undergoing cardiac transplantation and 5 control donors (CNT. The analysis focused on 7 cardiac ion channel genes, since this category has not been previously studied in human DCM. SCN2B was upregulated, while KCNJ5, KCNJ8, CLIC2, CLCN3, CACNB2, and CACNA1C were downregulated. The RT-qPCR (21 DCM and 8 CNT samples validated the gene expression of SCN2B (p < 0.0001, KCNJ5 (p < 0.05, KCNJ8 (p < 0.05, CLIC2 (p < 0.05, and CACNB2 (p < 0.05. Furthermore, we performed an IPA analysis and we found a functional relationship between the different ion channels studied in this work. CONCLUSION: This study shows a differential expression of ion channel genes involved in cardiac contraction in DCM that might partly underlie the changes in left ventricular function observed in these patients. These results could be the basis for new genetic therapeutic approaches.

  13. Modulation of epithelial sodium channel in human alveolar epithelial ...

    African Journals Online (AJOL)

    Modulation of epithelial sodium channel in human alveolar epithelial cells by lipoxin A4 through AhR-cAMP-dependent pathway. Bi-Huan Cheng1,2, Li-Wei Pan2, Sheng-Rong Zhang3, Bin-Yu Ying2, Ben-Ji. Wang2, Guo-Liang Lin2 and Shi-Fang Ding1*. 1Department of Critical Care Medicine, Qilu Hospital of Shandong ...

  14. Flecainide provocation reveals concealed brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A

    DEFF Research Database (Denmark)

    Kanters, Jørgen K.; Yuan, Lei; Hedley, Paula L

    2014-01-01

    BACKGROUND: Mutations in SCN5A can result in both long QT type 3 (LQT3) and Brugada syndrome (BrS), and a few mutations have been found to have an overlapping phenotype. Long QT syndrome is characterized by prolonged QT interval, and a prerequisite for a BrS diagnosis is ST elevation in the right...... interval. The proband presented with an aborted cardiac arrest, and his mother died suddenly and unexpectedly at the age of 65. Flecainide treatment revealed coved ST elevation in all mutation carriers. Electrophysiological investigations of the mutant in HEK293 cells indicated a reduced peak current...

  15. Adaptive evolution of the vertebrate skeletal muscle sodium channel

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2011-01-01

    Full Text Available Tetrodotoxin (TTX is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na v. The skeletal muscle Na v (Na v1.4 channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Na v1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Na v1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Na v1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement.

  16. Two novel sodium channel mutations associated with resistance to indoxacarb and metaflumizone in the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Wang, Xing-Liang; Su, Wen; Zhang, Jian-Heng; Yang, Yi-Hua; Dong, Ke; Wu, Yi-Dong

    2016-02-01

    Indoxacarb and metaflumizone belong to a relatively new class of sodium channel blocker insecticides (SCBIs). Due to intensive use of indoxacarb, field-evolved indoxacarb resistance has been reported in several lepidopteran pests, including the diamondback moth Plutella xylostella, a serious pest of cruciferous crops. In particular, the BY12 population of P. xylostella, collected from Baiyun, Guangdong Province of China in 2012, was 750-fold more resistant to indoxacarb and 70-fold more resistant to metaflumizone compared with the susceptible Roth strain. Comparison of complementary DNA sequences encoding the sodium channel genes of Roth and BY12 revealed two point mutations (F1845Y and V1848I) in the sixth segment of domain IV of the PxNav protein in the BY population. Both mutations are located within a highly conserved sequence region that is predicted to be involved in the binding sites of local anesthetics and SCBIs based on mammalian sodium channels. A significant correlation was observed among 10 field-collected populations between the mutant allele (Y1845 or I1848) frequencies (1.7% to 52.5%) and resistance levels to both indoxacarb (34- to 870-fold) and metaflumizone (1- to 70-fold). The two mutations were never found to co-exist in the same allele of PxNav , suggesting that they arose independently. This is the first time that sodium channel mutations have been associated with high levels of resistance to SCBIs. F1845Y and V1848I are molecular markers for resistance monitoring in the diamondback moth and possibly other insect pest species. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  17. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.

    Science.gov (United States)

    Shen, Huaizong; Zhou, Qiang; Pan, Xiaojing; Li, Zhangqiang; Wu, Jianping; Yan, Nieng

    2017-03-03

    Voltage-gated sodium (Na v ) channels are responsible for the initiation and propagation of action potentials. They are associated with a variety of channelopathies and are targeted by multiple pharmaceutical drugs and natural toxins. Here, we report the cryogenic electron microscopy structure of a putative Na v channel from American cockroach (designated Na v PaS) at 3.8 angstrom resolution. The voltage-sensing domains (VSDs) of the four repeats exhibit distinct conformations. The entrance to the asymmetric selectivity filter vestibule is guarded by heavily glycosylated and disulfide bond-stabilized extracellular loops. On the cytoplasmic side, a conserved amino-terminal domain is placed below VSD I , and a carboxy-terminal domain binds to the III-IV linker. The structure of Na v PaS establishes an important foundation for understanding function and disease mechanism of Na v and related voltage-gated calcium channels. Copyright © 2017, American Association for the Advancement of Science.

  18. Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits.

    Science.gov (United States)

    Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A

    2018-02-21

    Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.

  19. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    Science.gov (United States)

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  20. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    Science.gov (United States)

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  1. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    Energy Technology Data Exchange (ETDEWEB)

    James, W.M.; Emerick, M.C.; Agnew, W.S. (Yale Univ. School of medicine, New Haven, CT (USA))

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  2. Distribution and function of sodium channel subtypes in human atrial myocardium

    NARCIS (Netherlands)

    Kaufmann, Susann G.; Westenbroek, Ruth E.; Maass, Alexander H.; Lange, Volkmar; Renner, Andre; Wischmeyer, Erhard; Bonz, Andreas; Muck, Jenny; Ertl, Georg; Catterall, William A.; Scheuer, Todd; Maier, Sebastian K. G.

    Voltage-gated sodium channels composed of a pore-forming alpha subunit and auxiliary beta subunits are responsible for the upstroke of the action potential in cardiac muscle. However, their localization and expression patterns in human myocardium have not yet been clearly defined. We used

  3. Toxins That Affect Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Ji, Yonghua

    2017-10-26

    Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.

  4. Hydrogen sulfide prevents hydrogen peroxide-induced activation of epithelial sodium channel through a PTEN/PI(3,4,5P3 dependent pathway.

    Directory of Open Access Journals (Sweden)

    Jianing Zhang

    Full Text Available Sodium reabsorption through the epithelial sodium channel (ENaC at the distal segment of the kidney plays an important role in salt-sensitive hypertension. We reported previously that hydrogen peroxide (H2O2 stimulates ENaC in A6 distal nephron cells via elevation of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5P3 in the apical membrane. Here we report that H2S can antagonize H2O2-induced activation of ENaC in A6 cells. Our cell-attached patch-clamp data show that ENaC open probability (PO was significantly increased by exogenous H2O2, which is consistent with our previous finding. The aberrant activation of ENaC induced by exogenous H2O2 was completely abolished by H2S (0.1 mM NaHS. Pre-treatment of A6 cells with H2S slightly decreased ENaC P(O; however, in these cells H2O2 failed to elevate ENaC PO . Confocal microscopy data show that application of exogenous H2O2 to A6 cells significantly increased intracellular reactive oxygen species (ROS level and induced accumulation of PI(3,4,5P3 in the apical compartment of the cell membrane. These effects of exogenous H2O2 on intracellular ROS levels and on apical PI(3,4,5P3 levels were almost completely abolished by treatment of A6 cells with H2S. In addition, H2S significantly inhibited H2O2-induced oxidative inactivation of the tumor suppressor phosphatase and tensin homolog (PTEN which is a negative regulator of PI(3,4,5P3. Moreover, BPV(pic, a specific inhibitor of PTEN, elevated PI(3,4,5P3 and ENaC activity in a manner similar to that of H2O2 in A6 cells. Our data show, for the first time, that H2S prevents H2O2-induced activation of ENaC through a PTEN-PI(3,4,5P3 dependent pathway.

  5. Elevated peritoneal expression and estrogen regulation of nociceptive ion channels in endometriosis.

    Science.gov (United States)

    Greaves, Erin; Grieve, Kelsey; Horne, Andrew W; Saunders, Philippa T K

    2014-09-01

    Ovarian suppression is a common treatment for endometriosis-associated pelvic pain. Its exact mechanism of action is poorly understood, although it is assumed to reflect reduced production/action of estrogens. The objective of the study was to measure the expression of mRNAs encoded by nociceptive genes in the peritoneum of women with chronic pelvic pain (CPP) with or without endometriosis and to investigate whether estrogens alter nociceptive gene expression in human sensory neurons. The study was performed using human tissue analysis and cell culture. The study was conducted at a university research institute. Peritoneal biopsies were obtained from women with CPP and endometriosis (n = 12), CPP and no endometriosis (n = 10), and no pain or endometriosis (n = 5). Endometriosis lesions were obtained from women with endometriosis (n = 18). mRNAs encoding ion channels (P2RX3, SCN9A, SCN11A, TRPA1, TRPV1) and the neurotransmitter TAC1 were measured in human tissue samples and in human embryonic stem cell-derived sensory neurons treated with estrogens. TRPV1, TRPA1, and SCN11A mRNAs were significantly higher in the peritoneum from women with endometriosis (P endometriosis lesions (P endometriosis (P endometriosis-associated pain. Strategies directly targeting ion channels may offer an alternative option for the management of CPP.

  6. Large-scale structural alteration of brain in epileptic children with SCN1A mutation

    Directory of Open Access Journals (Sweden)

    Yun-Jeong Lee

    2017-01-01

    Significance: This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  7. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    Science.gov (United States)

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Nav1.8 sodium channels expressed in Xenopus oocytes

    International Nuclear Information System (INIS)

    Choi, J.-S.; Soderlund, David M.

    2006-01-01

    Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na v 1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed with kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na v 1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na v 1

  9. Re-determination of succinonitrile (SCN) camphor phase diagram

    Science.gov (United States)

    Teng, Jing; Liu, Shan

    2006-04-01

    Low-melting temperature transparent organic materials have been extensively used to study the pattern formation and microstructure evolution. It proves to be very challenging to accurately determine the phase diagram since there is no viable way to measure the composition microscopically. In this paper, we presented the detailed experimental characterization of the phase diagram of succinonitrile (SCN)-camphor binary system. Differential scanning calorimetry, a ring-heater, and the directional solidification technique have been combined to determine the details of the phase diagram by using the purified materials. The advantages and disadvantages have been discussed for the different experimental techniques. SCN and camphor constitute a simple binary eutectic system with the eutectic composition at 23.6 wt% camphor and eutectic temperature at 37.65 °C. The solidus and the solubility of the SCN base solid solution have been precisely determined for the first time in this binary system.

  10. Depolarized Inactivation Overcomes Impaired Activation to Produce DRG Neuron Hyperexcitability in a Nav1.7 Mutation in a Patient with Distal Limb Pain

    NARCIS (Netherlands)

    Huang, J.; Yang, Y; Dib-Hajj, S.D.; Es, M. van; Zhao, P.; Salomon, J.; Drenth, J.P.; Waxman, S.G.

    2014-01-01

    Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject

  11. Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Frankel, Adam

    2011-01-01

    Cardiac sodium channels are established therapeutic targets for the management of inherited and acquired arrhythmias by class I anti-arrhythmic drugs (AADs). These drugs share a common target receptor bearing two highly conserved aromatic side chains, and are subdivided by the Vaughan-Williams...

  12. Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO(001) substrates

    Science.gov (United States)

    Burmistrova, Polina V.; Maassen, Jesse; Favaloro, Tela; Saha, Bivas; Salamat, Shuaib; Rui Koh, Yee; Lundstrom, Mark S.; Shakouri, Ali; Sands, Timothy D.

    2013-04-01

    Epitaxial ScN(001) thin films were grown on MgO(001) substrates by dc reactive magnetron sputtering. The deposition was performed in an Ar/N2 atmosphere at 2 × 10-3 Torr at a substrate temperature of 850 °C in a high vacuum chamber with a base pressure of 10-8 Torr. In spite of oxygen contamination of 1.6 ± 1 at. %, the electrical resistivity, electron mobility, and carrier concentration obtained from a typical film grown under these conditions by room temperature Hall measurements are 0.22 mΩ cm, 106 cm2 V-1 s-1, and 2.5 × 1020 cm-3, respectively. These films exhibit remarkable thermoelectric power factors of 3.3-3.5 × 10-3 W/mK2 in the temperature range of 600 K to 840 K. The cross-plane thermal conductivity is 8.3 W/mK at 800 K yielding an estimated ZT of 0.3. Theoretical modeling of the thermoelectric properties of ScN calculated using a mean-free-path of 23 nm at 300 K is in very good agreement with the experiment. These results also demonstrate that further optimization of the power factor of ScN is possible. First-principles density functional theory combined with the site occupancy disorder technique was used to investigate the effect of oxygen contamination on the electronic structure and thermoelectric properties of ScN. The computational results suggest that oxygen atoms in ScN mix uniformly on the N site forming a homogeneous solid solution alloy. Behaving as an n-type donor, oxygen causes a shift of the Fermi level in ScN into the conduction band without altering the band structure and the density of states.

  13. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  14. Essential Oils and Their Constituents Targeting the GABAergic System and Sodium Channels as Treatment of Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Ze-Jun Wang

    2018-05-01

    Full Text Available Essential oils and the constituents in them exhibit different pharmacological activities, such as antinociceptive, anxiolytic-like, and anticonvulsant effects. They are widely applied as a complementary therapy for people with anxiety, insomnia, convulsion, pain, and cognitive deficit symptoms through inhalation, oral administration, and aromatherapy. Recent studies show that essential oils are emerging as a promising source for modulation of the GABAergic system and sodium ion channels. This review summarizes the recent findings regarding the pharmacological properties of essential oils and compounds from the oils and the mechanisms underlying their effects. Specifically, the review focuses on the essential oils and their constituents targeting the GABAergic system and sodium channels, and their antinociceptive, anxiolytic, and anticonvulsant properties. Some constituents target transient receptor potential (TRP channels to exert analgesic effects. Some components could interact with multiple therapeutic target proteins, for example, inhibit the function of sodium channels and, at the same time, activate GABAA receptors. The review concentrates on perspective compounds that could be better candidates for new drug development in the control of pain and anxiety syndromes.

  15. Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin.

    Science.gov (United States)

    Song, Weizhong; Du, Yuzhe; Liu, Zhiqi; Luo, Ningguang; Turkov, Michael; Gordon, Dalia; Gurevitz, Michael; Goldin, Alan L; Dong, Ke

    2011-05-06

    Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant β-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion β-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion β-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.

  16. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin.

    Science.gov (United States)

    Xu, Wei; Hong, Seok Jong; Zeitchek, Michael; Cooper, Garry; Jia, Shengxian; Xie, Ping; Qureshi, Hannan A; Zhong, Aimei; Porterfield, Marshall D; Galiano, Robert D; Surmeier, D James; Mustoe, Thomas A

    2015-03-01

    Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.

  17. Site of anticonvulsant action on sodium channels: autoradiographic and electrophysiological studies in rat brain

    International Nuclear Information System (INIS)

    Worley, P.F.; Baraban, J.M.

    1987-01-01

    The anticonvulsants phenytoin and carbamazepine interact allosterically with the batrachotoxin binding site of sodium channels. In the present study, we demonstrate an autoradiographic technique to localize the batrachotoxin binding site on sodium channels in rat brain using [ 3 H]batrachotoxinin-A 20-alpha-benzoate (BTX-B). Binding of [ 3 H]BTX-B to brain sections is dependent on potentiating allosteric interactions with scorpion venom and is displaced by BTX-B (Kd approximately 200 nM), aconitine, veratridine, and phenytoin with the same rank order of potencies as described in brain synaptosomes. The maximum number of [ 3 H]BTX-B binding sites in forebrain sections also agrees with biochemical determinations. Autoradiographic localizations indicate that [ 3 H]BTX-B binding sites are not restricted to cell bodies and axons but are present in synaptic zones throughout the brain. For example, a particularly dense concentration of these sites in the substantia nigra is associated with afferent terminals of the striatonigral projection. By contrast, myelinated structures possess much lower densities of binding sites. In addition, we present electrophysiological evidence that synaptic transmission, as opposed to axonal conduction, is preferentially sensitive to the action of aconitine and veratridine. Finally, the synaptic block produced by these sodium channel activators is inhibited by phenytoin and carbamazepine at therapeutic anticonvulsant concentrations

  18. Differential calcium sensitivity in NaV 1.5 mixed syndrome mutants.

    Science.gov (United States)

    Abdelsayed, Mena; Baruteau, Alban-Elouen; Gibbs, Karen; Sanatani, Shubhayan; Krahn, Andrew D; Probst, Vincent; Ruben, Peter C

    2017-09-15

    SCN5a mutations may express gain-of-function (Long QT Syndrome-3), loss-of-function (Brugada Syndrome 1) or both (mixed syndromes), depending on the mutation and environmental triggers. One such trigger may be an increase in cytosolic calcium, accompanying exercise. Many mixed syndromes mutants, including ∆KPQ, E1784K, 1795insD and Q1909R, are found in calcium-sensitive regions. Elevated cytosolic calcium attenuates gain-of-function properties in ∆KPQ, 1795insD and Q1909R, but not in E1784K. By contrast, elevated cytosolic calcium further exacerbates gain-of-function in E1784K by destabilizing slow inactivation. Action potential modelling, using a modified O'Hara Rudy model, suggests that elevated heart rate rescues action potential duration in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Action potential simulations suggest that E1784K carriers have an increased intracellular sodium-to-calcium ratio under bradycardia and tachycardia conditions. Elevated cytosolic calcium, which is common during high heart rates, ameliorates or exacerbates the mixed syndrome phenotype depending on the genetic signature. Inherited arrhythmias may arise from mutations in the gene for SCN5a, which encodes the cardiac voltage-gated sodium channel, Na V 1.5. Mutants in Na V 1.5 result in Brugada Syndrome (BrS1), Long-QT Syndrome (LQT3) or mixed syndromes (an overlap of BrS1/LQT3). Exercise is a potential arrhythmogenic trigger in mixed syndromes. We aimed to determine the effects of elevated cytosolic calcium, which is common during exercise, in mixed syndrome Na V 1.5 mutants. We used whole-cell patch clamp to assess the biophysical properties of Na V 1.5 wild-type (WT), ∆KPQ, E1784K, 1795insD and Q1909R mutants in human embryonic kidney 293 cells transiently transfected with the Na V 1.5 α subunit (WT or mutants), β1 subunit and enhanced green fluorescent protein. Voltage-dependence and kinetics were measured at cytosolic calcium levels of approximately 0, 500 and 2500

  19. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges.

    Science.gov (United States)

    De Col, Roberto; Messlinger, Karl; Carr, Richard W

    2008-02-15

    Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.

  20. Distinct molecular sites of anaesthetic action: pentobarbital block of human brain sodium channels is alleviated by removal of fast inactivation

    NARCIS (Netherlands)

    Wartenberg, H. C.; Urban, B. W.; Duch, D. S.

    1999-01-01

    Fast inactivation of sodium channel function is modified by anaesthetics. Its quantitative contribution to the overall anaesthetic effect is assessed by removing the fast inactivation mechanism enzymatically. Sodium channels from human brain cortex were incorporated into planar lipid bilayers. After

  1. Development of Field-Controlled Smart Optic Materials (ScN, AlN) with Rare Earth Dopants

    Science.gov (United States)

    Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Choi, Sang H.

    2012-01-01

    The purpose of this investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD applications such as: membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras, flat-panel displays, etc. ScN and AlN thin films were fabricated on c-axis Sapphire (0001) or quartz substrate with the RF and DC magnetron sputtering. The crystal structure of AlN in fcc (rocksalt) and hcp (wurtzite) were controlled. Advanced electrical characterizations were performed, including I-V and Hall Effect Measurement. ScN film has a free carrier density of 5.8 x 10(exp 20)/per cubic centimeter and a conductivity of 1.1 x 10(exp 3) per centimeter. The background ntype conductivity of as-grown ScN has enough free electrons that can readily interact with the photons. The high density of free electrons and relatively low mobility indicate that these films contain a high level of shallow donors as well as deep levels. Also, the UV-Vis spectrum of ScN and AlN thin films with rare earth elements (Er or Ho) were measured at room temperature. Their optical band gaps were estimated to be about 2.33eV and 2.24eV, respectively, which are obviously smaller than that of undoped thin film ScN (2.4eV). The red-shifted absorption onset gives direct evidence for the decrease of band gap (Eg) and the energy broadening of valence band states are attributable to the doping. As the doped elements enter the ScN crystal lattices, the localized band edge states form at the doped sites with a reduction of Eg. Using a variable angle spectroscopic ellipsometer, the decrease in refractive index with applied field is observed with a smaller shift in absorption coefficient.

  2. Atom-transfer radical polymerization of methyl methacrylate (MMA) using CuSCN as the catalyst

    NARCIS (Netherlands)

    Singha, N.K.; Klumperman, B.

    2000-01-01

    The effect of CuSCN as a catalyst in atom-transfer radical polymerization (ATRP) was investigated. CuSCN can successfully be used for the ATRP of MMA. Substituted bipyridines as well as imines can be used to stabilize the copper complex in solution. CuSCN induces faster polymerization compared to

  3. Synthetic Ciguatoxins Selectively Activate Nav1.8-derived Chimeric Sodium Channels Expressed in HEK293 Cells*

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyazaki, Keisuke; Hirama, Masahiro; Kondo, Chie; Kinoshita, Eiji; Miyoshi, Hiroshi; Seyama, Issei

    2009-01-01

    The synthetic ciguatoxin CTX3C has been shown to activate tetrodotoxin (TTX)-sensitive sodium channels (Nav1.2, Nav1.4, and Nav1.5) by accelerating activation kinetics and shifting the activation curve toward hyperpolarization (Yamaoka, K., Inoue, M., Miyahara, H., Miyazaki, K., and Hirama, M. (2004) Br. J. Pharmacol. 142, 879–889). In this study, we further explored the effects of CTX3C on the TTX-resistant sodium channel Nav1.8. TTX-resistant channels have been shown to be involved in transducing pain and related sensations (Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) Nature 379, 257–262). Thus, we hypothesized that ciguatoxin-induced activation of the Nav1.8 current would account for the neurological symptoms of ciguatera poisoning. We found that 0.1 μm CTX3C preferentially affected the activation process of the Nav1.8 channel compared with those of the Nav1.2 and Nav1.4 channels. Importantly, without stimulation, 0.1 μm CTX3C induced a large leakage current (IL). The conductance of the IL calculated relative to the maximum conductance (Gmax) was 10 times larger than that of Nav1.2 or Nav1.4. To determine the molecular domain of Nav1.8 responsible for conferring higher sensitivity to CTX3C, we made two chimeric constructs from Nav1.4 and Nav1.8. Chimeras containing the N-terminal half of Nav1.8 exhibited a large response similar to wild-type Nav1.8, indicating that the region conferring high sensitivity to ciguatoxin action is located in the D1 or D2 domains. PMID:19164297

  4. A Novel Nonsense Variant in Nav1.5 Cofactor MOG1 Eliminates Its Sodium Current Increasing Effect and May Increase the Risk of Arrhythmias

    DEFF Research Database (Denmark)

    Olesen, Morten S; Jensen, Niels F; Holst, Anders G

    2011-01-01

    at a lower frequency (1.8% vs 0.4%, P = 0.078). Electrophysiological investigation showed that the p.E61X variant completely eliminates the sodium current-increasing effect of MOG1 and thereby causes loss of function in the sodium current. When mimicking heterozygosity by coexpression of Nav1.5 with wild......BACKGROUND: The protein MOG1 is a cofactor of the cardiac sodium channel, Nav1.5. Overexpression of MOG1 in Nav1.5-expressing cells increases sodium current markedly. Mutations in the genes encoding Nav1.5 and its accessory proteins have been associated with cardiac arrhythmias of significant...... and 23 were patients with Brugada syndrome. The effect of one variant was investigated functionally by patch-clamping CHO-K1 cells coexpressing Nav1.5 with MOG1. RESULTS: We uncovered a novel heterozygous nonsense variant, c.181G>T (p.E61X), that, however, was also present in control subjects, albeit...

  5. High-Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCN-Nanowire Heterointerface

    KAUST Repository

    Sit, Wai-Yu

    2018-02-02

    Fullerenes and their derivatives are widely used as electron acceptors in bulk-heterojunction organic solar cells as they combine high electron mobility with good solubility and miscibility with relevant semiconducting polymers. However, studies on the use of fullerenes as the sole photogeneration and charge-carrier material are scarce. Here, a new type of solution-processed small-molecule solar cell based on the two most commonly used methanofullerenes, namely [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM), as the light absorbing materials, is reported. First, it is shown that both fullerene derivatives exhibit excellent ambipolar charge transport with balanced hole and electron mobilities. When the two derivatives are spin-coated over the wide bandgap p-type semiconductor copper (I) thiocyanate (CuSCN), cells with power conversion efficiency (PCE) of ≈1%, are obtained. Blending the CuSCN with PC70BM is shown to increase the performance further yielding cells with an open-circuit voltage of ≈0.93 V and a PCE of 5.4%. Microstructural analysis reveals that the key to this success is the spontaneous formation of a unique mesostructured p–n-like heterointerface between CuSCN and PC70BM. The findings pave the way to an exciting new class of single photoactive material based solar cells.

  6. Mining the Virgin Land of Neurotoxicology: A Novel Paradigm of Neurotoxic Peptides Action on Glycosylated Voltage-Gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Zhirui Liu

    2012-01-01

    Full Text Available Voltage-gated sodium channels (VGSCs are important membrane protein carrying on the molecular basis for action potentials (AP in neuronal firings. Even though the structure-function studies were the most pursued spots, the posttranslation modification processes, such as glycosylation, phosphorylation, and alternative splicing associating with channel functions captured less eyesights. The accumulative research suggested an interaction between the sialic acids chains and ion-permeable pores, giving rise to subtle but significant impacts on channel gating. Sodium channel-specific neurotoxic toxins, a family of long-chain polypeptides originated from venomous animals, are found to potentially share the binding sites adjacent to glycosylated region on VGSCs. Thus, an interaction between toxin and glycosylated VGSC might hopefully join the campaign to approach the role of glycosylation in modulating VGSCs-involved neuronal network activity. This paper will cover the state-of-the-art advances of researches on glycosylation-mediated VGSCs function and the possible underlying mechanisms of interactions between toxin and glycosylated VGSCs, which may therefore, fulfill the knowledge in identifying the pharmacological targets and therapeutic values of VGSCs.

  7. Sodium-23 MRI of whole spine at 3 Tesla using a 5-channel receive-only phased-array and a whole-body transmit resonator

    Energy Technology Data Exchange (ETDEWEB)

    Malzacher, Matthias; Kalayciyan, Raffi; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Haneder, Stefan [Heidelberg Univ., Mannheim (Germany). Clinical Radiology and Nuclear Medicine; University Hospital of Cologne, Koeln (Germany). Dept. of Radiology

    2016-05-01

    Sodium magnetic resonance imaging ({sup 23}Na MRI) is a unique and non-invasive imaging technique which provides important information on cellular level about the tissue of the human body. Several applications for {sup 23}Na MRI were investigated with regard to the examination of the tissue viability and functionality for example in the brain, the heart or the breast. The {sup 23}Na MRI technique can also be integrated as a potential monitoring instrument after radiotherapy or chemotherapy. The main contribution in this work was the adaptation of {sup 23}Na MRI for spine imaging, which can provide essential information on the integrity of the intervertebral disks with respect to the early detection of disk degeneration. In this work, a transmit-only receive-only dual resonator system was designed and developed to cover the whole human spine using {sup 23}Na MRI and increase the receive sensitivity. The resonator system consisted of an already presented {sup 23}Na whole-body resonator and a newly developed 5-channel receive-only phased-array. The resonator system was first validated using bench top and phantom measurements. A threefold SNR improvement at the depth of the spine (∝7 cm) over the whole-body resonator was achieved using the spine array. {sup 23}Na MR measurements of the human spine using the transmit-only receive-only resonator system were performed on a healthy volunteer within an acquisition time of 10 minutes. A density adapted 3D radial sequence was chosen with 6 mm isotropic resolution, 49 ms repetition time and a short echo time of 540 μs. Furthermore, it was possible to quantify the tissue sodium concentration in the intervertebral discs in the lumbar region (120 ms repetition time) using this setup.

  8. Patrón de Brugada tipo II desencadenado por fiebre secundaria a una pielonefritis aguda por Enterobacter aerogenes.

    Directory of Open Access Journals (Sweden)

    Gema García García

    2013-03-01

    Brugada syndrome is a cause of sudden cardiac death in patients without structural heart disease. This syndrome is associated with mutations in the genes encoding the alpha subunit of the sodium channel of the heart. The Brugada syndrome is an autosomal dominant defect in cardiac conduction, which up to one third of patients is caused by mutations in the SCN5A gene. It is characterized by ST segment changes in leads V1-V3 resembling a right bundle branch block and confers high risk for ventricular arrhythmias and death súbita.

  9. Structural inferences for the native skeletal muscle sodium channel as derived from patterns of endogenous proteolysis

    International Nuclear Information System (INIS)

    Kraner, S.; Yang, J.; Barchi, R.

    1989-01-01

    The alpha subunit (Mr approximately 260,000) of the rat skeletal muscle sodium channel is sensitive to cleavage by endogenous proteases during the isolation of muscle surface membrane. Antisera against synthetic oligopeptides were used to map the resultant fragments in order to identify protease-sensitive regions of the channel's structure in its native membrane environment. Antibodies to the amino terminus labeled major fragments of Mr approximately 130,000 and 90,000 and lesser amounts of other peptides as small as Mr approximately 12,000. Antisera to epitopes within the carboxyl-terminal half of the primary sequence recognized two fragments of Mr approximately 110,000 and 78,000. Individual antisera also selectively labeled smaller polypeptides in the most extensively cleaved preparations. The immunoreactivity patterns of monoclonal antibodies previously raised against the purified channel were then surveyed. The binding sites for one group of monoclonals, including several that recognize subtype-specific epitopes in the channel structure, were localized within a 12-kDa fragment near the amino terminus. The distribution of carbohydrate along the primary structure of the channel was also assessed by quantitating 125 I-wheat germ agglutinin and 125I-concanavalin A binding to the proteolytic peptides. Most of the carbohydrate detected by these lectins was located between 22 and 90 kDa from the amino terminus of the protein. No lectin binding was detected to fragments arising from carboxyl-terminal half of the protein. These results were analyzed in terms of current models of sodium channel tertiary structure. In its normal membrane environment, the skeletal muscle sodium channel appears sensitive to cleavage by endogenous proteases in regions predicted to link the four repeat domains on the cytoplasmic side of the membrane while the repeat domains themselves are resistant to proteolysis

  10. Synthetic ciguatoxins selectively activate Nav1.8-derived chimeric sodium channels expressed in HEK293 cells.

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyazaki, Keisuke; Hirama, Masahiro; Kondo, Chie; Kinoshita, Eiji; Miyoshi, Hiroshi; Seyama, Issei

    2009-03-20

    The synthetic ciguatoxin CTX3C has been shown to activate tetrodotoxin (TTX)-sensitive sodium channels (Na(v)1.2, Na(v)1.4, and Na(v)1.5) by accelerating activation kinetics and shifting the activation curve toward hyperpolarization (Yamaoka, K., Inoue, M., Miyahara, H., Miyazaki, K., and Hirama, M. (2004) Br. J. Pharmacol. 142, 879-889). In this study, we further explored the effects of CTX3C on the TTX-resistant sodium channel Na(v)1.8. TTX-resistant channels have been shown to be involved in transducing pain and related sensations (Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) Nature 379, 257-262). Thus, we hypothesized that ciguatoxin-induced activation of the Na(v)1.8 current would account for the neurological symptoms of ciguatera poisoning. We found that 0.1 mum CTX3C preferentially affected the activation process of the Na(v)1.8 channel compared with those of the Na(v)1.2 and Na(v)1.4 channels. Importantly, without stimulation, 0.1 mum CTX3C induced a large leakage current (I (L)). The conductance of the I (L) calculated relative to the maximum conductance (G (max)) was 10 times larger than that of Na(v)1.2 or Na(v)1.4. To determine the molecular domain of Na(v)1.8 responsible for conferring higher sensitivity to CTX3C, we made two chimeric constructs from Na(v)1.4 and Na(v)1.8. Chimeras containing the N-terminal half of Na(v)1.8 exhibited a large response similar to wild-type Na(v)1.8, indicating that the region conferring high sensitivity to ciguatoxin action is located in the D1 or D2 domains.

  11. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    Science.gov (United States)

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  12. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Elstone, Fisal D; Niciforovic, Ana P

    2014-01-01

    largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1......Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain.......4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce...

  13. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    Science.gov (United States)

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  14. Biological activity of the functional epitope of ciguatoxin fragment AB on the neuroblastoma sodium channel in tissue culture.

    Science.gov (United States)

    Hokama, Y; Chun, K E; Campora, C E; Higa, N; Suma, C; Hamajima, A; Isobe, M

    2006-01-01

    It is well established that the targeted receptor for ciguatoxin (CTX) in mammalian tissues is the sodium channel, affecting the influx of sodium into cells and altering the action potential and function of the cell. Since the syntheses of fragments of CTX has become available, our focus has been on the receptor functions of the west sphere AB and east sphere JKLM fragments using the neuroblastoma cell assay, guinea pig atrium assay, and the membrane immunobead assay (MIA). The data presented here suggest that the west sphere AB of the ciguatoxin molecule is the active portion and is responsible for the activation of the sodium channels. (c) 2006 Wiley-Liss, Inc.

  15. The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis

    Science.gov (United States)

    Parsons, Michael J.; Brancaccio, Marco; Sethi, Siddharth; Maywood, Elizabeth S.; Satija, Rahul; Edwards, Jessica K.; Jagannath, Aarti; Couch, Yvonne; Finelli, Mattéa J.; Smyllie, Nicola J.; Esapa, Christopher; Butler, Rachel; Barnard, Alun R.; Chesham, Johanna E.; Saito, Shoko; Joynson, Greg; Wells, Sara; Foster, Russell G.; Oliver, Peter L.; Simon, Michelle M.; Mallon, Ann-Marie; Hastings, Michael H.; Nolan, Patrick M.

    2015-01-01

    Summary We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms. PMID:26232227

  16. Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling.

    Science.gov (United States)

    Du, Yu; Days, Emily; Romaine, Ian; Abney, Kris K; Kaufmann, Kristian; Sulikowski, Gary; Stauffer, Shaun; Lindsley, Craig W; Weaver, C David

    2015-06-17

    Ion channels are critical for life, and they are targets of numerous drugs. The sequencing of the human genome has revealed the existence of hundreds of different ion channel subunits capable of forming thousands of ion channels. In the face of this diversity, we only have a few selective small-molecule tools to aid in our understanding of the role specific ion channels in physiology which may in turn help illuminate their therapeutic potential. Although the advent of automated electrophysiology has increased the rate at which we can screen for and characterize ion channel modulators, the technique's high per-measurement cost and moderate throughput compared to other high-throughput screening approaches limit its utility for large-scale high-throughput screening. Therefore, lower cost, more rapid techniques are needed. While ion channel types capable of fluxing calcium are well-served by low cost, very high-throughput fluorescence-based assays, other channel types such as sodium channels remain underserved by present functional assay techniques. In order to address this shortcoming, we have developed a thallium flux-based assay for sodium channels using the NaV1.7 channel as a model target. We show that the assay is able to rapidly and cost-effectively identify NaV1.7 inhibitors thus providing a new method useful for the discovery and profiling of sodium channel modulators.

  17. Facile synthesis of silver/silver thiocyanate (Ag@AgSCN plasmonic nanostructures with enhanced photocatalytic performance

    Directory of Open Access Journals (Sweden)

    Xinfu Zhao

    2017-12-01

    Full Text Available A nanostructured plasmonic photocatalyst, silver/silver thiocyanate (Ag@AgSCN, has been prepared by a simple precipitation method followed by UV-light-induced reduction. The ratio of Ag to silver thiocyanate (AgSCN can be controlled by simply adjusting the photo-induced reduction time. The formation mechanism of the product was investigated based on the time-dependent experiments. Further experiments indicated that the prepared Ag@AgSCN nanostructures with an atomic ratio of Ag/AgSCN = 0.0463 exhibited high photocatalytic activity and long-term stability for the degradation of oxytetracycline (84% under visible-light irradiation. In addition to the microstructure and high specific surface area, the enhanced photocatalytic activity was mainly caused by the surface plasmon resonance of Ag nanoparticles, and the high stability of AgSCN resulted in the long-term stability of the photocatalyst product.

  18. The hitchhiker’s guide to the voltage-gated sodium channel galaxy

    Science.gov (United States)

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts. PMID:26712848

  19. The Novel SCN''- Ion-selective Electrode Based on the 1-Benzyl-3-(4-nitrophenyl) thio-urea Ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Mi; Kang, Dong Hyeon; Choe, Ju Eun; You, Jung Min; Go, Min Jeong; Lee, Jung Seong; Jeon, Seung Won [Chungnam National University, Daejeon (Korea, Republic of)

    2014-09-15

    A potentiometric sensor based on the 1-benzyl-3-(4-nitrophenyl) thio-urea was synthesized and tested as an ionophore in PVC based membrane sensor towards SCN - ions. This membrane exhibits a linear stable response over a wide concentration range (1.0 × 10''-5 to 1.0 × 10''-2 M) with a slope of -59.2 mV/dec., a detection limit of log[SCN''- ] = -5.05, and a selectivity coefficient for thiocyanate against perchlorate anion of logK{sub s}cn''pot = -0.133. The selectivity series of the membrane is as follows: SCN''- > ClO{sub 4}''- > I''- >NO{sub 3}''- >HSO{sub 3}''- > Cl''-HSO{sub '}'-''4 > F''- > CH{sub 3}COO''- > HCO''-''3 > Br''- > H{sub 2}PO{sub 4}''- > SO{sub 3}''-''2 > SO{sub 4}''-''2 > CO{sub 3}''-''2. The proposed electrode showed good selectivity and a good response for the SCN''- ion over a wide variety of other anions in pH 6.0 buffer solutions and has a fast response time of about < 5s.. The influences of the membrane by pH, ionophore, and plasticizer were studied.

  20. Pitfalls in genetic testing: the story of missed SCN1A mutations

    OpenAIRE

    Jennings, Lawrence J.; Kirschmann, Dawn

    2016-01-01

    Investigators from the EuroEPINOMICS rare epilepsy syndromes Dravet working group performed whole-exome sequencing on 31 trios that had been reported negative for SCN1A mutations by Sanger sequencing.

  1. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%

    Science.gov (United States)

    Arora, Neha; Dar, M. Ibrahim; Hinderhofer, Alexander; Pellet, Norman; Schreiber, Frank; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2017-11-01

    Perovskite solar cells (PSCs) with efficiencies greater than 20% have been realized only with expensive organic hole-transporting materials. We demonstrate PSCs that achieve stabilized efficiencies exceeding 20% with copper(I) thiocyanate (CuSCN) as the hole extraction layer. A fast solvent removal method enabled the creation of compact, highly conformal CuSCN layers that facilitate rapid carrier extraction and collection. The PSCs showed high thermal stability under long-term heating, although their operational stability was poor. This instability originated from potential-induced degradation of the CuSCN/Au contact. The addition of a conductive reduced graphene oxide spacer layer between CuSCN and gold allowed PSCs to retain >95% of their initial efficiency after aging at a maximum power point for 1000 hours under full solar intensity at 60°C. Under both continuous full-sun illumination and thermal stress, CuSCN-based devices surpassed the stability of spiro-OMeTAD-based PSCs.

  2. Drosophila SLC5A11 Mediates Hunger by Regulating K(+) Channel Activity.

    Science.gov (United States)

    Park, Jin-Yong; Dus, Monica; Kim, Seonil; Abu, Farhan; Kanai, Makoto I; Rudy, Bernardo; Suh, Greg S B

    2016-08-08

    Hunger is a powerful drive that stimulates food intake. Yet, the mechanism that determines how the energy deficits that result in hunger are represented in the brain and promote feeding is not well understood. We previously described SLC5A11-a sodium/solute co-transporter-like-(or cupcake) in Drosophila melanogaster, which is required for the fly to select a nutritive sugar over a sweeter nonnutritive sugar after periods of food deprivation. SLC5A11 acts on approximately 12 pairs of ellipsoid body (EB) R4 neurons to trigger the selection of nutritive sugars, but the underlying mechanism is not understood. Here, we report that the excitability of SLC5A11-expressing EB R4 neurons increases dramatically during starvation and that this increase is abolished in the SLC5A11 mutation. Artificial activation of SLC5A11-expresssing neurons is sufficient to promote feeding and hunger-driven behaviors; silencing these neurons has the opposite effect. Notably, SLC5A11 transcript levels in the brain increase significantly when flies are starved and decrease shortly after starved flies are refed. Furthermore, expression of SLC5A11 is sufficient for promoting hunger-driven behaviors and enhancing the excitability of SLC5A11-expressing neurons. SLC5A11 inhibits the function of the Drosophila KCNQ potassium channel in a heterologous expression system. Accordingly, a knockdown of dKCNQ expression in SLC5A11-expressing neurons produces hunger-driven behaviors even in fed flies, mimicking the overexpression of SLC5A11. We propose that starvation increases SLC5A11 expression, which enhances the excitability of SLC5A11-expressing neurons by suppressing dKCNQ channels, thereby conferring the hunger state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons.

    Science.gov (United States)

    Bao, Lan

    2015-09-30

    Voltage-gated sodium channels (Navs) comprise at least nine pore-forming α subunits. Of these, Nav1.6, Nav1.7, Nav1.8 and Nav1.9 are the most frequently studied in primary sensory neurons located in the dorsal root ganglion and are mainly localized to the cytoplasm. A large pool of intracellular Navs raises the possibility that changes in Nav trafficking could alter channel function. The molecular mediators of Nav trafficking mainly consist of signals within the Navs themselves, interacting proteins and extracellular factors. The surface expression of Navs is achieved by escape from the endoplasmic reticulum and proteasome degradation, forward trafficking and plasma membrane anchoring, and it is also regulated by channel phosphorylation and ubiquitination in primary sensory neurons. Axonal transport and localization of Navs in afferent fibers involves the motor protein KIF5B and scaffold proteins, including contactin and PDZ domain containing 2. Localization of Nav1.6 to the nodes of Ranvier in myelinated fibers of primary sensory neurons requires node formation and the submembrane cytoskeletal protein complex. These findings inform our understanding of the molecular and cellular mechanisms underlying Nav trafficking in primary sensory neurons.

  4. Formation of scandium nitride (ScN) layer on gallium arsenide (GaAs) substrate using a combined technique of e-beam evaporator and ammonia annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yong Shee Meng, Alvin [Institute of Nano Optoelectronics Research and Technology (INOR), sains@usm, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang (Malaysia); Zainal, Norzaini, E-mail: norzaini@usm.my [Nano Optoelectronics Research and Laboratory, Universiti Sains Malaysia, sains@usm, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang (Malaysia); Hassan, Zainuriah; Ibrahim, Kamarulazizi [Institute of Nano Optoelectronics Research and Technology (INOR), sains@usm, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang (Malaysia)

    2015-12-30

    Graphical abstract: - Highlights: • Forming ScN layer using electron e-beam evaporator with successive NH{sub 3} annealing thermal has been successfully demonstrated. • NH{sub 3} annealing played the role in changing the grain structure of the ScN layer. • The existence of Sc−N bonds was confirmed by XPS measurement. • The 900 °C annealed ScN layer showed the best structural and optical characteristics. • ScN layer annealed at 980 °C exhibited poor structural and optical characteristics. - Abstract: A demonstration on a new technique of growing ScN using electron beam (e-beam) evaporator, coupled with successive ammonia (NH{sub 3}) annealing treatment is presented in this paper. The annealing temperature was varied at 750, 800, 850, 900 and 980 °C in order to obtain the best ScN layer. It was found that as the annealing temperature increased, the surface morphology of the ScN layer changed and ScN grains formed abundantly on the surface. The best surface of ScN layer was found in the 900 °C annealed sample. However, the roughness of the ScN increased with temperature. The photoluminescence (PL) peak of the near-to-band-edge (NBE) of ScN was observable in all samples and its intensity was the highest in the 900 °C annealed sample. Note that when the annealing treatment was conducted at 980 °C, the GaN PL peak is observable. Raman peaks of TO(X) of ScN were much evident at the annealing temperature above 900 °C. The formation of Sc−N bonds was confirmed by X-ray spectroscopy (XPS) measurement. In the end of this work, we propose that the formation of ScN using the above techniques was successful, with thermal annealing at the temperature of 900 °C.

  5. Formation of scandium nitride (ScN) layer on gallium arsenide (GaAs) substrate using a combined technique of e-beam evaporator and ammonia annealing treatment

    International Nuclear Information System (INIS)

    Yong Shee Meng, Alvin; Zainal, Norzaini; Hassan, Zainuriah; Ibrahim, Kamarulazizi

    2015-01-01

    Graphical abstract: - Highlights: • Forming ScN layer using electron e-beam evaporator with successive NH_3 annealing thermal has been successfully demonstrated. • NH_3 annealing played the role in changing the grain structure of the ScN layer. • The existence of Sc−N bonds was confirmed by XPS measurement. • The 900 °C annealed ScN layer showed the best structural and optical characteristics. • ScN layer annealed at 980 °C exhibited poor structural and optical characteristics. - Abstract: A demonstration on a new technique of growing ScN using electron beam (e-beam) evaporator, coupled with successive ammonia (NH_3) annealing treatment is presented in this paper. The annealing temperature was varied at 750, 800, 850, 900 and 980 °C in order to obtain the best ScN layer. It was found that as the annealing temperature increased, the surface morphology of the ScN layer changed and ScN grains formed abundantly on the surface. The best surface of ScN layer was found in the 900 °C annealed sample. However, the roughness of the ScN increased with temperature. The photoluminescence (PL) peak of the near-to-band-edge (NBE) of ScN was observable in all samples and its intensity was the highest in the 900 °C annealed sample. Note that when the annealing treatment was conducted at 980 °C, the GaN PL peak is observable. Raman peaks of TO(X) of ScN were much evident at the annealing temperature above 900 °C. The formation of Sc−N bonds was confirmed by X-ray spectroscopy (XPS) measurement. In the end of this work, we propose that the formation of ScN using the above techniques was successful, with thermal annealing at the temperature of 900 °C.

  6. Sodium Channel Nav1.8 Underlies TTX-Resistant Axonal Action Potential Conduction in Somatosensory C-Fibers of Distal Cutaneous Nerves.

    Science.gov (United States)

    Klein, Amanda H; Vyshnevska, Alina; Hartke, Timothy V; De Col, Roberto; Mankowski, Joseph L; Turnquist, Brian; Bosmans, Frank; Reeh, Peter W; Schmelz, Martin; Carr, Richard W; Ringkamp, Matthias

    2017-05-17

    Voltage-gated sodium (Na V ) channels are responsible for the initiation and conduction of action potentials within primary afferents. The nine Na V channel isoforms recognized in mammals are often functionally divided into tetrodotoxin (TTX)-sensitive (TTX-s) channels (Na V 1.1-Na V 1.4, Na V 1.6-Na V 1.7) that are blocked by nanomolar concentrations and TTX-resistant (TTX-r) channels (Na V 1.8 and Na V 1.9) inhibited by millimolar concentrations, with Na V 1.5 having an intermediate toxin sensitivity. For small-diameter primary afferent neurons, it is unclear to what extent different Na V channel isoforms are distributed along the peripheral and central branches of their bifurcated axons. To determine the relative contribution of TTX-s and TTX-r channels to action potential conduction in different axonal compartments, we investigated the effects of TTX on C-fiber-mediated compound action potentials (C-CAPs) of proximal and distal peripheral nerve segments and dorsal roots from mice and pigtail monkeys ( Macaca nemestrina ). In the dorsal roots and proximal peripheral nerves of mice and nonhuman primates, TTX reduced the C-CAP amplitude to 16% of the baseline. In contrast, >30% of the C-CAP was resistant to TTX in distal peripheral branches of monkeys and WT and Na V 1.9 -/- mice. In nerves from Na V 1.8 -/- mice, TTX-r C-CAPs could not be detected. These data indicate that Na V 1.8 is the primary isoform underlying TTX-r conduction in distal axons of somatosensory C-fibers. Furthermore, there is a differential spatial distribution of Na V 1.8 within C-fiber axons, being functionally more prominent in the most distal axons and terminal regions. The enrichment of Na V 1.8 in distal axons may provide a useful target in the treatment of pain of peripheral origin. SIGNIFICANCE STATEMENT It is unclear whether individual sodium channel isoforms exert differential roles in action potential conduction along the axonal membrane of nociceptive, unmyelinated peripheral nerve

  7. Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes.

    Science.gov (United States)

    Abdelsayed, Mena; Sokolov, Stanislav

    2013-01-01

    Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel's fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment.

  8. Molecular Genetics of Drug-resistance in Epilepsies

    Directory of Open Access Journals (Sweden)

    Kurupath Radhakrishnan

    2015-06-01

    Full Text Available Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive to antiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genes encoding the proteins that regulate the pharmacokinetics such as P-glycoprotein [ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1, ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7], and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABA receptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intense investigation to unravel the mysteries of AED-resistance. However, till today, a consistent and reliable result that could help the clinician either to predict drug resistance or to overcome it has not been forthcoming. The discrepant results may be related to variations in the definition of drug-resistance, heterogeneous patient populations, ethnic variations in the frequency distribution of single nucleotide polymorphisms (SNPs and the selection of SNPs. Understanding of these limitations of existing studies, hopefully, will help in designing better studies. Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive toantiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genesencoding the proteins that regulate the pharmacokinetics such as P-glycoprotein[ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1,ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7],and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABAreceptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intenseinvestigation to unravel the mysteries of AED-resistance. However, till today, aconsistent and reliable result that could help the clinician either to predict drugresistanceor to overcome it has not been forthcoming. The discrepant results may berelated to variations in the definition of drug-resistance, heterogeneous patientpopulations, ethnic

  9. Physiological and pathophysiological insights of Nav1.4 and Nav1.5 comparison

    Directory of Open Access Journals (Sweden)

    Gildas eLoussouarn

    2016-01-01

    Full Text Available Mutations in Nav1.4 and Nav1.5 α-subunits have been associated with muscular and cardiac channelopathies, respectively. Despite intense research on the structure and function of these channels, a lot of information is still missing to delineate the various physiological and pathophysiological processes underlying their activity at the molecular level. Nav1.4 and Nav1.5 sequences are similar, suggesting structural and functional homologies between the two orthologous channels. This also suggests that any characteristics described for one channel subunit may shed light on the properties of the counterpart channel subunit. In this review article, after a brief clinical description of the muscular and cardiac channelopathies related to Nav1.4 and Nav1.5 mutations, respectively, we compare the knowledge accumulated in different aspects of the expression and function of Nav1.4 and Nav1.5 α-subunits: the regulation of the two encoding genes (SCN4A and SCN5A, the associated/regulatory proteins and at last, the functional effect of the same missense mutations detected in Nav1.4 and Nav1.5. First, it appears that more is known on Nav1.5 expression and accessory proteins. Because of the high homologies of Nav1.5 binding sites and equivalent Nav1.4 sites, Nav1.5-related results may guide future investigations on Nav1.4. Second, the analysis of the same missense mutations in Nav1.4 and Nav1.5 revealed intriguing similarities regarding their effects on membrane excitability and alteration in channel biophysics. We believe that such comparison may bring new cues to the physiopathology of cardiac and muscular diseases.

  10. Interactions Between Flavonoid-Rich Extracts and Sodium Caseinate Modulate Protein Functionality and Flavonoid Bioaccessibility in Model Food Systems.

    Science.gov (United States)

    Elegbede, Jennifer L; Li, Min; Jones, Owen G; Campanella, Osvaldo H; Ferruzzi, Mario G

    2018-05-01

    With growing interest in formulating new food products with added protein and flavonoid-rich ingredients for health benefits, direct interactions between these ingredient classes becomes critical in so much as they may impact protein functionality, product quality, and flavonoids bioavailability. In this study, sodium caseinate (SCN)-based model products (foams and emulsions) were formulated with grape seed extract (GSE, rich in galloylated flavonoids) and green tea extract (GTE, rich in nongalloylated flavonoids), respectively, to assess changes in functional properties of SCN and impacts on flavonoid bioaccessibility. Experiments with pure flavonoids suggested that galloylated flavonoids reduced air-water interfacial tension of 0.01% SCN dispersions more significantly than nongalloylated flavonoids at high concentrations (>50 μg/mL). This observation was supported by changes in stability of 5% SCN foam, which showed that foam stability was increased at high levels of GSE (≥50 μg/mL, P < 0.05) but was not affected by GTE. However, flavonoid extracts had modest effects on SCN emulsion. In addition, galloylated flavonoids had higher bioaccessibility in both SCN foam and emulsion. These results suggest that SCN-flavonoid binding interactions can modulate protein functionality leading to difference in performance and flavonoid bioaccessibility of protein-based products. As information on the beneficial health effects of flavonoids expands, it is likely that usage of these ingredients in consumer foods will increase. However, the necessary levels to provide such benefits may exceed those that begin to impact functionality of the macronutrients such as proteins. Flavonoid inclusion within protein matrices may modulate protein functionality in a food system and modify critical consumer traits or delivery of these beneficial plant-derived components. The product matrices utilized in this study offer relevant model systems to evaluate how fortification with flavonoid

  11. (1-Butyl-4-methyl-pyridinium)[Cu(SCN)2]: a coordination polymer and ionic liquid.

    Science.gov (United States)

    Spielberg, Eike T; Edengeiser, Eugen; Mallick, Bert; Havenith, Martina; Mudring, Anja-Verena

    2014-04-25

    The compound (C4C1py)[Cu(SCN)2], (C4C1py = 1-Butyl-4-methyl-pyridinium), which can be obtained from CuSCN and the ionic liquid (C4C1py)(SCN), turns out to be a new organic-inorganic hybrid material as it qualifies both, as a coordination polymer and an ionic liquid. It features linked [Cu(SCN)2](-) units, in which the thiocyanates bridge the copper ions in a μ1,3-fashion. The resulting one-dimensional chains run along the a axis, separated by the C4C1py counterions. Powder X-ray diffraction not only confirms the single-crystal X-ray structure solution but proves the reformation of the coordination polymer from an isotropic melt. However, the materials shows a complex thermal behavior often encountered for ionic liquids such as a strong tendency to form a supercooled melt. At a relatively high cooling rate, glass formation is observed. When heating this melt in differential scanning calorimetry (DSC) and temperature-dependent polarizing optical microscopy (POM), investigations reveal the existence of a less thermodynamically stable crystalline polymorph. Raman measurements conducted at 10 and 100 °C point towards the formation of polyanionic chain fragments in the melt. Solid-state UV/Vis spectroscopy shows a broad absorption band around 18,870 cm(-1) (530 nm) and another strong one below 20,000 cm(-1) (<500 nm). The latter is attributed to the d(Cu(I))→π*(SCN)-MLCT (metal-to-ligand charge transfer) transition within the coordination polymer yielding an energy gap of 2.4 eV. At room temperature and upon irradiation with UV light, the material shows a weak fluorescence band at 15,870 cm(-1) (630 nm) with a quantum efficiency of 0.90(2) % and a lifetime of 131(2) ns. Upon lowering the temperature, the luminescence intensity strongly increases. Simultaneously, the band around 450 nm in the excitation spectrum decreases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa.

    Science.gov (United States)

    Tang, C M; Strichartz, G R; Orkand, R K

    1979-11-01

    Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug-depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon.

  13. Sodium channel Nav1.7 immunoreactivity in painful human dental pulp and burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    Yiangou Yiangos

    2010-06-01

    Full Text Available Abstract Background Voltage gated sodium channels Nav1.7 are involved in nociceptor nerve action potentials and are known to affect pain sensitivity in clinical genetic disorders. Aims and Objectives To study Nav1.7 levels in dental pulpitis pain, an inflammatory condition, and burning mouth syndrome (BMS, considered a neuropathic orofacial pain disorder. Methods Two groups of patients were recruited for this study. One group consisted of patients with dental pulpitis pain (n = 5 and controls (n = 12, and the other patients with BMS (n = 7 and controls (n = 10. BMS patients were diagnosed according to the International Association for the Study of Pain criteria; a pain history was collected, including the visual analogue scale (VAS. Immunohistochemistry with visual intensity and computer image analysis were used to evaluate levels of Nav1.7 in dental pulp tissue samples from the dental pulpitis group, and tongue biopsies from the BMS group. Results There was a significantly increased visual intensity score for Nav1.7 in nerve fibres in the painful dental pulp specimens, compared to controls. Image analysis showed a trend for an increase of the Nav1.7 immunoreactive % area in the painful pulp group, but this was not statistically significant. When expressed as a ratio of the neurofilament % area, there was a strong trend for an increase of Nav1.7 in the painful pulp group. Nav1.7 immunoreactive fibres were seen in abundance in the sub-mucosal layer of tongue biopsies, with no significant difference between BMS and controls. Conclusion Nav1.7 sodium channel may play a significant role in inflammatory dental pain. Clinical trials with selective Nav1.7 channel blockers should prioritise dental pulp pain rather than BMS.

  14. Sodium channel Nav1.7 immunoreactivity in painful human dental pulp and burning mouth syndrome

    Science.gov (United States)

    2010-01-01

    Background Voltage gated sodium channels Nav1.7 are involved in nociceptor nerve action potentials and are known to affect pain sensitivity in clinical genetic disorders. Aims and Objectives To study Nav1.7 levels in dental pulpitis pain, an inflammatory condition, and burning mouth syndrome (BMS), considered a neuropathic orofacial pain disorder. Methods Two groups of patients were recruited for this study. One group consisted of patients with dental pulpitis pain (n = 5) and controls (n = 12), and the other patients with BMS (n = 7) and controls (n = 10). BMS patients were diagnosed according to the International Association for the Study of Pain criteria; a pain history was collected, including the visual analogue scale (VAS). Immunohistochemistry with visual intensity and computer image analysis were used to evaluate levels of Nav1.7 in dental pulp tissue samples from the dental pulpitis group, and tongue biopsies from the BMS group. Results There was a significantly increased visual intensity score for Nav1.7 in nerve fibres in the painful dental pulp specimens, compared to controls. Image analysis showed a trend for an increase of the Nav1.7 immunoreactive % area in the painful pulp group, but this was not statistically significant. When expressed as a ratio of the neurofilament % area, there was a strong trend for an increase of Nav1.7 in the painful pulp group. Nav1.7 immunoreactive fibres were seen in abundance in the sub-mucosal layer of tongue biopsies, with no significant difference between BMS and controls. Conclusion Nav1.7 sodium channel may play a significant role in inflammatory dental pain. Clinical trials with selective Nav1.7 channel blockers should prioritise dental pulp pain rather than BMS. PMID:20529324

  15. 21 CFR 184.1697 - Riboflavin-5′-phosphate (sodium).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Riboflavin-5â²-phosphate (sodium). 184.1697 Section... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1697 Riboflavin-5′-phosphate (sodium). (a) Riboflavin-5′-phosphate (sodium) (C17H20N4O9PNa·2H2O, CAS Reg. No 130-40-5) occurs as the dihydrate in yellow...

  16. THEORETICAL RESEARCH ON THE MULTI-CHANNEL REACTION MECHANISM AND KINETICS OF HNCS WITH OH-

    Directory of Open Access Journals (Sweden)

    Li-Jie Hou

    Full Text Available We presented a theoretical study on the detailed reaction mechanism and kinetics of the HNCS molecule with the OH-. The barrierless minimum energy path and the most favorable entrance channel have been determined by study the thermodynamic and kinetic characters of the channel with low energy barrier. The B3LYP/6-311++G** method was employed for all the geometrical optimizations and a multi-level extrapolation method based on the G3 energies was employed for further energy refinements. In addition, the analysis of the combining interaction between hydroxide ion and HNCS was performed by natural bond orbitals (NBO analysis. The calculation results indicated that the reaction of OH- with HNCS had four channels, and the channel of H-atom in HNCS direct extraction to OH- (OH-+HNCS→IM1→TS3→IM4→P2(SCN- +H2O in singlet state was the main channel with the low potential energy and high equilibrium constant and reaction rate constant. SCN- and H2O were main products.

  17. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  18. Electronic structure and physical properties of ScN in pressure: density-functional theory calculations

    International Nuclear Information System (INIS)

    Guan Pengfei; Wang Chongyu; Yu Tao

    2008-01-01

    Local density functional is investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method for ScN in the hexagonal structure and the rocksalt structure and for hexagonal structures linking a layered hexagonal phase with wurtzite structure along a homogeneous strain transition path. It is found that the wurtzite ScN is unstable and the layered hexagonal phase, labelled as h o , in which atoms are approximately fivefold coordinated, is metastable, and the rocksalt ScN is stable. The electronic structure, the physical properties of the intermediate structures and the energy band structure along the transition are presented. It is found that the band gaps change from 4.0 to 1.0 eV continuously when c/a value varies from 1.68 to 1.26. It is noticeable that the study of ScN provides an opportunity to apply this kind of material (in wurtzite[h]-derived phase). (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Determining the Advantages, Costs, and Trade-Offs of a Novel Sodium Channel Mutation in the Copepod Acartia hudsonica to Paralytic Shellfish Toxins (PST.

    Directory of Open Access Journals (Sweden)

    Michael Finiguerra

    Full Text Available The marine copepod Acartia hudsonica was shown to be adapted to dinoflagellate prey, Alexandrium fundyense, which produce paralytic shellfish toxins (PST. Adaptation to PSTs in other organisms is caused by a mutation in the sodium channel. Recently, a mutation in the sodium channel in A. hudsonica was found. In this study, we rigorously tested for advantages, costs, and trade-offs associated with the mutant isoform of A. hudsonica under toxic and non-toxic conditions. We combined fitness with wild-type: mutant isoform ratio measurements on the same individual copepod to test our hypotheses. All A. hudsonica copepods express both the wild-type and mutant sodium channel isoforms, but in different proportions; some individuals express predominantly mutant (PMI or wild-type isoforms (PWI, while most individuals express relatively equal amounts of each (EI. There was no consistent pattern of improved performance as a function of toxin dose for egg production rate (EPR, ingestion rate (I, and gross growth efficiency (GGE for individuals in the PMI group relative to individuals in the PWI expression group. Neither was there any evidence to indicate a fitness benefit to the mutant isoform at intermediate toxin doses. No clear advantage under toxic conditions was associated with the mutation. Using a mixed-diet approach, there was also no observed relationship between individual wild-type: mutant isoform ratios and among expression groups, on both toxic and non-toxic diets, for eggs produced over three days. Lastly, expression of the mutant isoform did not mitigate the negative effects of the toxin. That is, the reductions in EPR from a toxic to non-toxic diet for copepods were independent of expression groups. Overall, the results did not support our hypotheses; the mutant sodium channel isoform does not appear to be related to adaptation to PST in A. hudsonica. Other potential mechanisms responsible for the adaptation are discussed.

  20. Morphometric relations of fractal-skeletal based channel network model

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    1998-01-01

    Full Text Available A fractal-skeletal based channel network (F-SCN model is proposed. Four regular sided initiator-basins are transformed as second order fractal basins by following a specific generating mechanism with non-random rule. The morphological skeletons, hereafter referred to as channel networks, are extracted from these fractal basins. The morphometric and fractal relationships of these F-SCNs are shown. The fractal dimensions of these fractal basins, channel networks, and main channel lengths (computed through box counting method are compared with those of estimated length–area measures. Certain morphometric order ratios to show fractal relations are also highlighted.

  1. A clinical case of epilepsy in a female patient with double mutations in the SCN2A and PCDH19 genes

    Directory of Open Access Journals (Sweden)

    M. B. Mironov

    2017-01-01

    Full Text Available The paper describes a 6-year-old female patient with epilepsy caused by mutations in the SCN2A and PCDH19 genes, which clinically appears as epileptic seizures, drug-resistant epilepsy, secondary microcephaly, mental retardation, and autism. It reviews the literature regarding both mutations. World literature lacks publications on a combination of two SCN2A and PCDH19 mutations in one female patient with epileptic encephalopathies.

  2. Trans-channel interactions in batrachotoxin-modified skeletal muscle sodium channels: voltage-dependent block by cytoplasmic amines, and the influence of mu-conotoxin GIIIA derivatives and permeant ions.

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W; French, Robert J

    2008-11-01

    External mu-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two mu-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the mu-conotoxin and the DEA-binding site of approximately 15 A. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by approximately 4-fold; and 2), increasing external [Na(+)] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions.

  3. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells.

    Directory of Open Access Journals (Sweden)

    Zhixin Lin

    Full Text Available The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799 which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.

  4. Trans-Channel Interactions in Batrachotoxin-Modified Skeletal Muscle Sodium Channels: Voltage-Dependent Block by Cytoplasmic Amines, and the Influence of μ-Conotoxin GIIIA Derivatives and Permeant Ions

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R.; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W.; French, Robert J.

    2008-01-01

    External μ-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two μ-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the μ-conotoxin and the DEA-binding site of ∼15 Å. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by ∼4-fold; and 2), increasing external [Na+] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions. PMID:18658222

  5. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 (United States)

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels

  6. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells

    KAUST Repository

    Wijeyasinghe, Nilushi

    2017-07-28

    This study reports the development of copper(I) thiocyanate (CuSCN) hole-transport layers (HTLs) processed from aqueous ammonia as a novel alternative to conventional n-alkyl sulfide solvents. Wide bandgap (3.4–3.9 eV) and ultrathin (3–5 nm) layers of CuSCN are formed when the aqueous CuSCN–ammine complex solution is spin-cast in air and annealed at 100 °C. X-ray photoelectron spectroscopy confirms the high compositional purity of the formed CuSCN layers, while the high-resolution valence band spectra agree with first-principles calculations. Study of the hole-transport properties using field-effect transistor measurements reveals that the aqueous-processed CuSCN layers exhibit a fivefold higher hole mobility than films processed from diethyl sulfide solutions with the maximum values approaching 0.1 cm2 V−1 s−1. A further interesting characteristic is the low surface roughness of the resulting CuSCN layers, which in the case of solar cells helps to planarize the indium tin oxide anode. Organic bulk heterojunction and planar organometal halide perovskite solar cells based on aqueous-processed CuSCN HTLs yield power conversion efficiency of 10.7% and 17.5%, respectively. Importantly, aqueous-processed CuSCN-based cells consistently outperform devices based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate HTLs. This is the first report on CuSCN films and devices processed via an aqueous-based synthetic route that is compatible with high-throughput manufacturing and paves the way for further developments.

  7. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

    Science.gov (United States)

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L

    2014-01-23

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Effects of n-3 polyunsaturated fatty acids on cardiac ion channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno

    2012-07-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on cardiac sodium channel (Nav1.5 and two potassium channels (Kv (Kv1.5 and Kv11.1. n-3 marine (docohexaenoic and eicohexapentaenoic acid and plant origin (alpha-linolenic acid PUFAs block Kv1.5 and Kv11.1 channels at physiological concentrations. Also, DHA and EPA decreased Nav1.5 and calcium channels. These effects on Na and Ca channels theoretically should shorten the cardiac APD, whereas the blocking actions of n-3 PUFAs of Kv channels should lengthen the cardiac action potential. Experiments performed in female rabbits fed with a diet rich in n-3 PUFAs show a longer cardiac action potential and effective refractory period. This study was performed to analyze if their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability and dispersion of the cardiac action potential (TRIaD as a measure of proarrhythmic effects. Dietary n-3 PUFAs supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced torsades de pointes (TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of dietary supplements of n-3 PUFAs against dofetilide induced proarrhythmia observed in this animal model. The cardiac effects of n-3 PUFAs resemble those of amiodarone: both block sodium, calcium and potassium channels, have anti-adrenergic properties, can prolong the cardiac action potential, reverse TRIaD and suppress TdP. The main difference is that sodium channel block by n-3 PUFAs has a much faster onset and offset kinetics. Therefore, the electrophysiological profile of n-3 PUFAs appears more desirable: the duration of reduced sodium current (facilitates re-entry is much shorter. The n-3 PUFAs appear as a safer alternative to other antiarrhythmic

  9. Genetic mutation in Korean patients of sudden cardiac arrest as a surrogating marker of idiopathic ventricular arrhythmia.

    Science.gov (United States)

    Son, Myoung Kyun; Ki, Chang-Seok; Park, Seung-Jung; Huh, June; Kim, June Soo; On, Young Keun

    2013-07-01

    Mutation or common intronic variants in cardiac ion channel genes have been suggested to be associated with sudden cardiac death caused by idiopathic ventricular tachyarrhythmia. This study aimed to find mutations in cardiac ion channel genes of Korean sudden cardiac arrest patients with structurally normal heart and to verify association between common genetic variation in cardiac ion channel and sudden cardiac arrest by idiopathic ventricular tachyarrhythmia in Koreans. Study participants were Korean survivors of sudden cardiac arrest caused by idiopathic ventricular tachycardia or fibrillation. All coding exons of the SCN5A, KCNQ1, and KCNH2 genes were analyzed by Sanger sequencing. Fifteen survivors of sudden cardiac arrest were included. Three male patients had mutations in SCN5A gene and none in KCNQ1 and KCNH2 genes. Intronic variant (rs2283222) in KCNQ1 gene showed significant association with sudden cardiac arrest (OR 4.05). Four male sudden cardiac arrest survivors had intronic variant (rs11720524) in SCN5A gene. None of female survivors of sudden cardiac arrest had SCN5A gene mutations despite similar frequencies of intronic variants between males and females in 55 normal controls. Common intronic variant in KCNQ1 gene is associated with sudden cardiac arrest caused by idiopathic ventricular tachyarrhythmia in Koreans.

  10. Reduced muscle-fiber conduction but normal slowing after cold exposure in paramyotonia congenita

    NARCIS (Netherlands)

    Blijham, P.J.; Drost, G; Stegeman, D.F.; Zwarts, M.J.

    2008-01-01

    In this study we investigated a family with paramyotonia (PC) congenita caused by a Gly1306Val mutation in the voltage-gated sodium-channel gene SCN4A. A previous study showed that exposure to cold aggravates the muscle stiffness in patients with this mutation. However, the mechanism behind cold

  11. Role of common and rare variants in SCN10A

    DEFF Research Database (Denmark)

    Behr, Elijah R.; Savio-Galimberti, Eleonora; Barc, Julien

    2015-01-01

    AIMS: Brugada syndrome (BrS) remains genetically heterogeneous and is associated with slowed cardiac conduction. We aimed to identify genetic variation in BrS cases at loci associated with QRS duration. METHODS AND RESULTS: A multi-centre study sequenced seven candidate genes (SCN10A, HAND1, PLN,...

  12. Conotoxins Targeting Neuronal Voltage-Gated Sodium Channel Subtypes: Potential Analgesics?

    Directory of Open Access Journals (Sweden)

    Jeffrey R. McArthur

    2012-11-01

    Full Text Available Voltage-gated sodium channels (VGSC are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.

  13. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Birn, Pia; Hansen, Anker J

    2004-01-01

    , Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change...

  14. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Kortenoeven, M.L.A.; Li, Y.; Shaw, S.M.; Gaeggeler, H.P.; Rossier, B.C.; Wetzels, J.F.M.; Deen, P.M.T.

    2009-01-01

    Lithium therapy frequently induces nephrogenic diabetes insipidus; amiloride appears to prevent its occurrence in some clinical cases. Amiloride blocks the epithelial sodium channel (ENaC) located in the apical membrane of principal cells; hence one possibility is that ENaC is the main entry site

  15. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN

    Science.gov (United States)

    Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2−/−). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2−/− SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period. PMID:27626074

  16. Predictive 3D modelling of the interactions of pyrethroids with the voltage-gated sodium channels of ticks and mites.

    Science.gov (United States)

    O'Reilly, Andrias O; Williamson, Martin S; González-Cabrera, Joel; Turberg, Andreas; Field, Linda M; Wallace, B A; Davies, T G Emyr

    2014-03-01

    The pyrethroid insecticides are a very successful group of compounds that target invertebrate voltage-gated sodium channels and are widely used in the control of insects, ticks and mites. It is well established that some pyrethroids are good insecticides whereas others are more effective as acaricides. This species specificity is advantageous for controlling particular pest(s) in the presence of another non-target invertebrate, for example controlling the Varroa mite in honeybee colonies. We applied in silico techniques to compare the voltage-gated sodium channels of insects versus ticks and mites and their interactions with a range of pyrethroids and DDT analogues. We identified a single amino acid difference within the pyrethroid binding pocket of ticks/mites that may have significant impact on the effectiveness of pyrethroids as acaricides. Other individual amino acid differences within the binding pocket in distinct tick and mite species may provide a basis for future acaricidal selectivity. Three-dimensional modelling of the pyrethroid/DDT receptor site has led to a new hypothesis to explain the preferential binding of acaricidal pyrethroids to the sodium channels of ticks/mites. This is important for understanding pyrethroid selectivity and the potential effects of mutations that can give rise to resistance to pyrethroids in commercially-important pest species. © 2013 Society of Chemical Industry.

  17. Resonance Raman Spectrum of the Transient (SCN)2 Free Radical Anion

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1979-01-01

    The resonance Raman spectrum of the transient species (λmax = 475 nm, τ½ = 1.6 μs) formed by pulse radiolysis of aqueous solutions of thiocyanate, SCN2−, is reported. The spectrum is discussed in terms of the previous assignment of this transient to the radical anion, (SCN)−2. The observed...... vibrational frequencies of the radical anion are consistent with substantial weakening of the S---S and the Ctriple bond; length as m-dashN bonds are compared with neutral thiocyanogen....

  18. Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant

    International Nuclear Information System (INIS)

    Acuña, A.; Velázquez, N.; Cerezo, J.

    2013-01-01

    A diffusion absorption cooling system is analyzed to determine the appropriate fluid for the unit, based on the coefficient of performance (COP) and operating conditions, by comparing lithium nitrate (LiNO 3 ), sodium thiocyanate (NaSCN) and water (H 2 O) as absorbent substances and by using ammonia (NH 3 ) as the refrigerant. The presence of crystallization in the system is analyzed as a function of the generator and absorber temperatures. Additionally, the effects on the efficiency of the system from adding the inert gas helium (He) or hydrogen (H 2 ) are studied. A mathematical model is developed and compared to experimental studies reported in the literature. At an evaporator temperature of −15 °C, a generator temperature of 120 °C and absorber and condenser temperatures of 40 °C, the results show that the best performance is achieved by the NH 3 –LiNO 3 –He mixture, with a COP of 0.48. This mixture performs 27–46% more efficient than the NH 3 –NaSCN mixture. The NH 3 –H 2 O mixture is 52–69% less efficient than the NH 3 –LiNO 3 mixture. However, when the evaporator runs at 7.5 °C, the NH 3 –H 2 O–He mixture achieves a more efficient COP than does the NH 3 –LiNO 3 –He mixture, and the NH 3 –NaSCN–He and NH 3 –LiNO 3 –He mixtures achieve the same COP when the evaporator is at 10 °C. At temperatures below 7.5 °C, the NH 3 –NaSCN–He mixture achieves a higher COP than does the NH 3 –H 2 O–He mixture. The NH 3 –LiNO 3 mixture shows crystallization at higher temperatures in the generator than does the NH 3 –NaSCN mixture. Moreover, at the same evaporator temperature, the NH 3 –LiNO 3 mixture works at activation temperatures lower than does the NH 3 –NaSCN mixture. -- Highlights: ► We studied a diffusion absorption cooling system with different working mixtures. ► The NH 3 –LiNO 3 mixture showed more efficiency than NH 3 –H 2 O mixture and NH 3 –NaSCN mixture. ► The generator and absorber temperature

  19. Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process

    Science.gov (United States)

    Zhang, Zongbao; Zhou, Yang; Cai, Yangyang; Liu, Hui; Qin, Qiqi; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Wu, Sujuan; Liu, Jun-Ming

    2018-02-01

    Planar perovskite solar cells (PSCs) based on CH3NH3PbI3-x(SCN)x (SCN: thiocyanate) active layer and low-temperature processed TiO2 films are fabricated by a sequential two-step method in ambient air. Here, alkali thiocyanates (NaSCN, KSCN) are added into Pb(SCN)2 precursor to improve the microstructure of CH3NH3PbI3-x(SCN)x perovskite layers and performance of the as-prepared PSCs. At the optimum concentrations of alkali thiocyanates as additives, the as-prepared NaSCN-modified and KSCN-modified PSCs demonstrate the efficiencies of 16.59% and 15.63% respectively, being much higher than 12.73% of the reference PSCs without additives. This improvement is primarily ascribed to the enhanced electron transport, reduced recombination rates and much improved microstructures with large grain size and low defect density at grain boundaries. Importantly, it is revealed that the modified PSCs at the optimized concentrations of alkali thiocyanates additives exhibit remarkably improved stability than the reference PSCs against humid circumstance, and a continuous exposure to humid air without encapsulation over 45 days only records about 5% degradation of the efficiency. These findings provide a facile approach to fabricate efficient and stable PSCs by low processing temperature in ambient air, both of which are highly preferred for future practical applications of PSCs.

  20. Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels*

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S.; Dong, Ke

    2016-01-01

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. PMID:26637352

  1. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters.

    Science.gov (United States)

    Hanukoglu, Israel

    2017-02-01

    The acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) are members of a superfamily of channels that play critical roles in mechanosensation, chemosensation, nociception, and regulation of blood volume and pressure. These channels look and function like a tripartite funnel that directs the flow of Na + ions into the cytoplasm via the channel pore in the membrane. The subunits that form these channels share a common structure with two transmembrane segments (TM1 and TM2) and a large extracellular part. In most vertebrates, there are five paralogous genes that code for ASICs (ASIC1-ASIC5), and four for ENaC subunits alpha, beta, gamma, and delta (α, β, γ, and δ). While ASICs can form functional channels as a homo- or heterotrimer, ENaC functions as an obligate heterotrimer composed of α-β-γ or β-γ-δ subunits. The structure of ASIC has been determined in several conformations, including desensitized and open states. This review presents a comparison of the structures of these states using easy-to-understand molecular models of the full complex, the central tunnel that includes an outer vestibule, the channel pore, and ion selectivity filter. The differences in the secondary, tertiary, and quaternary structures of the states are summarized to pinpoint the conformational changes responsible for channel opening. Results of site-directed mutagenesis studies of ENaC subunits are examined in light of ASIC1 models. Based on these comparisons, a molecular model for the selectivity filter of ENaC is built by in silico mutagenesis of an ASIC1 structure. These models suggest that Na + ions pass through the filter in a hydrated state. © 2016 Federation of European Biochemical Societies.

  2. Contrasting oxygen-effects in the inactivation of ribonuclease A by N3, (SCN)-2 and OH radicals

    International Nuclear Information System (INIS)

    Pruetz, W.A.

    1979-01-01

    N 3 exhibits higher efficiency than OH in the inactivation of RNase in de-acerated (neutral) aqueous solution. In O 2 -saturated solution the OH-induced inactivation is enhanced, but N 3 and (SCN) - 2 become remarkably inefficient. Our results suggest that semi-oxidized tyrosine, the predominant initial defect induced by N 3 and (SCN) - 2 but not by OH, can be re-reduced upon reaction with O - 2 or cysteine. (orig.) [de

  3. Sodium Overload Due To a Persistent Current That Attenuates The Arrhythmogenic Potential of a Novel LQT3 Mutation

    Directory of Open Access Journals (Sweden)

    Adrien eMoreau

    2013-10-01

    Full Text Available Long QT syndrome (LQTS is a congenital abnormality of cardiac repolarization that manifests as a prolonged QT interval on 12-lead electrocardiograms. The syndrome may lead to syncope and sudden death from ventricular tachyarrhythmias known as torsades de pointes. An increased persistent Na+ current is known to cause a Ca2+ overload in case of ischemia for example. Such increased Na+ persistent current is also usually associated to the LQT3 syndrome. The purpose of this study was to investigate the pathological consequences of a novel mutation in a family affected by LQTS. The impact of biophysical defects on cellular homeostasis are also investigated.Genomic DNA was extracted from blood samples, and a combination of PCR and DNA sequencing of several LQTS-linked genes was used to identify mutations. The mutation was reproduced in vitro and was characterized using the patch clamp technique and in silico quantitative analysis.A novel mutation (Q1476R was identified on the SCN5A gene encoding the cardiac Na+ channel. Cells expressing the Q1476R mutation exhibited biophysical alterations, including a shift of SS inactivation and a significant increase in the persistent Na+ current. The in silico analysis confirmed the arrhythmogenic character of the Q1476R mutation. It further revealed that the increase in persistent Na+ current causes a frequency-dependent Na+ overload in cardiomyocytes co-expressing WT and mutant Nav1.5 channels, that, in turn, exerts a moderating effect on the lengthening of the action potential duration caused by the mutation.The Q1476R mutation in SCN5A results in a three-fold increase in the window current and a persistent inward Na+ current. These biophysical defects may expose the carrier of the mutation to arrhythmias that occur preferentially in the patient at rest or during tachycardia. However, the Na+ overload counterbalances the gain-of-function of the mutation and is beneficial in that it prevents severe arrhythmias at

  4. Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels.

    Science.gov (United States)

    Capes, Deborah L; Goldschen-Ohm, Marcel P; Arcisio-Miranda, Manoel; Bezanilla, Francisco; Chanda, Baron

    2013-08-01

    Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation.

  5. The epithelial sodium channel γ-subunit is processed proteolytically in human kidney

    DEFF Research Database (Denmark)

    Langkilde, Rikke Zachar; Skjødt, Karsten; Marcussen, Niels

    2015-01-01

    The epithelial sodium channel (ENaC) of the kidney is necessary for extracellular volume homeostasis and normal arterial BP. Activity of ENaC is enhanced by proteolytic cleavage of the gamma-subunit and putative release of a 43-amino acid inhibitory tract from the gamma-subunit ectodomain. We......ENaC was detected consistently only in tissue from patients with proteinuria and observed in collecting ducts. In conclusion, human kidney gammaENaC is subject to proteolytic cleavage, yielding fragments compatible with furin cleavage, and proteinuria is associated with cleavage at the putative prostasin...

  6. Characterization of the binding of the Ptychodiscus brevis neurotoxin T17 to sodium channels in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Poli, M.A.

    1985-01-01

    The lipid-soluble polyether neurotoxins isolated from the marine dinoflagellate Ptychodiscus brevis (formerly Gymnodinium breve) have been determined to bind to a unique receptor site associated with the voltage-sensitive sodium channel in rat brain synaptosomes. Reduction of the C 42 aldehyde function of T34 to the alcohol function of T17 using NaB 3 H 4 yielded 3 H-T17 with a specific activity of 15 Ci;/mmol. Using this specific probe, binding to sodium channels was measured at 4 0 CC, 22 0 C, and 37 0 C. Rosenthal analysis of the binding data yielded a K/sub d/ of 2.9 nM and B/sub max/ of 6.8 pmoles 3 H-T17 per mg of synaptosomal protein at 4 0 C. Both K/sub d/ and B/sub max/ were found to be temperature dependent. Depolarization of the synaptosomes by osmotic lysis resulted in the loss of 34% of the available receptor sites, with no decrease in binding affinity. Unlabeled T17, T34, and synthetic T17 (reduced T34) were equipotent in their ability to displace 3 H-T17 from its specific receptor site. Competition experiments using natural toxin probes specific for sites I-IV on the voltage-sensitive sodium channel demonstrate that 3 H-T17 does not bind to any of the previously-described neurotoxin receptor sites. A fifth site is proposed

  7. Characterization of the binding of the Ptychodiscus brevis neurotoxin T17 to sodium channels in rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Poli, M.A.

    1985-01-01

    The lipid-soluble polyether neurotoxins isolated from the marine dinoflagellate Ptychodiscus brevis (formerly Gymnodinium breve) have been determined to bind to a unique receptor site associated with the voltage-sensitive sodium channel in rat brain synaptosomes. Reduction of the C/sub 42/ aldehyde function of T34 to the alcohol function of T17 using NaB/sup 3/H/sub 4/ yielded /sup 3/H-T17 with a specific activity of 15 Ci;/mmol. Using this specific probe, binding to sodium channels was measured at 4/sup 0/CC, 22/sup 0/C, and 37/sup 0/C. Rosenthal analysis of the binding data yielded a K/sub d/ of 2.9 nM and B/sub max/ of 6.8 pmoles /sup 3/H-T17 per mg of synaptosomal protein at 4/sup 0/C. Both K/sub d/ and B/sub max/ were found to be temperature dependent. Depolarization of the synaptosomes by osmotic lysis resulted in the loss of 34% of the available receptor sites, with no decrease in binding affinity. Unlabeled T17, T34, and synthetic T17 (reduced T34) were equipotent in their ability to displace /sup 3/H-T17 from its specific receptor site. Competition experiments using natural toxin probes specific for sites I-IV on the voltage-sensitive sodium channel demonstrate that /sup 3/H-T17 does not bind to any of the previously-described neurotoxin receptor sites. A fifth site is proposed.

  8. Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity.

    Science.gov (United States)

    Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M; Jenkins, David Paul; Wulff, Heike; Pessah, Isaac N

    2014-04-01

    Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca(2+) oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca(2+) indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the frequency of SCOs by 2.7-fold (EC50 = 58 nM) and decreased SCO amplitude by 36%. Changes in SCO properties were independent of modifications in voltage-gated sodium channels since 100 nM bifenthrin had no effect on the whole-cell Na(+) current, nor did it influence neuronal resting membrane potential. The L-type Ca(2+) channel blocker nifedipine failed to ameliorate bifenthrin-triggered SCO activity. By contrast, the metabotropic glutamate receptor (mGluR)5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine] normalized bifenthrin-triggered increase in SCO frequency without altering baseline SCO activity, indicating that bifenthrin amplifies mGluR5 signaling independent of Na(+) channel modification. Competitive [AP-5; (-)-2-amino-5-phosphonopentanoic acid] and noncompetitive (dizocilpine, or MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]) N-methyl-d-aspartate antagonists partially decreased both basal and bifenthrin-triggered SCO frequency increase. Bifenthrin-modified SCO rapidly enhanced the phosphorylation of cAMP response element-binding protein (CREB). Subacute (48 hours) exposure to bifenthrin commencing 2 DIV-enhanced neurite outgrowth and persistently increased SCO frequency and reduced SCO amplitude. Bifenthrin-stimulated neurite outgrowth and CREB phosphorylation were dependent on mGluR5 activity since MPEP normalized both responses. Collectively these data identify a new mechanism by which bifenthrin potently alters Ca(2

  9. Identification of Novel Voltage-Gated Sodium Channel Mutations in Human Head and Body Lice (Phthiraptera: Pediculidae).

    Science.gov (United States)

    Firooziyan, Samira; Sadaghianifar, Ali; Taghilou, Behrooz; Galavani, Hossein; Ghaffari, Eslam; Gholizadeh, Saber

    2017-09-01

    In recent years, the increase of head louse infestation in Iran (7.4%) and especially in West-Azerbaijan Province (248%) has raised the hypothesis of insecticide resistance development. There are different mechanisms of resistance to various groups of insecticides, and knockdown resistance (kdr) is a prominent mechanism of resistance to pyrethroids, an insecticide group which is used conventionally for pediculosis control. For detection of kdr-type well-known amino acid substitutions (M815I-T917I-L920F) and additional sodium channel mutations potentially associated with kdr resistance in head and body lice, louse populations were collected from West-Azerbaijan and Zanjan Provinces of Iran. Six novel mutations were found to be located in the IIS1-2 extracellular loop (H813P) and IIS5 (I927F, L928A, R929V, L930M, and L932M) of the α-subunit. Genotyping results showed that all specimens (100%) have at least one of these or the well-known mutations. Therefore, the presence of kdr-related and novel mutations in the sodium channel is likely to be the reason for the frequent use of pyrethroid insecticides due to treatment failure against lice. Further studies are now required to evaluate the prevalence of the kdr-like mutant allele for monitoring of insecticide resistance and the management of head and body lice in other provinces of the country. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels.

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S; Dong, Ke

    2016-02-26

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Flow-injection spectrophotometric determination of captopril in pharmaceutical formulations using a new solid-phase reactor containing AgSCN immobilized in a polyurethane resin

    Directory of Open Access Journals (Sweden)

    Fernando Campanhã Vicentini

    2012-06-01

    Full Text Available A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 × 10-4 mol L-1 to 1.1 × 10-3 mol L-1 with a detection limit of 8.0 × 10-5 mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 × 10-4 mol L-1 captopril (n = 12 were obtained. The sample throughput was 40 h-1 and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.Um procedimento simples de análise por injeção em fluxo foi desenvolvido para a determinação de captopril em formulações farmacêuticas empregando um novo reator em fase sólida contendo tiocianato de prata imobilizado em resina poliuretana obtida a partir de óleo de mamona. O método foi baseado na formação de um mercapto composto de prata, no reator em fase sólida, obtido entre o captopril e Ag (I imobilizada. Durante a reação, íons SCN- eram liberados e reagiam com Fe3+, gerando o complexo FeSCN2+, que foi continuamente monitorado em 480 nm. A curva analítica foi linear no intervalo de concentração de captopril entre 3,0 × 10-4 a 1,1 × 10-3 mol L-1 com um limite de detecção de 8,0 × 10-5 mol L-1. Recuperações entre 97,5-103% e desvio padrão relativo de 2% para uma solução contendo 6,0 × 10-4 mol L-1 de captopril (n = 12 foram obtidos. A frequência de amostragem foi de 40 h-1 e os resultados

  12. Development of 68Ga-SCN-DOTA-Capsaicin as an Imaging Agent Targeting Apoptosis and Cell Cycle Arrest in Breast Cancer.

    Science.gov (United States)

    Lee, Jun Young; Lee, Sang-Yeun; Kim, Gun Gyun; Hur, Min Goo; Yang, Seung Dae; Park, Jeong-Hoon; Kim, Sang Wook

    2017-06-01

    68 Ga-labeled capsaicin using a DOTA (1,4,7,10-tetraazocyclododecane-N,N',N″,N'″-tetraacetic acid) derivative [ 68 Ga-SCN-Benzyl(Bn)-DOTA-capsaicin] was studied for the diagnosis of breast cancers, such as MCF-7 and SK-BR-3. The standard compound, 69 Ga-SCN-Bn-DOTA-capsaicin, was also prepared and characterized by spectroscopic analysis. The binding affinity of 68 Ga-SCN-Bn-DOTA-capsaicin was evaluated by using breast cancer cell lines (MCF-7, SK-BR-3) and colon cancer cell (CT-26); the biodistribution was carried out by using MCF-7-bearing nude mice, after which the positron emission tomography (PET) images were obtained at different time intervals (15-120 minutes). 68 Ga-SCN-Bn-DOTA-capsaicin showed a cellular uptake of 0.93% Injected Dose (ID) after 30 minutes of incubation, whereas 68 Ga-SCN-Bn-DOTA showed a lower uptake of 0.25% ID. The tumor-to-blood ID/g% ratios increased and were found to be 0.49, 0.22, and 0.77 for 15, 30, and 60 minutes, respectively. The small-animal PET study showed that the uptake of 68 Ga-SCN-Bn-DOTA-capsaicin was higher in the tumor regions even at 30 minutes after injection. These results suggest that 68 Ga-SCN-Bn-DOTA-capsaicin is a potential targeting agent for PET imaging of MCF-7.

  13. MiR-30b Attenuates Neuropathic Pain by Regulating Voltage-Gated Sodium Channel Nav1.3 in Rats

    Directory of Open Access Journals (Sweden)

    Songxue Su

    2017-05-01

    Full Text Available Nav1.3 is a tetrodotoxin-sensitive isoform among voltage-gated sodium channels that are closely associated with neuropathic pain. It can be up-regulated following nerve injury, but its biological function remains uncertain. MicroRNAs (miRNAs are endogenous non-coding RNAs that can regulate post-transcriptional gene expression by binding with their target mRNAs. Using Target Scan software, we discovered that SCN3A is the major target of miR-30b, and we then determined whether miR-30b regulated the expression of Nav1.3 by transfecting miR-30b agomir through the stimulation of TNF-α or by transfecting miR-30b antagomir in primary dorsal root ganglion (DRG neurons. The spinal nerve ligation (SNL model was used to determine the contribution of miR-30b to neuropathic pain, to evaluate changes in Nav1.3 mRNA and protein expression, and to understand the sensitivity of rats to mechanical and thermal stimuli. Our results showed that miR-30b agomir transfection down-regulated Nav1.3 mRNA stimulated with TNF-α in primary DRG neurons. Moreover, miR-30b overexpression significantly attenuated neuropathic pain induced by SNL, with decreases in the expression of Nav1.3 mRNA and protein both in DRG neurons and spinal cord. Activation of Nav1.3 caused by miR-30b antagomir was identified. These data suggest that miR-30b is involved in the development of neuropathic pain, probably by regulating the expression of Nav1.3, and might be a novel therapeutic target for neuropathic pain.Perspective: This study is the first to explore the important role of miR-30b and Nav1.3 in spinal nerve ligation-induced neuropathic pain, and our evidence may provide new insight for improving therapeutic approaches to pain.

  14. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    Directory of Open Access Journals (Sweden)

    Li Jia

    2011-11-01

    Full Text Available Abstract Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa channels, which suggests that ion channel regulatory partners have evolved distinct lineage

  15. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    Science.gov (United States)

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation

  16. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  17. THE PRESENCE OF A B SUBUNIT INCREASES SENSITIVITY OF SODIUM CHANNEL NAV1.3, BUT NOT NAV1.2, TO TYPE II PYRETHROIDS.

    Science.gov (United States)

    Voltage-sensitive sodium channels (VSSCs) are a primary target of pyrethroid insecticides. VSSCs are comprised of a pore-forming ¿ and auxillary ß subunits, and multiple isoforms of both subunit types exist. The sensitivity of different isoform combinations to pyrethroids has not...

  18. Molecular cloning of ion channels in Felis catus that are related to periodic paralyses in man: a contribution to the understanding of the genetic susceptibility to feline neck ventroflexion and paralysis

    Directory of Open Access Journals (Sweden)

    Marlyn Zapata

    2014-07-01

    Full Text Available Neck ventroflexion in cats has different causes; however, the most common is the hypokalemia associated with flaccid paralysis secondary to chronic renal failure. In humans, the most common causes of acute flaccid paralysis are hypokalemia precipitated by thyrotoxicosis and familial forms linked to mutations in sodium, potassium, and calcium channel genes. Here, we describe the sequencing and analysis of skeletal muscle ion channels in Felis catus that could be related to periodic paralyses in humans, contributing to the understanding of the genetic susceptibility to feline neck ventroflexion and paralysis. We studied genomic DNA from eleven cats, including five animals that were hyperthyroid with hypokalemia, although only one presented with muscle weakness, and six healthy control domestic cats. We identified the ion channel ortholog genes KCNJ2, KCNJ12, KCNJ14, CACNA1S and SCN4A in the Felis catus genome, together with several polymorphic variants. Upon comparative alignment with other genomes, we found that Felis catus provides evidence for a high genomic conservation of ion channel sequences. Although we hypothesized that neck ventroflexion in cats could be associated with a thyrotoxic or familial periodic paralysis channel mutation, we did not identify any previously detected human channel mutation in the hyperthyroid cat presenting hypokalemia. However, based on the small number of affected cats in this study, we cannot yet rule out this molecular mechanism. Notwithstanding, hyperthyroidism should still be considered as a differential diagnosis in hypokalemic feline paralysis.

  19. Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes.

    Science.gov (United States)

    Feldman, Chris R; Brodie, Edmund D; Brodie, Edmund D; Pfrender, Michael E

    2012-03-20

    Natural selection often produces convergent changes in unrelated lineages, but the degree to which such adaptations occur via predictable genetic paths is unknown. If only a limited subset of possible mutations is fixed in independent lineages, then it is clear that constraint in the production or function of molecular variants is an important determinant of adaptation. We demonstrate remarkably constrained convergence during the evolution of resistance to the lethal poison, tetrodotoxin, in six snake species representing three distinct lineages from around the globe. Resistance-conferring amino acid substitutions in a voltage-gated sodium channel, Na(v)1.4, are clustered in only two regions of the protein, and a majority of the replacements are confined to the same three positions. The observed changes represent only a small fraction of the experimentally validated mutations known to increase Na(v)1.4 resistance to tetrodotoxin. These results suggest that constraints resulting from functional tradeoffs between ion channel function and toxin resistance led to predictable patterns of evolutionary convergence at the molecular level. Our data are consistent with theoretical predictions and recent microcosm work that suggest a predictable path is followed during an adaptive walk along a mutational landscape, and that natural selection may be frequently constrained to produce similar genetic outcomes even when operating on independent lineages.

  20. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Voltage-gated sodium (Nav channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions, a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group.

  1. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Li, Yang; Liu, Huihui; Xia, Mengdie; Gong, Haipeng

    2016-01-01

    Voltage-gated sodium (Nav) channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions), a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh) to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group.

  2. Identification of an alternative knockdown resistance (kdr)-like mutation, M918L, and a novel mutation, V1010A, in the Thrips tabaci voltage-gated sodium channel gene.

    Science.gov (United States)

    Wu, Meixiang; Gotoh, Hiroki; Waters, Timothy; Walsh, Douglas B; Lavine, Laura Corley

    2014-06-01

    Knockdown resistance (kdr) has been identified as a main mechanism against pyrethroid insecticides in many arthropod pests including in the onion thrips, Thrips tabaci. To characterize and identify pyrethroid-resistance in onion thrips in Washington state, we conducted insecticide bioassays and sequenced a region of the voltage gated sodium channel gene from several different T. tabaci populations. Field collected Thrips tabaci were found to have large variations in resistance to the pyrethroid insecticide lambda-cyhalothrin. We identified two single nucleotide substitutions in our analysis of a partial sequence of the T. tabaci voltage-gated sodium channel gene. One mutation resulted in the non-synonymous substitution of methionine with leucine (M918L), which is well known to be responsible for super knockdown resistance in some pest species. Another non-synonymous substitution, a valine (GTT) to alanine (GCT) replacement at amino acid 1010 (V1010A) was identified in our study and was associated with lambda-cyhalothrin resistance. We have characterized a known kdr mutation and identified a novel mutation in the voltage-gated sodium channel gene of Thrips tabaci associated with resistance to lambda-cyhalothrin. This gene region and these mutations are expected to be useful in the development of a diagnostic test to detect kdr resistance in many onion thrips populations. © 2013 Society of Chemical Industry.

  3. The Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) voltage-gated sodium channel and mutations associated with pyrethroid resistance in field-collected adult males.

    Science.gov (United States)

    Hopkins, B W; Pietrantonio, P V

    2010-05-01

    Helicoverpa zea is one of the most costly insect pests of food and fiber crops throughout the Americas. Pyrethroid insecticides are widely applied for its control as they are effective and relatively inexpensive; however, resistance to pyrethroids threatens agricultural systems sustainability because alternative insecticides are often more expensive or less effective. Although pyrethroid resistance has been identified in this pest since 1990, the mechanisms of resistance have not yet been elucidated at the molecular level. Pyrethroids exert their toxicity by prolonging the open state of the voltage-gated sodium channel. Here we report the cDNA sequence of the H. zea sodium channel alpha-subunit homologous to the para gene from Drosophila melanogaster. In field-collected males which were resistant to cypermethrin as determined by the adult vial test, we identify known resistance-conferring mutations L1029H and V421M, along with two novel mutations at the V421 residue, V421A and V421G. An additional mutation, I951V, may be the first example of a pyrethroid resistance mutation caused by RNA editing. Identification of the sodium channel cDNA sequence will allow for testing hypotheses on target-site resistance for insecticides acting on this channel through modeling and expression studies. Understanding the mechanisms responsible for resistance will greatly improve our ability to identify and predict resistance, as well as preserve susceptibility to pyrethroid insecticides. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Microrheology and microstructure of water-in-water emulsions containing sodium caseinate and locust bean gum.

    Science.gov (United States)

    Moschakis, Thomas; Chantzos, Nikos; Biliaderis, Costas G; Dickinson, Eric

    2018-05-23

    The mechanical response on the microscale of phase-separated water-in-water emulsions containing sodium caseinate (SCN) and locust bean gum (LBG) has been monitored by confocal laser scanning microscopy and particle tracking microrheology. Mixed biopolymer systems exhibiting phase-separated micro-regions were enriched in either protein or polysaccharide in the continuous or dispersed phase, depending on the weight ratio of the two biopolymers. Measurements of the tracking of charged probe particles revealed that the local rheological properties of protein-rich regions were considerably lower than that of LBG-rich domains for all the biopolymer ratios examined. At pH 7 in the absence of added salt, the viscosity of the protein-rich regions was little affected by an increase in overall LBG concentration, which is consistent with the phase separation mechanism in the mixed solution of charged (SCN) and uncharged (LBG) biopolymers being dominated by the relative entropy of the counter-ions associated with the charged protein molecules. Addition of salt was found to produce an enhancement in the level of thermodynamic incompatibility, leading to faster and more pronounced phase separation, and altering the micro-viscosity of protein-rich regions. At high ionic strength, it was also noted that there was a pronounced accumulation of incorporated probe particles at the liquid-liquid interface. The microrheological properties of the SCN-rich regions were found to be substantially pH-dependent in the range 7 > pH > 5.4. By adjusting the acidification conditions and the biopolymer ratio, discrete protein-based microspheres were generated with potential applications as a functional food ingredient.

  5. Distinct interactions of Na+ and Ca2+ ions with the selectivity filter of the bacterial sodium channel NaVAb

    International Nuclear Information System (INIS)

    Ke, Song; Zangerl, Eva-Maria; Stary-Weinzinger, Anna

    2013-01-01

    Highlights: ► Ca 2+ translocates slowly in the filter, due to lack of “loose” knock-on mechanism. ► Identification of a high affinity binding site in Na V Ab selectivity filter. ► Changes of EEEE locus triggered by electrostatic interactions with Ca 2+ ions. -- Abstract: Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. In this study, we use molecular dynamics simulations and free energy calculations to investigate how the bacterial sodium channel Na V Ab (Arcobacter butzleri) differentiates between Na + and Ca 2+ ions. Multiple nanosecond molecular dynamics simulations revealed distinct binding patterns for these two cations in the selectivity filter and suggested a high affinity calcium binding site formed by backbone atoms of residues Leu-176 and Thr-175 (S CEN ) in the sodium channel selectivity filter

  6. A Switchable Molecular Dielectric with Two Sequential Reversible Phase Transitions: [(CH3)4P]4[Mn(SCN)6].

    Science.gov (United States)

    Li, Qiang; Shi, Ping-Ping; Ye, Qiong; Wang, Hui-Ting; Wu, De-Hong; Ye, Heng-Yun; Fu, Da-Wei; Zhang, Yi

    2015-11-16

    A new organic-inorganic hybrid switchable and tunable dielectric compound, [(CH3)4P]4[Mn(SCN)6] (1), exhibits three distinct dielectric states above room temperature and undergoes two reversible solid-state phase transitions, including a structural phase transition at 330 K and a ferroelastic phase transition with the Aizu notation of mmmF2/m at 352 K. The variable-temperature structural analyses disclose that the origin of the phase transitions and dielectric anomalies can be ascribed to the reorientation or motion of both the [(CH3)4P](+) cations and [Mn(SCN)6](4-) anions in solid-state crystals.

  7. Unusual Voltage-Gated Sodium Currents as Targets for Pain.

    Science.gov (United States)

    Barbosa, C; Cummins, T R

    2016-01-01

    Pain is a serious health problem that impacts the lives of many individuals. Hyperexcitability of peripheral sensory neurons contributes to both acute and chronic pain syndromes. Because voltage-gated sodium currents are crucial to the transmission of electrical signals in peripheral sensory neurons, the channels that underlie these currents are attractive targets for pain therapeutics. Sodium currents and channels in peripheral sensory neurons are complex. Multiple-channel isoforms contribute to the macroscopic currents in nociceptive sensory neurons. These different isoforms exhibit substantial variations in their kinetics and pharmacology. Furthermore, sodium current complexity is enhanced by an array of interacting proteins that can substantially modify the properties of voltage-gated sodium channels. Resurgent sodium currents, atypical currents that can enhance recovery from inactivation and neuronal firing, are increasingly being recognized as playing potentially important roles in sensory neuron hyperexcitability and pain sensations. Here we discuss unusual sodium channels and currents that have been identified in nociceptive sensory neurons, describe what is known about the molecular determinants of the complex sodium currents in these neurons. Finally, we provide an overview of therapeutic strategies to target voltage-gated sodium currents in nociceptive neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Direct evidence that scorpion α-toxins (site-3 modulate sodium channel inactivation by hindrance of voltage-sensor movements.

    Directory of Open Access Journals (Sweden)

    Zhongming Ma

    Full Text Available The position of the voltage-sensing transmembrane segment, S4, in voltage-gated ion channels as a function of voltage remains incompletely elucidated. Site-3 toxins bind primarily to the extracellular loops connecting transmembrane helical segments S1-S2 and S3-S4 in Domain 4 (D4 and S5-S6 in Domain 1 (D1 and slow fast-inactivation of voltage-gated sodium channels. As S4 of the human skeletal muscle voltage-gated sodium channel, hNav1.4, moves in response to depolarization from the resting to the inactivated state, two D4S4 reporters (R2C and R3C, Arg1451Cys and Arg1454Cys, respectively move from internal to external positions as deduced by reactivity to internally or externally applied sulfhydryl group reagents, methane thiosulfonates (MTS. The changes in reporter reactivity, when cycling rapidly between hyperpolarized and depolarized voltages, enabled determination of the positions of the D4 voltage-sensor and of its rate of movement. Scorpion α-toxin binding impedes D4S4 segment movement during inactivation since the modification rates of R3C in hNav1.4 with methanethiosulfonate (CH3SO2SCH2CH2R, where R = -N(CH33 (+ trimethylammonium, MTSET and benzophenone-4-carboxamidocysteine methanethiosulfonate (BPMTS were slowed ~10-fold in toxin-modified channels. Based upon the different size, hydrophobicity and charge of the two reagents it is unlikely that the change in reactivity is due to direct or indirect blockage of access of this site to reagent in the presence of toxin (Tx, but rather is the result of inability of this segment to move outward to the normal extent and at the normal rate in the toxin-modified channel. Measurements of availability of R3C to internally applied reagent show decreased access (slower rates of thiol reaction providing further evidence for encumbered D4S4 movement in the presence of toxins consistent with the assignment of at least part of the toxin binding site to the region of D4S4 region of the voltage

  9. Inhibition of HERG potassium channels by celecoxib and its mechanism.

    Directory of Open Access Journals (Sweden)

    Roman V Frolov

    Full Text Available Celecoxib (Celebrex, a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels.Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC(50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC(50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action.The above channels play a significant role in drug-induced long QT syndrome (LQTS and short QT syndrome (SQTS. Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities.

  10. X-ray diffraction and chemical bonding

    International Nuclear Information System (INIS)

    Bats, J.W.

    1976-01-01

    Chemical bonds are investigated in sulfamic acid (H 3 N-SO 3 ), sodium sulfonlate dihydrate (H 2 NC 6 H 4 SO 3 Na.2H 2 O), 2,5-dimercaptothiadiazole (HS-C 2 N 2 S-SH), sodium cyanide dihydrate (NaCN.2H 2 O), sodium thiocyanate (NaSCN) and ammonium thiocyanate (NH 4 SCN) by X-ray diffraction, and if necessary completed with neutron diffraction. Crystal structures and electron densities are determined together with bond length and angles. Also the effects of thermal motion are discussed

  11. Effects of the β1 auxiliary subunit on modification of Rat Na{sub v}1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, Geneva, NY 14456 (United States)

    2016-01-15

    We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and deltamethrin

  12. RING finger protein 121 facilitates the degradation and membrane localization of voltage-gated sodium channels

    Science.gov (United States)

    Ogino, Kazutoyo; Low, Sean E.; Yamada, Kenta; Saint-Amant, Louis; Zhou, Weibin; Muto, Akira; Asakawa, Kazuhide; Nakai, Junichi; Kawakami, Koichi; Kuwada, John Y.; Hirata, Hiromi

    2015-01-01

    Following their synthesis in the endoplasmic reticulum (ER), voltage-gated sodium channels (NaV) are transported to the membranes of excitable cells, where they often cluster, such as at the axon initial segment of neurons. Although the mechanisms by which NaV channels form and maintain clusters have been extensively examined, the processes that govern their transport and degradation have received less attention. Our entry into the study of these processes began with the isolation of a new allele of the zebrafish mutant alligator, which we found to be caused by mutations in the gene encoding really interesting new gene (RING) finger protein 121 (RNF121), an E3-ubiquitin ligase present in the ER and cis-Golgi compartments. Here we demonstrate that RNF121 facilitates two opposing fates of NaV channels: (i) ubiquitin-mediated proteasome degradation and (ii) membrane localization when coexpressed with auxiliary NaVβ subunits. Collectively, these results indicate that RNF121 participates in the quality control of NaV channels during their synthesis and subsequent transport to the membrane. PMID:25691753

  13. Kinetics of photocurrent generation and an efficient charge separation of a dye-sensitized n-Cu2O/p-CuSCN junction photoelectrode in a solid-state photovoltaic cell

    International Nuclear Information System (INIS)

    Fernando, C A N; Kumara, N T R N; Gamage, T N

    2010-01-01

    A Cu/n-Cu 2 O/dye/p-CuSCN junction photoelectrode is fabricated to produce a solid-state dye-sensitized photovoltaic cell. Samples are characterized by XRD, SEM and surface resistivity measurements. Photocurrent generation is found due to light absorption of n-Cu 2 O thin film and dye sensitization between p-CuSCN and the dye. Kinetics of the photocurrent generation of the dye sensitization is studied solving the rate equations by the iteration method obtaining a relationship for the photocurrent quantum efficiency (Φ) depending on the surface concentration (D o ) of the dye and the rate constants of the reactions with connection to the dye sensitization process. The solution obtained in the steady state by iteration is found to be of the form Φ = AD o −BD o 2 (A and B are constants related to the reaction rates of the photocurrent generation process and the concentration of the n-Cu 2 O film). The variation of the n-Cu 2 O concentration with photocurrent is presented. A photocurrent enhancement is observed for the Cu/n-Cu 2 O/dye/p-CuSCN photovoltaic cell compared to that of Cu/n-Cu 2 O, Cu/p-CuSCN/dye and Cu/n-Cu 2 O/p-CuSCN photovoltaic cells. Good rectification characteristics are observed for the Cu/n-Cu 2 O/p-CuSCN photoelectrode compared to that of Cu/n-Cu 2 O and Cu/p-CuSCN photoelectrodes. Photocurrent enhancement is found due to the efficient charge separation process at the n–p junction. Energy band structures of the n–p junction are proposed according to the onset potentials which are used to discuss the mechanism of the efficient charge separation suppressing the recombination process

  14. Measurement and correlation of vapour pressures of pyridine and thiophene with [EMIM][SCN] ionic liquid

    International Nuclear Information System (INIS)

    Khelassi-Sefaoui, Asma; Mutelet, Fabrice; Mokbel, Ilham; Jose, Jacques; Negadi, Latifa

    2014-01-01

    Highlights: • VLE of (pyridine + [EMIM][SCN]), or (thiophene + [EMIM][SCN]) binary mixtures were measured. • The investigated temperatures are 273 K to 363 K. • The PC-SAFT equation of state has been used to correlate the vapour pressures of the binary systems. - Abstract: In this work (vapour + liquid) equilibrium (VLE) measurements were performed on binary systems of the ionic liquid 1-ethyl-3-methylimidazolium thiocynate [EMIM][SCN] with thiophene or pyridine at pressures close to the atmospheric pressure using a static device at temperatures between 273 K and 363 K. Experimental data were correlated by the PC-SAFT EoS. The binary interaction parameters k ij were optimised on experimental VLE data. The results obtained for the two binary mixtures studied in this paper indicate that the PC-SAFT EoS can be used to represent systems containing ionic liquids

  15. Pitfalls in genetic testing: the story of missed SCN1A mutations

    OpenAIRE

    Djémié, T.; Weckhuysen, S.; von Spiczak, S.; Carvill, G. L.; Jaehn, J.; Anttonen, A-K; Brilstra, E.; Caglayan, H. S.; de Kovel, C. G.; Depienne, C.; Gaily, E.; Gennaro, E.; Giraldez, B. G.; Gormley, P.; Guerrero-López, R.

    2016-01-01

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated ...

  16. Pitfalls in genetic testing : the story of missed SCN1A mutations

    OpenAIRE

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa

    2016-01-01

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated ...

  17. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum.

    Science.gov (United States)

    Abd El Halim, Hesham M; Alshukri, Baida M H; Ahmad, Munawar S; Nakasu, Erich Y T; Awwad, Mohammed H; Salama, Elham M; Gatehouse, Angharad M R; Edwards, Martin G

    2016-07-14

    The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30-60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control.

  18. Brugada Syndrome: Are we doing enough to prevent sudden death?

    International Nuclear Information System (INIS)

    Buksh, Jahangir A.; Al-Hersi, Ahmad S.; Al-Nozha, Mansour M.

    2007-01-01

    Burgada syndrome (BS) is an inherited arrythmogenic disease characterized by typical ECG changes in the form of an SR pattern in VI to V2, and ST segment elevation in VI to V3 and prolongation of the QT interval in right precordial leads. This syndrome carries an increased risk of sudden death due to arrhythmias. This disease was first described in 1992 by Joseph Brugada et al and was named Brugada syndrome by Yan and Antzelvich in 1996. By 2003 more than 600 patients had been reported by Brugada et al and hundreds by others. A genetic aspect to BS is now recognized and been linked to the alpha subunit of the cardiac sodium channel gene SCN5A. Over five dozen mutations in SCN5A have been identified. Accentuation of the right ventricular notch under pathophysiological conditions leads to exaggeration of the J-wave or J-point elevation and a saddle-shaped configuration of the repolarisation waves. Diagnosis is essentially by electrocardiogram either by spontaneous changes or by provocation by sodium channel blockers drugs, e.g., procainamide, flecainide. The role of electrophysiological studies in induction of arrhythmia in asymptomatic individuals by electron beam computed tomography and signal-averaged electrocardiogram is not settled. Unfortunately, an effective drug is not available is not available at present, but quinidine has a place in treatment. New promising drugs are emerging like cilostazol and tedisamil. At present, implantation of an ICD is the only effective means of preventing sudden death. (author)

  19. Temperature fluctuation of sodium in annular flow channel heated by single-pin with blockage

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kimura, Jiro; Ogawa, Masuro; Okada, Toshio

    1978-01-01

    Root mean square (RMS) value and power spectral density (PSD) of temperature fluctuation were measured with use of forced-circulating sodium in an annular channel (6.5 mm I.D., 20mm O.D.) with concentric disk to simulate blockage (about 80%) of sodium flow. The experimental range of the heat flux was 40 -- 150 W/cm 2 and the bulk flow velocity 0.14--0.41m/sec (Re=7.7x10 3 --2.3x10 4 ) under a temperature of 500--800 0 C. The RMS value measured at the exit of heating section (150mm downstream from the blockage) is larger by a factor of 2 -- 3 than that in the wake (10 -- 20mm downstream from the blockage), marking a few deg.C for a heat flux of 105W/cm 2 and a flow velocity of 0.27m/sec. The RMS value is proportional to the wall-to-bulk-fluid temperature difference in heat transfer, presenting the similar dependence on the heat flux and flow velocity. The fluctuations of temperature are greatly attenuated in the upper unheated section where the radial temperature gradient is absent, and consequently it is suggested that the fluctuations of temperature should be caused by the local turbulence of flow, such as a vortex street due to blockage in the present experiment, under the presence of large gradient of temperature near the heating surface. (auth.)

  20. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    Science.gov (United States)

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. Copyright © 2016 the American Physiological Society.

  1. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  2. Infantile Pain Episodes Associated with Novel Nav1.9 Mutations in Familial Episodic Pain Syndrome in Japanese Families.

    Science.gov (United States)

    Okuda, Hiroko; Noguchi, Atsuko; Kobayashi, Hatasu; Kondo, Daiki; Harada, Kouji H; Youssefian, Shohab; Shioi, Hirotomo; Kabata, Risako; Domon, Yuki; Kubota, Kazufumi; Kitano, Yutaka; Takayama, Yasunori; Hitomi, Toshiaki; Ohno, Kousaku; Saito, Yoshiaki; Asano, Takeshi; Tominaga, Makoto; Takahashi, Tsutomu; Koizumi, Akio

    2016-01-01

    Painful peripheral neuropathy has been correlated with various voltage-gated sodium channel mutations in sensory neurons. Recently Nav1.9, a voltage-gated sodium channel subtype, has been established as a genetic influence for certain peripheral pain syndromes. In this study, we performed a genetic study in six unrelated multigenerational Japanese families with episodic pain syndrome. Affected participants (n = 23) were characterized by infantile recurrent pain episodes with spontaneous mitigation around adolescence. This unique phenotype was inherited in an autosomal-dominant mode. Linkage analysis was performed for two families with 12 affected and nine unaffected members, and a single locus was identified on 3p22 (LOD score 4.32). Exome analysis (n = 14) was performed for affected and unaffected members in these two families and an additional family. Two missense variants were identified: R222H and R222S in SCN11A. Next, we generated a knock-in mouse model harboring one of the mutations (R222S). Behavioral tests (Hargreaves test and cold plate test) using R222S and wild-type C57BL/6 (WT) mice, young (8-9 weeks old; n = 10-12 for each group) and mature (36-38 weeks old; n = 5-6 for each group), showed that R222S mice were significantly (p pain. The mouse model developed here will be useful for drug screening for familial episodic pain syndrome associated with SCN11A mutations.

  3. Guanidinium Toxins and Their Interactions with Voltage-Gated Sodium Ion Channels

    Directory of Open Access Journals (Sweden)

    Lorena M. Durán-Riveroll

    2017-10-01

    Full Text Available Guanidinium toxins, such as saxitoxin (STX, tetrodotoxin (TTX and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (NaV. Members of the STX group, known collectively as paralytic shellfish toxins (PSTs, are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria. In contrast, toxins of the TTX group occur mainly in macrozoa, particularly among puffer fish, several species of marine invertebrates and a few terrestrial amphibians. In the case of TTX and analogs, most evidence suggests that symbiotic bacteria are the origin of the toxins, although endogenous biosynthesis independent from bacteria has not been excluded. The evolutionary origin of the biosynthetic genes for STX and analogs in dinoflagellates and cyanobacteria remains elusive. These highly potent molecules have been the subject of intensive research since the latter half of the past century; first to study the mode of action of their toxigenicity, and later as tools to characterize the role and structure of NaV channels, and finally as therapeutics. Their pharmacological activities have provided encouragement for their use as therapeutants for ion channel-related pathologies, such as pain control. The functional role in aquatic and terrestrial ecosystems for both groups of toxins is unproven, although plausible mechanisms of ion channel regulation and chemical defense are often invoked. Molecular approaches and the development of improved detection methods will yield deeper understanding of their physiological and ecological roles. This knowledge will facilitate their further biotechnological exploitation and point the way towards

  4. Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther

    2015-12-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.

  5. Acid-sensing ion and epithelial sodium channels do not contribute to the mechanoreceptor component of the exercise pressor reflex

    OpenAIRE

    McCord, Jennifer L.; Hayes, Shawn G.; Kaufman, Marc P.

    2008-01-01

    Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because...

  6. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice.

    Science.gov (United States)

    Bausch, Anne E; Ehinger, Rebekka; Straubinger, Julia; Zerfass, Patrick; Nann, Yvette; Lukowski, Robert

    2018-05-31

    The sodium-activated potassium channel Slack (Slo2.2) is widely expressed in central and peripheral neurons where it is supposed to shape firing properties important for neuronal excitability. Slack activity is enhanced by interaction with the Fragile-X-Mental-Retardation-Protein (FMRP) and loss of FMRP leads to decreased sodium-activated potassium currents in medial nucleus of the trapezoid body neurons of the Fmr1-knockout (KO) mouse representing a mouse model of the human Fragile-X-Syndrome (FXS) and autism. Autism is a frequent comorbidity of FXS, but it is unclear whether Slack is involved in autistic or related conditions of FXS in vivo. By applying a wide range of behavioral tests, we compared social and autism-related behaviors in Slack- and FMRP-deficient mice. In our hands, as expected, FMRP-deficiency causes autism-related behavioral changes in nesting and in a marble-burying test. In contrast, Slack-deficient males exhibited specific abnormalities in sociability in direct and indirect social interaction tests. Hence, we show for the first time that a proper Slack channel function is mandatory for normal social behavior in mice. Nevertheless, as deficits in social behaviors seem to occur independently from each other in FMRP and Slack null mutants, we conclude that Slack is not involved in the autistic phenotype of FMRP KO mice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Association Between IL1B and SCN1A Polymorphism and Febrile Seizures in Children in Siberia

    Directory of Open Access Journals (Sweden)

    Maria A. Stroganova

    2017-06-01

    Full Text Available Background: Febrile seizures (FS are a benign, age-dependent, genetically determined state, in which the child’s brain is susceptible to epileptic seizures occurring in response to hyperthermia. We assessed whether polymorphisms of IL1B and SCN1A genes, encoding the proinflammatory cytokine IL1B and SCN1A, respectively, could help to predict FS development and find a new way to treat FS. Methods: We examined 121 children with FS and 30 children with HTS aged from 3 to 36 months. SNPs rs1143634 and rs16944 of IL1B gene, and rs3812718 and rs16851603 of SCN1A gene were determined by quantitative real-time PCR. Results: The analysis for rs1143634 revealed an association between the CC genotype and increased risk of FS development (OR 6.56; P=0.0008 against the background of acute respiratory viral infection. The same result was obtained for rs16944 (OR 3.13; P=0.04 and an association of two homozygous genotypes CC/CC. For rs3812718, the carriage of heterozygous genotype CT demonstrated a direct relationship with FS development (OR 44.95; P=0.000. Conclusion: Children with high FS risk need preventive treatment and joint observation of a pediatrician, pediatric infectionist, and a neurologist-epileptologist.

  8. Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake Thamnophis sirtalis.

    Science.gov (United States)

    McGlothlin, Joel W; Chuckalovcak, John P; Janes, Daniel E; Edwards, Scott V; Feldman, Chris R; Brodie, Edmund D; Pfrender, Michael E; Brodie, Edmund D

    2014-11-01

    Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav's, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1-1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood-brain barrier. We also report the exon-intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

    KAUST Repository

    Wyatt-Moon, Gwenhivir

    2017-11-28

    Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5–3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device’s unique architecture, the detectors exhibit high responsivity (≈79 A W–1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm–2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm–2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

  10. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

    KAUST Repository

    Wyatt-Moon, Gwenhivir; Georgiadou, Dimitra G; Semple, James; Anthopoulos, Thomas D.

    2017-01-01

    Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5–3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device’s unique architecture, the detectors exhibit high responsivity (≈79 A W–1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm–2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm–2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

  11. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC Gene in Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Jiabao Xu

    2016-05-01

    Full Text Available Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr. Previous studies reported various mutations in the voltage-gated sodium channel (VGSC gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established.A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested.A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations.Two novel kdr

  12. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC) Gene in Aedes albopictus.

    Science.gov (United States)

    Xu, Jiabao; Bonizzoni, Mariangela; Zhong, Daibin; Zhou, Guofa; Cai, Songwu; Li, Yiji; Wang, Xiaoming; Lo, Eugenia; Lee, Rebecca; Sheen, Roger; Duan, Jinhua; Yan, Guiyun; Chen, Xiao-Guang

    2016-05-01

    Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). Previous studies reported various mutations in the voltage-gated sodium channel (VGSC) gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established. A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested. A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T) was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S) was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations. Two novel kdr mutations, I1532T

  13. Chronic ciguatoxin treatment induces synaptic scaling through voltage gated sodium channels in cortical neurons.

    Science.gov (United States)

    Martín, Víctor; Vale, Carmen; Rubiolo, Juan A; Roel, Maria; Hirama, Masahiro; Yamashita, Shuji; Vieytes, Mercedes R; Botana, Luís M

    2015-06-15

    Ciguatoxins are sodium channels activators that cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents with long-term neurological alterations. In central neurons, chronic perturbations in activity induce homeostatic synaptic mechanisms that adjust the strength of excitatory synapses and modulate glutamate receptor expression in order to stabilize the overall activity. Immediate early genes, such as Arc and Egr1, are induced in response to activity changes and underlie the trafficking of glutamate receptors during neuronal homeostasis. To better understand the long lasting neurological consequences of ciguatera, it is important to establish the role that chronic changes in activity produced by ciguatoxins represent to central neurons. Here, the effect of a 30 min exposure of 10-13 days in vitro (DIV) cortical neurons to the synthetic ciguatoxin CTX 3C on Arc and Egr1 expression was evaluated using real-time polymerase chain reaction approaches. Since the toxin increased the mRNA levels of both Arc and Egr1, the effect of CTX 3C in NaV channels, membrane potential, firing activity, miniature excitatory postsynaptic currents (mEPSCs), and glutamate receptors expression in cortical neurons after a 24 h exposure was evaluated using electrophysiological and western blot approaches. The data presented here show that CTX 3C induced an upregulation of Arc and Egr1 that was prevented by previous coincubation of the neurons with the NaV channel blocker tetrodotoxin. In addition, chronic CTX 3C caused a concentration-dependent shift in the activation voltage of NaV channels to more negative potentials and produced membrane potential depolarization. Moreover, 24 h treatment of cortical neurons with 5 nM CTX 3C decreased neuronal firing and induced synaptic scaling mechanisms, as evidenced by a decrease in the amplitude of mEPSCs and downregulation in the protein level of glutamate receptors that was also prevented by tetrodotoxin

  14. Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells

    KAUST Repository

    Zhao, Kui

    2015-08-27

    CuSCN is a highly transparent, highly stable, low cost and easy to solution process HTL that is proposed as a low cost replacement to existing organic and inorganic metal oxide hole transporting materials. Here, we demonstrate hybrid organic-inorganic perovskite-based p-i-n planar heterojunction solar cells using a solution-processed copper(I) thiocyanate (CuSCN) bottom hole transporting layer (HTL). CuSCN, with its high workfunction, increases the open circuit voltage (Voc) by 0.23 V to 1.06 V as compared with devices based on the well-known poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (0.83 V), resulting in a superior power conversion efficiency (PCE) of 10.8% without any notable hysteresis. Photoluminescence measurements suggest a similar efficiency of charge transfer at HTL/perovskite interface as PEDOT:PSS. However, we observe more efficient light harvesting in the presence of CuSCN at shorter wavelengths despite PEDOT:PSS being more transparent. Further investigation of the microstructure and morphology reveals differences in the crystallographic texture of the polycrystalline perovskite film, suggesting somewhat modified perovskite growth on the surface of CuSCN. The successful demonstration of the solution-processed inorganic HTL using simple and low temperature processing routes bodes well for the development of reliable and efficient flexible p-i-n perovskite modules or for integration as a front cell in hybrid tandem solar cells.

  15. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).

    Science.gov (United States)

    Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P

    2012-03-01

    Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.

  16. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  17. Optimization of In Vitro Techniques for Distinguishing between Live and Dead Second Stage Juveniles of Heterodera glycines and Meloidogyne incognita.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines (Soybean Cyst nematode, or SCN and Meloidogyne incognita (Root-Knot nematode, or RKN are two damaging plant-parasitic nematodes on important field crops. Developing a quick method to distinguish between live and dead SCN and RKN second stage juveniles (J2 is vital for high throughput screening of pesticides or biological compounds against SCN and RKN. The in vitro assays were conducted in 96-well plates to determine the optimum chemical stimulus to distinguish between live and dead SCN and RKN J2. Sodium carbonate (Na2CO3, sodium bicarbonate (NaHCO3, and sodium hydroxide (NaOH were evaluated for the nematode response to see if these compounds can help distinguish between viable from the dead J2. Results indicated that live SCN J2 responded equally (P ≤ 0.05 to 1 μl Na2CO3 and 10 μl NaHCO3 in 100 μl of water at pH = 10. Live SCN J2 responded by twisting their bodies in a curling shape and increasing rate of movements within 2 minutes of exposure. The twisting activity continued for up to 30 minutes. Live RKN J2 responded by increasing activity with the application of 1 μl NaOH in 100 μl of water at pH = 10 also in the 2 minutes to 30 minutes time frame. Furthermore, in growth chamber tests to confirm the infectivity of live SCN. The live SCN as determined by exposure to 1 μl of Na2CO3 indicated 60.5% of the SCN J2 were alive and of those, 29.5% were infective and entered the soybean roots. The 1 μl of NaOH stimulus revealed that 75.2% RKN J2 were alive and of those, 14.9% were infective and entered soybean roots. These results confirmed that 1 μl of Na2CO3 added to 100 μl suspension of SCN J2 and 1 μl of NaOH added to 100 μl suspension of RKN J2 are the effective stimuli for rapidly distinguishing between live and dead SCN and RKN J2 in vitro. SCN and RKN J2 responded differently to different compounds.

  18. Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep.

    Directory of Open Access Journals (Sweden)

    Hugues Dardente

    Full Text Available In mammals, changing daylength (photoperiod is the main synchronizer of seasonal functions. The photoperiodic information is transmitted through the retino-hypothalamic tract to the suprachiasmatic nuclei (SCN, site of the master circadian clock. To investigate effects of day length change on the sheep SCN, we used in-situ hybridization to assess the daily temporal organization of expression of circadian clock genes (Per1, Per2, Bmal1 and Fbxl21 and neuropeptides (Vip, Grp and Avp in animals acclimated to a short photoperiod (SP; 8h of light and at 3 or 15 days following transfer to a long photoperiod (LP3, LP15, respectively; 16h of light, achieved by an acute 8-h delay of lights off. We found that waveforms of SCN gene expression conformed to those previously seen in LP acclimated animals within 3 days of transfer to LP. Mean levels of expression for Per1-2 and Fbxl21 were nearly 2-fold higher in the LP15 than in the SP group. The expression of Vip was arrhythmic and unaffected by photoperiod, while, in contrast to rodents, Grp expression was not detectable within the sheep SCN. Expression of the circadian output gene Avp cycled robustly in all photoperiod groups with no detectable change in phasing. Overall these data suggest that synchronizing effects of light on SCN circadian organisation proceed similarly in ungulates and in rodents, despite differences in neuropeptide gene expression.

  19. Sodium voiding analysis in Kalimer

    International Nuclear Information System (INIS)

    Chang, Won-Pyo; Jeong, Kwan-Seong; Hahn, Dohee

    2001-01-01

    A sodium boiling model has been developed for calculations of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. The sodium boiling in liquid metal reactors using sodium as coolant should be modeled because of phenomenon difference observed from that in light water reactor systems. The developed model is a multiple -bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbles that fill the whole cross section of the coolant channel except for liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble. The present study is focused on not only demonstration of the sodium voiding behavior predicted by the developed model, but also confirmation on qualitative acceptance for the model. In results, the model catches important phenomena for sodium boiling, while further effort should be made for the complete analysis. (author)

  20. Electrochemical Performance of a V2O5 Cathode for a Sodium Ion Battery

    Science.gov (United States)

    Van Nghia, Nguyen; Long, Pham Duy; Tan, Ta Anh; Jafian, Samuel; Hung, I.-Ming

    2017-06-01

    In this paper, layered vanadium pentoxide (V2O5) is employed as a cathode material for a sodium ion battery. The V2O5 particle sizes range from 200 nm to 500 nm and the shapes of the aggregated V2O5 particles are non-homogeneous and irregular. The material exhibits a first discharge capacity of approximately 208.1 mAh g-1. The structure of V2O5 changes to a NaxV2O5 structure after Na+ insertion at the first discharge; the structure of NaxV2O5 remains stable␣during cycling. After 40 cycles, the discharge capacity retains 61.2% of the capacity of the second cycle. The capacity of V2O5 at a high charge/discharge current rate of 1.0 C is 49.1% of capacity at 0.1 C. Furthermore, the capacity returns to the initial value as the discharge rate returns to 0.1 C. The results of electrochemical performance tests indicate that V2O5 is a potential cathode material for sodium ion batteries.

  1. A Gate Hinge Controls the Epithelial Calcium Channel TRPV5

    OpenAIRE

    van der Wijst, Jenny; Leunissen, Elizabeth H.; Blanchard, Maxime G.; Venselaar, Hanka; Verkaart, Sjoerd; Paulsen, Candice E.; Bindels, Ren? J.; Hoenderop, Joost G.

    2017-01-01

    TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonst...

  2. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa

    2017-03-17

    We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on free-standing plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V−1 s−1 and 0.013 cm2 V−1 s−1, respectively, current on/off ratio in the range 102–104, and maximum operating voltages between −3.5 and −10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics.

  3. Sodium-water reaction in double pool LMFBR, (5)

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Kumagai, Hiromichi; Nishi, Yoshihisa; Uotani, Masaki

    1990-01-01

    Experiments were conducted using a 1/5 scale model of the Double Pool in order to evaluate a pressure rise caused by a large scale sodium-water reaction. The experiments were focused on the pressure rise caused by the piston motion of liquid sodium. It appeared from the results that the magnitude of this pressure rise depends on the depth of reaction point, and that a pressure rise more than 1 MPa would arise in the real Double Pool plant. A new design of steam generator is proposed to mitigate the pressure rise. (author)

  4. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa; Pattanasattayavong, Pichaya; Lin, Yen-Hung; Mü nzenrieder, Niko; Cantarella, Giuseppe; Yaacobi-Gross, Nir; Yan, Feng; Trö ster, Gerhard; Anthopoulos, Thomas D.

    2017-01-01

    , depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors

  5. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lupina, L.; Zoellner, M. H.; Dietrich, B.; Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); Niermann, T.; Lehmann, M. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Thapa, S. B.; Haeberlen, M.; Storck, P. [SILTRONIC AG, Hanns-Seidel-Platz 4, 81737 München (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); BTU Cottbus, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  6. Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2005-02-01

    Voltage-gated conductances on dendrites of layer 5 pyramidal neurons participate in synaptic integration and output generation. We investigated the properties and the distribution of large-conductance calcium-activated potassium channels (BK channels) in this cell type using excised patches in acute slice preparations of rat somatosensory cortex. BK channels were characterized by their large conductance and sensitivity to the specific blockers paxilline and iberiotoxin. BK channels showed a pronounced calcium-dependence with a maximal opening probability of 0.69 at 10 microm and 0.42 at 3 microm free calcium. Their opening probability and transition time constants between open and closed states are voltage-dependent. At depolarized potentials, BK channel gating is described by two open and one closed states. Depolarization increases the opening probability due to a prolongation of the open time constant and a shortening of the closed time constant. Calcium-dependence and biophysical properties of somatic and dendritic BK channels were identical. The presence of BK channels on the apical dendrite of layer 5 pyramidal neurons was shown by immunofluorescence. Patch-clamp recordings revealed a homogeneous density of BK channels on the soma and along the apical dendrite up to 850 microm with a mean density of 1.9 channels per microm(2). BK channels are expressed either isolated or in clusters containing up to four channels. This study shows the presence of BK channels on dendrites. Their activation might modulate the shape of sodium and calcium action potentials, their propagation along the dendrite, and thereby the electrotonic distance between the somatic and dendritic action potential initiation zones.

  7. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  8. Pyrethroid resistance in Sitophilus zeamais is associated with a mutation (T929I) in the voltage-gated sodium channel.

    Science.gov (United States)

    Araújo, Rúbia A; Williamson, Martin S; Bass, Christopher; Field, Linda M; Duce, Ian R

    2011-08-01

    The maize weevil, Sitophilus zeamais, is the most important pest affecting stored grain in Brazil and its control relies heavily on the use of insecticides. The intensive use of compounds such as the pyrethroids has led to the emergence of resistance, and previous studies have suggested that resistance to both pyrethroids and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) may result from reduced sensitivity of the insecticide target, the voltage-gated sodium channel. To identify the molecular mechanisms underlying pyrethroid resistance in S. zeamais, the domain II region of the voltage-gated sodium channel (para-orthologue) gene was amplified by PCR and sequenced from susceptible and resistant laboratory S. zeamais strains that were selected with a discriminating dose of DDT. A single point mutation, T929I, was found in the para gene of the resistant S. zeamais populations and its presence in individual weevils was strongly associated with survival after DDT exposure. This is the first identification of a target-site resistance mutation in S. zeamais and unusually it is a super-kdr type mutation occurring in the absence of the more common kdr (L1014F) substitution. A high-throughput assay based on TaqMan single nucleotide polymorphism genotyping was developed for sensitive detection of the mutation and used to screen field-collected strains of S. zeamais. This showed that the mutation is present at low frequency in field populations and is a useful tool for informing control strategies. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  9. Ab-initio studies of the Sc adsorption and the ScN thin film formation on the GaN(000-1)-(2 × 2) surface

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Sánchez-Ochoa, F.; Cocoletzi, Gregorio H.; Rivas-Silva, J.F.; Takeuchi, Noboru

    2013-01-01

    First principles total energy calculations have been performed to investigate the initial stages of the Sc adsorption and ScN thin film formation on the GaN(000-1)-(2 × 2) surface. Studies are done within the periodic density functional theory as implemented in the PWscf code of the Quantum ESPRESSO package. The Sc adsorption at high symmetry sites results in the bridge site as the most stable structure. When a Sc monolayer is deposited above the surface the T4 site results as the most stable geometry. The Sc migration into the first Ga monolayer induces the Ga displaced ad-atom to be adsorbed at the T4-2 site. A ScN bilayer may be obtained under the Ga monolayer. Finally a ScN bilayer may be formed in the wurtzite phase above the surface. The formation energy plots show that in the moderate Ga-rich conditions we obtain the formation of a ScN bilayer under the gallium monolayer. However at N-rich conditions the formation of ScN bilayer above the surface is the most favorable structure. We report the density of states to explain the electronic structure of the most favorable geometries. - Highlights: • Studies of the initial stages in the formation of Sc and ScN structures on GaN • In the adsorption of Sc on the GaN the Br site is the most favorable geometry. • When a Sc replaces a Ga of the first monolayer the displaced Ga occupies a T4-2 site. • For Ga-rich conditions there is formation of ScN under the Ga monolayer. • In N-rich conditions there is formation of ScN in the wurtzite phase

  10. Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration.

    Science.gov (United States)

    Xiao, Yucheng; Bingham, Jon-Paul; Zhu, Weiguo; Moczydlowski, Edward; Liang, Songping; Cummins, Theodore R

    2008-10-03

    Peptide toxins with high affinity, divergent pharmacological functions, and isoform-specific selectivity are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a number of interesting inhibitors have been reported from tarantula venoms, little is known about the mechanism for their interaction with VGSCs. We show that huwentoxin-IV (HWTX-IV), a 35-residue peptide from tarantula Ornithoctonus huwena venom, preferentially inhibits neuronal VGSC subtypes rNav1.2, rNav1.3, and hNav1.7 compared with muscle subtypes rNav1.4 and hNav1.5. Of the five VGSCs examined, hNav1.7 was most sensitive to HWTX-IV (IC(50) approximately 26 nM). Following application of 1 microm HWTX-IV, hNav1.7 currents could only be elicited with extreme depolarizations (>+100 mV). Recovery of hNav1.7 channels from HWTX-IV inhibition could be induced by extreme depolarizations or moderate depolarizations lasting several minutes. Site-directed mutagenesis analysis indicated that the toxin docked at neurotoxin receptor site 4 located at the extracellular S3-S4 linker of domain II. Mutations E818Q and D816N in hNav1.7 decreased toxin affinity for hNav1.7 by approximately 300-fold, whereas the reverse mutations in rNav1.4 (N655D/Q657E) and the corresponding mutations in hNav1.5 (R812D/S814E) greatly increased the sensitivity of the muscle VGSCs to HWTX-IV. Our data identify a novel mechanism for sodium channel inhibition by tarantula toxins involving binding to neurotoxin receptor site 4. In contrast to scorpion beta-toxins that trap the IIS4 voltage sensor in an outward configuration, we propose that HWTX-IV traps the voltage sensor of domain II in the inward, closed configuration.

  11. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  12. A selectivity filter at the intracellular end of the acid-sensing ion channel pore

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Flood, Emelie; Boiteux, Céline

    2017-01-01

    Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verificatio...... at the "GAS belt" in the central constriction. Instead, we identified a band of glutamate and aspartate side chains at the lower end of the pore that enables preferential sodium conduction....

  13. Hydrogen Sulfide Prevents Advanced Glycation End-Products Induced Activation of the Epithelial Sodium Channel

    Directory of Open Access Journals (Sweden)

    Qiushi Wang

    2015-01-01

    Full Text Available Advanced glycation end-products (AGEs are complex and heterogeneous compounds implicated in diabetes. Sodium reabsorption through the epithelial sodium channel (ENaC at the distal nephron plays an important role in diabetic hypertension. Here, we report that H2S antagonizes AGEs-induced ENaC activation in A6 cells. ENaC open probability (PO in A6 cells was significantly increased by exogenous AGEs and that this AGEs-induced ENaC activity was abolished by NaHS (a donor of H2S and TEMPOL. Incubating A6 cells with the catalase inhibitor 3-aminotriazole (3-AT mimicked the effects of AGEs on ENaC activity, but did not induce any additive effect. We found that the expression levels of catalase were significantly reduced by AGEs and both AGEs and 3-AT facilitated ROS uptake in A6 cells, which were significantly inhibited by NaHS. The specific PTEN and PI3K inhibitors, BPV(pic  and LY294002, influence ENaC activity in AGEs-pretreated A6 cells. Moreover, after removal of AGEs from AGEs-pretreated A6 cells for 72 hours, ENaC PO remained at a high level, suggesting that an AGEs-related “metabolic memory” may be involved in sodium homeostasis. Our data, for the first time, show that H2S prevents AGEs-induced ENaC activation by targeting the ROS/PI3K/PTEN pathway.

  14. COMMD1 regulates the delta epithelial sodium channel (δENaC) through trafficking and ubiquitination

    International Nuclear Information System (INIS)

    Chang, Tina; Ke, Ying; Ly, Kevin; McDonald, Fiona J.

    2011-01-01

    Highlights: → The COMM domain of COMMD1 mediates binding to δENaC. → COMMD1 reduces the cell surface population of δENaC. → COMMD1 increases the population of δENaC-ubiquitin. → Both endogenous and transfected δENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel (δENaC) is a member of the ENaC/degenerin family of ion channels. δENaC is distinct from the related α-, β- and γENaC subunits, known for their role in sodium homeostasis and blood pressure control, as δENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate δENaC activity. Here, we show that COMMD1 interacts with δENaC through its COMM domain. Co-expression of δENaC with COMMD1 significantly reduced δENaC surface expression, and led to an increase in δENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of δENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates δENaC activity by reducing δENaC surface expression through promoting internalization of surface δENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.

  15. COMMD1 regulates the delta epithelial sodium channel ({delta}ENaC) through trafficking and ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tina; Ke, Ying; Ly, Kevin [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand); McDonald, Fiona J., E-mail: fiona.mcdonald@otago.ac.nz [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand)

    2011-08-05

    Highlights: {yields} The COMM domain of COMMD1 mediates binding to {delta}ENaC. {yields} COMMD1 reduces the cell surface population of {delta}ENaC. {yields} COMMD1 increases the population of {delta}ENaC-ubiquitin. {yields} Both endogenous and transfected {delta}ENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel ({delta}ENaC) is a member of the ENaC/degenerin family of ion channels. {delta}ENaC is distinct from the related {alpha}-, {beta}- and {gamma}ENaC subunits, known for their role in sodium homeostasis and blood pressure control, as {delta}ENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate {delta}ENaC activity. Here, we show that COMMD1 interacts with {delta}ENaC through its COMM domain. Co-expression of {delta}ENaC with COMMD1 significantly reduced {delta}ENaC surface expression, and led to an increase in {delta}ENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of {delta}ENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates {delta}ENaC activity by reducing {delta}ENaC surface expression through promoting internalization of surface {delta}ENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.

  16. Investigations of the Navβ1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada Syndrome mutant

    DEFF Research Database (Denmark)

    Yuan, Lei; Koivumaki, Jussi; Liang, Bo

    2014-01-01

    Brugada Syndrome (BrS) is a rare inherited disease which can give rise to ventricular arrhythmia and ultimately sudden cardiac death. Numerous loss-of-function mutations in the cardiac sodium channel Nav1.5 have been associated with BrS. However, few mutations in the auxiliary Navβ1-4 subunits ha...... density was reduced by 48 % (-645±151 vs - 334±71 pA/pF), V1/2 steady-state inactivation shifted by -6.7 mV (-70.3±1.5 vs. -77.0±2.8 mV), and time-dependent recovery from inactivation slowed by more than 50% as compared to co-expression with Navβ1b WT. Computer simulations revealed...

  17. Severe myoclonic epilepsy of infancy (Dravet syndrome: Clinical and genetic features of nine Turkish patients

    Directory of Open Access Journals (Sweden)

    Meral Özmen

    2011-01-01

    Full Text Available Purpose: Mutations of the a-1 subunit sodium channel gene (SCN1A cause severe myoclonic epilepsy of infancy (SMEI. To date, over 300 mutations related to SMEI have been described. In the present study, we report new SCN1A mutations and the clinical features of SMEI cases. Materials and Methods: We studied the clinical and genetic features of nine patients diagnosed with SMEI at the Pediatric Neurology Department of Istanbul Medical Faculty. Results: Five patients had nonsense mutations, two had missense mutations, one had a splice site mutation and one had a deletion mutation of the SCN1A gene. Mutations at c.3705+5G splice site, p.trip153X nonsense mutation and deletion at c.2416_2946 have not been previously described. The seizures started following whole cell pertussis vaccination in all patients. The seizures ceased in one patient and continued in the other eight patients. Developmental regression was severe in three patients, with frequent status epilepticus. The type of mutation was not predictive for the severity of the disease. Two of the three patients with severe regression had nonsense and missense mutations. Conclusions : Dravet syndrome can be result of several different types of mutation in SCN1A gene. Onset of the seizures after pertussis vaccination is an important clue for the diagnosis and neuro- developmental delay should be expected in all patients.

  18. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya

    2012-12-27

    The wide bandgap and highly transparent inorganic compound copper(I) thiocyanate (CuSCN) is used for the first time to fabricate p-type thin-film transistors processed from solution at room temperature. By combining CuSCN with the high-k relaxor ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm2 V-1 s-1. By integrating two CuSCN transistors, unipolar logic NOT gates are also demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular determinants in TRPV5 channel assembly.

    NARCIS (Netherlands)

    Chang, Q.; Gyftogianni, E.; Graaf, K.F.J. van de; Hoefs, S.J.G.; Weidema, A.F.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2004-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional

  20. Molecular determinants in TRPV5 channel assembly

    NARCIS (Netherlands)

    Chang, Qing; Gyftogianni, Emmanouela; van de Graaf, Stan F. J.; Hoefs, Susan; Weidema, Freek A.; Bindels, René J. M.; Hoenderop, Joost G. J.

    2004-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional

  1. Salt-Induced Hypertension in a Mouse Model of Liddle's Syndrome is Mediated by Epithelial Sodium Channels in the Brain

    Science.gov (United States)

    Van Huysse, James W.; Amin, Md. Shahrier; Yang, Baoli; Leenen, Frans H. H.

    2012-01-01

    Neural precursor cell expressed and developmentally downregulated 4-2 protein (Nedd4-2) facilitates the endocytosis of epithelial Na channels (ENaC). Both mice and humans with a loss of regulation of ENaC by Nedd4-2 have salt-induced hypertension. ENaC is also expressed in the brain, where it is critical for hypertension on high salt diet in salt-sensitive rats. In the present studies we assessed whether Nedd4-2 knockout (−/−) mice have: 1) increased brain ENaC; 2) elevated CSF sodium on high salt diet; and 3) enhanced pressor responses to CSF sodium and hypertension on high salt diet, both mediated by brain ENaC. Prominent choroid plexus and neuronal ENaC staining was present in −/− but not in wild-type (W/T) mice. In chronically instrumented mice, intracerebroventricular (icv) infusion of Na-rich aCSF increased MAP 3-fold higher in −/− than W/T. Icv infusion of the ENaC blocker benzamil abolished this enhancement. In telemetered −/− mice on high salt diet (8% NaCl), CSF [Na+], MAP and HR increased significantly, MAP by 30-35 mmHg. These MAP and HR responses were largely prevented by icv benzamil, but only to a minor extent by sc benzamil at the icv rate. We conclude that increased ENaC expression in the brain of Nedd 4-2 −/− mice mediates their hypertensive response to high salt diet, by causing increased sodium levels in the CSF as well as hyper-responsiveness to CSF sodium. These findings highlight the possible causative contribution of CNS ENaC in the etiology of salt-induced hypertension. PMID:22802227

  2. Bioequivalence of diclofenac sodium 2% and 1.5% topical solutions relative to oral diclofenac sodium in healthy volunteers.

    Science.gov (United States)

    Holt, Robert J; Taiwo, Tolu; Kent, Jeffrey D

    2015-08-01

    Topical formulations of nonsteroidal anti-inflammatory drugs (NSAIDs) are generally considered to be safer alternatives to oral NSAIDs due to lower systemic absorption. We conducted randomized, crossover studies that compared the pharmacokinetics (PK), bioequivalence and safety of topical diclofenac sodium 2% twice daily (BID), diclofenac sodium 1.5% four times daily (QID) and oral diclofenac sodium in healthy subjects. The results of three bioequivalence studies are reviewed. Healthy adult subjects (n = 76) applied topical diclofenac sodium 2% solution (40.4 mg/2 mL) BID; or 1.5% solution (19.3 mg/40 drops) QID to each knee for 7.5 consecutive days separated by a washout period. Subjects (n = 22) in one study also received oral diclofenac sodium 75 mg BID for 7.5 days. Plasma diclofenac concentrations were determined from serial blood samples collected on Days 1 and 8 (steady state), and diclofenac PK parameters were estimated by noncompartmental methods. The studies demonstrated comparable bioequivalence between the 2% and 1.5% topical solutions as well as lower systemic exposure compared to oral dosing (approximately 93% less). Daily systemic exposure was comparable between the two formulations with only a 12% difference in the AUCss(0-24) (p = 0.140). Furthermore, both topical solutions demonstrated delayed elimination with a t(1/2) of 4- to 6-fold longer, as compared to oral diclofenac. The 2% solution provided more consistent dosing relative to the 1.5% solution when comparing AUCss(0-24) and Cmaxss across studies. Mild application site reactions were the most common treatment-emergent adverse event reported with topical diclofenac. The steady-state PK profile of topical diclofenac 2% solution administered BID is similar to that of the 1.5% solution administered QID. Systemic exposure to diclofenac is substantially lower after topical application as compared to oral administration. (Study 2 was registered with ClinicalTrials.gov; NCT01202799; https

  3. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.

    Science.gov (United States)

    Carrasco, Dario I; Vincent, Jacob A; Cope, Timothy C

    2017-04-01

    Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV 1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV 1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV 1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV 1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV 1.1 , predominantly in sensory terminals together with NaV 1.6 and for NaV 1.7 , mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles. NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site

  4. Effects on the sodium channel of some new cardiotonic drugs: the 4-, 5-, and 6-pyridyl-2(1H)-quinolone derivatives

    International Nuclear Information System (INIS)

    Grima, M.; Beguin, M.F.; Millanvoye-Van Brussel, E.M.; Decker, N.; Schwartz, J.

    1988-01-01

    To study the action of some new cardiotonic drugs, the 4-, 5-, and 6-pyridyl-2(1H)-quinolone series, on the fast Na+ channel, we compared the effects of eight compounds of this series and milrinone on 22 Na uptake in rat brain synaptosomes and in rat heart muscle cells in culture. The action of tetrodotoxin, a specific Na+ channel blocker, on the positive inotropic effect of these compounds on guinea pig atria was also examined. The new positive inotropic agents enhance 22 Na uptake in synaptosomes in a dose-dependent manner. The activities, expressed as percentage of the maximum activity of protoveratrine B, a classic Na+ channel agonist, reached 70% for milrinone, 60% for compound 7, 57% for compound 6, and less than 50% for the other drugs. For compound 8, but not for milrinone, it was possible to observe a stimulatory effect of the 22 Na uptake on heart muscle cells in culture. Tetrodotoxin (1 and 100 microM) inhibited the stimulatory effects of the inotropic drugs on both preparations. The positive inotropic activities of protoveratrine B, milrinone, and compounds 5 and 8, in guinea pig atria, were inhibited by tetrodotoxin. The affinity and the activity of the other compounds were unchanged in the presence of tetrodotoxin. Our results showed that the stimulation of Na+ influx through the fast Na+ channel might represent a part of the mechanism of action of the inotropic effect of some new cardiotonic drugs

  5. Effects on the sodium channel of some new cardiotonic drugs: the 4-, 5-, and 6-pyridyl-2(1H)-quinolone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Grima, M.; Beguin, M.F.; Millanvoye-Van Brussel, E.M.; Decker, N.; Schwartz, J.

    1988-09-01

    To study the action of some new cardiotonic drugs, the 4-, 5-, and 6-pyridyl-2(1H)-quinolone series, on the fast Na+ channel, we compared the effects of eight compounds of this series and milrinone on /sup 22/Na uptake in rat brain synaptosomes and in rat heart muscle cells in culture. The action of tetrodotoxin, a specific Na+ channel blocker, on the positive inotropic effect of these compounds on guinea pig atria was also examined. The new positive inotropic agents enhance /sup 22/Na uptake in synaptosomes in a dose-dependent manner. The activities, expressed as percentage of the maximum activity of protoveratrine B, a classic Na+ channel agonist, reached 70% for milrinone, 60% for compound 7, 57% for compound 6, and less than 50% for the other drugs. For compound 8, but not for milrinone, it was possible to observe a stimulatory effect of the /sup 22/Na uptake on heart muscle cells in culture. Tetrodotoxin (1 and 100 microM) inhibited the stimulatory effects of the inotropic drugs on both preparations. The positive inotropic activities of protoveratrine B, milrinone, and compounds 5 and 8, in guinea pig atria, were inhibited by tetrodotoxin. The affinity and the activity of the other compounds were unchanged in the presence of tetrodotoxin. Our results showed that the stimulation of Na+ influx through the fast Na+ channel might represent a part of the mechanism of action of the inotropic effect of some new cardiotonic drugs.

  6. Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy.

    Science.gov (United States)

    Iannetti, Paola; Parisi, Pasquale; Spalice, Alberto; Ruggieri, Martino; Zara, Federico

    2009-07-01

    We report on the use of the voltage-gated calcium channel blocker (Vg-CCB), verapamil, as an add-on anticonvulsant medication in two girls, 4 and 14 years of age, who were affected by severe myoclonic epilepsy in infancy (SMEI) or Dravet syndrome, a channelopathy caused by abnormalities in the voltage-gated sodium channel neuronal type alpha1 subunit (SCN1A) gene at 2q24. Both girls had pharmacoresistant epilepsy and developmental delay. Mutation analysis for the SCN1A gene revealed a missense mutation in exon 2 in the 4-year-old girl. Verapamil was co-administered in both children with a prompt response in controlling status epilepticus, myoclonic jerks, and partial and generalized seizures. The therapeutic effect lasted 13 months in the 14-year-old girl, while it is still present after a 20-month follow-up period in the 4-year-old girl who, in addition, has experienced improvement in motor and language development. The verapamil vVg-CCB, which crosses the blood-brain barrier (BBB): (a) inhibits the P-glycoprotein, an active efflux transporter protein expressed in normal tissue, including the brain, which is believed to contribute to the in situ phenomenon of multidrug resistance; and (b) may regulate membrane depolarization induced by abnormal sodium channels functions by modulating the abnormal Ca++ influxes into neurons with subsequent cell resting. This is the first report on long-lasting verapamil therapy in SMEI. The functional consequences of such in vivo modulating effects on Ca++ channels could contribute to rational targeting for future molecular therapeutic approaches in pharmacoresistant epileptic channelopathies.

  7. [Mechanism of action of neurotoxins acting on the inactivation of voltage-gated sodium channels].

    Science.gov (United States)

    Benoit, E

    1998-01-01

    This review focuses on the mechanism(s) of action of neurotoxins acting on the inactivation of voltage-gated Na channels. Na channels are transmembrane proteins which are fundamental for cellular communication. These proteins form pores in the plasma membrane allowing passive ionic movements to occur. Their opening and closing are controlled by gating systems which depend on both membrane potential and time. Na channels have three functional properties, mainly studied using electrophysiological and biochemical techniques, to ensure their role in the generation and propagation of action potentials: 1) a highly selectivity for Na ions, 2) a rapid opening ("activation"), responsible for the depolarizing phase of the action potential, and 3) a late closing ("inactivation") involved in the repolarizing phase of the action potential. As an essential protein for membrane excitability, the Na channel is the specific target of a number of vegetal and animal toxins which, by binding to the channel, alter its activity by affecting one or more of its properties. At least six toxin receptor sites have been identified on the neuronal Na channel on the basis of binding studies. However, only toxins interacting with four of these sites (sites 2, 3, 5 et 6) produce alterations of channel inactivation. The maximal percentage of Na channels modified by the binding of neurotoxins to sites 2 (batrachotoxin and some alkaloids), 3 (alpha-scorpion and sea anemone toxins), 5 (brevetoxins and ciguatoxins) et 6 (delta-conotoxins) is different according to the site considered. However, in all cases, these channels do not inactivate. Moreover, Na channels modified by toxins which bind to sites 2, 5 and 6 activate at membrane potentials more negative than do unmodified channels. The physiological consequences of Na channel modifications, induced by the binding of neurotoxins to sites 2, 3, 5 and 6, are (i) an inhibition of cellular excitability due to an important membrane depolarization (site

  8. Influence of water-soluble channeling agents on the release of diclofenac sodium from Irvingia malayana wax matrix tablets.

    Science.gov (United States)

    Yotsawimonwat, Songwut; Charumanee, Suporn; Kaewvichit, Sayam; Sirithunyalug, Jakkapan; Sirisa-Ard, Panee; Piyamongkol, Sirivipa; Siangwong, Kulthawat

    2017-05-01

    Irvingia malayana wax (IW) is majorly composed of esters of medium chain fatty acids. Its melting point is low and closed to the body temperature. This study aimed at investigating the potential of IW as a matrix-forming agent and evaluate the effect of soluble channeling agents on the release of diclofenac sodium (DS) from IW matrix tablets. The preformulation study by infrared spectroscopy and differential scanning calorimetry showed no incompatibility between IW and DS or soluble channeling agents, namely PEG 4000, PEG 6000 and lactose. IW retarded the release of DS from the matrix tablets more efficiently than carnauba wax due to its greater hydrophobicity and its ability to become partial molten wax at 37° C. Factors affecting the release of DS from IW matrix were drug concentrations, and types and concentrations of channeling agents. The release of DS significantly improved when DS concentration reached approximately 33%. The fast dissolving channeling agent, lactose, could enhance the drug release rate more effectively than PEG 4000 and PEG 6000, respectively. The linear relationship between the DS release rate and the concentration of the chosen channeling agent, PEG 6000, was found (r 2 =0.9866).

  9. Systematic Study of Binding of μ-Conotoxins to the Sodium Channel NaV1.4

    Directory of Open Access Journals (Sweden)

    Somayeh Mahdavi

    2014-12-01

    Full Text Available Voltage-gated sodium channels (NaV are fundamental components of the nervous system. Their dysfunction is implicated in a number of neurological disorders, such as chronic pain, making them potential targets for the treatment of such disorders. The prominence of the NaV channels in the nervous system has been exploited by venomous animals for preying purposes, which have developed toxins that can block the NaV channels, thereby disabling their function. Because of their potency, such toxins could provide drug leads for the treatment of neurological disorders associated with NaV channels. However, most toxins lack selectivity for a given target NaV channel, and improving their selectivity profile among the NaV1 isoforms is essential for their development as drug leads. Computational methods will be very useful in the solution of such design problems, provided accurate models of the protein-ligand complex can be constructed. Using docking and molecular dynamics simulations, we have recently constructed a model for the NaV1.4-μ-conotoxin-GIIIA complex and validated it with the ample mutational data available for this complex. Here, we use the validated NaV1.4 model in a systematic study of binding other μ-conotoxins (PIIIA, KIIIA and BuIIIB to NaV1.4. The binding mode obtained for each complex is shown to be consistent with the available mutation data and binding constants. We compare the binding modes of PIIIA, KIIIA and BuIIIB to that of GIIIA and point out the similarities and differences among them. The detailed information about NaV1.4-μ-conotoxin interactions provided here will be useful in the design of new NaV channel blocking peptides.

  10. Binding modes and functional surface of anti-mammalian scorpion α-toxins to sodium channels.

    Science.gov (United States)

    Chen, Rong; Chung, Shin-Ho

    2012-10-02

    Scorpion α-toxins bind to the voltage-sensing domains of voltage-gated sodium (Na(V)) channels and interfere with the inactivation mechanisms. The functional surface of α-toxins has been shown to contain an NC-domain consisting of the five-residue turn (positions 8-12) and the C-terminus (positions 56-64) and a core-domain centered on the residue 18. The NC- and core-domains are interconnected by the linker-domain (positions 8-18). Here with atomistic molecular dynamics simulations, we examine the binding modes between two α-toxins, the anti-mammalian AahII and the anti-insect LqhαIT, and the voltage-sensing domain of rat Na(V)1.2, a subtype of Na(V) channels expressed in nerve cells. Both toxins are docked to the extracellular side of the voltage-sensing domain of Na(V)1.2 using molecular dynamics simulations, with the linker-domain assumed to wedge into the binding pocket. Several salt bridges and hydrophobic clusters are observed to form between the NC- and core-domains of the toxins and Na(V)1.2 and stabilize the toxin-channel complexes. The binding modes predicted are consistent with available mutagenesis data and can readily explain the relative affinities of AahII and LqhαIT for Na(V)1.2. The dissociation constants for the two toxin-channel complexes are derived, which compare favorably with experiment. Our models demonstrate that the functional surface of anti-mammalian scorpion α-toxins is centered on the linker-domain, similar to that of β-toxins.

  11. A quantitative and comparative study of the effects of a synthetic ciguatoxin CTX3C on the kinetic properties of voltage-dependent sodium channels

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyahara, Hidemichi; Miyazaki, Keisuke; Hirama, Masahiro

    2004-01-01

    Ciguatoxins (CTXs) are known to bind to receptor site 5 of the voltage-dependent Na channel, but the toxin's physiological effects are poorly understood. In this study, we investigated the effects of a ciguatoxin congener (CTX3C) on three different Na-channel isoforms, rNav1.2, rNav1.4, and rNav1.5, which were transiently expressed in HEK293 cells. The toxin (1.0 μmol l−1) shifted the activation potential (V1/2 of activation curve) in the negative direction by 4–9 mV and increased the slope factor (k) from 8 mV to between 9 and 12 mV (indicative of decreased steepness of the activation curve), thereby resulting in a hyperpolarizing shift of the threshold potential by 30 mV for all Na channel isoforms. The toxin (1.0 μmol l−1) significantly accelerated the time-to-peak current from 0.62 to 0.52 ms in isoform rNav1.2. Higher doses of the toxin (3–10 μmol l−1) additionally decreased time-to-peak current in rNav1.4 and rNav1.5. A toxin effect on decay of INa at −20 mV was either absent or marginal even at relatively high doses of CTX3C. The toxin (1 μmol l−1) shifted the inactivation potential (V1/2 of inactivation curve) in the negative direction by 15–18 mV in all isoforms. INa maxima of the I–V curve (at −20 mV) were suppressed by application of 1.0 μmol l−1 CTX3C to a similar extent (80–85% of the control) in all the three isoforms. Higher doses of CTX3C up to 10 μmol l−1 further suppressed INa to 61–72% of the control. Recovery from slow inactivation induced by a depolarizing prepulse of intermediate duration (500 ms) was dramatically delayed in the presence of 1.0 μmol l−1 CTX3C, as time constants describing the monoexponential recovery were increased from 38±8 to 588±151 ms (n=5), 53±6 to 338±85 ms (n=4), and 23±3 to 232±117 ms (n=3) in rNav1.2, rNav1.4, and rNav1.5, respectively. CTX3C exerted multimodal effects on sodium channels, with simultaneous stimulatory and inhibitory aspects, probably due to the large

  12. Inhibition of cardiac sodium currents by toluene exposure

    Science.gov (United States)

    Cruz, Silvia L; Orta-Salazar, Gerardo; Gauthereau, Marcia Y; Millan-Perez Peña, Lourdes; Salinas-Stefanón, Eduardo M

    2003-01-01

    Toluene is an industrial solvent widely used as a drug of abuse, which can produce sudden sniffing death due to cardiac arrhythmias. In this paper, we tested the hypothesis that toluene inhibits cardiac sodium channels in Xenopus laevis oocytes transfected with Nav1.5 cDNA and in isolated rat ventricular myocytes. In oocytes, toluene inhibited sodium currents (INa+) in a concentration-dependent manner, with an IC50 of 274 μM (confidence limits: 141–407μM). The inhibition was complete, voltage-independent, and slowly reversible. Toluene had no effect on: (i) the shape of the I–V curves; (ii) the reversal potential of Na+; and (iii) the steady-state inactivation. The slow recovery time constant from inactivation of INa+ decreased with toluene exposure, while the fast recovery time constant remained unchanged. Block of INa+ by toluene was use- and frequency-dependent. In rat cardiac myocytes, 300 μM toluene inhibited the sodium current (INa+) by 62%; this inhibition was voltage independent. These results suggest that toluene binds to cardiac Na+ channels in the open state and unbinds either when channels move between inactivated states or from an inactivated to a closed state. The use- and frequency-dependent block of INa+ by toluene might be responsible, at least in part, for its arrhythmogenic effect. PMID:14534149

  13. Sodium confluent rates of flow values, on 0,5 mixer, of a sodium italian SS-050 circuit component

    International Nuclear Information System (INIS)

    Walsh, L.M.

    1987-01-01

    Sodium lines on different temperatures, during an emergency drainage on 0,5 mixer was found. To future valuation by DIMEC of tensions that occurs on that component of SS-050, the confluent rates of flow values were calculated. (L.M.J.) [pt

  14. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway.

    Science.gov (United States)

    Fan, Sabrina Mai-Yi; Chang, Yi-Ting; Chen, Chih-Lung; Wang, Wei-Hung; Pan, Ming-Kai; Chen, Wen-Pin; Huang, Wen-Yen; Xu, Zijian; Huang, Hai-En; Chen, Ting; Plikus, Maksim V; Chen, Shih-Kuo; Lin, Sung-Jan

    2018-06-29

    Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.

  15. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons

    International Nuclear Information System (INIS)

    Dargent, B.; Couraud, F.

    1990-01-01

    To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, the authors investigated the effect of Na + -channel activators (scorpion α toxin, batrachotoxin, and veratridine) on the density of Na + channels in fetal rat brain neurons in vitro. A partial but rapid (t 1/2 , 15 min) disappearance of surface Na + channels was observed as measured by a decrease in the specific binding of [ 3 H]saxitoxin and 125 I-labeled scorpion β toxin and a decrease in specific 22 Na + uptake. Moreover, the increase in the number of Na + channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na + channels was abolished by tetrodotoxin, was found to be dependent on the external Na + concentration, and was prevented when either choline (a nonpermeant ion) or Li + (a permeant ion) was substituted for Na + . Amphotericin B, a Na + ionophore, and monensin were able to mimick the effect of Na + -channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na + -channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na + concentration, whether elicited by Na + -channel activators or mediated by a Na + ionophore, can induce a decrease in surface Na + channels and therefore is involved in down-regulation of Na + -channel density in fetal rat brain neurons in vitro

  16. Case Report: Neuropathic pain in a patient with congenital insensitivity to pain [v2; ref status: indexed, http://f1000r.es/5iu

    Directory of Open Access Journals (Sweden)

    Daniel W. Wheeler

    2015-06-01

    Full Text Available We report a unique case of a woman with Channelopathy-associated Insensitivity to Pain (CIP Syndrome, who developed features of neuropathic pain after sustaining pelvic fractures and an epidural hematoma that impinged on the right fifth lumbar (L5 nerve root. Her pelvic injuries were sustained during painless labor, which culminated in a Cesarean section. She had been diagnosed with CIP as child, which was later confirmed when she was found to have null mutations of the SCN9A gene that encodes the voltage-gated sodium channel Nav1.7. She now complains of troubling continuous buzzing in both legs and a vice-like squeezing in the pelvis on walking. Quantitative sensory testing showed that sensory thresholds to mechanical stimulation of the dorsum of both feet had increased more than 10-fold on both sides compared with tests performed before her pregnancy. These findings fulfill the diagnostic criteria for neuropathic pain. Notably, she mostly only experiences the negative symptoms (such as numbness and tingling, but also electric shocks, and she has not reported sharp or burning sensations, although the value of verbal descriptors is somewhat limited in a person who has never felt pain before. However, her case strongly suggests that at least some of the symptoms of neuropathic pain can persist despite the absence of the Nav1.7 channel. Pain is a subjective experience and this case sheds light on the transmission of neuropathic pain in humans that cannot be learned from knockout mice.

  17. Red light emission from ZnO:Eu"3"+|CuSCN hetero-junction under cathodic polarization

    International Nuclear Information System (INIS)

    Sirimanne, P.M.; Minoura, H.

    2015-01-01

    Eu"3"+ ions were bonded to ZnO ceramic via organic ligand. Surface bonded Eu"3"+ ions were exhibited specific luminescence bands due to electron transitions between f–f intra-configurationally transitions. Further enhancement of luminescence bands was observed by attaching selected oligomers to Eu"3"+ ions. A hetero-junction was prepared by depositing copper-thiocyanate on Eu"3"+ ions bonded ZnO ceramic. Red light emission was observed from surface bonded Eu"3"+ ions in ZnO:Eu"3"+|CuSCN hetero-junction under reverse bias. - Highlights: • Europium doped ZnO ceramic exhibits photo-luminescence. • Semiconductor hetro-junction was prepared. • ZnO:Eu"3"+|CuSCN hetero-junction emits red light under reverse bias.

  18. Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya; Ndjawa, Guy Olivier Ngongang; Zhao, Kui; Chou, Kang Wei; Yaacobi-Gross, Nir; O'Regan, Brian C.; Amassian, Aram; Anthopoulos, Thomas D.

    2013-01-01

    The optical, structural and charge transport properties of solution-processed films of copper(i) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ∼20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics with a maximum field-effect mobility in the range of 0.01-0.1 cm2 V-1 s-1. © 2013 The Royal Society of Chemistry.

  19. Proteolytic activation of the epithelial sodium channel ENaC in preeclampsia examined with urinary exosomes

    DEFF Research Database (Denmark)

    Nielsen, Maria Ravn; Rytz, Mie; Frederiksen-Møller, Britta

    2015-01-01

    OBJECTIVES: Increased activity of the epithelial sodium channel (ENaC) in the kidneys may explain the coupling between proteinuria, edema, suppressed aldosterone and hypertension in preeclampsia. Preeclamptic women excrete plasminogen-plasmin in urine. In vitro, plasmin increases the activity...... as a positive control for the presence of collecting duct membrane. RESULTS: Urine plasmin-plasminogen/creatinine ratio was increased in the preeclampsia group (p... pregnancy and preeclampsia CONCLUSIONS: It is possible to examine collecting duct transport proteins in urine exosome from pregnant women including γ-ENaC, 2) Urine exosome fraction displays a variable pattern of γ-ENaC signal with a predominance of cleaved forms in both normal and preeclamptic women...

  20. A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms.

    Science.gov (United States)

    Balbi, Pietro; Massobrio, Paolo; Hellgren Kotaleski, Jeanette

    2017-09-01

    Modelling ionic channels represents a fundamental step towards developing biologically detailed neuron models. Until recently, the voltage-gated ion channels have been mainly modelled according to the formalism introduced by the seminal works of Hodgkin and Huxley (HH). However, following the continuing achievements in the biophysical and molecular comprehension of these pore-forming transmembrane proteins, the HH formalism turned out to carry limitations and inconsistencies in reproducing the ion-channels electrophysiological behaviour. At the same time, Markov-type kinetic models have been increasingly proven to successfully replicate both the electrophysiological and biophysical features of different ion channels. However, in order to model even the finest non-conducting molecular conformational change, they are often equipped with a considerable number of states and related transitions, which make them computationally heavy and less suitable for implementation in conductance-based neurons and large networks of those. In this purely modelling study we develop a Markov-type kinetic model for all human voltage-gated sodium channels (VGSCs). The model framework is detailed, unifying (i.e., it accounts for all ion-channel isoforms) and computationally efficient (i.e. with a minimal set of states and transitions). The electrophysiological data to be modelled are gathered from previously published studies on whole-cell patch-clamp experiments in mammalian cell lines heterologously expressing the human VGSC subtypes (from NaV1.1 to NaV1.9). By adopting a minimum sequence of states, and using the same state diagram for all the distinct isoforms, the model ensures the lightest computational load when used in neuron models and neural networks of increasing complexity. The transitions between the states are described by original ordinary differential equations, which represent the rate of the state transitions as a function of voltage (i.e., membrane potential). The

  1. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  2. Sodium channels as targets for volatile anesthetics

    Directory of Open Access Journals (Sweden)

    Karl F. Herold

    2012-03-01

    Full Text Available The molecular mechanisms of modern inhaled anesthetics although widely used in clinical settings are still poorly understood. Considerable evidence supports effects on membrane proteins such as ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetics. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic effects: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions. Volatile anesthetics reduce peak Na+ current and shift the voltage of half-maximal steady-state inactivation towards more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed together with an enhanced use-dependent block during pulse train protocols. These effects can reduce neurotransmitter release by depressing presynaptic excitability, depolarization and Ca entry, and ultimately transmitter release. This reduction in transmitter release is more portent for glutamatergic vs. GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of

  3. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  4. Efficient modeling of chiral media using SCN-TLM method

    Directory of Open Access Journals (Sweden)

    Yaich M.I.

    2004-01-01

    Full Text Available An efficient approach allowing to include linear bi-isotropic chiral materials in time-domain transmission line matrix (TLM calculations by employing recursive evaluation of the convolution of the electric and magnetic fields and susceptibility functions is presented. The new technique consists to add both voltage and current sources in supplementary stubs of the symmetrical condensed node (SCN of the TLM method. In this article, the details and the complete description of this approach are given. A comparison of the obtained numerical results with those of the literature reflects its validity and efficiency.

  5. The App-Runx1 region is critical for birth defects and electrocardiographic dysfunctions observed in a Down syndrome mouse model.

    Directory of Open Access Journals (Sweden)

    Matthieu Raveau

    2012-05-01

    Full Text Available Down syndrome (DS leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post-natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in Ts65Dn mice. By using a genetic approach consisting of crossing Ts65Dn mice with Ms5Yah mice monosomic for the App-Runx1 genetic interval, we showed that the Ts65Dn viability and ECG were improved by this reduction of gene copy number. Whole-genome expression studies confirmed gene dosage effect in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah hearts and showed an overall perturbation of pathways connected to post-natal lethality (Coq7, Dyrk1a, F5, Gabpa, Hmgn1, Pde10a, Morc3, Slc5a3, and Vwf and heart function (Tfb1m, Adam19, Slc8a1/Ncx1, and Rcan1. In addition cardiac connexins (Cx40, Cx43 and sodium channel sub-units (Scn5a, Scn1b, Scn10a were found down-regulated in Ts65Dn atria with additional down-regulation of Cx40 in Ts65Dn ventricles and were likely contributing to conduction defects. All these data pinpoint new cardiac phenotypes in the Ts65Dn, mimicking aspects of human DS features and pathways altered in the mouse model. In addition they highlight the role of the App-Runx1 interval, including Sod1 and Tiam1, in the induction of post-natal lethality and of the cardiac conduction defects in Ts65Dn. These results might lead to new therapeutic strategies to improve the care of DS people.

  6. Studies of alpha-helicity and intersegmental interactions in voltage-gated Na+ channels: S2D4.

    Directory of Open Access Journals (Sweden)

    Zhongming Ma

    2009-11-01

    Full Text Available Much data, including crystallographic, support structural models of sodium and potassium channels consisting of S1-S4 transmembrane segments (the "voltage-sensing domain" clustered around a central pore-forming region (S5-S6 segments and the intervening loop. Voltage gated sodium channels have four non-identical domains which differentiates them from the homotetrameric potassium channels that form the basis for current structural models. Since potassium and sodium channels also exhibit many different functional characteristics and the fourth domain (D4 of sodium channels differs in function from other domains (D1-D3, we have explored its structure in order to determine whether segments in D4 of sodium channels differ significantly from that determined for potassium channels. We have probed the secondary and tertiary structure and the role of the individual amino acid residues of the S2D4 of Na(v1.4 by employing cysteine-scanning mutagenesis (with tryptophan and glutamine substituted for native cysteine. A Fourier transform power spectrum of perturbations in free energy of steady-state inactivation gating (using midpoint potentials and slopes of Boltzmann equation fits of channel availability, h(infinity-V plots indicates a substantial amount of alpha-helical structure in S2D4 (peak at 106 degrees, alpha-Periodicity Index (alpha-PI of 3.10, This conclusion is supported by alpha-PI values of 3.28 and 2.84 for the perturbations in rate constants of entry into (beta and exit from (alpha fast inactivation at 0 mV for mutant channels relative to WT channels assuming a simple two-state model for transition from the open to inactivated state. The results of cysteine substitution at the two most sensitive sites of the S2D4 alpha-helix (N1382 and E1392C support the existence of electrostatic network interactions between S2 and other transmembrane segments within Na(v1.4D4 similar to but not identical to those proposed for K+ channels.

  7. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Tomič, M.; Kučka, M.; Aguilera, G.; Stojilkovic, S. S.

    2016-01-01

    Roč. 157, č. 4 (2016), s. 1576-1589 ISSN 0013-7227 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : action potential * background sodium conductance * bursting activity * cation -conducting channels * cytosolic calcium concentration * resting membrane potential Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.286, year: 2016

  8. 43. Calmodulin regulating calcium sensitivity of Na channels

    Directory of Open Access Journals (Sweden)

    R. Vegiraju

    2016-07-01

    Full Text Available By extrapolating information from existing research and observing previous assumptions regarding the structure of the Na Channel, this experiment was conducted under the hypothesis that the Na Channel is in part regulated by the calmodulin protein, as a result proving calcium sensitivity of the Na Channel. Furthermore, we assume that there is a one to one stoichiometry between the Na Channel and the Calmodulin. There has been extensive research into the functionality and structure of sodium ion channels (Na channels, as several diseases are associated with the lack of regulation of sodium ions, that is caused by the disfunction of these Na channels. However, one highly controversial matter in the field is the importance of the protein calmodulin (CaM and calcium in Na channel function. Calmodulin is a protein that is well known for its role as a calcium binding messenger protein, and that association is believed to play an indirect role in regulating the Na channel through the Na channel’s supposed calcium sensitivity. While there are proponents for both sides, there has been relatively little research that provides strong evidence for either case. In this experiment, the effect of calmodulin on NaV 1.5 is tested by preparing a set of cardiac cells (of the human specie with the NaV 1.5 C-Termini and CaM protein, which were then to be placed in solutions with varying concentrations of calcium. We took special care to test multiple concentrations of calcium, as previous studies have tested very low concentrations, with Manu Ben-Johny’s team from the John Hopkins laboratory in particular testing up to a meager 50 micromolar, despite producing a well-respected paper (By comparison, the average Na channel can naturally sustain a concentration of almost 1-2 millimolar and on some occasions, reaching even higher concentrations. After using light scattering and observing the signals given off by the calcium interacting with these Nav1.5/Ca

  9. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system.

    Science.gov (United States)

    Zimmermann, Katharina; Lennerz, Jochen K; Hein, Alexander; Link, Andrea S; Kaczmarek, J Stefan; Delling, Markus; Uysal, Serdar; Pfeifer, John D; Riccio, Antonio; Clapham, David E

    2011-11-01

    Detection and adaptation to cold temperature is crucial to survival. Cold sensing in the innocuous range of cold (>10-15 °C) in the mammalian peripheral nervous system is thought to rely primarily on transient receptor potential (TRP) ion channels, most notably the menthol receptor, TRPM8. Here we report that TRP cation channel, subfamily C member 5 (TRPC5), but not TRPC1/TRPC5 heteromeric channels, are highly cold sensitive in the temperature range 37-25 °C. We found that TRPC5 is present in mouse and human sensory neurons of dorsal root ganglia, a substantial number of peripheral nerves including intraepithelial endings, and in the dorsal lamina of the spinal cord that receives sensory input from the skin, consistent with a potential TRPC5 function as an innocuous cold transducer in nociceptive and thermosensory nerve endings. Although deletion of TRPC5 in 129S1/SvImJ mice resulted in no temperature-sensitive behavioral changes, TRPM8 and/or other menthol-sensitive channels appear to underpin a much larger component of noxious cold sensing after TRPC5 deletion and a shift in mechanosensitive C-fiber subtypes. These findings demonstrate that highly cold-sensitive TRPC5 channels are a molecular component for detection and regional adaptation to cold temperatures in the peripheral nervous system that is distinct from noxious cold sensing.

  10. Generación de un modelo knock-out del gen SCN1A en Drosophila melanogaster para el estudio del síndrome de Dravet.

    OpenAIRE

    PLANELLS CÁRCEL, ANDRÉS

    2017-01-01

    [ES] El Síndrome de Dravet (SD) es una enfermedad rara infantil que se manifiesta en crisis epilépticas a temprana edad y provoca un deterioro cognitivo y conductual. Esta enfermedad es causada por mutaciones dominantes en el gen SCN1A. Este trabajo se centra en la generación de un modelo knock-out (KO) del gen paralytic en Drosophila melanogaster, homólogo al gen SCN1A en humanos, para su aplicación en el estudio del SD. A la vez se ha estudiado la conducta de cepas sensibles ...

  11. Propafenone Overdose-induced Arrhythmia and Subsequent Correction After Administration of Sodium Bicarbonate

    Directory of Open Access Journals (Sweden)

    Patrick Bruss, MD

    2018-04-01

    Full Text Available History of present illness: 71-year old woman presented to the emergency department with near-syncope, chest pain, and shortness of breath. She has a history of hypertension, congestive heart failure and an “irregular heartbeat.” She cannot remember what medications she takes. She recently saw her cardiologist and had some of her medications adjusted, but she can’t remember what specific changes were made. An electrocardiogram was performed, one ampule of sodium bicarbonate was administered and a repeat ECG obtained; patient felt improvement of her symptoms after administration of sodium bicarbonate. Significant findings: The first ECG in this case showed sinus tachycardia with a widened QRS (black arrow, a rightward axis, prolonged corrected QT interval (QTc, and terminal R wave in AVR (white arrow. There are several potential causes for these ECG findings, but put together with the patient’s history, we were suspicious of sodium channel blockers being the most likely cause. The second ECG, after sodium bicarbonate was administered, demonstrated a normal QRS (black arrow and no rightward axis deviation, reduction of the QTC and resolution of the terminal R wave (white arrow. We later learned that the patient’s cardiologist recently increased her propafenone dose. Discussion: Propafenone is a class 1C anti-arrhythmic that slows influx of sodium ions into the cells. It slows the rate of increase of the action potential thereby prolonging conduction and refractoriness in all areas of the myocardium.1 The mortality from acute Class 1C toxicity has been reported as high as 22.5%.1 The degree of propafenone toxicity is directly correlated to the QRS interval,1 so monitoring said interval is very helpful in determining resolution of the drug’s cardiotoxic effects. The electrocardiac effect of tricyclic antidepressants (TCAs is a well-known and often tested finding. These effects include prolongation of the QRS and QTc, right axis deviation

  12. Intron retention in mRNA encoding ancillary subunit of insect voltage-gated sodium channel modulates channel expression, gating regulation and drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Céline M Bourdin

    Full Text Available Insect voltage-gated sodium (Nav channels are formed by a well-known pore-forming α-subunit encoded by para-like gene and ancillary subunits related to TipE from the mutation "temperature-induced-paralysis locus E." The role of these ancillary subunits in the modulation of biophysical and pharmacological properties of Na(+ currents are not enough documented. The unique neuronal ancillary subunit TipE-homologous protein 1 of Drosophila melanogaster (DmTEH1 strongly enhances the expression of insect Nav channels when heterologously expressed in Xenopus oocytes. Here we report the cloning and functional expression of two neuronal DmTEH1-homologs of the cockroach, Periplaneta americana, PaTEH1A and PaTEH1B, encoded by a single bicistronic gene. In PaTEH1B, the second exon encoding the last 11-amino-acid residues of PaTEH1A is shifted to 3'UTR by the retention of a 96-bp intron-containing coding-message, thus generating a new C-terminal end. We investigated the gating and pharmacological properties of the Drosophila Nav channel variant (DmNav1-1 co-expressed with DmTEH1, PaTEH1A, PaTEH1B or a truncated mutant PaTEH1Δ(270-280 in Xenopus oocytes. PaTEH1B caused a 2.2-fold current density decrease, concomitant with an equivalent α-subunit incorporation decrease in the plasma membrane, compared to PaTEH1A and PaTEH1Δ(270-280. PaTEH1B positively shifted the voltage-dependences of activation and slow inactivation of DmNav1-1 channels to more positive potentials compared to PaTEH1A, suggesting that the C-terminal end of both proteins may influence the function of the voltage-sensor and the pore of Nav channel. Interestingly, our findings showed that the sensitivity of DmNav1-1 channels to lidocaine and to the pyrazoline-type insecticide metabolite DCJW depends on associated TEH1-like subunits. In conclusion, our work demonstrates for the first time that density, gating and pharmacological properties of Nav channels expressed in Xenopus oocytes can be

  13. A STUDY OF ANTICONVULSANT EFFECT OF FLUNARIZINE AND NIFEDIPINE IN COMPARISON WITH SODIUM VALPROATE ON MES AND PTZ MODELS OF EPILEPSY IN ALBINO RATS

    Directory of Open Access Journals (Sweden)

    Umesh G.

    2015-03-01

    Full Text Available BACKGROUND : CA +2 ions are involved in initiation as well as spread of seizures. Hence current study was undertaken to evaluate the anticonvulsant effect of calcium channel blockers flunarizine, nifedipine and compare their efficacy with that of sodium valproate, the broad spectrum anticonvulsant in MES and PTZ induced seizures in albino rats. MATERIALS AND METHODS : Albino rats were treated with nife dipine 2.5mg/kg, 5mg/kg, flunarizine 7.5mg/kg,15mg/kg and sodium valproate 250mg/kg bodyweight intraperitoneally and the effects were observed in MES and PTZ models of epilepsy. The parameters observed in MES model was , duration of HLTE phase . Convulsive p hase, and post ictal depressive phase. In PTZ model duration of seizure latency, duration of convulsion , and duration post ictal depression were observed. RESULTS : our study demonstrated that both calcium channel blockers afford protection against convulsi ons induced in both models, and flunarizine affords higher degree of protection than nifedipine, with its efficacy almost approaching that of sodium valproate. CONCLUSION : Flunarizine has significant, while nifedipine has moderate degree of anticonvulsant activity as compared to sodium valproate

  14. Structure and polymer form of poly-3-hydroxyalkanoates produced by Pseudomonas oleovorans grown with mixture of sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid.

    Science.gov (United States)

    Ho, I-Ching; Yang, Sheng-Pin; Chiu, Wen-Yen; Huang, Shih-Yow

    2007-01-30

    PHAs (poly-3-hydroxyalkanoates) obtained by Pseudomonas oleovorans grown with mixed carbon sources were investigated. Mixed carbon sources were sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid. Effect of carbon source in pre-culture on PHAs structure was investigated. Main fermentation was conducted with mixture of sodium octanoate/undecylenic acid, and PHA contained both saturated and unsaturated units. When more undecylenic acid was used in the medium, the ratio of unsaturated unit increased and the T(g) of the products also changed. The PHA grown with mixture of sodium octanoate and undecylenic acid was a random copolymer, which was determined by DSC analysis. Using mixed carbon sources of sodium octanoate and 5-phenylvaleric acid, highest dry cell weight and PHA concentration were obtained when 0.02g or 0.04g of 5-phenylvaleric acid were added in 50mL medium. Cultured with sodium octanoate and 5-phenylvaleric acid, PHA containing HO (3-hydroxyoctanoate) unit and HPV (3-hydroxy-5-phenylvalerate) unit was produced. T(g) of the products fell between those of pure PHO and pure PHPV. By means of DSC analysis and fractionation method, the PHA obtained was regarded as a random copolymer.

  15. Mitochondria-derived superoxide and voltage-gated sodium channels in baroreceptor neurons from chronic heart-failure rats.

    Science.gov (United States)

    Tu, Huiyin; Liu, Jinxu; Zhu, Zhen; Zhang, Libin; Pipinos, Iraklis I; Li, Yu-Long

    2012-01-01

    Our previous study has shown that chronic heart failure (CHF) reduces expression and activation of voltage-gated sodium (Na(v)) channels in baroreceptor neurons, which are involved in the blunted baroreceptor neuron excitability and contribute to the impairment of baroreflex in the CHF state. The present study examined the role of mitochondria-derived superoxide in the reduced Na(v) channel function in coronary artery ligation-induced CHF rats. CHF decreased the protein expression and activity of mitochondrial complex enzymes and manganese SOD (MnSOD) and elevated the mitochondria-derived superoxide level in the nodose neurons compared with those in sham nodose neurons. Adenoviral MnSOD (Ad.MnSOD) gene transfection (50 multiplicity of infection) into the nodose neurons normalized the MnSOD expression and reduced the elevation of mitochondrial superoxide in the nodose neurons from CHF rats. Ad.MnSOD also partially reversed the reduced protein expression and current density of the Na(v) channels and the suppressed cell excitability (the number of action potential and the current threshold for inducing action potential) in aortic baroreceptor neurons from CHF rats. Data from the present study indicate that mitochondrial dysfunction, including decreased protein expression and activity of mitochondrial complex enzymes and MnSOD and elevated mitochondria-derived superoxide, contributes to the reduced Na(v) channel activation and cell excitability in the aortic baroreceptor neurons in CHF rats.

  16. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    Science.gov (United States)

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  17. A novel toxin from Haplopelma lividum selectively inhibits the NAV1.8 channel and possesses potent analgesic efficacy

    DEFF Research Database (Denmark)

    Meng, Ping; Huang, Honggang; Wang, Gan

    2017-01-01

    Spider venoms are a complex mixture of peptides with a large number of neurotoxins targeting ion channels. Although thousands of peptide toxins have been identified from venoms of numerous species of spiders, many unknown species urgently need to be investigated. In this study, a novel sodium...... channel inhibitor, μ-TRTX-Hl1a, was identified from the venom of Haplopelma lividum. It contained eight cysteines and formed a conserved cysteine pattern of ICK motif. μ-TRTX-Hl1a inhibited the TTX-resistant (TTX-r) sodium channel current rather than the TTX-sensitive (TTX-s) sodium channel current...

  18. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  19. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    Science.gov (United States)

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  20. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides.

    Science.gov (United States)

    Foster, Stephen P; Paul, Verity L; Slater, Russell; Warren, Anne; Denholm, Ian; Field, Linda M; Williamson, Martin S

    2014-08-01

    The grain aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae), is an important pest of cereal crops. Pesticides are the main method for control but carry the risk of selecting for resistance. In response to reports of reduced efficacy of pyrethroid sprays applied to S. avenae, field samples were collected and screened for mutations in the voltage-gated sodium channel, the primary target site for pyrethroids. Aphid mobility and mortality to lambda-cyhalothrin were measured in coated glass vial bioassays. A single amino acid substitution (L1014F) was identified in the domain IIS6 segment of the sodium channel from the S. avenae samples exhibiting reduced pyrethroid efficacy. Bioassays on aphids heterozygous for the kdr mutation (SR) or homozygous for the wild-type allele (SS) showed that those carrying the mutation had significantly lower susceptibility to lambda-cyhalothrin. The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae. Clonal lines heterozygous for the mutation showed 35-40-fold resistance to lambda-cyhalothrin in laboratory bioassays, consistent with the reported effect of this mutation on pyrethroid sensitivity in other aphid species. © 2013 Society of Chemical Industry.

  1. SGK3 Sensitivity of Voltage Gated K+ Channel Kv1.5 (KCNA5

    Directory of Open Access Journals (Sweden)

    Musaab Ahmed

    2016-01-01

    Full Text Available Background: The serum & glucocorticoid inducible kinase isoform SGK3 is a powerful regulator of several transporters, ion channels and the Na+/K+ ATPase. Targets of SGK3 include the ubiquitin ligase Nedd4-2, which is in turn a known regulator of the voltage gated K+ channel Kv1.5 (KCNA5. The present study thus explored whether SGK3 modifies the activity of the voltage gated K+ channel KCNA5, which participates in the regulation of diverse functions including atrial cardiac action potential, activity of vascular smooth muscle cells, insulin release and tumour cell proliferation. Methods: cRNA encoding KCNA5 was injected into Xenopus oocytes with and without additional injection of cRNA encoding wild-type SGK3, constitutively active S419DSGK3, inactive K191NSGK3 and/or wild type Nedd4-2. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp. Results: Voltage gated current in KCNA5 expressing Xenopus oocytes was significantly enhanced by wild-type SGK3 and S419DSGK3, but not by K191NSGK3. SGK3 was effective in the presence of ouabain (1 mM and thus did not require Na+/K+ ATPase activity. Coexpression of Nedd4-2 decreased the voltage gated current in KCNA5 expressing Xenopus oocytes, an effect largely reversed by additional coexpression of SGK3. Conclusion: SGK3 is a positive regulator of KCNA5, which is at least partially effective by abrogating the effect of Nedd4-2.

  2. Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs.

    Science.gov (United States)

    Tarvin, Rebecca D; Santos, Juan C; O'Connell, Lauren A; Zakon, Harold H; Cannatella, David C

    2016-04-01

    Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype-phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channels, proteins that are crucial for nerve and muscle activity. Using protein-docking models, we predict that three major classes of poison frog alkaloids (histrionicotoxins, pumiliotoxins, and batrachotoxins) bind to similar sites in the highly conserved inner pore of the muscle voltage-gated sodium channel, Nav1.4. We predict that poison frogs are somewhat resistant to these compounds because they have six types of amino acid replacements in the Nav1.4 inner pore that are absent in all other frogs except for a distantly related alkaloid-defended frog from Madagascar, Mantella aurantiaca. Protein-docking models and comparative phylogenetics support the role of these replacements in alkaloid resistance. Taking into account the four independent origins of chemical defense in Dendrobatidae, phylogenetic patterns of the amino acid replacements suggest that 1) alkaloid resistance in Nav1.4 evolved independently at least seven times in these frogs, 2) variation in resistance-conferring replacements is likely a result of differences in alkaloid exposure across species, and 3) functional constraint shapes the evolution of the Nav1.4 inner pore. Our study is the first to demonstrate the genetic basis of autoresistance in frogs with alkaloid defenses. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  4. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  5. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  6. Effect of selected Hofmeister salts on textural and rheological properties of nonfat cheese.

    Science.gov (United States)

    Stankey, J A; Johnson, M E; Lucey, J A

    2011-09-01

    Three Hofmeister salts (HS; sodium sulfate, sodium thiocyanate, and sodium chloride) were evaluated for their effect on the textural and rheological properties of nonfat cheese. Nonfat cheese, made by direct acidification, were sliced into discs (diameter=50 mm, thickness=2 mm) and incubated with agitation (6 h at 22°C) in 50 mL of a synthetic Cheddar cheese aqueous phase buffer (pH 5.4). The 3 HS were added at 5 concentrations (0.1, 0.25, 0.5, 0.75, and 1.0 M) to the buffer. Post-incubation, cheese slices were air dried and equilibrated in air-tight bags for 18 h at 5°C before analysis. Small amplitude oscillatory rheology properties, including the dynamic moduli and loss tangent, were measured during heating from 5 to 85°C. Hardness was determined by texture profile analysis. Acid-base buffering was performed to observe changes in the indigenous insoluble (colloidal) calcium phosphate (CCP). Moisture content decreased with increasing HS concentration. Cheeses incubated in high concentrations of SCN(-) softened earlier (i.e., loss tangent=1) compared with other HS treatments. Higher melting temperature values were observed for cheeses incubated in high concentrations of SO(4)(2-). Hardness decreased in cheeses incubated in buffers with high concentrations of SCN(-). The indigenous CCP profile of nonfat cheese was not greatly affected by incubation in Cl(-) or SCN(-), whereas buffers with high concentrations of SO(4)(2-) reduced the acid-base buffering contributed by CCP. The use of high concentrations (1.0M) of SCN(-) for incubation of cheeses resulted in a softer protein matrix at high temperatures due to the chaotropic effect of SCN(-), which weakened hydrophobic interactions between CN. Cheese samples incubated in 1.0M SO(4)(2-) buffers exhibited a stiffer protein matrix at high temperatures due to the kosmotropic effect of SO(4)(2-), which helped to strengthen hydrophobic interactions in the proteins during the heating step. This study showed that HS

  7. [Channels: a new way to revisit pathology].

    Science.gov (United States)

    Fournier, Emmanuel

    2014-02-01

    Many "essential" diseases that manifest themselves in the form of crises or fits (epilepsies, episodic ataxia, periodic paralyses, myotonia, heart rhythm disorders, etc.) are due to ionic channel dysfunction and are thus referred to as "channelopathies". Some of these disorders are congenital, due to mutations of genes encoding channel subunits, while others result from toxic, immune or hormonal disturbances affecting channelfunction. Channelopathies take on a wide variety of clinical forms, depending on the type of channel (sodium, potassium, calcium, chloride...) and the type of dysfunction (loss or gain of function). Some apparently unrelated diseases affecting distinct organs are due to a similar dysfunction of the same channel, revealing unsuspected relationships between organs and between medical specialties. In addition, a given syndrome can be caused by distinct channel dysfunctions. This provides new opportunities for diferential diagnosis and specific correction of the causal defects, although some treatments find applications across multiple medical specialties.

  8. A high performance Ge/Si0.5Ge0.5/Si heterojunction dual sources tunneling transistor with a U-shaped channel

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Wang, Qianqiong; Chen, Shupeng

    2017-06-01

    In this paper, a new Ge/Si0.5Ge0.5/Si heterojunction dual sources tunneling transistor with a U-shaped channel (Ge_DUTFET) is proposed and investigated by Silvaco-Atlas simulation. The line tunneling perpendicular to channel and point tunneling parallel to channel simultaneously occur on both sides of the gate. The Ge is chosen as the source region material to increase the line tunneling current. The designed heterojunction between the Ge source and Si channel decreases the point tunneling barrier width to enhance the point tunneling current. And this heterojunction can also promote the Ge_DUTFET to occur point tunneling at the small gate voltage, which makes it obtain the smaller turn-on voltage. Furthermore, the Si0.5Ge0.5 buffer layer is also helpful for the enhancement of performance. The simulation results reveal that Ge_DUTFET has the better performance compared with the Si_DUTFET. The on-state current and average subthreshold swing of Ge_DUTFET are 1.11 × 10-5A/μm and 35.1mV/dec respectively. The max cut-off frequency (fT) and gain bandwidth product (GBW) are 26.6 GHz and 16.6 GHz respectively. The fT and GBW of the Ge_DUTFET are respectively increased by ∼27.4% and ∼84.3% compared with the Si_DUTFET.

  9. The first pseudo-ternary thiocyanate containing two alkali metals. Synthesis and single-crystal structure of LiK{sub 2}[SCN]{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.

    2016-04-01

    A procedure was empirically developed to prepare the compound LiK{sub 2}[SCN]{sub 3}, which forms colorless, transparent, very fragile, and extremely hygroscopic thin rectangular plates. Its unique crystal structure was determined by single-crystal X-ray diffraction. LiK{sub 2}[SCN]{sub 3} adopts the orthorhombic space group Pna2{sub 1} (no. 33, Z = 4) with the cell parameters a = 1209.32(9), b = 950.85(9), and c = 849.95(6) pm.

  10. The theoretical character of the X1Σ+ and A1Σ+ states of ScN

    International Nuclear Information System (INIS)

    Feng-Juan, Bai; Chuan-Lu, Yang; Qi, Qian; Ling, Zhang

    2009-01-01

    This paper calculates the potential energy curves (PECs) of the ground state (X 1 Σ + ) and excited state (A 1 Σ + ) of ScN molecule by multireference configuration interaction method. The correct character of the PECs has been gripped while they had been improperly reported in the literature. Based on the PECs, the spectroscopic parameters and vibrational energy levels are determined, and compared with experimental data and other theoretical works available at the present. (atomic and molecular physics)

  11. Sodium borohydride hydrolysis in the presence of intermetallic compound LaNi5

    International Nuclear Information System (INIS)

    Korobov, I.I.; Mozgina, N.G.

    1992-01-01

    Kinetics of catalytic hydrolysis of sodium borohydride in the 1 mol/l solution of caustic sodium within the range of 298-318 K in presence of LaNi 5 intermetallic compound is studied. It is established that the reaction has zero order by NaBH 4 and the first one by LaNi 5 . The apparent activation energy of NaBH 4 catalytic hydrolysis in presence of LaNi 5 , calculated on the basis of temperature dependence of reaction velocity, is constant within the temperature range under investigation and constitutes 56$+-$1.5 kJ/mol. Recombination of surface hydrogen on LaNi 5 in molecular one is limiting stage determining NaBH 4 hydrolysis rate

  12. Behaviour of carbon-bearing impurity suspensions in sodium loops

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, F A; Zagorulko, Yu I; Alexseev, V V [Institute of Physics and Power Engineering, Obninsk (USSR)

    1980-05-01

    The experimental estimation results of the carbon-bearing impurity particle sizes in sodium by the sedimentometric analysis methods are presented. The techniques and results of the mass transfer calculations between the sodium flows contained the carbon-bearing impurity disperse phase, and the channel walls, the carbon particles solution kinetics and the soluble carbon near-wall concentration in channel with allowance for the flow-wall mass transfer processes, are given. (author)

  13. Behaviour of carbon-bearing impurity suspensions in sodium loops

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Zagorulko, Yu.I.; Alexseev, V.V.

    1980-01-01

    The experimental estimation results of the carbon-bearing impurity particle sizes in sodium by the sedimentometric analysis methods are presented. The techniques and results of the mass transfer calculations between the sodium flows contained the carbon-bearing impurity disperse phase, and the channel walls, the carbon particles solution kinetics and the soluble carbon near-wall concentration in channel with allowance for the flow-wall mass transfer processes, are given. (author)

  14. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    Science.gov (United States)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  15. Combustion suppressing device for leaked sodium

    International Nuclear Information System (INIS)

    Ooto, Akihiro.

    1985-01-01

    Purpose: To suppress the atmospheric temperature to secure the building safety and shorten the recovery time after the leakage in a chamber for containing sodium leaked from coolant circuit equipments or pipeways of LMFBR type rector by suppressing the combustion of sodium contained in the chamber. Constitution: To the inner wall of a chamber for containing sodium handling equipments, are vertically disposed a panel having a coolant supply port at the upper portion and a coolant discharge port at the lower portion thereof and defined with a coolant flowing channel and a panel for sucking the coolant discharged from the abovementioned panel and exhausting the same externally. Further, a corrugated combustion suppressing plate having apertures for draining the condensated leaked sodium is disposed near the sodium handling equipments. If ruptures are resulted to the sodium handling equipments or pipeway, leaked sodium is passed through the drain apertures in the suppressing plate and stored at the bottom of the containing chamber. (Horiuchi, T.)

  16. Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce sensory-specific analgesic effects.

    Directory of Open Access Journals (Sweden)

    He Liu

    Full Text Available BACKGROUND: Previous studies have demonstrated that QX-314, an intracellular sodium channel blocker, can enter into nociceptors through capsaicin-activated TRPV1 or permeation of the membrane by chemical enhancers to produce a sensory-selective blockade. However, the obvious side effects of these combinations limit the application of QX-314. A new strategy for targeting delivery of QX-314 into nociceptors needs further investigation. The aim of this study is to test whether acidic QX-314, when dissolves in acidic solution directly, can enter into nociceptors through acid-activated TRPV1 and block sodium channels from the intracellular side to produce a sensory-specific analgesic effect. METHODOLOGY/PRINCIPAL FINDINGS: Acidic solution or noradrenaline was injected intraplantarly to induce acute pain behavior in mice. A chronic constrictive injury model was performed to induce chronic neuropathic pain. A sciatic nerve blockade model was used to evaluate the sensory-specific analgesic effects of acidic QX-314. Thermal and mechanical hyperalgesia were measured by using radiant heat and electronic von Frey filaments test. Spinal Fos protein expression was determined by immunohistochemistry. The expression of p-ERK was detected by western blot assay. Whole cell clamp recording was performed to measure action potentials and total sodium current in rats DRG neurons. We found that pH 5.0 PBS solution induced behavioral hyperalgesia accompanied with the increased expression of spinal Fos protein and p-ERK. Pretreatment with pH 5.0 QX-314, and not pH 7.4 QX-314, alleviated pain behavior, inhibited the increased spinal Fos protein and p-ERK expression induced by pH 5.0 PBS or norepinephrine, blocked sodium currents and abolished the production of action potentials evoked by current injection. The above effects were prevented by TRPV1 channel inhibitor SB366791, but not by ASIC channel inhibitor amiloride. Furthermore, acidic QX-314 employed adjacent to the

  17. Spatiotemporal magnetic fields enhance cytosolic Ca.sup.2+./sup. levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells

    Czech Academy of Sciences Publication Activity Database

    Rubio Ayala, M.; Syrovets, T.; Hafner, S.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Simmet, T.

    2018-01-01

    Roč. 163, May (2018), s. 174-184 ISSN 0142-9612 Institutional support: RVO:68378271 Keywords : alternating magnetic field * skeletal muscle * cytosolic calcium * modeling * eddy current * voltage-gated sodium channels Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 8.402, year: 2016

  18. in a Family of South Indian Descent

    Directory of Open Access Journals (Sweden)

    Muthiah Subramanian

    2015-01-01

    Full Text Available Inherited channelopathies are a heterogeneous group of disorders resulting from dysfunction of ion channels in cellular membranes. They may manifest as diseases affecting skeletal muscle contraction, the conduction system of the heart, nervous system function, and vision syndromes. We describe a family of South Indian descent with hypokalemic periodic paralysis in which four members also have idiopathic generalized epilepsy. Hypokalemic periodic paralysis is a genetically heterogeneous channelopathy that has been linked to mutations in genes encoding three ion channels CACNIAS, SCN4A, and KCNJ2 predominantly. Although data on specific gene in idiopathic generalized epilepsy is relatively scarce, mutations of voltage gated sodium channel subunit genes (CACNB4 and nonsense mutations in voltage gated calcium channels (CACNA1A have been linked to idiopathic generalized epilepsy in two families. We speculate that gene mutations altering the ability of the beta subunit to interact with the alpha subunit of the CaV1.1 channel and mutations in the pore-forming potassium channel subunit may be possible explanations for the combined manifestation of both diseases. Functional analysis of voltage gated calcium channel and other ion channels mutations may provide additional support and insight for the causal role of these mutations. The understanding of mutations in ion-channel genes will lead to improved diagnosis and treatment of such inherited channelopathies.

  19. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients

    Science.gov (United States)

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John LR; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI: http://dx.doi.org/10.7554/eLife.13073.001 PMID:27458797

  20. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.

    Science.gov (United States)

    Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen

    2014-08-01

    A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model

    Directory of Open Access Journals (Sweden)

    N. Baldev

    2015-12-01

    Full Text Available Purpose: Sodium thiosulfate (STS is clinically reported to be a promising drug in preventing nephrolithiasis. However, its mechanism of action remains unclear. In the present study, we investigated the role of mitochondrial KATP channel in the renal protection mediated by STS. Materials and Methods: Nephrolithiasis was induced in Wistar rats by administrating 0.4% ethylene glycol (EG along with 1% ammonium chloride for one week in drinking water followed by only 0.75% EG for two weeks. Treatment groups received STS, mitochondrial KATP channel opener and closer exclusively or in combination with STS for two weeks. Results: Animals treated with STS showed normal renal tissue architecture, supported by near normal serum creatinine, urea and ALP activity. Diazoxide (mitochondria KATP channel opening treatment to the animal also showed normal renal tissue histology and improved serum chemistry. However, an opposite result was shown by glibenclamide (mitochondria KATP channel closer treated rats. STS administered along with diazoxide negated the renal protection rendered by diazoxide alone, while it imparted protection to the glibenclamide treated rats, formulating a mitochondria modulated STS action. Conclusion: The present study confirmed that STS render renal protection not only through chelation and antioxidant effect but also by modulating the mitochondrial KATP channel for preventing urolithiasis.

  2. Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons.

    Science.gov (United States)

    Fukuoka, Tetsuo; Kobayashi, Kimiko; Yamanaka, Hiroki; Obata, Koichi; Dai, Yi; Noguchi, Koichi

    2008-09-10

    We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply. (c) 2008 Wiley-Liss, Inc.

  3. Formation of a sodium bicarbonate cluster in the structure of sodium-substituted hydroxyapatite

    Science.gov (United States)

    Tkachenko, M. V.; Kamzin, A. S.

    2015-02-01

    Ceramic sodium-substituted carbonated hydroxyapatite has been synthesized using the method of the solid-phase reaction in the temperature range of 640-820°C in water vapor. It has been established that substitutions of Ca2+ ions in the cation and anion subsystems with Na+ ions and the PO{4/3-} and OH- groups with CO{3/2-} ions lead to a considerable acceleration of the shrinkage and synthesis of dense ceramics at substantially lower temperatures than in the case of unsubstituted hydroxyapatite. Sintering in water vapor leads to densification of carbonate groups in channel positions, which induces the appearance of orderings of A2 and B2 types (bands with wave numbers 867 and 865 cm-1 in IR spectra, respectively) as well as the protonation of carbonate groups both in A and B sites and the formation of sodium bicarbonate clusters (856 and 859 cm-1) in addition to carbonate ordering of A1 and B1 types (879 and 872 cm-1).

  4. Major Channels Involved In Neuropsychiatric Disorders And Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2013-05-01

    Full Text Available Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders or schizophrenia. Moreover, point mutations in calcium, sodium and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium and potassium channels in bipolar disorder, schizophrenia and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

  5. Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1

    Directory of Open Access Journals (Sweden)

    Filip Touska

    2017-08-01

    Full Text Available Ciguatoxins (CTXs are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1 into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP ion channels. In contrast, lidocaine and tetrodotoxin (TTX reduce CGRP release by 53–75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC. Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics.

  6. Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1

    Science.gov (United States)

    Touska, Filip; Sattler, Simon; Malsch, Philipp; Lewis, Richard J.; Zimmermann, Katharina

    2017-01-01

    Ciguatoxins (CTXs) are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1) into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP) from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA) to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP) ion channels. In contrast, lidocaine and tetrodotoxin (TTX) reduce CGRP release by 53–75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC). Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC) NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics. PMID:28867800

  7. Channel Analysis for a 6.4 Gb s-1 DDR5 Data Buffer Receiver Front-End

    Science.gov (United States)

    Lehmann, Stefanie; Gerfers, Friedel

    2017-09-01

    In this contribution, the channel characteristic of the next generation DDR5-SDRAM architecture and possible approaches to overcome channel impairments are analysed. Because modern enterprise server applications and networks demand higher memory bandwidth, throughput and capacity, the DDR5-SDRAM specification is currently under development as a follow-up of DDR4-SDRAM technology. In this specification, the data rate is doubled to DDR5-6400 per IO as compared to the former DDR4-3200 architecture, resulting in a total per DIMM data rate of up to 409.6 Gb s-1. The single-ended multi-point-to-point CPU channel architecture in DDRX technology remains the same for DDR5 systems. At the specified target data rate, insertion loss, reflections, cross-talk as well as power supply noise become more severe and have to be considered. Using the data buffer receiver front-end of a load-reduced memory module, sophisticated equalisation techniques can be applied to ensure target BER at the increased data rate. In this work, the worst case CPU back-plane channel is analysed to derive requirements for receiver-side equalisation from the channel response characteristics. First, channel impairments such as inter-symbol-interference, reflections from the multi-point channel structure, and crosstalk from neighboring lines are analysed in detail. Based on these results, different correction methods for DDR5 data buffer front-ends are discussed. An architecture with 1-tap FFE in combination with a multi-tap DFE is proposed. Simulation of the architecture using a random input data stream is used to reveal the required DFE tap filter depth to effectively eliminate the dominant ISI and reflection based error components.

  8. Should they team up to make your brain clock?

    Czech Academy of Sciences Publication Activity Database

    Weiss, Norbert

    2015-01-01

    Roč. 36, č. 6 (2015), s. 2184-2185 ISSN 0197-4580 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : potassium channel * BK channel * circadian rhythm * calcium channel * T-type channel * SCN neuron * aging Subject RIV: CE - Biochemistry Impact factor: 5.153, year: 2015

  9. Modulation of epithelial sodium channel (ENaC expression in mouse lung infected with Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Radzioch Danuta

    2005-01-01

    Full Text Available Abstract Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c and susceptible (DBA/2, C57BL/6 and A/J mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p 1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.

  10. Thermal performance tests on a sodium-to-sodium heat exchanger

    International Nuclear Information System (INIS)

    Prahlad, B.; Kale, R.D.; Rajan, K.K.

    1990-01-01

    Thermal performance of a 3 MW sodium-to-sodium intermediate heat exchanger (IHX) was evaluated under temperature conditions typical of a Fast Breeder Reactor IHX. A regenerative figure of eight loop was used with the heat exchanger at the cross over point, and a 500 kW heat source and an air cooled sink to maintain the desired test conditions. The overall heat transfer coefficient was found to vary from 4.02 to 4.87 kW/m 2 ·K for Peclet numbers varying from 37 to 112.5 on the shell side and 44.4 to 133.5 on the tube side respectively. The Peclet numbers were representative of low turbulent regime in this case. While the overall heat transfer coefficient was found close to predictions using Lubarsky's correlation, it was somewhat lower than that predicted by later correlations of Spukunsky and Borishansky. The reasons for the lower overall heat transfer coefficient have been explained in terms of possible maldistribution of shell side flow in low turbulent regime reducing the effective heat transfer area and increased thermal contact resistance. Based on their findings the authors feel that heat transfer in a sodium-to-sodium heat exchanger at low Peclet numbers is expected to differ from that obtained with large Peclet numbers. (author)

  11. In vivo metabolic activity of hamster suprachiasmatic nuclei: use of anesthesia

    International Nuclear Information System (INIS)

    Schwartz, W.J.

    1987-01-01

    In vivo glucose utilization was measured in the suprachiasmatic nuclei (SCN) of Golden hamsters using the 14 C-labeled deoxyglucose technique. A circadian rhythm of SCN metabolic activity could be measured in this species, but only during pentobarbital sodium anesthesia when the surrounding background activity of adjacent hypothalamus was suppressed. Both the SCN's metabolic oscillation and its time-keeping ability are resistant to general anesthesia

  12. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharmacological agents.

    Science.gov (United States)

    Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M

    2006-02-01

    Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.

  13. A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti.

    Science.gov (United States)

    Chang, Cheng; Shen, Wen-Kai; Wang, Tzu-Ting; Lin, Ying-Hsi; Hsu, Err-Lieh; Dai, Shu-Mei

    2009-04-01

    To identify pertinent mutations associated with knockdown resistance to permethrin, the entire coding sequence of the voltage-gated sodium channel gene Aa-para was sequenced and analyzed from a Per-R strain with 190-fold resistance to permethrin and two susceptible strains of Aedes aegypti. The longest transcript, a 6441bp open reading frame, encodes 2147 amino acid residues with an estimated molecular mass of 241kDa. A total of 33 exons were found in the Aa-para gene over 293kb of genomic DNA. Three previously unreported optional exons were identified. The first two exons, m and n, were located within the intracellular domain I/II, and the third, f', was found within the II/III linkers. The two mutually exclusive exons, d and l, were the only alternative exons in all the cDNA clones sequenced in this study. The most distinct finding was a novel amino acid substitution mutation, D1794Y, located within the extracellular linker between IVS5 and IVS6, which is concurrent with the known V1023G mutation in Aa-para of the Per-R strain. The high frequency and coexistence of the two mutations in the Per-R strain suggest that they might exert a synergistic effect to provide the knockdown resistance to permethrin. Furthermore, both cDNA and genomic DNA data from the same individual mosquitoes have demonstrated that RNA editing was not involved in amino acid substitutions of the Per-R strain.

  14. A survey of pyrethroid-resistant populations of Meligethes aeneus F. in Poland indicates the incidence of numerous substitutions in the pyrethroid target site of voltage-sensitive sodium channels in individual beetles.

    Science.gov (United States)

    Wrzesińska, B; Czerwoniec, A; Wieczorek, P; Węgorek, P; Zamojska, J; Obrępalska-Stęplowska, A

    2014-10-01

    The pollen beetle (Meligethes aeneus F.) is the most devastating pest of oilseed rape (Brassica napus) and is controlled by pyrethroid insecticides. However, resistance to pyrethroids in Europe is becoming widespread and predominant. Pyrethroids target the voltage-sensitive sodium channel (VSSC), and mutations in VSSC may be responsible for pyrethroid insensitivity. Here, we analysed individual beetles that were resistant to esfenvalerate, a pyrethroid, from 14 populations that were collected from oilseed rape fields in Poland. We screened the VSSC domains that were presumed to directly interact with pyrethroids. We identified 18 heterozygous nucleic acid substitutions, amongst which six caused an amino acid change: N912S, G926S, I936V, R957G, F1538L and E1553G. Our analysis of the three-dimensional structure of these domains in VSSC revealed that some of these changes may slightly influence the protein structure and hence the docking efficiency of esfenvalerate. Therefore, these mutations may impact the susceptibility of the sodium channel to the action of this insecticide. © 2014 The Royal Entomological Society.

  15. RBMK fuel channel blockage analysis by MCNP5, DRAGON and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Parisi, C.; D'Auria, F.

    2007-01-01

    The aim of this work was to perform precise criticality analyses by Monte-Carlo code MCNP5 for a Fuel Channel (FC) flow blockage accident, considering as calculation domain a single FC and a 3x3 lattice of RBMK cells. Boundary conditions for MCNP5 input were derived by a previous transient calculation by state-of-the-art codes HELIOS/RELAP5-3D. In a preliminary phase, suitable MCNP5 models of a single cell and of a small lattice of RBMK cells were set-up; criticality analyses were performed at reference conditions for 2.0% and 2.4% enriched fuel. These analyses were compared with results obtained by University of Pisa (UNIPI) using deterministic transport code DRAGON and with results obtained by NIKIET Institute using MCNP4C. Then, the changes of the main physical parameters (e.g. fuel and water/steam temperature, water density, graphite temperature) at different time intervals of the FC blockage transient were evaluated by a RELAP5-3D calculation. This information was used to set up further MCNP5 inputs. Criticality analyses were performed for different systems (single channel and lattice) at those transient' states, obtaining global criticality versus transient time. Finally the weight of each parameter's change (fuel overheating and channel voiding) on global criticality was assessed. The results showed that reactivity of a blocked FC is always negative; nevertheless, when considering the effect of neighboring channels, the global reactivity trend reverts, becoming slightly positive or not changing at all, depending in inverse relation to the fuel enrichment. (author)

  16. Transient mixed convection in a cavity. Comparison between water and sodium

    International Nuclear Information System (INIS)

    Garnier, J.

    1983-01-01

    The basic problem studied is the interaction between a vortex and a thermal stratification. The experiments are done in a parallelepipedic cavity which bottom communicates with a rectangular channel. A forced flow in this channel induces a recirculating flow in the cavity. The transient condition is a decrease (step wise or slope) of the inlet temperature at a constant flowrate. This problem is studied with two different approaches: experiments in water or in sodium. In the sodium experiments, the dimension of the cavity ensures large values of the Peclet number (about 10 4 ) and a wide range of values for the Richardson number (from 0.1 to 3). With these experiment, all the regimes of mixed convection, from forced convection to complete stratification can be covered. These results are compared with the other approach using a water model. This comparison is very helpful for studies on the thermalhydraulic behavior of Liquid Metal Fast Breeder Reactors. (author)

  17. Dog rose (Rosa canina L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium nitrite.

    Science.gov (United States)

    Vossen, Els; Utrera, Mariana; De Smet, Stefaan; Morcuende, David; Estévez, Mario

    2012-12-01

    The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and protein oxidation, colour stability and texture of frankfurters was investigated. Four treatments were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite (5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal values were much higher throughout storage in NC compared to RC and PC frankfurters (Prose can act as a natural antioxidant in frankfurters, but not as full replacer for sodium nitrite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    International Nuclear Information System (INIS)

    Wang, Hailong; Cheng, Xiaolin

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2) at the intracellular end and a ring of hydrophobic residues (I9) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  19. Some problems of leaks in sodium-water steam generator

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Sergeev, G.V.; Sednev, A.R.; Makarov, V.M.

    1976-01-01

    The paper contains data on wastage of steam generator structural materials and high-nickel alloys in the zone of water leakage into sodium as well as investigation results for self-enlargement of water leaks into sodium through defects in these materials. It is shown that the rate of material damage in the zone of sodium-water reaction and in the channel with water leaking-out decreases with increasing nickel content in steels and strongly depends on sodium temperature. The paper presents experimentally obtained dependences of leakage self-enlargement rates on sodium temperature and leakage size

  20. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  1. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation

    DEFF Research Database (Denmark)

    Gardella, Elena; Becker, Felicitas; Møller, Rikke S

    2016-01-01

    by stretching, motor initiation or by emotional stimuli. In one case, we recorded typical PKD spells by video-EEG-polygraphy, documenting a cortical involvement. INTERPRETATION: Our study establishes SCN8A as a novel gene in which a recurrent mutation causes BFIS/ICCA, expanding the clinical-genetic spectrum...... patient had seizures only at school age. All patients stayed otherwise seizure-free, most without medication. Interictal EEG was normal in all cases but two. Five/16 patients developed additional brief paroxysmal episodes in puberty, either dystonic/dyskinetic or "shivering" attacks, triggered...... identified as the major gene in all three conditions, found to be mutated in 80-90% of familial and 30-35% of sporadic cases. METHODS: We searched for the genetic defect in PRRT2-negative, unrelated families with BFIS or ICCA using whole exome or targeted gene panel sequencing, and performed a detailed...

  2. Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1

    Science.gov (United States)

    Inserra, Marco C.; Israel, Mathilde R.; Caldwell, Ashlee; Castro, Joel; Deuis, Jennifer R.; Harrington, Andrea M.; Keramidas, Angelo; Garcia-Caraballo, Sonia; Maddern, Jessica; Erickson, Andelain; Grundy, Luke; Rychkov, Grigori Y.; Zimmermann, Katharina; Lewis, Richard J.; Brierley, Stuart M.; Vetter, Irina

    2017-01-01

    Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1–1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation. PMID:28225079

  3. Measurement-based Channel Characterization for 5G Wireless Communications on Campus Scenario

    DEFF Research Database (Denmark)

    Mi, Yang; He, Ruisi; Ai, Bo

    2017-01-01

    The fifth generation (5G) communication has been a hotspot of research in recent years, and both research institutions and industrial enterprises put a lot of interests for 5G communication at some new frequency bands. In this paper, we investigate the radio channels of 5G communications below 6...... GHz according to the requirements and scenarios of 5G communication. Channel measurements were conducted on campus of Beijing Jiaotong University, China at two key optional frequency bands below 6 GHz. By using the measured data, we analyzed key channel parameters at 460MHz and 3.5GHz, such as power...... delay profile, path loss exponent, shadow fading, and delay spread. The results are helpful for the 5G communication system design....

  4. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    Science.gov (United States)

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels

  5. FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides.

    Science.gov (United States)

    Lingueglia, Eric; Deval, Emmanuel; Lazdunski, Michel

    2006-05-01

    FMRFamide and related peptides typically exert their action through G-protein coupled receptors. However, two ionotropic receptors for these peptides have recently been identified. They are both members of the epithelial amiloride-sensitive Na+ channel and degenerin (ENaC/DEG) family of ion channels. The invertebrate FMRFamide-gated Na+ channel (FaNaC) is a neuronal Na+-selective channel which is directly gated by micromolar concentrations of FMRFamide and related tetrapeptides. Its response is fast and partially desensitizing, and FaNaC has been proposed to participate in peptidergic neurotransmission. On the other hand, mammalian acid-sensing ion channels (ASICs) are not gated but are directly modulated by FMRFamide and related mammalian peptides like NPFF and NPSF. ASICs are activated by external protons and are therefore extracellular pH sensors. They are expressed both in the central and peripheral nervous system and appear to be involved in many physiological and pathophysiological processes such as hippocampal long-term potentiation and defects in learning and memory, acquired fear-related behavior, retinal function, brain ischemia, pain sensation in ischemia and inflammation, taste perception, hearing functions, and mechanoperception. The potentiation of ASIC activity by endogenous RFamide neuropeptides probably participates in the response to noxious acidosis in sensory and central neurons. Available data also raises the possibility of the existence of still unknown FMRFamide related endogenous peptides acting as direct agonists for ASICs.

  6. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Ravula, Jeswanth [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Thadela, S. [Department of Mechanical Engineering, Andhra University, Visakhapatnam, Andhra Pradesh (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, P.V.K. Institute of Technology, Anantapur, Andhra Pradesh (India)

    2015-12-15

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (T{sub C} + 10 K) and pressure (P{sub C} + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables. - Highlights: • Analytical functions are developed for thermophysical properties of Supercritical Nitrogen. • Error analysis shows extremely low errors in the developed analytical functions.

  7. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    International Nuclear Information System (INIS)

    Dondapati, Raja Sekhar; Ravula, Jeswanth; Thadela, S.; Usurumarti, Preeti Rao

    2015-01-01

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (T_C + 10 K) and pressure (P_C + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables. - Highlights: • Analytical functions are developed for thermophysical properties of Supercritical Nitrogen. • Error analysis shows extremely low errors in the developed analytical functions.

  8. Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN

    NARCIS (Netherlands)

    Bohnen, T.

    2010-01-01

    Chemical vapor deposition (CVD); hydride vapor phase epitaxy (HVPE); gallium nitride (GaN); indium gallium nitride (InGaN); scandium nitride (ScN); scandium aluminum nitride (ScAlN); semiconductors; thin films; nanowires; III nitrides; crystal growth - We studied the HVPE growth of different III

  9. Diclofenac distinguishes among homomeric and heteromeric potassium channels composed of KCNQ4 and KCNQ5 subunits.

    Science.gov (United States)

    Brueggemann, Lioubov I; Mackie, Alexander R; Martin, Jody L; Cribbs, Leanne L; Byron, Kenneth L

    2011-01-01

    KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V(0.5) values: -31, -44, and -38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels.

  10. Adult siblings with homozygous G6PC3 mutations expand our understanding of the severe congenital neutropenia type 4 (SCN4 phenotype

    Directory of Open Access Journals (Sweden)

    Fernandez Bridget A

    2012-11-01

    Full Text Available Abstract Background Severe congenital neutropenia type 4 (SCN4 is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3. Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4 is caused by autosomal recessive mutations in SLC45A2. Methods We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. Results The siblings’ phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with “partial OCA” in childhood. Conclusions This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.

  11. Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil.

    Science.gov (United States)

    Martins, Ademir Jesus; Lins, Rachel Mazzei Moura de Andrade; Linss, Jutta Gerlinde Birgitt; Peixoto, Alexandre Afranio; Valle, Denise

    2009-07-01

    The nature of pyrethroid resistance in Aedes aegypti Brazilian populations was investigated. Quantification of enzymes related to metabolic resistance in two distinct populations, located in the Northeast and Southeast regions, revealed increases in Glutathione-S-transferase (GST) and Esterase levels. Additionally, polymorphism was found in the IIS6 region of Ae. aegypti voltage-gated sodium channel (AaNa(V)), the pyrethroid target site. Sequences were classified in two haplotype groups, A and B, according to the size of the intron in that region. Rockefeller, a susceptible control lineage, contains only B sequences. In field populations, some A sequences present a substitution in the 1011 site (Ile/Met). When resistant and susceptible individuals were compared, the frequency of both A (with the Met mutation) and B sequences were slightly increased in resistant specimens. The involvement of the AaNa(V) polymorphism in pyrethroid resistance and the metabolic mechanisms that lead to potential cross-resistance between organophosphate and pyrethroids are discussed.

  12. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    Science.gov (United States)

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  13. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  14. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  15. Assessing the survival of MRC5 and a549 cell lines upon exposure to pyruvic Acid, sodium citrate and sodium bicarbonate - biomed 2013.

    Science.gov (United States)

    Farah, Ibrahim O; Lewis, Veshell L; Ayensu, Wellington K; Cameron, Joseph A

    2013-01-01

    Lung cancer is among the most prevalent and deadly cancers in United States. In general, cancer cells are known to exhibit higher rates of glycolysis in comparison to normal cells. In attempting to exploit this unique cancer-dependent ATP generation phenomenon, it was our hypothesis that upon exposure to organic inhibitors of glycolysis, cancer cells would not survive normally and that their growth and viability would be vastly decreased; essential glycolytic ATP production will be exhausted to the point of collapsing energy utilization. Furthermore, we hypothesize that no negative effect would be seen with exposures to organic inhibitors for normal lung cells. The human lung fibroblast MRC-5 and the human A549 alveolar epithelial cell lines were used as in vitro models of normal lung and lung cancers respectively. Using standard methods, both cell lines were maintained and exposed to pyruvic acid, sodium citrate and sodium bicarbonate reagents at concentration levels ranging from 31.3-2,000 µg/ml in 96 well plates in quadruplets and experiments repeated at least three times using MTT, and cell counting (T4 Cellometer) assays as well as phase-contrast photo-imaging for parallel morphological displays of any changes in the course of their vitality and metabolic activities. Our results indicate that exposure of both cell lines to these organics resulted in concentration dependent cell destruction/cell survival depending on the cell line exposed. Pyruvic acid, sodium citrate and sodium bicarbonate showed statistically significant (pcancer biotherapeutics.

  16. The Outwardly Rectifying Current of Layer 5 Neocortical Neurons that was Originally Identified as "Non-Specific Cationic" Is Essentially a Potassium Current.

    Directory of Open Access Journals (Sweden)

    Omer Revah

    Full Text Available In whole-cell patch clamp recordings from layer 5 neocortical neurons, blockade of voltage gated sodium and calcium channels leaves a cesium current that is outward rectifying. This current was originally identified as a "non-specific cationic current", and subsequently it was hypothesized that it is mediated by TRP channels. In order to test this hypothesis, we used fluorescence imaging of intracellular sodium and calcium indicators, and found no evidence to suggest that it is associated with influx of either of these ions to the cell body or dendrites. Moreover, the current is still prominent in neurons from TRPC1-/- and TRPC5-/- mice. The effects on the current of various blocking agents, and especially its sensitivity to intracellular tetraethylammonium, suggest that it is not a non-specific cationic current, but rather that it is generated by cesium-permeable delayed rectifier potassium channels.

  17. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  18. Fluoxetine Blocks Nav1.5 Channels via a Mechanism Similar to That of Class 1 Antiarrhythmics

    Science.gov (United States)

    Poulin, Hugo; Bruhova, Iva; Timour, Quadiri; Theriault, Olivier; Beaulieu, Jean-Martin; Frassati, Dominique

    2014-01-01

    The voltage-gated Nav1.5 channel is essential for the propagation of action potentials in the heart. Malfunctions of this channel are known to cause hereditary diseases. It is a prime target for class 1 antiarrhythmic drugs and a number of antidepressants. Our study investigated the Nav1.5 blocking properties of fluoxetine, a selective serotonin reuptake inhibitor. Nav1.5 channels were expressed in HEK-293 cells, and Na+ currents were recorded using the patch-clamp technique. Dose-response curves of racemic fluoxetine (IC50 = 39 μM) and its optical isomers had a similar IC50 [40 and 47 μM for the (+) and (−) isomers, respectively]. Norfluoxetine, a fluoxetine metabolite, had a higher affinity than fluoxetine, with an IC50 of 29 μM. Fluoxetine inhibited currents in a frequency-dependent manner, shifted steady-state inactivation to more hyperpolarized potentials, and slowed the recovery of Nav1.5 from inactivation. Mutating a phenylalanine (F1760) and a tyrosine (Y1767) in the S6 segment of domain (D) IV (DIVS6) significantly reduced the affinity of fluoxetine and its frequency-dependent inhibition. We used a noninactivating Nav1.5 mutant to show that fluoxetine displays open-channel block behavior. The molecular model of fluoxetine in Nav1.5 was in agreement with mutational experiments in which F1760 and Y1767 were found to be the key residues in binding fluoxetine. We concluded that fluoxetine blocks Nav1.5 by binding to the class 1 antiarrhythmic site. The blocking of cardiac Na+ channels should be taken into consideration when prescribing fluoxetine alone or in association with other drugs that may be cardiotoxic or for patients with conduction disorders. PMID:25028482

  19. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    Energy Technology Data Exchange (ETDEWEB)

    Premalatha, M. [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Materials Research Center, Coimbatore-641 045 (India); Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Selvasekarapandian, S. [Materials Research Center, Coimbatore-641 045 (India); Genova, F. Kingslin Mary, E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com; Umamaheswari, R. [Department of physics, S.F.R College for Women, Sivakasi-626 128 (India)

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  20. Radiation from planar channeled 5-55 GeV/c positrons and electrons

    International Nuclear Information System (INIS)

    Atkinson, M.; Sharp, P.H.; Giddings, D.; Bussey, P.J.

    1982-01-01

    The emission of radiation from 5 to 55 GeV/c planar channeled positrons and electrons passing through a 135 μ thick silicon-crystal has been investigated. The intensity of the channeling-radiation is found to be 10 to 30 times the intensity of normal bremsstrahlung. For channeled electrons no structure is found in the spectrum, whereas strong and sharp peaks are found for positrons. This peak structure is extremely sharp at 5 GeV/c and for momenta above 20 GeV/c the structure disappears. For a classical description of channeling, but using an anharmonic potential, certain energies are found for which the maximum energy of the channeling radiation is practically independent of transverse energy. The possibility of making a monoenergetic γ-source in the range of 10-100 MeV is mentioned. (orig.)

  1. Stability of penicillin G sodium diluted with 0.9% sodium chloride injection or 5% dextrose injection and stored in polyvinyl chloride bag containers and elastomeric pump containers.

    Science.gov (United States)

    Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire

    2014-04-15

    The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.

  2. Developmental regulation of voltage-sensitive sodium channels in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.

    1985-01-01

    The developmental regulation of the voltage-sensitive Na + channel in rat skeletal muscle was studied in vivo and in vitro. In triceps surae muscle developing in vivo the development of TTX-sensitive Na + channel occurred primarily during the first three postnatal weeks as determined by the specific binding of [ 3 H]saxitoxin. This development proceeded in two separate phases. The first phase occurs independently of continuing motor neuron innervation and accounts for 60% of the adult density of TTX-sensitive Na + channels. The second phase, which begins about day 11, requires innervation. Muscle cells in primary culture were found to have both TTX-sensitive and insensitive Na + channels. The development of the TTX-sensitive channel, in vitro, paralleled the initial innervation-independent phase of development observed in vivo. The density of TTX-sensitive Na + channels in cultured muscle cells was regulated by electrical activity and cytosolic Ca ++ levels. Pharmacological blockade of the spontaneous electrical activity present in these cells lead to a nearly 2-fold increase in the surface density of TTX-sensitive channels. The turnover time of the TTX-sensitive Na + channel was measured by blocking the incorporation of newly synthesized channels with tunicamycin, an inhibitor of N-linked protein glycosylation. The regulation of channel density by electrical activity, cytosolic Ca ++ levels, and agents affecting cyclic neucleotide levels had no effect on the turnover time of the TTX-sensitive Na + channel, indicating that these regulatory agents instead affect the synthesis of the channel

  3. Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells

    KAUST Repository

    Zhao, Kui; Munir, Rahim; Yan, Buyi; Yang, Yang; Kim, Taesoo; Amassian, Aram

    2015-01-01

    CuSCN is a highly transparent, highly stable, low cost and easy to solution process HTL that is proposed as a low cost replacement to existing organic and inorganic metal oxide hole transporting materials. Here, we demonstrate hybrid organic

  4. Direct effect of methylprednisolone on renal sodium and water transport via the principal cells in the kidney

    DEFF Research Database (Denmark)

    Lauridsen, Thomas G; Vase, Henrik; Bech, Jesper N

    2010-01-01

    Glucocorticoids influence renal concentrating and diluting ability. We tested the hypothesis that methylprednisolone treatment increased renal water and sodium absorption by increased absorption via the aquaporin-2 (AQP2) water channels and the epithelial sodium channels (ENaCs) respectively....

  5. Synthesis and biological evaluation of pyrrolidine derivatives as novel and potent sodium channel blockers for the treatment of ischemic stroke.

    Science.gov (United States)

    Seki, Maki; Tsuruta, Osamu; Tatsumi, Ryo; Soejima, Aki

    2013-07-15

    A novel series of pyrrolidine derivatives as Na(+) channel blockers was synthesized and evaluated for their inhibitory effects on neuronal Na(+) channels. Structure-activity relationship (SAR) studies of a pyrrolidine analogue 2 led to the discovery of 5e as a potent Na(+) channel blocker with a low inhibitory action against human ether-a-go-go-related gene (hERG) channels. Compound 5e showed remarkably neuroprotective activity in a rat transient middle cerebral artery occlusion (MCAO) model, suggesting that 5e would act as a neuroprotectant for ischemic stroke. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. PG BN 1600 sodium fire protection system

    International Nuclear Information System (INIS)

    Bar, J.; Urbancik, L.

    1978-12-01

    A design was developed of a fire protection system for steam generator of a 1600 MW sodium cooled fast reactor (BN-1600). Chemical reactions are described of liquid sodium with atmospheric components and solid materials coming into contact with sodium in its release from the steam generator, and in safeguarding protection against sodium fires. The requirements for the purity of nitrogen as an atmosphere inert to liquid sodium are given. Characteristics and basic parameters are shown of level and spray fires, elementary terms are explained concerning the properties of aerosols formed during fires, the methods and means of release signalling and fire alarm are described as are fire precautions using fire-fighting equipment, modifying the support tank and the cell bottom and building sewage pits. The design of the system comprises an alarm system for liquid sodium using point and line electric contact sensors and flame photometer based aerosol sensors as well as a fire-fighting system based on the system of channelling liquid sodium into emergency discharge tanks filled with an inert gas, a set of fire extinguishers and other fire fighting material, and measures for the elimination of sodium fire consequences. (J.B.)

  7. Rat hypocretin/orexin neurons are maintained in a depolarized state by TRPC channels.

    Directory of Open Access Journals (Sweden)

    Vesna Cvetkovic-Lopes

    Full Text Available In a previous study we proposed that the depolarized state of the wake-promoting hypocretin/orexin (hcrt/orx neurons was independent of synaptic inputs as it persisted in tetrodotoxin and low calcium/high magnesium solutions. Here we show first that these cells are hyperpolarized when external sodium is lowered, suggesting that non-selective cation channels (NSCCs could be involved. As canonical transient receptor channels (TRPCs are known to form NSCCs, we looked for TRPCs subunits using single-cell RT-PCR and found that TRPC6 mRNA was detectable in a small minority, TRPC1, TRPC3 and TRPC7 in a majority and TRPC4 and 5 in the vast majority (∼90% of hcrt/orx neurons. Using intracellular applications of TRPC antibodies against subunits known to form NSCCs, we then found that only TRPC5 antibodies elicited an outward current, together with hyperpolarization and inhibition of the cells. These effects were blocked by co-application of a TRPC5 antigen peptide. Voltage-clamp ramps in the presence or absence of TRPC5 antibodies indicated the presence of a current with a reversal potential close to -15 mV. Application of the non-selective TRPC channel blocker, flufenamic acid, had a similar effect, which could be occluded in cells pre-loaded with TRPC5 antibodies. Finally, using the same TRPC5 antibodies we found that most hcrt/orx cells show immunostaining for the TRPC5 subunit. These results suggest that hcrt/orx neurons are endowed with a constitutively active non-selective cation current which depends on TRPC channels containing the TRPC5 subunit and which is responsible for the depolarized and active state of these cells.

  8. Design and operation of a small (benchtop) pumped sodium loop

    International Nuclear Information System (INIS)

    Trevillion, E.A.; Rowe, D.M.J.

    1975-08-01

    The report outlines the design and operation of a small (benchtop) pumped sodium loop (sodium, 650g). The loop incorporates a diffusion cold trap to control the oxygen impurity level in the sodium and a sodium sampler/distillation unit to enable sodium samples to be analysed for impurities. Sodium flow rates of up to 5.5cm.s -1 (1cm 3 .s -1 ) have been achieved at temperatures up to 673.2K (400 0 C) and temperatures of up to 1023.2K (750 0 C) have been achieved under static conditions. A device for the addition and removal of metallic speciments to and from the loop sodium without contamination of either the specimens or the sodium is also described. (author)

  9. Proteinuric diseases with sodium retention: Is plasmin the link?

    DEFF Research Database (Denmark)

    Svenningsen, Per; Skøtt, Ole; Jensen, Boye L

    2012-01-01

    1. Sodium retention in disease states characterized by proteinuria, such as nephrotic syndrome, preeclampsia, and diabetic nephropathy, occurs through poorly understood mechanism(s). 2. In the nephrotic syndrome, data from experimental and clinical studies indicate that the sodium retention...... originates in the renal cortical collecting duct and involves hyper-activity of the epithelial sodium channel (ENaC). 3. The stimulus for the increased ENaC activity does not appear to involve any of the classical sodium retaining mechanisms, such as the renin-angiotensin-aldosterone system, arginine...... and diabetic nephropathy, which are also characterized by proteinuria and sodium retention. 7. In this review, we will examine the evidence for a role of urinary serine protease activity in the development of sodium and water retention in diseases characterised by proteinuria with a focus on the nephrotic...

  10. Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    Directory of Open Access Journals (Sweden)

    Frank S Choveau

    2012-07-01

    Full Text Available Voltage-gated potassium (Kv channels are tetramers, each subunit presenting six transmembrane segments (S1-S6, with each S1-S4 segments forming a voltage-sensing domain (VSD and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L and of the S6 C-terminal part (S6T in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2, stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L, and assesses their potential physiological and pathophysiological roles.

  11. High affinity for the rat brain sodium channel of newly discovered hydroxybenzoate saxitoxin analogues from the dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Llewellyn, Lyndon; Negri, Andrew; Quilliam, Michael

    2004-01-01

    The paralytic shellfish poison family has been recently extended by the discovery of several analogues possessing a hydoxybenzoate moiety instead of the carbamoyl group one finds in saxitoxin, the parent molecule of this toxin family. We have investigated the potency of these new analogues on a representative isoform of the pharmacological target of these toxins, the voltage gated sodium channel. These toxins were found to have K1's in the low nanomolar range, only slightly less potent than saxitoxin. The hydroxybenzoate group may increase the lipophilicity of these toxins and improve their ability to pass through epithelia and therefore its uptake and elimination in both intoxication victims and animals that bioaccumulate paralytic shellfish toxins.

  12. Two-well recirculation tracer tests at the H-2 hydropad, Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    1986-10-01

    Two recirculation tracer tests were performed on the Culebra Dolomite Member of the Rustler Formation at the H-2 hydropad at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The first test, which used pentafluorobenzoate (PFB), sodium benzoate, and a suite of halocarbons for tracers, was terminated before breakthrough at the pumping well because of equipment failure. The second test, which used sodium thiocyanate (SCN) and difluorochlorobromomethane (BCF) as tracers, proceeded normally and lasted 270 days. During the second test, the tracer injected during the first test was recovered. Tracer test analyses for the two tests were performed only for the PFB tracer injected during the first test and recovered during the second, and for SCN. Analysis of the PFB recovery was crudely modeled as a one-dimensional pulse-injection test. The SCN tracer used in the second test was analyzed with the homogeneous, isotropic Grove and Beetem one-dimensional porous-medium recirculating flow test model. In general, model predictions are in poor agreement with the field measurements. Discrepancies could be produced by the combined effects of local nonhomogeneities, matrix diffusion, and possible sorption or degradation of the tracer during the test. The best overall match between the SCN breakthrough curve predicted by the semianalytical model and that observed in measurements was achieved using a porosity that ranged from 17% to 19% and a dispersivity of 16 to 18 ft. A match based only on the early part of the breakthrough curve, however, yielded a porosity of 11.5% and a dispersivity of 8 ft. The latter porosity might more closely represent the effective porosity of the Culebra, if the SCN degraded during the test

  13. Diclofenac Distinguishes among Homomeric and Heteromeric Potassium Channels Composed of KCNQ4 and KCNQ5 SubunitsS⃞

    Science.gov (United States)

    Brueggemann, Lioubov I.; Mackie, Alexander R.; Martin, Jody L.; Cribbs, Leanne L.

    2011-01-01

    KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V0.5 values: −31, −44, and −38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels. PMID:20876743

  14. DRG Voltage-Gated Sodium Channel 1.7 Is Upregulated in Paclitaxel-Induced Neuropathy in Rats and in Humans with Neuropathic Pain.

    Science.gov (United States)

    Li, Yan; North, Robert Y; Rhines, Laurence D; Tatsui, Claudio Esteves; Rao, Ganesh; Edwards, Denaya D; Cassidy, Ryan M; Harrison, Daniel S; Johansson, Caj A; Zhang, Hongmei; Dougherty, Patrick M

    2018-01-31

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect experienced by cancer patients receiving treatment with paclitaxel. The voltage-gated sodium channel 1.7 (Na v 1.7) plays an important role in multiple preclinical models of neuropathic pain and in inherited human pain phenotypes, and its gene expression is increased in dorsal root ganglia (DRGs) of paclitaxel-treated rats. Hence, the potential of change in the expression and function of Na v 1.7 protein in DRGs from male rats with paclitaxel-related CIPN and from male and female humans with cancer-related neuropathic pain was tested here. Double immunofluorescence in CIPN rats showed that Na v 1.7 was upregulated in small DRG neuron somata, especially those also expressing calcitonin gene-related peptide (CGRP), and in central processes of these cells in the superficial spinal dorsal horn. Whole-cell patch-clamp recordings in rat DRG neurons revealed that paclitaxel induced an enhancement of ProTx II (a selective Na v 1.7 channel blocker)-sensitive sodium currents. Bath-applied ProTx II suppressed spontaneous action potentials in DRG neurons occurring in rats with CIPN, while intrathecal injection of ProTx II significantly attenuated behavioral signs of CIPN. Complementarily, DRG neurons isolated from segments where patients had a history of neuropathic pain also showed electrophysiological and immunofluorescence results indicating an increased expression of Na v 1.7 associated with spontaneous activity. Na v 1.7 was also colocalized in human cells expressing transient receptor potential vanilloid 1 and CGRP. Furthermore, ProTx II decreased firing frequency in human DRGs with spontaneous action potentials. This study suggests that Na v 1.7 may provide a potential new target for the treatment of neuropathic pain, including chemotherapy (paclitaxel)-induced neuropathic pain. SIGNIFICANCE STATEMENT This work demonstrates that the expression and function of the voltage-gated sodium channel Na

  15. TRPV5: an ingeniously controlled calcium channel.

    NARCIS (Netherlands)

    Groot, T. de; Bindels, R.J.M.; Hoenderop, J.G.J.

    2008-01-01

    Body Ca(2+) homeostasis is tightly controlled and slight disturbances in renal Ca(2+) reabsorption can lead to excessive urine Ca(2+) excretion and promote kidney stone formation. The epithelial Ca(2+) channel TRPV5 constitutes the rate-limiting step of active Ca(2+) reabsorption in the kidney.

  16. Transcranial Random Noise Stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-04-01

    Full Text Available Background: Application of transcranial random noise stimulation (tRNS between 0.1 and 640 Hz of the primary motor cortex (M1 for 10 minutes induces a persistent excitability increase lasting for at least 60 minutes. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1mA for 10mins stimulation duration and a pharmacological agent (or sham on 8 healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency towards inhibiting MEPs 5-60 mins poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0-20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS.Conclusions: In contrast to transcranial direct current stimulation (tDCS, aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms.

  17. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    Science.gov (United States)

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Anestésicos locais: interação com membranas biológicas e com o canal de sódio voltagem-dependente Local anesthetics: interaction with biological membranes and with the voltage-gated sodium channel

    Directory of Open Access Journals (Sweden)

    Daniele Ribeiro de Araujo

    2008-01-01

    Full Text Available Many theories about the mechanism of action of local anesthetics (LA are described in the literature. Two types of theories can be distinguished: those that focus on the direct effects of LA on their target protein in the axon membranes, i.e. the voltage-gated sodium channel and the ones that take into account the interaction of anesthetic molecules with the lipid membrane phase for the reversible nerve blockage. Since there is a direct correlation between LA hydrophobicity and potency, it is crucial to take this physico-chemical property into account to understand the mechanism of action of LA, be it on the sodium channel protein, lipid(s, or on the whole membrane phase.

  19. An increase in [Ca2+]i activates basolateral chloride channels and inhibits apical sodium channels in frog skin epithelium

    DEFF Research Database (Denmark)

    Brodin, Birger; Rytved, K A; Nielsen, R

    1996-01-01

    The aim of this study was to investigate the mechanisms by which increases in free cytosolic calcium ([Ca2+]i) cause a decrease in macroscopic sodium absorption across principal cells of the frog skin epithelium. [Ca2+]i was measured with fura-2 in an epifluorescence microscope set-up, sodium abs...

  20. The sea anemone Bunodosoma caissarum toxin BcIII modulates the sodium current kinetics of rat dorsal root ganglia neurons and is displaced in a voltage-dependent manner.

    Science.gov (United States)

    Salceda, Emilio; López, Omar; Zaharenko, André J; Garateix, Anoland; Soto, Enrique

    2010-03-01

    Sea anemone toxins bind to site 3 of the sodium channels, which is partially formed by the extracellular linker connecting S3 and S4 segments of domain IV, slowing down the inactivation process. In this work we have characterized the actions of BcIII, a sea anemone polypeptide toxin isolated from Bunodosoma caissarum, on neuronal sodium currents using the patch clamp technique. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study (n=65). The main effects of BcIII were a concentration-dependent increase in the sodium current inactivation time course (IC(50)=2.8 microM) as well as an increase in the current peak amplitude. BcIII did not modify the voltage at which 50% of the channels are activated or inactivated, nor the reversal potential of sodium current. BcIII shows a voltage-dependent action. A progressive acceleration of sodium current fast inactivation with longer conditioning pulses was observed, which was steeper as more depolarizing were the prepulses. The same was observed for other two anemone toxins (CgNa, from Condylactis gigantea and ATX-II, from Anemonia viridis). These results suggest that the binding affinity of sea anemone toxins may be reduced in a voltage-dependent manner, as has been described for alpha-scorpion toxins. (c) 2009 Elsevier Inc. All rights reserved.

  1. Pain relief with lidocaine 5% patch in localized peripheral neuropathic pain in relation to pain phenotype

    DEFF Research Database (Denmark)

    Torgaard Demant, Dyveke; Lund, Karen; Finnerup, Nanna B

    2015-01-01

    In neuropathic pain with irritable nociceptor phenotype, up-regulation of sodium channels on nociceptors is supposed to be an important pain mechanism that may be targeted by topical sodium channel blockade. This randomised, double-blind, phenotype-panel, cross-over study with 4-week treatment pe...... had an effect on peripheral neuropathic pain, and it may be most efficacious in patients with irritable nociceptor phenotype. The lack of significant phenotype differences may be caused by too low statistical power.......In neuropathic pain with irritable nociceptor phenotype, up-regulation of sodium channels on nociceptors is supposed to be an important pain mechanism that may be targeted by topical sodium channel blockade. This randomised, double-blind, phenotype-panel, cross-over study with 4-week treatment...... periods of lidocaine 5% patch and placebo was performed to search for phenotype differences in effect. The primary efficacy measure was the total pain intensity on an 11-point numeric rating scale (NRS), and the primary objective was to compare the effect of lidocaine in patients with and without...

  2. In vivo potency of different ligands on voltage-gated sodium channels.

    Science.gov (United States)

    Safrany-Fark, Arpad; Petrovszki, Zita; Kekesi, Gabriella; Liszli, Peter; Benedek, Gyorgy; Keresztes, Csilla; Horvath, Gyongyi

    2015-09-05

    The Ranvier nodes of thick myelinated nerve fibers contain almost exclusively voltage-gated sodium channels (Navs), while the unmyelinated fibers have several receptors (e.g., cannabinoid, transient receptor potential vanilloid receptor 1), too. Therefore, a nerve which contains only motor fibers can be an appropriate in vivo model for selective influence of Navs. The goals were to evaluate the potency of local anesthetic drugs on such a nerve in vivo; furthermore, to investigate the effects of ligands with different structures (arachidonic acid, anandamide, capsaicin and nisoxetine) that were proved to inhibit Navs in vitro with antinociceptive properties. The marginal mandibular branch of the facial nerve was explored in anesthetized Wistar rats; after its stimulation, the electrical activity of the vibrissae muscles was registered following the perineural injection of different drugs. Lidocaine, bupivacaine and ropivacaine evoked dose-dependent decrease in electromyographic activity, i.e., lidocaine had lower potency than bupivacaine or ropivacaine. QX-314 did not cause any effect by itself, but its co-application with lidocaine produced a prolonged inhibition. Nisoxetine had a very low potency. While anandamide and capsaicin in high doses caused about 50% decrease in the amplitude of action potential, arachidonic acid did not influence the responses. We proved that the classical local anesthetics have high potency on motor nerves, suggesting that this method might be a reliable model for selective targeting of Navs in vivo circumstances. It is proposed that the effects of these endogenous lipids and capsaicin on sensory fibers are not primarily mediated by Navs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A colourful clock.

    Directory of Open Access Journals (Sweden)

    Hester C van Diepen

    2015-05-01

    Full Text Available Circadian rhythms are an essential property of life on Earth. In mammals, these rhythms are coordinated by a small set of neurons, located in the suprachiasmatic nuclei (SCN. The environmental light/dark cycle synchronizes (entrains the SCN via a distinct pathway, originating in a subset of photosensitive retinal ganglion cells (pRGCs that utilize the photopigment melanopsin (OPN4. The pRGCs are also innervated by rods and cones and, so, are both endogenously and exogenously light sensitive. Accumulating evidence has shown that the circadian system is sensitive to ultraviolet (UV, blue, and green wavelengths of light. However, it was unclear whether colour perception itself can help entrain the SCN. By utilizing both behavioural and electrophysiological recording techniques, Walmsley and colleagues show that multiple photic channels interact and enhance the capacity of the SCN to synchronize to the environmental cycle. Thus, entrainment of the circadian system combines both environmental irradiance and colour information to ensure that internal and external time are appropriately aligned.

  4. Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain.

    Directory of Open Access Journals (Sweden)

    Melissa A Fowler

    2007-06-01

    Full Text Available The canonical transient receptor potential (TRPC channels are a family of non-selective cation channels that are activated by increases in intracellular Ca(2+ and G(q/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6-9 weeks. In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS, pyramidal cell layer of the hippocampus (HIP, dentate gyrus (DG, and ventral subiculum (vSUB. TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2-6 of the prefrontal cortex (PFC, motor cortex (MCx, and somatosensory cortex (SCx. TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca(2+and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors.

  5. Effects of channel blocking on information transmission and energy efficiency in squid giant axons.

    Science.gov (United States)

    Liu, Yujiang; Yue, Yuan; Yu, Yuguo; Liu, Liwei; Yu, Lianchun

    2018-04-01

    Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.

  6. Candidate hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression

    DEFF Research Database (Denmark)

    Henningsen, Kim; Palmfeldt, Johan; Christiansen, Sofie Friis

    2012-01-01

    -scale proteomics was used to map hippocampal protein alterations in different stress states. Membrane proteins were successfully captured by two-phase separation and peptide based proteomics. Using iTRAQ labeling coupled with mass spectrometry, more than 2000 proteins were quantified and 73 proteins were found......Susceptibility to stress plays a crucial role in the development of psychiatric disorders such as unipolar depression and post-traumatic stress disorder. In the present study the chronic mild stress rat model of depression was used to reveal stress-susceptible and stress-resilient rats. Large...... to be differentially expressed. Stress susceptibility was associated with increased expression of a sodium-channel protein (SCN9A) currently investigated as a potential antidepressant target. Differential protein profiling also indicated stress susceptibility to be associated with deficits in synaptic vesicle release...

  7. Uniform and pitting corrosion events induced by SCN- anions on Al alloys surfaces and the effect of UV light

    International Nuclear Information System (INIS)

    Amin, Mohammed A.

    2011-01-01

    The influence of the alloying elements on the uniform and pitting corrosion processes of Al-6061, Al-4.5%Cu, Al-7.5%Cu, Al-6%Si and Al-12%Si alloys was studied in 0.50 M KSCN solution at 25 o C. Open-circuit potential, Tafel polarization, linear polarization resistance (LPR) and ICP-AES measurements were used to study the uniform corrosion process on the surfaces of the tested alloys. Cyclic polarization, potentiostatic current-time transients and impedance techniques were employed for pitting corrosion studies. Obtained results were compared with pure Al. Passivation kinetics of the tested Al samples were also studied as a function of applied potential, [SCN - ] and sample composition by means of potentiostatic current transients. The induction time, after which the growth of stable pits occurs, decreased with increasing applied potential and [SCN - ]. Regarding to uniform corrosion, alloyed Cu was found to enhance the corrosion rate, while alloyed Si suppressed it. Alloying elements of the tested samples diminished pitting attack to an extent depending on the percentage of the alloying element in the sample. Among the investigated materials, Al-Si alloys exhibited the highest corrosion resistance towards uniform and pitting corrosion processes in KSCN solutions. The passive and dissolution behaviour of Al was also studied under the conditions of continuous illumination (300-450 nm) based on cyclic polarization and potentiostatic techniques. The incident photons had a little influence on pit initiation and a marked effect on pit growth. These explained in terms of a photo-induced modification of the passive film formed on the anode surface, which render it more resistant to pitting. The effects of UV photons energy and period of illumination on the morphology of the pitted surfaces were also studied.

  8. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    International Nuclear Information System (INIS)

    Jun, Ma; Long, Huang; Chun-Ni, Wang; Zhong-Sheng, Pu

    2013-01-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio x Na (and x K ), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio x Na (and x K ) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered. (interdisciplinary physics and related areas of science and technology)

  9. Fast leak of a channel filled with helium at a pressure of 2 bars (channel H5)

    International Nuclear Information System (INIS)

    Bauer, E.; Tribolet, J.

    1987-01-01

    The loss of seal of a helium-filled channel opening the entire cross section of the front part leads to a fast leak. The channel fills to the upper generatrix of the leak orifice and part of the helium contained in the channel escapes into the circuit. The pressure drop in the reflector can lead to reactor and main pump shutdown. On the other hand, the Cooling Circuit Shutdown Bar circuit pumps remain in operation. This paper evaluates the consequences of an incident of this nature for the reactor and the surrounding experimental zones

  10. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  11. Theoretical study of sodium-water surface reaction mechanism

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    2012-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  12. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    International Nuclear Information System (INIS)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na v 1.5 sodium and Ca v 1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential

  13. Crystal structure, NMR study, dc-conductivity and dielectric relaxation studies of a new compound [C2H10N2]Cd(SCN2Cl2

    Directory of Open Access Journals (Sweden)

    Gargouri M.

    2012-06-01

    Full Text Available The crystal structure, the solid NMR spectroscopy and the complex impedance study have been carried out on [C2H10N2]CdCl2(SCN2. Characterization by single crystal X-ray crystallography shows that the cadmium atoms have à 2N2S2Cl hexa-coordination sphere, exhibiting pseudo-octahedral geometry. The cadmium atoms are bridged by two thiocyanate ions generating 1-D polymeric-chains. These chains are themselves interconnected by means of N-H…Cl(NCS hydrogen bonds originating from the organic cation [(NH32(CH22]2+. 111Cd isotropic chemical shifts span a range of 268ppm. The cadmium atom exhibits multiplets that result from 111Cd-14N spin-spin coupling. Examination of 111Cd and 13C MAS line shapes shows direct measurement of the indirect spin-spin coupling constant 2J(111Cd, 14N = 105Hz and the dipolar coupling constant of 1381Hz . Impedance spectroscopy measurements of [C2H10N2]CdCl2(SCN2 have been studied from 209Hz to 5 MHz over the temperature range 300-370 K. The Cole-Cole (Z” versus Z’ plots are fitted to two equivalent circuits models. The formalism of complex permittivity and impedance were employed to analyze the experimental data. The dc conductivity follows the Arrhenius relation with an activation energy Ea = 0.54 (3 eV.

  14. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    Science.gov (United States)

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  15. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application

    Science.gov (United States)

    Kolesar, Katheryn R.; Mattson, Claire N.; Peterson, Peter K.; May, Nathaniel W.; Prendergast, Rashad K.; Pratt, Kerri A.

    2018-03-01

    The application of salts and salty brines to roads is common practice during the winter in many urban environments. Road salts can become aerosolized, thereby injecting sodium and chloride particulate matter (PM) into the atmosphere. Here, data from the United States Environmental Protection Agency Chemical Speciation Monitoring Network were used to assess temporal trends of sodium and chloride PM2.5 (PM road salt aerosols. Sodium and chloride PM2.5 concentrations were an average of three times higher in the winter, as compared to the summer, for locations with greater than 25 cm of average annual snowfall. Winter urban chloride PM2.5 concentrations attributed to road salt can even sometimes rival those of coastal sea spray aerosol-influenced sites. In most snow-influenced cities, chloride and sodium PM2.5 concentrations were positively correlated with snowfall; however, this relationship is complicated by differences in state and local winter maintenance practices. This study highlights the ubiquity of road salt aerosols in the United States and their potential impact on wintertime urban air quality, particularly due to the potential for multiphase reactions to liberate chlorine from the particle-phase. Since road salt application is a common practice in wintertime urban environments across the world, it is imperative that road salt application emissions, currently not included in inventories, and its impacts be investigated through measurements and modeling.

  16. A comparative study of the effect of ciguatoxins on voltage-dependent Na+ and K+ channels in cerebellar neurons.

    Science.gov (United States)

    Pérez, Sheila; Vale, Carmen; Alonso, Eva; Alfonso, Carmen; Rodríguez, Paula; Otero, Paz; Alfonso, Amparo; Vale, Paulo; Hirama, Masahiro; Vieytes, Mercedes R; Botana, Luis M

    2011-04-18

    Ciguatera is a global disease caused by the consumption of certain warm-water fish (ciguateric fish) that have accumulated orally effective levels of sodium channel activator toxins (ciguatoxins) through the marine food chain. The effect of ciguatoxin standards and contaminated ciguatoxin samples was evaluated by electrophysiological recordings in cultured cerebellar neurons. The toxins affected both voltage-gated sodium (Nav) and potassium channels (Kv) although with different potencies. CTX 3C was the most active toxin blocking the peak inward sodium currents, followed by P-CTX 1B and 51-OH CTX 3C. In contrast, P-CTX 1B was more effective in blocking potassium currents. The analysis of six different samples of contaminated fish, in which a ciguatoxin analogue of mass 1040.6, not identical with the standard 51-OH CTX 3C, was the most prevalent compound, indicated an additive effect of the different ciguatoxins present in the samples. The results presented here constitute the first comparison of the potencies of three different purified ciguatoxins on sodium and potassium channels in the same neuronal preparation and indicate that electrophysiological recordings from cultured cerebellar neurons may provide a valuable tool to detect and quantify ciguatoxins in the very low nanomolar range.

  17. Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Hsiang-Chin Chen

    2010-06-01

    Full Text Available TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein's expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE, the product of 5-lipoxygenase, or 5-HPETE's downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of

  18. Veratridine activates a silent sodium-channel in rat isolated aorta

    NARCIS (Netherlands)

    WERMELSKIRCHEN, D; WILFFERT, B; NEBEL, U; LEIDIG, A; WIRTH, A; Peters, Thies

    1992-01-01

    To investigate the existence of silent Na+ channels, isolated rat aorta was treated with veratridine (0.1 mM) and the resulting Ca2+ uptake was determined. After 30-min incubation the total tissue uptake of Ca2+ and Ca2+ uptake increased from 2.325 +/- 0.017 to 2.614 +/- 0.080 nmol/mg wet weight

  19. Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of Na(x)V2O5·nH2O.

    Science.gov (United States)

    Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-10-28

    Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011

  20. Effects of (−-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jian-Min Jiang

    2013-05-01

    Full Text Available The (−-gallocatechin-3-gallate (GCG concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.

  1. Frequency of V1016I and F1534C mutations in the voltage-gated sodium channel gene in Aedes aegypti in Venezuela.

    Science.gov (United States)

    Alvarez, Leslie C; Ponce, Gustavo; Saavedra-Rodriguez, Karla; Lopez, Beatriz; Flores, Adriana E

    2015-06-01

    The V1016I and F1534C mutations in the voltage-gated sodium channel gene have been associated with resistance to pyrethroids and DDT in Aedes aegypti mosquitoes. A study was carried out to determine the frequency of I1016 and C1534 by real-time PCR in five natural populations of Ae. aegypti in Venezuela during 2008, 2010 and 2012, as well as in a strain selected with 0.14 µg of deltamethrin for 15 generations. In natural populations, frequencies of I1016 varied between 0.01 and 0.37, and frequencies of C1534 between 0.35 and 1.0. In the Pampanito strain, the frequency of I1016 increased from 0.02 in F1 up to 0.5 in F15 and from 0.35 up to fixation for C1534 after selection with deltamethrin. The results showed that C1534 frequencies are higher than I1016 frequencies in natural populations of Ae. aegypti in Venezuela, and that deltamethrin selected the C1534 more rapidly than I1016. © 2014 Society of Chemical Industry.

  2. Plasmin in Nephrotic Urine Activates the Epithelial Sodium Channel

    DEFF Research Database (Denmark)

    Svenningsen, Per; Bistrup, Claus; Friis, Ulla G

    2009-01-01

    stimulated amiloride-sensitive transepithelial sodium transport in M-1 cells and increased amiloride-sensitive whole-cell currents in Xenopus laevis oocytes heterologously expressing ENaC. Activation of ENaC by plasmin involved cleavage and release of an inhibitory peptide from the ENaC gamma subunit...

  3. The Synergistic Roles of Cholecystokinin B and Dopamine D5 Receptors on the Regulation of Renal Sodium Excretion.

    Directory of Open Access Journals (Sweden)

    Xiaoliang Jiang

    Full Text Available Renal dopamine D1-like receptors (D1R and D5R and the gastrin receptor (CCKBR are involved in the maintenance of sodium homeostasis. The D1R has been found to interact synergistically with CCKBR in renal proximal tubule (RPT cells to promote natriuresis and diuresis. D5R, which has a higher affinity for dopamine than D1R, has some constitutive activity. Hence, we sought to investigate the interaction between D5R and CCKBR in the regulation of renal sodium excretion. In present study, we found D5R and CCKBR increase each other's expression in a concentration- and time-dependent manner in the HK-2 cell, the specificity of which was verified in HEK293 cells heterologously expressing both human D5R and CCKBR and in RPT cells from a male normotensive human. The specificity of D5R in the D5R and CCKBR interaction was verified further using a selective D5R antagonist, LE-PM436. Also, D5R and CCKBR colocalize and co-immunoprecipitate in BALB/c mouse RPTs and human RPT cells. CCKBR protein expression in plasma membrane-enriched fractions of renal cortex (PMFs is greater in D5R-/- mice than D5R+/+ littermates and D5R protein expression in PMFs is also greater in CCKBR-/- mice than CCKBR+/+ littermates. High salt diet, relative to normal salt diet, increased the expression of CCKBR and D5R proteins in PMFs. Disruption of CCKBR in mice caused hypertension and decreased sodium excretion. The natriuresis in salt-loaded BALB/c mice was decreased by YF476, a CCKBR antagonist and Sch23390, a D1R/D5R antagonist. Furthermore, the natriuresis caused by gastrin was blocked by Sch23390 while the natriuresis caused by fenoldopam, a D1R/D5R agonist, was blocked by YF476. Taken together, our findings indicate that CCKBR and D5R synergistically interact in the kidney, which may contribute to the maintenance of normal sodium balance following an increase in sodium intake.

  4. Fast-slow asymptotics for a Markov chain model of fast sodium current

    Science.gov (United States)

    Starý, Tomáš; Biktashev, Vadim N.

    2017-09-01

    We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.

  5. Evaluation tissue dissolution property of 2.5 % Sodium Hypochlorite Prepared by Hydrochloric Acid and Sodium Bicarbonate: An in vitro

    Directory of Open Access Journals (Sweden)

    Hamid Razavian

    2016-08-01

    Full Text Available Successful endodontic treatment requires chemical preparation in addition to mechanical preparation. The most common material for chemical preparations is sodium hypochlorite. One way to reduce the effects of pH adjustment is the use of sodium hypochlorite. The present paper was conducted to examine the effect of dilution with hydrochloric acid and sodium bicarbonate and reduce pH on ability of tissue solubility of sodium hypochlorite. The present study was conducted in vitro on bovine muscle tissue. Ability of tissue solubility was conducted in four groups respectively with active ingredient including 1 sodium hypochlorite diluted with distilled water 2 sodium hypochlorite diluted with sodium bicarbonate 3 sodium hypochlorite diluted with hydrochloric acid and finally 4 distilled water (control group. Each sample was firstly weighed and then placed in contact with 10 m/L solution for 60 minutes (five 12 -minute intervals. The sample was weighted every five minutes and solution was renewed. The results were analyzed using SPSS-21 Software based on variance analysis, Tukey and T-test (α=0.05. The findings showed that there was significant difference between first, second and third groups in terms of ability of tissue solubility. However, the tissue solubility in second and third groups was lower than first group and it was similar in second and third groups (P Value <0.001. Reduction of sodium bicarbonate PH using sodium hypochlorite and hydrochloric acid reduces ability of tissue solubility in sodium hypochlorite.

  6. Sodium intake and dietary sources of sodium in a sample of undergraduate students from Novi Sad, Serbia.

    Science.gov (United States)

    2017-07-01

    Data on sodium intake and sources of sodium in the diet in Serbia are limited. The aim of this study was to estimate the sodium intake and identify the sources of sodium in the diet of undergraduate students attending the University of Novi Sad. Students completed a questionnaire to gather data on their gender, age and university faculty attended, and then a 24 h dietary recall. The sodium intake of the students was calculated using the dietary recall data and data on the sodium content of foods. The contribution of different food groups as well as of specific foodstuffs to the total sodium intake was calculated. The mean estimated sodium intake of the students was 3,938.5 ± 1,708.1 mg/day. The sodium intake of 89.1% of the surveyed students exceeded the guideline for sodium intake, the majority of the sodium coming from processed foods (78.9% of the total sodium intake). The food groups that contributed the most to the total sodium intake of the students were meat and meat products (21.7%) and cereals and cereal-based products (18.6%). Bread and other bakery products were responsible for 13.1% of the total sodium intake. High sodium intake in students of the University of Novi Sad puts them at high risk of developing high blood pressure. The food industry should work towards reformulating products with high sodium content, especially bread and other bakery products. Efforts should be taken to reduce sodium intake among undergraduate students in Novi Sad.

  7. Experimentation with PEC channel prototype

    International Nuclear Information System (INIS)

    Caponetti, R.; Iacovelli, M.

    1984-01-01

    Experimentation on prototypes of PEC components is presently being carried out at Casaccia CRE. This report shows the results of the first cycle of experimentation of the central channel, concerning the aspects of sodium removal after experimentation

  8. Effect of Skeletal Muscle Na+ Channel Delivered Via a Cell Platform on Cardiac Conduction and Arrhythmia Induction

    NARCIS (Netherlands)

    Boink, Gerard J. J.; Lu, Jia; Driessen, Helen E.; Duan, Lian; Sosunov, Eugene A.; Anyukhovsky, Evgeny P.; Shlapakova, Iryna N.; Lau, David H.; Rosen, Tove S.; Danilo, Peter; Jia, Zhiheng; Ozgen, Nazira; Bobkov, Yevgeniy; Guo, Yuanjian; Brink, Peter R.; Kryukova, Yelena; Robinson, Richard B.; Entcheva, Emilia; Cohen, Ira S.; Rosen, Michael R.

    2012-01-01

    Background-In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel is largely inactivated, contributing to slow conduction and reentry. We have demonstrated that adenoviral delivery of the skeletal muscle Na+ channel (SkM1) to epicardial border zones normalizes

  9. Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3

    DEFF Research Database (Denmark)

    Tian, Yuemin; Bresenitz, Pia; Reska, Anna

    2017-01-01

    Acidic microenvironment is commonly observed in tumour tissues, including glioblastoma (GBM), the most aggressive and lethal brain tumour in adults. Acid sensing ion channels (ASICs) are neuronal voltage-insensitive sodium channels, which are sensors of extracellular protons. Here we studied...

  10. A Flexible Nested Sodium and Proton Coil Array with Wideband Matching for Knee Cartilage MRI at 3 Tesla

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.

    2015-01-01

    Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310

  11. ESR investigation of alkali metal complexes of galvinoxyl-labeled benzo-15-crown-5 in frozen solution

    International Nuclear Information System (INIS)

    Mukai, Kazuo; Iida, Nobuhito; Ishizu, Kazuhiko

    1982-01-01

    A stable galvinoxyl derivative (1) of benzo-15-crown-5 was prepared and the complex formation between the spin labeled crown ether 1 and the alkali metal and ammonium salts was studied by the ESR technique. Existence of the (2:1) complex of 1 with potassium, rubidium, and ammonium salts was confirmed by the observation of the triplet ESR spectra in ethanol rigid matrix at 77K. Essentially the same g- and D-tensor values are observed for all the (2:1) complexes, indicating similar conformation of the ligand mole cule 1. The zero-field splitting parameters (D and E) are calculated on the basis of the spin distribution of 1 and the assumed molecular structures for the (2:1) complex. By comparing the observed D and E parameters with the calculated ones, the structure of the (2:1) complex in ethanol rigid matrix is discussed. On the other hand, the sodium complexes of 1 show a slightly asymmetric single line, suggesting the (1:1) complex formation btween 1 and the sodium salts. No anions (SCN - , Br - , and I - ) have any appreciable effect on the ESR spectra of both the (2:1) and (1:1) complexes. (author)

  12. Apparatus for removing impurities in the sodium of sodium cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, A

    1970-11-11

    An apparatus is provided for removing oxygen from liquid sodium flowing in a sodium cooled reactor. The removal of oxygen is complete with high efficiency. The liquid sodium to be purified is disposed outside a cylindrical wall and negatively charged, whereas sodium as a reducing material is disposed inside the same wall. The cylindrical wall is made of zirconia-calcia (ZrO/sub 2/)sub(0.87)(CaO)sub(0.13) solid electrolyte, the cylinder having a thickness of 2.5mm, a diameter of 3cm and a depth of 20cm under the sodium level. Electric resistance of the solid electrolyte is 2.3 ohm at 500/sup 0/C. A current of 1A by the application of 25 volts treats 0.3g of oxygen. Consequently, 1 liter or 1kg of liquid sodium containing 1,000ppm of oxygen can be purified for about 3 hours at an electrical consumption of 7.5 watt-hour. In one embodiment, a cylindrical electrolytic solid made of zirconia-calcia or zirconia-yttria was disposed in a container. Liquid sodium containing oxygen flowed outside of the cylinder. Liquid sodium as a reducing material was present inside the cylinder and the container and the cylinder were electrically insulated. An electrode was inserted at the center of the cylinder and a baffle plate at the upper portion of the electrode to shield heat and rising sodium vapor was provided. The space above the container was filled with an inert gas. The oxygen in the liquid sodium to be purified transferred through the wall of the cylinder into the interior of the cylinder so as to oxydize the reducing sodium material. The supersaturated sodium oxide inside the cylinder was deposited.

  13. Scientific Opinion on the safety evaluation of the active substances, sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate, bentonite, sodium chloride, sodium carbonate for use in active food contact materials

    OpenAIRE

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

    2013-01-01

    This scientific opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the powder mixture of the active substances sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate (FCM substance No 1009), bentonite (CAS No 1302-78-9, FCM No 393), sodium chloride (CAS No 7647-14-5, FCM No 985), sodium carbonate (CAS No 497-19-8, FCM No 1008) which are intended to be used as combined oxygen generator and carbon...

  14. The temperature dependence of the reflection intensities of the modulated composite structure Hg0.776(BEDT-TTF)SCN

    International Nuclear Information System (INIS)

    Pressprich, M.R.; Beek, C. van; Coppens, P.

    1994-01-01

    The temperature dependence between 30 and 300 K of the intensities of 24 reflections of the column-composite structure Hg 0.776 (BEDT-TTF)SCN [Wang, Beno, Carlson, Thorup, Murray, Porter, Williams, Maly, Bu, Petricek, Cisarova, Coppens, Jung, Whangbo, Shirber and Overmyer (1991). Chem. Mater. 3, 508-513; BEDT-TTF=3,4,3',4'-bis(ethylenedithio)-2,2',5,5'-tetrathiafulvalene] has been analyzed in terms of a model including phason temperature factors. The temperature dependence of the main and first-order satellite reflections is reasonably well reproduced in a refinement with 236 observations and four variables. The results are interpreted in terms of a temperature independence of the static displacement amplitudes. The room-temperature r.m.s. phason fluctuations of the mercury sublattice are 50(2) . This value implies that the mean mercury displacement amplitude will increase by ∝60% on lowering of the temperature to within the liquid-helium range. The thermal contraction on cooling is the same for the two sublattices. (orig.)

  15. Ion channels in glioblastoma.

    Science.gov (United States)

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  16. Direct extraction of a Na- beam from a sodium plasma

    International Nuclear Information System (INIS)

    Sasao, Namiko; Fujita, Junji; Yamaoka, Hitoshi; Wada, Motoi.

    1990-07-01

    Negative sodium ions (Na - ) were extracted from a small multi-cusp ion source. A steady state sodium plasma was produced by primary electrons in a sodium gas evaporating from a metal sample placed in the discharge chamber. The Na - current density of 1.5 μA/cm 2 was obtained from a single aperture of 1.5 mm diameter at relatively low discharge power of about 0.4 W and filament power of 50 W. Extraction characteristics were studied by changing the plasma electrode bias. The extracted Na - current showed dependence on the bias voltage similar to that of H - or Li - volume production. (author)

  17. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  18. Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1).

    Science.gov (United States)

    De Jesús-Pérez, José J; Cruz-Rangel, Silvia; Espino-Saldaña, Ángeles E; Martínez-Torres, Ataúlfo; Qu, Zhiqiang; Hartzell, H Criss; Corral-Fernandez, Nancy E; Pérez-Cornejo, Patricia; Arreola, Jorge

    2018-03-01

    The TMEM16A-mediated Ca 2+ -activated Cl - current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca 2+ . On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells.

    Science.gov (United States)

    Zou, Xiaohan; He, Yuwei; Qiao, Jinping; Zhang, Chunlei; Cao, Zhengyu

    2016-01-01

    The scorpion Buthus martensii Karsch has been used in Traditional Chinese Medicine to treat neuronal diseases such as neuropathic pain, paralysis and epilepsy for thousands of years. Studies have demonstrated that scorpion venom is the primary active component. Although scorpion venom can effectively attenuate pain in the clinic, it also produces neurotoxic response. In this study, toxicity guided purification led to identify a mammalian toxin termed BmK NT1 comprising of 65 amino acid residues and an amidated C-terminus, a mature peptide encoded by the nucleotide sequence (GenBank No. AF464898). In contract to the recombinant product of the same nucleotide sequence, BmK AGAP, which displayed analgesic and anti-tumor effect, intravenous injection (i.v.) of BmK NT1 produced acute toxicity in mice with an LD50 value of 1.36 mg/kg. In primary cultured cerebellar granule cells, BmK NT1 produced a concentration-dependent cell death with an IC50 value of 0.65 μM (0.41-1.03 μM, 95% Confidence Intervals, 95% CI) which was abolished by TTX, a voltage-gated sodium channel (VGSC) blocker. We also demonstrated that BmK NT1 produced modest sodium influx in cerebellar granule cell cultures with an EC50 value of 2.19 μM (0.76-6.40 μM, 95% CI), an effect similar to VGSC agonist, veratridine. The sodium influx response was abolished by TTX suggesting that BmK NT1-induced sodium influx is solely through activation of VGSC. Considered these data together, we demonstrated that BmK NT1 activated VGSC and produced neurotoxicity in cerebellar granule cell cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Efficacy of Sodium Carbonate Peroxyhydrate as A Catfish Egg Disinfectant and Comparison to Hydrogen Peroxide

    Science.gov (United States)

    Two experiments were conducted to evaluate the efficacy of sodium carbonate peroxyhydrate (SCP) for improving channel catfish Ictalurus punctatus hatching success when used as a prophylactic chemotherapeutant during egg incubation. In the first experiment, efficacy of SCP was evaluated in 379-L, al...

  1. Activation of sodium channels by α-scorpion toxin, BmK NT1, produced neurotoxicity in cerebellar granule cells: an association with intracellular Ca2+ overloading.

    Science.gov (United States)

    He, Yuwei; Zou, Xiaohan; Li, Xichun; Chen, Juan; Jin, Liang; Zhang, Fan; Yu, Boyang; Cao, Zhengyu

    2017-02-01

    Voltage-gated sodium channels (VGSCs) are responsible for the action potential generation in excitable cells including neurons and involved in many physiological and pathological processes. Scorpion toxins are invaluable tools to explore the structure and function of ion channels. BmK NT1, a scorpion toxin from Buthus martensii Karsch, stimulates sodium influx in cerebellar granule cells (CGCs). In this study, we characterized the mode of action of BmK NT1 on the VGSCs and explored the cellular response in CGC cultures. BmK NT1 delayed the fast inactivation of VGSCs, increased the Na + currents, and shifted the steady-state activation and inactivation to more hyperpolarized membrane potential, which was similar to the mode of action of α-scorpion toxins. BmK NT1 stimulated neuron death (EC 50  = 0.68 µM) and produced massive intracellular Ca 2+ overloading (EC 50  = 0.98 µM). TTX abrogated these responses, suggesting that both responses were subsequent to the activation of VGSCs. The Ca 2+ response of BmK NT1 was primary through extracellular Ca 2+ influx since reducing the extracellular Ca 2+ concentration suppressed the Ca 2+ response. Further pharmacological evaluation demonstrated that BmK NT1-induced Ca 2+ influx and neurotoxicity were partially blocked either by MK-801, an NMDA receptor blocker, or by KB-R7943, an inhibitor of Na + /Ca 2+ exchangers. Nifedipine, an L-type Ca 2+ channel inhibitor, slightly suppressed both Ca 2+ response and neurotoxicity. A combination of these three inhibitors abrogated both responses. Considered together, these data ambiguously demonstrated that activation of VGSCs by an α-scorpion toxin was sufficient to produce neurotoxicity which was associated with intracellular Ca 2+ overloading through both NMDA receptor- and Na + /Ca 2+ exchanger-mediated Ca 2+ influx.

  2. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-12-01

    Full Text Available The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5 were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel in hydrogen cyanide in the presence of sodium benzoate/sodium sulphite inhibitive mixtures range 0.322mmpy to 1.1269mmpy across the three volumetric ratios considered. The 15ml5ml sodium benzoatesodium sulphite mixture had the best average corrosion rate of 0.5123mmpy.The corrosion rate followed reducing pattern after the first 200 hours of immersion. The average corrosion rate in the sodium benzoate / sodium sulphite mixture is less than the rate in sodium sulphite and the mixture is only effective after long time exposure.It is concluded that adding sodium benzoate to sodium sulphite in the volumetric ratio 155ml improves the inhibitive strength of sodium sulphite on the corrosion of mild steel in hydrogen cyanide environment.

  3. Retracted: Addition of a single methyl group to a small molecule sodium channel inhibitor introduces a new mode of gating modulation, by L Wang, SG Zellmer, DM Printzenhoff and NA Castle. British Journal of Pharmacology, volume 172(20): 4905-4918, published in October 2015; DOI 10.1111/bph.13259.

    Science.gov (United States)

    2018-07-01

    The above article, published by the British Journal of Pharmacology in October 2015 (https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.13259), has been retracted by agreement between the authors, the journal Editor in Chief and John Wiley & Sons Limited. The retraction has been agreed owing to the discovery of errors in the chemical structure of the synthetic compounds generated. The corrected structure is now available in the article PF-06526290 can both enhance and inhibit conduction through voltage gated sodium channels by L Wang, SG Zellmer, DM Printzenhoff and NA Castle, 2018, https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14338. Reference Wang L, Zellmer SG, Printzenhoff DM, Castle NA (2015). Addition of a single methyl group to a small molecule sodium channel inhibitor introduces a new mode of gating modulation. Br J Pharmacol 172: 4905-4918. https://doi.org/10.1111/bph.13259. © 2018 The British Pharmacological Society.

  4. Sodium Carbonate is Saltier Than Sodium Chloride to Sodium-Depleted Rats.

    Science.gov (United States)

    St John, Steven J; McBrayer, Anya M; Krauskopf, Erin E

    2017-10-01

    In a series of behavioral experiments in the 1960s, G.R. Morrison identified several unique features of the taste of Na2CO3 to rats; namely, it is 1) considerably more intense than NaCl at isomolar concentrations, 2) avoided at 10 times lower concentrations than NaCl to thirsty rats, 3) preferred at 10 times lower concentrations than NaCl in sodium-depleted rats. He also demonstrated its qualitatively similarity to NaCl. In Experiment 1, we confirmed and extended many of Morrison's observations. Rats were injected with furosemide on 3 occasions to stimulate a sodium appetite. After each depletion, rats were given a brief-access taste test in a lickometer presenting, in random order, water and 7 concentrations of salt. One test used NaCl (0.028-0.89 M, quarter log steps), another used Na2CO3, and the third used Na2CO3, but at a tenfold lower concentration range (0.0028-0.089 M). Rats licked NaCl in an inverted-U shaped concentration-response function peaking at 0.158-0.281 M. As Morrison's results predicted, rats licked Na2CO3 in nearly identical fashion, but at a tenfold lower concentration range (peak at 0.0158-0.028 M). In a second experiment, furosemide-treated rats were repeatedly tested with the lower Na2CO3 range but mixed in the epithelial sodium channel blocker amiloride at various concentrations (3-300 μM, half log steps). Amiloride reduced licking for Na2CO3 and shifted the peak response rightward up to about half a log unit. Thus, this "super-saltiness" of Na2CO3 to rats is at least partly amiloride-dependent. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Onset response of bupivacaine 0.5% which has been added with sodium bicarbonate on epidural block

    Directory of Open Access Journals (Sweden)

    Marwoto Marwoto

    2005-03-01

    Full Text Available There are many advantages in using epidural anesthesia technique. However, there are also some constraints, such as the relatively long onset, particularly in the case of bupivacaine. Whereas the need of a rapid onset of anesthesia technique for emergency cares is increasing lately. The objective of this study was to find a method to hasten the onset of bupivacaine. This is a cross sectional randomized double blind controlled clinical trial performed on 40 patients who would undergo lower abdomen and extremity surgery with epidural block. We evaluated the onset of action of bupivacaine which has been added with sodium bicarbonate. Consecutive sampling method was applied to get the sample. The criteria of sample are ASA I – II patient, aged of 20-60 years old, 50-60 kg of weight, 150-170 cm of height. Patients were allocated randomly into two groups. The treatment group would get epidural block using mixture of 20 cc of bupivacaine 0,5 % + 0.5 cc of sodium bicarbonate 1.4 %, whereas the control group received 20 cc bupivacaine 0.5 % + 0.5 cc aqua bides. Time to reach sensoric block at the level of thoracal 10 dermatome using the pinprick method and time to reach motoric blockade using the bromage scale was recorded. The result of this study showed a significant shortening of the onset of sensory blockade (p<0.05 in the treatment group (10.2±1.4 minutes compared with the control group (19.5±1.3 minutes. The onset of motor blockade had also a significant shortening (p<0.05 in the treatment group(13.3±1.6 minutes compared with the control group (23.0±1.2 minutes. It was concluded that the addition of sodium bicarbonate can hasten the onset of bupivacaine on epidural block. (Med J Indones 2005; 14: 7-10Keywords : onset response, bupivacaine 0.5%, sodium bicarbonate, epidural block

  6. Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-08-01

    The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca(2+) entry step in transcellular Ca(2+) re-absorption in the kidney. The regulation of transmembrane Ca(2+) flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD(2)) cells at mRNA and protein levels. We demonstrate that 17beta-estradiol (E(2)) is involved in the regulation of Ca(2+) influx in these cells via the epithelial Ca(2+) channels TRPV5. By combining whole-cell patch-clamp and Ca(2+)-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50nM E(2) rapidly (<5min) induced a transient increase in inward whole-cell currents and intracellular Ca(2+) via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E(2) in kidney cells. Furthermore, the results suggest calcitropic effects of E(2). The results are discussed in relation to present concepts of non-genomic actions of E(2) in Ca(2+) homeostasis.

  7. Effects of topical flurbiprofen sodium, diclofenac sodium, ketorolac ...

    African Journals Online (AJOL)

    To evaluate corneal sensitivity by using the Cochet-Bonnet® esthesiometer in normal canine eyes at different time points following instillation of three different topical non-steroidal anti-inflammatory drugs (flurbiprofen sodium 0.03%, diclofenac sodium 0.1% and ketorolac tromethamine 0.5%) and benzalkonium chloride ...

  8. Evaluation of stochastic differential equation approximation of ion channel gating models.

    Science.gov (United States)

    Bruce, Ian C

    2009-04-01

    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  9. Sodium MR imaging of human brain neoplasms. A preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shu; Yoshikawa, Kohki; Takakura, Kintomo; Iio, Masahiro

    1988-08-01

    We reported the experience of the sodium magnetic resonance imaging of 5 patients with brain tumors (4 astrocytomas and 1 craniopharyngioma), using a Siemens 1.5 Tesla superconductive magnet. We used two-dimensional Fourier imaging with a spin-echo scanning sequence (and with the repetition time of 140 msec and the echo time of 11 - 14 msec). The radiofrequency was maintained at 17 MHz. Sodium MR imaging was achieved with a 64 x 64 data acquisition (30 mm slice thickness) in 19.1 min. On the sodium MRI, all four astrocytomas, along with the eye balls and the cerebrospinal fluid spaces, appeared as high-intensity areas. Peritumoral edema is also visualized as highly intense, so that it is difficult to discriminate tumor extent from the surrounding edema. Our comparative studies with malignant glioma cases using the same equipment are needed to clarify the relationship between sodium signal intensities and the malignancy of gliomas, and to evaluate the potential clinical utility of sodium MRI. A craniopharyngioma than contained a yellowish cystic fluid with a sodium concentration as high as CSF was shown on sodium MRI as a mass with highly intense signals. The ability to differentiate extracellular from intracellular sodium, that has been studied by several investigators, would greatly augment the clinical specificity of MR imaging.

  10. Ion channel regulation by phosphoinositides analyzed with VSPs – PI(4,5P2 affinity, phosphoinositide selectivity, and PI(4,5P2 pool accessibility

    Directory of Open Access Journals (Sweden)

    Alexandra eRjasanow

    2015-06-01

    Full Text Available The activity of many proteins depends on the phosphoinositide (PI content of the membrane. E.g., dynamic changes of the concentration of PI(4,5P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids.Voltage-sensitive phosphatases (VSPs turn over PI(4,5P2 to PI(4P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5P2. Because cellular PI(4,5P2 is resynthesized rapidly, steady state PI(4,5P2 changes with the degree of VSP activation and thus depends on membrane potential.Here we show that titration of endogenous PI(4,5P2 with Ci-VSP allows for the quantification of relative PI(4,5P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5P2 and PI(4P was insensitive to VSP.Surprisingly, despite comparable PI(4,5P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5P2 that differ in their accessibility to PLC and VSPs.

  11. Brugada syndrome unmasked by accidental inhalation of gasoline vapors.

    Science.gov (United States)

    Kranjcec, Darko; Bergovec, Mijo; Rougier, Jean-Sébastien; Raguz, Miroslav; Pavlovic, Sonja; Jespersen, Thomas; Castella, Vincent; Keller, Dagmar I; Abriel, Hugues

    2007-10-01

    Loss-of-function mutations in the gene SCN5A can cause Brugada syndrome (BrS), which is an inherited form of idiopathic ventricular fibrillation. We report the case of a 46-year-old patient, with no previous medical history, who had ventricular fibrillation after accidental inhalation of gasoline vapors. His electrocardiogram (ECG) showed a typical type-1 BrS pattern that persisted after the acute event. Genetic investigations allowed the identification of a novel SCN5A mutation leading to a frame-shift and early termination of the channel protein. Biochemical and cellular electrophysiology experiments confirmed the loss-of-function of the mutant allele. The patient was implanted with a cardioverter/defibrillator.

  12. Role played by acid-sensitive ion channels in evoking the exercise pressor reflex.

    Science.gov (United States)

    Hayes, Shawn G; McCord, Jennifer L; Rainier, Jon; Liu, Zhuqing; Kaufman, Marc P

    2008-10-01

    The exercise pressor reflex arises from contracting skeletal muscle and is believed to play a role in evoking the cardiovascular responses to static exercise, effects that include increases in arterial pressure and heart rate. This reflex is believed to be evoked by the metabolic and mechanical stimulation of thin fiber muscle afferents. Lactic acid is known to be an important metabolic stimulus evoking the reflex. Until recently, the only antagonist for acid-sensitive ion channels (ASICs), the receptors to lactic acid, was amiloride, a substance that is also a potent antagonist for both epithelial sodium channels as well as voltage-gated sodium channels. Recently, a second compound, A-317567, has been shown to be an effective and selective antagonist to ASICs in vitro. Consequently, we measured the pressor responses to the static contraction of the triceps surae muscles in decerebrate cats before and after a popliteal arterial injection of A-317567 (10 mM solution; 0.5 ml). We found that this ASIC antagonist significantly attenuated by half (Pacid injection into the popliteal artery. In contrast, A-317567 had no effect on the pressor responses to tendon stretch, a pure mechanical stimulus, and to a popliteal arterial injection of capsaicin, which stimulated transient receptor potential vanilloid type 1 channels. We conclude that ASICs on thin fiber muscle afferents play a substantial role in evoking the metabolic component of the exercise pressor reflex.

  13. Differential contribution of Ca2+ sources to day and night BK current activation in the circadian clock.

    Science.gov (United States)

    Whitt, Joshua P; McNally, Beth A; Meredith, Andrea L

    2018-02-05

    Large conductance K + (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca 2+ (Ca 2+ i ). To enable this regulation, BK channels functionally couple to both voltage-gated Ca 2+ channels (VGCCs) and channels mediating Ca 2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca 2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)-the brain's circadian clock-BK current, VGCC current, and Ca 2+ i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca 2+ i are reduced. Here, to determine whether diurnal regulation of Ca 2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca 2+ channels (LTCCs) are the primary daytime Ca 2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)-mediated Ca 2+ i release. The N- and P/Q-type Ca 2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca 2+ sources in the SCN, contributing to diurnal regulation of SCN excitability. © 2018 Whitt et al.

  14. Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene.

    Science.gov (United States)

    Middleton, Steven J; Kneller, Emily M; Chen, Shuo; Ogiwara, Ikuo; Montal, Mauricio; Yamakawa, Kazuhiro; McHugh, Thomas J

    2018-06-04

    An accumulating body of experimental evidence has implicated hippocampal replay occurring within sharp wave ripples (SPW-Rs) as crucial for learning and memory in healthy subjects. This raises speculation that neurological disorders impairing memory disrupt either SPW-Rs or their underlying neuronal activity. We report that mice heterozygous for the gene Scn2a, a site of frequent de novo mutations in humans with intellectual disability, displayed impaired spatial memory. While we observed no changes during encoding, to either single place cells or cell assemblies, we identified abnormalities restricted to SPW-R episodes that manifest as decreased cell assembly reactivation strengths and truncated hippocampal replay sequences. Our results suggest that alterations to hippocampal replay content may underlie disease-associated memory deficits.

  15. Effect of channel-protein interaction on translocation of a protein-like chain through a finite channel

    International Nuclear Information System (INIS)

    Sun Ting-Ting; Ma Hai-Zhu; Jiang Zhou-Ting

    2012-01-01

    We study the translocation of a protein-like chain through a finite cylindrical channel using the pruned-enriched Rosenbluth method (PERM) and the modified orientation-dependent monomer-monomer interaction (ODI) model. Attractive channels (in cp = −2.0, −1.0, −0.5), repulsive channels (in cp = 0.5, 1.0, 2.0), and a neutral channel (in cp = 0) are discussed. The results of the chain dimension and the energy show that Z 0 = 1.0 is an important case to distinguish the types of the channels. For the strong attractive channel, more contacts form during the process of translocation. It is also found that an external force is needed to drive the chain outside of the channel with the strong attraction. While for the neutral, the repulsive, and the weak attractive channels, the translocation is spontaneous. (interdisciplinary physics and related areas of science and technology)

  16. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.

    Science.gov (United States)

    Cai, Tianfu; Luo, Ji; Meng, Er; Ding, Jiuping; Liang, Songping; Wang, Sheng; Liu, Zhonghua

    2015-06-01

    Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (β-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  18. Quantitative sodium MR imaging of native versus transplanted kidneys using a dual-tuned proton/sodium (1H/23Na) coil: initial experience

    International Nuclear Information System (INIS)

    Moon, Chan Hong; Furlan, Alessandro; Kim, Jung-Hwan; Bae, Kyongtae Ty; Zhao, Tiejun; Shapiro, Ron

    2014-01-01

    To compare sodium ( 23 Na) characteristics between native and transplanted kidneys using dual-tuned proton ( 1 H)/sodium MRI. Six healthy volunteers and six renal transplant patients (3 normal function, 3 acute allograft rejection) were included. Proton/sodium MRI was obtained at 3 T using a dual-tuned coil. Signal to noise ratio (SNR), sodium concentration ([ 23 Na]) and cortico-medullary sodium gradient (CMSG) were measured. Reproducibility of [ 23 Na] measurement was also tested. SNR, [ 23 Na] and CMSG of the native and transplanted kidneys were compared. Proton and sodium images of kidneys were successfully acquired. SNR and [ 23 Na] measurements of the native kidneys were reproducible at two different sessions. [ 23 Na] and CMSG of the transplanted kidneys was significantly lower than those of the native kidneys: 153.5 ± 11.9 vs. 192.9 ± 9.6 mM (P = 0.002) and 8.9 ± 1.5 vs. 10.5 ± 0.9 mM/mm (P = 0.041), respectively. [ 23 Na] and CMSG of the transplanted kidneys with normal function vs. acute rejection were not statistically different. Sodium quantification of kidneys was reliably performed using proton/sodium MRI. [ 23 Na] and CMSG of the transplanted kidneys were lower than those of the native kidneys, but without a statistically significant difference between patients with or without renal allograft rejection. (orig.)

  19. Muon-spin rotation studies of the flux lattice in {kappa}-(BEDT-TTF){sub 2}Cu(SCN){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.L. [Saint Andrews Univ. (United Kingdom). Sch. of Phys. and Astron.; Blundell, S.J. [Oxford Univ. (United Kingdom). Dept. of Physics; Pratt, F.L. [RIKEN-RAL, Didcot (United Kingdom); Pattenden, P.A. [Oxford Univ. (United Kingdom). Dept. of Physics; Forgan, E.M. [Birmingham Univ. (United Kingdom). School of Physics and Space Research; Sasaki, T. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Aegerter, C.M. [Zurich Univ. (Switzerland). Inst. fuer Physik; Hunt, M. [Zurich Univ. (Switzerland). Inst. fuer Physik; Chow, K.H. [Oxford Univ. (United Kingdom). Dept. of Physics; Hayes, W. [Oxford Univ. (United Kingdom). Dept. of Physics; Singleton, J. [Oxford Univ. (United Kingdom). Dept. of Physics; Keller, H. [Zurich Univ. (Switzerland). Inst. fuer Physik; Savic, I.M. [Zurich Univ. (Switzerland). Inst. fuer Physik

    1997-02-15

    Muon spin rotation ({mu}SR) studies of the vortex lattice in the superconductor {kappa}-(BEDT-TTF){sub 2}Cu(SCN){sub 2} have revealed a crossover from a quasi-2d to a vortex-line lattice structure for fields below a characteristic field B{sub cr}. The {mu}SR-lineshapes measured from the vortex-line lattice have allowed a re-evaluation of the in-plane penetration depth. (orig.)

  20. Sodium-carbonate co-substituted hydroxyapatite ceramics

    Directory of Open Access Journals (Sweden)

    Zoltan Z. Zyman

    2013-12-01

    Full Text Available Powders of sodium-carbonate co-substituted hydroxyapatite, having sodium content in the range of 0.25–1.5 wt.% with a 0.25 wt.% step, were prepared by a precipitation-solid state reaction route. Compacts of the powders were sintered in a CO2 flow (4 mL/min at 1100 °C for 2 h. The sintered ceramics contained sodium and carbonate ions in the ranges of 0–1.5 wt.% and 1.3–6 wt.%, respectively, which are typical impurity concentrations in biological apatite. A relationship between sodium and carbonate contents and the type of carbonate substitution was found. The total carbonate content progressively increased with the sodium content. The obtained ceramics showed an AB-type carbonate substitution. However, the substitution became more B-type as the sodium content increased. As a result, the carbonation was almost B-type (94 % for the highest sodium content (1.5 wt.%.