WorldWideScience

Sample records for sodium caseinate-stabilized emulsions

  1. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    Science.gov (United States)

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  2. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    Science.gov (United States)

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  3. Improved sugar beet pectin-stabilized emulsions through complexation with sodium caseinate.

    Science.gov (United States)

    Li, Xiangyang; Fang, Yapeng; Phillips, Glyn O; Al-Assaf, Saphwan

    2013-02-13

    The study investigates the complexes formed between sodium caseinate (SC) and sugar beet pectin (SBP) and to harness them to stabilize SBP emulsions. We find that both hydrophobic and electrostatic interactions are involved in the complexation. In SC/SBP mixed solution, soluble SC/SBP complexes first form on acidification and then aggregate into insoluble complexes, which disassociate into soluble polymers upon further decreasing pH. The critical pH's for the formation of soluble and insoluble complexes and disappearance of insoluble complexes are designated as pH(c), pH(φ), and pH(d), respectively. These critical pH values define four regions in the phase diagram of complexation, and SC/SBP emulsions were prepared in these regions. The results show that the stability of SBP-stabilized emulsion is greatly improved at low SC/SBP ratios and acidic pH's. This enhancement can be attributed to an increase in the amount of adsorbed SBP as a result of cooperative adsorption to sodium caseinate. Using a low ratio of SC/SBP ensured that all caseinate molecules are completely covered by adsorbed SBP chains, which eliminates possible instability induced by thermal aggregation of caseinate molecules resulting from stress acceleration at elevated temperatures. A mechanistic model for the behavior is proposed.

  4. Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH.

    Science.gov (United States)

    Perugini, Luisa; Cinelli, Giuseppe; Cofelice, Martina; Ceglie, Andrea; Lopez, Francesco; Cuomo, Francesca

    2018-02-05

    In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate.

    Science.gov (United States)

    Pallandre, S; Decker, E A; McClements, D J

    2007-11-01

    The potential of sodium alginate for improving the stability of emulsions containing caseinate-coated droplets was investigated. One wt% corn oil-in-water emulsions containing anionic caseinate-coated droplets (0.15 wt% sodium caseinate) and anionic sodium alginate (0 to 1 wt%) were prepared at pH 7. The pH of these emulsions was then adjusted to 3.5, so that the anionic alginate molecules adsorbed to the cationic caseinate-coated droplets. Extensive droplet aggregation occurred when there was insufficient alginate to completely saturate the droplet surfaces due to bridging flocculation, and when the nonadsorbed alginate concentration was high enough to induce depletion flocculation. Emulsions with relatively small particle sizes could be formed over a range of alginate concentrations (0.1 to 0.4 wt%). The influence of pHs (3 to 7) and sodium chloride (0 to 500 mM) on the properties of primary (0 wt% alginate) and secondary (0.15 wt% alginate) emulsions was studied. Alginate adsorbed to the droplet surfaces at pHs 3, 4, and 5, but not at pHs 6 and 7, due to electrostatic attraction between anionic groups on the alginate and cationic groups on the adsorbed caseinate. Secondary emulsions had better stability than primary emulsions at pH values near caseinate's isoelectric point (pHs 4 and 5). In addition, secondary emulsions were stable up to higher ionic strengths (< 300 mM) than primary emulsions (<50 mM). The controlled electrostatic deposition method utilized in this study could be used to extend the range of application of dairy protein emulsifiers in the food industry.

  6. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.

    Science.gov (United States)

    Sato, A C K; Perrechil, F A; Costa, A A S; Santana, R C; Cunha, R L

    2015-09-01

    The aim of this work was to evaluate the influence of laccase and ferulic acid on the characteristics of oil-in-water emulsions stabilized by sodium caseinate at different pH (3, 5 and 7). Emulsions were prepared by high pressure homogenization of soybean oil with sodium caseinate solution containing varied concentrations of laccase (0, 1 and 5mg/mL) and ferulic acid (5 and 10mM). Laccase treatment and pH exerted a strong influence on the properties with a consequent effect on stability, structure and rheology of emulsions stabilized by Na-caseinate. At pH7, O/W emulsions were kinetically stable due to the negative protein charge which enabled electrostatic repulsion between oil droplets resulting in an emulsion with small droplet size, low viscosity, pseudoplasticity and viscoelastic properties. The laccase treatment led to emulsions showing shear-thinning behavior as a result of a more structured system. O/W emulsions at pH5 and 3 showed phase separation due to the proximity to protein pI, but the laccase treatment improved their stability of emulsions especially at pH3. At pH3, the addition of ferulic acid and laccase produced emulsions with larger droplet size but with narrower droplet size distribution, increased viscosity, pseudoplasticity and viscoelastic properties (gel-like behavior). Comparing laccase treatments, the combined addition of laccase and ferulic acid generally produced emulsions with lower stability (pH5), larger droplet size (pH3, 5 and 7) and higher pseudoplasticity (pH5 and 7) than emulsion with only ferulic acid. The results suggested that the cross-linking of proteins by laccase and ferulic acid improved protein emulsifying properties by changing functional mechanisms of the protein on emulsion structure and rheology, showing that sodium caseinate can be successfully used in acid products when treated with laccase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions.

    Science.gov (United States)

    Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García-Moreno, Pedro J; Anankanbil, Sampson; Guo, Zheng; Jacobsen, Charlotte

    2018-07-30

    Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50-70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein determination) and oxidative (primary and secondary oxidation products) stabilities of the emulsions were studied during 12 days of storage. Creaming stability was higher for emulsions produced with alginates and CAS compared to emulsions prepared with only CAS. Combined use of CAS + LCMA performed better in terms of physical stability compared to emulsions produced with only CAS. However, the oxidative stability of this emulsion was inferior probably due to the presence of an unsaturated carbon chain in LCMA structure. CAS + SCMA emulsions not only showed better physical stability such as smaller droplet size, lower creaming and higher viscosity, but also had an improved oxidative stability than emulsions produced with only CAS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effects of sodium caseinate concentration and storage conditions on the oxidative stability of oil-in-water emulsions.

    Science.gov (United States)

    O' Dwyer, Sandra P; O' Beirne, David; Eidhin, Deirdre Ní; O' Kennedy, Brendan T

    2013-06-01

    The oxidative stability of various oils (sunflower, camelina and fish) and 20% oil-in-water (O/W) emulsions, were examined. The mean particle size decreased from 1179 to 325 nm as sodium caseinate (emulsifier) concentration was increased from 0.25% to 3% in O/W emulsions (Psodium caseinate concentration increased, and similarly decreased as microfluidisation pressure increased (P<0.05). Increasing storage temperature of the emulsions from 5 to 60°C, resulted in lower detectable lipid oxidation products during storage (P<0.05). Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions

    DEFF Research Database (Denmark)

    Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García Moreno, Pedro Jesús

    2018-01-01

    Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50–70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein...

  10. Physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with combinations of sodium caseinate and sodium alginate

    DEFF Research Database (Denmark)

    Yesiltas, Betül; García Moreno, Pedro Jesús; Sørensen, Ann-Dorit Moltke

    2017-01-01

    .2 ratio NaCas:NaAlg by Box-Behnken's design, the formulae 70%-1.4%-1.2 was decided due to high fish oil content's decreasing effect on droplet size and peroxide value. Practical applications: Physically and oxidatively stable high fat (50-70%) omega-3 delivery fish oil-in-water emulsions are of high......A systematic study was carried out in order to evaluate the physical and oxidative stability of high fat omega-3 delivery fish oil-in-water emulsions stabilized with combinations of sodium caseinate (NaCas) and sodium alginate (NaAlg). The influence of 3 factors related to emulsion composition...... (fish oil content: 50, 60 and 70%; total amount of NaCas and NaAlg: 1.4, 2.1 and 2.8 %; and ratio NaCas:NaAlg: 0.4, 1.2 and 2) on physical (droplet size, viscosity and zeta potential) and oxidative (primary and secondary oxidation products) parameters was evaluated. It was possible to produce emulsions...

  11. Effect of cross-linking of interfacial sodium caseinate by natural processing on the oxidative stability of oil-in-water (o/w) emulsions.

    Science.gov (United States)

    Phoon, Pui Yeu; Paul, Lake N; Burgner, John W; San Martin-Gonzalez, M Fernanda; Narsimhan, Ganesan

    2014-04-02

    This study investigated how enzymatic cross-linking of interfacial sodium caseinate and emulsification, via high-pressure homogenization, influenced the intrinsic oxidative stability of 4% (w/v) menhaden oil-in-water emulsions stabilized by 1% (w/v) caseinate at pH 7. Oil oxidation was monitored by the ferric thiocyanate perioxide value assay. Higher homogenization pressure resulted in improved intrinsic emulsion oxidative stability, which is attributed to increased interfacial cross-linking as indicated by higher weighted average sedimentation coefficients of interfacial protein species (from 11.2 S for 0 kpsi/0.1 MPa to 18 S for 20 kpsi/137.9 MPa). Moderate dosage of transglutaminase at 0.5-1.0 U/mL emulsion enhanced intrinsic emulsion oxidative stability further, despite a contradictory reduction in the antioxidant property of cross-linked caseinate as tested by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. This implied the prominent role of cross-linked interfacial caseinate as a physical barrier for oxygen transfer, hence its efficacy in retarding oil oxidation.

  12. Structure-rheology relations in sodium caseinate containing systems

    NARCIS (Netherlands)

    Ruis, H.G.M.

    2007-01-01

    The general aim of the work described in this thesis was to investigate structure-rheologyrelations for dairy related products, focusing on model systems containing sodium caseinate. The acid inducedgelationof sodium caseinate, of sodium caseinate stabilized emulsions, and the effect of shear on the

  13. Heteroaggregation of lipid droplets coated with sodium caseinate and lactoferrin.

    Science.gov (United States)

    de Figueiredo Furtado, Guilherme; Michelon, Mariano; de Oliveira, Davi Rocha Bernardes; da Cunha, Rosiane Lopes

    2016-11-01

    Formation and characterization of droplet heteroaggregates were investigated by mixing two emulsions previously stabilized by proteins oppositely charged. Emulsions were composed of 5vol.% of sunflower oil and 95vol.% of sodium caseinate or lactoferrin aqueous dispersions. They were produced using ultrasound with fixed power (300W) and sonication time (6min). Different volume ratios (0-100%) of sodium caseinate-stabilized emulsion (droplet diameter around 1.75μm) to lactoferrin-stabilized emulsion (droplet diameter around 1.55μm) were mixed under conditions that both proteins showed opposite charges (pH7). Influence of ionic strength (0-400mM NaCl) on the heteroaggregates stability was also evaluated. Creaming stability, zeta potential, microstructure, mean particle diameter and rheological properties of the heteroaggregates were measured. These properties depended on the volume ratio (0-100%) of sodium caseinate to lactoferrin-stabilized emulsion (C:L) and the ionic strength. In the absence of salt, different zeta potential values were obtained, rheological properties (viscosity and elastic moduli) were improved and the largest heteroaggregates were formed at higher content of lactoferrin-stabilized emulsion (60-80%). The system containing 40 and 60vol.% of sodium caseinate and lactoferrin stabilized emulsion, respectively, presented good stability against phase separation besides showing enhanced rheological and size properties due to extensive droplets aggregation. Phase separation was observed only in the absence of sodium caseinate, demonstrating the higher susceptibility of lactoferrin to NaCl. The heteroaggregates produced may be useful functional agents for texture modification and controlled release since different rheological properties and sizes can be achieved depending on protein concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Long-term stability of sodium caseinate-stabilized nanoemulsions.

    Science.gov (United States)

    Yerramilli, Manispuritha; Ghosh, Supratim

    2017-01-01

    Oil-in-water (5 wt%) nanoemulsions were prepared with different concentration (2.5-10 wt%) of sodium caseinate as a sole emulsifier and their long-term storage stability was investigated for 6 months. Previous studies associated with sodium caseinate looked only into nanoemulsion formation; hence the challenges with long-term stability were not addressed. All nanoemulsions displayed an average droplet size sodium caseinate-stabilized nanoemulsions.

  15. New insights about flocculation process in sodium caseinate-stabilized emulsions.

    Science.gov (United States)

    Huck-Iriart, Cristián; Montes-de-Oca-Ávalos, Juan; Herrera, María Lidia; Candal, Roberto Jorge; Pinto-de-Oliveira, Cristiano Luis; Linares-Torriani, Iris

    2016-11-01

    Flocculation process was studied in emulsions formulated with 10wt.% sunflower oil, 2, 5 or 7.5wt.% NaCas, and with or without addition of sucrose (0, 5, 10, 15, 20 or 30wt.%). Two different processing conditions were used to prepare emulsions: ultraturrax homogenization or further homogenization by ultrasound. Emulsions with droplets with diameters above (coarse) or below (fine) 1μm were obtained. Emulsions were analyzed for droplet size distribution by static light scattering (SLS), stability by Turbiscan, and structure by confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). SAXS data were fitted by a theoretical model that considered a system composed of poly dispersed spheres with repulsive interaction and presence of aggregates. Flocculation behavior was caused by the self-assembly properties of NaCas, but the process was more closely related to interfacial protein content than micelles concentration in the aqueous phase. The results indicated that casein aggregation was strongly affected by disaccharide addition, hydrophobic interaction of the emulsion droplets, and interactions among interfacial protein molecules. The structural changes detected in the protein micelles in different environments allowed understanding the macroscopic physical behavior observed in concentrated NaCas emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structure-rheology relations in sodium caseinate containing systems

    OpenAIRE

    Ruis, H.G.M.

    2007-01-01

    The general aim of the work described in this thesis was to investigate structure-rheologyrelations for dairy related products, focusing on model systems containing sodium caseinate. The acid inducedgelationof sodium caseinate, of sodium caseinate stabilized emulsions, and the effect of shear on the structure formation was characterized. Special attention was given to the sol-gel transition point, which was defined by a frequency independent loss tangent. It was shown that the sol-gel transit...

  17. Study of chemical stability of lemon oil components in sodium caseinate-lactose glycoconjugate-stabilized oil-in-water emulsions using solid-phase microextraction-gas chromatography.

    Science.gov (United States)

    Sabik, Hassan; Achouri, Allaoua; Alfaro, Maria; Pelletier, Marylène; Belanger, Denis; Britten, Michel; Fustier, Patrick

    2014-07-25

    A headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC/MS) method was developed to quantify lemon oil components and their degradation products in oil-in-water (O/W) emulsions prepared with sodium caseinate-heated-lactose (NaC-T + Lact) glycoconjugates as wall materials at two pH values (3.0 and 6.8). NaC-T + Lact conjugates had a significantly lower solubility at both pHs. Hydrolysis prior to glycation enhanced the solubility of glycoconjugates. Glycation with lactose did not improve the emulsion activity of NaC, while caseinate glycoconjugates showed much stronger antioxidant activity than the NaC-control sample. This might be due to the presence of melanoidins formed between the sugar and amino acid compounds as supported by the increase in browning intensity. Among the SPME-fibres tested, carboxen/polydimethylsiloxane (CAR/PDMS) provided better results in terms of sensitivity and selectivity for oil lemon components and their degradation products. Storage studies of these emulsions demonstrated that glycated NaC-T + Lact showed protection against peroxidation compared to the control. However, acidic pH conditions altered their stability over storage time. The major off-flavor components (α-terpineol and carvone) were inhibited in emulsions stabilized with glycated NaC, particularly at pH 6.8. The use of NaC-T + Lact conjugates showed improved encapsulation efficiency and stability and could be used as potential food ingredient-emulsifiers for stabilising citrus oils against oxidative degradation in food and beverage applications.

  18. Determination of Formulation Conditions Allowing Double Emulsions Stabilized by PGPR and Sodium Caseinate to Be Used as Capsules.

    Science.gov (United States)

    Nollet, Maxime; Laurichesse, Eric; Besse, Samantha; Soubabère, Olivier; Schmitt, Véronique

    2018-02-27

    Water-in-oil-in-water (W 1 /O/W 2 ) double emulsions stabilized by polyglycerol polyricinoleate (PGPR), a lipophilic food grade small polymer, and sodium caseinate, a hydrophilic milk protein, were developed to encapsulate vitamin B12, a model hydrophilic substance easy to titrate. Using rheology, sensitive to drop size evolution and water fluxes, static light scattering, and microscopy both giving the evolution of drops' size and vitamin B12 titration assessing the encapsulation, we were able to detect independently the double emulsion drop size, the encapsulation loss, and the flux of water as a function of time. By differentiating the PGPR required to cover the W 1 -droplets' surface from PGPR in excess in the oil phase, we built a PGPR-inner droplet volume fraction diagram highlighting the domains where the double emulsion is stable toward encapsulation and/or water fluxes. We demonstrated the key role played by nonadsorbed PGPR concentration in the intermediate sunflower oil phase on the emulsion stability while, surprisingly, the inner droplet volume fraction had no effect on the emulsion stability. At low PGPR concentration, a release of vitamin B12 was observed and the leakage mechanism of coalescence between droplets and oil-water interface of the oily drops (also called globules hereafter), was identified using confocal microscopy. For high enough PGPR content, the emulsions were stable and may therefore serve as efficient capsules without need of an additional gelling, thickening, complexion or interface rigidifying agent. We generalized these results with the encapsulation of an insecticide: Cydia pomonella granulovirus used in organic arboriculture.

  19. In vivo postprandial bioavailability of interesterified-lipids in sodium-caseinate or chitosan based O/W emulsions.

    Science.gov (United States)

    Farfán, M; Villalón, M J; Ortíz, M E; Nieto, S; Bouchon, P

    2015-03-15

    Recent studies have shown that it should be possible to control lipid bioavailability through food structural approaches. Nevertheless, the gastrointestinal-tract physiological conditions must also be considered. To get a better understanding of this phenomenon, we evaluated the effect of emulsification, as well as the use of sodium caseinate or chitosan, on the postprandial bioavailability of interesterified-lipids in O/W emulsions after oral gastric feeding Sprague-Dawley rats. We verified that emulsification may increase lipid absorption, as determined after feeding sodium-caseinate emulsions. However, this result could not be generalised. Interesterified-lipids that were emulsified with chitosan were equally absorbed as those contained in non-emulsified interesterified-lipids/distilled-water blends. Copyright © 2014. Published by Elsevier Ltd.

  20. Sodium caseinate stabilized zein colloidal particles.

    Science.gov (United States)

    Patel, Ashok R; Bouwens, Elisabeth C M; Velikov, Krassimir P

    2010-12-08

    The present work deals with the preparation and stabilization of zein colloidal particles using sodium caseinate as electrosteric stabilizer. Colloidal particles with well-defined size range (120-150 nm) and negative surface potential (-29 to -47 mV) were obtained using a simple antisolvent precipitation method. Due to the presence of caseinate, the stabilized colloidal particles showed a shift of isoelectric point (IEP) from 6.0 to around pH 5.0 and thus prevent the aggregation of zein near its native IEP (pH 6.2). The particles also showed good stability to varying ionic strength (15 mM-1.5 M NaCl). Furthermore, stabilized particles retained the property of redispersibility after drying. In vitro protein hydrolysis study confirmed that the presence of caseinate did not alter the digestibility of zein. Such colloidal particles could potentially serve as all-natural delivery systems for bioactive molecules in food, pharmaceutical, and agricultural formulations.

  1. Effects of different dairy ingredients on the rheological behaviour and stability of hot cheese emulsions

    DEFF Research Database (Denmark)

    Kelimu, Abulimiti; Felix da Silva, Denise; Geng, Xiaolu

    2017-01-01

    The influence of sodium caseinate (SC), butter milk powder (BMP) and their combinations on particle size, rheological properties, emulsion stability and microstructure of hot cheese emulsions made from mixtures of Cheddar and soft white cheese was studied. All emulsions exhibited shear-thinning f......The influence of sodium caseinate (SC), butter milk powder (BMP) and their combinations on particle size, rheological properties, emulsion stability and microstructure of hot cheese emulsions made from mixtures of Cheddar and soft white cheese was studied. All emulsions exhibited shear......-thinning flow behaviour and increasing SC concentration (1–4%) led to an increase in particle size and a decrease in apparent viscosity. In contrast, increasing BMP concentration caused significant decrease in particle size and slightly reduced the apparent viscosity. Stability against creaming...

  2. Properties of emulsions stabilised by sodium caseinate–chitosan complexes

    NARCIS (Netherlands)

    Zinoviadou, K.; Scholten, E.; Moschakis, T.; Biliaderis, C.G.

    2012-01-01

    Oil-in-water emulsions (10%, w/w, oil) were prepared at pH 5.7 by using electrostatically formed complexes of 0.5% (w/w) sodium caseinate (Na-CAS) and 0–0.6% (w/w) chitosan. Emulsions stabilized by complexes with increased levels of chitosan (>0.2% w/w) had a smaller average droplet size and

  3. Impact of sodium caseinate concentration and location on magnesium release from multiple W/O/W emulsions.

    Science.gov (United States)

    Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Anton, Marc; Leal-Calderon, Fernando

    2010-06-15

    Water-in-oil-in-water (W/O/W) double emulsions were prepared and the rate of release of magnesium ions from the internal to the external aqueous phase was followed. Sodium caseinate was used not only as a hydrophilic surface-active species but also as a chelating agent able to bind magnesium ions. The release occurred without film rupturing (no coalescence). The kinetics of the release process depended on the location (in only one or in both aqueous compartments) and on the concentration of sodium caseinate. The rate of release increased with the concentration of sodium caseinate in the external phase and decreased when sodium caseinate was present in the inner droplets. The experiments were interpreted within the frame of a mean-field model based on diffusion, integrating the effect of ion binding. The data could be adequately fitted by considering a time-dependent permeation coefficient of the magnesium ions across the oil phase. Our results suggested that ion permeability was influenced by the state of the protein interfacial layers which itself depended on the extent of magnesium binding.

  4. Structural investigations of sodium caseinate micelles in complex environments

    International Nuclear Information System (INIS)

    Huck Iriart, C.; Herrera, M.L.; Candal, R.; Oliveira, C.L.P.; Torriani, I.

    2012-01-01

    Full text: The most frequent destabilization mechanisms in Sodium Caseinate (NaCas) emulsions are creaming and flocculation. Coarse or fine emulsions with low protein con- tent destabilize mainly by creaming. If migration mechanism is suppressed, flocculation may become the main mechanism of destabilization. Small Angle X-Ray Scattering (SAXS) technique was applied to investigate sodium caseinate micelles structure in different environments. As many natural products, Sodium Caseinate samples have large polydisperse size distribution. The experimental data was analyzed using advanced modeling approaches. The Form Factor for the Caseinate micelle subunits was described by an ellipsoidal core shell model and the structure factor was split into two contributions, one corresponding to the particle-particle interactions and another one for the long range correlation of the subunits in the supramolecular structure. For the first term the hard sphere structure factor using the Percus-Yevick approximation for closure relation was used and for the second term a fractal model was applied. Three concentrations of sodium Caseinate (2, 5 and 7.5 %wt.) were measured in pure water, sugar solutions (20 %wt.) and in three different lipid phase emulsions containing 10 %wt. sunflower seed, olive and fish oils. Data analysis provided an average casein subunit radius of 4 nm, an average distance between the subunits of around 20nm and a fractal dimension value of around 3 for all samples. As indicated by the values of the correlation lengths for the set of studied samples, the casein aggregation is strongly affected by simple sugar additions and it is enhanced by emulsion droplets hydrophobic interaction. As will be presented, these nanoscale structural results provided by scattering experiments is consistent with macroscopic results obtained from several techniques, providing a new understanding of NaCas emulsions. (author)

  5. Structural investigations of sodium caseinate micelles in complex environments

    Energy Technology Data Exchange (ETDEWEB)

    Huck Iriart, C.; Herrera, M.L.; Candal, R. [Universidad de Buenos Aires, Buenos Aires (Argentina); Oliveira, C.L.P. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Torriani, I. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The most frequent destabilization mechanisms in Sodium Caseinate (NaCas) emulsions are creaming and flocculation. Coarse or fine emulsions with low protein con- tent destabilize mainly by creaming. If migration mechanism is suppressed, flocculation may become the main mechanism of destabilization. Small Angle X-Ray Scattering (SAXS) technique was applied to investigate sodium caseinate micelles structure in different environments. As many natural products, Sodium Caseinate samples have large polydisperse size distribution. The experimental data was analyzed using advanced modeling approaches. The Form Factor for the Caseinate micelle subunits was described by an ellipsoidal core shell model and the structure factor was split into two contributions, one corresponding to the particle-particle interactions and another one for the long range correlation of the subunits in the supramolecular structure. For the first term the hard sphere structure factor using the Percus-Yevick approximation for closure relation was used and for the second term a fractal model was applied. Three concentrations of sodium Caseinate (2, 5 and 7.5 %wt.) were measured in pure water, sugar solutions (20 %wt.) and in three different lipid phase emulsions containing 10 %wt. sunflower seed, olive and fish oils. Data analysis provided an average casein subunit radius of 4 nm, an average distance between the subunits of around 20nm and a fractal dimension value of around 3 for all samples. As indicated by the values of the correlation lengths for the set of studied samples, the casein aggregation is strongly affected by simple sugar additions and it is enhanced by emulsion droplets hydrophobic interaction. As will be presented, these nanoscale structural results provided by scattering experiments is consistent with macroscopic results obtained from several techniques, providing a new understanding of NaCas emulsions. (author)

  6. Oxidative Stability of Granola Bars Enriched with Multilayered Fish Oil Emulsion in the Presence of Novel Brown Seaweed Based Antioxidants

    DEFF Research Database (Denmark)

    Hermund, Ditte Baun; Karadaǧ, Ayşe; Andersen, Ulf

    2016-01-01

    as a barrier to the penetration and diffusion of molecular species that promote oxidation. The positive charge of oil droplets in the secondary emulsion may also inhibit iron-lipid interaction through electrostatic repulsion. Additional protection against lipid oxidation was obtained when fish oil emulsions......Fucus vesiculosus extracts that have both radical scavenging activity and metal chelating ability in vitro were used as natural antioxidant in granola bars enriched with fish oil emulsion by using primary and secondary emulsion systems stabilized by sodium caseinate alone and sodium caseinate...

  7. Effect of sucrose ester concentration on the interfacial characteristics and physical properties of sodium caseinate-stabilized oil-in-water emulsions.

    Science.gov (United States)

    Zhao, Qiangzhong; Liu, Daolin; Long, Zhao; Yang, Bao; Fang, Min; Kuang, Wanmei; Zhao, Mouming

    2014-05-15

    The effect of sucrose ester (SE) concentration on interfacial tension and surface dilatational modulus of SE and sodium caseinate (NaCas)-SE solutions were investigated. The critical micelle concentration (CMC) of SE was presumed to be 0.05% by measuring interfacial tension of SE solution. The interfacial tension of NaCas-SE solution decreased with increased SE concentration. A sharp increase in surface dilatational modulus of NaCas solution was observed when 0.01% SE was added and a decline was occurred at higher SE level. The influence of SE concentration on droplet size and confocal micrograph, surface protein concentration, ζ-potential and rheological properties of oil-in-water (O/W) emulsions prepared with 1% NaCas was also examined. The results showed that addition of SE reduced droplet size and surface protein concentration of the O/W emulsions. The ζ-potential of the O/W emulsions increased initially and decreased afterward with increased SE concentration. All the O/W emulsions exhibited a shear-thinning behaviour and the data were well-fitted into the Herschel-Bulkley model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Emulsifying properties of maillard conjugates produced from sodium caseinate and locust bean gum

    Directory of Open Access Journals (Sweden)

    F. A. Perrechil

    2014-06-01

    Full Text Available Emulsifying properties of sodium caseinate -locust bean gum Maillard conjugates produced at different temperatures (54 - 96 ºC, protein/polysaccharide ratios (0.3 - 1.0 and reaction times (1 - 24 hours were evaluated. Conjugate formation was confirmed by formation of color and high molecular weight fractions and the decrease of the αs- and β-casein bands. The emulsions stabilized by Maillard conjugates showed good stability. The mean droplet diameter (d32 tended to decrease with the increase of incubation time and temperature, except at extreme conditions (24 hours and 90 ºC or 96 ºC when the partial degradation of the conjugates was probably favored, resulting in phase separation of emulsions. The emulsion viscosity decreased with the increase in the protein/polysaccharide ratio and with the degradation of the conjugates. The conditions used in the experimental design made the optimization of the conjugate production viable, which showed greater emulsifier properties than the pure protein under acid conditions.

  9. Emulsifier type, metal chelation and pH affect oxidative stability of n-3-enriched emulsions

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Jacobsen, Charlotte

    2008-01-01

    -enriched oil-in-water emulsion. The selected food emulsifiers were Tween 80, Citrem, sodium caseinate and lecithin. Lipid oxidation was evaluated by determination of peroxide values and secondary volatile oxidation products. Moreover, the zeta potential and the droplet sizes were determined. Twen resulted...... in the least oxidatively stable emulsions, followed by Citrem. When iron was present, caseinate-stabilized emulsions oxidized slower than lecithin emulsions at pH 3, whereas the opposite was the case at pH 7. Oxidation generally progressed faster at pH 3 than at pH 7, irrespective of the addition of iron. EDTA...

  10. Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films for improved water barrier properties via emulsion/solvent evaporation.

    Science.gov (United States)

    Wang, Li-Juan; Yin, Ye-Chong; Yin, Shou-Wei; Yang, Xiao-Quan; Shi, Wei-Jian; Tang, Chuan-He; Wang, Jin-Mei

    2013-11-20

    This work attempted to develop novel high barrier zein/SC nanoparticle (ZP)-stabilized emulsion films through microfluidic emulsification (ZPE films) or in combination with solvent (ethyl acetate) evaporation techniques (ZPE-EA films). Some physical properties, including tensile and optical properties, water vapor permeability (WVP), and surface hydrophobicity, as well as the microstructure of ZP-stabilized emulsion films were evaluated and compared with SC emulsion (SCE) films. The emulsion/solvent evaporation approach reduced lipid droplets of ZP-stabilized emulsions, and lipid droplets of ZP-stabilized emulsions were similar to or slightly lower than that of SC emulsions. However, ZP- and SC-stabilized emulsion films exhibited a completely different microstructure, nanoscalar lipid droplets were homogeneously distributed in the ZPE film matrix and interpenetrating protein-oil complex networks occurred within ZPE-EA films, whereas SCE films presented a heterogeneous microstructure. The different stabilization mechanisms against creaming or coalescence during film formation accounted for the preceding discrepancy of the microstructures between ZP-and SC-stabilized emulsion films. Interestingly, ZP-stabilized emulsion films exhibited a better water barrier efficiency, and the WVP values were only 40-50% of SCE films. A schematic representation for the formation of ZP-stabilized emulsion films was proposed to relate the physical performance of the films with their microstructure and to elucidate the possible forming mechanism of the films.

  11. Influence of Casein-Phospholipid Combinations as Emulsifier on the Physical and Oxidative Stability of Fish Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Horn, Anna Frisenfeldt; Jacobsen, Charlotte

    2014-01-01

    The objective of this study was to investigate the influence of casein (0.3% w/w) and phospholipid (0.5% w/w) emulsifier combinations on the physical and oxidative stability of 10% fish oil-in-water emulsions at pH 7. For that purpose, three phospholipids were evaluated, namely, lecithin (LC......), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). The emulsion stabilized with LC showed the best physical stability having the most negative zeta potential and the lowest mean droplet size. In addition, this emulsion was also the least oxidized in terms of peroxide value and concentration of the volatile...

  12. Competitive displacement of sodium caseinate by low-molecular-weight emulsifiers and the effects on emulsion texture and rheology.

    Science.gov (United States)

    Munk, M B; Larsen, F H; van den Berg, F W J; Knudsen, J C; Andersen, M L

    2014-07-29

    Low-molecular-weight (LMW) emulsifiers are used to promote controlled destabilization in many dairy-type emulsions in order to obtain stable foams in whippable products. The relation between fat globule aggregation induced by three LMW emulsifiers, lactic acid ester of monoglyceride (LACTEM), saturated monoglyceride (GMS), and unsaturated monoglyceride (GMU) and their effect on interfacial protein displacement was investigated. It was found that protein displacement by LMW emulsifiers was not necessary for fat globule aggregation in emulsions, and conversely fat globule aggregation was not necessarily accompanied by protein displacement. The three LMW emulsifiers had very different effects on emulsions. LACTEM induced shear instability of emulsions, which was accompanied by protein displacement. High stability was characteristic for emulsions with GMS where protein was displaced from the interface. Emulsions containing GMU were semisolid, but only low concentrations of protein were detected in the separated serum phase. The effects of LACTEM, GMS, and GMU may be explained by three different mechanisms involving formation of interfacial α-gel, pickering stabilization and increased exposure of bound casein to the water phase. The latter may facilitate partial coalescence. Stabilizing hydrocolloids did not have any effect on the LMW emulsifiers' ability to induce protein displacement.

  13. Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals.

    Science.gov (United States)

    Juvonen, Kristiina R; Macierzanka, Adam; Lille, Martina E; Laaksonen, David E; Mykkänen, Hannu M; Niskanen, Leo K; Pihlajamäki, Jussi; Mäkelä, Kari A; Mills, Clare E N; Mackie, Alan R; Malcolm, Paul; Herzig, Karl-Heinz; Poutanen, Kaisa S; Karhunen, Leila J

    2015-08-14

    The physico-chemical and interfacial properties of fat emulsions influence lipid digestion and may affect postprandial responses. The aim of the present study was to determine the effects of the modification of the interfacial layer of a fat emulsion by cross-linking on postprandial metabolic and appetite responses. A total of fifteen healthy individuals (26.5 (sem 6.9) years and BMI 21.9 (sem 2.0) kg/m2) participated in a cross-over design experiment in which they consumed two isoenergetic (1924 kJ (460 kcal)) and isovolumic (250 g) emulsions stabilised with either sodium caseinate (Cas) or transglutaminase-cross-linked sodium caseinate (Cas-TG) in a randomised order. Blood samples were collected from the individuals at baseline and for 6 h postprandially for the determination of serum TAG and plasma NEFA, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), glucose and insulin responses. Appetite was assessed using visual analogue scales. Postprandial TAG and NEFA responses and gastric emptying (GE) rates were comparable between the emulsions. CCK increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05), while GLP-1 responses did not differ between the two test emulsions. Glucose and insulin profiles were lower after consuming Cas-TG than after consuming Cas (P< 0.05). The overall insulin, glucose and CCK responses, expressed as areas above/under the curve, did not differ significantly between the Cas and Cas-TG meal conditions. Satiety ratings were reduced and hunger, desire to eat and thirst ratings increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05). The present results suggest that even a subtle structural modification of the interfacial layer of a fat emulsion can alter the early postprandial profiles of glucose, insulin, CCK, appetite and satiety through decreased protein digestion without affecting significantly on GE or overall lipid digestion.

  14. Oxidative Stability of Granola Bars Enriched with Multilayered Fish Oil Emulsion in the Presence of Novel Brown Seaweed Based Antioxidants.

    Science.gov (United States)

    Hermund, Ditte B; Karadağ, Ayşe; Andersen, Ulf; Jónsdóttir, Rósa; Kristinsson, Hordur G; Alasalvar, Cesarettin; Jacobsen, Charlotte

    2016-11-09

    Fucus vesiculosus extracts that have both radical scavenging activity and metal chelating ability in vitro were used as natural antioxidant in granola bars enriched with fish oil emulsion by using primary and secondary emulsion systems stabilized by sodium caseinate alone and sodium caseinate-chitosan. The bars were stored at 20 °C and evaluated over a period of 10 weeks by measuring the development of primary and secondary oxidation products. The samples prepared with secondary emulsion system developed less oxidation products probably due to increased interfacial layer thickness that would act as a barrier to the penetration and diffusion of molecular species that promote oxidation. The positive charge of oil droplets in the secondary emulsion may also inhibit iron-lipid interaction through electrostatic repulsion. Additional protection against lipid oxidation was obtained when fish oil emulsions were added to the granola bars especially in combination with acetone and ethanol extracts of Fucus vesiculosus.

  15. Effect of emulsifier type, pH and iron on oxidative stability of 5% fish oil‐in‐water emulsions

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Horn, Anna Frisenfeldt; Jacobsen, Charlotte

    2013-01-01

    The effect of using different emulsifiers on lipid oxidation in 5% w/w fish oil‐in‐water emulsions was investigated. Emulsifiers included two of milk protein origin (whey protein isolate (Whey) or sodium caseinate (Cas)), soy lecithin (Lec) or emulsifiers high in milk phospholipid (20 or 75...... iron) or 42 days (without added iron). Physical parameters and oxidative stability of the emulsions were investigated by analysis of particle size, zeta potential, primary and secondary oxidation products. Increase in emulsifier concentration generally increased the oxidative stability. Type...... of emulsifier and physical conditions affected the physical and oxidative stability of the emulsions. A general observation was that emulsions produced with the milk protein based emulsifiers were more oxidatively stable compared with the other emulsions. Practical applications: The overall conclusion from...

  16. Oxidative stability of 70% fish oil‐in‐water emulsions: Impact of emulsifiers and pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Andersen, Ulf

    2011-01-01

    The objective of this study was to evaluate the protective effects of five different emulsifiers on lipid oxidation in 70% fish oil‐in‐water emulsions to be used as delivery systems for long chain polyunsaturated omega‐3 fatty acids to foods. The emulsifiers were either phospholipid (PL) based......‐in‐water emulsions prepared with whey protein isolate, sodium caseinate, milk phospholipids, or soy lecithin. The emulsions can be used as delivery systems for fish oil to foods. However, only emulsions prepared with proteins at high pH offered advantages with respect to better oxidative stability during storage...... compared to neat fish oil. Thus, when fish oil is added to a food product in a delivery emulsion, the type of emulsion used should be carefully considered....

  17. Alginate/sodium caseinate aqueous-core capsules: a pH-responsive matrix.

    Science.gov (United States)

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Jacquot, Adrien; Probst, Laurent; Desobry, Stéphane

    2015-02-15

    Alginate capsules have several applications. Their functionality depends considerably on their permeability, chemical and mechanical stability. Consequently, the creation of composite system by addition of further components is expected to control mechanical and release properties of alginate capsules. Alginate and alginate-sodium caseinate composite liquid-core capsules were prepared by a simple extrusion. The influence of the preparation pH and sodium caseinate concentration on capsules physico-chemical properties was investigated. Results showed that sodium caseinate influenced significantly capsules properties. As regards to the membrane mechanical stability, composite capsules prepared at pH below the isoelectric point of sodium caseinate exhibited the highest surface Young's modulus, increasing with protein content, explained by potential electrostatic interactions between sodium caseinate amino-groups and alginate carboxylic group. The kinetic of cochineal red A release changed significantly for composite capsules and showed a pH-responsive release. Sodium caseinate-dye mixture studied by absorbance and fluorescence spectroscopy confirmed complex formation at pH 2 by electrostatic interactions between sodium caseinate tryptophan residues and cochineal red sulfonate-groups. Consequently, the release mechanism was explained by membrane adsorption process. This global approach is useful to control release mechanism from macro and micro-capsules by incorporating guest molecules which can interact with the entrapped molecule under specific conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    Science.gov (United States)

    Fan, Yuting; Yokoyama, Wally; Yi, Jiang

    2017-01-01

    The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM) of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery. PMID:29072633

  19. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    Directory of Open Access Journals (Sweden)

    Yuting Fan

    2017-10-01

    Full Text Available The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery.

  20. Complexes of lutein with bovine and caprine caseins and their impact on lutein chemical stability in emulsion systems: Effect of arabinogalactan.

    Science.gov (United States)

    Mora-Gutierrez, A; Attaie, R; Núñez de González, M T; Jung, Y; Woldesenbet, S; Marquez, S A

    2018-01-01

    Lutein is an important xanthophyll carotenoid with many benefits to human health. Factors affecting the application of lutein as a functional ingredient in low-fat dairy-like beverages (pH 6.0-7.0) are not well understood. The interactions of bovine and caprine caseins with hydrophobic lutein were studied using UV/visible spectroscopy as well as fluorescence. Our studies confirmed that the aqueous solubility of lutein is improved after binding with bovine and caprine caseins. The rates of lutein solubilization by the binding to bovine and caprine caseins were as follows: caprine α S1 -II-casein 34%, caprine α S1 -I-casein 10%, and bovine casein 7% at 100 μM lutein. Fluorescence of the protein was quenched on binding supporting complex formation. The fluorescence experiments showed that the binding involves tryptophan residues and some nonspecific interactions. Scatchard plots of lutein binding to the caseins demonstrated competitive binding between the caseins and their sites of interaction with lutein. Competition experiments suggest that caprine α S1 -II casein will bind a larger number of lutein molecules with higher affinity than other caseins. The chemical stability of lutein was largely dependent on casein type and significant increases occurred in the chemical stability of lutein with the following pattern: caprine α S1 -II-casein > caprine α S1 -I-casein > bovine casein. Addition of arabinogalactan to lutein-enriched emulsions increases the chemical stability of lutein-casein complexes during storage under accelerated photo-oxidation conditions at 25°C. Therefore, caprine α S1 -II-casein alone and in combination with arabinogalactan can have important applications in the beverage industry as carrier of this xanthophyll carotenoid (lutein). Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of Antioxidant Activity and Cytotoxicity of Cumin Seed Oil Nanoemulsion Stabilized by Sodium Caseinate- Guar Gum

    Directory of Open Access Journals (Sweden)

    Parastoo Farshi 1, Mahnaz Tabibiazar 2 * , Marjan Ghorbani 3, Hamed Hamishehkar 3

    2017-12-01

    Full Text Available Background: The objective of this study was to prepare the sodium caseinate- guar gum stabilized nanoemulsion of cumin seed oil (Cumminum cyminum using ultrasonication method. Meanwhile, the effect of nanoemulsification on the antioxidant and cytotoxicity of the cumin seed oil was evaluated. Method: The effect of concentration of sodium casienate and guar gum was investigated on droplet size, thermal and oxidative stability of cumin seed oil nanoemulsion using TBARS and z-average measurements, the antioxidant activity was evaluated by DPPH scavenging and iron reducing power measurements. The biocompatibility and the cytotoxicity of the cumin seed oil nanoemulsion were evaluated by MTT assay test and compared with cumin seed oil and cumin seed oil free-nanoemulsion. Results: GC–MS analysis indicated 15 compounds in the cumin seed oil. The nanoemulsions were stabilized by sodium caseinate-guar gum complex. The minimum and stable droplets (155 ± 8 nm of nanoemulsion were formulated when the concentration of essential oil in oil phase was 30 % (w/w. DPPH radical scavenging ability, iron reducing power and cytotoxicity of nanoemulsified cumin seed oil were significantly higher than cumin seed oil (p<0.05 Conclusion: In this study, cumin seed oil nanoemulsion was prepared and stabilized by sodium caseinate- guar gum. The aforementioned nanoemulsion had good stability even after 60 days storage at 4ºC. Antioxidant and cytotoxicity of cumin seed oil were increased by nanoemulsification. It can be concluded that cumin seed oil nanoemulsion has the potential to use as natural preservative and anticancer product in food industry.

  2. Emulsification technique affects oxidative stability of fish oil-in-water emulsion

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    of this study was therefore to compare lipid oxidation in 10% fish oil-in-water emulsions prepared by two different kinds of high pressure homogenizers i.e. a microfluidizer and a two valve high pressure homogenizer. Emulsions were made with equal droplet sizes, and with either 1% sodium caseinate or 1% whey...

  3. Emulsification technique affects oxidative stability of fish oil-in-water emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    of this study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared by two different kinds of high pressure homogenizers i.e. a microfluidizer and a two valve high pressure homogenizer. Emulsions were made with equal droplet sizes, and with either 1% sodium caseinate or 1% whey protein...

  4. Colloidal properties of sodium caseinate-stabilized nanoemulsions prepared by a combination of a high-energy homogenization and evaporative ripening methods.

    Science.gov (United States)

    Montes de Oca-Ávalos, J M; Candal, R J; Herrera, M L

    2017-10-01

    Nanoemulsions stabilized by sodium caseinate (NaCas) were prepared using a combination of a high-energy homogenization and evaporative ripening methods. The effects of protein concentration and sucrose addition on physical properties were analyzed by dynamic light scattering (DLS), Turbiscan analysis, confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). Droplets sizes were smaller (~100nm in diameter) than the ones obtained by other methods (200 to 2000nm in diameter). The stability behavior was also different. These emulsions were not destabilized by creaming. As droplets were so small, gravitational forces were negligible. On the contrary, when they showed destabilization the main mechanism was flocculation. Stability of nanoemulsions increased with increasing protein concentrations. Nanoemulsions with 3 or 4wt% NaCas were slightly turbid systems that remained stable for at least two months. According to SAXS and Turbiscan results, aggregates remained in the nano range showing small tendency to aggregation. In those systems, interactive forces were weak due to the small diameter of flocs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 21 CFR 582.1748 - Sodium caseinate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium caseinate. 582.1748 Section 582.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This substance...

  6. 21 CFR 182.1748 - Sodium caseinate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium caseinate. 182.1748 Section 182.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This substance...

  7. Addition of sodium caseinate to skim milk increases nonsedimentable casein and causes significant changes in rennet-induced gelation, heat stability, and ethanol stability.

    Science.gov (United States)

    Lin, Yingchen; Kelly, Alan L; O'Mahony, James A; Guinee, Timothy P

    2017-02-01

    The protein content of skim milk was increased from 3.3 to 4.1% (wt/wt) by the addition of a blend of skim milk powder and sodium caseinate (NaCas), in which the weight ratio of skim milk powder to NaCas was varied from 0.8:0.0 to 0.0:0.8. Addition of NaCas increased the levels of nonsedimentable casein (from ∼6 to 18% of total casein) and calcium (from ∼36 to 43% of total calcium) and reduced the turbidity of the fortified milk, to a degree depending on level of NaCas added. Rennet gelation was adversely affected by the addition of NaCas at 0.2% (wt/wt) and completely inhibited at NaCas ≥0.4% (wt/wt). Rennet-induced hydrolysis was not affected by added NaCas. The proportion of total casein that was nonsedimentable on centrifugation (3,000 × g, 1 h, 25°C) of the rennet-treated milk after incubation for 1 h at 31°C increased significantly on addition of NaCas at ≥0.4% (wt/wt). Heat stability in the pH range 6.7 to 7.2 and ethanol stability at pH 6.4 were enhanced by the addition of NaCas. It is suggested that the negative effect of NaCas on rennet gelation is due to the increase in nonsedimentable casein, which upon hydrolysis by chymosin forms into small nonsedimentable particles that physically come between, and impede the aggregation of, rennet-altered para-casein micelles, and thereby inhibit the development of a gel network. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Transitions in Structure in Oil-in-Water Emulsions As Studied by Diffusing Wave Spectroscopy

    NARCIS (Netherlands)

    Ruis, H.G.M.; Gruijthuijsen, van K.; Venema, P.; Linden, van der E.

    2007-01-01

    Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special

  9. Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate.

    Science.gov (United States)

    Long, Zhao; Zhao, Mouming; Liu, Ning; Liu, Daolin; Sun-Waterhouse, Dongxiao; Zhao, Qiangzhong

    2015-10-01

    High purity peanut oil-based diacylglycerol (PO-DAG) (94.95 wt%) was prepared via enzymatic glycerolysis from peanut oil (PO). The resulting dominance of DAGs was proven to greatly influence the properties of corresponding fresh or frozen-thawed emulsions. Stable fresh oil-in-water emulsions were produced using either PO-DAG or PO, with stability enhanced by increased concentrations of Na-CN. The lower equilibrium interfacial tension along with greater negative ζ-potential of PO revealed that Na-CN was preferentially adsorbed to the PO interface. Adding 0.05 mol/L NaCl to the PO emulsions minimized depletion flocculation caused by the unadsorbed Na-CN, but further NaCl addition increased oil droplet size and concomitant coalescence. For the PO-DAG emulsions, adding 0.2 mol/L NaCl did not significantly (p>0.05) affect their ζ-potential but adding 0.05 or 0.1 mol/L NaCl lowered ζ-potential, although NaCl at these concentrations increased oil droplet size and coalescence. Freezing-thawing process considerably weakened the stability of PO-DAG emulsions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of Fatty acids and beeswax addition on properties of sodium caseinate dispersions and films.

    Science.gov (United States)

    Fabra, M J; Jiménez, A; Atarés, L; Talens, P; Chiralt, A

    2009-06-08

    Edible films based on sodium caseinate and different saturated fatty acids, oleic acid, or beeswax were formulated. Film-forming emulsions were characterized in terms of particle size distribution, rheological behavior and surface tension. In order to evaluate the influence of lipids on sodium caseinate matrices, mechanical, optical, and water vapor barrier properties were studied, taking into account the effect of water content and film structure on such properties. Saturated fatty acids affected the film properties in a particular way due to the formation of bilayer structures which limited water vapor permeability, giving rise to nonflexible and more opaque films. Oleic acid and beeswax were less effective as water vapor barriers, although the former imparted more flexibility to the caseinate films and did not reduce the film transparency notably.

  11. Some rheological properties of sodium caseinate-starch gels.

    Science.gov (United States)

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  12. The choice of homogenisation equipment affects lipid oxidation in emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    2012-01-01

    in emulsions has been shown to be affected by the emulsification conditions. The objective of this study was to investigate the influence of homogenisation equipment (microfluidizer vs. two-stage valve homogeniser) on lipid oxidation in 10% fish oil-in-water emulsions prepared with two different milk proteins....... Emulsions were prepared at pH 7 with similar droplet sizes. Results showed that the oxidative stability of emulsions prepared with sodium caseinate was not influenced by the type of homogeniser used. In contrast, the type of homogenisation equipment significantly influenced lipid oxidation when whey protein...

  13. Synergistic and antagonistic effects of plant and dairy protein blends on the physicochemical stability of lycopene-loaded emulsions

    NARCIS (Netherlands)

    Ho, Kacie K.H.Y.; Schroën, Karin; San Martín-González, M.F.; Berton-Carabin, Claire C.

    2018-01-01

    Whey-plant protein-based emulsions had high physicochemical stability. Whey and plant protein blend-based interfaces were viscoelastic while casein-based interfaces were relatively viscous. Whey-plant and plant-plant protein blends behaved synergistically leading to enhanced emulsion stability.

  14. Effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions.

    Science.gov (United States)

    Cheong, Jean Ne; Mirhosseini, Hamed; Tan, Chin Ping

    2010-06-01

    The main objective of the present study was to investigate the effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions prepared by the emulsification-evaporation technique. The results indicated that the average droplet size increased significantly (P sodium caseinate-stabilized nanodispersions containing carotenoids had the largest average droplet size (386 nm), thus indicating a greater emulsifying role for Polysorbate 20 compared with sodium caseinate.

  15. Discourse of the form and concentration of surfactants to ensure the sustainability foam-emulsive products

    Directory of Open Access Journals (Sweden)

    O. Kotlyar

    2015-05-01

    Full Text Available Introduction. Development of dry mixes for making spumy and emulsion products are topical, because nowadays there is a tendency to minimize the time spent on the process of cooking, which is achieved by the use of semi finished products high degree of readiness. Materials and methods. Foaming ability was determined by the method of multiplicity of the foam, the stability of unstable foam-by the half-life method of foam, highly resistant foam - as a ratio of the height of the column of foam after exposure for 24 hours. Results. Was determined the influence of sunflower oil on the foaming ability and half-life foam of systems «sodium caseinate-oil». It was found that getting systems with high index of foaming capacity and foam stability in the presence of oil in the system is impossible without the use of low molecular weight surfactants. Substantiated recommendations regarding the feasibility of using two surfactants in systems «sodium caseinate-surfactants-oil», which provide the necessary kinship surfaces air, fat and water phases. it has been found that the use of 2,5...3,5% mono-and diglycerides of fatty acid sand Lecithin’s 0.15...0.25% in the content of sodium caseinate about 0.5% allows to receive the stable foam-emulsive systems containing sunflower oil 7...8% and foaming ability about 640±1%. Conclusions. It is established that for ensuring high indicators foaming capacity and stability of foam-emulsive systems required the use of low-molecular surfactants. The research results, is recommended to use when developing technology of foam-emulsive products. Introduction

  16. Discourse of the form and concentration of surfactants to ensure the sustainability foam-emulsive products

    Directory of Open Access Journals (Sweden)

    Oleg

    2015-05-01

    Full Text Available Introduction. Development of dry mixes for making spumy and emulsion products are topical, because nowadays there is a tendency to minimize the time spent on the process of cooking, which is achieved by the use of semi finished products high degree of readiness. Materials and methods. Foaming ability was determined by the method of multiplicity of the foam, the stability of unstable foam-by the half-life method of foam, highly resistant foam - as a ratio of the height of the column of foam after exposure for 24 hours. Results. Was determined the influence of sunflower oil on the foaming ability and half-life foam of systems «sodium caseinate-oil». It was found that getting systems with high index of foaming capacity and foam stability in the presence of oil in the system is impossible without the use of low molecular weight surfactants. Substantiated recommendations regarding the feasibility of using two surfactants in systems «sodium caseinate-surfactants-oil», which provide the necessary kinship surfaces air, fat and water phases. it has been found that the use of 2,5...3,5% mono-and diglycerides of fatty acid sand Lecithin’s 0.15...0.25% in the content of sodium caseinate about 0.5% allows to receive the stable foam-emulsive systems containing sunflower oil 7...8% and foaming ability about 640±1%. Conclusions. It is established that for ensuring high indicators foaming capacity and stability of foam-emulsive systems required the use of low-molecular surfactants. The research results, is recommended to use when developing technology of foam-emulsive products.

  17. Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants.

    Science.gov (United States)

    Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J

    2009-06-16

    Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.

  18. PHYSICAL AND CHEMICAL STABILITY ANALYSIS OF COSMETIC MULTI- PLE EMULSIONS LOADED WITH ASCORBYL PALMITATE AND SODIUM ASCORBYL PHOSPHATE SALTS.

    Science.gov (United States)

    Khan, Hira; Akhtar, Naveed; Ali, Atif; Khan, Haji M Shoaib; Sohail, Muhammad; Naeem, Muhammad; Nawaz, Zarqa

    2016-09-01

    Stability of hydrophilic and lipophilic vitamin C derivatives for quenching synergistic antioxidant activities and to treat oxidative related diseases is a major issue. This study was aimed to encapsulate hydrophilic and lipophilic vitamin C derivatives (ascorbyl palmitate and sodium ascorbyl phosphate) as functional ingredients in a newly formulated multiple emulsion of the W//W type to attain the synergistic antioxidant effects and the resultant system's long term physical and chemical stability. Several multiple emulsions using the same concentration of emulsifiers but different concentrations of ascorbyl palmitate and sodium ascorbyl phosphate were developed. Three finally selected multiple emulsions (ME₁, ME₂ and ME₃) were evaluated for physical stability in terms of rheology, microscopy, conductivity, pH, and organoleptic characteristics under different storage conditions for 3 months. Chemical stability was determined by HPLC on Sykam GmbH HPLC system (Germany), equipped with a variable UV detector. Results showed that at accelerated storage conditions all the three multiple emulsions had shear thinning behavior of varying shear stress with no influence of location of functional ingredients in a carrier system. Conductivity values increased and pH values remained within the skin pH range for 3 months. Microscopic analysis showed an increase in globule size with the passage of time, especially at higher temperatures while decreased at low temperatures. Centrifugation test did not cause phase separation till the 45th day, but little effects after 2 months. Chemical stability analysis by HPLC at the end of 3 months showed that ascorbyl palmitate and sodium ascorbyl phosphate were almost stable in all multiple emulsions with no influence of their location in a carrier system. Multiple emulsions were found a stable carrier for hydrophilic and lipophilic vitamin C derivatives to enhance their desired effects. Considering that many topical formulations

  19. Physicochemical properties of low sodium frankfurter with added walnut: effect of transglutaminase combined with caseinate, KCl and dietary fibre as salt replacers.

    Science.gov (United States)

    Colmenero, F Jiménez; Ayo, M J; Carballo, J

    2005-04-01

    This study compares the effects of combinations of microbial transglutaminase (TGase) and various non-meat ingredients (caseinate, KCl and wheat fibre) used as salt replacers, with the effects of NaCl on the physicochemical properties (cooking loss, emulsion stability, texture and colour) of frankfurters with added walnuts. The combination of TGase with caseinate, KCl or fibre led to harder, springier and chewier (Pcaseinate>KCl>fibre. Frankfurters with caseinate presented the highest lightness and the lowest redness values. Frankfurter with NaCl had a harder, springier and chewier gel/emulsion network with lower cooking loss than those NaCl free.

  20. Blocking and Blending: Different Assembly Models of Cyclodextrin and Sodium Caseinate at the Oil/Water Interface.

    Science.gov (United States)

    Xu, Hua-Neng; Liu, Huan-Huan; Zhang, Lianfu

    2015-08-25

    The stability of cyclodextrin (CD)-based emulsions is attributed to the formation of a solid film of oil-CD complexes at the oil/water interface. However, competitive interactions between CDs and other components at the interface still need to be understood. Here we develop two different routes that allow the incorporation of a model protein (sodium caseinate, SC) into emulsions based on β-CD. One route is the components adsorbed simultaneously from a mixed solution to the oil/water interface (route I), and the other is SC was added to a previously established CD-stabilized interface (route II). The adsorption mechanism of β-CD modified by SC at the oil/water interface is investigated by rheological and optical methods. Strong sensitivity of the rheological behavior to the routes is indicated by both steady-state and small-deformation oscillatory experiments. Possible β-CD/SC interaction models at the interface are proposed. In route I, the protein, due to its higher affinity for the interface, adsorbs strongly at the interface with blocking of the adsorption of β-CD and formation of oil-CD complexes. In route II, the protein penetrates and blends into the preadsorbed layer of oil-CD complexes already formed at the interface. The revelation of interfacial assembly is expected to help better understand CD-based emulsions in natural systems and improve their designs in engineering applications.

  1. Rheological behavior of high-concentration sodium caseinate dispersions.

    Science.gov (United States)

    Loveday, Simon M; Rao, M Anandha; Creamer, Lawrence K; Singh, Harjinder

    2010-03-01

    Apparent viscosity and frequency sweep (G', G'') data for sodium caseinate dispersions with concentrations of approximately 18% to 40% w/w were obtained at 20 degrees C; colloidal glass behavior was exhibited by dispersions with concentration >or=23% w/w. The high concentrations were obtained by mixing frozen powdered buffer with sodium caseinate in boiling liquid nitrogen, and allowing the mixtures to thaw and hydrate at 4 degrees C. The low-temperature G'-G'' crossover seen in temperature scans between 60 and 5 degrees C was thought to indicate gelation. Temperature scans from 5 to 90 degrees C revealed gradual decrease in G' followed by plateau values. In contrast, G'' decreased gradually and did not reach plateau values. Increase in hydrophobicity of the sodium caseinate or a decrease in the effective volume fraction of its aggregates may have contributed to these phenomena. The gelation and end of softening temperatures of the dispersions increased with the concentration of sodium caseinate. From an Eldridge-Ferry plot, the enthalpy of softening was estimated to be 29.6 kJ mol(-1). The results of this study should be useful for creating new products with high concentrations of sodium caseinate.

  2. Eugenol Nanoemulsion Stabilized with Zein and Sodium Caseinate by Self-Assembly.

    Science.gov (United States)

    Wang, Lei; Zhang, Yue

    2017-03-31

    Eugenol-loaded nanoemulsion by zein and sodium caseinate (NaCas) was prepared without using specific equipment or organic solvents. The deprotonated eugenol in hot alkaline was added to NaCas/zein mixtures with different mass ratios at pH 11.5 and then neutralized to pH 7.0. The nanoemulsions showed a well-defined diameter (around 109-139 nm) and a negative surface potential (from -28.5 to -35.8 mV) with spherical morphology. The entrapment efficiency (EE) of 1% (v/v) eugenol reached 84.24% by 2% (m/v) NaCas/zein at a mass ratio of 1:1. This formulation also showed the narrowest size distribution and extraordinary stability during ambient storage (22 °C) up to 30 days and retained good redispersibility after spray- or freeze-drying. The current study showed a promising clean and low-cost strategy to deliver lipophilic compounds containing the hydroxyl group.

  3. Aroma barrier properties of sodium caseinate-based films.

    Science.gov (United States)

    Fabra, Maria José; Hambleton, Alicia; Talens, Pau; Debeaufort, Fréderic; Chiralt, Amparo; Voilley, Andrée

    2008-05-01

    The mass transport of six different aroma compounds (ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol, and cis-3-hexenol) through sodium caseinate-based films with different oleic acid (OA)/beeswax (BW) ratio has been studied. OA is less efficient than BW in reducing aroma permeability, which can be attributed to its greater polarity. Control film (without lipid) and films prepared with 0:100 OA/BW ratio show the lowest permeability. OA involves a decrease in aroma barrier properties of the sodium caseinate-based films due to its plasticization ability. Preferential sorption and diffusion occurs through OA instead of caseinate matrix and/or BW. The efficiency of sodium caseinate-based films to retain or limit aroma compound transfers depend on the affinity of the volatile compound to the films, which relates physicochemical interaction between volatile compound and film. Specific interactions (aroma compound-hydrocolloid and aroma compound-lipid) induce structural changes during mass transfer.

  4. Complexation of lysozyme with sodium caseinate and micellar casein in aqueous buffered solutions

    NARCIS (Netherlands)

    Antonov, Y.A.; Moldenaers, P.; Cardinaels, R.M.

    We present an extended structural and morphological study of the complexation of lysozyme (Lys) with sodium caseinate (SC) and micellar casein (MC) by means of turbidity measurements, phase analysis, dynamic, static and electrophoretic light scattering, bright-field and confocal laser scanning

  5. Sensitizing capacity and allergenicity of enzymatically cross-linked sodium caseinate in comparison to sodium caseinate in a mouse model for cow's milk allergy.

    Science.gov (United States)

    van Esch, Betty C A M; Gros-van Hest, Marjan; Westerbeek, Hans; Garssen, Johan

    2013-03-27

    A transglutaminase cross-linked caseinate was designed for use in dairy products to increase the viscosity of food matrices. The difference in structure of cross-linked caseinate might have implications for the risk of developing cow's milk allergy. The sensitizing capacity and the allergenicity (the potency to induce an allergic effector response) of cross-linked sodium caseinate was investigated using a mouse model for cow's milk allergy. Mice were orally sensitized with cross-linked caseinate or caseinate using cholera toxin as adjuvant. Anaphylactic shock reactions, change in body temperature, acute allergic skin response, caseinate-, cross-linked caseinate-IgE and mMCP-1 concentrations were determined after challenge with cross-linked caseinate or caseinate. Sensitization with cross-linked caseinate did not result in anaphylactic shock symptoms, drop in body temperature or release of serum mMCP-1. A tendency toward decreased casein-specific IgE levels was observed. The allergenicity did not differ between both products. These results indicate that in already caseinate-sensitized mice, cross-linked caseinate did not provoke more pronounced allergenic reactions compared to sodium caseinate. On top of that, reduced sensitization to cross-linked caseinate was observed. Cross-linked caseinate might therefore be an interesting new dietary concept for humans at risk for food allergy although more mechanistic studies and clinical trials are needed for validation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Emulsion characteristics, chemical and textural properties of meat systems produced with double emulsions as beef fat replacers.

    Science.gov (United States)

    Serdaroğlu, Meltem; Öztürk, Burcu; Urgu, Müge

    2016-07-01

    In recent years, double emulsions are stated to have a promising potential in low-fat food production, however, there are very few studies on their possible applications in meat matrices. We aimed to investigate the quality of beef emulsion systems in which beef fat was totally replaced by double emulsions (W1/O/W2) prepared with olive oil and sodium caseinate (SC) by two-step emulsification procedure. Incorporation of W1/O/W2 emulsion resulted in reduced lipid, increased protein content, and modified fatty acid composition. W1/O/W2 emulsion treatments had lower jelly and fat separation, higher water-holding capacity and higher emulsion stability than control samples with beef fat. Increased concentrations of W1/O/W2 emulsions resulted in significant changes in texture parameters. TBA values were lower in W1/O/W2 emulsion treatments than control treatment after 60days of storage. In conclusion, our study confirms that double emulsions had promising impacts on modifying fatty acid composition and developing both technologically and oxidatively stable beef emulsion systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Thymol nanoencapsulated by sodium caseinate: physical and antilisterial properties.

    Science.gov (United States)

    Pan, Kang; Chen, Huaiqiong; Davidson, P Michael; Zhong, Qixin

    2014-02-19

    In this work, thymol was encapsulated in sodium caseinate using high shear homogenization. The transparent dispersion at neutral pH was stable for 30 days at room temperature as determined by dynamic light scattering and atomic force microscopy, which agreed with high ζ potential of nanoparticles. The slightly decreased particle dimension during storage indicates the absence of Ostwald ripening. When molecular binding was studied by fluorescence spectroscopy, thymol was observed to bind with tyrosine and possibly other amino acid residues away from tryptophan of caseins. At pH 4.6 (isoelectric point of caseins), the stabilization of thymol nanoparticles against aggregation was enabled by soluble soybean polysaccharide, resulting from the combined electrostatic and steric repulsions. The encapsulated thymol showed the significantly improved antilisterial activity in milk with different fat levels when compared to thymol crystals, resulting from the quicker mixing and increased solubility in the milk serum. The transparent thymol nanodispersions have promising applications to improve microbiological safety and quality of foods.

  8. Microrheology and microstructure of water-in-water emulsions containing sodium caseinate and locust bean gum.

    Science.gov (United States)

    Moschakis, Thomas; Chantzos, Nikos; Biliaderis, Costas G; Dickinson, Eric

    2018-05-23

    The mechanical response on the microscale of phase-separated water-in-water emulsions containing sodium caseinate (SCN) and locust bean gum (LBG) has been monitored by confocal laser scanning microscopy and particle tracking microrheology. Mixed biopolymer systems exhibiting phase-separated micro-regions were enriched in either protein or polysaccharide in the continuous or dispersed phase, depending on the weight ratio of the two biopolymers. Measurements of the tracking of charged probe particles revealed that the local rheological properties of protein-rich regions were considerably lower than that of LBG-rich domains for all the biopolymer ratios examined. At pH 7 in the absence of added salt, the viscosity of the protein-rich regions was little affected by an increase in overall LBG concentration, which is consistent with the phase separation mechanism in the mixed solution of charged (SCN) and uncharged (LBG) biopolymers being dominated by the relative entropy of the counter-ions associated with the charged protein molecules. Addition of salt was found to produce an enhancement in the level of thermodynamic incompatibility, leading to faster and more pronounced phase separation, and altering the micro-viscosity of protein-rich regions. At high ionic strength, it was also noted that there was a pronounced accumulation of incorporated probe particles at the liquid-liquid interface. The microrheological properties of the SCN-rich regions were found to be substantially pH-dependent in the range 7 > pH > 5.4. By adjusting the acidification conditions and the biopolymer ratio, discrete protein-based microspheres were generated with potential applications as a functional food ingredient.

  9. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers.

    Science.gov (United States)

    Zhang, Yaqiong; Niu, Yuge; Luo, Yangchao; Ge, Mei; Yang, Tian; Yu, Liangli Lucy; Wang, Qin

    2014-01-01

    Thymol-loaded zein nanoparticles stabilized with sodium caseinate (SC) and chitosan hydrochloride (CHC) were prepared and characterized. The SC stabilized nanoparticles had well-defined size range and negatively charged surface. Due to the presence of SC, the stabilized zein nanoparticles showed a shift of isoelectric point from 6.18 to 5.05, and had a desirable redispersibility in water at neutral pH after lyophilization. Coating with CHC onto the SC stabilized zein nanoparticles resulted in increased particle size, reversal of zeta potential value from negative to positive, and improved encapsulation efficiency. Both thymol-loaded zein nanoparticles and SC stabilized zein nanoparticles had a spherical shape and smooth surface, while the surfaces of CHC-SC stabilized zein nanoparticles seemed rough and had some clumps. Encapsulated thymol was more effective in suppressing gram-positive bacterium than un-encapsulated thymol for a longer time period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Comparison of the colloidal stability, bioaccessibility and antioxidant activity of corn protein hydrolysate and sodium caseinate stabilized curcumin nanoparticles.

    Science.gov (United States)

    Wang, Yong-Hui; Yuan, Yang; Yang, Xiao-Quan; Wang, Jin-Mei; Guo, Jian; Lin, Yuan

    2016-07-01

    The aims of this work were to construct corn protein hydrolysate (CPH)-based curcumin nanoparticles (Cur NPs) and to compare the colloidal stability, bioaccessibility and antioxidant activity of the Cur NPs stabilized CPH and sodium caseinate (NaCas) respectively. The results indicated that Cur solubility could be considerably improved after the Cur NPs fabrication. The spectroscopy results demonstrated that the solubilization of Cur should be attributed to its complexation with CPH or NaCas. The Cur NPs exhibited good colloidal stability after 1 week's storage but showed smaller (40 nm) size in CPH than in NaCas (100 nm). After lyophilization, the Cur NPs powders showed good rehydration properties and chemical stability, and compared with NaCas, the size of Cur NPs stabilized by CPH was still smaller. Additionally, the Cur NPs exhibited higher chemical stability against the temperature compared with free Cur, and the CPH could protect Cur from degradation more efficiently. Comparing with NaCas, the Cur NPs stabilized by CPH exhibited better bioaccessibility and antioxidant activity. This study demonstrated that CPH may be better than NaCas in Cur NPs fabrication and it opens up the possibility of using hydrophobic protein hydrolysate to construct the NPs delivery system.

  11. Physicochemical characterization of native and modified sodium caseinate- Vitamin A complexes.

    Science.gov (United States)

    Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva

    2018-04-01

    Native and modified sodium caseinate- Vitamin A complexes {Sodium caseinate- Vit A complex by stirring (NaCas-VA ST), succinylated sodium caseinate- Vit A complex by stirring (SNaCas-VA ST), reassembled sodium caseinate- Vit A complex (RNaCas-VA) and reassembled succinylated sodium caseinate- Vit A complex (RSNaCas-VA)} were prepared and characterized for their physicochemical characteristics e.g. particle size, zeta potential, turbidity analysis and tryptophan intensities which confirmed structural modification of both native (NaCas-VA ST) and modified (SNaCas-VA ST, RNaCas-VA and RSNaCas- VA) proteins upon complex formation with vitamin A. Binding of vitamin A to milk protein reduced the turbidity caused by vitamin A, however, the particle size and zeta potential of milk protein increased after complexation. Microstructure details of NaCas (spray dried) showed uniform spherical structure, however, other milk proteins and milk protein- Vit A complexes (freeze dried) showed broken glass and flaky structures. Tiny particles were observed on the surface of reassembled protein and reassembled protein- Vit A complexes. Binding of vitamin A to milk protein did not have an influence on the electrophoretic mobility and elution profile (RP-HPLC). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Characterization and stability studies of emulsion systems containing pumice

    Directory of Open Access Journals (Sweden)

    Marilene Estanqueiro

    2014-04-01

    Full Text Available Emulsions are the most common form of skin care products. However, these systems may exhibit some instability. Therefore, when developing emulsions for topical application it is interesting to verify whether they have suitable physical and mechanical characteristics and further assess their stability. The aim of this work was to study the stability of emulsion systems, which varied in the proportion of the emulsifying agent cetearyl alcohol (and sodium lauryl sulfate (and sodium cetearyl sulfate (LSX, the nature of the oily phase (decyl oleate, cyclomethicone or dimethicone and the presence or absence of pumice (5% w/w. While maintaining the samples at room temperature, rheology studies, texture analysis and microscopic observation of formulations with and without pumice were performed. Samples were also submitted to an accelerated stability study by centrifugation and to a thermal stress test. Through the testing, it was found that the amount of emulsifying agent affects the consistency and textural properties such as firmness and adhesiveness. So, formulations containing LSX (5% w/w and decyl oleate or dimethicone as oily phase had a better consistency and remained stable with time, so exhibited the best features to be used for skin care products.

  13. Altering the level of calcium changes the physical properties and digestibility of casein-based emulsion gels.

    Science.gov (United States)

    McIntyre, Irene; O Sullivan, Michael; O Riordan, Dolores

    2017-04-19

    Casein-based emulsion gels prepared with different types of lipid (i.e. milk fat or rapeseed oil) were formulated with high (774 mg Ca per 100 g) or low (357 mg Ca per 100 g) calcium levels by blending acid and rennet casein. Their physicochemical characteristics (i.e. composition, texture, microstructure & water mobility) and in vitro digestibility were compared to conventionally formulated high-calcium (723 mg Ca per 100 g) emulsion gels made from rennet casein with calcium chelating salts (CCS). CCS-free, high-calcium emulsion gels were significantly (p ≤ 0.05) softer than those with low calcium levels (possibly due to their shorter manufacture time and higher pH) and showed the highest rates of disintegration during simulated gastric digestion. Despite having a higher moisture to protein ratio, the high-calcium emulsion gels containing CCS had broadly similar hardness values to those of high-calcium concentration prepared without CCS, but had higher cohesiveness. The high-calcium matrices containing CCS had quite a different microstructure and increased water mobility compared to those made without CCS and showed the slowest rate (p ≤ 0.05) of disintegration in the gastric environment. Gastric resistance was not affected by the type of lipid phase. Conversely, fatty acid release was similar for all emulsion gels prepared from milk fat, however, high-calcium emulsion gels (CCS-free) prepared from rapeseed oil showed higher lipolysis. Results suggest that food matrix physical properties can be modified to alter resistance to gastric degradation which may have consequences for the kinetics of nutrient release and delivery of bioactives sensitive to the gastric environment.

  14. Investigation the physicochemical properties and stability of w/o emulsion

    International Nuclear Information System (INIS)

    Iqbal, S.; Baloch, M.K.; Hameed, G.

    2014-01-01

    The study aims to investigate the stability of W/O emulsions with respect to coalescence time. The various concentrations of water were dispersed in oil phase (soybean oil). The compositions of organic and aqueous phases were varied by adding emulsifier (Monoglyceride), sodium chloride and thickening agent (mango's pulp). The technique employed for the mixing of two phases was homogenization. The Emulsion Stability Index (ESI), Viscosity changes, separation of organic and aqueous phases as a function of storage time have been studied. It has been found that monoglyceride increases the stability and decreases the emulsion stability index (ESI) and also decreases the viscosity changes with storage time while electrolytes and mango's pulp encourage the coalescence process and enhance the instability of the system. On the other hand the system that contained all the organic and aqueous ingredients showed high stability. (author)

  15. Synergistic effect of casein glycomacropeptide on sodium caseinate foaming properties.

    Science.gov (United States)

    Morales, R; Martinez, M J; Pilosof, A M R

    2017-11-01

    Several strategies to improve the interfacial properties and foaming properties of proteins may be developed; among them, the use of mixtures of biopolymers that exhibit synergistic interactions. The aim of the present work was to evaluate the effect of casein glycomacropeptide (CMP) on foaming and surface properties of sodium caseinate (NaCas) and to establish the role of protein interactions in the aqueous phase. To this end particles size, interfacial and foaming properties of CMP, NaCas and NaCas-CMP mixtures at pH 5.5 and 7 were determined. At both pH, the interaction between CMP and NaCas induced a decrease in the aggregation state of NaCas. Single CMP foams showed the highest and NaCas the lowest foam overrun (FO) and the mixture exhibited intermediate values. CMP foam quickly drained. The drainage profile of mixed foams was closer to NaCas foams; at pH 5.5, mixed foams drained even slower than NaCas foam, exhibiting a synergistic performance. Additionally, a strong synergism was observed on the collapse of mixed foams at pH 5.5. Finally, a model to explain the synergistic effect observed on foaming properties in CMP-NaCas mixtures has been proposed; the reduced aggregation state of NaCas in the presence of CMP, made it more efficient for foam stabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Examination of rheological properties of aqueous solutions of sodium caseinate

    OpenAIRE

    Jolanta Gawałek; Piotr Wesołowski

    2012-01-01

    Application of sodium caseinate as a functional additive in manufacturing processes requires production of its concentrated aqueous solutions which, in industrial conditions, presents a number of difficulties. In order to develop an effective and optimal industrial process of mixing – manufacturing a concentrated solution of sodium caseinate, it is essential to know rheological properties in a definite range of concentrations changing in the course of the dissolving process. The materia...

  17. Stability of O/W Emulsion with Synthetic Perfumes Oxidized by Singlet Oxygen

    Directory of Open Access Journals (Sweden)

    Naoki Watabe

    2013-01-01

    Full Text Available We prepared O/W emulsion composed of a synthetic perfume, n-dodecane, protoporphyrin IX disodium salt (PpIX-2Na, sodium dodecyl sulfate, and water and investigated oxidative decomposition of the synthetic perfume in the emulsion and change in the stability of the emulsion by singlet oxygen (1O2 generated by photosensitization of PpIX-2Na. We used eugenol, linalool, benzyl acetate, α-ionone, α-hexylcinnamaldehyde, and d-limonene as a synthetic perfume. The stability of the O/W emulation including eugenol and linalool significantly decreased with increasing light irradiation time. The decrease in the emulsion stability may be attributable to oxidative decomposition of eugenol and linalool by 1O2 and enlargement of the oil droplet size.

  18. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    Science.gov (United States)

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  19. Use of calcium caseinate in association with lecithin for masking the bitterness of acetaminophen--comparative study with sodium caseinate.

    Science.gov (United States)

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-11-18

    Owing to a variety of structural and functional properties, milk proteins are steadily studied for food and pharmaceutical applications. In the present study, calcium caseinate in association with lecithin was firstly investigated in order to encapsulate the acetaminophen through spray-drying for taste-masking purpose for pediatric medicines. A 2(4)-full factorial design revealed that the spray flow, the calcium caseinate amount and the lecithin amount had significant effects on the release of drug during the first 2 min. Indeed, increasing the spray flow and/or the calcium caseinate amount led to increase the released amount, whereas increasing the lecithin amount decreased the released amount. The "interaction" between the calcium caseinate amount and the lecithin amount was also shown to be statistically significant. The second objective was to compare the efficiency of two caseinate-based formulations, i.e. sodium caseinate and calcium caseinate, on the taste-masking effect. The characteristics of spray-dried powders determined by SEM and DSC were shown to depend on the caseinate/lecithin proportion rather than the type of caseinate. Interestingly, calcium caseinate-based formulations were found to lower the released amount of drug during the early time to a higher extent than sodium caseinate-based formulations, which indicates better taste-masking efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development and characterization of emulsions containing purple rice bran and brown rice oils

    Science.gov (United States)

    The aims of this study were to characterize purple rice bran oil (PRBO) as extracted from the bran, and to produce and characterize a nano-emulsion containing purple rice bran oil. An emulsion was prepared using PRBO (10%), sodium caseinate (5%) and water (85%). The mixture was sonicated followed ...

  1. Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles.

    Science.gov (United States)

    Zhang, Shuangling; Han, Yue

    2018-01-01

    Novel rutin-loaded zein-sodium caseinate nanoparticles (ZP) with antioxidant activity in aqueous medium were investigated. The results showed that the sodium caseinate concentrations, dosages of rutin and ethanol volume fractions significantly affected the zein nanoparticles' characteristics. Concerning the antioxidant properties, the highest values of rutin loaded ZP obtained using 2, 2-diphenyl-1-picrylhydrazyl scavenging and 2 and 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) decolourisation assays were 52.7% and 71.2%, respectively, and the total antioxidant capacity was 0.40 nmol g-1. The results suggest that zein-sodium caseinate nanoparticles can be used as a new nano carrier system for rutin or other water insoluble active ingredients.

  2. STABILITY OF EMULSIFIER-FREE EMULSION COPOLYMERIZATION OF METHYL METHACRYLATE/ BUTYL ACRYLATE/SODIUM MONO(ETHYL POLYOXYETHYLENE) MALEATE

    Institute of Scientific and Technical Information of China (English)

    Mao-gen Zhang; Zhi-xue Weng; Zhi-ming Huang; Zu-ren Pan

    1999-01-01

    A series of new water-soluble bifunctional comonomers having both carboxyl and alkyl polyoxyethylene groups, such as sodium mono(ethyl polyoxyethylene) maleate (ZE series) with various molecular weights of polyoxyethylene ethyl ether, were synthesized and characterized. The effects of the structural factor, the amount and feeding mode of the comonomers, the initiator concentration and polymerization temperature on the stability of emulsifier-free emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BA) in the presence of a small amount of ZE with potassium persulfate as initiator were investigated. Stable, almost monodispersed MMA/BA/ZE emulsifier-free latex particles were prepared.

  3. Stability of casein micelles in milk

    Science.gov (United States)

    Tuinier, R.; de Kruif, C. G.

    2002-07-01

    Casein micelles in milk are proteinaceous colloidal particles and are essential for the production of flocculated and gelled products such as yogurt, cheese, and ice-cream. The colloidal stability of casein micelles is described here by a calculation of the pair potential, containing the essential contributions of brush repulsion, electrostatic repulsion, and van der Waals attraction. The parameters required are taken from the literature. The results are expressed by the second osmotic virial coefficient and are quite consistent with experimental findings. It appears that the stability is mainly attributable to a steric layer of κ-casein, which can be described as a salted polyelectrolyte brush.

  4. Fused deposition modelling of sodium caseinate dispersions

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Houlder, S.; Wit, de Martin; Buijsse, C.A.P.; Alting, A.C.

    2018-01-01

    Only recently, researchers have started experimenting with 3D printing of foods. The aim of this study was to investigate 3D printed objects from sodium caseinate dispersions, exhibiting reversible gelation behaviour. Gelation and dispensing behaviour were explored and structures of different

  5. Interactions Between Flavonoid-Rich Extracts and Sodium Caseinate Modulate Protein Functionality and Flavonoid Bioaccessibility in Model Food Systems.

    Science.gov (United States)

    Elegbede, Jennifer L; Li, Min; Jones, Owen G; Campanella, Osvaldo H; Ferruzzi, Mario G

    2018-05-01

    With growing interest in formulating new food products with added protein and flavonoid-rich ingredients for health benefits, direct interactions between these ingredient classes becomes critical in so much as they may impact protein functionality, product quality, and flavonoids bioavailability. In this study, sodium caseinate (SCN)-based model products (foams and emulsions) were formulated with grape seed extract (GSE, rich in galloylated flavonoids) and green tea extract (GTE, rich in nongalloylated flavonoids), respectively, to assess changes in functional properties of SCN and impacts on flavonoid bioaccessibility. Experiments with pure flavonoids suggested that galloylated flavonoids reduced air-water interfacial tension of 0.01% SCN dispersions more significantly than nongalloylated flavonoids at high concentrations (>50 μg/mL). This observation was supported by changes in stability of 5% SCN foam, which showed that foam stability was increased at high levels of GSE (≥50 μg/mL, P < 0.05) but was not affected by GTE. However, flavonoid extracts had modest effects on SCN emulsion. In addition, galloylated flavonoids had higher bioaccessibility in both SCN foam and emulsion. These results suggest that SCN-flavonoid binding interactions can modulate protein functionality leading to difference in performance and flavonoid bioaccessibility of protein-based products. As information on the beneficial health effects of flavonoids expands, it is likely that usage of these ingredients in consumer foods will increase. However, the necessary levels to provide such benefits may exceed those that begin to impact functionality of the macronutrients such as proteins. Flavonoid inclusion within protein matrices may modulate protein functionality in a food system and modify critical consumer traits or delivery of these beneficial plant-derived components. The product matrices utilized in this study offer relevant model systems to evaluate how fortification with flavonoid

  6. Bioaccessibility and Cellular Uptake of β-Carotene Encapsulated in Model O/W Emulsions: Influence of Initial Droplet Size and Emulsifiers

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2017-09-01

    Full Text Available The effects of the initial emulsion structure (droplet size and emulsifier on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers.

  7. Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans.

    Science.gov (United States)

    Keogh, Jennifer B; Wooster, Tim J; Golding, Matthew; Day, Li; Otto, Bärbel; Clifton, Peter M

    2011-05-01

    Little is known about the effect of dietary fat emulsion microstructure on plasma TG concentrations, satiety hormones, and food intake. The aim of this study was to structure dietary fat to slow digestion and flatten postprandial plasma TG concentrations but not increase food intake. Emulsions were stabilized by egg lecithin (control), sodium sterol lactylate, or sodium caseinate/monoglyceride (CasMag) with either liquid oil or a liquid oil/solid fat mixture. In a randomized, double-blind, crossover design, 4 emulsions containing 30 g of fat in a 350-mL preload were consumed by 10 men and 10 women (BMI = 25.1 ± 2.8 kg/m(2); age = 58.8 ± 4.8 y). Pre- and postprandial plasma TG, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) concentrations and food intake were measured. In a second experiment in a subset of the participants (n = 8, 4 men and 4 women), (13)C-labeled mixed TG was incorporated into 2 different emulsions and breath (13)C was measured over 6 h. In the first experiment, the postprandial rise in plasma TG concentrations following the CasMag-stabilized emulsion containing 30% solid fat was lower than all other emulsions at 90 and 120 min (P structured to decrease its effect on plasma TG concentrations without increasing food intake.

  8. Evaluation of the stability of concentrated emulsions for lemon beverages using sequential experimental designs.

    Directory of Open Access Journals (Sweden)

    Teresa Cristina Abreu Almeida

    Full Text Available The study of the stability of concentrated oil-in-water emulsions is imperative to provide a scientific approach for an important problem in the beverage industry, contributing to abolish the empiricism still present nowadays. The use of these emulsions would directly imply a reduction of transportation costs between production and the sales points, where dilution takes place. The goal of this research was to evaluate the influence of the main components of a lemon emulsion on its stability, aiming to maximize the concentration of oil in the beverage and to correlate its physicochemical characteristics to product stability, allowing an increase of shelf life of the final product. For this purpose, analyses of surface and interface tension, electrokinetic potential, particle size and rheological properties of the emulsions were conducted. A 2(4-1 fractional factorial design was performed with the following variables: lemon oil/water ratio (30% to 50%, starch and Arabic gum concentrations (0% to 30% and dioctyl sodium sulfosuccinate (0 mg/L to 100 mg/L, including an evaluation of the responses at the central conditions of each variable. Sequentially, a full design was prepared to evaluate the two most influential variables obtained in the first plan, in which concentration of starch and gum ranged from 0% to 20%, while concentration of lemon oil/water ratio was fixed at 50%, without dioctyl sodium sulfosuccinate. Concentrated emulsions with stability superior to 15 days were obtained with either starch or Arabic gum and 50% lemon oil. The most stable formulations presented viscosity over 100 cP and ratio between the surface tension of the emulsion and the mucilage of over 1. These two answers were selected, since they better represent the behavior of emulsions in terms of stability and could be used as tools for an initial selection of the most promising formulations.

  9. Evaluation of the stability of concentrated emulsions for lemon beverages using sequential experimental designs.

    Science.gov (United States)

    Almeida, Teresa Cristina Abreu; Larentis, Ariane Leites; Ferraz, Helen Conceição

    2015-01-01

    The study of the stability of concentrated oil-in-water emulsions is imperative to provide a scientific approach for an important problem in the beverage industry, contributing to abolish the empiricism still present nowadays. The use of these emulsions would directly imply a reduction of transportation costs between production and the sales points, where dilution takes place. The goal of this research was to evaluate the influence of the main components of a lemon emulsion on its stability, aiming to maximize the concentration of oil in the beverage and to correlate its physicochemical characteristics to product stability, allowing an increase of shelf life of the final product. For this purpose, analyses of surface and interface tension, electrokinetic potential, particle size and rheological properties of the emulsions were conducted. A 2(4-1) fractional factorial design was performed with the following variables: lemon oil/water ratio (30% to 50%), starch and Arabic gum concentrations (0% to 30%) and dioctyl sodium sulfosuccinate (0 mg/L to 100 mg/L), including an evaluation of the responses at the central conditions of each variable. Sequentially, a full design was prepared to evaluate the two most influential variables obtained in the first plan, in which concentration of starch and gum ranged from 0% to 20%, while concentration of lemon oil/water ratio was fixed at 50%, without dioctyl sodium sulfosuccinate. Concentrated emulsions with stability superior to 15 days were obtained with either starch or Arabic gum and 50% lemon oil. The most stable formulations presented viscosity over 100 cP and ratio between the surface tension of the emulsion and the mucilage of over 1. These two answers were selected, since they better represent the behavior of emulsions in terms of stability and could be used as tools for an initial selection of the most promising formulations.

  10. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.

    Science.gov (United States)

    Ye, Aiqian; Flanagan, John; Singh, Harjinder

    2006-06-05

    The formation of electrostatic complexes between sodium caseinate and gum arabic (GA) was studied as a function of pH (2.0-7.0), using slow acidification in situ with glucono-delta-lactone (GDL) or titration with HCl. The colloidal behavior of the complexes under specific conditions was investigated using absorbance measurements (at 515 or 810 nm) and dynamic light scattering (DLS). In contrast to the sudden increase in absorbance and subsequent precipitation of sodium caseinate solutions at pH sodium caseinate and GA increased to a level that was dependent on GA concentration at pH 5.4 (pH(c)). The absorbance values remained constant with further decreases in pH until a sudden increase in absorbance was observed (at pH(phi)). The pH(phi) was also dependent upon the GA concentration. Dynamic light scattering (DLS) data showed that the sizes of the particles formed by the complexation of sodium caseinate and GA between pH(c) and pH(phi) were between 100 and 150 nm and these nanoparticles were visualized using negative staining transmission electron microscopy (TEM). Below pH(phi), the nanoparticles associated to form larger particles, causing phase separation. zeta-Potential measurements of the nanoparticles and chemical analysis after phase separation showed that phase separation was a consequence of charge neutralization. The formation of complexes between sodium caseinate and GA was inhibited at high ionic strength (>50 mM NaCl). It is postulated that the structure of the nanoparticles comprises an aggregated caseinate core, protected from further aggregation by steric repulsion of one, or more, electrostatically attached GA molecules. Copyright 2005 Wiley Periodicals, Inc.

  11. Relationship between nano/micro structure and physical properties of TiO2-sodium caseinate composite films.

    Science.gov (United States)

    Montes-de-Oca-Ávalos, Juan Manuel; Altamura, Davide; Candal, Roberto Jorge; Scattarella, Francesco; Siliqi, Dritan; Giannini, Cinzia; Herrera, María Lidia

    2018-03-01

    Films obtained by casting, starting from conventional emulsions (CE), nanoemulsions (NE) or their gels, which led to different structures, with the aim of explore the relationship between structure and physical properties, were prepared. Sodium caseinate was used as the matrix, glycerol as plasticizer, glucono-delta-lactone as acidulant to form the gels, and TiO 2 nanoparticles as reinforcement to improve physical behavior. Structural characterization was performed by SAXS and WAXS (Small and Wide Angle X-ray Scattering, respectively), combined with confocal and scanning electron microscopy. The results demonstrate that the incorporation of the lipid phase does not notably modify the mechanical properties of the films compared to solution films. Films from NE were more stable against oil release than those from CE. Incorporation of TiO 2 improved mechanical properties as measured by dynamical mechanical analysis (DMA) and uniaxial tensile tests. TiO 2 macroscopic spatial distribution homogeneity and the nanostructure character of NE films were confirmed by mapping the q-dependent scattering intensity in scanning SAXS experiments. SAXS microscopies indicated a higher intrinsic homogeneity of NE films compared to CE films, independently of the TiO 2 load. NE-films containing structures with smaller and more homogeneously distributed building blocks showed greater potential for food applications than the films prepared from sodium caseinate solutions, which are the best known films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Compatibility and Stability of Rolapitant Injectable Emulsion Admixed with Dexamethasone Sodium Phosphate.

    Science.gov (United States)

    Wu, George; Yeung, Stanley; Chen, Frank

    2017-01-01

    Neurokinin-1 receptor antagonist, 5-hydroxytryptamine-3 receptor antagonist, and dexamethasone combination therapy is the standard of care for the prevention of chemotherapy-induced nausea and vomiting. Herein, we describe the physical and chemical stability of an injectable emulsion of the Neurokinin-1 receptor antagonist rolapitant 185 mg in 92.5 mL (free base, 166.5 mg in 92.5 mL) admixed with either 2.5 mL of dexamethasone sodium phosphate (10 mg) or 5 mL of dexamethasone sodium phosphate (20 mg). Admixtures were prepared and stored in two types of container closures (glass and Crystal Zenith plastic bottles) and four types of intravenous administration tubing sets (or intravenous tubing sets). The assessment of the physical and chemical stability was conducted on admixtures packaged in bottled samples stored at room temperature (20°C to 25°C under fluorescent light) and evaluated at 0, 1, and 6 hours. For admixtures in intravenous tubing sets, the assessment of physicochemical stability was performed after 0 and 7 hours of storage at 20°C to 25°C, and then after 20 hours (total 27 hours) under refrigeration (2°C to 8°C) and protected from light. Physical stability was assessed by visually examining the bottle contents under normal room light and measuring turbidity and particulate matter. Chemical stability was assessed by measuring the pH of the admixture and determining drug concentrations through high-performance liquid chromatographic analysis. Results showed that all samples were physically compatible throughout the duration of the study. The admixtures stayed within narrow and acceptable ranges in pH, turbidity, and particulate matter. Admixtures of rolapitant and dexamethasone were chemically stable when stored in glass and Crystal Zenith bottles for at least 6 hours at room temperature, as well as in the four selected intravenous tubing sets for 7 hours at 20°C to 25°C and then for 20 (total 27 hours) hours at 2°C to 8°C. No loss of potency

  13. Addition of Fish Oil to Cream Cheese Affects Lipid Oxidation, Sensory Stability and Microstructure

    Directory of Open Access Journals (Sweden)

    Andy Horsewell

    2012-11-01

    Full Text Available The objective of this study was to investigate the differences in the oxidative stability during storage of fish oil enriched cream cheeses when fish oil was added either as neat oil or pre-emulsified oil with sodium caseinate, whey protein isolate, or a combination of milk proteins and phospholipids as emulsifier. Results showed that the addition of fish oil decreased the oxidative stability of cream cheeses regardless of the addition method, especially when the cheese was stored longer than five weeks. The oxidative stability of fish oil enriched cream cheeses was highest when fish oil was added as neat oil or in a delivery emulsion prepared with a combination of milk proteins and phospholipids. Adding the fish oil in a delivery emulsion prepared with whey protein or caseinate resulted in a less oxidative stable product. It was furthermore shown that the microstructure of the cream cheeses was affected by fish oil addition, and it was suggested that the change in microstructure was partly responsible for the oxidative stability of the cream cheeses.

  14. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates.

    Science.gov (United States)

    Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin; Zargaraan, Azizollaah

    2014-06-01

    We investigated complex coacervation of sodium caseinate/Astragalus rahensis (A.r) as a function of pH with light scattering, spectrophotometry, and viscosity measurements. Interestingly, sodium caseinate/A.r displayed five structural transitions; pH 7.00 to pH ∼5.40: no interaction occurred, pH ∼5.40 to pH ∼4.80: initiation of the formation of primary soluble complexes, pH ∼4.80 to ∼4.30: formation of interpolymer complexes, pH ∼4.30 to ∼4.02: optimum coacervation and pH ∼4.02 to ∼2.50: suppression of coacervation. In addition, rheological properties of sodium caseinate/A.r coacervates were studied at various pH values. A much higher storage modulus (G') than loss modulus (G″) for all sodium caseinate/A.r coacervates suggests the formation of highly interconnected gel-like network structures with mainly elastic behaviour. Moreover, sodium caseinate/A.r coacervates at all pH values exhibited a shear thinning behaviour across the entire shear rate range investigated. Effects of different species of gum tragacanth on the interactions with sodium caseinate have been scarcely studied. Our study showed that systems containing various species (A.r, soluble fraction of A.r and Astragalus gossypinus (A.g)) had different critical pH values and particle sizes during complex coacervation, which could be due to different ratio of soluble to insoluble fractions and uronic acid content of various species. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effect of sodium azide addition and aging storage on casein micelle size

    Science.gov (United States)

    Sinaga, H.; Deeth, H.; Bhandari, B.

    2018-02-01

    Casein micelles affected most of milk properties, therefore the use sodium azide as milk preservation is not expected to alter milk properties during storage, including the casein micelle size. The aim of this study was to analyse casein micelle size after the addition of sodium azide during storage. The experiment was performed as a complete block randomised design with three replications. The addition of 0.02-0.10% Na-azide do not lead to any noticeable differences in average casein size at the same day and show similar trend after 14 day-storage. At concentration of 0.02% sodium azide (Na-azide), the size of pasteurised milk did not change up to 12 days, while the size of raw skim milk slightly increased by ageing time at day 5. The treated concentration did not affect the size distribution, except for milk with 0.02% Na-azide which had narrower distribution compared to other treated and control milk. The finding from this study suggests that the role of Na-azide in this experiments during storage at 4°C is only for preventing the microbial growth.

  16. Nanocellulose-stabilized Pickering emulsions and their applications.

    Science.gov (United States)

    Fujisawa, Shuji; Togawa, Eiji; Kuroda, Katsushi

    2017-01-01

    Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials.

  17. The association of lysozyme with casein

    NARCIS (Netherlands)

    Roos, de A.L.; Walstra, P.; Geurts, T.J.

    1998-01-01

    The association of hen eggs’ lysozyme with caseins was studied by using three casein substrates: (I) solutions of the various caseins, (II) artificially made casein micelles of various compositions and (III) caseins adsorbed onto soya-oil emulsion droplets. In solution, lysozyme associated most

  18. Stabilization of kerosene/water emulsions using bioemulsifiers obtained by fermentation of hemicellulosic sugars with Lactobacillus pentosus.

    Science.gov (United States)

    Portilla-Rivera, Oscar Manuel; Torrado, Ana María; Domínguez, José Manuel; Moldes, Ana Belén

    2010-09-22

    The results of the present study show that Lactobacillus pentosus can produce extracellular bioemulsifiers by utilizing hemicellulosic sugars from grape marc as a source of carbon. The effectiveness of these bioemulsifiers (LPEM) was studied by preparing kerosene/water (K/W) emulsions in the presence and absence of these emulsifiers. Various parameters such as relative emulsion volume (EV), stabilizing capacity (ES), viscosity, and droplet size of K/W emulsions were measured. The EV values for K/W emulsions stabilized by concentrated LPEM were approximately 74.5% after 72 h of emulsion formation, with ES values of 97%. These values were higher than those obtained with dodecyl sodium sulfate as emulsifier (EV=62.3% and ES=87.7%). Additionally, K/W emulsions stabilized by LPEM produced polydisperse emulsions containing droplets of radius between 10 and 40 μm, which were smaller than those obtained for K/W emulsions without LPEM (droplet radius=60-100 μm). Moreover, the viscosity values of the K/W emulsions without and with LPEM were approximately 236 and 495 cP, respectively.

  19. Physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata algae polysaccharide.

    Science.gov (United States)

    Shao, Ping; Ma, Huiling; Qiu, Qiang; Jing, Weiping

    2016-11-01

    The physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata polysaccharide (UFP) was investigated in this study. Emulsion physical stability was evaluated under different polysaccharide concentrations (1%-5%, wt/wt) and pH values (3.0-11.0). The stability of R-(+)-Limonene emulsions was demonstrated by droplet size distribution, rheological properties, zeta potential and visual phase separation. R-(+)-Limonene emulsions displayed monomodal droplet size distributions, high absolute values of zeta potential and good storage stability when 3% (wt/wt) UFP was used. The rheological properties and stability of R-(+)-Limonene emulsions appeared to be dependent on polysaccharide concentration. The emulsion stability was impacted by pH. Higher zeta potential (-52.6mV) and smaller mean droplet diameter (2.45μm) were achieved in neutral liquid environment (pH 7.0). Extreme acidity caused the flocculation of emulsions, which was manifested as phase separation, while emulsions were quite stable in an alkaline environment. Through comparing the stabilities of emulsions stabilized by different emulsifiers (i.e. UFP, GA and Gelatin), the result suggested that UFP was the best emulsifying agent among them. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    Science.gov (United States)

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.

  1. Production of the antimicrobial peptides Caseicin A and B by Bacillus isolates growing on sodium caseinate.

    Science.gov (United States)

    Kent, R M; Guinane, C M; O'Connor, P M; Fitzgerald, G F; Hill, C; Stanton, C; Ross, R P

    2012-08-01

    The aim of this study was to identify Bacillus isolates capable of degrading sodium caseinate and subsequently to generate bioactive peptides with antimicrobial activity. Sodium caseinate (2.5% w/v) was inoculated separately with 16 Bacillus isolates and allowed to ferment overnight. Protein breakdown in the fermentates was analysed using gel permeation-HPLC (GP-HPLC) and screened for peptides (casein. This study highlights the potential to exploit Bacillus sp. or the enzymes they produce for the generation of bioactive antimicrobial peptides from bovine casein. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  2. Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight.

    Science.gov (United States)

    Agbenorhevi, Jacob K; Kontogiorgos, Vassilis; Kasapis, Stefan

    2013-05-01

    The isothermal phase behaviour at 5 °C of mixtures of sodium caseinate and oat β-glucan isolates varying in molecular weight (MW) was investigated by means of phase diagram construction, rheometry, fluorescence microscopy and electrophoresis. Phase diagrams indicated that the compatibility of the β-glucan/sodium caseinate system increases as β-glucan MW decreases. Images of mixtures taken at various biopolymer concentrations revealed phase separated domains. Results also revealed that at the state of thermodynamic equilibrium, lower MW samples yielded considerable viscosity in the mixture. At equivalent hydrodynamic volume of β-glucan in the mixtures, samples varying in molecular weight exhibited similar flow behaviour. A deviation dependent on the protein concentration was observed for the high MW sample in the concentrated regime due to the size of β-glucan aggregates formed. Results demonstrate that by controlling the structural features of β-glucan in mixtures with sodium caseinate, informed manipulation of rheological properties in these systems can be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in- water sodium caseinate emulsions

    Science.gov (United States)

    Beta-carotene (BC), the most important dietary source of provitamin A, is necessary for optimum human health. BC is insoluble or only slightly soluble in most liquids but its bioavailability improves when ingested with fat. Therefore lipid emulsions are ideal matrices for BC delivery. BC (0.1%) in ...

  4. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    Science.gov (United States)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  5. Iron-mediated lipid oxidation in 70% fish oil-in-ater emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2012-01-01

    The objective of this study was to investigate the protective effect of five different emulsifiers on iron‐mediated lipid oxidation in 70% fish oil‐in‐water emulsions. The emulsifiers were either based on protein (whey protein isolate and sodium caseinate) or based on phospholipid (soy lecithin...... and two milk phospholipids with different phospholipid contents, MPL20 and MPL75). Lipid oxidation was studied at pH 4.5 and 7.0, and results were compared to lipid oxidation in neat fish oil. Results showed that all emulsions oxidised more than neat oil. Furthermore, emulsions prepared with proteins...

  6. Storage stability of marine phospholipids emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale

    Marine phospholipids (MPL) are believed to provide more advantages than fish oil from the same source. They are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic...... acids (DHA) than oily triglycerides (fish oil). Therefore, the objective of this study is to explore the feasibility of using marine phospholipids emulsions as delivery system through investigation of the physical, oxidative and hydrolytic stability of MPL emulsions with or without addition of fish oil....... The effect of initial Peroxide Value, total lipids, phospholipids and antioxidants content on stability of MPL emulsions were studied. The physical stability was investigated through measurement of particle size distribution and creaming stability, which involve measurement of changes (%) in emulsion volume...

  7. Effects of hydrolysis on solid-state relaxation and stickiness behavior of sodium caseinate-lactose powders.

    Science.gov (United States)

    Mounsey, J S; Hogan, S A; Murray, B A; O'Callaghan, D J

    2012-05-01

    Hydrolyzed or nonhydrolyzed sodium caseinate-lactose dispersions were spray dried, at a protein: lactose ratio of 0.5, to examine the effects of protein hydrolysis on relaxation behavior and stickiness of model powders. Sodium caseinate (NC) used included a nonhydrolyzed control (DH 0) and 2 hydrolyzed variants (DH 8.3 and DH 15), where DH = degree of hydrolysis (%). Prior to spray drying, apparent viscosities of liquid feeds (at 70°C) at a shear rate of 20/s were 37.6, 3.14, and 3.19 mPa·s, respectively, for DH 0, DH 8, and DH 15 dispersions. Powders containing hydrolyzed casein were more susceptible to sticking than those containing intact NC. The former had also lower bulk densities and powder particle sizes. Scanning electron microscopy showed that hydrolyzed powders had thinner particle walls and were more friable than powders containing intact NC. Secondary structure of caseinates, determined by Fourier transform infrared spectroscopy, was affected by the relative humidity of storage and the presence of lactose as co-solvent rather than its physical state. Glass transition temperatures and lactose crystallization temperatures, determined by differential scanning calorimetry were not affected by caseinate hydrolysis, although the effects of protein hydrolysis on glass-rubber transitions (T(gr)) could be determined by thermo-mechanical analysis. Powders containing hydrolyzed NC had lower T(gr) values (~30°C) following storage at a higher subcrystallization relative humidity (33%) compared with powder with nonhydrolyzed NC (T(gr) value of ~40°C), an effect that reflects more extensive plasticization of powder matrices by moisture. Results support that sodium caseinate-lactose interactions were weak but that relaxation behavior, as determined by the susceptibility of powder to sticking, was affected by hydrolysis of sodium caseinate. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Factors affecting antioxidant activity of soybean meal and caseine protein hydrolysates

    International Nuclear Information System (INIS)

    Korczak, J.

    1998-01-01

    Antioxidative activity of protein hydrolysates was dependent on the raw material, condition of hydrolysis and lipid substrate used in model systems. Soybean meal hydrolysate was more active in lard and in linoleic acid emulsion than caseine hydrolysate, whereas caseine was more active in vegetable oils. Antioxidant activity of evaluated protein hydrolysates in all lipid systems, with or without oxidation catalysts, suggests them as natural food additives for lipid stabilization, thus for improvement of its nutritional value and sensory properties

  9. High solids emulsions produced by ultrasound as a function of energy density.

    Science.gov (United States)

    Consoli, Larissa; de Figueiredo Furtado, Guilherme; da Cunha, Rosiane Lopes; Hubinger, Míriam Dupas

    2017-09-01

    The use of emulsifying methods is frequently required before spray drying food ingredients, where using high concentration of solids increases the drying process yield. In this work, we used ultrasound to obtain kinetically stable palm oil-in-water emulsions with 30g solids/100g of emulsion. Sodium caseinate, maltodextrin and dried glucose syrup were used as stabilizing agents. Sonication time of 3, 7 and 11min were evaluated at power of 72, 105 and 148W (which represents 50%, 75% and 100% of power amplitude in relation to the nominal power of the equipment). Energy density required for each assay was calculated. Emulsions were characterized for droplets mean diameter and size distribution, optical microscopy, confocal microscopy, ζ-potential, creaming index (CI) and rheological behavior. Emulsions presented bimodal size distribution, with D [3,2] ranging from 0.7 to 1.4μm and CI between 5% and 12%, being these parameters inversely proportional to sonication time and power, but with a visual kinetically stabilization after the treatment at 148W at 7min sonication. D [3,2] showed to depend of energy density as a power function. Sonication presented as an effective method to be integrated to spray drying when emulsification is needed before the drying process. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Wang, Thomas T Y; Wang, Qin

    2013-08-07

    Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS)-stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with different zein/CAS mass ratios. The prepared nanoparticles demonstrated good stabilities to maintain particle size (120-140 nm) in cell culture medium and HBSS buffer at 37 °C. The nanoparticles showed no cytotoxicity for Caco-2 cells for 72 h. CAS not only significantly enhanced cell uptake of zein nanoparticles in a concentration- and time-dependent manner but also remarkably improved epithelial transport through Caco-2 cell monolayer. The cell uptake of zein-CAS nanoparticles indicated an energy-dependent endocytosis process as evidenced by cell uptake under blocking conditions, that is, 4 °C, sodium azide, and colchicine. Fluorescent microscopy clearly showed the internalization of zein-CAS nanoparticles. This study may shed some light on the cellular evaluations of hydrophobic protein nanoparticles.

  11. Effects of spray drying on physicochemical properties of milk protein-stabilised emulsions

    NARCIS (Netherlands)

    Sliwinski, E.L.; Lavrijsen, B.W.M.; Vollenbroek, J.M.; Stege, van der H.J.; Boekel, van M.A.J.S.; Wouters, J.T.M.

    2003-01-01

    The effect of spray drying and reconstitution has been studied for oil-in-water emulsions (20.6% maltodextrin, 20% soybean oil, 2.4% protein, 0.13 M NaCl, pH 6.7) with varying ratios of sodium caseinate and whey protein, but with equal size distribution (d(32) = 0.77 mum). When the concentration of

  12. Effect of pH on turbidity, size, viscosity and the shape of sodium caseinate aggregates with light scattering and rheometry.

    Science.gov (United States)

    Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin

    2015-03-01

    The characterization of sodium caseinate solutions as a function of pH was determined using titration with HCL through turbidimetry in different concentrations (0.03 wt.%, 0.045 wt.%, 0.06 wt.%, 0.09 wt.%, 0.2 wt.%, and 0.3 wt.%). Additionally, the coupling of slow in situ acidification of the solution and rheometry was utilized to gain deeper insights into pH-induced structural transitions during the self assembly process and particle size distribution analysis have been used to determine the behavior of sodium caseinate solutions in different pHs. The formation of aggregates during the acidification process was clearly visualized using microscopy. Surprisingly the viscosity of sodium caseinate solution at pH 4.64 was maximum and decreased by lowering pH. Particle size analysis confirmed the onset of big aggregates on decreasing pH but further acidification led to formation of smaller aggregates. A small concentration effect on pI was seen where at sodium caseinate levels of 0.03 wt.% the pI occurred at 4.29, where at sodium caseinate levels of 0.30 wt.% pI value was 4.64.

  13. Transglutaminase-treated conjugation of sodium caseinate and corn fiber gum hydrolysate: Interfacial and dilatational properties.

    Science.gov (United States)

    Liu, Yan; Selig, Michael J; Yadav, Madhav P; Yin, Lijun; Abbaspourrad, Alireza

    2018-05-01

    This study compliments previous work where peroxidase was successfully used to crosslink corn fiber gum (CFG) with bovine serum albumin and improve CFG's emulsifying properties. Herein, an alternative type of enzyme, transglutaminase, was used to prepare conjugates of CFG and sodium caseinate. Additionally, the CFG was partially hydrolyzed by sulfuric acid and its crosslinking pattern with caseinate was evaluated. The interfacial crosslinking degree between caseinate and CFG increased after hydrolysis according to high performance size exclusion chromatography. The equilibrium interfacial tension of CFG hydrolysate-caseinate conjugate was lower than that of CFG-caseinate conjugate as the rearrangement rate of the CFG hydrolysate-caseinate conjugate was higher. The dilatational modulus of CFG hydrolysate decreased from that of CFG. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. PENGARUH KOMPOSOSI LAPISAN PADA PERMUKAAN GLOBULA MINYAK EMULSI SEBELUM PENGERINGAN SEMPROT TERHADAP SIFAT-SIFAT MIKROKAMSUL TRIGLISERIDA KAYA ASAM LEMAK W-3 [The Effect of the Composition of Adsorbed Layer at Globule Interface of -3 Fatty Acids Enriched Triglyceride Prior to Spray Drying on its Microcapsule Properties

    Directory of Open Access Journals (Sweden)

    Moch Adnan2

    2005-04-01

    Full Text Available Emulsification is the critical factor in microencapsulation by spray drying method. Sodium caseinate is a protein with good emulsifying properties. The properties could be improved by phospholipids addition in the emulsification. Phospholipids addition which stabilized oil globule might change the composition of adsorbed layer.This research was conducted to analyze the changes in composition at oil globule interface by analyzing emulsion systems of triglyceride enriched by -3 fatty acids at 5% (w/v stabilized by sodium caseinate (10% w/v and addition of phospholipids at 0; 0,5; 1,0; 1,5; 2,0; and 2,5% (w/v. The changes in composition of adsorbed layer could be determined from the changes in phospholipids and adsorbed protein concentrations at oil globule interface. Analyses were done to measure the possibility of casein-phospholipids complex, phospholipids and protein adsorption concentration at interface, and adsorbed protein.The increase of phospholipids concentration in the emulsions stabilized by sodium caseinate changed the composition of adsorbed layer at interface. There was phospholipids increase and adsorbed protein decrease at oil globule interface. These changes were caused by casein-phospholipids complex which that decreased surface activity and displacement protein by phospholipids that was adsorbed at oil globule interface.Changes of composition of casein-phospholipids at oil globule prior to microcapsulation process caused changes in the properties of microcapsule produced. The increasing phospholipids and decreasing casein concentrations at oil globule interface decreased the quality of the microcapsule, including decreasing in microencapsulation efficiency, in oxidative stability, and decreasing in EPA+DHA content.

  15. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.

    Science.gov (United States)

    Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric

    2009-09-01

    We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers.

  16. Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model.

    Science.gov (United States)

    Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; Mora-García, María de Lourdes

    2015-09-25

    BACKGROUND Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. MATERIAL AND METHODS Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. RESULTS We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (psodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings.

  17. Chymosin-induced hydrolysis of caseins: Influence of degree of phosphorylation of alpha-s1-casein and genetic variants of beta-casein

    NARCIS (Netherlands)

    Bijl, E.; Valenberg, van H.J.F.; Sikkes, S.; Jumelet, S.; Sala, G.; Olieman, K.; Hooijdonk, van A.C.M.; Huppertz, T.

    2014-01-01

    The objective of this study was to investigate the impact of natural variations in aS1-casein and b-casein composition of milk on chymosin-induced hydrolysis of these caseins in milk gels and in sodium caseinate solutions. At 50% casein degradation, 15% more of aS1-casein with eight phosphate groups

  18. Relation between pH-induced stickiness and gelation behaviour of sodium caseinate aggregates as determined by light scattering and rheology

    NARCIS (Netherlands)

    Ruis, H.G.M.; Venema, P.; Linden, van der E.

    2007-01-01

    The effect of pH and temperature on the interaction potential of sodium caseinate solutions in terms of an adhesive-(or sticky)-hard-sphere model was studied. The sodium caseinate aggregates are regarded to be sticky hard spheres with a certain radius. The value of the stickiness parameter as

  19. Ultrasonic Studies of Emulsion Stability in the Presence of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Józefczak

    2015-01-01

    Full Text Available Pickering emulsions are made of solid particle-stabilized droplets suspended in an immiscible continuous liquid phase. A magnetic emulsion can be obtained using magnetic particles. Solid magnetic nanoparticles are adsorbed strongly at the oil-water interface and are able to stabilize emulsions of oil and water. In this work emulsions stabilized by magnetite nanoparticles were obtained using high-energy ultrasound waves and a cavitation mechanism and, next, their stability in time was tested by means of acoustic waves with a low energy, without affecting the structure. An acoustic study showed high stability in time of magnetic emulsions stabilized by magnetite particles. The study also showed a strong influence of an external magnetic field, which can lead to changes of the emulsion properties. It is possible to control Pickering emulsion stability with the help of an external stimulus—a magnetic field.

  20. Development of lamivudine containing multiple emulsions stabilized by gum odina

    Directory of Open Access Journals (Sweden)

    Aditya Kumar Jena

    2018-06-01

    Full Text Available In the current study, a multiple emulsion (W/O/W of lamivudine was developed using a new biopolymer, gum odina (GOd to increase bioavailability and patient compliances. GOd was employed to stabilize both the interfaces of liquid membrane in both the external and internal aqueous phases. The developed W/O/W multiple emulsion of lamivudine was characterized by analyzing droplet size, zeta potential, polydispersity index (PDI, sedimentation, viscosity, rheological properties, drug entrapment efficiency, in-vitro drug release and stability at various storage conditions. The results obtained were also compared with W/O/W multiple emulsion of lamivudine prepared using Tween 80 (a standard emulsion stabilizer. The drug entrapment efficiency of W/O/W multiple emulsion stabilized using GOd was measured as 91.60 ± 3.66% with sustained lamivudine release over a period of 6 h. Rheological and microscopic examinations indicated long term stability of the developed emulsion prepared using GOd. The results of the current study provide a promising scope to attain sustained drug release through the W/O/W multiple emulsions stabilized by GOd in antiviral therapies. Keywords: Gum odina, Lamivudine, Multiple emulsions

  1. Emulsifying salt increase stability of cheese emulsions during holding

    DEFF Research Database (Denmark)

    Hougaard, Anni Bygvrå; Sijbrandij, Anna G.; Varming, Camilla

    2015-01-01

    In cheese powder production, cheese is mixed and melted with water and emulsifying salt to form an emulsion (cheese feed) which is required to remain stable at 60°C for 1h and during further processing until spray drying. Addition of emulsifying salts ensures this, but recent demands for reduction...... of sodium and phosphate in foods makes production of cheese powder without or with minimal amounts of emulsifying salts desirable. The present work uses a centrifugation method to characterize stability of model cheese feeds. Stability of cheese feed with emulsifying salt increased with holding time at 60°C......, especially when no stirring was applied. No change in stability during holding was observed in cheese feeds without emulsifying salt. This effect is suggested to be due to continued exerted functionality of the emulsifying salt, possibly through reorganizations of the mineral balance....

  2. Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus.

    Science.gov (United States)

    Macierzanka, Adam; Böttger, Franziska; Rigby, Neil M; Lille, Martina; Poutanen, Kaisa; Mills, E N Clare; Mackie, Alan R

    2012-12-18

    Fundamental knowledge of physicochemical interactions in the gastrointestinal environment is required in order to support rational designing of protein-stabilized colloidal food and pharmaceutical delivery systems with controlled behavior. In this paper, we report on the colloidal behavior of emulsions stabilized with the milk protein sodium caseinate (Na-Cas), and exposed to conditions simulating the human upper gastrointestinal tract. In particular, we looked at how the kinetics of proteolysis was affected by adsorption to an oil-water interface in emulsion and whether the proteolysis and the emulsion stability could be manipulated by enzymatic structuring of the interface. After cross-linking with the enzyme transglutaminase, the protein was digested with use of an in vitro model of gastro-duodenal proteolysis in the presence or absence of physiologically relevant surfactants (phosphatidylcholine, PC; bile salts, BS). Significant differences were found between the rates of digestion of Na-Cas cross-linked in emulsion (adsorbed protein) and in solution. In emulsion, the digestion of a population of polypeptides of M(r) ca. 50-100 kDa was significantly retarded through the gastric digestion. The persistent interfacial polypeptides maintained the original emulsion droplet size and prevented the system from phase separating. Rapid pepsinolysis of adsorbed, non-cross-linked Na-Cas and its displacement by PC led to emulsion destabilization. These results suggest that structuring of emulsions by enzymatic cross-linking of the interfacial protein may affect the phase behavior of emulsion in the stomach and the gastric digestion rate in vivo. Measurements of ζ-potential revealed that BS displaced the remaining protein from the oil droplets during the simulated duodenal phase of digestion. Diffusion of the postdigestion emulsion droplets through ex vivo porcine intestinal mucus was only significant in the presence of BS due to the high negative charge these

  3. The influence of alkali fatty acids on the properties and the stability of parenteral O/W emulsions modified with solutol HS 15.

    Science.gov (United States)

    Buszello, K; Harnisch, S; Müller, R H; Müller, B W

    2000-03-01

    Arachis oil based parenteral O/W emulsions were prepared using soya bean phosphatidylcholine (SPC) and different combinations of co-emulsifiers containing polyethylene glycol fatty acid esters (Solutol HS 15) and alkali fatty acids (sodium laurate, sodium stearate). The parameters measured were droplet size (both by photon correlation spectroscopy and laser diffractometry), pH and zeta potential. All emulsions were subjected to autoclaving. The addition of polyethylene glycol 12-hydroxy stearate (Solutol HS 15) led to a significant decrease of mean oil droplet size. For long-term stability the amount added turned out to be the most important factor. With increased amounts of Solutol HS 15 the packing density of the emulsifier layer and the zeta potential decreased leading to instability. The optimum load of Solutol HS 15 was found to be 15 micromol/ml. Alkali fatty acids markedly improved the physical stability of the emulsions. Improved stability properties conferred to emulsions by alkali fatty acids could be attributed to the zeta potential increase even in the presence of Solutol HS 15. Consequently a mixed emulsifier film was established in which the ionized fatty acids determined the interface charge. In addition to this a strengthening of the molecular interactions occurring between phospholipid and Solutol HS 15 emulsifier in the presence of ionized fatty acids at the O/W interface can be assumed (L. Rydhag, The importance of the phase behaviour of phospholipids for emulsion stability, Fette Seifen Anstrichm. 81 (1979) 168-173). Different co-emulsifier mixtures were shown to have a pronounced impact on the plasma protein adsorption onto emulsion droplets.

  4. Optimization of β-casein stabilized nanoemulsions using experimental mixture design.

    Science.gov (United States)

    Maher, Patrick G; Fenelon, Mark A; Zhou, Yankun; Kamrul Haque, Md; Roos, Yrjö H

    2011-10-01

    The objective of this study was to determine the effect of changing viscosity and glass transition temperature in the continuous phase of nanoemulsion systems on subsequent stability. Formulations comprising of β-casein (2.5%, 5%, 7.5%, and 10% w/w), lactose (0% to 20% w/w), and trehalose (0% to 20% w/w) were generated from Design of Experiments (DOE) software and tested for glass transition temperature and onset of ice-melting temperature in maximally freeze-concentrated state (T(g) ' & T(m) '), and viscosity (μ). Increasing β-casein content resulted in significant (P mixture design was used to predict the optimum levels of lactose and trehalose required to attain the minimum and maximum T(g) ' and viscosity in solution at fixed protein contents. These mixtures were used to form the continuous phase of β-casein stabilized nanoemulsions (10% w/w sunflower oil) prepared by microfluidization at 70 MPa. Nanoemulsions were analyzed for T(g) ' & T(m) ', as well as viscosity, mean particle size, and stability. Increasing levels of β-casein (2.5% to 10% w/w) resulted in a significant (P mixture DOE was successfully used to predict glass transition and rheological properties for development of a continuous phase for use in nanoemulsions. © 2011 Institute of Food Technologists®

  5. Interfacial behaviour of sodium stearoyllactylate (SSL) as an oil-in-water pickering emulsion stabiliser.

    Science.gov (United States)

    Kurukji, D; Pichot, R; Spyropoulos, F; Norton, I T

    2013-11-01

    The ability of a food ingredient, sodium stearoyllactylate (SSL), to stabilise oil-in-water (O/W) emulsions against coalescence was investigated, and closely linked to its capacity to act as a Pickering stabiliser. Results showed that emulsion stability could be achieved with a relatively low SSL concentration (≥0.1 wt%), and cryogenic-scanning electron microscopy (cryo-SEM) visualisation of emulsion structure revealed the presence of colloidal SSL aggregates adsorbed at the oil-water interface. Surface properties of SSL could be modified by altering the size of these aggregates in water; a faster decrease in surface tension was observed when SSL dispersions were subjected to high pressure homogenisation (HPH). The rate of SSL adsorption at the sunflower oil-water interface also increased after HPH, and a higher interfacial tension (IFT) was observed with increasing SSL concentration. Differential scanning calorimetry (DSC) enabled a comparison of the thermal behaviour of SSL in aqueous dispersions with SSL-stabilised O/W emulsions. SSL melting enthalpy depended on emulsion interfacial area and the corresponding DSC data was used to determine the amount of SSL adsorbed at the oil-water interface. An idealised theoretical interfacial coverage calculation based on Pickering emulsion theory was in general agreement with the mass of SSL adsorbed as predicted by DSC. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Isolation of prolyl endopeptidase inhibitory peptides from a sodium caseinate hydrolysate.

    Science.gov (United States)

    Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Hsieh, You-Liang; Hsu, Kuo-Chiang

    2016-01-01

    Prolyl endopeptidase (PEP) has been associated with neurodegenerative disorders, and the PEP inhibitors can restore the memory loss caused by amnesic compounds. In this study, we investigated the PEP inhibitory activity of the enzymatic hydrolysates from various food protein sources, and isolated and identified the PEP inhibitory peptides. The hydrolysate obtained from sodium caseinate using bromelain (SC/BML) displayed the highest inhibitory activity of 86.8% at 5 mg mL(-1) in the present study, and its IC50 value against PEP was 0.77 mg mL(-1). The F-5 fraction by RP-HPLC (reversed-phase high performance liquid chromatography) from SC/BML showed the highest PEP inhibition rate of 88.4%, and 9 peptide sequences were identified. The synthetic peptides (1245.63-1787.94 Da) showed dose-dependent inhibition effects on PEP as competitive inhibitors with IC50 values between 29.8 and 650.5 μM. The results suggest that the peptides derived from sodium caseinate have the potential to be PEP inhibitors.

  7. Factors Influencing the Effect of Milkbased Emulsifiers on Lipid Oxidation in Omega-3 Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt

    and thereby protect the fatty acids in an emulsion before they are added to the food product. However, the use of these so-called delivery emulsions in different food products has shown contradictory results. On this background, the overall goal of the present PhD work was to increase our knowledge about...... for preparing the delivery emulsions. Independent of the introduction method of fish oil to cream cheese (neat oil vs a 70% delivery emulsion), the fish oil enriched cream cheese oxidized during a 20 weeks storage period to a degree where the sensory quality of the product was significantly impacted. However......, the aim was to utilize this knowledge for designing delivery emulsions for the addition of fish oil to foods, and thereby achieve oxidatively stable fish oil enriched products. In simple emulsions, sodium caseinate, whey protein isolate, soy lecithin and combinations of milk proteins and milk...

  8. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    Science.gov (United States)

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effects of emulsion droplet sizes on the crystallisation of milk fat.

    Science.gov (United States)

    Truong, Tuyen; Bansal, Nidhi; Sharma, Ranjan; Palmer, Martin; Bhandari, Bhesh

    2014-02-15

    The crystallisation properties of milk fat emulsions containing dairy-based ingredients as functions of emulsion droplet size, cooling rate, and emulsifier type were investigated using a differential scanning calorimeter (DSC). Anhydrous milk fat and its fractions (stearin and olein) were emulsified with whey protein concentrate, sodium caseinate, and Tween80 by homogenisation to produce emulsions in various size ranges (0.13-3.10 μm). Particle size, cooling rate, and types of emulsifier all had an influence on the crystallisation properties of fat in the emulsions. In general, the crystallisation temperature of emulsified fats decreased with decreasing average droplet size and was of an exponent function of size, indicating that the influence of particle size on crystallisation temperature is more pronounced in the sub-micron range. This particle size effect was also verified by electron microscopy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Physical and oxidative stability of fish oil-in-water emulsions stabilized with beta-lactoglobulin and pectin.

    Science.gov (United States)

    Katsuda, Marly S; McClements, D J; Miglioranza, Lucia H S; Decker, Eric A

    2008-07-23

    The oxidation of fatty acids can be inhibited by engineering the surface of oil-in-water emulsion droplets to decrease interactions between aqueous phase prooxidants and lipids. The objective of this research was to evaluate whether emulsions stabilized by a multilayer emulsifier systems consisting of beta-lactoglobulin and citrus or sugar beet pectin could produce fish oil-in-water emulsions that had good physical and oxidative stability. Sugar beet pectin was compared to citrus pectin because the sugar beet pectin contains the known antioxidant, ferulic acid. A primary Menhaden oil-in-water emulsion was prepared with beta-lactoglobulin upon which the pectins were electrostatically deposited at pH 3.5. Emulsions prepared with 1% oil, 0.05% beta-lactoglobulin, and 0.06% pectins were physically stable for up to 16 days. As determined by monitoring lipid hydroperoxide and headspace propanal formation, emulsions prepared with the multilayer system of beta-lactoglobulin and citrus pectin were more stable than emulsions stabilized with beta-lactoglobulin alone. Emulsions prepared with the multilayer system of beta-lactoglobulin and sugar beet pectin were less stable than emulsions stabilized with beta-lactoglobulin alone despite the presence of ferulic acid in the sugar beet pectin. The lower oxidative stability of the emulsions with the sugar beet pectin could be due to its higher iron and copper concentrations which would produce oxidative stress that would overcome the antioxidant capacity of ferulic acid. These data suggest that the oxidative stability of oil-in-water emulsions containing omega-3 fatty acids could be improved by the use of multilayer emulsion systems containing pectins with low metal concentrations.

  11. High pressure homogenization to improve the stability of casein - hydroxypropyl cellulose aqueous systems.

    Science.gov (United States)

    Ye, Ran; Harte, Federico

    2014-03-01

    The effect of high pressure homogenization on the improvement of the stability hydroxypropyl cellulose (HPC) and micellar casein was investigated. HPC with two molecular weights (80 and 1150 kDa) and micellar casein were mixed in water to a concentration leading to phase separation (0.45% w/v HPC and 3% w/v casein) and immediately subjected to high pressure homogenization ranging from 0 to 300 MPa, in 100 MPa increments. The various dispersions were evaluated for stability, particle size, turbidity, protein content, and viscosity over a period of two weeks and Scanning Transmission Electron Microscopy (STEM) at the end of the storage period. The stability of casein-HPC complexes was enhanced with the increasing homogenization pressure, especially for the complex containing high molecular weight HPC. The apparent particle size of complexes was reduced from ~200nm to ~130nm when using 300 MPa, corresponding to the sharp decrease of absorbance when compared to the non-homogenized controls. High pressure homogenization reduced the viscosity of HPC-casein complexes regardless of the molecular weight of HPC and STEM imagines revealed aggregates consistent with nano-scale protein polysaccharide interactions.

  12. Electrochemically driven emulsion inversion

    Science.gov (United States)

    Johans, Christoffer; Kontturi, Kyösti

    2007-09-01

    It is shown that emulsions stabilized by ionic surfactants can be inverted by controlling the electrical potential across the oil-water interface. The potential dependent partitioning of sodium dodecyl sulfate (SDS) was studied by cyclic voltammetry at the 1,2-dichlorobenzene|water interface. In the emulsion the potential control was achieved by using a potential-determining salt. The inversion of a 1,2-dichlorobenzene-in-water (O/W) emulsion stabilized by SDS was followed by conductometry as a function of added tetrapropylammonium chloride. A sudden drop in conductivity was observed, indicating the change of the continuous phase from water to 1,2-dichlorobenzene, i.e. a water-in-1,2-dichlorobenzene emulsion was formed. The inversion potential is well in accordance with that predicted by the hydrophilic-lipophilic deviation if the interfacial potential is appropriately accounted for.

  13. Iron binding to caseins in the presence of orthophosphate.

    Science.gov (United States)

    Mittal, V A; Ellis, A; Ye, A; Edwards, P J B; Das, S; Singh, H

    2016-01-01

    As adding >5mM ferric chloride to sodium caseinate solutions results in protein precipitation, the effects of orthophosphate (0-64 mM) addition to sodium caseinate solution (2% w/v protein) on iron-induced aggregation of the caseins were studied at pH 6.8. Up to 20mM ferric chloride could be added to sodium caseinate solution containing 32 mM orthophosphate without any protein precipitation. The addition of iron to sodium caseinate solution containing orthophosphate reduced the diffusible phosphorus content in a concentration-dependent manner. Added iron appeared to interact simultaneously with phosphoserine on the caseins and inorganic phosphorus. The relative sizes of the casein aggregates were governed by the concentration of orthophosphate and the aggregates consisted of all casein fractions, even at the lowest level of ferric chloride addition (5mM). It is hypothesised that the addition of iron to caseins in the presence of orthophosphate results in the formation of colloidal structures involving casein-iron-orthophosphate interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.

    Science.gov (United States)

    Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim

    2017-09-01

    The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.

  15. Preparation and Application of Water-in-Oil Emulsions Stabilized by Modified Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Xiaoma Fei

    2016-08-01

    Full Text Available A series of alkyl chain modified graphene oxides (AmGO with different alkyl chain length and content was fabricated using a reducing reaction between graphene oxide (GO and alkyl amine. Then AmGO was used as a graphene-based particle emulsifier to stabilize Pickering emulsion. Compared with the emulsion stabilized by GO, which was oil-in-water type, all the emulsions stabilized by AmGO were water-in-oil type. The effects of alkyl chain length and alkyl chain content on the emulsion properties of AmGO were investigated. The emulsions stabilized by AmGO showed good stability within a wide range of pH (from pH = 1 to pH = 13 and salt concentrations (from 0.1 to 1000 mM. In addition, the application of water-in-oil emulsions stabilized by AmGO was investigated. AmGO/polyaniline nanocomposite (AmGO/PANi was prepared through an emulsion approach, and its supercapacitor performance was investigated. This research broadens the application of AmGO as a water-in-oil type emulsion stabilizer and in preparing graphene-based functional materials.

  16. Importance of intrinsic properties of dense caseinate dispersions for structure formation.

    Science.gov (United States)

    Manski, Julita M; van Riemsdijk, Lieke E; van der Goot, Atze J; Boom, Remko M

    2007-11-01

    Rheological measurements of dense calcium caseinate and sodium caseinate dispersions (> or =15%) provided insight into the factors determining shear-induced structure formation in caseinates. Calcium caseinate at a sufficiently high concentration (30%) was shown to form highly anisotropic structures during shearing and concurrent enzymatic cross-linking. In contrast, sodium caseinate formed isotropic structures using similar processing conditions. The main difference between the two types of caseinates is the counterion present, and as a consequence, the size of structural elements and their interactions. The rheological behavior of calcium caseinate and sodium caseinate reflected these differences, yielding non-monotonic and shear thinning flow behavior for calcium caseinate whereas sodium caseinate behaved only slightly shear thinning. It appears that the intrinsic properties of the dense caseinate dispersions, which are reflected in their rheological behavior, affect the structure formation that was found after applying shear. Therefore, rheological measurements are useful to obtain an indication of the structure formation potential of caseinate dispersions.

  17. Effect of citronella essential oil fractions as oil phase on emulsion stability

    Science.gov (United States)

    Septiyanti, Melati; Meliana, Yenny; Agustian, Egi

    2017-11-01

    The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.

  18. Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions.

    Science.gov (United States)

    Fernandez-Avila, C; Trujillo, A J

    2016-10-15

    Ultra-High Pressure Homogenization (100-300MPa) has great potential for technological, microbiological and nutritional aspects of fluid processing. Its effect on the oxidative stability and interfacial properties of oil-in-water emulsions prepared with 4% (w/v) of soy protein isolate and soybean oil (10 and 20%, v/v) were studied and compared to emulsions treated by conventional homogenization (15MPa). Emulsions were characterized by particle size, emulsifying activity index, surface protein concentration at the interface and by transmission electron microscopy. Primary and secondary lipid oxidation products were evaluated in emulsions upon storage. Emulsions with 20% oil treated at 100 and 200MPa exhibited the most oxidative stability due to higher amount of oil and protein surface load at the interface. This manuscript addresses the improvement in oxidative stability in emulsions treated by UHPH when compared to conventional emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of short-term and long-term stability of emulsions by centrifugation and NMR

    International Nuclear Information System (INIS)

    Tcholakova, S.; Denkov, N.; Ivanov, I.; Marinov, R.

    2004-01-01

    The effect of storage time on the coalescence stability and drop size distribution of egg yolk and whey protein concentrate stabilized emulsions is studied. The emulsion stability is evaluated by centrifugation, whereas the drop size distribution is measured by means of NMR and optical microscopy. The experimental results show that there is no general relation between the emulsion stability and the changes in the mean drop diameter upon shelf-storage of protein emulsions. On the other hand, it is shown that the higher short-term stability, measured by centrifugation immediately after emulsion preparation, corresponds to higher long-term stability (after their self-storage up to 60 days) for emulsions stabilized by the same type of emulsifier. In this way, we are able to obtain information for the long-term stability of emulsions in a relatively short period of time.(authors)

  20. Sequential transformation of the structural and thermodynamic parameters of the complex particles, combining covalent conjugate (sodium caseinate + maltodextrin) with polyunsaturated lipids stabilized by a plant antioxidant, in the simulated gastro-intestinal conditions in vitro.

    Science.gov (United States)

    Antipova, Anna S; Zelikina, Darya V; Shumilina, Elena A; Semenova, Maria G

    2016-10-01

    The present work is focused on the structural transformation of the complexes, formed between covalent conjugate (sodium caseinate + maltodextrin) and an equimass mixture of the polyunsaturated lipids (PULs): (soy phosphatidylcholine + triglycerides of flaxseed oil) stabilized by a plant antioxidant (an essential oil of clove buds), in the simulated conditions of the gastrointestinal tract. The conjugate was used here as a food-grade delivery vehicle for the PULs. The release of these PULs at each stage of the simulated digestion was estimated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Compatibility and Stability of VARUBI (Rolapitant) Injectable Emulsion Admixed with Intravenous Palonosetron Hydrochloride Injection and Dexamethasone Sodium Phosphate Injection.

    Science.gov (United States)

    Wu, George; Powers, Dan; Yeung, Stanley; Chen, Frank

    2018-01-01

    Prophylaxis or therapy with a combination of a neurokinin 1 (NK-1) receptor antagonist (RA), a 5-hydroxytryptamine-3 (5-HT3) RA, and dexamethasone is recommended by international antiemesis guidelines for the prevention of chemotherapy-induced nausea and vomiting for patients receiving highly emetogenic chemotherapy and for selected patients receiving moderately emetogenic chemotherapy. VARUBI (rolapitant) is a substance P/NK-1 RA that was recently approved by the U.S. Food and Drug Administration as an injectable emulsion in combination with other antiemetic agents in adults for the prevention of delayed nausea and vomiting associated with initial and repeat courses of emetogenic cancer chemotherapy, including, but not limited to, highly emetogenic chemotherapy. Palonosetron is one of the 5-HT3 RAs indicated for the prevention of nausea and/or vomiting associated with initial and repeat courses of emetogenic cancer therapy, including high-dose cisplatin. Herein, we describe the physical and chemical compatibility and stability of VARUBI injectable emulsion (166.5 mg/92.5 mL [1.8 mg/mL, free base], equivalent to 185 mg of rolapitant hydrochloride) admixed with palonosetron injection 0.25 mg free base in 5 mL (equivalent to 0.28 mg hydrochloride salt) and with either 5 mL (20 mg) or 2.5 mL (10 mg) of dexamethasone sodium phosphate. Admixtures were prepared and stored in VARUBI injectable emulsion ready-to-use glass vials as supplied by the rolapitant manufacturer and in four types of commonly used intravenous administration (tubing) sets. Assessment of the physical and chemical compatibility and stability of the admixtures in the VARUBI ready-to-use vials stored at room temperature (20°C to 25°C) under fluorescent light and under refrigeration (2°C to 8°C protected from light) was conducted at 0, 1, 6, 24, and 48 hours, and that of the admixtures in the intravenous tubing sets was evaluated at 0, 2, and 6 hours of storage at 20°C to 25°C. Physical stability

  2. Multi-responsive ionic liquid emulsions stabilized by microgels

    NARCIS (Netherlands)

    Monteillet, H.; Workamp, M.; Li, X.; Schuur, Boelo; Kleijn, J.M.; Leermakers, F.; Sprakel, J.

    2014-01-01

    We present a complete toolbox to use responsive ionic liquid (IL) emulsions for extraction purposes. IL emulsions stabilized by responsive microgels are shown to allow rapid extraction and reversible breaking and re-emulsification. Moreover, by using a paramagnetic ionic liquid, droplets can be

  3. Binding of vitamin A by casein micelles in commercial skim milk

    Science.gov (United States)

    Mohan, M. S.; Jurat-Fuentes, J. L.; Harte, F.

    2015-01-01

    Recent studies have shown that reassembled micelles formed by caseinates and purified casein fractions (αs- and β-casein) bind to hydrophobic compounds, including curcumin, docosahexaenoic acid, and vitamin D. However, limited research has been done on the binding of hydrophobic compounds by unmodified casein micelles in skim milk. In the present study, we investigated the ability of casein micelles in commercial skim milk to associate with vitamin A (retinyl palmitate), a fat-soluble vitamin commonly used to fortify milk. Milk protein fractions from different commercially available skim milk samples subjected to different processing treatments, including pasteurized, ultrapasteurized, organic pasteurized, and organic ultrapasteurized milks, were separated by fast protein liquid chromatography. The fractions within each peak were combined and freeze-dried. Sodium dodecyl sulfate-PAGE with silver staining was used to identify the proteins present in each of the fractions. The skim milk samples and fractions were extracted for retinyl palmitate and quantified against a standard using normal phase-HPLC. Retinyl palmitate was found to associate with the fraction of skim milk containing caseins, whereas the other proteins (BSA, β-lactoglobulin, α-lactalbumin) did not show any binding. The retinyl palmitate content in the various samples ranged from 1.59 to 2.48 μg of retinyl palmitate per mL of milk. The casein fractions contained between 14 and 40% of total retinyl palmitate in the various milks tested. The variation in the retention of vitamin A by caseins was probably explained by differences in the processing of different milk samples, including thermal treatment, the form of vitamin A emulsion used for fortification, and the point of fortification during processing. Unmodified casein micelles have a strong intrinsic affinity toward the binding of vitamin A used to fortify commercially available skim milks. PMID:23261375

  4. Crosslinking with transglutaminase does not change metabolic effects of sodium caseinate in model beverage in healthy young individuals.

    Science.gov (United States)

    Juvonen, Kristiina R; Lille, Martina E; Laaksonen, David E; Mykkänen, Hannu M; Niskanen, Leo K; Herzig, Karl-Heinz; Poutanen, Kaisa S; Karhunen, Leila J

    2012-06-01

    Postprandial metabolic and appetitive responses of proteins are dependent on protein source and processing technique prior to ingestion. Studies on the postprandial effects of enzymatic crosslinking of milk proteins are sparse. Our aim was to study the effect of transglutaminase (TG)-induced crosslinking of sodium caseinate on postprandial metabolic and appetite responses. Whey protein was included as reference protein. Thirteen healthy individuals (23.3 ± 1.1 y, BMI 21.7 ± 0.4 kg/m2) participated in a single-blind crossover design experiment in which the subjects consumed three different isovolumic (500 g) pourable beverages containing either sodium caseinate (Cas, 29 g), TG-treated sodium caseinate (Cas-TG, 29 g) or whey protein (Wh, 30 g) in a randomized order. Blood samples were collected at baseline and for 4 h postprandially for the determination of plasma glucose, insulin and amino acid (AA) concentrations. Gastric emptying (GE) was measured using the 13 C-breath test method. Appetite was assessed using visual analogue scales. All examined postprandial responses were comparable with Cas and Cas-TG. The protein type used in the beverages was reflected as differences in plasma AA concentrations between Wh and Cas, but there were no differences in plasma glucose or insulin responses. A tendency for faster GE rate after Wh was detected. Appetite ratings or subsequent energy intake did not differ among the protein beverages. Our results indicate that the metabolic responses of enzymatically crosslinked and native sodium caseinate in a liquid matrix are comparable, suggesting similar digestion and absorption rates and first pass metabolism despite the structural modification of Cas-TG.

  5. Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions.

    Science.gov (United States)

    Fernández-Ávila, C; Escriu, R; Trujillo, A J

    2015-09-01

    The effect of Ultra-High Pressure Homogenization (UHPH, 100-300MPa) on the physicochemical properties of oil-in-water emulsions prepared with 4.0% (w/v) of soy protein isolate (SPI) and soybean oil (10 and 20%, v/v) was studied and compared to emulsions treated by conventional homogenization (CH, 15MPa). CH emulsions were prepared with non-heated and heated (95°C for 15min) SPI dispersions. Emulsions were characterized by particle size determination with laser diffraction, rheological properties using a rotational rheometer by applying measurements of flow curve and by transmission electron microscopy. The variation on particle size and creaming was assessed by Turbiscan® analysis, and visual observation of the emulsions was also carried out. UHPH emulsions showed much smaller d 3.2 values and greater physical stability than CH emulsions. The thermal treatment of SPI prior CH process did not improve physical stability properties. In addition, emulsions containing 20% of oil exhibited greater physical stability compared to emulsions containing 10% of oil. Particularly, UHPH emulsions treated at 100 and 200MPa with 20% of oil were the most stable due to low particle size values (d 3.2 and Span), greater viscosity and partial protein denaturation. These results address the physical stability improvement of protein isolate-stabilized emulsions by using the emerging UHPH technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Redox-initiated poly(methyl methcrylate) emulsion polymerizations stabilized with block copolymers based on poly(ethylene oxide), e-caprolactone and linoleic acid

    NARCIS (Netherlands)

    Tan, B.H.; Nabuurs, Tijs; Feijen, Jan; Grijpma, Dirk W.

    2009-01-01

    A redox initiating system, consisting of t-butyl hydroperoxide (tBHPO), isoascorbic acid (iAA), and ethylenediaminetetraacetic acid ferric-sodium salt (FeEDTA) was employed in emulsion polymerizations of methyl methacrylate (MMA) at high solids contents of 30 wt % in water. The system was stabilized

  7. Synthesis of dodecylamine-functionalized graphene quantum dots and their application as stabilizers in an emulsion polymerization of styrene.

    Science.gov (United States)

    Xuan, Wang; Ruiyi, Li; Zaijun, Li; Junkang, Liu

    2017-11-01

    Pickering emulsions have attracted considerable interest due to their potential applications in many fields, such as the food, pharmaceutical, petroleum and cosmetics industries. The study reports the synthesis of dodecylamine-functionalized graphene quantum dots (d-GQDs) and their implementation as stabilizers in an emulsion polymerization of styrene. First, d-GQDs are prepared by thermal pyrolysis of citric acid and dodecylamine in 0.1M ammonium hydroxide. The resulting d-GQDs consist of small graphene sheets with abundant amino, carboxyl, acylamino, hydroxyl and alkyl chains on the edge. The amphiphilic structure gives the d-GQDs high surface activity. The addition of d-GQDs can reduce the surface tension of water to 30.8mNm -1 and the interfacial tension of paraffin oil/water to 0.0182mNm -1 . The surface activity is much better than that of previously reported solid particle surfactants for Pickering emulsions and is close to that of sodium dodecylbenzenesulfonate, which is, a classical organic surfactants. Then, d-GQDs are employed as solid particle surfactants for stabilizing styrene-in-water emulsions. The emulsions exhibit excellent stability at pH 7. However, stability is lost when the pH is more than 9 or less than 4. The pH-switchable behaviour can be attributed to the protonation of amino groups in a weak acid medium and dissociation of carboxyl groups in a weak base medium. Finally, 2,2'-azobis(2-methylpropionitrile) is introduced into the Pickering emulsions to trigger emulsion polymerization of styrene. The as-prepared polystyrene spheres display a uniform morphology with a narrow diameter distribution. The fluorescent d-GQDs coated their surfaces. This study presents an approach for the fabrication of amphiphilic GQDs and GQDs-based functional materials, which have a wide range of potential applications in emulsion polymerization, as well as in sensors, catalysts, and energy storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effects of green tea extract and α-tocopherol on the lipid oxidation rate of omega-3 oils, incorporated into table spreads, prepared using multiple emulsion technology.

    Science.gov (United States)

    Dwyer, Sandra P O'; O'Beirne, David; Ní Eidhin, Deirdre; O'Kennedy, Brendan T

    2012-12-01

    This study examined the effectiveness of fat and water soluble antioxidants on the oxidative stability of omega (ω)-3 rich table spreads, produced using novel multiple emulsion technology. Table spreads were produced by dispersing an oil-in-water (O/W) emulsion (500 g/kg 85 camelina/15 fish oil blend) in a hardstock/rapeseed oil blend, using sodium caseinate and polyglycerol polyricinoleate as emulsifiers. The O/W and oil-in-water-in-oil (O/W/O) emulsions contained either a water soluble antioxidant (green tea extract [GTE]), an oil soluble antioxidant (α-Tocopherol), or both. Spreads containing α-Tocopherol had the highest lipid hydroperoxide values, whereas spreads containing GTE had the lowest (P < 0.05), during storage at 5°C, while p-Anisidine values did not differ significantly. Particle size was generally unaffected by antioxidant type (P < 0.05). Double emulsion (O/W/O) structures were clearly seen in confocal images of the spreads. By the end of storage, none of the spreads had significantly different G' values. Firmness (Newtons) of all spreads generally increased during storage (P < 0.05). © 2012 Institute of Food Technologists®

  9. Sodium Caseinate-Carrageenan Biopolymeric Nanocomplexes as a Carrier of Vitamin D: Study of Complex Formation, Particles Size and Encapsulation Efficiency

    Directory of Open Access Journals (Sweden)

    Maryam Khoshmanzar

    2014-04-01

    Full Text Available The protein-polysaccharide complex-based nanocapsule is one type of polymeric nanocarrier which can be potentially useful for encapsulation of hydrophobic nutraceuticals. In this research, caseinate-carrageenan complex was used for encapsulation of vitamin D. The complex formation between caseinate and carrageenan was carried out by lowering the pH under isoelectric point of protein. The Fourier transform infrared spectroscopy (FTIR and differential scanning colorimetry (DSC confirmed complex formation between carrageenan, caseinate and vitamin D. The particle size of 1% caseinate particles was in the range of 150-300 nanometer and by addition of vitamin D the particle size increased to 450-750 nanometer. Moreover, carrageenan of all concentrations (at constant concentration of caseinate (1% and pH4.9 resulted in lower particle size below 100 nanometer. The stability of caseinate and its complex formation with carrageenan showed that encapsulation was achieved at 45% efficiency and also vitamin D stability (during 5 days storage was higher in nanocomplex compared to pure caseinate particles (60-63% compared to 53%. The complex formation between caseinate and carrageenan was carried out by pH decreasing under isoelectric point of protein. The FTIR and DSC confirmed complex formation between carrageenan, caseinate and vitamin D. The particle size of caseinate 1% particles were in the range of 150 -300 nanometer and with adding vitamin D, particle size increased to 450-750 nanometer. Moreover, adding carrageenan at all used concentration (at constant concentration of caseinate (1% and pH4.9 resulted in reduced particle size to less than 100 nanometer and vitamin D stability (during 5 days storage was higher (60-63% in nanocomplex compared to pure caseinate particles (53%.The protein-polysaccharide complex based nanocapsule is one type of the polymeric nanocarriers which can potentially be used for encapsulation of hydrophobic nutraceuticals. In

  10. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.

    Science.gov (United States)

    Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun

    2009-08-01

    Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.

  11. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    Science.gov (United States)

    Wang, Haorong [Albuquerque, NM; Song, Yujiang [Albuquerque, NM; Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  12. Effect of casein and inulin addition on physico-chemical characteristics of low fat camel dairy cream.

    Science.gov (United States)

    Ziaeifar, Leila; Labbafi Mazrae Shahi, Mohsen; Salami, Maryam; Askari, Gholam R

    2018-05-21

    The effect of the addition of the camel casein fraction on some physico-chemical properties of low fat camel milk cream was studied. Oil-in-water emulsions, 25, 30, and 35 (w/w) fat, were prepared using inulin, camel skim milk, milk fat and variable percentages of casein (1, 2, and 3% w/w). The droplet size, ζ-potential, surface protein concentration, viscosity and surface tension of low fat dairy creams was measured. Cream containing 2% (w/w) casein had better stability. The modifications in physico-chemical properties appeared to be driven by changes in particle size distribution caused by droplet aggregation. The cream containing 2% casein leads to a gradual decrease in droplet size, as the particle size decreased, apparent viscosity increased. When casein concentration increased, ζ-potential decreased due to combination of c terminal (negative charge) with the surface of fat particles but steric repulsion improved textural properties. Cream with 30% fat and 2% casein had the best result. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Crosslinking with transglutaminase does not change metabolic effects of sodium caseinate in model beverage in healthy young individuals

    Directory of Open Access Journals (Sweden)

    Juvonen Kristiina R

    2012-06-01

    Full Text Available Abstract Background Postprandial metabolic and appetitive responses of proteins are dependent on protein source and processing technique prior to ingestion. Studies on the postprandial effects of enzymatic crosslinking of milk proteins are sparse. Our aim was to study the effect of transglutaminase (TG-induced crosslinking of sodium caseinate on postprandial metabolic and appetite responses. Whey protein was included as reference protein. Methods Thirteen healthy individuals (23.3 ± 1.1 y, BMI 21.7 ± 0.4 kg/m2 participated in a single-blind crossover design experiment in which the subjects consumed three different isovolumic (500 g pourable beverages containing either sodium caseinate (Cas, 29 g, TG-treated sodium caseinate (Cas-TG, 29 g or whey protein (Wh, 30 g in a randomized order. Blood samples were collected at baseline and for 4 h postprandially for the determination of plasma glucose, insulin and amino acid (AA concentrations. Gastric emptying (GE was measured using the 13 C-breath test method. Appetite was assessed using visual analogue scales. Results All examined postprandial responses were comparable with Cas and Cas-TG. The protein type used in the beverages was reflected as differences in plasma AA concentrations between Wh and Cas, but there were no differences in plasma glucose or insulin responses. A tendency for faster GE rate after Wh was detected. Appetite ratings or subsequent energy intake did not differ among the protein beverages. Conclusions Our results indicate that the metabolic responses of enzymatically crosslinked and native sodium caseinate in a liquid matrix are comparable, suggesting similar digestion and absorption rates and first pass metabolism despite the structural modification of Cas-TG.

  14. Redox-Initiated Poly(methyl methacrylate) Emulsion Polymerizations Stabilized with Block Copolymers Based on Methoxy-Poly(ethylene glycol), epsilon-Caprolactone, and Linoleic Acid

    NARCIS (Netherlands)

    Tan, Boonhua; Nabuurs, Tijs; Feijen, Jan; Grijpma, Dirk W.

    2009-01-01

    A redox initiating system, consisting of t-butyl hydroperoxide (tBHPO), isoascorbic acid (iAA), and ethylenediaminetetraacetic acid ferric-sodium salt (FeEDTA) was employed in emulsion polymerizations of methyl methacrylate (MMA) at high solids contents of 30 wt % in water. The system was stabilized

  15. Effect of emulsification and spray-drying microencapsulation on the antilisterial activity of transcinnamaldehyde.

    Science.gov (United States)

    Trinh, Nga-Thi-Thanh; Lejmi, Raja; Gharsallaoui, Adem; Dumas, Emilie; Degraeve, Pascal; Thanh, Mai Le; Oulahal, Nadia

    2015-01-01

    Spray-dried redispersible transcinnamaldehyde (TC)-in-water emulsions were prepared in order to preserve its antibacterial activity; 5% (w/w) TC emulsions were first obtained with a rotor-stator homogeniser in the presence of either soybean lecithin or sodium caseinate as emulsifiers. These emulsions were mixed with a 30% (w/w) maltodextrin solution before feeding a spray-dryer. The antibacterial activity of TC alone, TC emulsions with and without maltodextrin before and after spray-drying were assayed by monitoring the growth at 30 °C of Listeria innocua in their presence and in their absence (control). Whatever the emulsifier used, antilisterial activity of TC was increased following its emulsification. However, reconstituted spray-dried emulsions stabilised by sodium caseinate had a higher antibacterial activity suggesting that they better resisted to spray-drying. This was consistent with observation that microencapsulation efficiencies were 27.6% and 78.7% for emulsions stabilised by lecithin and sodium caseinate, respectively.

  16. Modulation and Stabilization of Silk Fibroin-Coated Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    Zhong-Min Chen

    2009-01-01

    Full Text Available The purpose of this study is to prepare and characterize stable oil-in-water emulsions containing droplets coated with silk fibroin. Silk fibroin, a native edible fibrous protein originating from silkworm cocoons, was used to prepare 10 % (by mass corn oil-in-water emulsions at ambient temperature (pH=7.0, 10 mM phosphate buffer. Emulsions with relatively small mean particle diameter (d32=0.47 μm and extremely good creaming stability (>7 days could be produced at silk fibroin concentration of 1 % (by mass. The influence of pH (2–8, thermal processing (60–90 °C, 20 min, and concentration of salt (c(NaCl=0–250 mM on the properties and stability of the emulsions was analyzed using ζ-potential, particle size, and creaming stability measurements. The isoelectric point of droplets stabilized with silk fibroin was pH~4. The emulsions were stable to droplet flocculation and creaming at any pH except intermediate value (pH=4.0 when stored at room temperature, which was attributed to their relatively low ζ-potential. Their ζ-potential went from around 25 to –35 mV as the pH was increased from 2 to 8. The emulsions were also stable to thermal treatment (60 and 90 °C for 20 min, pH=3 and 7, with a slight decrease in the magnitude of ζ-potential at temperatures exceeding 60 °C. The emulsions were unstable to aggregation and creaming even at relatively low salt concentrations (c(NaCl=0–250 mM, pH=3 and 7 as a result of electrostatic screening effects. These results suggest that bulk oil stabilized with silk fibroin has improved physical stability and may provide a new way of creating functional oil products and delivery systems.

  17. The cellular uptake and transport of zein nanoparticles: Effect of sodium caseinate

    Science.gov (United States)

    Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS) stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with differ...

  18. Optimization of Microencapsulation of Fish Oil with Gum Arabic/Casein/Beta-Cyclodextrin Mixtures by Spray Drying.

    Science.gov (United States)

    Li, Junjie; Xiong, Shanbai; Wang, Fang; Regenstein, Joe M; Liu, Ru

    2015-07-01

    Fish oil was encapsulated with gum arabic/casein/beta-cyclodextrin mixtures using spray drying. The processing parameters (solids concentration of the barrier solutions, ratio of oil to barrier materials, emulsifying temperature, and air inlet temperature) were optimized based on emulsion viscosity, emulsion stability, encapsulation efficiency, and yield. A suitable viscosity and high emulsion stability could increase encapsulation efficiency and yield. Encapsulation efficiency and yield were significantly affected by all the 4 parameters. Based on the results of orthogonal experiments, encapsulation efficiency and yield reached a maximum of 79.6% and 55.6%, respectively, at the optimal condition: solids concentration of 35%, ratios of oil to barrier materials of 3:7, emulsifying temperature of 55 °C, and air inlet temperature of 220 °C. Scanning electron microscopy analysis showed that fish oil microcapsules were nearly spherical with a smooth surface with droplet size ranging from 1 to 10 μm. © 2015 Institute of Food Technologists®

  19. Transition from Spherical to Irregular Dispersed Phase in Water/Oil Emulsions

    NARCIS (Netherlands)

    Schmitt, M.; Limage, S.; Grigoriev, D.O.; Krägel, J.; Dutschk, Victoria; Vincent-Bonnieu, S.; Miller, R.; Antoni, M.

    2014-01-01

    Bulk properties of transparent and dilute water in paraffin oil emulsions stabilized with sodium dodecyl sulfate (SDS) are analyzed by optical scanning tomography. Each scanning shot of the considered emulsions has a precision of 1 mu m. The influence of aluminum oxide nanoparticles in the structure

  20. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.

    Science.gov (United States)

    Pang, Bo; Liu, Huan; Liu, Peiwen; Peng, Xinwen; Zhang, Kai

    2018-03-01

    Hydrophobic particles with static water contact angles larger than 90° are more like to stabilize W/O Pickering emulsions. In particular, high internal phase Pickering emulsions (HIPEs) are of great interest for diverse applications. However, W/O HIPEs have rarely been realized using sustainable biopolymers. Herein, we used stearoylated microcrystalline cellulose (SMCC) to stabilize W/O Pickering emulsions and especially, W/O HIPEs. Moreover, these W/O HIPEs can be further used as platforms for the preparation of porous materials, such as porous foams. Stearoylated microcrystalline cellulose (SMCC) was prepared by modifying MCC with stearoyl chloride under heterogeneous conditions. Using SMCC as emulsifiers, W/O medium and high internal phase Pickering emulsions (MIPEs and HIPEs) with various organic solvents as continuous phases were prepared using one-step and two-step methods, respectively. Polystyrene (PS) foams were prepared after polymerization of oil phase using HIPEs as templates and their oil/water separation capacity were studied. SMCC could efficiently stabilize W/O Pickering emulsions and HIPEs could only be prepared via the two-step method. The internal phase volume fraction of the SMCC-stabilized HIPEs reached as high as 89%. Diverse internal phase volume fractions led to distinct inner structures of foams with closed or open cells. These macroporous polystyrene (PS) foams demonstrated great potential for the effective absorption of organic solvents from underwater. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Optimizing the taste-masked formulation of acetaminophen using sodium caseinate and lecithin by experimental design.

    Science.gov (United States)

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-09-10

    In a previous study of ours, the association of sodium caseinate and lecithin was demonstrated to be promising for masking the bitterness of acetaminophen via drug encapsulation. The encapsulating mechanisms were suggested to be based on the segregation of multicomponent droplets occurring during spray-drying. The spray-dried particles delayed the drug release within the mouth during the early time upon administration and hence masked the bitterness. Indeed, taste-masking is achieved if, within the frame of 1-2 min, drug substance is either not released or the released amount is below the human threshold for identifying its bad taste. The aim of this work was (i) to evaluate the effect of various processing and formulation parameters on the taste-masking efficiency and (ii) to determine the optimal formulation for optimal taste-masking effect. Four investigated input variables included inlet temperature (X1), spray flow (X2), sodium caseinate amount (X3) and lecithin amount (X4). The percentage of drug release amount during the first 2 min was considered as the response variable (Y). A 2(4)-full factorial design was applied and allowed screening for the most influential variables i.e. sodium caseinate amount and lecithin amount. Optimizing these two variables was therefore conducted by a simplex approach. The SEM and DSC results of spray-dried powder prepared under optimal conditions showed that drug seemed to be well encapsulated. The drug release during the first 2 min significantly decreased, 7-fold less than the unmasked drug particles. Therefore, the optimal formulation that performed the best taste-masking effect was successfully achieved. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Parenteral emulsions stabilized with a mixture of phospholipids and PEG-660-12-hydroxy-stearate: evaluation of accelerated and long-term stability.

    Science.gov (United States)

    Jumaa, Muhannad; Müller, Bernd W

    2002-09-01

    Different emulsion formulations were prepared using phospholipids (Lipoid S57) and PEG-660-12-hydroxy-stearate (Solutol HS15) as single emulsifiers or in mixtures. The accelerated stability after autoclaving, freezing and centrifugation was investigated. The long-term stability was also studied at different temperatures (4, 20, and 37 degrees C) for 8 months. Emulsion stabilized with phospholipids displayed a stable behavior after the autoclaving and centrifugation, but it broke down after the freezing process. In mixture with Solutol HS15, however, the emulsion showed appropriate shelf stability at different temperatures for 8 months. A change in the particle size of the emulsion prepared only with Solutol HS15 was observed after centrifugation (slight) and after autoclaving (marked). In contrast to phospholipid emulsion, this emulsion (with only Solutol HS15) was less prone to breaking down after the freezing, as no complete phase separation was observed. The results obtained using an emulsifier mixture revealed that a combination of an anionic surfactant (phospholipids) and non-ionic surfactant (PEG-660-12-hydroxy-stearate) improves the emulsion's stability, compared to the emulsion's stability prepared using only a single emulsifier. However, no direct correlation could be found between the accelerated and the long-term stability data.

  3. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  4. Oxidative enzymatic gelation of sugar beet pectin for emulsion stabilization

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Meyer, Anne S.

    2013-01-01

    Pectin from sugar beet is derived from the sugar beet pulp residue which results when sugar beets are processed for sucrose extraction. The sugar beet pectin has poor gelationability by the classic divalentcation molecular mechanism because of a relatively high acetylation degree and short...... polygalacturonate backbone chain length. However, due to the feruloyl-substitutions on the side chains, the sugar beet pectic polysaccharides can be cross-linked via enzyme catalyzed oxidation. The enzyme kinetics and functionality of such oxidativelycross-linked sugar beet pectin, in relation to stabilizing...... emulsions has recently been investigated in model food emulsions. This paper reviews the pectin chemistry, enzymatic oxidative gelation mechanisms, interaction mechanisms of the sugar beet pectin with the emulsion droplets and explores how the gelation affects the rheology and stability of emulsion systems...

  5. Stability and in vitro digestibility of emulsions containing lecithin and whey proteins.

    Science.gov (United States)

    Mantovani, Raphaela Araujo; Cavallieri, Ângelo Luiz Fazani; Netto, Flavia Maria; Cunha, Rosiane Lopes

    2013-09-01

    The effect of pH and high-pressure homogenization on the properties of oil-in-water (O/W) emulsions stabilized by lecithin and/or whey proteins (WPI) was evaluated. For this purpose, emulsions were characterized by visual analysis, droplet size distribution, zeta potential, electrophoresis, rheological measurements and their response to in vitro digestion. Lecithin emulsions were stable even after 7 days of storage and WPI emulsions were unstable only at pH values close to the isoelectric point (pI) of proteins. Systems containing the mixture of lecithin and WPI showed high kinetic instability at pH 3, which was attributed to the electrostatic interaction between the emulsifiers oppositely charged at this pH value. At pH 5.5 and 7, the mixture led to reduction of the droplet size with enhanced emulsion stability compared to the systems with WPI or lecithin. The stability of WPI emulsions after the addition of lecithin, especially at pH 5.5, was associated with the increase of droplet surface charge density. The in vitro digestion evaluation showed that WPI emulsion was more stable against gastrointestinal conditions.

  6. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    Science.gov (United States)

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein digestibility (IVPD) were determined. The results indicated that the enzymatic hydrolysis of WPC 80 and sodium caseinate by Protamex improved the solubility and IVPD of their hydrolysates. WPC 80, sodium caseinate and their hydrolysates were high-quality proteins and had a surplus of essential amino acids compared with the FAO/WHO/UNU (1985) reference standard. The nutritive value of WPC 80 and its hydrolysates was superior to that of sodium caseinate and its hydrolysates as indicated by some nutritional parameters such as the amino acid composition, chemical score, EAA index and predicted BV. However, the E-PER was lower for the WPC hydrolysates as compared to unhydrolyzed WPC 80 but sodium caseinate and its hydrolysates did not differ significantly. The nutritional qualities of WPC 80, sodium caseinate and their hydrolysates were good and make them appropriate for food formulations or as nutritional supplements. PMID:16421963

  7. Physical stability, microstructure and micro-rheological properties of water-in-oil-in-water (W/O/W) emulsions stabilized by porcine gelatin.

    Science.gov (United States)

    Zhu, Qiaomei; Qiu, Shuang; Zhang, Hongwei; Cheng, Yongqiang; Yin, Lijun

    2018-07-01

    Water-in-oil-in-water (W/O/W) emulsions could be utilized for fat-reduced food formulation and delivery of bioactive nutrients. However, due to thermodynamic instability, it is difficult to prepare stable double emulsions. The purpose of this study was to improve the stability of W/O/W double emulsions containing 2.0 M MgCl 2 by adding porcine gelatin in the inner water phase. The impact of gelatin on the physical stability, microstructure and micro-rheological properties of W/O/W emulsions was investigated. It was found that, when the concentration of porcine gelatin exceeded 4.0 wt%, the stability of emulsions was improved, due to increased viscoelasticity of emulsion droplets. When MgCl 2 concentration increased to 2.0 M, the particle size of emulsions increased, due to the osmotic pressure gradient, and the presence of gelatin further increased the droplet size. Confocal microscopy results showed that the presence of gelatin could improve the stability of W/O/W emulsions against coalescence。. Copyright © 2018. Published by Elsevier Ltd.

  8. Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route

    International Nuclear Information System (INIS)

    Okada, Masahiro; Fujii, Syuji; Nishimura, Taiki; Nakamura, Yoshinobu; Takeda, Shoji; Furuzono, Tsutomu

    2012-01-01

    Highlights: ► Hydroxyapatite (HAp) nanoparticles stabilized polymer melt-in-water emulsions without any molecular surfactants. ► Interaction between polymer and HAp played a crucial role. ► HAp-coated polymer particles were obtained from the emulsions without any organic solvents. - Abstract: Hydroxyapatite (HAp) nanoparticle-coated biodegradable polymer particles were fabricated from a nanoparticle-stabilized emulsion in the absence of any molecular surfactants or organic solvents. First, a polymer melt-in-water emulsion was prepared by mixing a water phase containing nanosized HAp particles as a particulate emulsifier and an oil phase consisting of poly(ε-caprolactone) (PCL) or poly(L-lactide-co-ε-caprolactone) (P(LLA-CL)) above its melting point. It was clarified that the interaction between ester/carboxyl groups of the polymers and the HAp nanoparticles at the polymer–water interface played a crucial role to prepare the nanoparticle-stabilized emulsion. The HAp nanoparticle-coated biodegradable polymer particle (a polymer solid-in-water emulsion) was fabricated by cooling the emulsion. The particle morphology and particle size were evaluated using scanning electron microscope.

  9. Physicochemical stability of lycopene-loaded emulsions stabilized by plant or dairy proteins

    NARCIS (Netherlands)

    Ho, Kacie; Schroen, C.G.P.H.; San Martín-González, M.F.; Berton-Carabin, C.C.

    2017-01-01

    Lycopene is a lipophilic bioactive compound that can be challenging to deliver in vivo. To mediate this, delivery strategies, such as protein-stabilized oil-in-water (O/W) emulsions, have been suggested to improve the physicochemical stability and bioavailability of lycopene. In this research, the

  10. Application of l-ascorbic acid and its derivatives (sodium ascorbyl phosphate and magnesium ascorbyl phosphate) in topical cosmetic formulations: stability studies

    International Nuclear Information System (INIS)

    Smaoui, S.; Hilima, H.B.

    2013-01-01

    The present study aimed to formulate and subsequently evaluate a topical skin-care cream (o/w emulsion) from l-ascorbic acid and its derivatives (sodium ascorbyl phosphate and magnesium ascorbyl phosphate) at 2% versus its vehicle (Control). Formulations were developed by entrapping it in the oily phase of o/w emulsion and were stored at 8 degree C, 25 degree C and 40 degree C (in incubator) for a period of four weeks to investigate their stability. In the physical analysis, the evaluation parameters consisted of color, smell, phase separation, centrifugation, and liquefaction. Chemical stability of both derivatives was established by HPLC analysis. In the chemical analysis, the formulation with sodium ascorbyl phosphate was more stable than those with magnesium ascorbyl phosphate and l-ascorbic acid. The microbiological stability of the formulations was also evaluated. The findings indicated that the formulations with l-ascorbic acid and its derivatives were efficient against the proliferation of various spoilage microorganisms, including aerobic plate counts as well as Pseudomonas aeruginosa, Staphylococcus aureus, and yeast and mold counts. The results presented in this work showed good stability throughout the experimental period. Newly formulated emulsion proved to exhibit a number of promising properties and attributes that might open new opportunities for the construction of more efficient, safe, and cost-effective skin-care, cosmetic, and pharmaceutical products. (author)

  11. Encapsulation of emulsion droplets by organo–silica shells

    NARCIS (Netherlands)

    Zoldesi, C.; Steegstra, Patrick; Imhof, Arnout

    2007-01-01

    Surfactant-stabilized emulsion droplets were used as templates for the synthesis of hollow colloidal particles. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysiloxane monomer, in the presence of surfactant: sodium dodecyl sulphate (SDS, anionic)

  12. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  13. Kaolinite and Silica Dispersions in Low-Salinity Environments: Impact on a Water-in-Crude Oil Emulsion Stability

    Directory of Open Access Journals (Sweden)

    Vladimir Alvarado

    2011-10-01

    Full Text Available This research aims at providing evidence of particle suspension contributions to emulsion stability, which has been cited as a contributing factor in crude oil recovery by low-salinity waterflooding. Kaolinite and silica particle dispersions were characterized as functions of brine salinity. A reference aqueous phase, representing reservoir brine, was used and then diluted with distilled water to obtain brines at 10 and 100 times lower Total Dissolved Solid (TDS. Scanning Electron Microscope (SEM and X-ray Diffraction (XRD were used to examine at the morphology and composition of clays. The zeta potential and particle size distribution were also measured. Emulsions were prepared by mixing a crude oil with brine, with and without dispersed particles to investigate emulsion stability. The clay zeta potential as a function of pH was used to investigate the effect of particle charge on emulsion stability. The stability was determined through bottle tests and optical microscopy. Results show that both kaolinite and silica promote emulsion stability. Also, kaolinite, roughly 1 mm in size, stabilizes emulsions better than larger clay particles. Silica particles of larger size (5 µm yielded more stable emulsions than smaller silica particles do. Test results show that clay particles with zero point of charge (ZPC at low pH become less effective at stabilizing emulsions, while silica stabilizes emulsions better at ZPC. These result shed light on emulsion stabilization in low-salinity waterflooding.

  14. Emulsion stability measurements by single electrode capacitance probe (SeCaP) technology

    International Nuclear Information System (INIS)

    Schüller, R B; Løkra, S; Egelandsdal, B; Salas-Bringas, C; Engebretsen, B

    2008-01-01

    This paper describes a new and novel method for the determination of the stability of emulsions. The method is based on the single electrode capacitance technology (SeCaP). A measuring system consisting of eight individual measuring cells, each with a volume of approximately 10 ml, is described in detail. The system has been tested on an emulsion system based on whey proteins (WPC80), oil and water. Xanthan was added to modify the emulsion stability. The results show that the new measuring system is able to quantify the stability of the emulsion in terms of a differential variable. The whole separation process is observed much faster in the SeCaP system than in a conventional separation column. The complete separation process observed visually over 30 h is seen in less than 1.4 h in the SeCaP system

  15. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Moradi

    2011-07-01

    Full Text Available Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require adjustments of water chemistry, mainly by lowering the ionic strength of the solution or by decreasing hardness. The decreased ionic strength of EOR solutions can give rise to more stable water-in-oil emulsions, which are speculated to improve mobility ratio between the injectant and the displaced oil. The first step toward understanding the connection between the emulsions and EOR mechanisms is to show that EOR conditions, such as salinity and hardness requirements, among others, are conducive to stabilizing emulsions. In order to do this, adequate stability proxies are required. This paper reviews commonly used emulsion stability proxies and explains the advantages and disadvantage of methods reviewed. This paper also reviews aqueous-based EOR processes with focus on heavy oil to contextualize in-situ emulsion stabilization conditions. This context sets the basis for comparison of emulsion stability proxies.

  16. Use of surface plasmon resonance (SPR) to study the dissociation and polysaccharide binding of casein micelles and caseins.

    Science.gov (United States)

    Thompson, Abby K; Singh, Harjinder; Dalgleish, Douglas G

    2010-11-24

    Tests were made to determine whether surface plasmon resonance (SPR) could be used as a technique to study the dissociation properties of bovine casein micelles or of sodium caseinate and the interactions between these protein particles and different polysaccharides. Surfaces of bound micelles or caseinate were made, and the changes in refractive index of these layers were used to define changes in the structures of the chemisorbed material. The technique appears to have some potential for studying details of the dissociation of casein micelles and of the binding of different polysaccharides to caseins.

  17. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    Science.gov (United States)

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  18. Stabilization of heavy oil-water emulsions using a bio/chemical emulsifier mixture

    Energy Technology Data Exchange (ETDEWEB)

    Farahbakhsh, A.; Taghizadeh, M.; Movagharnejad, K. [Chemical Engineering Department, Babol University of Technology, Babol (Iran, Islamic Republic of); Yakhchali, B. [National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)

    2011-11-15

    In this study, the viscosity reduction of heavy oil has been investigated through the formation of oil-water emulsion using a bio/chemical emulsifier mixture. Four bioemulsifiers from indigenous Rhodococcus ergthropolis and Bacillus licheniformis strains were used to stabilize a highly-viscous oil-in-water emulsion. The Taguchi method with an L{sub 9} orthogonal array design was used to investigate the effect of various control factors on the formation of the oil/water emulsions. An emulsion with lowest viscosity was formed using ACO4 strain. The substantial stability of the oil-in-water emulsion allows the heavy oil to be transported practically over long distances or remain stationary for a considerable period of time prior to utilization. As the result of Taguchi analysis, the temperature and concentration of the emulsifier had a significant influence on viscosity reduction of the emulsion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Variation of emulsion stability in sulfuric acid alkylation of isobutane with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Sumanov, V.T.; Ovsyannikov, V.P.

    1982-09-01

    The makeup of the emulsion and its stability are determined to a great degree by the surface and viscosity properties of the acid. Investigates the dependence of emulsion stability on the properties of the acid circulating in the reactor section of an alkylation unit. Finds that as the surface-active substances that accumulate in the acid tend to lower its surface tension, and this in turn tends to disperse the hydrocarbon feedstock in the acid phase and forms a stable emulsion in the vigorously stirred reactor. Points out that as the acid viscosity increases, the segregation of microdrops of hydrocarbons from the acid phase becomes slower in the settling of the emulsion under natural conditions.

  20. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications.

    Science.gov (United States)

    Atanase, Leonard Ionut; Riess, Gérard

    2013-05-20

    Polyethylene glycol (PEG) 400/Miglyol 812 non-aqueous sub-micron emulsions were developed due to the fact that they are of interest for the design of drug-loaded biocompatible topical formulations. These types of emulsions were favourably stabilized by poly (2-vinylpyridine)-b-poly (butadiene) (P2VP-b-PBut) copolymer with DPBut>DP2VP, each of these sequences being well-adapted to the solubility parameters of PEG 400 and Miglyol 812, respectively. This type of block copolymers, which might limit the Ostwald ripening, appeared to be more efficient stabilizers than low molecular weight non-ionic surfactants. The emulsion characteristics, such as particle size, stability and viscosity at different shear rates were determined as a function of the phase ratio, the copolymer concentration and storage time. It was further shown that Acyclovir, as a model drug of low water solubility, could be incorporated into the PEG 400 dispersed phase, with no significant modification of the initial emulsion characteristics. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Effect of temperature and pH on the solubility of caseins: environmental influences on the dissociation of α(S)- and β-casein.

    Science.gov (United States)

    Post, A E; Arnold, B; Weiss, J; Hinrichs, J

    2012-04-01

    Selective precipitation is a common method for the isolation of β-casein, using the different calcium sensitivities of the individual caseins and the selective solubility of β-casein at a low temperature. In previous studies, it has been indicated that the β-casein yield depends on the physicochemical characteristics of the casein raw material used for fractionation. The objective of this study was to evaluate and compare the solubility of α(S)- and β-casein in solutions of micellar casein, sodium caseinate, and calcium caseinate as a function of pH and temperature. Additionally, the solubility of isolated α(S)- and β-casein fractions in demineralized water, ultrafiltration permeate, and a calcium-depleted milk salt solution was investigated depending on the pH and temperature. Furthermore, micellar casein, sodium caseinate, and calcium caseinate were subjected to a calcium chloride-precipitation process to determine the solubility of α(S)- and β-casein in calcium chloride precipitate, which is produced during selective precipitation, as a function of temperature and pH. Generally, the temperature had only a marginal influence on the α(S)-casein solubility compared with the β-casein solubility, whereas the solubility was shown to be strongly influenced by the pH. Our results suggest that the yield of β-casein obtained during isolation by means of selective precipitation may be a result of the solubility characteristics of α(S)- and β-casein in calcium chloride precipitate. Manufacturers may consider a simple solubility experiment before the β-casein isolation process by means of selective precipitation to predict β-casein yield. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Impact of cationic surfactant on the self-assembly of sodium caseinate.

    Science.gov (United States)

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija

    2014-08-27

    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  3. EVALUATION OF STABILITY OF EMULSION OIL / WATER FRONT OF THE USE OF DIFFERENT SURFACTANTS

    Directory of Open Access Journals (Sweden)

    Fernanda Cristina Wiedusch Sindelar

    2013-05-01

    Full Text Available The reuse of waste generated by various industrial sectors is a practice that has been increasingly used due to impairment of industries with their social responsibility (environmental protection or the requirements of the protection of the environment, since many residues do not have proper disposal. In the processing industry in the reuse of stones is no different. This study aims to evaluate the reuse of the oil used as a lubricant in the stone processing industry, along with water, surfactants and corrosion. To prepare the emulsions samples were used of diesel oil as a lubricant used in the cutting industry this type of industry, plus the following surfactants: Tween 20, Tween 80, sodium lauryl ether sulphate and Cetiol HE. After completing the pH, viscosity, density and phase separation in these emulsions, the conclusion was reached that the surfactant Sodium Lauryl Ether Sulfate provided the best formulation. Using this result, new emulsions prepared with the surfactant Sodium Lauryl Ether Sulfate and an anticorrosive, in this case, sodium molybdate. In such solutions containing sodium molybdate were analyzed power anticorrosive this substance, using the SAE 1020 steel plates. After these analyzes, it was found that the addition of an anticorrosive may reduce or inhibit oxidation, but in other cases, as in this study, can promote oxidation even greater.

  4. Formulation and stability of topical water in oil emulsion containing ...

    African Journals Online (AJOL)

    Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water.

  5. Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese.

    Science.gov (United States)

    Cao-Hoang, Lan; Chaine, Aline; Grégoire, Lydie; Waché, Yves

    2010-10-01

    A sodium caseinate film containing nisin (1000 IU/cm(2)) was produced and used to control Listeria innocua in an artificially contaminated cheese. Mini red Babybel cheese was chosen as a model semi-soft cheese. L. innocua was both surface- and in-depth inoculated to investigate the effectiveness of the antimicrobial film as a function of the distance from the surface in contact with the film. The presence of the active film resulted in a 1.1 log CFU/g reduction in L. innocua counts in surface-inoculated cheese samples after one week of storage at 4 degrees C as compared to control samples. With regard to in-depth inoculated cheese samples, antimicrobial efficiency was found to be dependent on the distance from the surface in contact with the active films to the cheese matrix. The inactivation rates obtained were 1.1, 0.9 and 0.25 log CFU/g for distances from the contact surface of 1 mm, 2 mm and 3 mm, respectively. Our study demonstrates the potential application of sodium caseinate films containing nisin as a promising method to overcome problems associated with post-process contamination, thereby extending the shelf life and possibly enhancing the microbial safety of cheeses. 2010 Elsevier Ltd. All rights reserved.

  6. Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin.

    Science.gov (United States)

    Xue, Jia; Michael Davidson, P; Zhong, Qixin

    2015-10-01

    Emulsions of essential oils are investigated as potential intervention strategies to improve food safety and are preferably prepared from generally-recognized-as-safe emulsifiers. Stable thyme oil nanoemulsions can be prepared using combinations of sodium caseinate (NaCas) and soy lecithin. The objective of the present research was to study the antimicrobial activity of these nanoemulsions and understand the impacts of emulsifier concentrations. 10 g/L thyme oil was emulsified using combinations of (A) 4% w/v NaCas and 0.5% w/v lecithin or (B) 2% w/v NaCas and 0.25% w/v lecithin by high shear homogenization. Combination A resulted in a transparent emulsion with a mean droplet diameter of 82.5 nm, while it was turbid for the Combination B with an average diameter of 125.5 nm. Nanoemulsified thyme oil exhibited quicker initial reductions of bacteria than free thyme oil in tryptic soy broth (TSB) and 2% reduced fat milk at 21 °C, due to the improved dispersibility of thyme oil. In TSB with 0.3 g/L thyme oil, it took less than 4 and 8 h for two nanoemulsions and free oil, respectively, to reduce Escherichia coli O157:H7 and Listeria monocytogenes to be below the detection limit. The emulsified thyme oil also demonstrated more significant reductions of bacteria initially (4 and 8 h) in 2% reduced fat milk than free thyme oil. Especially, with 4 g/L thyme oil, the nanoemulsion prepared with Combination A reduced L. monocytogenes to be below the detection limit after 72 h, while the free thyme oil treatment was only bacteriostatic and the turbid nanoemulsion treatment with Combination B resulted in about 1 log CFU/mL reduction. However, E. coli O157:H7 treated with 3 g/L emulsified thyme oil and Salmonella Enteritidis treated with 4 g/L emulsified thyme oil recovered to a higher extent in milk than free thyme oil treatments. The increased concentration of emulsifiers in Combination A apparently reduced the antimicrobials available to alter bacteria membrane permeability

  7. Importance of intrinsic properties of dense caseinate dispersions for structure formation

    NARCIS (Netherlands)

    Manski, J.M.; Riemsdijk, van L.E.; Goot, van der A.J.; Boom, R.M.

    2007-01-01

    Rheological measurements of dense calcium caseinate and sodium caseinate dispersions (15%) provided insight into the factors determining shear-induced structure formation in caseinates. Calcium caseinate at a sufficiently high concentration (30%) was shown to form highly anisotropic structures

  8. Modulation of Cyclodextrin Particle Amphiphilic Properties to Stabilize Pickering Emulsion.

    Science.gov (United States)

    Xi, Yongkang; Luo, Zhigang; Lu, Xuanxuan; Peng, Xichun

    2018-01-10

    Cyclodextrins have been proven to form complexes with linear oil molecules and stabilize emulsions. Amphiphilic properties of cyclodextrin particles were modulated through esterification reaction between β-cyclodextrin (β-CD) and octadecenyl succinic anhydride (ODSA) under alkaline conditions. ODS-β-CD particles with degree of substitution (DS) of 0.003, 0.011, and 0.019 were obtained. The introduced hydrophobic long chain that was linked within β-CD cavity led to the change of ODS-β-CD in terms of morphological structure, surface charge density, size, and contact angle, upon which the properties and stability of the emulsions stabilized by ODS-β-CD were highly dependent. The average diameter of ODS-β-CD particles ranged from 449 to 1484 nm. With the DS increased from 0.003 to 0.019, the contact angle and absolute zeta potential value of these ODS-β-CD particles improved from 25.7° to 47.3° and 48.1 to 62.8 mV, respectively. The cage structure of β-CD crystals was transformed to channel structure, then further to amorphous structure after introduction of the octadecenyl succinylation chain. ODS-β-CD particles exhibited higher emulsifying ability compared to β-CD. The resulting Pickering emulsions formed by ODS-β-CD particles were more stable during storage. This study investigates the ability of these ODS-β-CD particles to stabilize oil-in-water emulsions with respect to their amphiphilic character and structural properties.

  9. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI

  10. Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions.

    Science.gov (United States)

    De Neve, N; Vlaeminck, B; Gadeyne, F; Claeys, E; Van der Meeren, P; Fievez, V

    2018-03-16

    Previously, polyunsaturated fatty acids (PUFA) from linseed oil were effectively protected (>80%) against biohydrogenation through polyphenol-oxidase-mediated protein crosslinking of an emulsion, prepared with polyphenol oxidase (PPO) extract from potato tuber peelings. However, until now, emulsions of only 2 wt% oil have been successfully protected, which implies serious limitations both from a research perspective (e.g. in vivo trials) as well as for further upscaling toward practical applications. Therefore, the aim of this study was to increase the oil/PPO ratio. In the original protocol, the PPO extract served both an emulsifying function as well as a crosslinking function. Here, it was first evaluated whether alternative protein sources could replace the emulsifying function of the PPO extract, with addition of PPO extract and 4-methylcatechol (4MC) to induce crosslinking after emulsion preparation. This approach was then further used to evaluate protection of emulsions with higher oil content. Five candidate emulsifiers (soy glycinin, gelatin, whey protein isolate (WPI), bovine serum albumin and sodium caseinate) were used to prepare 10 wt% oil emulsions, which were diluted five times (w/w) with PPO extract (experiment 1). As a positive control, 2 wt% oil emulsions were prepared directly with PPO extract according to the original protocol. Further, emulsions of 2, 4, 6, 8 and 10 wt% oil were prepared, with 80 wt% PPO extract (experiment 2), or with 90, 80, 70, 60 and 50 wt% PPO extract, respectively (experiment 3) starting from WPI-stabilized emulsions. Enzymatic crosslinking was induced by 24-h incubation with 4MC. Ruminal protection efficiency was evaluated by 24-h in vitro batch simulation of the rumen metabolism. In experiment 1, protection efficiencies were equal or higher than the control (85.5% to 92.5% v. 81.3%). In both experiments 2 and 3, high protection efficiencies (>80%) were achieved, except for emulsions containing 10 wt% oil emulsions

  11. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand

    Science.gov (United States)

    Juntarasakul, O.; Maneeintr, K.

    2018-04-01

    Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.

  12. The effect of electrolytes on emulsions stabilized by nonionic surfactants

    NARCIS (Netherlands)

    Boomgaard, van den A.

    1985-01-01

    The objective of this study was to investigate the effect of high electrolyte concentrations on the stability of oil-in-water- emulsions stabilized by nonionic surfactants.

    In chapter 1 several stability mechanisms are briefly outlined and the distinction between coalescence and

  13. Properties of acid gels made from sodium caseinate-maltodextrin conjugates prepared by a wet heating method.

    Science.gov (United States)

    Zhang, Shuwen; Gong, Yuansheng; Khanal, Som; Lu, Yanjie; Lucey, John A

    2017-11-01

    Covalent attachment of polysaccharides to proteins (conjugation) via the Maillard reaction has been extensively studied. Conjugation can lead to a significant improvement in protein functionality (e.g., solubility, emulsification, and heat stability). Caseins have previously been successfully conjugated with maltodextrin (Md), but the effect on the detailed acid gelation properties has not been examined. We studied the effect of conjugating sodium caseinate (NaCN) with 3 different sized Md samples via the Maillard reaction in aqueous solutions. The Md samples had dextrose equivalents of 4 to 7, 9 to 12, and 20 to 23 for Md40, Md100, and Md200, respectively. The conjugation reaction was performed in mixtures with 5% NaCN and 5% Md, which were heated at 90°C for 10 h. The degree of conjugation was estimated from the reduction in free amino groups as well as color changes. Sodium dodecyl sulfate-PAGE analysis was performed to confirm conjugation by employing staining of both protein and carbohydrate bands. The molar mass of samples was determined by size-exclusion chromatography coupled with multi-angle laser light scattering. After the conjugation reaction, samples were then gelled by the addition of 0.63% (wt/vol) glucono-δ-lactone at 30°C, such that samples reached pH 4.6 after about 13 h. The rheological properties of samples during acidification was monitored by small-strain dynamic oscillatory rheology. The microstructure of acid gels at pH 4.6 was examined by fluorescence microscopy. Conjugation resulted in a loss of 10.8, 8.8, and 11.9% of the available amino groups in the protein for the NaCN-Md40 conjugates (C40), NaCN-Md100 conjugates (C100), and NaCN-Md100 conjugates (C200), respectively. With a decrease in the size of the type of Md, an increase occurred in the molar mass of the resultant conjugate. The weight average molar masses of NaCN-Md samples were 340, 368, and 425 kDa for the conjugates C40, C100, and C200, respectively. Addition of Md to Na

  14. Enhanced removal of detergent and recovery of enzymatic activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis: UUse of casein in gel wash buffer

    International Nuclear Information System (INIS)

    McGrew, B.R.; Green, D.M.

    1990-01-01

    The inclusion of 1% casein or bovine serum albumin in buffer used to reactivate enzymes subjected to sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis resulted in accelerated removal of SDS and restoration of nuclease and beta-galactosidase enzyme activities. Nuclease and beta-galactosidase activities which are absent from gels after longer wash procedures are detectable with this technique. Enzyme activity in gels prepared with SDS which contained inhibitory contaminants was partially restored by the casein wash procedure. The threshold of detection of two-dimensionally separated deoxyribonuclease I using the casein wash procedure was 1 picogram

  15. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    Science.gov (United States)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Quinoa starch granules as stabilizing particles for production of Pickering emulsions.

    Science.gov (United States)

    Rayner, Marilyn; Sjöö, Malin; Timgren, Anna; Dejmek, Petr

    2012-01-01

    Intact starch granules isolated from quinoa (Chenopodium quinoa Willd.) were used to stabilize emulsion drops in so-called Pickering emulsions. Miglyol 812 was used as dispersed phase and a phosphate buffer (pH7) with different salt (NaCl) concentrations was used as the continuous phase. The starch granules were hydrophobically modified to different degrees by octenyl succinic anhydride (OSA) or by dry heat treatment at 120 degrees C in order to study the effect on the resulting emulsion drop size. The degree of OSA-modification had a low to moderate impact on drop size. The highest level of modification (4.66%) showed the largest mean drop size, and lowest amount of free starch, which could be an effect of a higher degree of aggregation of the starch granules and, thereby, also the emulsion drops stabilized by them. The heat treated starch granules had a poor stabilizing ability and only the starch heated for the longest time (150 min at 120 degrees C) had a better emulsifying capacity than the un-modified native starch granules. The effect of salt concentration was rather limited. However, an increased concentration of salt slightly increased the mean drop size and the elastic modulus.

  17. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    International Nuclear Information System (INIS)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-01-01

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS_2(s) + 91NH_4NO_3(s) → 52NO(g) + 26SO_2(g) + 6Fe_2O_3(s) + 78NH_3(g) + 26N_2O(g) + 2FeSO_4(s) + 65H_2O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO_2, NH_3, SO_2 and N_2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  18. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhi-Xiang; Wang, Qian [School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Fu, Xiao-Qi, E-mail: xzx19820708@163.com [School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 (China)

    2015-12-30

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS{sub 2}(s) + 91NH{sub 4}NO{sub 3}(s) → 52NO(g) + 26SO{sub 2}(g) + 6Fe{sub 2}O{sub 3}(s) + 78NH{sub 3}(g) + 26N{sub 2}O(g) + 2FeSO{sub 4}(s) + 65H{sub 2}O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO{sub 2}, NH{sub 3}, SO{sub 2} and N{sub 2}O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  19. Oil-in-Water Emulsions Stabilized by Saponified Epoxidized Soybean Oil-Grafted Hydroxyethyl Cellulose.

    Science.gov (United States)

    Huang, Xujuan; Li, Qiaoguang; Liu, He; Shang, Shibin; Shen, Minggui; Song, Jie

    2017-05-03

    An oil-in-water emulsion stabilized by saponified epoxidized soybean oil-grafted hydroxyethyl cellulose (H-ESO-HEC) was investigated. By using an ultrasonic method, oil-in-water emulsions were prepared by blending 50 wt % soybean oil and 50 wt % H-ESO-HEC aqueous suspensions. The influence of H-ESO-HEC concentrations on the properties of oil-in-water emulsions was examined. The H-ESO-HEC concentrations in the aqueous phase varied from 0.02 to 0.40 wt %. When the H-ESO-HEC concentration was 0.4 wt %, the emulsion remained stable for >80 days. The mean droplet sizes of the emulsions decreased by increasing the H-ESO-HEC concentration and extending the ultrasonic time. The adsorption amounts of H-ESO-HEC at the oil-water interface increased when the H-ESO-HEC concentrations in the aqueous phase increased. The rheological property revealed that the apparent viscosity of the H-ESO-HEC-stabilized oil-in-water emulsions increased when the H-ESO-HEC concentrations increased. Steady flow curves indicated an interfacial film formation in the emulsions. The evolution of G', G″, and tan η indicated the predominantly elastic behaviors of all the emulsions.

  20. Effects of solvent and alkaline earth metals on the heat-induced precipitation process of sodium caseinate.

    Science.gov (United States)

    Lopez, Francesco; Cuomo, Francesca; Nostro, Pierandrea Lo; Ceglie, Andrea

    2013-01-01

    The precipitation temperatures of sodium caseinate in H(2)O and D(2)O in the presence of Mg(2+), Ca(2+), Sr(2+) and Ba(2+) were investigated through fluorescence, turbidity and conductivity experiments. As for the ability of the divalent cations (1-17.5mM) to induce the precipitation process in H(2)O, the sequence Ba(2+) ≥ Ca(2+)>Mg(2+)>Sr(2+) was found. Remarkably, while at low salt concentrations (10mM) the differences among the different cations were greatly reduced. By fitting these results with a modified Jones-Dole equation, we confirmed that the less hydrated ions possess a greater capacity to induce precipitation. In D(2)O, the order of ion ability to induce caseinate precipitation was Ba(2+)>Ca(2+)>Sr(2+)>Mg(2+). The different hydrophobicity between D(2)O and H(2)O was shown to affect significantly the T(Ps) of caseinate in the presence of calcium, strontium and barium. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Dispersion Stability of O/W Emulsions with Different Oil Contents Under Various Freezing and Thawing Conditions.

    Science.gov (United States)

    Katsuki, Kazutaka; Miyagawa, Yayoi; Nakagawa, Kyuya; Adachi, Shuji

    2017-07-01

    Freezing and thawing of oil-in-water (O/W) emulsion-type foods bring about oil-water separation and deterioration; hence, the effects of freezing and thawing conditions on the destabilization of O/W emulsions were examined. The freezing rate and thawing temperature hardly affected the stability of the O/W emulsion. O/W emulsions having different oil fractions were stored at temperatures ranging from -30 to -20 °C and then thawed. The stability after thawing depended on the storage temperature, irrespective of the oil fraction of the emulsion. A good correlation was found between the time at which the stability began to decrease and the time taken for the oil to crystalize. These results indicated that the dominant cause for the destabilization of the O/W emulsion during freezing and thawing is the crystallization of the oil phase and that the effects of the freezing and thawing rates on the stability are insignificant. © 2017 Institute of Food Technologists®.

  2. Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion.

    Science.gov (United States)

    Wang, Wenhang; Du, Guanhua; Li, Cong; Zhang, Hongjie; Long, Yunduo; Ni, Yonghao

    2016-10-20

    Nano cellulosic materials as promising emulsion stabilizers have attracted great interest in food industry. In this paper, five different sized cellulose nanocrystals (CNC) samples were prepared from stem of Asparagus officinalis L. using the same sulfuric acid hydrolysis conditions but different times (1.5, 2, 2.5, 3.0, and 3.5h). The sizes of these CNC ranged from 178.2 to 261.8nm, with their crystallinity of 72.4-77.2%. The CNC aqueous dispersions showed a typical shear thinning behavior. In a palm oil/water (30/70, v/v) model solution, stable Pickering emulsions were formed with the addition of CNC, and their sizes are in the range of 1-10μm based on the optical and confocal laser scanning microscopy (CLSM) observation. The CNC sample prepared at 3h hydrolysis time, showed a relative efficient emulsion capacity for palm oil droplets, among these CNCs. Other parameters including the CNC, salt, and casein concentrations on the emulsion stability were studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Translational and rotational diffusion of flexible PEG and rigid dendrimer probes in sodium caseinate dispersions and acid gels

    NARCIS (Netherlands)

    Salami, S.; Rondeau-Mouro, C.; Barhoum, M.; Duynhoven, van J.P.M.; Mariette, F.

    2014-01-01

    The dynamics of rigid dendrimer and flexible PEG probes in sodium caseinate dispersions and acid gels, including both translational diffusion and rotational diffusion, were studied by NMR. Above the onset of the close-packing limit (C ~ 10 g/100 g H2O), translational diffusion of the probe depended

  4. Stability of bisphenol A (BPA) in oil-in water emulsions under riboflavin photosensitization.

    Science.gov (United States)

    Jang, Eun Yeong; Park, Chan Uk; Kim, Mi-Ja; Lee, JaeHwan

    2012-08-01

    Effects of riboflavin photosensitization on the degradation of bisphenol A (BPA) were determined in oil-in-water (O/W) emulsions containing ethylenediaminetetraacetic acid (EDTA) or sodium azide, which are a metal chelator or a singlet oxygen quencher, respectively. Also, the distribution of BPA between the continuous and dispersed phases in O/W emulsions was analyzed by high-performance liquid chromatography (HPLC). The concentration of BPA in O/W emulsions significantly decreased by 38.6% after 2 h under visible light irradiation and in the presence of riboflavin (P riboflavin photosensitization (P riboflavin photodegradation in O/W emulsions. Concentration of BPA, an endocrine disrupting chemical, was decreased significantly in oil-in-water emulsions under riboflavin and visible light irradiation. BPA in continuous aqueous phase was major target of riboflavin photosensitization. However, BPA was distributed more densely in lipid phase and more protected from riboflavin photosensitized O/W emulsions. This study can help to decrease the level of BPA in foods made of O/W emulsions containing riboflavin, which could be displayed under visible light irradiation. © 2012 Institute of Food Technologists®

  5. Formation of free-standing sterilized edible-films from irradiated caseinates

    International Nuclear Information System (INIS)

    Brault, D.; D'Aprano, G.; Lacroix, M.

    1998-01-01

    γ-irradiation was used to produce free-standing sterilized edible films based on milk protein, namely sodium-caseinate and calcium-caseinate. The nature of the counter-ion as well as the protein and glycerol concentrations were examined. Irradiation of solution based on calcium-caseinate produced more crosslinks than solution based on sodium-caseinate. As a consequence, films based on calcium-caseinate showed a better mechanical strength. Glycerol was found to play a double role in enhancing the formation of crosslinks within caseinate chains, accounting for the increase of the puncture strength, and acting as a plasticizer, being responsible for the improved film extensibility and viscoelasticity. Moreover, the effect of the irradiation on the mechanical properties were strongly dependent on the glycerol/protein ratio, i.e. the formulation of the films. Films of high quality and a satisfactory mechanical behaviour were generated at glycerol/protein ratios of 0.5 and 0.67

  6. Production of calcium- and magnesium-enriched caseins and caseinates by an ecofriendly technology.

    Science.gov (United States)

    Masson, Félix-André; Mikhaylin, Sergey; Bazinet, Laurent

    2018-05-09

    Finding new green ways of producing proteins has never been of such critical public interest, both to meet consumers' needs and to preserve the environment. Milk proteins are among the most attractive protein types due to their high nutritional value and attractive functional properties. In this work, the separation of caseins by conventional chemical acidification was compared with electrodialysis with bipolar membrane coupled to an ultrafiltration module (EDBM-UF), a green process that allows the precipitation of caseins by H + generated in situ by the bipolar membrane and, simultaneously, the production of a separated NaOH stream from OH - electrogenerated by the bipolar membrane. Caseinate production using this NaOH stream by-product and the quantity of NaOH needed to produce caseinates from both methods were also investigated. Hence, the purity and composition of caseins and caseinates were compared in terms of protein, ash, and lactose contents as well as mineral composition. The results showed for the first time that caseinates can be produced by solubilizing caseins with NaOH stream from the EDBM process. Furthermore, the caseins and caseinates produced by EDBM-UF were equivalent in terms of lactose and protein contents to their respective caseins and caseinates that were chemically produced but presented slightly lower sodium content and 3 to 4 times higher magnesium and calcium contents. The fact that calcium and magnesium are likely bound to milk caseins would ensure their favorable absorbability. These caseins or caseinates from the new EDBM-UF process could be suitable as an improved protein-based calcium or magnesium supplement, both for their enhanced nutritional quality and because they are produced by a green process. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. The Influence of Chemically Modified Potato Maltodextrins on Stability and Rheological Properties of Model Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    Karolina Pycia

    2018-01-01

    Full Text Available The aim of this study was to determine the effect of the maltodextrins prepared from chemically modified starches (crosslinked, stabilized, crosslinked and stabilized on the stability and rheological properties of model oil-in-water (o/w emulsions. Based on the obtained results, it was concluded that emulsion stability depended on hydrolysates dextrose equivalent (DE value. Maltodextrin with the lowest degree of depolymerization effectively stabilized the dispersed system, and the effectiveness of this action depended on the maltodextrin type and concentration. Addition of distarch phosphate-based maltodextrin stabilized emulsion at the lowest applied concentration, and the least effective was maltodextrin prepared from acetylated starch. Emulsions stabilized by maltodextrins (DE 6 prepared from distarch phosphate and acetylated distarch adipate showed the predominance of the elastic properties over the viscous ones. Only emulsion stabilized by maltodextrin prepared from distarch phosphate (E1412 revealed the properties of strong gel. Additionally, the decrease in emulsions G′ and G″ moduli values, combined with an increase in the value of DE maltodextrins, was observed.

  8. The adsorption of orthophosphate onto casein-iron precipitates.

    Science.gov (United States)

    Mittal, Vikas A; Ellis, Ashling; Ye, Aiqian; Edwards, Patrick J B; Singh, Harjinder

    2018-01-15

    This study explored the interactions of orthophosphate with casein-iron precipitates. Casein-iron precipitates were formed by adding ferric chloride at ≥10mM to sodium caseinate solutions ranging in concentration from 1 to 3%(w/v). The addition of different concentrations of orthophosphate solution to the casein-iron precipitates resulted in gradual adsorption of the orthophosphate, causing re-dispersion of the casein-iron complexes. The interactions of added orthophosphate with iron in the presence and absence of caseins are postulated, and new mechanisms are proposed. The re-dispersed soluble complexes of casein-iron-orthophosphate generated using this process could be used as novel iron fortificants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Complex formation in mixtures of lysozyme-stabilized emulsions and human saliva

    NARCIS (Netherlands)

    Silletti, E.; Vingerhoeds, M.H.; Norde, W.; Aken, van G.A.

    2007-01-01

    In this paper, we studied the interaction between human unstimulated saliva and lysozyme-stabilized oil-in-water emulsions (10 wt/wt% oil phase, 10 mM NaCl, pH 6.7), to reveal the driving force for flocculation of these emulsions. Confocal scanning laser microscopy (CSLM) showed formation of

  10. Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Barouh, Nathalie; Nielsen, Nina Skall

    2013-01-01

    The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used...... prior to homogenization did not have any clear effect on lipid oxidation in either of the two types of emulsions....

  11. Development of O/W emulsions containing Euterpe oleracea extract and evaluation of photoprotective efficacy

    Directory of Open Access Journals (Sweden)

    Cláudia Cecilio Daher

    2014-09-01

    Full Text Available Euterpe oleraceaMart. is a palm tree popularly known as açai, which is primarily found in northern Brazil. The açai's fruits contain anthocyanins, a class of polyphenols to which antioxidant properties have been attributed. The aim of this work was to develop O/W sunscreens emulsions containing açai glycolic extract (AGE and to evaluate both their physical stability and photoprotective efficacy. Emulsions containing AGE and sunscreens were formulated using different types and concentrations of polymeric surfactant (acrylates/C 10-30 alkyl acrylate crosspolymer and sodium polyacrylate. The influence of two rheology modifiers (polyacrylamide (and C13-14/isoparaffin (and Laureth-7 and Carbomer on the stability was also investigated. Physical stability was evaluated by preliminary and accelerated studies. Emulsions with 1.0% sodium polyacrylate were stable and exhibited non-newtonian pseudoplastic behavior and thixotropy. Photoprotective efficacy was evaluated by in vivo Sun Protection Factor (SPF and determination of Protection Factor of UVA (PF-UVA. When AGE was added to the sunscreen emulsion, no significant increase in the in vivo SPF value was observed. The emulsion containing AGE showed PF-UVA = 14.97, 1.69 of the SPF/PF-UVA ratio and a critical wavelength value of 378 nm, and may therefore be considered a sunscreen with UVA and UVB protection.

  12. Glycation Reactions of Casein Micelles.

    Science.gov (United States)

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  13. Physical Stability of Oil in Water Emulsions in the Presence of Gamma Irradiated Gum Tragacanth

    DEFF Research Database (Denmark)

    Meybodi, Neda Mollakhalili; Mohammadifar, Mohammad Amin; Farhoodi, Mehdi

    2017-01-01

    Gum tragacanth (GT) exuded from an Iranian Astragalus species was γ-irradiated at 0, 0.75, 1.5, 3, 5, 7, 10 kGy and used to stabilize a model oil in water emulsion system. Stability and physicochemical properties of emulsion samples were investigated with respect to the effect of irradiation...... treatment on functional properties of gum tragacanth. Particle size distribution, interfacial tension, zeta potential, steady shear and oscillatory rheological measurements were used to characterize and evaluate the emulsion samples and obtain more information about the possible stability mechanism...

  14. The effect of packaging materials on the stability of sunscreen emulsions.

    Science.gov (United States)

    Santoro, Maria Inês R M; Da Costa E Oliveira, Daniella Almança Gonçalves; Kedor-Hackmann, Erika R M; Singh, Anil K

    2005-06-13

    The purpose of this research was to study the stability of a emulsion containing UVA, UVB and infrared sunscreens after storage in different types of packaging materials (glass and plastic flasks; plastic and metallic tubes). The samples, emulsions containing benzophenone-3 (B-3), octyl methoxycinnamate (OM) and Phycocorail, were stored at 10, 25, 35 and 45 degrees C and representative samples were analyzed after 2, 7, 30, 60 and 90 days period. The stability studies were conducted by analyzing samples at pre-determined intervals by high performance liquid chromatography (HPLC) along with periodic rheological measurements.

  15. Short communication: separation and quantification of caseins and casein macropeptide using ion-exchange chromatography.

    Science.gov (United States)

    Holland, B; Rahimi Yazdi, S; Ion Titapiccolo, G; Corredig, M

    2010-03-01

    The aim of this work was to improve an existing method to separate and quantify the 4 major caseins from milk samples (i.e., containing whey proteins) using ion-exchange chromatography. The separation process was carried out using a mini-preparative cation exchange column (1 or 5mL of column volume), using urea acetate as elution buffer at pH 3.5 with a NaCl gradient. All 4 major caseins were separated, and the purity of each peak was assessed using sodium dodecyl sulfate-PAGE. Purified casein fractions were also added to raw milk to confirm their elution volumes. The quantification was carried out using purified caseins in buffer as well as added directly to fresh skim milk. This method can also be employed to determine the decrease in kappa-casein and the release of the casein-macropeptide during enzymatic hydrolysis using rennet. In this case, the main advantage of using this method is the lack of organic solvents compared with the conventional method for separation of macropeptide (using reversed phase HPLC).

  16. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  17. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...... larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme...... catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher...

  18. Binding of resveratrol with sodium caseinate in aqueous solutions.

    Science.gov (United States)

    Acharya, Durga P; Sanguansri, Luz; Augustin, Mary Ann

    2013-11-15

    The interaction between resveratrol (Res) and sodium caseinate (Na-Cas) has been studied by measuring fluorescence quenching of the protein by resveratrol. Quenching constants were determined using Stern-Volmer equation, which suggests that both dynamic and static quenching occur between Na-Cas and Res. Binding constants for the complexation between Na-Cas and Res were determined at different temperatures. The large binding constants (3.7-5.1×10(5)M(-1)) suggest that Res has strong affinity for Na-Cas. This affinity decreases as the temperature is raised from 25 to 37°C. The binding involves both hydrogen bonding and hydrophobic interaction, as suggested by negative enthalpy change and positive entropy change for the binding reaction. The present study indicates that Na-Cas, a common food protein, may be used as a carrier of Res, a bioactive polyphenol which is insoluble in both water and oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.

    Science.gov (United States)

    Xue, Jia; Zhong, Qixin

    2014-10-08

    Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.

  20. Grafting C8-C16 alkyl groups altered the self-assembly and curcumin –loading properties of sodium caseinate in water

    Directory of Open Access Journals (Sweden)

    Yaqiong Zhang

    2018-02-01

    Full Text Available The data presented here are related to the research article entitled “Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water” (Zhang et al., 2018 [1]. This data article reports the detailed spectra information for 1H NMR, 13C NMR and UPLC-Q-TOF MS of the N-succinimidyl fatty acid esters with various alkyl chain lengths (Cn-NHSs, n = 8, 12, 14 and 16. 1H NMR, 13C NMR and UPLC-Q-TOF MS spectra for C16-NHS are shown as an example. Then the stacked 1H NMR spectra of the obtained alkylated caseinates (Cn-caseinates, n = 8, 12, 14 and 16 are provided. The surface hydrophobicity index (S0 of Cn-caseinates with different substitution degrees (SD of alkyl groups is shown. Additionally, Visual appearances for the formed aqueous dispersions of curcumin-loaded native caseinate (NaCas and Cn-caseinates self-assemblies are shown. X-ray diffraction patterns of curcumin, C16-caseinate, its physical mixture and curcumin-loaded C16-caseinate self-assemblies are examined. The re-dispersibility and short-term storage stability of the curcumin-loaded NaCas and C16-caseinate self-assemblies are also studied. Keywords: Caseinate, Alkylated caseinate, Self-assembly, Curcumin-loading property

  1. Grafting C8-C16 alkyl groups altered the self-assembly and curcumin -loading properties of sodium caseinate in water.

    Science.gov (United States)

    Zhang, Yaqiong; Yang, Puyu; Yao, Fangyi; Liu, Jie; Yu, Liangli Lucy

    2018-02-01

    The data presented here are related to the research article entitled "Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water" (Zhang et al., 2018) [1]. This data article reports the detailed spectra information for 1 H NMR, 13 C NMR and UPLC-Q-TOF MS of the N-succinimidyl fatty acid esters with various alkyl chain lengths (Cn-NHSs, n = 8, 12, 14 and 16). 1 H NMR, 13 C NMR and UPLC-Q-TOF MS spectra for C16-NHS are shown as an example. Then the stacked 1 H NMR spectra of the obtained alkylated caseinates (Cn-caseinates, n = 8, 12, 14 and 16) are provided. The surface hydrophobicity index (S 0 ) of Cn-caseinates with different substitution degrees (SD) of alkyl groups is shown. Additionally, Visual appearances for the formed aqueous dispersions of curcumin-loaded native caseinate (NaCas) and Cn-caseinates self-assemblies are shown. X-ray diffraction patterns of curcumin, C16-caseinate, its physical mixture and curcumin-loaded C16-caseinate self-assemblies are examined. The re-dispersibility and short-term storage stability of the curcumin-loaded NaCas and C16-caseinate self-assemblies are also studied.

  2. Influence of pH value on microstructure of oil-in-water emulsions stabilized by chickpea protein flour.

    Science.gov (United States)

    Felix, Manuel; Isurralde, Nadia; Romero, Alberto; Guerrero, Antonio

    2018-01-01

    Food industry is highly interested in the development of healthier formulations of oil-in-water emulsions, stabilized by plant proteins instead of egg or milk proteins. These emulsions would avoid allergic issues or animal fat. Among other plant proteins, legumes are a cost-competitive product. This work evaluates the influence of pH value (2.5, 5.0 and 7.5) on emulsions stabilized by chickpea-based emulsions at two different protein concentration (2.0 and 4.0 wt%). Microstructure of chickpea-based emulsions is assessed by means of backscattering, droplet size distributions and small amplitude oscillatory shear measurements. Visual appearances as well as confocal laser scanning microscopy images are obtained to provide useful information on the emulsions structure. Interestingly, results indicate that the pH value and protein concentration have a strong influence on emulsion microstructure and stability. Thus, the system which contains protein surfaces positively charged shows the highest viscoelastic properties, a good droplet size distribution profile and non-apparent destabilization phenomena. Interestingly, results also reveal the importance of rheological measurements in the prediction of protein interactions and emulsion stability since this technique is able to predict destabilization mechanisms sooner than other techniques such as backscattering or droplet size distribution measurements.

  3. Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles.

    Science.gov (United States)

    Binks, Bernard P; Clint, John H; Whitby, Catherine P

    2005-06-07

    A study of the rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles is described. Concentrated emulsions were prepared and diluted at constant particle concentration to investigate the effect of drop volume fraction on the viscosity and viscoelastic response of the emulsions. The influence of the structure of the hydrophobic clay particles in the oil has also been studied by using oils in which the clay swells to very different extents. Emulsions prepared from isopropyl myristate, in which the particles do not swell, are increasingly flocculated as the drop volume fraction increases and the viscosity of the emulsions increases accordingly. The concentrated emulsions are viscoelastic and the elastic storage and viscous loss moduli also increase with increasing drop volume fraction. Emulsions prepared from toluene, in which the clay particles swell to form tactoids, are highly structured due to the formation of an integrated network of clay tactoids and drops, and the moduli of the emulsions are significantly larger than those of the emulsions prepared from isopropyl myristate.

  4. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  5. Interactions of milk α- and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts.

    Science.gov (United States)

    He, Zhiyong; Xu, Mingzhu; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-05-15

    The interactions of α- and β-casein with malvidin-3-O-glucoside (MG), the major anthocyanin in grape skin anthocyanin extracts (GSAE), were examined at pH 6.3 by fluorescence, fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy. The binding constant (KS), binding force and effects of the interactions on the caseins conformation and GSAE stability were investigated. The results showed that α- and β-casein bound with MG via hydrophilic (van der Waals forces or hydrogen bonding) and hydrophobic interactions, respectively. α-Casein had a slightly stronger binding affinity toward MG than β-casein, with respective KS values of 0.51×10(3)M(-1) and 0.46×10(3)M(-1) at 297K. The secondary structures of α- and β-casein were changed by MG binding, with a decrease in α-helix and an increase in turn for α-casein and no change in α-helix and a decrease in turn for β-casein. The casein-anthocyanin interaction appeared to have a positive effect on the thermal, oxidation and photo stability of GSAE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Preparation and physicochemical properties of surfactant-free emulsions using electrolytic-reduction ion water containing lithium magnesium sodium silicate.

    Science.gov (United States)

    Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2013-04-01

    Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.

  7. Acquisition of Co metal from spent lithium-ion battery using emulsion liquid membrane technology and emulsion stability test

    Science.gov (United States)

    Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.

  8. A magnetic nanoparticle stabilized gas containing emulsion for multimodal imaging and triggered drug release.

    Science.gov (United States)

    Guo, Wei; Li, Diancheng; Zhu, Jia-an; Wei, Xiaohui; Men, Weiwei; Yin, Dazhi; Fan, Mingxia; Xu, Yuhong

    2014-06-01

    To develop a multimodal imaging guided and triggered drug delivery system based on a novel emulsion formulation composed of iron oxide nanoparticles, nanoscopic bubbles, and oil containing drugs. Iron oxide paramagnetic nanoparticles were synthesized and modified with surface conjugation of polyethylenimide (PEI) or Bovine Serum Albumin (BSA). Both particles were used to disperse and stabilize oil in water emulsions containing coumarin-6 as the model drug. Sulfur hexafluoride was introduced into the oil phase to form nanoscopic bubbles inside the emulsions. The resulted gas containing emulsions were evaluated for their magnetic resonance (MR) and ultrasound (US) imaging properties. The drug release profile triggered by ultrasound was also examined. We have successfully prepared the highly integrated multi-component emulsion system using the surface modified iron oxide nanoparticles to stabilize the interfaces. The resulted structure had distinctive MR and US imaging properties. Upon application of ultrasound waves, the gas containing emulsion would burst and encapsulated drug could be released. The integrated emulsion formulation was multifunctional with paramagnetic, sono-responsive and drug-carrying characteristics, which may have potential applications for disease diagnosis and imaging guided drug release.

  9. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    Science.gov (United States)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  10. Stability Emulsion and Sensory Characteristics Low Fat Mayonnaise Using Kefir as Emulsifier Replacer

    Directory of Open Access Journals (Sweden)

    Herly Evanuarini

    2017-03-01

    Full Text Available Mayonnaise is a kind of semi solid oil in water (o/w emulsion which containing pasteurized egg yolk as an emulsifier. The consumers have demanded that the use of egg yolk be reduced. Kefir was used to develop a low fat mayonnaise as emulsifier replacer to egg yolk. The objective of this research was to observe the emulsion stability, sensory characteristics of low fat mayonnaise prepare during kefir as emulsifier replacer. The research method was using experimental design. The result showed that formulation of low fat mayonnaise by using Rice bran oil 40%, kefir 20% produces the optimal low fat mayonnaise in emulsion stability and accepted by the panelist.

  11. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method.

    Science.gov (United States)

    Fasihi, Hadi; Fazilati, Mohammad; Hashemi, Mahdi; Noshirvani, Nooshin

    2017-07-01

    The aim of this study was to investigate the possibility of increasing the antimicrobial and antioxidant properties of biodegradable active films stabilized via Pickering emulsions. The blend films were prepared from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), emulsified with oleic acid (OL) and incorporated with rosemary essential oil (REO). Formation of Pickering emulsion was confirmed by scanning electron microscopy (SEM), optical microscopy, mean droplet size and emulsion stability. Morphological, optical, physical, mechanical, thermal, antifungal and antioxidant properties of the films incorporated with different concentrations of REO (0.5, 1.5 and 3%) were determined. The results showed an increase in UV absorbance and elongation at break but, a decrease in tensile strength and thermal stability of the films. Interestingly, films containing REO exhibited considerable antioxidant and antimicrobial properties. In vitro microbial tests exhibited 100% fungal inhibition against Penicillium digitatum in the films containing 3% REO. In addition, no fungal growth were observed after 60days of storage at 25°C in bread slices were stored with active films incorporated with 3% REO, could attributed to the slow and regular release of REO caused by Pickering emulsions. The results of this study suggest that Pickering emulsion is a very promising method, which significantly affects antioxidant and antimicrobial activities of the films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation.

    Science.gov (United States)

    Pang, Yuxia; Wang, Shengwen; Qiu, Xueqing; Luo, Yanling; Lou, Hongming; Huang, Jinhao

    2017-12-20

    Lignin is a vastly underutilized biomass resource. The preparation of water-dispersed lignin nanoparticles is an effective way to realize the high-value utilization of lignin. However, the currently reported preparation methods of lignin nanoparticles still have some drawbacks, such as the requirement for toxic organic solvent or chemical modification, complicated operation process, and poor dispersibility. Here, lignin/sodium dodecyl sulfate (SDS) composite nanoparticles (LSNPs) with outstanding water dispersibility and a size range of 70-200 nm were facilely prepared via acidifying the mixed basic solution of alkaline lignin and SDS. No harsh chemical was needed. The formation mechanism was systematically studied. Results indicated that the LSNPs were obtained by acid precipitation of the mixed micelles formed by the self-assembly of lignin and SDS. In addition, on the basis of the LSNP-stabilized Pickering emulsions, lignin/polyurea composite microcapsules combining the excellent chemical stability of a synthetic polyurea shell with the fantastic antiphotolysis and antioxidant properties of lignin were successfully prepared.

  13. The chaperone action of bovine milk αS1- and αS2-caseins and their associated form αS-casein.

    Science.gov (United States)

    Treweek, Teresa M; Thorn, David C; Price, William E; Carver, John A

    2011-06-01

    α(S)-Casein, the major milk protein, comprises α(S1)- and α(S2)-casein and acts as a molecular chaperone, stabilizing an array of stressed target proteins against precipitation. Here, we report that α(S)-casein acts in a similar manner to the unrelated small heat-shock proteins (sHsps) and clusterin in that it does not preserve the activity of stressed target enzymes. However, in contrast to sHsps and clusterin, α-casein does not bind target proteins in a state that facilitates refolding by Hsp70. α(S)-Casein was also separated into α- and α-casein, and the chaperone abilities of each of these proteins were assessed with amorphously aggregating and fibril-forming target proteins. Under reduction stress, all α-casein species exhibited similar chaperone ability, whereas under heat stress, α-casein was a poorer chaperone. Conversely, α(S2)-casein was less effective at preventing fibril formation by modified κ-casein, whereas α- and α(S1)-casein were comparably potent inhibitors. In the presence of added salt and heat stress, α(S1)-, α- and α(S)-casein were all significantly less effective. We conclude that α(S1)- and α-casein stabilise each other to facilitate optimal chaperone activity of α(S)-casein. This work highlights the interdependency of casein proteins for their structural stability. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Influence of the oil globule fraction on the release rate profiles from multiple W/O/W emulsions.

    Science.gov (United States)

    Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Monteil, Julien; Anton, Marc; Leal-Calderon, Fernando

    2010-06-15

    Water-in-oil-in-water (W/O/W) double emulsions were prepared and the kinetics of release of magnesium ions from the internal to the external water phase was investigated as a function of the formulation and the globule volume fraction. All the emulsions were formulated using the same surface-active species (polyglycerol polyricinoleate and sodium caseinate). Also, the internal droplet and oil globule diameters were almost identical for all the systems. Two types of W/O/W emulsions were prepared based either on a synthetic oil (miglyol) or on an edible oil (olive oil). The globule volume fraction varied from 11% to 72%. At constant temperature (T=25 degrees C) and irrespective of the oil type, the percentage of magnesium released was lowered by increasing the globule fraction. In all cases, magnesium leakage occurred without film rupturing (no coalescence). Thus, the experimental data were interpreted within the frame of a model based on diffusion. The rate of release was determined by the permeation coefficient of magnesium across the oil phase and by the binding (chelation) of magnesium by caseinate molecules. The data could be adequately fitted by considering a time-dependant permeation coefficient. The better retention of magnesium at high globule fractions could account for two distinct phenomena: (i) the reduction of the relative volume of the outer phase, and (ii) the attenuation of the permeation coefficient over time induced by interfacial magnesium binding, all the more important than the globule fraction increased. Copyright 2010 Elsevier B.V. All rights reserved.

  15. FORMULATION AND STABILITY EVALUATION OF BAUHINIA VARIEGATA EXTRACT TOPICAL EMULSION.

    Science.gov (United States)

    Mohsin, Sabeeh; Akhtar, Naveed

    2017-05-01

    This study presents the results for the development of water in oil (W/O) emulsion containing 2 % Bauhinia variegata (BV) extract with good antioxidant potential for cosmetic application. Different ratios of surfactant, oil and water were investigated to optimize the ratio of ingredients. It was found that emulsifier and oil4ratio were important in improving the stability of emulsion. The formulation having 2.5% Abil EM90, 12% liquid paraffin, 83.5% distilled water and 2% BV extract was found to be most stable. Stability of the formulation was further evaluated by characterizing for organoleptic, sedimentation, microscopic and rheological properties at a range of storage conditions for a period of 12 weeks. Experimental findings showed stable formulation behavior with respect to color change, liquefaction and phase separation. Centrifugation test was carried out to predict the long term stability..The rheological parameters were evaluated from Power Law and the flow index value less than 1 suggested non-Newtonian behavior of the W/O emulsion. The mean droplet size of the internal phase of freshly prepared formulation was 4.06 ? 1.99 pm that did not change significantly (p > 0.05) during the storage. The newly developed formulation exhibited promising attributes over long term storage and open opportunities for the topical delivery of natural antioxidants for cosmetic and pharmaceutical objectives.

  16. Influence of dispersed particles on small and large deformation properties of concentrated caseinate composites

    NARCIS (Netherlands)

    Manski, J.M.; Kretzers, I.M.J.; Brenk, van S.; Goot, van der A.J.; Boom, R.M.

    2007-01-01

    Concentrated sodium caseinate composites (30% w/w in water), which contained either dispersed palm fat or glass spheres varying in size and surface properties were prepared in a Brabender Do-Corder kneader. The influence of the dispersed phase on the structural properties of the sodium caseinate

  17. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  18. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  19. Study of Thermal Properties, Turbidity, Effective Factors on Particle Size and Oscillatory Rheology of Pectin-Caseinate Biopolymer Nanocomplexes

    Directory of Open Access Journals (Sweden)

    Sajedeh Bahrani

    2013-02-01

    Full Text Available The biopolymer-based nanocomplexes are a group of nanocapsules that are used for encapsulation and control delivery of nutraceuticals. They are formed by binding of proteins and polysaccharides. In this study, complex formation between pectin and sodium caseinate was taken place by addition of pectin solutions(0.2, 0.45 and 0.7 % w/v into the caseinate solutions (0.5, 1 and 1.5 % w/v and adjusted their pH below isoelecteric point of sodium caseinate. The effect of various factors such as biopolymer concentration, salt concentration, temperature and time of ultrasound on the properties of pectin-casein nanocomplexes was investigated. Differential scanning calorimetry (DSC and particle size analyzer were used for study of complex formation and particle size determination, respectively. The results of DSC and turbidimetry showed complex formation between the pectin and casein at pH below 5 and the results of particle size showed formation of stable dispersion with a minimum size of 86 nm at pH 4.1, caseinate of 1 % w/v and pectin 0.45 % w/v concentration. The ultrasound for more than 1 min reduced particle size and addition of salt at high and low concentrations had different effects on the stability of the colloidal system. The lowering of temperature from 21 to 4°C resulted in smaller particle size of nanocomplexes. The oscillatory rheological results showed that with increasing pectin concentration, viscoelastic moduli were increased and loss moduli were higher than storage modulus.

  20. Influence of calcium chelators on concentrated micellar casein solutions : from micellar structure to viscosity and heat stability

    NARCIS (Netherlands)

    Kort, de E.J.P.

    2012-01-01

    In practice it is challenging to prepare a concentrated medical product with high heat stability
    and low viscosity. Calcium chelators are often added to dairy products to improve heat stability,
    but this may increase viscosity through interactions with the casein proteins. The aim of

  1. Translational and rotational diffusion of flexible PEG and rigid dendrimer probes in sodium caseinate dispersions and acid gels.

    Science.gov (United States)

    Salami, Souad; Rondeau-Mouro, Corinne; Barhoum, Myriam; van Duynhoven, John; Mariette, François

    2014-09-01

    The dynamics of rigid dendrimer and flexible PEG probes in sodium caseinate dispersions and acid gels, including both translational diffusion and rotational diffusion, were studied by NMR. Above the onset of the close-packing limit (C ∼ 10 g/100 g H2 O), translational diffusion of the probe depended on its flexibility and on the fluctuations of the matrix chains. The PEG probe diffused more rapidly than the spherical dendrimer probe of corresponding hydrodynamic radius. The greater conformational flexibility of PEG facilitated its motion through the crowded casein matrix. Rotational diffusion was, however, substantially less hindered than the translational diffusion and depended on the local protein-probe friction which became high when the casein concentration increased. The coagulation of the matrix led to the formation of large voids, which resulted in an increase in the translational diffusion of the probes, whereas the rotational diffusion of the probes was retarded in the gel, which could be attributed to the immobilized environment surrounding the probe. Quantitative information from PFG-NMR and SEM micrographs have been combined for characterizing microstructural details in SC acid gels. © 2014 Wiley Periodicals, Inc.

  2. Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate.

    Science.gov (United States)

    Akalın, A S; Unal, G; Dinkci, N; Hayaloglu, A A

    2012-07-01

    The influence of milk protein-based ingredients on the textural characteristics, sensory properties, and microstructure of probiotic yogurt during a refrigerated storage period of 28 d was studied. Milk was fortified with 2% (wt/vol) skim milk powder as control, 2% (wt/vol) sodium calcium caseinate (SCaCN), 2% (wt/vol) whey protein concentrate (WPC) or a blend of 1% (wt/vol) SCaCN and 1% (wt/vol) WPC. A commercial yogurt starter culture and Bifidobacterium lactis Bb12 as probiotic bacteria were used for the production. The fortification with SCaCN improved the firmness and adhesiveness. Higher values of viscosity were also obtained in probiotic yogurts with SCaCN during storage. However, WPC enhanced water-holding capacity more than the caseinate. Addition of SCaCN resulted in a coarse, smooth, and more compact protein network; however, WPC gave finer and bunched structures in the scanning electron microscopy micrographs. The use of SCaCN decreased texture scores in probiotic yogurt; probably due to the lower water-holding capacity and higher syneresis values in the caseinate-added yogurt sample. Therefore, the textural characteristics of probiotic yogurts improved depending on the ingredient variety. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. The role of lecithin degradation on the pH dependent stability of halofantrine encapsulated fat nano-emulsions.

    Science.gov (United States)

    Haidar, Iman; Harding, Ian H; Bowater, Ian C; Eldridge, Daniel S; Charman, William N

    2017-08-07

    We report on the successful incorporation of the antimalarial drug, halofantrine, into laboratory based soybean oil emulsions which were designed to mimic the commercially available parenteral fat emulsion, Intralipid ® . A high pH (minimum of pH 9, preferable pH of 11) was required for the drug laden emulsion to remain stable on storage and also to resist breaking under various stresses. Ageing of lecithin samples on storage was noted to result in degradation and a decrease in pH. We argue that this is the main reason for a similar decrease in pH for lecithin based emulsions and subsequent instability in drug laden emulsions. As expected, incorporation of the drug (halofantrine) resulted in lower stability. The (intensity weighted) particle size increased from 281nm for the drug free emulsion to 550nm following a loading of 1gL -1 of halofantrine, indicative of a lowering in stability and this was reflected in a shorter shelf life. Interestingly, incorporation of even higher concentrations of drug then resulted in better stability albeit never as stable as the drug free emulsion. We also report on unusual and complex surface tension behaviour for fresh lecithin where multiple critical concentration points were observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sodium caseinate induces increased survival in leukaemic mouse J774 model.

    Science.gov (United States)

    Córdova-Galaviz, Yolanda; Ledesma-Martínez, Edgar; Aguíñiga-Sánchez, Itzen; Soldevila-Melgarejo, Gloria; Soto-Cruz, Isabel; Weiss-Steider, Benny; Santiago-Osorio, Edelmiro

    2014-01-01

    Acute myeloid leukaemia is a neoplastic disease of haematopoietic stem cells. Although there have been recent advances regarding its treatment, mortality remains high. Consequently, therapeutic alternatives continue to be explored. In the present report, we present evidence that sodium caseinate (CasNa), a salt of the principal protein in milk, may possess important anti-leukaemic properties. J774 leukaemia macrophage-like cells were cultured with CasNa and proliferation, viability and differentiation were evaluated. These cells were also inoculated into BALB/c mice as a model of leukemia. We demonstrated that CasNa inhibits the in vitro proliferation and reduces viability of J774 cells, and leads to increased survival in vivo in a leukaemic mouse model. These data indicate that CasNa may be useful in leukaemia therapy. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  6. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  7. Tri-fuel (diesel-biodiesel-ethanol) emulsion characterization, stability and the corrosion effect

    Science.gov (United States)

    Low, M. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    This paper presents the result of experimenting emulsified tri-fuel in term of stability, physico-chemical properties and corrosion effect on three common metals. The results were interpreted in terms of the impact of five minutes emulsification approach. Tri-fuel emulsions were varied in proportion ratio consist of biodiesel; 0%, 5%, 10%, and ethanol; 5%, 10%, 15%. Fuel characterization includes density, calorific value, flash point, and kinematic viscosity. Flash point of tri-fuel emulsion came with range catalog. Calorific value of tri-fuel emulsion appeared in declining pattern as more ethanol and biodiesel were added. Biodiesel promoted flow resistance while ethanol with opposite effect. 15% ethanol content in tri-fuel emulsion separated faster than 10% ethanol content but ethanol content with 5% yield no phase separation at all. Close cap under static immersion with various ratio of tri-fuel emulsions for over a month, corrosiveness attack was detected via weight loss technique on aluminum, stainless steel and mild steel.

  8. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongfei; Jiang Sunmin [Nanjing Medical University, School of Pharmacy (China); Shen Hong [Nanjing Brain Hospital Affiliated to Nanjing Medical University, Neuro-Psychiatric Institute (China); Qin Shan; Liu Juanjuan; Zhang Qing; Li Rui, E-mail: chongloutougao@gmail.com; Xu Qunwei, E-mail: qunweixu@163.com [Nanjing Medical University, School of Pharmacy (China)

    2011-06-15

    The preparation of solid lipid nanoparticles (SLNs) suffers from the drawback of poor incorporation of water-soluble drugs. The aim of this study was therefore to assess various formulation and process parameters to enhance the incorporation of a water-soluble drug (diclofenac sodium, DS) into SLNs prepared by the emulsion/solvent evaporation method. Results showed that the entrapment efficiency (EE) of DS was increased to approximately 100% by lowering the pH of dispersed phase. The EE of DS-loaded SLNs (DS-SLNs) had been improved by the existence of cosurfactants and increment of PVA concentration. Stabilizers and their combination with PEG 400 in the dispersed phase also resulted in higher EE and drug loading (DL). EE increased and DL decreased as the phospholipid/DS ratio became greater, while the amount of DS had an opposite effect. Ethanol turned out to be the ideal solvent making DS-SLNs. EE and DL of DS-SLNs were not affected by either the stirring speed or the viscosity of aqueous and dispersed phase. According to the investigations, drug solubility in dispersion medium played the most important role in improving EE.

  9. Stability indicating HPLC-UV method for detection of curcumin in Curcuma longa extract and emulsion formulation.

    Science.gov (United States)

    Syed, Haroon Khalid; Liew, Kai Bin; Loh, Gabriel Onn Kit; Peh, Kok Khiang

    2015-03-01

    A stability-indicating HPLC-UV method for the determination of curcumin in Curcuma longa extract and emulsion was developed. The system suitability parameters, theoretical plates (N), tailing factor (T), capacity factor (K'), height equivalent of a theoretical plate (H) and resolution (Rs) were calculated. Stress degradation studies (acid, base, oxidation, heat and UV light) of curcumin were performed in emulsion. It was found that N>6500, Tcurcumin were ⩽0.87% and ⩽2.0%, while the inter-day precision and accuracy values were ⩽2.1% and ⩽-1.92. Curcumin degraded in emulsion under acid, alkali and UV light. In conclusion, the stability-indicating method could be employed to determine curcumin in bulk and emulsions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Study of Water-Oil Emulsion Breaking by Stabilized Solution Consisting of Anionic Surface Acting Agent - Soda Ash - Polymer (ASP)

    Science.gov (United States)

    Kulichkov, S. V.; Avtomonov, E. G.; Andreeva, L. V.; Solomennik, S. F.; Nikitina, A. V.

    2018-01-01

    The paper provides a laboratory research of breaking natural water-oil emulsions: - by non-stabilized ASP; by stabilized ASP; by mixture of stabilized and non-stabilized ASP in different proportions and production of refinery water of the required quality with the use of IronGuard 2495 as flocculant. Oil-in-water emulsion is stable. Classic methods are not suitable for residual water treatment: sediment gravity flow; filtration; centrifuge test. Microemulsion formed after ASP application has low boundary tension and high pH. It contributes to transfer of oil phase into a water one, forming oil-in-water emulsion. Alkaline condition has adverse effect on demulsifying ability of agents, flocculation and boundary tension. For breaking of water-oil emulsion at EBU before the interchanger water or water-oil emulsion from the wells that were not APS-treated in ratio of 1:9 shall be delivered. Residual water after EBU must be prepared in water tanks by dilution in great volume.

  11. The study of stability, combustion characteristics and performance of water in diesel emulsion fuel

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available A single cylinder diesel engine study of water in diesel emulsions was conducted to investigate the stability effect of emulsion fuel on three different fuel blends and the water emulsification effect on the engine performance. Emulsified fuels contained 2% of surfactant including Span 80 Tween 80 and tested 10 HLB number. The blends also varied of 5%, 10% and 15% of water in diesel ratios namely as BSW5, BSW10 and BSW15. The fuel blends performance was tested using a single cylinder, direct injection diesel engine, operating at 1860 rpm. The results on stability reveal that high shear homogenizer yields more stability on emulsion fuel than mechanical stirrer and ultrasonic water bath. The engine performance results show that the ignition delay and peak pressure increase with the increment of water percentage up to 15%. However, the results indicate the increment of water percentage is also shows a significant decrease in engine power.

  12. PFG-NMR self-diffusion in casein dispersions: effect of probe size and protein aggregate size

    NARCIS (Netherlands)

    Salami, S.; Rondeau, C.; Duynhoven, van J.P.M.; Mariette, F.

    2013-01-01

    The self-diffusion coefficients of different molecular weight PEGs (Polyethylene glycol) and casein particles were measured, using a pulsed-gradient nuclear magnetic resonance technique (PFG-NMR), in native phosphocaseinate (NPC) and sodium caseinate (SC) dispersions where caseins are not structured

  13. Oxidative cross-linking of casein by horseradish peroxidase and its ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... The cross-linking of casein was demonstrated by capillary zone electrophoresis analysis. .... linking reaction was started by addition of 1.0 ml 3% (w/v) H2O2 and .... by Design Expert Software (Version 7.0), keeping one variable at its ... The emulsion was immediately transferred into a 250 ml capa-.

  14. Rheological behavior of emulsion gels stabilized by zein/tannic acid complex particles

    NARCIS (Netherlands)

    Zou, Yuan; Yang, Xiaoquan; Scholten, Elke

    2018-01-01

    In this paper, we report the structure formation and rheological properties of Pickering emulsions stabilized with zein/tannic acid complex particles (ZTPs) over a wide range of particle concentration (1-5%, w/v) and oil content (5-60%, v/v). Microscopy shows that the ZTPs provide stabilization

  15. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    OpenAIRE

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein d...

  16. The effect of pH and salt on the stability and physicochemical properties of oil-in-water emulsions prepared with gum tragacanth.

    Science.gov (United States)

    Abdolmaleki, Khadije; Mohammadifar, Mohammad Amin; Mohammadi, Reza; Fadavi, Ghasem; Meybodi, Neda Mollakhalili

    2016-04-20

    The effect of pH (2.5, 4.0 and 5.4) and salt concentration (0.0, 0.5 and 1.0wt%) on the physical stability of oil-in-water emulsions stabilized with gum tragacanth were investigated during 150 days of storage. Mean droplet diameter, zeta-potential, interfacial tension and steady-shear and dynamic rheological properties were determined to achieve more information about the likely stability mechanisms. The results showed that increasing salt concentration did not have a significant effect on emulsion stability. Emulsions were highly unstable at pH 2.5, with their emulsion-stability index declining almost three times more than that of other emulsions during the storage time. Based on the size distribution data, a direct correlation was not observed between droplet size distribution and emulsion stability. Rheological analysis revealed that pH 2.5 had the lowest apparent viscosity, storage modulus, energy of cohesion (EC) and a-value, and the highest tanδ and b-value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Development and stability evaluation of water-in-edible oils emulsions formulated with the incorporation of hydrophilic Hibiscus sabdariffa extract.

    Science.gov (United States)

    Pimentel-Moral, Sandra; Rodríguez-Pérez, Celia; Segura-Carretero, Antonio; Martínez-Férez, Antonio

    2018-09-15

    New functional oils (extra virgin olive oil, EVOO and sunflower oil, SO) containing antioxidants from Hibiscus sabdariffa extract were developed by W/O emulsion. Their physical and chemical stability was measured over time. The lowest coalescence rate was obtained with 8 and 12 wt% surfactant amount for EVOO and SO emulsions, respectively. Before the evaluation of the oxidative stability, an optimization of phenolic compounds extraction from emulsions by multi-response surface methodology was performed. EVOO emulsions were chemically more stable over time than SO emulsions in terms of total phenolic content (TPC), antioxidant activity and chemical composition measured by HPLC-ESI.TOF-MS. TPC significantly increased (from 2.02 ± 0.07 to 2.71 ± 0.06 mg Eq GAE/g extract) and the antioxidant activity measured by TEAC remained constant for 1 month of storage. Thus, W/O emulsion technology has proven to be a potential method to vehiculize and stabilize bioactive compounds from H. sabdariffa into edible oils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Emulsion Liquid Membrane Technology in Organic Acid Purification

    International Nuclear Information System (INIS)

    Norela Jusoh; Norasikin Othman; Nur Alina Nasruddin

    2016-01-01

    Emulsion Liquid Membrane (ELM) process have shown a great potential in wide application of industrial separations such as in removal of many chemicals, organic compounds, metal ions, pollutants and biomolecules. This system promote many advantages including simple operation, high selectivity, low energy requirement, and single stage extraction and stripping process. One potential application of ELM is in the purification of succinic acid from fermentation broth. This study outline steps for developing emulsion liquid membrane process in purification of succinic acid. The steps include liquid membrane formulation, ELM stability and ELM extraction of succinic acid. Several carrier, diluent and stripping agent was screened to find appropriate membrane formulation. After that, ELM stability was investigated to enhance the recovery of succinic acid. Finally, the performance of ELM was evaluated in the extraction process. Results show that formulated liquid membrane using Amberlite LA2 as carrier, palm oil as diluent and sodium carbonate, Na_2CO_3 as stripping agent provide good performance in purification. On the other hand, the prepared emulsion was observed to be stable up to 1 hour and sufficient for extraction process. In conclusion, ELM has high potential to purify succinic acid from fermentation broth. (author)

  19. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    Science.gov (United States)

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Controlled formation of emulsion gels stabilized by salted myofibrillar protein under malondialdehyde (MDA)-induced oxidative stress.

    Science.gov (United States)

    Zhou, Feibai; Sun, Weizheng; Zhao, Mouming

    2015-04-15

    This study presented the cold-set gelation of emulsions stabilized by salted myofibrillar protein (MP) under oxidative stress originated from malondialdehyde (MDA). Gel properties were compared over a range of MDA/NaCl concentrations including gel viscoelastic properties, strength, water-holding capacity (WHC), amount of protein entrapped, and microstructure. The oxidative stability of emulsion gels as indicated by lipid hydroperoxide was further determined and compared. Results indicated that emulsion stabilized by MP at swollen state under certain ionic strengths (0.2-0.6 M) was the premise of gel formation under MDA. In the presence of intermediate MDA concentrations (2.5-10 mM), the emulsion gels showed an improved elasticity, strength, WHC, and oxidative stability. This improvement should be mainly attributed to the enhanced protein-protein cross-linkings via MDA, which were homogeneously formed among absorbed and/or unabsorbed proteins, entrapping a greater amount and fractions of protein within network. Therefore, the oil droplets were better adherent to the gel matrix. Nevertheless, addition of high MDA concentrations (25-50 mM) led to the formation of excessive covalent bonds, which might break protein-protein bonds and trigger the desorption of protein from the interface. This ultimately caused "oil leak" phenomena as well as the collapse of gel structure and, thus, overall decreased gel properties and oxidative stability.

  1. Study of the rheological behavior of the calcium and sodium caseinate irradiated dispersions

    International Nuclear Information System (INIS)

    Sabato, Susy Frey

    2002-01-01

    Milk isolated proteins has gained a crescent commercial interest due to functional properties allied to excellent nutritional value. These properties could be improved when some treatments are applied, such as gamma-irradiation, combined or not with plasticizers. In the current work, protein solutions (calcium and sodium caseinates) were mixed with glycerol. The mixtures (8% protein base), at the ratios 1:1 and 2:1 (protein: glycerol) were submitted to gamma-irradiation ( 60 Co), in the doses 0 kGy, 5 kGy, 15 kGy and 25 kGy, and the rheological behavior was studied. The irradiation was in a 60 Co source, model Gammacell 220 (AECL), with dose ratio 8.2 kGy/h. The viscosity measurements were made in a Brookfield, model LV-DVIII, spindle SC4-18 and SC4-31, according methodology described previously, at temperature 10.0 deg C ± 0,1 deg C, using a Neslab water bath. As irradiation dose increases, the viscosity measurements decrease significantly (p<0.05) for calcium/glycerol solution. The measurements for sodium/glycerol mixtures remained constant as dose irradiation increases, with a slight augmentation at 5 kGy. (author)

  2. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    Science.gov (United States)

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  3. Influence of Pea Protein Aggregates on the Structure and Stability of Pea Protein/Soybean Polysaccharide Complex Emulsions

    Directory of Open Access Journals (Sweden)

    Baoru Yin

    2015-03-01

    Full Text Available The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS, and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  4. Different magnesium release profiles from W/O/W emulsions based on crystallized oils.

    Science.gov (United States)

    Herzi, Sameh; Essafi, Wafa

    2018-01-01

    Water-in-oil-in-water (W/O/W) double emulsions based on crystallized oils were prepared and the release kinetics of magnesium ions from the internal to the external aqueous phase was investigated at T=4°C, for different crystallized lipophilic matrices. All the emulsions were formulated using the same surface-active species, namely polyglycerol polyricinoleate (oil-soluble) and sodium caseinate (water-soluble). The external aqueous phase was a lactose or glucose solution at approximately the same osmotic pressure as that of the inner droplets, in order to avoid osmotic water transfer phenomena. We investigated two types of crystallized lipophilic systems: one based on blends of cocoa butter and miglyol oil, exploring a solid fat content from 0 to 90% and the other system based on milk fat fractions for which the solid fat content varies between 54 and 86%. For double emulsions based on cocoa butter/miglyol oil, the rate of magnesium release was gradually lowered by increasing the % of fat crystals i.e. cocoa butter, in agreement with a diffusion/permeation mechanism. However for double emulsions based on milk fat fractions, the rate of magnesium release was independent of the % of fat crystals and remains the one at t=0. This difference in diffusion patterns, although the solid content is of the same order, suggests a different distribution of fat crystals within the double globules: a continuous fat network acting as a physical barrier for the diffusion of magnesium for double emulsions based on cocoa butter/miglyol oil and double globule/water interfacial distribution for milk fat fractions based double emulsions, through the formation of a crystalline shell allowing an effective protection of the double globules against diffusion of magnesium to the external aqueous phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Interfacial properties of chitosan/sodium dodecyl sulfate complexes

    Directory of Open Access Journals (Sweden)

    Milinković Jelena R.

    2017-01-01

    Full Text Available Contemporary formulations of cosmetic and pharmaceutical emulsions may be achieved by using combined polymer/surfactant system, which can form complexes with different structure and physicochemical properties. Such complexation can lead to additional stabilization of the emulsion products. For these reasons, the main goal of this study was to investigate the interfacial properties of chitosan/sodium dodecyl sulfate complexes. In order to understand the stabilization mechanism, the interface of the oil/water systems that contained mixtures of chitosan and sodium dodecyl sulfate, was studied by measuring the interfacial tension. Considering the fact that the properties of the oil phase has influence on the adsorption process, three different types of oil were investigated: medium-chain triglycerides (semi-synthetic oil, paraffin oil (mineral oil and natural oil obtained from the grape seed. The surface tension measurements at the oil/water interface, for chitosan water solutions, indicate a poor surface activity of this biopolymer. Addition of sodium dodecyl sulfate to chitosan solution causes a significant decrease in the interfacial tension for all investigated oils. The results of this study are important for understanding the influence of polymer-surfactant interactions on the properties of the solution and stability of dispersed systems. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III46010

  6. In situ stabilizer formation from methacrylic acid macromonomers in emulsion polymerization

    NARCIS (Netherlands)

    Schreur-Piet, Ingeborg; Heuts, Johan P.A.

    2017-01-01

    Oligomers of methacrylic acid containing a propenyl ω-endgroup (i.e. MAA-macromonomers) were synthesized by cobalt-mediated catalytic chain transfer polymerization and used as precursors to stabilizers in emulsion polymerization. It was found that only in those polymerizations in which these

  7. Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation.

    Science.gov (United States)

    Richter, A R; Feitosa, J P A; Paula, H C B; Goycoolea, F M; de Paula, R C M

    2018-04-01

    In this work, we provide proof-of-concept of formation, physical characteristics and potential use as a drug delivery formulation of Pickering emulsions (PE) obtained by a novel method that combines nanoprecipitation with subsequent spontaneous emulsification process. To this end, pre-formed ultra-small (d.∼10 nm) nanoprecipitated nanoparticles of hydrophobic derivatives of cashew tree gum grafted with polylactide (CGPLAP), were conceived to stabilize Pickering emulsions obtained by spontaneous emulsification. These were also loaded with Amphotericin B (AmB), a drug of low oral bioavailability used in the therapy of neglected diseases such as leishmaniasis. The graft reaction was performed in two CG/PLA molar ratio conditions (1:1 and 1:10). Emulsions were prepared by adding the organic phase (Miglyol 812 ® ) in the aqueous phase (nanoprecipitated CGPLAP), resulting the immediate emulsion formation. The isolation by centrifugation does not destabilize or separate the nanoparticles from oil droplets of the PE emulsion. Emulsions with CGPLAP 1:1 presented unimodal distributions at different CGPLA concentration, lower values in size and PDI and the best stability over time. The AmB was incorporated in the emulsions with a process efficiency of 21-47%, as determined by UV-vis. AmB in CGPLAP emulsions is in less aggregated state than observed in commercial AmB formulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety.

    Science.gov (United States)

    Marciani, Luca; Faulks, Richard; Wickham, Martin S J; Bush, Debbie; Pick, Barbara; Wright, Jeff; Cox, Eleanor F; Fillery-Travis, Annette; Gowland, Penny A; Spiller, Robin C

    2009-03-01

    Fat is often included in common foods as an emulsion of dispersed oil droplets to enhance the organoleptic quality and stability. The intragastric acid stability of emulsified fat may impact on gastric emptying, satiety and plasma lipid absorption. The aim of the present study was to investigate whether, compared with an acid-unstable emulsion, an acid-stable fat emulsion would empty from the stomach more slowly, cause more rapid plasma lipid absorption and cause greater satiety. Eleven healthy male volunteers received on two separate occasions 500 ml of 15 % (w/w) [13C]palmitate-enriched olive oil-in-water emulsion meals which were either stable or unstable in the acid gastric environment. MRI was used to measure gastric emptying and the intragastric oil fraction of the meals. Blood sampling was used to measure plasma lipids and visual analogue scales were used to assess satiety. The acid-unstable fat emulsion broke and rapidly layered in the stomach. Gastric emptying of meal volume was slower for the acid-stable fat emulsion (P rate of energy delivery of fat from the stomach to the duodenum was not different up to t = 110 min. The acid-stable emulsion induced increased fullness (P distribution of fat emulsions against the gastric acid environment. This could have implications for the design of novel foods.

  9. Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream.

    Science.gov (United States)

    Kumar, Deep Diyuti; Mann, Bimlesh; Pothuraju, Ramesh; Sharma, Rajan; Bajaj, Rajesh; Minaxi

    2016-01-01

    In the present investigation, the preparation and characterization of a curcumin nanoemulsion with milk protein (sodium caseinate) and its incorporation into ice cream were undertaken. Among the different combinations, the most stable formulation was observed using milk fat (8%), medium chain triglycerides (2%), curcumin (0.24%) and sodium caseinate (6%) with a mean particle size of 333.8 ± 7.18 nm, a zeta potential of -44.1 ± 0.72 mV and an encapsulation efficiency of 96.9 ± 0.28%. The effect of different processing conditions (heating, pH and ionic strength) on the particle size distribution and zeta potential of the nanoemulsion was evaluated. During heat treatment, the particle size of the nanoemulsion was increased from 333.8 ± 7.18 to 351.1 ± 4.04 nm. The nanoemulsion was destabilized at pH 4.6 and the particle size increased above and below pH 5.0. However, there was a slight increase in the particle size with a change in the ionic concentration. The release kinetics data suggested that in simulated gastro-intestinal digestion, the nanoemulsion was stable against pepsin digestion (a 5.25% release of curcumin), while pancreatic action led to a 16.12% release of curcumin from the nanoemulsion. Finally, our formulation was successfully incorporated into ice cream and the sensory attributes were evaluated. No significant difference was observed in the scores of the sensory attributes between the control and ice cream prepared with a curcumin nanoemulsion. Moreover, the encapsulation efficiency of the curcumin incorporated into the ice cream was 93.7%, which indicates that it can withstand the processing conditions. The findings suggest that ice cream is a suitable dairy product for the delivery of lipophilic bioactive components (curcumin) which can be used for therapeutic purposes.

  10. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ijung, E-mail: ijungkim@utexas.edu [The University of Texas at Austin, Department of Petroleum and Geosystems Engineering (United States); Worthen, Andrew J.; Johnston, Keith P. [The University of Texas at Austin, McKetta Department of Chemical Engineering (United States); DiCarlo, David A.; Huh, Chun [The University of Texas at Austin, Department of Petroleum and Geosystems Engineering (United States)

    2016-04-15

    Nanoparticles are a promising alternative to surfactants to stabilize emulsions or foams in enhanced oil recovery (EOR) processes due to their effectiveness in very harsh environments found in many of the oilfields around the world. While the size-dependent properties of nanoparticles have been extensively studied in the area of optics or cellular uptake, little is known on the effects of nanoparticle size on emulsion/foam generation, especially for EOR applications. In this study, silica nanoparticles with four different sizes (5, 12, 25, and 80 nm nominal diameter) but with the same surface treatment were employed to test their emulsion or foam generation behavior in high-salinity conditions. The decane-in-brine emulsion generated by sonication or flowing through sandpack showed smaller droplet size and higher apparent viscosity as the nanoparticle size decreased. Similarly, the CO{sub 2}-in-brine foam generation in sandstone or sandpacks was also significantly affected by the nanoparticle size, exhibiting higher apparent foam viscosity as the nanoparticle size decreased. In case of foam generation in sandstone cores with 5 nm nanoparticles, a noticeable hysteresis occurred when the flow velocity was initially increased and then decreased, implying a strong foam generation initially; and then the trapping of the generated foam in the rock pores, as the flow velocity decreased. On the other hand, weak foams stabilized with larger nanoparticles indicated a rapid coalescence of bubbles which prevented foam generation. Overall, stable emulsions/foams were achievable by the smaller particles as a result of greater diffusivity and/or higher number concentration, thus allowing more nanoparticles with higher surface area to volume ratio to be adsorbed at the fluid/fluid interfaces of the emulsion/foam dispersion.Graphical abstract.

  11. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride.

    Science.gov (United States)

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-03-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.

  12. Measuring the emulsion stability in Cherenkov radiation with insignificant modification of a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Wiechen, A.; Lorenzen, P.Ch.; Reimerdes, E.H.

    1984-01-01

    A method is described by which the stability of emulsions can be measured by a modified liquid scintillation counter. The 226 Ra external standard source of a commercially available equipment, fixed in the measuring position, is used for the production of Cherenkov radiation in a sample of an emulsion. This Cherenkov radiation is absorbed by the sample due to its turbidity. The turbidity of emulsions follows a typical course with time designated as creaming-up-curve. These curves can be registered automatically in digital form. (author)

  13. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane.

    Science.gov (United States)

    Zereshki, Sina; Daraei, Parisa; Shokri, Amin

    2018-05-18

    Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis.

    Science.gov (United States)

    O'Sullivan, Dara; Nongonierma, Alice B; FitzGerald, Richard J

    2017-10-01

    Enzymatic hydrolysis of sodium caseinate (NaCas) may lead to the development of bitterness. Careful selection of hydrolysis conditions (i.e. enzyme preparation and duration) yielding different degrees of hydrolysis (DH) may aid in the development of low bitterness. Eighteen NaCas hydrolysates were generated with four enzyme preparations (Alcalase 2.4L, Prolyve 1000, FlavorPro Whey and pepsin) to different DH values. Hydrolysate bitterness score, assessed using a trained panel (ten assessors), generally increased at higher DH values for Alcalase, Prolyve and pepsin hydrolysates. However, all FlavorPro Whey hydrolysates (DH 0.38-10.62%) displayed low bitterness score values ( 0.05). Enzyme preparation and DH affect the bitterness of NaCas hydrolysates. The results are relevant for the generation of NaCas hydrolysates with reduced bitterness. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Controllable self-assembly of sodium caseinate with a zwitterionic vitamin-derived bolaamphiphile.

    Science.gov (United States)

    Sun, Li-Hui; Sun, Yu-Long; Yang, Li-Jun; Zhang, Jian; Chen, Zhong-Xiu

    2013-11-06

    The control of self-assembly of sodium caseinate (SC) including the formation of mixed layers, microspheres, or nanoparticles is highly relevant to the microstructure of food and the design of promising drug delivery systems. In this paper, we designed a structure-switchable zwitterionic bolaamphiphile, 1,12-diaminododecanediorotate (DDO), from orotic acid, which has special binding sites and can guide the self-assembly of SC. Complexation between SC and DDO was investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, and fluorescence spectra measurements. Monomeric DDO was bound to the negatively charged sites on the SC micelle and made the structure of SC more compact with decreased electrostatic repulsion between the head groups. Vesicular DDO led to reassociation of vesicles with enlarged size via preferable hydrophobic interactions. Moreover, the aggregation between SC and DDO was found to be temperature-dependent and reversible. This research provides an effective way to control the reversible self-assembly of SC by the zwitterionic vitamin-derived bolaamphiphile.

  16. Effect of fat volume fraction, sodium caseinate, and starch on the optimization of the sensory properties of frankfurter sausages.

    Science.gov (United States)

    Petridis, Dimitris; Ritzoulis, Christos; Tzivanos, Iakovos; Vlazakis, Eleuterios; Derlikis, Emmanuel; Patroklos, Vareltzis

    2013-01-01

    The effect of two important nonmeat constituents (starch and sodium caseinate) and fat content on the sensory perception of frankfurter sausages has been assessed for two mixture amounts (17% and 27%). A strong correlation among objective fattiness, elasticity, and chewiness has been established; these correlate negatively to consistency and hardness. This has been attributed to the protein gel disruption arising from local phase separations. Hedonic consistency, elasticity, and chewiness showed a very strong positive correlation to one another. Contour plots, based on responses of principal component axes, show that lard is important in increasing the objective sensory intensities of fattiness, chewiness, and elasticity, and for decreasing hardness and consistency. In higher lard proportions, caseinate and starch decrease the red color intensity and the acceptability of chewiness, elasticity, and consistency. Optimization of the component amounts was performed using response trace plots. After redundancy analysis, sensory and instrumental variables were found in very good mutual agreement; hardness was assessed as the most important mechanical variable, followed by chewiness.

  17. Histidine-functionalized carbon-based dot-Zinc(II) nanoparticles as a novel stabilizer for Pickering emulsion synthesis of polystyrene microspheres.

    Science.gov (United States)

    Ruiyi, Li; Zaijun, Li; Junkang, Liu

    2017-05-01

    Carbon-based dots (CDs) are nanoparticles with size-dependent optical and electronic properties that have been widely applied in energy-efficient displays and lighting, photovoltaic devices and biological markers. However, conventional CDs are difficult to be used as ideal stabilizer for Pickering emulsion due to its irrational amphiphilic structure. The study designed and synthesized a new histidine-functionalized carbon dot-Zinc(II) nanoparticles, which is termed as His-CD-Zn. The His-CD was made via one-step hydrothermal treatment of histidine and maleic acid. The His-CD reacted with Zn 2+ to form His-CD-Zn. The as-prepared His-CD-Zn was used as a solid particle surfactant for stabilizing styrene-in-water emulsion. The Pickering emulsion exhibits high stability and sensitive pH-switching behaviour. The introduction of S 2 O 8 2- triggers the emulsion polymerization of styrene. The resulted polystyrene microsphere was well coated with His-CDs on the surface. It was successfully used as an ideal adsorbent for removal of heavy metallic ions from water with high adsorption capacity. The study also provides a prominent approach for fabrication of amphiphilic carbon-based nanoparticles for stabilizing Pickering emulsion. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Osmosis-driven viscous fingering of oil-in-water emulsions

    Science.gov (United States)

    Liu, Ying; Rallabandi, Bhargav; Baskaran, Mrudhula; Stone, Howard

    2017-11-01

    Viscous fingering occurs when a low viscosity fluid invades a more viscous fluid. Fingering of two miscible fluids is more complicated than that of immiscible fluids in that there is no sharp fluid-fluid interface and diffusion occurs between the phases. We experimentally studied the fingering of two miscible fluids: an oil-in-water emulsion and a sodium chloride solution. When the concentration of sodium chloride in the water phase in the emulsion exceeds that in the sodium chloride solution, the consequent osmotic flow automatically facilitates the occurrence of the fingering. On the contrary, when the sodium chloride solution has higher concentration, the spreading of emulsion is more uniform than the case without the concentration difference. We provide a model to rationalize and quantify these observations.

  19. Strippable core-shell polymer emulsion for decontamination of radioactive surface contamination

    International Nuclear Information System (INIS)

    Hwang, Ho-Sang; Seo, Bum-Kyoung; Lee, Kune-Woo

    2011-01-01

    In this study, the core-shell composite polymer for decontamination from the surface contamination was synthesized by the method of emulsion polymerization and blends of polymers. The strippable polymer emulsion is composed of the poly(styrene-ethyl acrylate) [poly(St-EA)] composite polymer, poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP). The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS) as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SDS) as an emulsifier using ammonium persulfate (APS) as an initiator. Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by FT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Decontamination factors of the strippable polymeric emulsion were evaluated with the polymer blend contents. (author)

  20. A comparison of the stability of beverage cloud emulsions formulated with different gum acacia- and starch-based emulsifiers.

    Science.gov (United States)

    Reiner, S J; Reineccius, G A; Peppard, T L

    2010-06-01

    The performance of several hydrocolloids (3 gum acacias, 1 modified gum acacia, and 3 modified starches) in stabilizing beverage emulsions and corresponding model beverages was investigated employing different core materials, emulsifier usage levels, and storage temperatures. Concentrated emulsions were prepared using orange terpenes or Miglyol 812 (comprising medium-chain triglycerides, MCT) weighted 1:1 with ester gum, stored at 25 or 35 degrees C, and analyzed on days 0, 1, and 3. On day 3, model beverages were made from each emulsion, stored at both temperatures, and analyzed weekly for 4 wk. Stability of concentrated emulsions was assessed by measuring mean particle size and by visual observations of ringing; beverage stability was judged similarly and also by loss of turbidity. Particle size measurements showed concentrated emulsions containing gum acacia or modified gum acacia with either core material were stable over 3 d storage at both temperatures whereas those made with modified starches were not, destabilization being faster at 35 degrees C. Beverages based on orange terpenes, in contrast to Miglyol, yielded smaller mean particle sizes, both on manufacture and during storage, regardless of hydrocolloid used. Visual observations of ringing generally supported this finding. Modified gum acacia was evaluated at both recommended and higher usage levels, stability increasing in the latter case. In general, all gum acacia and modified gum acacia emulsifiers were superior in stability to those based on modified starches, at either temperature, for orange terpene-based beverages. In Miglyol-based beverages, similar results were seen, except 1 modified starch performed as well as the gum acacia products.

  1. Self-organizing Map Analysis for Understanding Comprehensive Relationships between Formulation Variables, State of Water, and the Physical Stability of Pharmaceutical Emulsions

    OpenAIRE

    Onuki, Yoshinori; Hasegawa, Naoki; Horita, Akihiro; Ueno, Naomi; Kida, Chihiro; Hayashi, Yoshihiro; Obata, Yasuko; Toshokan, Toshokan

    2015-01-01

    The physical stability of pharmaceutical emulsions is an important quality attribute to be considered. To obtain a better understanding of this issue, this study investigated the contribution of the state of water to the physical stability of pharmaceutical emulsions. The key technology to evaluate the state of water was magnetic resonance imaging (MRI). For sample preparation, model emulsions with different formulation variables (surfactant content, water content, and hydrophilic–lipophilic ...

  2. Use of olive oil-in-water gelled emulsions in model turkey breast emulsions

    Science.gov (United States)

    Serdaroğlu, M.; Öztürk, B.

    2017-09-01

    Today, gelled emulsion systems offer a novel possibility in lipid modification of meat products. In this study, we aimed to investigate the quality characteristics of model turkey emulsions that were prepared with olive oil-in-water gelled emulsion (GE) as partial or total beef fat replacer. The results indicated that while most of the GE treatments showed equivalent emulsion characteristics in terms of emulsion stability, water-holding capacity and cook yield, utilization of 100% GE as the lipid source could increase total expressible fluid of the model turkey emulsion and thus negatively affect the quality. Utilization of GE was effective in total fat reduction, as the model turkey emulsions formulated with more than 50% GE had significantly lower fat content compared to full-beef fat control model emulsion. However, beef fat replacement with GE produced considerable changes in colour parameters. Finally, it was concluded that utilization of GE as a partial beef fat replacer has good potential to enhance stability and reduce total fat in turkey meat emulsion products.

  3. Study on some characteristics of nuclear emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Yonglian, Liu; Jinqin, Han; Huichang, Liu [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1993-11-01

    The authors describe the variation of some characteristics of the nuclear emulsion such as sensitivity, fog density and latent image stability influenced by adding ascorbic acid into the finished emulsion N-4. A comparative study of latent image stability is made between Fuji ET-7B nuclear emulsion and authors' under different temperature and relative humidity. The result indicates that the addition of ascorbic acid obviously improves the latent image stability of the emulsion N-4. The Fuji ET-7B emulsion and the emulsion N-4 containing ascorbic acid have similar latent image fading quality at lower temperature while the Japanese sample does have better quality at room temperature.

  4. Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage.

    Science.gov (United States)

    Loewen, Anisa; Chan, Benny; Li-Chan, Eunice C Y

    2018-02-01

    The objectives of this study were to apply response surface methodology to optimize fat-soluble vitamin loading in re-assembled casein micelles, and to evaluate vitamin D stability of dry formulations during ambient or accelerated storage and in fortified fluid skim milk stored under refrigeration. Optimal loading of vitamin A (1.46-1.48mg/100mgcasein) was found at 9.7mM phosphate, 5.5mM citrate and 30.0mM calcium, while optimal loading of vitamin D (1.38-1.46mg/100mg casein) was found at 4.9mM phosphate, 4.0mM citrate and 26.1mM calcium. In general, more vitamin D was retained in vitamin D-re-assembled casein micelles than control powders during storage, while vitamin D loss was not different for vitamin D-re-assembled casein micelles and control fortified milks after 21days of refrigerated storage with light exposure. In conclusion, re-assembled casein micelles with high loading efficiency show promise for improving vitamin D stability during dry storage. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Creating nanoscale emulsions using condensation.

    Science.gov (United States)

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  6. Synthesis of sodium caseinate-calcium carbonate microspheres and their mineralization to bone-like apatite

    Science.gov (United States)

    Xu, Zhewu; Liang, Guobin; Jin, Lin; Wang, Zhenling; Xing, Chao; Jiange, Qing; Zhang, Zhiguang

    2014-06-01

    Phosphoproteins can induce and stabilize calcium carbonate (CaCO3) vaterite, which has desirable features for high reactivity. The purpose of this study was to synthesize bioactive CaCO3 microspheres for bone regeneration. Sodium caseinate (NaCas)-containing CaCO3 microspheres, with the crystal phase of vaterite, were synthesized by fast precipitation in an aqueous solution of CaCl2, Na2CO3, and 2 mg/mL of NaCas. The uniform microspheres exhibited rougher surfaces and lower negative charges than CaCO3 particles without NaCas addition. Fourier-transform infrared spectroscopy (FT-IR) of the microspheres showed characteristic peaks or bands corresponding to phosphate and hydroxyl groups. Thermogravimetric analysis (TGA) curves exhibited approximately 5% weight loss below 600 °C due to the decomposition of NaCas. Scanning electron microscope (SEM) images showed lath-like hydroxyapatite (HAp) on the surface after soaking in simulated body fluid (SBF) at 37 °C for 5 and 10 days. Energy dispersive X-ray spectrometry (EDS) revealed that the agglomerates were composed of Ca, C, O, P, Na, and Mg elements, and the Ca/P ratios ranged from 1.53 to 1.56. X-ray diffraction (XRD) patterns exhibited peaks characteristic of hydroxyapatite. The results of this study demonstrated that the addition of NaCas induced the formation of vaterite microspheres which possesses an enhanced apatite formation after soaking in SBF at 37 °C for 5 and 10 days. These NaCas-CaCO3 microspheres may be a potential biomaterial for bone regeneration.

  7. Stability of aqueous-alkaline sodium borohydride formulations

    International Nuclear Information System (INIS)

    Minkina, V.G.; Shabunya, S.I.; Kalinin, V.I.; Martynenko, V.V.

    2008-01-01

    Stability of sodium borohydride in the form of concentrated solutions and suspensions and solids corresponding to a crystal hydrate in composition was studied. The effects of temperature, concentrations of sodium borohydride and alkali, and nature of alkali metal cation on the rate of sodium borohydride hydrolysis were studied [ru

  8. Characterisation of crude oil components, asphaltene aggregation and emulsion stability by means of near infrared spectroscopy and multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aske, Narve

    2002-06-01

    Effective separation of water-in-crude oil emulsions is a central challenge for the oil industry on the Norwegian Continental Shelf, especially with the future increase in subsea and even down-hole processing of well fluids. The mechanisms and properties governing emulsion stability are far from fully understood but the indigenous surface active crude oil components are believed to play a major role. In this work a thorough physico-chemical characterisation of a set of crude oils originating from a variety of production fields has been performed. Crude oil properties responsible for emulsion stability were identified by use of multivariate analysis techniques like partial least squares regression (PLS) and principal component analysis (PCA). Interfacial elasticity along with both asphaltene content and asphaltene aggregation state were found to be main contributors to emulsion stability. Information on a crude oils ability to form elastic crude oil-water interfaces was found to be especially crucial when discussing emulsion stability. However, measured values of interfacial elasticity were highly dependent on asphaltene aggregation state. Several experimental techniques was utilised and partly developed for the crude oil characterisation. A high-pressure liquid chromatography (HPLC) scheme was developed for SARA-fractionation of crude oils and an oscillating pendant drop tensiometer was used for characterisation of interfacial rheological properties. For emulsion stability a cell for determining the stability as a function of applied electric fields was used. In addition, near infrared spectroscopy (NIR) was used throughout the work both for chemical and physical characterisation of crude oils and model systems. High pressure NIR was used to study the aggregation of asphaltenes by pressure depletion. A new technique for detection of asphaltene aggregation onset pressures based on NIR combined with PCA was developed. It was also found that asphaltene aggregation is

  9. Apical-to-basolateral transepithelial transport of cow's milk caseins by intestinal Caco-2 cell monolayers: MS-based quantitation of cellularly degraded α- and β-casein fragments.

    Science.gov (United States)

    Sakurai, Nao; Nishio, Shunsuke; Akiyama, Yuka; Miyata, Shinji; Oshima, Kenzi; Nadano, Daita; Matsuda, Tsukasa

    2018-02-27

    Casein is the major milk protein to nourish infants but, in certain population, it causes cow's milk allergy, indicating the uptake of antigenic casein and their peptides through the intestinal epithelium. Using human intestinal Caco-2 cell monolayers, the apical-to-basal transepithelial transport of casein was investigated. Confocal microscopy using component-specific antibodies showed that αs1-casein antigens became detectable as punctate signals at the apical-side cytoplasm and reached to the cytoplasm at a tight-junction level within a few hours. Such intracellular casein signals were more remarkable than those of the other antigens, β-lactoglobulin and ovalbumin, colocalized in part with an early endosome marker protein, EEA1, and decreased in the presence of cytochalasin D or sodium azide and also at lowered temperature at 4 °C. LC-MS analysis of the protein fraction in the basal-side medium identified the αs1-casein fragment including the N-terminal region and the αs2-casein fragment containing the central part of polypeptide at 100∼1000 fmol per well levels. Moreover, β-casein C-terminal overlapping peptides were identified in the peptide fraction below 10 kDa of the basal medium. These results suggest that caseins are partially degraded by cellular proteases and/or peptidases and immunologically active casein fragments are transported to basal side of the cell monolayers.

  10. STUDIES ON THE FORMATION AND IONIZATION OF THE COMPOUNDS OF CASEIN WITH ALKALI

    Science.gov (United States)

    Greenberg, David M.; Schmidt, Carl L. A.

    1924-01-01

    1. The deposition of casein on a platinum anode which takes place on the passage of a direct current through solutions of alkali caseinates was quantitatively studied, and it was found that: (a) the amount of casein which is deposited is directly proportional to the current, i.e. it obeys Faraday's law; (b) the amount of casein deposited is inversely proportional (within the limits studied) to the amount of alkali which is combined with the casein. 2. A method of determining the transport numbers of proteins insoluble at their isoelectric point has been developed. 3. A titration method for determining the amount of alkali in a casein solution is given. 4. Data from the results of transference experiments on sodium caseinate, potassium caseinate, cesium caseinate, and rubidium caseinate solutions are given. It is shown that the data are best explained on the assumption that in these solutions the carriers of the current are alkali metal cations and casein anions. 5. On the basis of our transference results an explanation is given of the results which were obtained by Robertson and by Haas in their migration experiments. PMID:19872135

  11. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics

    Directory of Open Access Journals (Sweden)

    Ahmed OA

    2015-01-01

    Full Text Available Osama AA Ahmed,1,2 Khaled M Hosny,1,3 Majid M Al-Sawahli,1,4 Usama A Fahmy11Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Holding Company for Biological Products & Vaccines (VACSERA, Cairo, EgyptAbstract: The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1, ethanol concentration (X2, and caseinate concentration (X3. The selected dependent variables were mean particle size (Y1, SMV encapsulation efficiency (Y2, and cumulative percentage of drug permeated after 1 hour (Y3. The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability

  12. An alkyl polyglucoside-mixed emulsifier as stabilizer of emulsion systems: the influence of colloidal structure on emulsions skin hydration potential.

    Science.gov (United States)

    Savic, Snezana; Lukic, Milica; Jaksic, Ivana; Reichl, Stephan; Tamburic, Slobodanka; Müller-Goymann, Christel

    2011-06-01

    To be considered as a suitable vehicle for drugs/cosmetic actives, an emulsion system should have a number of desirable properties mainly dependent on surfactant used for its stabilization. In the current study, C(12-14) alkyl polyglucoside (APG)-mixed emulsifier of natural origin has been investigated in a series of binary (emulsifier concentration 10-25% (w/w)) and ternary systems with fixed emulsifier content (15% (w/w)) with or without glycerol. To elucidate the systems' colloidal structure the following physicochemical techniques were employed: polarization and transmission electron microscopy, X-ray diffraction (WAXD and SAXD), thermal analysis (DSC and TGA), complex rheological, pH, and conductivity measurements. Additionally, the emulsion vehicles' skin hydration potential was tested in vivo, on human skin under occlusion. In a series of binary systems with fixed emulsifier/water ratios ranging from 10/90 to 25/75 the predominance of a lamellar mesophase was found, changing its character from a liquid crystalline to a gel crystalline type. The same was observed in gel emulsions containing equal amounts of emulsifier and oil (15% (w/w)), but varying in glycerol content (0-25%). Different emulsion samples exhibited different water distribution modes in the structure, reflecting their rheological behavior and also their skin hydration capacity. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. A Microfluidic Method to Assess Emulsion Stability in Crude-Oil/Water Separators

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    The control of emulsion stability and droplet size is of crucial importance for oil production, especially for the processes of crude/oil water separation and cleanup of produced water. To recover pure oil and water, coalescence between droplets needs to take place, the extent of which will depend

  14. Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles.

    Science.gov (United States)

    Liang, Li; Chen, Fang; Wang, Xingguo; Jin, Qingzhe; Decker, Eric Andrew; McClements, David Julian

    2017-06-14

    There is great interest in the formulation of plant-based foods enriched with nutrients that promote health, such as polyunsaturated fatty acids. This study evaluated the impact of sunflower phospholipid type on the formation and stability of flaxseed oil-in-water emulsions. Two sunflower lecithins (Sunlipon 50 and 90) with different phosphatidylcholine (PC) levels (59 and 90%, respectively) were used in varying ratios to form emulsions. Emulsion droplet size, charge, appearance, microstructure, and oxidation were measured during storage at 55 °C in the dark. The physical and chemical stability increased as the PC content of the lecithin blends decreased. The oxidative stability of emulsions formulated using Sunlipon 50 was better than emulsions formulated using synthetic surfactants (SDS or Tween 20). The results are interpreted in terms of the impact of emulsifier type on the colloidal interactions between oil droplets and on the molecular interactions between pro-oxidants and oil droplet surfaces.

  15. Laboratory effectiveness testing of water-in-oil emulsion breakers

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Bier, I.; Conrod, D.; Tennyson, E.

    1995-01-01

    The physics and chemistry of water-in-oil emulsions dominate the development of effectiveness tests. Emulsions are variable in stability--this variability is largely dependent on oil type and degree of weathering. These factors complicate the development of a test. Emulsions which have low stability will apparently break easily with chemical emulsion breakers. Broken emulsions will form a foam-like material, called rag, which retains water which is not part of the stable emulsions. Analytical methods used to determine the final stability of the broken or unbroken emulsion were evaluated. Measurements of water content and viscosity measurements show correlation to emulsion stability. Viscosity provides a more reliable measure of emulsion stability but water content measurements are more convenient and are largely used in this study. Twelve tests were developed in the past. Two testing methods have been developed to a usable stage. These tests are described and data using them provided. The effects of mixing time, agent amount, settling time and mixing energy on effectiveness results are presented

  16. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl......Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate...

  17. Shear flow behaviour and emulsion-stabilizing effect of natural polysaccharide-protein gum in aqueous system and oil/water (O/W) emulsion.

    Science.gov (United States)

    Amid, Bahareh Tabatabaee; Mirhosseini, Hamed

    2013-03-01

    The main objective of the current work was to characterize the shear rheological flow behaviour and emulsifying properties of the natural biopolymer from durian seed. The present study revealed that the extraction condition significantly affected the physical and functional characteristics of the natural biopolymer from durian seed. The dynamic oscillatory test indicated that the biopolymer from durian seed showed more gel (or solid) like behaviour than the viscous (or liquid) like behaviour (G'>G″) at a relatively high concentration (20%) in the fixed frequency (0.1 Hz). This might be explained by the fact that the gum coils disentangle at low frequencies during the long period of oscillation, thus resulting in more gel like behaviour than the viscous like behaviour. The average droplet size of oil in water (O/W) emulsions stabilized by durian seed gum significantly varied from 0.42 to 7.48 μm. The results indicated that O/W emulsions showed significant different stability after 4 months storage. This might be interpreted by the considerable effect of the extraction condition on the chemical and molecular structure of the biopolymer, thus affecting its emulsifying capacity. The biopolymer extracted by using low water to seed (W/S) ratio at the low temperature under the alkaline condition showed a relatively high emulsifying activity in O/W emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effect of fat hardness on large deformation rheology of emulsion-filled gels

    NARCIS (Netherlands)

    Oliver, L.; Scholten, E.; Aken, van G.A.

    2015-01-01

    The aim of this work was to investigate the impact on the texture properties of emulsion-filled gels when saturated solid fat is replaced by unsaturated liquid oil. Whey protein aggregate, gelatin and micellar casein, were chosen to form different types of gel matrices and the fat hardness was

  19. Food enrichment with marine phospholipid emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    marine PL emulsions with and without addition of fish oil. The oxidative stability of marine PL emulsions was significantly influenced by the chemical composition of marine PL used for emulsions preparation. For instance, emulsions with good oxidative stability could be obtained when using raw materials...... with high purity, low fish oil content and high PL, cholesterol and α-tocopherol content. In addition, non-enzymatic browning reactions may also affect the oxidative stability of the marine PL emulsion. These reactions included Strecker degradation and pyrrolization, and their occurrence were due......Many studies have shown that marine phospholipids (PL) provide more advantages than fish oil. They seem to have better bioavailability, better resistance towards oxidation and higher content of eicosapentaenoic acids and docosahexaenoic acids than fish oil, which essentially contains triglycerides...

  20. Stabilization Improves Theranostic Properties of Lipiodol{sup ®}-Based Emulsion During Liver Trans-arterial Chemo-embolization in a VX2 Rabbit Model

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, F., E-mail: frederic.deschamps@gustaveroussy.fr; Farouil, G. [Université Paris-Saclay, Département de radiologie Interventionnelle, Gustave Roussy (France); Gonzalez, W.; Robic, C. [Guerbet France, Guerbet (France); Paci, A.; Mir, L. M. [Université Paris-Saclay, UMR 8203 (France); Tselikas, L.; Baère, T. de [Université Paris-Saclay, Département de radiologie Interventionnelle, Gustave Roussy (France)

    2017-06-15

    PurposeTo demonstrate that stability is a crucial parameter for theranostic properties of Lipiodol{sup ®}-based emulsions during liver trans-arterial chemo-embolization.Materials and MethodsWe compared the theranostic properties of two emulsions made of Lipiodol{sup ®} and doxorubicin in two successive animal experiments (One VX2 tumour implanted in the left liver lobe of 30 rabbits). Emulsion-1 reproduced one of the most common way of preparation (ratio of oil/water: 1/1), and emulsion-2 was designed to obtain a water-in-oil emulsion with enhanced stability (ratio of oil/water: 3/1, plus an emulsifier). The first animal experiment compared the tumour selectivity of the two emulsions: seven rabbits received left hepatic arterial infusion (HAI) of emulsion-1 and eight received HAI of emulsion-2. 3D-CBCT acquisitions were acquired after HAI of every 0.1 mL to measure the densities’ ratios between the tumours and the left liver lobes. The second animal experiment compared the plasmatic and tumour doxorubicin concentrations after HAI of 1.5 mg of doxorubicin administered either alone (n = 3) or in emulsion-1 (n = 6) or in emulsion-2 (n = 6).ResultsEmulsion-2 resulted in densities’ ratios between the tumours and the left liver lobes that were significantly higher compared to emulsion-1 (up to 0.4 mL infused). Plasmatic doxorubicin concentrations (at 5 min) were significantly lower after HAI of emulsion-2 (19.0 μg/L) than emulsion-1 (275.3 μg/L, p < 0.01) and doxorubicin alone (412.0 μg/L, p < 0.001), and tumour doxorubicin concentration (day-1) was significantly higher after HAI of emulsion-2 (20,957 ng/g) than in emulsion-1 (8093 ng/g, p < 0.05) and doxorubicin alone (2221 ng/g, p < 0.01).ConclusionStabilization of doxorubicin in a water-in-oil Lipiodol{sup ®}-based emulsion results in better theranostic properties.

  1. Effect of gelation of inner dispersed phase on stability of (w1/o/w2) multiple emulsions

    NARCIS (Netherlands)

    Oppermann, A.K.L.; Renssen, M.; Schuch, A.; Stieger, M.A.; Scholten, E.

    2015-01-01

    The use of water-in-oil-in-water (w1/o/w2) multiple emulsions offers a method for the reduction of oil in foods. In this study we investigated the influence of osmotic pressure tailoring and gelation of the inner dispersed w1 water droplets on the stability and yield of multiple emulsions. Yield is

  2. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2016-11-01

    Full Text Available Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attention. In this review, we highlight some recent advances in tuning the amphiphilicity of particles for controlling the stability and type of Pickering emulsions. The amphiphilicity of three types of particles including rigid particles, soft particles, and Janus particles are tailored by means of different mechanisms and discussed here in detail. The stabilization-destabilization interconversion and phase inversion of Pickering emulsions have been successfully achieved by changing the surface properties of these particles. This article provides a comprehensive review of controllable Pickering emulsions, which is expected to stimulate inspiration for designing and preparing novel Pickering emulsions, and ultimately directing the preparation of functional materials.

  3. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    Science.gov (United States)

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of pH on turbidity, size, viscosity and the shape of sodium caseinate aggregates with light scattering and rheometry

    OpenAIRE

    Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin

    2013-01-01

    The characterization of sodium caseinate solutions as a function of pH was determined using titration with HCL through turbidimetry in different concentrations (0.03 wt.%, 0.045 wt.%, 0.06 wt.%, 0.09 wt.%, 0.2 wt.%, and 0.3 wt.%). Additionally, the coupling of slow in situ acidification of the solution and rheometry was utilized to gain deeper insights into pH-induced structural transitions during the self assembly process and particle size distribution analysis have been used to determine th...

  5. Study on physico-chemical properties of emulsion type sausage produced with aqueous extract of Biarum carduchcorum tenderizied meat

    Directory of Open Access Journals (Sweden)

    M. Raeisi

    2017-05-01

    Full Text Available In order to improve the quality of meat such as tenderness, protein solubility, emulsification and water holding capacity, in the food industries, various methods have been employed. Application of the plant enzymes is considered as one of the most efficient methods for meat tenderization. The purpose of the present study was to evaluate the characteristics of emulsion type sausage made from tenderized cattle meat by hydro extract of Biarum carduchcorum. The proteolytic activity of the extract was determined using bovine milk casein as substrate. Post rigor thigh meat were tenderized by 100 and 150 enzyme units/ kg of the extract before used for production of sausage. Fresh post rigor thigh meat was used as control. Nitrogen solubility index (NSI, stability of sausage emulsion, texture analysis and organoleptic properties of sausages were determined. Our results showed a significant increase in the NSI of the experimental groups compared with the control (P

  6. Impact of egg white protein on the quality and stability of corn oil-in-water emulsion

    International Nuclear Information System (INIS)

    Iqbal, S.; Batool, J.; Ajaz, M.

    2017-01-01

    The effect of egg albumin has been examined on the texture and stability of O/W emulsion. The corn oil was used as dispersed phase while the aqueous phase as continuous phase of the emulsion. The aqueous phase was designed with the protein contents (0.5- 4 wt. %) at pH 7. The different oil phase (10-40 wt. %) were homogenized in aqueous phase (90-60 wt. %). It was observed that the viscosity and turbidity of the emulsion were increased with the increase of protein concentration and oil phase contents. Flow profile showed that shear stress was increased with increase of shear rate but it decreased at higher shear rate (100 s-1) in heated emulsion. On the other hand the emulsion viscosity was decreased with the increase of shear rate showing non- Newtonian behavior. This work may be useful in the formulation and physicochemical properties of food products i.e. sauces, mayonnaise etc. (author)

  7. The potential applications in heavy oil EOR with the nanoparticle and surfactant stabilized solvent-based emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    The main challenges in developing the heavy oil reservoirs in the Alaska North Slope (ANS) include technical challenges regarding thermal recovery; sand control and disposal; high asphaltene content; and low in-situ permeability. A chemical enhanced oil recovery method may be possible for these reservoirs. Solvent based emulsion flooding provides mobility control; oil viscosity reduction; and in-situ emulsification of heavy oil. This study evaluated the potential application of nano-particle-stabilized solvent based emulsion injection to enhance heavy oil recovery in the ANS. The optimized micro-emulsion composition was determined using laboratory tests such as phase behaviour scanning, rheology studies and interfacial tension measurements. The optimized nano-emulsions were used in core flooding experiments to verify the recovery efficiency. The study revealed that the potential use of this kind of emulsion flooding is a promising enhanced oil recovery process for some heavy oil reservoirs in Alaska, Canada and Venezuela. 4 refs., 2 tabs., 10 figs.

  8. Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery.

    Science.gov (United States)

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Chevalier, Yves

    2017-10-05

    Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Exploratory study on pervaporation membranes for removal of water from water-crude oil emulsions: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Study to explore the feasibility of removing water from oil/water (O/W) and water/oil (W/O) emulsions by means of pervaporation. Initial study involved preparation of simulated O/W and W/O emulsions prepared by mixing water and kerosene of various concentrations and stabilized by adding sodium lauryl sulfate. Preliminary experiments were conducted on 12 membranes fabricated from 2 different materials. One membrane of each type of material was chosen for further work based on the results of the preliminary tests. All experiments were carried out under 2 different downstream pressures and various temperatures.

  10. Metabolic responses of healthy or prediabetic adults to bovine whey protein and sodium caseinate do not differ.

    Science.gov (United States)

    Hoefle, Anja S; Bangert, Adina M; Stamfort, Adelmar; Gedrich, Kurt; Rist, Manuela J; Lee, Yu-Mi; Skurk, Thomas; Daniel, Hannelore

    2015-03-01

    Casein is considered a slowly digestible protein compared with whey protein, and this may cause differences in hormone responses and the kinetics of delivering amino acids into the circulation. We investigated whether postprandial plasma hormone and metabolite responses were different when bovine casein or whey protein was co-administered with carbohydrates in healthy and prediabetic adults. White healthy male adults (n = 15) and white, well-defined male and female prediabetic adults (n = 15) received test drinks randomly on 3 different occasions at least 2 d apart which contained 50 g of maltodextrin19 (MD19) alone or in combination with 50 g of whey protein isolate (WPI) or 50 g of sodium caseinate (SC). Blood samples were collected over a 240-min time period and were analyzed for hormone profiles and defined metabolites. No evidence was found that gastric emptying was different between the 2 protein drinks. Both proteins increased peak plasma insulin concentrations in prediabetic persons by 96% compared with MD19 (each, P < 0.05), which was accompanied by a reduction of peak venous blood glucose by 21% (each, P < 0.0001) without a difference between the 2 proteins. Peak plasma glucagon concentrations increased by 101% in both groups after the protein drinks (P < 0.05). The WPI drink also increased peak plasma glucose-dependent insulinotropic polypeptide concentrations in healthy volunteers by 56% (P < 0.01). Differences in plasma metabolite concentrations in volunteers could be attributed exclusively to the differences in the amino acid composition of the 2 proteins ingested. The WPI and the SC drinks similarly reduced postprandial glucose excursions when ingested with carbohydrates in healthy and prediabetic volunteers. Under our experimental conditions, however, no evidence was found that gastrointestinal processing of the 2 protein varieties differed substantially. This trial was registered at clinicaltrials.gov as DRKS00005682. © 2015 American Society for

  11. Stabilization of emulsion and butter like products containing essential fatty acids using kalonji seeds extract and curcuminoids.

    Science.gov (United States)

    Rege, Sameera A; Momin, Shamim A; Bhowmick, Dipti N; Pratap, Amit A

    2012-01-01

    Owing to the tendency of essential fatty acids (EFAs) to undergo autoxidation, their storage becomes a key problem. Generally, they are stabilized by synthetic antioxidants like TBHQ that are toxic in nature. Recently many studies were reported where these EFAs are stabilized by natural antioxidants. In the present study, curcuminoids and kalonji seeds ethanol extract (KEE) were used to stabilize these EFAs in refined sunflower oil (RSFO), water-in-oil (w/o) emulsion and butter like products (BLPs). In RSFO, though curcuminoids alone exerted pro-oxidant effect, KEE and curcuminoids showed synergistic antioxidant activity that was comparable to TBHQ. KEE exhibited good antioxidant activity in emulsions and BLPs, providing fine physical properties like slipping point, dropping point and spreadability. EFAs increased the nutritional value of BLPs and antioxidants added for their stabilization provided their medicinal benefits.

  12. Stability to oxidation of spray-dried fish oil powder microencapsulated using milk ingredients

    DEFF Research Database (Denmark)

    Keogh, M.K.; O'Kennedy, B.T.; Kelly, J.

    2001-01-01

    Microencapsulation of fish oil was achieved by spray-drying homogenized emulsions of fish oil using 3 different types of casein as emulsifier and lactose as filler. As the degree of aggregation of the casein emulsifier increased, the vacuole volume of the microencapsulated powders decreased...

  13. Helix aspersa gelatin as an emulsifier and emulsion stabilizer: functional properties and effects on pancreatic lipolysis.

    Science.gov (United States)

    Zarai, Zied; Balti, Rafik; Sila, Assaâd; Ben Ali, Yassine; Gargouri, Youssef

    2016-01-01

    Emulsions are widely used in food and pharmaceutical applications for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to fulfill the increasing demand for clean label excipients, natural polymers could be used to replace the potentially irritative synthetic surfactants used in emulsion formulation. In the present study, we have studied the properties of oil-in-water emulsions prepared with land snail gelatin (LSG) as the sole emulsifying agent, extracted and described for the first time. LSG was evaluated in terms of proximate composition, oil and water holding capacity, emulsifying and foaming properties, color and amino acid composition. Emulsions of trioctanoylglycerol (TC8) and olive oil were made at different gelatin/oil ratios and changes in droplet-size distribution were determined. The superior emulsifying properties of LSG, the susceptibility of gelatin protein emulsions increasing flocculation on storage, and the coalescence of gelatin emulsions following centrifugation were demonstrated. Furthermore, the effect of LSG on the activity of turkey pancreatic lipase (TPL) was evaluated through the pH-stat methodology with TC8 and olive oil emulsions. The LSG affected the TPL activity in a concentration-dependent way. Our results showed that LSG, comparably to gum arabic, increases the pancreatic lipase activity and improves its stability at the oil-water interface.

  14. Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Holt, Benjamin L; Beaussoubre, Pascal; Wong, Kenneth

    2010-12-07

    We have used dynamic headspace analysis to investigate the evaporation rates of perfume oils from stirred oil-in-water emulsions into a flowing gas stream. We compare the behavior of an oil of low water solubility (limonene) and one of high water solubility (benzyl acetate). It is shown how the evaporation of an oil of low water solubility is selectively retarded and how the retardation effect depends on the oil volume fraction in the emulsion. We compare how the evaporation retardation depends on the nature of the adsorbed film stabilizing the emulsion. Surfactant films are less effective than adsorbed films of nanoparticles, and the retardation can be further enhanced by compression of the adsorbed nanoparticle films by preshrinking the emulsion drops.

  15. [Blood plasma protein adsorption capacity of perfluorocarbon emulsion stabilized by proxanol 268 (in vitro and in vivo studies)].

    Science.gov (United States)

    Sklifas, A N; Zhalimov, V K; Temnov, A A; Kukushkin, N I

    2012-01-01

    The adsorption abilities of the perfluorocarbon emulsion stabilized by Proxanol 268 were investigated in vitro and in vivo. In vitro, the saturation point for the blood plasma proteins was nearly reached after five minutes of incubation of the emulsion with human/rabbit blood plasma and was stable for all incubation periods studied. The decrease in volume ratio (emulsion/plasma) was accompanied by the increase in the adsorptive capacity of the emulsion with maximal values at 1/10 (3.2 and 1.5 mg of proteins per 1 ml of the emulsion, for human and rabbit blood plasma, respectively) that was unchanged at lower ratios. In vivo, in rabbits, intravenously injected with the emulsion, the proteins with molecular masses of 12, 25, 32, 44, 55, 70, and 200 kDa were adsorbed by the emulsion (as in vitro) if it was used 6 hours or less before testing. More delayed testing (6 h) revealed elimination of proteins with molecular masses of 25 and 44 kDa and an additional pool of adsorpted new ones of 27, 50, and 150 kDa. Specific adsorptive capacity of the emulsion enhanced gradually after emulsion injection and reached its maximum (3.5-5 mg of proteins per 1 ml of the emulsion) after 24 hours.

  16. Oxidative Stability in Oil-in-Water Emulsions with Quercetin or Rutin Under Iron Catalysis or Riboflavin Photosensitization.

    Science.gov (United States)

    Yi, BoRa; Ka, HaeJung; Kwon, YongJun; Choi, HyungSeok; Kim, Sunghwa; Kim, Jisu; Kim, Mi-Ja; Lee, JaeHwan

    2017-04-01

    The effects of quercetin and rutin on the oxidative stability of oil-in-water (O/W) emulsions were tested under riboflavin (RF) photosensitization in the presence or absence of FeCl 2 . The degree of oxidation in O/W emulsions was determined by headspace oxygen content, conjugated dienes, and lipid hydroperoxides. Quercetin chelated more metal than did rutin in iron catalyzed O/W emulsions. Generally, 0.1 mM quercetin and rutin was oxidative while 0.5 and 1.0 mM quercetin and rutin was antioxidative in O/W emulsions under RF photosensitization. Depending on the analysis method, the antioxidants had different strengths. The antioxidative or oxidative properties of quercetin and rutin vary in O/W emulsions and depend the quercetin and rutin concentrations and oxidative forces like transition metals, RF photosensitization, or a combination thereof. © 2017 Institute of Food Technologists®.

  17. Antimicrobial Activity of Nisin and Natamycin Incorporated Sodium Caseinate Extrusion-Blown Films: A Comparative Study with Heat-Pressed/Solution Cast Films.

    Science.gov (United States)

    Colak, Basak Yilin; Peynichou, Pierre; Galland, Sophie; Oulahal, Nadia; Prochazka, Frédéric; Degraeve, Pascal

    2016-05-01

    Antimicrobial edible films based on sodium caseinate, glycerol, and 2 food preservatives (nisin or natamycin) were prepared by classical thermomechanical processes. Food preservatives were compounded (at 65 °C for 2.5 min) with sodium caseinate in a twin-screw extruder. Anti-Listeria activity assays revealed a partial inactivation of nisin following compounding. Thermoplastic pellets containing food preservatives were then used to manufacture films either by blown-film extrusion process or by heat-press. After 24 h of incubation on agar plates, the diameters of K. rhizophila growth inhibition zones around nisin-incorporated films prepared by solution casting (control), extrusion blowing or heat pressing at 80 °C for 7 min of nisin-containing pellets were 15.5 ± 0.9, 9.8 ± 0.2, and 8.6 ± 1.0 mm, respectively. Since heat-pressing for 7 min at 80 °C of nisin-incorporated pellets did not further inactivate nisin, this indicates that nisin inactivation during extrusion-blowing was limited. Moreover, the lower diameter of the K. rhizophila growth inhibition zone around films prepared with nisin-containing pellets compared to that observed around films directly prepared by solution casting confirms that nisin inactivation mainly occurred during the compounding step. Natamycin-containing thermoplastic films inhibited Aspergillus niger growth; however, by contrast with nisin-containing films, heat-pressed films had higher inhibition zone diameters than blown films, therefore suggesting a partial inactivation of natamycin during extrusion-blowing. © 2016 Institute of Food Technologists®

  18. In silico, in vitro and in vivo analyses of dipeptidyl peptidase IV inhibitory activity and the antidiabetic effect of sodium caseinate hydrolysate.

    Science.gov (United States)

    Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Jao, Chia-Ling; Hsieh, You-Liang; Wu, Si-Xian; Hsu, Kuo-Chiang

    2016-02-01

    The frequency (A), a novel in silico parameter, was developed by calculating the ratio of the number of truncated peptides with Xaa-proline and Xaa-alanine to all peptide fragments from a protein hydrolyzed with a specific protease. The highest in vitro DPP-IV inhibitory activity (72.7%) was observed in the hydrolysate of sodium caseinate by bromelain (Cas/BRO), and the constituent proteins of bovine casein also had relatively high A values (0.10-0.17) with BRO hydrolysis. 1CBR (the <1 kDa fraction of Cas/BRO) showed the greatest in vitro DPP-IV inhibitory activity of 77.5% and was used for in vivo test by high-fat diet-fed and low-dose streptozotocin-induced diabetic rats. The daily administration of 1CBR for 6 weeks was effective to improve glycaemic control in diabetic rats. The results indicate that the novel in silico method has the potential as a screening tool to predict dietary proteins to generate DPP-IV inhibitory and antidiabetic peptides.

  19. Rapid method for measuring protease activity in milk using radiolabeled casein

    International Nuclear Information System (INIS)

    Christen, G.L.

    1987-01-01

    A rapid means to detect the presence of protease activity in raw milk could be useful in predicting keeping ability of products made from that milk. A 30-min assay has been developed and compared with three other methods of detecting protease. Casein, [methyl- 14 C]-methylated-alpha was purchased from a radioisotope supplier. Concentrations of substrate from 2 to 20 nCi gave counts per minute, which increased linearly when counted with the Charm analyzer. There was not a significant difference in counting times of 10, 20, or 30 min. A mixture of sodium acetate and acetic acid precipitated nonhydrolyzed substrate with an efficiency of 97%. Comparison of the [ 14 C] casein assay, a casein fluorescein isothiocyanate assay, trinitrobenzenesulfonic acid procedure, and the Hull procedure using protease from psychrotrophic bacteria revealed that the [ 14 C] casein and casein fluorescein isothiocyanate methods were roughly equivalent and that the radiometric procedure was 10 times more sensitive than the trinitrobenzenesulfonic acid assay. The radiometric procedure was approximately 10(4) times more sensitive than the Hull procedure. The [ 14 C] casein and casein fluorescein isothiocyanate methods were similar in time required, about 30 min, while the trinitrobenzenesulfonic acid assay and Hull method required about 1 h plus reagent preparation time. The [ 14 C] casein procedure was most expensive per test; the other three were cheaper and similar to each other in cost

  20. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.

    Science.gov (United States)

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Daniel J; He, Jibao; Spinu, Leonard; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2016-02-01

    Magnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation. The tubular structure of the nanotubes is exploited for the encapsulation and release of surfactant species that are typical of oil spill dispersants such as dioctyl sulfosuccinate sodium salt and polyoxyethylene (20) sorbitan monooleate. The magnetically responsive halloysite nanotubes anchor to the oil-water interface stabilizing the interface and releasing the surfactants resulting in reduction in the oil-water interfacial tension. The synergistic adsorption of the nanotubes and the released surfactants at the oil-water interface results in oil emulsification into very small droplets (less than 20μm). The synergy of the unique nanotubular morphology and interfacial activity of halloysite with the magnetic properties of iron oxide nanoparticles has potential applications in oil spill dispersion, magnetic mobilization and detection using magnetic fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ultrasound assisted synthesis of stable oil in milk emulsion: Study of operating parameters and scale-up aspects.

    Science.gov (United States)

    Patil, Leena; Gogate, Parag R

    2018-01-01

    In the present work, application of ultrasound and stirring individually or in combination for improved emulsification of turmeric oil in skimmed milk has been investigated. The effect of different operating parameters/strategies such as addition of surfactant, sodium dodecyl sulfate (SDS), at different concentrations, quantity of oil phase, applied power, sonication time and duty cycle on the droplet size have been investigated. The stability of emulsion was analyzed in terms of the fraction of the emulsion that remains stable for a period of 28days. Optimized set of major emulsification process variables has been used at higher emulsion volumes. The effectiveness of treatment approach was analyzed based on oil droplet size, energy density and the time required for the formation of stable emulsion. It was observed that the stable emulsion at 50mL capacity with mean droplet diameter of about 235.4nm was obtained with the surfactant concentration of 5mg/mL, 11% of rated power (power density: 0.31W/mL) and irradiation time of 5min. The emulsion stability was higher in the case of ultrasound assisted approach as compared to the stirring. For the preparation of stable emulsion at 300mL capacity, it was observed that the sequential approach, i.e., stirring followed by ultrasound, gave lower mean droplet diameter (232.6nm) than the simultaneous approach, i.e., ultrasound and stirring together (257.9nm). However, the study also revealed that the simultaneous approach required very less time (15min) to synthesize stable emulsion as compared to the sequential approach (30min stirring and 60min ultrasound). It was successfully demonstrated that the ultrasound-assisted emulsification in the presence of SDS could be used for the preparation of stable turmeric oil-dairy emulsions, also providing insights into the role of SDS in increasing the stability of emulsions and of ultrasound in giving lower droplet sizes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows.

    Science.gov (United States)

    Day, L; Williams, R P W; Otter, D; Augustin, M A

    2015-06-01

    Milk samples from individual cows producing small (148-155 nm) or large (177-222 nm) casein micelles were selected to investigate the relationship between the individual casein proteins, specifically κ- and β-casein phenotypes, and casein micelle size. Only κ-casein AA and β-casein A1A1, A1A2 and A2A2 phenotypes were found in the large casein micelle group. Among the small micelle group, both κ-casein and β-casein phenotypes were more diverse. κ-Casein AB was the dominant phenotype, and 3 combinations (AA, AB, and BB) were present in the small casein micelle group. A considerable mix of β-casein phenotypes was found, including B and I variants, which were only found in the small casein micelle group. The relative amount of κ-casein to total casein was significantly higher in the small micelle group, and the nonglycosylated and glycosylated κ-casein contents were higher in the milks with small casein micelles (primarily with κ-casein AB and BB variants) compared with the large micelle group. The ratio of glycosylated to nonglycosylated κ-casein was higher in the milks with small casein micelles compared with the milks with large casein micelles. This suggests that although the amount of κ-casein (both glycosylated and nonglycosylated) is associated with micelle size, an increased proportion of glycosylated κ-casein could be a more important and favorable factor for small micelle size. This suggests that the increased spatial requirement due to addition of the glycosyl group with increasing extent of glycosylation of κ-casein is one mechanism that controls casein micelle assembly and growth. In addition, increased electrostatic repulsion due to the sialyl residues on the glycosyl group could be a contributory factor. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries

    Directory of Open Access Journals (Sweden)

    Jianmin Feng

    2018-04-01

    Full Text Available The poor cycling stability of antimony during a repeated sodium ion insertion and desertion process is the key issue, which leads to an unsatisfactory application as an anode material in a sodium-ion battery. Addressed at this, we report a facile two-step method to coat antimony nanoparticles with an ultrathin carbon layer of few nanometers (denoted Sb@C NPs for sodium-ion battery anode application. This carbon layer could buffer the volume change of antimony in the charge-discharge process and improve the battery cycle performance. Meanwhile, this carbon coating could also enhance the interfacial stability by firmly connecting the sodium alginate binders through its oxygen-rich surface. Benefitted from these advantages, an improved initial discharge capacity (788.5 mA h g−1 and cycling stability capacity (553 mA h g−1 after 50 times cycle have been obtained in a battery using Sb@C NPs as anode materials at 50 mA g−1. Keywords: Sodium-ion battery, Antimony, Sodium alginate, Liquid-phase reduction, Carbon coating

  4. Casein mediated green synthesis and decoration of reduced graphene oxide

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Tammina, Sai Kumar; Kiran Kumar, H. A.

    This research is mainly focusing on one-step biosynthesis of graphene from graphene oxide and its stabilization using naturally occurring milk protein, casein. The synthesis of casein reduced graphene oxide (CRGO) was completed within 7 h under reflux at 90 °C with the formation of few layered fine graphene nanosheets. UV-Vis, XRD, XPS analysis data revealed the reduction process of the graphene oxide. Results of FT-IR, HPLC and TEM analysis have shown that the ensuing material consists of graphene decorated with casein molecules. Aspartic acid and glutamic acid residue present in casein molecules are responsible for the reduction of graphene oxide.

  5. Cellular uptake of beta-carotene from protein stabilized solid lipid nano-particles prepared by homogenization-evaporation method

    Science.gov (United States)

    Using a homogenization-evaporation method, beta-carotene (BC) loaded nano-particles were prepared with different ratios of food-grade sodium caseinate (SC), whey protein isolate (WPI), or soy protein isolate (SPI) to BC and evaluated for their physiochemical stability, in vitro cytotoxicity, and cel...

  6. Preparation of a Fluorocarbon Polymerizable Surfactant and Its Application in Emulsion Polymerization of Fluorine-Containing Acrylate

    Directory of Open Access Journals (Sweden)

    Meng Zhao

    2017-11-01

    Full Text Available A novel polymerizable fluorocarbon surfactant, perfluoro (4–methyl–3, 6–dioxaoct–7–ene sodium sulfonate (PSVNa, was synthesized and characterized. The fluorocarbon surfactant PSVNa and its mixture PSVNa/SDS were used as emulsifiers during the emulsion polymerization of DFHMA/MMA. The investigation of polymerization kinetics, particle size, and stability of the emulsions revealed that PSVNa has excellent emulsifying properties. The NMR spectrum of the copolymer and the detection of residual PSVNa show that more than 95% of the fluorocarbon surfactants have been linked to the polymer chains by radical polymerization, which will greatly reduce the environmental pollution caused by fluorinated surfactants.

  7. Diphenhydramine Overdose with Intraventricular Conduction Delay Treated with Hypertonic Sodium Bicarbonate and IV Lipid Emulsion

    Directory of Open Access Journals (Sweden)

    Amin Abdi

    2014-11-01

    Full Text Available Diphenhydramine toxicity commonly manifests with antimuscarinic features, including dry mucous membranes, tachycardia, urinary retention, mydriasis, tachycardia, and encephalopathy. Severe toxicity can include seizures and intraventricular conduction delay. We present here a case of a 23-year-old male presenting with recurrent seizures, hypotension and wide complex tachycardia who had worsening toxicity despite treatment with sodium bicarbonate. The patient was ultimately treated with intravenous lipid emulsion therapy that was temporally associated with improvement in the QRS duration. We also review the current literature that supports lipid use in refractory diphenhydramine toxicity. [West J Emerg Med. 2014;15(7:–0.

  8. Tuning the Wettability of Halloysite Clay Nanotubes by Surface Carbonization for Optimal Emulsion Stabilization.

    Science.gov (United States)

    Owoseni, Olasehinde; Zhang, Yueheng; Su, Yang; He, Jibao; McPherson, Gary L; Bose, Arijit; John, Vijay T

    2015-12-29

    The carbonization of hydrophilic particle surfaces provides an effective route for tuning particle wettability in the preparation of particle-stabilized emulsions. The wettability of naturally occurring halloysite clay nanotubes (HNT) is successfully tuned by the selective carbonization of the negatively charged external HNT surface. The positively charge chitosan biopolymer binds to the negatively charged external HNT surface by electrostatic attraction and hydrogen bonding, yielding carbonized halloysite nanotubes (CHNT) on pyrolysis in an inert atmosphere. Relative to the native HNT, the oil emulsification ability of the CHNT at intermediate levels of carbonization is significantly enhanced due to the thermodynamically more favorable attachment of the particles at the oil-water interface. Cryogenic scanning electron microscopy (cryo-SEM) imaging reveals that networks of CHNT attach to the oil-water interface with the particles in a side-on orientation. The concepts advanced here can be extended to other inorganic solids and carbon sources for the optimal design of particle-stabilized emulsions.

  9. Exploratory study on prevaporation membranes for removal of water from water-crude oil emulsions

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-11

    The main objective of this study was to explore the feasibility of removing water from oil/water and water/oil emulsions by means of prevaporation. Simulated oil/water and water/oil emulsions were prepared by mixing water and kerosene of various concentrations and stabilized by adding sodium lauryl sulfate. Preliminary experiments were conducted on 12 membranes fabricated from two different materials. One membrane of each type of material was chosen for further work based on the results of preliminary tests, in which two different kinds of membranes, cellulose and polyvinylalcohol, were used. All experiments were carried out under two different down-stream pressures and various temperatures. The tests showed clearly that permeation rate increases at increasing temperatures. It was demonstrated that over 97% of water can be recovered from synthetic oil emulsions. The results also proved that both cellulose and polyvinylalcohol membranes produced permeates relatively free of oil even when the synthetic or crude oil emulsions had oil content higher than 90%. The study concluded that prevaporation was effective, but more extensive studies on various field oil emulsions with improved membrane material and systems were necessary due to the complex and site-specific characteristics of the actual field emulsions. 3 figs., 8 tabs.

  10. Relations between interfacial properties and heavy crude oil emulsions stability; Relations entre les proprietes interfaciales et la stabilite des emulsions de brut lourd

    Energy Technology Data Exchange (ETDEWEB)

    Hoebler-Poteau, S.

    2006-02-15

    Oil in water emulsions are currently being investigated to facilitate the transport of viscous heavy oils. The behavior of these emulsions is largely controlled by oil / water interfaces. The surface-active components of crude oil such as asphaltenes and naphthenic acids compete among themselves at these interfaces and also with possibly added synthetic surfactant emulsifier.Here, we present a study of dynamic interfacial tension and rheology of interfaces between water and a model oil (toluene) in which asphaltenes and other surface active molecules from crude oil are dissolved. We show that different parameters such as aging of the interface, asphaltenes concentration, the pH and salinity of the aqueous phase have a strong influence on interfacial properties of asphaltenes at the oil/water interface. Several micro-pipette experiments, in which micrometric drops have been manipulated, are described as well as small angle neutron scattering measurements. The influence of lower molecular weight surface-active species, such as the natural naphthenic acids contained in maltenes (crude oil without asphaltenes) has been investigated, and an interaction between asphaltenes and maltenes which facilitates molecular arrangement at the interface was detected. The microscopic properties of the different interfaces and the stability of the corresponding emulsions are determined to be correlated.The results obtained on model emulsions and model oil/water interfaces were found to be helpful in order to explain and predict the behavior of heavy crude oil emulsions. (author)

  11. Effect of layer-by-layer coatings and localization of antioxidant on oxidative stability of a model encapsulated bioactive compound in oil-in-water emulsions.

    Science.gov (United States)

    Pan, Yuanjie; Nitin, N

    2015-11-01

    Oxidation of encapsulated bioactives in emulsions is one of the key challenges that limit shelf-life of many emulsion containing products. This study seeks to quantify the role of layer-by-layer coatings and localization of antioxidant molecules at the emulsion interface in influencing oxidation of the encapsulated bioactives. Oxidative barrier properties of the emulsions were simulated by measuring the rate of reaction of peroxyl radicals generated in the aqueous phase with the encapsulated radical sensitive dye in the lipid core of the emulsions. The results of peroxyl radical permeation were compared to the stability of encapsulated retinol (model bioactive) in emulsions. To evaluate the role of layer-by-layer coatings in influencing oxidative barrier properties, radical permeation rates and retinol stability were evaluated in emulsion formulations of SDS emulsion and SDS emulsion with one or two layers of polymers (ϵ-polylysine and dextran sulfate) coated at the interface. To localize antioxidant molecules to the interface, gallic acid (GA) was chemically conjugated with ϵ-polylysine and subsequently deposited on SDS emulsion based on electrostatic interactions. Emulsion formulations with localized GA molecules at the interface were compared with SDS emulsion with GA molecules in the bulk aqueous phase. The results of this study demonstrate the advantage of localization of antioxidant at the interface and the limited impact of short chain polymer coatings at the interface of emulsions in reducing permeation of radicals and oxidation of a model encapsulated bioactive in oil-in-water emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Early treatment with intravenous lipid emulsion in a potentially lethal hydroxychloroquine intoxication.

    Science.gov (United States)

    Ten Broeke, R; Mestrom, E; Woo, L; Kreeftenberg, H

    2016-06-01

    This case report describes the possible benefit of intravenous lipid emulsion in two patients surviving a severe intoxication with hydroxychloroquine in a dose that was previously considered to be lethal. The first case involves a 25-year-old female who ingested 17.5 grams of hydroxychloroquine, approximately one hour before presentation. An ECG showed QRS widening and the lab results showed hypokalaemia. She became unconscious, and developed hypotension and eventually apnoea. After intubation, supportive care consisted of norepinephrine and supplementation of potassium. Moreover, sodium bicarbonate and intravenous lipid emulsion were started to prevent cardiac toxicity. After these interventions, haemodynamic stability was established within a few hours. Although cardiomyopathy was confirmed, the patient recovered after two weeks. The second case concerns a 25-year-old male who took 5 grams of hydroxychloroquine. At presentation, two hours after intake, he showed QTc prolongation and hypokalaemia. The patient was treated with the usual supportive care and, although presentation to hospital was later, with intravenous lipid emulsion. Also this patient recovered. In conclusion, these cases show the benefit of supplemental intravenous lipid emulsion to prevent cardiac toxicity after a severe intoxication with hydroxychloroquine.

  13. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics.

    Science.gov (United States)

    Ahmed, Osama A A; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid-liquid phase separation method, according to the Box-Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.

  14. Studies of water-in-oil emulsions : testing of emulsion formation in OHMSETT

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.

    2001-01-01

    A study was conducted to determine the stability of water-in-oil emulsions in the OHMSETT tank facility. The results were then compared with previous laboratory studies which suggested that the stability of emulsions can be grouped into four categories, stable, unstable, meso-stable and entrained. It has been determined that entrained emulsions can retain oil by viscous forces long enough for interfacial agents, resins and asphaltenes to stabilize the droplets. This paper also described the difference in viscosity between the 4 categories of emulsion stability. The OHMSETT tests were conducted in two series of one week each. The first series of tests were conducted in July and involved 12 experiments on 2 different types of oils which were placed at varying thicknesses on the water. The second set of tests were conducted in November and involved 12 experiments on 6 oils. The rheological properties of the oils were measured and compared to the same oils undergoing emulsification in the laboratory. The oils and water-in-oil states produced were found to have analogous properties between the laboratory and the first set of tests at the OHMSETT facility. All the oils tested produced entrained water-in-oil states in both the laboratory and the test tank. The energy in the two test conditions was found to be similar, with the OHMSETT emulsions similar to one produced in the laboratory at high energies. The second series of tests at OHMSETT did not result in the expected water in-oil- states. This unexpected result was most likely due to the residual surfactant from an earlier dispersant experiment. The study showed that the conditions for emulsion formation are analogous in the OHMSETT tank and in the laboratory tests. The level of energy is considered to be the major variant. It was concluded that the energy levels between the laboratory mixing experiments and the OHMSETT is similar. It was shown that surfactants left over from dispersant testing inhibited the formation

  15. An algorithm for emulsion stability simulations: account of flocculation, coalescence, surfactant adsorption and the process of Ostwald ripening.

    Science.gov (United States)

    Urbina-Villalba, German

    2009-03-01

    The first algorithm for Emulsion Stability Simulations (ESS) was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1(st) Ed., Tojo J., Arce, A., Eds.; Solucion's: Vigo, Spain, 1999; Volume 2, pp. 364-369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening.

  16. Effect of Xanthan Gum on the Rheological Behavior and Microstructure of Sodium Caseinate Acid Gels

    Directory of Open Access Journals (Sweden)

    María E. Hidalgo

    2016-09-01

    Full Text Available The aim of this work was to study the effect of xanthan gum (XG on the gelation process of bovine sodium caseinate (NaCAS induced by acidification with glucono-δ-lactone (GDL and on the mixed acid gel microstructure. Before GDL addition, segregative phase separation was observed in all the NaCAS-XG mixtures evaluated. The gelation process was analyzed by using a fractional factorial experimental design. The images of the microstructure of the mixed acid gels were obtained by conventional optical microscopy and the mean diameter of the interstices was determined. Both the elastic character and the microstructure of the gels depended on the concentrations of XG added. As XG concentration increased, the kinetics of the gelation process was modified and the degree of compactness and elasticity component of the gel network increased. The microstructure of gels depends on the balance among thermodynamic incompatibility, protein gelation and NaCAS-XG interactions.

  17. Effects of gamma-irradiation on some properties of bovine casein micelles

    International Nuclear Information System (INIS)

    Saito, Zenichi

    1974-01-01

    Sedimentation studies and electron microscopic observations revealed that an association between casein micelles dispersed in water or milk serum was not induced significantly by gamma-irradiation of exposure up to 3 x 10 6 R, whereas a release of nonprotein nitrogen was observed to a certain extent. It was concluded from the results of turbidi-metry and gel filtration using 3 size groups of casein micelles, namely large, medium and small, that an irradiation-induced polymerization or association occurred within individual casein micelles, and strengthend the micelle structure. Thus the irradiated casein micelles resisted, more or less, to the solubilizing effect of NaCl, EDTA, pyrophosphate and urea. Stabilities of casein micelles for ethanol and for acidification to an isoelectric point were decreased and increased, respectively, after irradiation. Gamma irradiation also caused the decrease of glycomacropeptide released from casein micelles by the action of rennin, and this resulted in the delay of rennin-coagulation of casein. There were no essential differences among the 3 size groups of casein micelles concerning the above described tendencies. (auth.)

  18. Metabolic attributes, yield and stability of milk in Jersey cows fed diets containing sodium citrate and sodium bicarbonate

    Directory of Open Access Journals (Sweden)

    Marcelo Tempel Stumpf

    2013-05-01

    Full Text Available The objective of this work was to evaluate the inclusion of sodium citrate and sodium bicarbonate in the diet of lactating Jersey cows, and its effects on the metabolic attributes, productivity and stability of milk. We evaluated urinary pH, levels of glucose and urea in blood, body weight, body condition score, milk yield, milk stability (ethanol test, and milk physicochemical properties of 17 cows fed diets containing sodium citrate (100 g per cow per day, sodium bicarbonate (40 g per cow per day or no additives. Assessments were made at the 28th and 44th days. Supply of sodium citrate or bicarbonate has no influence on the metabolic attributes, productivity, body weight, and body condition score of the cows, neither on the composition and stability of milk.

  19. Stability of total nutrient admixtures with lipid injectable emulsions in glass versus plastic packaging.

    Science.gov (United States)

    Driscoll, David F; Silvestri, Anthony P; Bistrian, Bruce R; Mikrut, Bernard A

    2007-02-15

    The physical stability of two emulsions compounded as part of a total nutrient admixture (TNA) was studied in lipids packaged in either glass or plastic containers. Five weight-based adult TNA formulations that were designed to meet the full nutritional needs of adults with body weights between 40 and 80 kg were studied. Triplicate preparations of each TNA were assessed over 30 hours at room temperature by applying currently proposed United States Pharmacopeia (USP) criteria for mean droplet diameter, large-diameter tail, and globule-size distribution (GSD) for lipid injectable emulsions. In accordance with conditions set forth in USP chapter 729, the higher levels of volume-weighted percent of fat exceeding 5 microm (PFAT(5)) should not exceed 0.05% of the total lipid concentration. Significant differences were noted among TNA admixtures based on whether the lipid emulsion product was manufactured in glass or plastic. The plastic-contained TNAs failed the proposed USP methods for large-diameter fat globules in all formulations from the outset, and 60% had significant growth in large-diameter fat globules over time. In contrast, glass-contained TNAs were stable throughout and in all cases would have passed proposed USP limits. Certain lipid injectable emulsions packaged in plastic containers have baseline abnormal GSD profiles compared with those packaged in glass containers. When used to compound TNAs, the abnormal profile worsens and produces less stable TNAs than those compounded with lipid injectable emulsions packaged in glass containers.

  20. Characterization of casein and poly-l-arginine multilayer films

    Science.gov (United States)

    Szyk-Warszyńska, Lilianna; Kilan, Katarzyna; Socha, Robert P.

    2014-06-01

    Thin films containing casein appear to be a promising material for coatings used in the medical area to promote biomineralization. alfa- and beta-casein and poly-L-arginine multilayer films were formed by the layer-by layer technique and their thickness and mass were analyzed by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). We investigated the effect of the type of casein used for the film formation and of the polyethyleneimine anchoring layer on the thickness and mass of adsorbed films. The analysis of the mass of films during their post-treatment with the solutions of various ionic strength and pH provided the information concerning films stability, while the XPS elemental analysis confirmed binding of calcium ions by the casein embedded in the multilayers.

  1. [Effects of glycerol on the spectral properties of sodium caseinate].

    Science.gov (United States)

    Li, Yan; Chang, Fen-fen; Gao, Huan-yuan; Cao, Qing; Jin, Li-e

    2015-01-01

    Although the immigration of water molecule, and diffusion and traversing of oxygen can be prevented by the edible film prepared through sodium caseinate, which plays a good protection role for the food, the strong hydrophilicity makes its watertightness and mechanical properties become inferior. Because the toughness and water resistance of SC films can be enhanced by glycerol (G) as an additive, it is necessary to elucidate the interaction between G and SC through the spectral characteristics such as fluorescence spectra, infrared spectra and UV spectra. The results show that the fluorescence intensity of SC decreases due to the addition of G. The binding constant obtained by the double logarithmic regression curve analysis is 1. 127 x 10(3) L . mol-1 and the number of binding sites reaches 1. 161. It indicates that the weak chemical bond is primary between G and SC molecules; From IR the absorption peaks of SC are almost the same before and after adding G. However, there is a certain difference among their absorption intensities. It reveals that the secondary structure of SC is affected, β folding length decreases, α helix, random coil structure, β angle structure increases, and the intermolecular hydrogen bond is strengthened; From UV the peptide bond structure of SC is not changed after the addition of G, but the polymer with larger molecular weight, which is formed by non-covalent bond, makes the peak intensity decrease. The research gives the mode of G and SC from the molecular level.

  2. Analysis of casein biopolymers adsorption to lignocellulosic biomass as a potential cellulase stabilizer.

    Science.gov (United States)

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  3. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans.

    Science.gov (United States)

    Jung, S; Maurer, D; Johnson, L A

    2009-11-01

    The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.

  4. Influence of calcium, magnesium, or potassium ions on the formation and stability of emulsions prepared using highly hydrolyzed whey proteins.

    Science.gov (United States)

    Ramkumar, C; Singh, H; Munro, P A; Singh, A M

    2000-05-01

    Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.

  5. Oxidative Stability and Shelf Life of Food Emulsions

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte

    2016-01-01

    Lipid oxidation and antioxidant effects in food emulsions are influenced by many different factors, such as the composition of the aqueous phase and interface, the partitioning of the antioxidants between the different phases of the emulsion system, the antioxidant properties, and others. This ch...

  6. Evaluating factors affecting the permeability of emulsions used to stabilize radioactive contamination from a radiological dispersal device.

    Science.gov (United States)

    Fox, Garey A; Medina, Victor F

    2005-05-15

    Present strategies for alleviating radioactive contamination from a radiological dispersal device (RDD) or dirty bomb involve either demolishing and removing radioactive surfaces or abandoning portions of the area near the release point. In both cases, it is imperative to eliminate or reduce migration of the radioisotopes until the cleanup is complete or until the radiation has decayed back to acceptable levels. This research investigated an alternative strategy of using emulsions to stabilize radioactive particulate contamination. Emergency response personnel would coat surfaces with emulsions consisting of asphalt or tall oil pitch to prevent migration of contamination. The site can then be evaluated and cleaned up as needed. In order for this approach to be effective, the treatment must eliminate migration of the radioactive agents in the terror device. Water application is an environmental condition that could promote migration into the external environment. This research investigated the potential for water, and correspondingly contaminant, migration through two emulsions consisting of Topein, a resinous byproduct during paper manufacture. Topein C is an asphaltic-based emulsion and Topein S is a tall oil pitch, nonionic emulsion. Experiments included water adsorption/ mobilization studies, filtration tests, and image analysis of photomicrographs from an environmental scanning electron microscope (ESEM) and a stereomicroscope. Both emulsions were effective at reducing water migration. Conductivity estimates were on the order of 10(-80) cm s(-1) for Topein C and 10(-7) cm s(-1) for Topein S. Water mobility depended on emulsion flocculation and coalescence time. Photomicrographs indicate that Topein S consisted of greater and more interconnected porosity. Dilute foams of isolated spherical gas cells formed when emulsions were applied to basic surfaces. Gas cells rose to the surface and ruptured, leaving void spaces that penetrated throughout the emulsion. These

  7. Characterization of flaxseed oil emulsions.

    Science.gov (United States)

    Lee, Pei-En; Choo, Wee-Sim

    2015-07-01

    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).

  8. Emulsion properties of sunflower (Helianthus annuus) proteins

    NARCIS (Netherlands)

    Gonzalez-Perez, S.; Koningsveld, van G.A.; Vereijken, J.M.; Merck, K.B.; Gruppen, H.; Voragen, A.G.J.

    2005-01-01

    Emulsions were made with sunflower protein isolate (SI), helianthinin, and sunflower albumins (SFAs). Emulsion formation and stabilization were studied as a function of pH and ionic strength and after heat treatment of the proteins. The emulsions were characterized with respect to average droplet

  9. Cleaning fluid emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Prikryl, J; Kotyza, R; Krulikovsky, J; Mjartan, V; Valisova, I

    1981-09-15

    Composition of cleaning fluid emulsion are presented for drilling small diameter wells in clay soils, at high drill bit rotation velocity. The emulsions have lubricating properties and the abilty to improve stability of the drilled soil. The given fluids have a high fatty acid content with 12-24 carbon atoms in a single molecule, with a predominance of resinous acids 1-5% in mass, and having been emulsified in water or clay suspension without additives, or in a clay suspension with high-molecular polymer additives (glycobate cellulose compounds and/or polysaccharides, and/or their derivatives) in an amount of 0.1-3% per mass; thinning agents - huminite or lignite compounds in the amount of 0.01 to 0.5% in mass; weighting material - barite or lime 0.01 to 50% per mass; medium stabilizers - organic poly-electrolyte with polyacrylate in the amount of 0.05 to 2% in mass, or alkaline chloride/alkaline-ground metals 1-10% per mass. A cleaning emulsion fluid was prepared in the laboratory according to the given method. Add 3 kg tall oil to a solution of 1 kg K/sub 2/CO/sub 3/ per 100 l of water. Dynamic viscosity was equal to 1.4 x 10-/sup 3/ Pa/s. When drilling in compacted clay soils, when the emulsions require improved stability, it is necessary to add the maximum amount of tall oil whose molecules are absorbed by the clay soil and increase its durability.

  10. Freeze-Thaw Performance and Moisture-Induced Damage Resistance of Base Course Stabilized with Slow Setting Bitumen Emulsion-Portland Cement Additives

    Directory of Open Access Journals (Sweden)

    Mojtaba Shojaei Baghini

    2015-01-01

    Full Text Available Freeze-thaw (FT cycles and moisture susceptibility are important factors influencing the geotechnical characteristics of soil-aggregates. Given the lack of published information on the behavior of cement-bitumen emulsion-treated base (CBETB under environmental conditions, especially freezing and thawing, this study investigated the effects of these additives on the CBETB performance. The primary goal was to evaluate the resistance of CBETB to moisture damage by performing FT, Marshall conditioning, and AASHTO T-283 tests and to evaluate the long-term stripping susceptibility of CBETB while also predicting the liquid antistripping additives to assess the mixture’s durability and workability. Specimens were stabilized with Portland cement (0%–6%, bitumen emulsion (0%–5%, and Portland cement-bitumen emulsion mixtures and cured for 7 days, and their short- and long-term performances were studied. Evaluation results of both the Marshall stability ratio and the tensile strength ratio show that the additions of additives increase the resistance of the mixtures to moisture damage. Results of durability tests performed for determining the resistance of compacted specimens to repeated FT cycles indicate that the specimen with the 4% cement-3% bitumen emulsion mixture significantly improves water absorption, volume changes, and weight losses. This indicates the effectiveness of this additive as a road base stabilizer with excellent engineering properties for cold regions.

  11. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda Eckard

    2012-01-01

    Full Text Available Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM, fourier transform infrared spectroscopy (FT-IR, capillary electrophoresis (CE, and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  12. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Science.gov (United States)

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively. PMID:23118515

  13. Stabilization of emulsions by gum tragacanth (Astragalus spp.) correlates to the galacturonic acid content and methoxylation degree of the gum

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Abang Zaidel, Dayang Norulfairuz

    2013-01-01

    Gum tragacanth samples from six species of Iranian Astragalus bush plants (“goat's-horn”) were evaluated for their emulsion stabilizing effects and their detailed chemical composition in order to examine any possible correlation between the make-up and the emulsion stabilizing properties of gum......:50 (A. rahensis, A. microcephalus, A. compactus) or tipped toward higher bassorin than tragacanthin (A. gossypinus). The monosaccharide make-up of the six gums also varied, but all the gums contained relatively high levels of galacturonic acid (∼100–330 mg/g), arabinose (50–360 mg/g), xylose (∼150...

  14. Viscosidade extensional e em cisalhamento de suspensões acidificadas de amido de amaranto e caseinato de sódio Extensional and shear viscosity of acidified amaranth starch-sodium caseinate suspensions

    Directory of Open Access Journals (Sweden)

    Angela Maria Gozzo

    2009-09-01

    Full Text Available Foram avaliadas as viscosidades extensional e em cisalhamento de suspensões acidificadas de amido de amaranto-caseinato de sódio. Sistemas mistos de amido de amaranto-caseinato de sódio acidificados com glucona-delta-lactona (GDL foram estudados por ensaios reológicos em compressão biaxial e cisalhamento. Os efeitos da velocidade de acidificação (lenta e rápida e pH final (neutro e no ponto isoelétrico da caseína foram avaliados considerando as interações entre os biopolímeros e sua consequente influência nos parâmetros reológicos. Todas as amostras apresentaram comportamento pseudoplástico, no entanto, a adição de caseinato de sódio nas suspensões de amido, em pH neutro, promoveu um efeito negativo sobre a viscosidade aparente. Amostras acidificadas apresentaram um aumento na complexidade do sistema devido à formação da rede de amido e caseína, observando que a força necessária para o escoamento foi sempre maior para as amostras contendo concentrações maiores de caseinato. Isso mostra que a agregação e gelificação da proteína promovidas pela acidificação, impediram a microsseparação de fases. Esta rede foi mais forte em sistemas gelificados lentamente, devido à formação de uma rede de proteína mais organizada. Apesar da técnica de compressão biaxial imperfeita ser limitada para avaliação de determinados sistemas, neste estudo, mostrou ser um modo prático e eficiente de se mensurar o comportamento reológico.Extensional and shear viscosity of acidified amaranth starch-sodium caseinate suspensions were evaluated. Mixed systems of amaranth starch-sodium caseinate acidified with glucone-delta-lactone (GDL were studied using rheological measurements under biaxial compression and shear. The effects of the acidification rate (slow and fast and final pH (neutral and isoelectric point of casein were evaluated considering the interactions between biopolymers and their influence on the rheological parameters

  15. Joint Effects of Granule Size and Degree of Substitution on Octenylsuccinated Sweet Potato Starch Granules As Pickering Emulsion Stabilizers.

    Science.gov (United States)

    Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua

    2018-05-02

    The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.

  16. The adsorption of chymosin and lysozyme onto emulsion droplets and their association with casein

    NARCIS (Netherlands)

    Roos, de A.L.

    1999-01-01

    The proteolytic action of proteases present in cheese plays a major role in the ripening of cheese. These proteases originate from the rennet, the starter cultures and from the milk itself. The proteolysis in cheese results in the degradation of the casein proteins into smaller peptides and

  17. Application of Response Surface Methodology in the Preparation of Pectin-Caseinate Nanocomplexes for Potential Use as Nutraceutical Formulation: A Statistical Experimental Design Analysis

    Directory of Open Access Journals (Sweden)

    Sajedeh Bahrani

    2018-03-01

    Full Text Available Background: The formation of electrostatic complexes between two types of biopolymers, sodium Caseinate (a derivative from most abundant milk protein and Pectin (a natural hetro polysaccharide, was studied as a function of biopolymers concentrations and pH of solutions (3.9- 4.3. Method: The size and morphology of the resulted complexes were investigated by using of laser light scattering and transmission electron microscopy, respectively. Response surface methodology (A three-factor, three levels Box-Behnken design was used for the optimization procedure with pH, pectin and sodium Caseinate concentrations as independent variables. Particle size and polydispersity index of nanocomplexes were considered as dependent variables. Results: Negatively charged nanocomplexes were produced below the isoelectric point of protein (5.4, at pH 4.1 with a suitable colloidal stability and average particle size of about 100 nm. It was found that the particle size of nanocomplexes could be controlled by changing in variables. Conclusion: In conclusion response surface methodology are simple, rapid and beneficial approach for preparation, optimization and investigation of the effect of independent variables on the properties of products.

  18. Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface.

    Science.gov (United States)

    Li, Quanyang; Zhao, Zhengtao

    2017-10-01

    This research investigated the complexation behaviour between lactoferrin (Lf) and sodium caseinate (NaCas) before and after heat treatment. The results showed that heating facilitated their interaction and different complexes were formed at different Lf/NaCas ratios. The presence of low concentrations of NaCas resulted in the rapid precipitation of Lf, while no precipitation was observed at the NaCas concentrations higher than Lf/NaCas ratio of 2:1. The formed complexes at the ratio of 2:1 have an average diameter of 194±9.0nm and they exhibited a great capacity in lowering the air/water interfacial tension. Further increase of NaCas concentration to ratios of 1:1 and 1:2 resulted in the formation of smaller complexes with average diameters of 60±2.5nm. The complexes formed at these two ratios showed similar adsorption behaviour at the air/water interface and they exhibited lower capacity in decreasing the interfacial tension than the ratio of 2:1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Method validation and stability study of quercetin in topical emulsions

    Directory of Open Access Journals (Sweden)

    Rúbia Casagrande

    2009-01-01

    Full Text Available This study validated a high performance liquid chromatography (HPLC method for the quantitative evaluation of quercetin in topical emulsions. The method was linear within 0.05 - 200 μg/mL range with a correlation coefficient of 0.9997, and without interference in the quercetin peak. The detection and quantitation limits were 18 and 29 ng/mL, respectively. The intra- and inter-assay precisions presented R.S.D. values lower than 2%. An average of 93% and 94% of quercetin was recovered for non-ionic and anionic emulsions, respectively. The raw material and anionic emulsion, but not non-ionic emulsion, were stable in all storage conditions for one year. The method reported is a fast and reliable HPLC technique useful for quercetin determination in topical emulsions.

  20. Pickering Emulsions for Food Applications: Background, Trends, and Challenges

    NARCIS (Netherlands)

    Berton-Carabin, C.C.; Schroën, C.G.P.H.

    2015-01-01

    Particle-stabilized emulsions, also referred to as Pickering emulsions, have garnered exponentially increasing interest in recent years. This has also led to the first food applications, although the number of related publications is still rather low. The involved stabilization mechanisms are

  1. Estabilidade de emulsões de d-limoneno em quitosana modificada Stability of d-limonene emulsions in modified chitosan

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Borgognoni

    2006-09-01

    Full Text Available A quitosana é um biopolímero produzido a partir da quitina, presente na casca de crustáceos. Atualmente, o estudo de suas propriedades se deve às suas diversas utilizações nas áreas farmacêutica e alimentícia. A quitosana utilizada neste estudo foi quimicamente modificada para tornar-se solúvel em água (quitosana succinilada. Estudou-se a estabilidade de emulsões com d-limoneno para que estes dados sejam úteis na sua posterior utilização como agente de encapsulação de d-limoneno por liofilização. Sua estabilidade foi analisada por espectrofotometria, em diferentes temperaturas, e por cromatografia gasosa associada à técnica da análise do espaço livre, à temperatura ambiente. Sua caracterização foi feita por microscopia óptica. Emulsões de maltodextrina com d-limoneno foram utilizadas para comparação já que maltodextrinas são muito usadas como agentes de encapsulação de aromas. Observou-se boa estabilidade de emulsões de quitosana succinilada com d-limoneno ao longo do tempo e características muito distintas em relação às observadas em emulsões de maltodextrina com d-limoneno. Pode-se concluir neste estudo que emulsões de quitosana succinilada com d-limoneno apresentaram características favoráveis à encapsulação de aromas.Chitosan is a biopolymer derived from chitin, a component of the shells of crustaceans. Recently, special attention has been given to the study of chitosan properties as a consequence of their wide application in pharmaceutical and food areas. In this study, the chitosan used was chemically modified in order to become water soluble (succinyl chitosan. The stability of succinyl chitosan emulsion with d-limonene was studied so that these results could be useful in a subsequent use of succinyl chitosan as a d-limonene encapsulating agent by lyophilization. The stability of the emulsion was analyzed using a spectrophotometer in different temperatures and by the headspace

  2. Small-angle reflectometry of milk protein (β -casein) at the air/serum interface and its conformational changes due to fat content and temperature

    International Nuclear Information System (INIS)

    Heidari, R.; White, J.W.

    2003-01-01

    Full text: The surface structure of dispersed emulsions play a key role in stability of the system. Proteins being one of the most important surface-active components in foods stabilise interfaces by self-interaction, resulting in a stiff visco-elastic adsorbed layer. These interactions are sensitive to disruptive effects of lipids. Previous kinetics studies by the group 1 using the X-ray reflectivity method to investigate the surface adsorption of milk proteins indicate that β -casein had a stronger affinity for the air-liquid interface compared to whey proteins. It has been shown that initially a dense protein layer, with the thickness of 20 Angstroms is formed then a second more diffuse layer with lower volume density of protein follows. Here we report the conformational changes (with particular emphasise on the β -casein tail) occurred at the air-milk serum interface due to the effects of milk fat content, temperature and the milk preparation technique (ie homogenisation vs microfluidisation). In the effect of fat content on the adsorption of protein into the interface the key conclusion is that at lower temperatures the surface composition remains unchanged. The compositional changes, however, become significant at room temperature indicating adsorption of less reflective-water-soluble components into the surface layer. Repulsive interactions between casein aggregates are also involved. Microfluidised samples having the advantage of smaller particle size prove to be more stable to fat or temperature effects compared to the corresponding homogenised milks

  3. Reversed phase HPLC analysis of stability and microstructural effects on degradation kinetics of β-carotene encapsulated in freeze-dried maltodextrin-emulsion systems.

    Science.gov (United States)

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-09-26

    Degradation of dispersed lipophilic compounds in hydrophilic solids depends upon matrix stability and lipid physicochemical properties. This study investigated effects of solid microstructure and size of lipid droplets on the stability of dispersed β-carotene in freeze-dried systems. Emulsions of β-carotene in sunflower oil were dispersed in maltodextrin systems (M040/DE6, M100/DE11, and M250/DE25.5) (8% w/w oil) and prefrozen at various freezing conditions prior to freeze-drying to control nucleation and subsequent pore size and structural collapse of freeze-dried solids. The particle size, physical state, and β-carotene contents of freeze-dried emulsions were measured during storage at various water activity (a(w)) using a laser particle size analyzer, differential scanning calorimeter, and high performance liquid chromatography (HPLC), respectively. The results showed that M040 stabilized emulsions in low temperature freezing exhibited lipid crystallization. Collapse of solids in storage at a(w) which plasticized systems to the rubbery state led to flow and increased the size of oil droplets. Degradation of β-carotene analyzed using a reversed-phase C(30) column followed first-order kinetics. Porosity of solids had a major effect on β-carotene stability; however, the highest stability was found in fully plasticized and collapsed solids.

  4. Structural and shear characteristics of adsorbed sodium caseinate and monoglyceride mixed monolayers at the air-water interface.

    Science.gov (United States)

    Rodríguez Patino, Juan M; Cejudo Fernández, Marta; Carrera Sánchez, Cecilio; Rodríguez Niño, Ma Rosario

    2007-09-01

    The structural and shear characteristics of mixed monolayers formed by an adsorbed Na-caseinate film and a spread monoglyceride (monopalmitin or monoolein) on the previously adsorbed protein film have been analyzed. Measurements of the surface pressure (pi)-area (A) isotherm and surface shear viscosity (eta(s)) were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The structural and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. At surface pressures lower than the equilibrium surface pressure of Na-caseinate (at picaseinate and monoglyceride coexist at the interface, with a structural polymorphism or a liquid expanded structure due to the presence of monopalmitin or monoolein in the mixture, respectively. At higher surface pressures, collapsed Na-caseinate residues may be displaced from the interface by monoglyceride molecules. For a Na-caseinate-monopalmitin mixed film the eta(s) value varies greatly with the surface pressure (or surface density) of the mixed monolayer at the interface. In general, the greater the surface pressure, the greater are the values of eta(s). However, the values of eta(s) for a Na-caseinate-monoolein mixed monolayer are very low and practically do not depend on the surface pressure. The collapsed Na-caseinate residues displaced from the interface by monoglyceride molecules at pi>pi(e)(CS) have important repercussions on the shear characteristics of the mixed films.

  5. Compatibility and Stability of VARUBI (Rolapitant) Injectable Emulsion Admixed with Intravenous Granisetron Hydrochloride.

    Science.gov (United States)

    Wu, George; Powers, Dan; Yeung, Stanley; Chen, Frank; Neelon, Kelly

    2018-01-01

    Prophylaxis or therapy with a combination of a neurokinin 1 (NK-1) receptor antagonist (RA), a 5-hydroxytryptamine- 3 (5-HT3) RA, and dexamethasone is recommended by international antiemesis guidelines for the prevention of chemotherapy-induced nausea and vomiting for patients receiving highly emetogenic chemotherapy and for select patients receiving moderately emetogenic chemotherapy. VARUBI (rolapitant) is a substance P/NK-1 RA that was recently approved by the U.S. Food and Drug Administration as an injectable emulsion in combination with other antiemetic agents in adults for the prevention of delayed nausea and vomiting associated with initial and repeat courses of emetogenic cancer chemotherapy, including, but not limited to, highly emetogenic chemotherapy. Granisetron Hydrochloride Injection USP is one of the 5-HT3 RAs indicated for the prevention of nausea and/or vomiting associated with initial and repeat courses of emetogenic cancer therapy, including high-dose cisplatin. Herein, we describe the physical and chemical compatibility and stability of VARUBI (rolapitant) injectable emulsion (166.5 mg/92.5 mL [1.8 mg/mL], equivalent to 185 mg of rolapitant hydrochloride) admixed with Granisetron Hydrochloride Injection USP (1.0 mg/mL, equivalent to 1.12 mg/mL hydrochloride). Binary admixtures of VARUBI injectable emulsion and Granisetron Hydrochloride Injection USP were prepared and stored in VARUBI ready-to-use glass vials and in four types of commonly used intravenous administration (tubing) sets. Evaluation of the physical and chemical compatibility and stability of the admixtures in the VARUBI ready-to-use vials stored at room temperature (20°C to 25°C) under fluorescent light and under refrigeration (2°C to 8°C protected from light) was conducted at 0, 1, 6, 24, and 48 hours, and that of the admixtures in the intravenous tubing sets was evaluated at 0, 2, and 6 hours of storage at 20°C to 25°C. Physical stability was evaluated by visual examination

  6. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization.

    Science.gov (United States)

    Yi, BoRa; Kim, Mi-Ja; Lee, JaeHwan

    2018-03-01

    The antioxidative or prooxidative properties of astaxanthin at the concentrations of 0, 10, and 100 μM were determined in oil-in-water (O/W) emulsions containing neutral, anionic, and cationic emulsifiers, which was Tween 20, sodium dodecyl sulfate, cetyltrimethylammonium bromide (CTAB), respectively, under chlorophyll photosensitization. The oxidative parameters and headspace volatiles were analyzed in O/W emulsions. In the 24 h period of visible light irradiation, 100 μM of astaxanthin acted as an antioxidant in O/W emulsions containing neutral and anionic emulsifiers. However, astaxanthin in O/W emulsions with a cationic emulsifier was neither an antioxidant nor a prooxidant. The profiles of volatile compounds showed that astaxanthin served as a singlet oxygen quencher in O/W emulsions containing neutral and anionic emulsifiers. However, in O/W emulsion with a cationic emulsifier, astaxanthin was neither a singlet oxygen quencher nor a free radical scavenger because prooxidant properties of CTAB overwhelmed the antioxidant effects of astaxanthin. Therefore, the antioxidant properties of astaxanthin were influenced by the emulsifier charges in O/W emulsions. Astaxanthin is a lipid-soluble pigment and has antioxidant, anticancer, and anti-inflammatory properties and beneficial effects on cardiovascular diseases. Many lipid-based foods are displayed on the shelves in the markets under fluorescent light. The addition of astaxanthin can extend the shelf life of O/W emulsion type foods such as beverage and dressing products under visible light irradiation. Also, oxidative stability in emulsion type foods containing astaxanthin rich natural ingredients can be predicted. © 2018 Institute of Food Technologists®.

  7. Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles.

    Science.gov (United States)

    Li, Kang-Kang; Yin, Shou-Wei; Yang, Xiao-Quan; Tang, Chuan-He; Wei, Zi-Hao

    2012-11-21

    The objective of this research was to fabricate novel antimicrobial films based on zein colloidal nanoparticles coated with sodium caseinate (SC), an emulsifier/stabilizer. Thymol-loaded zein-SC nanoparticles were prepared using an antisolvent technique, with the average particle size and zeta potential about 200 ± 20 nm and -40 mV, respectively. Zein-SC nanoparticle-based films exhibited higher mechanical resistance and water barrier capacity than the SC films and concomitant good extensibility as compared with zein films. Thymol loadings endowed zein-SC nanoparticle-based films with antimicrobial activity against Escherichia coli and Salmonella as well as DPPH radical scavenging activity. Water vapor permeability, microstructure, mechanical, and controlled release properties of the films were evaluated. The possible relationship between some selected physical properties and microstructure were also discussed. Atomic force microscopy (AFM) analysis indicated that thymol loadings resulted in the emergence phenomena of the nanoparticles to form large particles or packed structure, consisting of clusters of nanoparticles, within the film matrix, in a thymol loading dependent manner. The appearance of large particles or an agglomerate of particles may weaken the compactness of protein network of films and thus impair the water barrier capacity, mechanical resistance, and extensibility of the films. The release kinetics of thymol from nanoparticle-based films can be described as a two-step biphasic process, that is, an initial burst effect followed by subsequent slower release, and zein-SC nanoparticles within the films matrices gave them the ability to sustain the release of thymol. In addition, a schematic illustration of the formation pathway of zein-SC nanoparticle-based films with or without thymol was proposed to illuminate the possible relationship between some selected physical properties and the microstructure of the films.

  8. Effect of Fluoride, Casein Phosphopeptide–Amorphous Calcium Phosphate and Casein Phosphopeptide–Amorphous Calcium Phosphate Fluoride on Enamel Surface Microhardness After Microabrasion: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadi Zenouz

    2016-03-01

    Full Text Available Objectives: This study aimed to assess the effect of applying casein phosphopeptide–amorphous calcium phosphate (CPP-ACP paste, casein phosphopeptide–amorphous calcium phosphate fluoride (CPP-ACPF paste and sodium fluoride gel on surface microhardness of enamel after microabrasion.Materials and Methods: Thirty freshly extracted human premolars were selected. All samples were subjected to hardness indentations made with the Vickers hardness machine and the average value was recorded as the initial surface microhardness. The specimens were then randomly divided into three groups (n=10 of CPP-ACPF, fluoride and CPP-ACP. The teeth were micro-abraded with Opalustre. Microhardness test was performed to assess the post-abrasion hardness. Three remineralization modalities were performed on samples of each group. The enamel surface microhardness measurements were performed. To compare the difference between groups, the rehardening and softening values were defined. One-way ANOVA and Tukey’s post hoc test at a significance level of 5% were used for statistical analysis.Results: The mean microhardness value (MMV had a significant decrease after microabrasion from baseline. The MMV had a significant increase after remineralization in all groups. The MMV of CPP-ACPF group was significantly more than that of fluoride group (P=0.027. The rehardening value of fluoride group was significantly more than that of other groups (P<0.001.Conclusion: All the remineralizing agents were effective for rehardening the enamel after microabrasion. The CPP-ACP and CPP-ACPF pastes are effective, but to a lesser extent than neutral sodium fluoride gel in remineralizing enamel surface. Incorporation of fluoride to CPP-ACP formulation does not provide any additional remineralizing potential.Keywords: Casein phosphopeptide-amorphous calcium phosphate nanocomplex; Enamel Microabrasion; Hardness; Sodium Fluoride

  9. Light backscatter fiber optic sensor: a new tool for predicting the stability of pork emulsions containing antioxidative potato protein hydrolysate.

    Science.gov (United States)

    Nieto, Gema; Xiong, Youling L; Payne, Fred; Castillo, Manuel

    2015-02-01

    The objective of this study was to determine whether light backscatter response from fresh pork meat emulsions is correlated to final product stability indices. A specially designed fiber optic measurement system was used in combination with a miniature fiber optic spectrometer to determine the intensity of light backscatter within the wavelength range 300-1100 nm (UV/VIS/NIR) at different radial distances (2, 2.5 and 3mm) with respect to the light source in pork meat emulsions with two fat levels (15%, 30%) and two levels (0, 2.5%) of the natural antioxidant hydrolyzed potato protein (HPP). Textural parameters (hardness, deformability, cohesiveness and breaking force), cooking loss, TBARS (1, 2, 3, and 7 days of storage at 4 °C) and CIELAB color coordinates of cooked emulsions were measured. The light backscatter was directly correlated with cooking losses, color, breaking force and TBARS. The optical configuration proposed would compensate for the emulsion heterogeneity, maximizing the existing correlation between the optical signal and the emulsion quality metrics.

  10. Efeito do caseinato de sódio nas propriedades sensoriais do presunto "cook-in" Effect of sodium caseinate in the sensory properties of "cook-in" ham

    Directory of Open Access Journals (Sweden)

    Jicela Elsa Morales Udaeta

    1995-01-01

    Full Text Available Realizou-se o estudo do efeito das diferentes concentrações de caseinato de sódio nos atributos sensoriais do presento "cook-in". Em cada uma das quatro repetições, vinte presuntos foram designados ao acaso num dos cinco tratamentos, nos quais a formulação da salmoura de cura foi injetada a 20% em relação ao peso da carne em todos os tratamentos. A composição básica da salmoura correspondeu a 0,5% fosfato; 2,0% sal; 0,4% sais de cura; 0,66% condimento para presunto e 0,25% ascorbato, as condições de processamento foram as mesmas para todos os tratamentos, mas foram utilizados diferentes concentrações de caseinato de sódio em cada tratamento (0,0%; 0,5%; 1,0% e 1,5%. Foram retiradas amostras para medir o pH. Calculou-se as perdas no tambleamento e no cozimento e o rendimento. As propriedades sensoriais do presunto "cook-in" também foram avaliadas quanto a cor, aroma, coesividade, fatiamento, sabor e textura. O pH não apresentou efeito significativo, devido à salmoura ter sido ajustada para pH 9,0 para todos os tratamentos. Os presuntos com 1,0% caseinato de sódio apresentaram uma ótima aceitabilidade, mas apresentaram também a maior perda no cozimento. Os presuntos com 0,5% de caseinato de sódio apresentaram a menor perda no cozimento e uma razoável aceitabilidade das propriedades sensoriais.The effect of different concentrations of sodium caseinate in the sensory properties of "cook-in" ham was studied. In each of four replications, twenty ''cook-in" hams were randomly designed to one of five treatment groups in which the curing brine formulation was pumped 20% of their respectivo weights for all treatments. The basic brine composition was 0.5% phosphate; 2.0% salt; 0.4% curing salts; 0.66% ham condiment and 0.25% ascorbate, the processing conditions were the same for all treatments, but there was used different concentrations of sodium caseinate. (0.0%; 0.5%; 1.0% and 1.5%. Samples were removed for pH analysis. Tumbling

  11. Effects of electron beam irradiated natural casings on the quality properties and shelf stability of emulsion sausage

    Science.gov (United States)

    Kim, Hyun-Wook; Choi, Ji-Hun; Choi, Yun-Sang; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Ju-Woon; Kim, Cheon-Jei

    2012-05-01

    The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production.

  12. Uso do óleo de pequi (Caryocar brasiliense em emulsões cosméticas: desenvolvimento e avaliação da estabilidade física Use of pequi oil (Caryocar brasiliense in cosmetics emulsions: development and evaluate of physical stability

    Directory of Open Access Journals (Sweden)

    Aline Rocha Pianovski

    2008-06-01

    Full Text Available Os objetivos deste trabalho foram desenvolver e avaliar a estabilidade física de emulsões O/A contendo óleo de pequi (Caryocar brasiliense. Emulsões O/A contendo 10,0% (p/p de óleo de pequi foram preparadas e, para promover a estabilidade, a adição de carbomer, magnesium sulfate, sodium chloride e sorbitan oleate, foram estudadas. O tipo de emulsão foi verificado pelo método de diluição e o aspecto, homogeneidade e características organolépticas avaliadas através de análises macroscópicas. Como testes preliminares foram utilizados a centrifugação, ciclo gela-degela e o estresse térmico. Para avaliar a estabilidade acelerada as amostras foram submetidas em diferentes condições de estresse e analisadas a partir do valor de pH, análises macroscópicas e comportamento reológico. As emulsões preparadas com óleo de pequi, 0,3% (p/p de Acrylates/C10-30 Alkyl Acrilate Crosspolymer e 0,2% (p/p de carbomer apresentaram-se estáveis com propriedades pseudoplásticas e tixotrópicas. As características macroscópicas e valores obtidos de pH, viscosidade aparente, índices de fluxo e de consistência da área de histerese durante a estocagem indicaram estabilidade da formulação.The aims of this study were to development and evaluated the physical stability of O/W emulsions containing "Pequi" oil (Caryocar brasiliense. O/W emulsions containing 10.0% (w/w of Pequi oil were prepared, and to improve the stability, the carbomer, magnesium sulfate, sodium chloride and sorbitan oleate were added and studied. The direction of the emulsions was evaluated by dilution method and by macroscopic analysis, the appearance, homogeneity and organoleptic properties were evaluated. The centrifugation, freeze/defrost cycles and stress thermal were used to investigate the preliminary stability. To evaluate the accelerated stability, the samples were stored at different stress conditions and evaluated the pH value, macroscopic analysis and rheological

  13. Control of strength and stability of emulsion-gels by a combination of long- and short-range interactions

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Hendriks, W.P.G.; Linden, van der E.; Vliet, van T.; Aken, van G.A.

    2003-01-01

    This paper discusses the change in phase behavior and mechanical properties of oil-in-water emulsion gels brought about by variation of long- and short-range attractive interactions. The model system studied consisted of oil droplets stabilized by the protein -lactoglobulin (-lg). A long-range

  14. Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Abdelhalim I. A. Mohamed

    2017-01-01

    Full Text Available Emulsified water-in-oil (W/O systems are extensively used in the oil industry for water control and acid stimulation. Emulsifiers are commonly utilized to emulsify a water-soluble material to form W/O emulsion. The selection of a particular surfactant for such jobs is critical and certainly expensive. In this work, the impact of surfactant structure on the stability of W/O emulsions is investigated using the hydrophilic-lipophilic balance (HLB of the surfactant. Different commercial surfactants were evaluated for use as emulsifiers for W/O systems at high-temperature (up to 120°C high-salinity (221,673 ppm HTHS conditions. Diverse surfactants were examined including ethoxylates, polyethylene glycols, fluorinated surfactants, and amides. Both commercial Diesel and waste oil are used for the oleic phase to prepare the emulsified system. Waste oil has shown higher stability (less separation in comparison with Diesel. This work has successfully identified stable emulsified W/O systems that can tolerate HTHS environments using HLB approach. Amine Acetate family shows higher stability in comparison with Glycol Ether family and at even lower concentration. New insights into structure-surfactant stability relationship, beyond the HLB approach, are provided for surfactant selection.

  15. Sardine Fish Oil By Sentrifugation and Adsorbent for Emulsion

    Directory of Open Access Journals (Sweden)

    Kristina Haryati

    2017-04-01

    Full Text Available Sardine fish meal by-product contain eicosapentaenoic acid (EPA and docosahexaenoic (DHA and it can be made as emulsion. The purpose of this study were to determine the best fish oil emulsion by mixingthe oil phase (lecithin 3% and oil and water phase (carboxymethyl cellulose/CMC 2% and fruit juice and then stored until creaming, and the emulsion is analyzed their viscosity, pH, percent of stability and longseparation. Sardine oil is separated from the emulsion and tested oxidation parameters. The best emulsion was fish oil emulsion after refined without citric acid (RTS with viscosity (2470.31 cP, pH (5.64, percent of stability (56.14% and long separation (14 days. Primary and secondary oxidation parameters of RTS  were FFA (14.87%, PV (14.43 meq/kg, AV (32.57 meq KOH/g, AnV (17.3 meq/kg, and Totox (46.16 meq/kg.

  16. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions.

    Science.gov (United States)

    Serdaroğlu, Meltem; Nacak, Berker; Karabıyıkoğlu, Merve; Keser, Gökçen

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples ( p <0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics.

  17. Complex coacervation for the development of composite edible films based on LM pectin and sodium caseinate.

    Science.gov (United States)

    Eghbal, Noushin; Yarmand, Mohammad Saeid; Mousavi, Mohammad; Degraeve, Pascal; Oulahal, Nadia; Gharsallaoui, Adem

    2016-10-20

    Coacervation between sodium caseinate (CAS) and low methoxyl pectin (LMP) at pH 3 was investigated as a function of protein/polysaccharide ratio. The highest amount of complex coacervates was formed at a CAS/LMP ratio of 2 at which the ζ-potential value was zero and the turbidity reached its highest value. Then, the properties of films based on these complex coacervates were studied. Coacervation resulted in decreasing water content and water sorption of films as the protein concentration increased. The mechanical properties of films were highly influenced by the formation of electrostatic complexes. The highest values of Young's modulus (182.97± 6.48MPa) and tensile strength (15.64±1.74MPa) with a slight increase of elongation at break (9.35±0.10%) were obtained for films prepared at a CAS/LMP ratio equal to 0.05. These findings show that interactions between LMP and CAS can be used to develop innovative packaging containing active molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2016-12-01

    Full Text Available Purpose: The quasi-emulsion solvent diffusion (QESD has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate. The solid state of obtained particles was investigated by differential scanning calorimetry (DSC and Fourier transform infrared (FT-IR spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  19. Bovine β-casein

    NARCIS (Netherlands)

    Atamer, Zeynep; Post, Antonie E.; Schubert, Thomas; Holder, Aline; Boom, Remko Marcel; Hinrichs, Jörg

    2017-01-01

    In recent years there has been an increasing interest in pure casein fractions, particularly β-casein due to its physiochemical properties as well as its bio- and techno-functional properties. A range of methods has been developed for the fractionation of casein into its individual proteins. The

  20. Characteristics of W/O emulsions containing polymeric emulsifier PEG 30-dipolyhydroxystearate

    Directory of Open Access Journals (Sweden)

    Milinković Jelena R.

    2016-01-01

    Full Text Available Water-in-oil (W/O emulsions are dispersed systems which are often used in the pharmaceutical, cosmetic and food industries as products, or as carriers of active substances. It is well known that they are very unstable, so that selection of the emulsifier and properties of the oil and water phase are main factors affecting their stability. The aim of this paper was to examine the possibility of application of a lipophilic, polymeric emulsifier, PEG 30-dipolyhydroxystearate (CithrolTM DPHS, for stabilization of W/O emulsions. Behaviour of the emulsifier at W/O interfaces was determined by means of tensiometry. A series of emulsions were prepared with 20% (w/w of water and different types of oil. Droplet size, droplet size distribution, viscosity, and sedimentation stability during 30 days of storage at room temperature of the emulsions prepared with paraffin oil, olive oil, grape seed oil, and medium-chain triglycerides, stabilized with 1% CithrolTM DPHS, were determined. All investigated emulsions were stable for 30 days, except the one prepared with paraffin oil. The results of this study confirmed that PEG 30-dipolyhydroxylstearate is a good emulsifier and stabilizer of W/O emulsions which contain different types of oil. [Projekat Ministarstva nauke Republike Srbije, br. III46010

  1. Microfluidic methods to study emulsion formation

    OpenAIRE

    Muijlwijk, Kelly

    2017-01-01

    Emulsions are dispersions of one liquid in another that are commonly used in various products, and methods such as high-pressure homogenisers and colloid mills are used to form emulsions. The size and size distribution of emulsion droplets are important for the final product properties and thus need to be controlled. Rapid coalescence of droplets during emulsification increases droplet size and widens the size distribution, and therefore needs to be prevented. To increase stability of emulsio...

  2. Acute oral safety study of sodium caseinate glycosylated via maillard reaction with galactose in rats.

    Science.gov (United States)

    Anadón, Arturo; Martínez, Maria A; Ares, Irma; Castellano, Victor; Martínez-Larrañaga, Maria R; Corzo-Martínez, Marta; Moreno, F Javier; Villamiel, Mar

    2014-03-01

    In order to potentially use sodium caseinate (SC) glycated with galactose (Gal) in the food industry as a new functional ingredient with proved technological and biological properties, an evaluation of oral acute toxicity has been carried out. An acute safety study with SC-Gal glycoconjugates in the Wistar rat with a single oral gavage dose of 2,000 mg/kg of body weight was conducted. The SC-Gal glycoconjugates were well tolerated; no adverse effects or mortality was observed during the 2-week observation period. No abnormal signs, behavioral changes, body weight changes, or alterations in food and water consumption occurred. After this period, no changes in hematological and serum chemistry parameters, organ weights, or gross pathology or histopathology were detected. It was concluded that SC-Gal glycoconjugates obtained via the Maillard reaction were well tolerated in rats at an acute oral dose of 2,000 mg/kg of body weight. The SC-Gal glycoconjugates have a low order of acute toxicity, and the oral 50 % lethal dose for male and female rats is in excess of 2,000 mg/kg of body weight.

  3. Elaboration, characterization, and stability study of a sunscreen emulsion for use as a towelette application in pediatric photoprotection.

    Science.gov (United States)

    Clares, B; Gálvez, P; Gallardo, V; Ruiz, M A

    2011-01-01

    The World Health Organization (WHO) estimates that as much as 80% of the solar radiation that an adult receives throughout his/her life is received during the first 18 years (1). Skin protection against harmful solar radiation during this early stage of life is therefore a highly important factor in the prevention of future skin-related diseases. In this respect, recent developments in pediatric dermatology and cosmetic technology have led to remarkable improvements in child skin protection products. However, in spite of these scientific breakthroughs, many currently available commercial sunscreen formulations have not been well received by the general public, due to inadequate sensory properties, chemical instability, undesirable side effects, and low effectiveness. These disadvantages are not only attributable to the formulations themselves, active principle, and excipients, but also, to a large extent, galenic aspects. The objective of this work was to develop and characterize a sunscreen emulsion for pediatric use, using a towelette as vehicle, to overcome problems of ineffectiveness and formulation instability, and to improve skin-sensory properties. The composition of the towelette, the emulsion, and the presentation format were selected on the basis of the differences between children's and adult skin. In order to evaluate the chemical stability of the formulation, a study of the organoleptic, physicochemical, microbiological, and rheological characteristics was carried out at 4°, 25°, and 40°C over a period of 30 days. Tests were performed on both the sunscreen emulsion only and the same formulation impregnated within a towel, to test the influence the towel may have on the stability of the emulsion.

  4. Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions.

    Science.gov (United States)

    Pera-Titus, Marc; Leclercq, Loïc; Clacens, Jean-Marc; De Campo, Floryan; Nardello-Rataj, Véronique

    2015-02-09

    Pickering emulsions are surfactant-free dispersions of two immiscible fluids that are kinetically stabilized by colloidal particles. For ecological reasons, these systems have undergone a resurgence of interest to mitigate the use of synthetic surfactants and solvents. Moreover, the use of colloidal particles as stabilizers provides emulsions with original properties compared to surfactant-stabilized emulsions, microemulsions, and micellar systems. Despite these specific advantages, the application of Pickering emulsions to catalysis has been rarely explored. This Minireview describes very recent examples of hybrid and composite amphiphilic materials for the design of interfacial catalysts in Pickering emulsions with special emphasis on their assets and challenges for industrially relevant biphasic reactions in fine chemistry, biofuel upgrading, and depollution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of electron beam irradiated natural casings on the quality properties and shelf stability of emulsion sausage

    International Nuclear Information System (INIS)

    Kim, Hyun-Wook; Choi, Ji-Hun; Choi, Yun-Sang; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Ju-Woon; Kim, Cheon-Jei

    2012-01-01

    The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production. - Highlights: ► The effect of E-beam irradiated natural casings on sausage quality was evaluated. ► The use of irradiated casings improved shelf stability of sausage. ► Natural casings irradiated below 3 kGy are suitable for sausage production.

  6. Effect of Leaves of Caesalpinia decapetala on Oxidative Stability of Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    María Gabriela Gallego

    2017-03-01

    Full Text Available Caesalpinia decapetala (Roth Alston (Fabaceae (CD is used in folk medicine to prevent colds and treat bronchitis. This plant has antitumor and antioxidant activity. The antioxidant effects of an extract from Caesalpinia decapetala (Fabaceae were assessed by storage of model food oil-in-water emulsions with analysis of primary and secondary oxidation products. The antioxidant capacity of the plant extract was evaluated by the diphenylpicrylhydrazyl (DPPH, Trolox equivalent antioxidant capacity (TEAC, oxygen radical absorbance capacity (ORAC and ferric reducing antioxidant power (FRAP assays and by electron paramagnetic resonance (EPR spectroscopy. Lyophilized extracts of CD were added at concentrations of 0.002%, 0.02% and 0.2% into oil-in-water emulsions, which were stored for 30 days at 33 ± 1 °C, and then, oxidative stability was evaluated. The CD extract had high antioxidant activity (700 ± 70 µmol Trolox/g dry plant for the ORAC assay, mainly due to its phenolic components: gallic acid, quercetin, catechin, 4-hydroxybenzoic acid and p-coumaric acid. At a concentration of 0.2%, the extract significantly reduced the oxidative deterioration of oil-in-water emulsions. The results of the present study show the possibility of utilizing CD as a promising source of natural antioxidants for retarding lipid oxidation in the food and cosmetic industries.

  7. Stability of sodium bicarbonate solutions in polyolefin bags.

    Science.gov (United States)

    Wear, Jennifer; McPherson, Timothy B; Kolling, William M

    2010-06-15

    The stability of sodium bicarbonate solutions in sterile water for injection or 5% dextrose injection stored at 21-24 degrees C or 2-4 degrees C was evaluated. Sodium bicarbonate injection was obtained in 50-mL vials of 8.4% (1 meq/mL). A total of 50, 100, or 150 meq of sodium bicarbonate was added to each 1-L polyolefin bag of either sterile water for injection or 5% dextrose injection. All solutions were prepared in a laminar-airflow hood using aseptic technique. Bags were punctured once to remove headspace air and once for the addition of each 50 meq of sodium bicarbonate. Six replicates of each test solution were prepared. The solutions were stored at 21-24 degrees C and 2-4 degrees C. Control solutions (50 and 150 meq) were similarly prepared in triplicate. Control solutions were sparged with either nitrogen gas or oxygen gas before storage. Sodium bicarbonate stability was assessed by measuring solution pH. Bicarbonate content was measured utilizing titration. Both pH and bicarbonate concentrations were measured immediately upon preparation and on days 3, 5, and 7 for both test and control solutions. All 95% confidence interval values for sample solution pH remained within 7.0-8.5 for seven days at 2-4 degrees C. Sodium bicarbonate solutions of 50, 100, and 150 meq in sterile water for injection or 5% dextrose injection were stable for up to seven days when refrigerated. The 50-meq solution was stable for up to 48 hours when stored at room temperature, and the 100- and 150-meq solutions were stable for up to 30 hours when stored at room temperature.

  8. Radiation processing of polymer emulsion, 8

    International Nuclear Information System (INIS)

    Makuuchi, Keizo; Katakai, Akio; Hagiwara, Miyuki

    1983-01-01

    Radiation induced emulsion copolymerization of strong acid monomer was investigated to reduce the curing temperature of core shell particle emulsion having N-(n-butoxymethyl) acrylamide (NBM) moities in shell part. The strong acid monomers used were 3-chloro-2-acidphosphoxypropyl methacrylate, acid-phosphoxyethyl methacrylate, 2-acrylamide-2-methyl-propane sulfonic acid, and sodium p-styrenesulfonate. Curing was remarkably promoted by the presence of copolymerized strong acid monomer in shell part. Tensile strength of the film cured at 120 0 C was identical with that of conventional NBM core-shell emulsion film cured at 160 0 C. However, the water absorbing capacity of the film cured at 120 0 C was extremely high. The water resistance was found to increase with decreasing the amount of adsorbed polyelectrolyte on the particle surface. (author)

  9. Highly efficient separation of surfactant stabilized water-in-oil emulsion based on surface energy gradient and flame retardancy.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Miao, Xinrui; Wen, Ni; Zhou, Qiannan; Deng, Wenli

    2018-06-15

    Surface energy gradient would generate an imbalance force to drive tiny water droplets in dry air from the hydrophilic bumps to superhydrophobic domains, which has found on the Stenocara beetle's back. Inspired by this phenomenon, we introduced a pristine superhydrophilic filter paper on the lower surface energy superhydrophobic filter paper. ZnSn(OH) 6 particles and polydimethylsiloxane were mixed to prepare the superhydrophobic coating, and the coating was spray-coated on the poly(dialkyldimethylammonium chloride) covered filter paper to separate the span 80 stabilized water-in-isooctane emulsion. A pristine filter paper was added on the superhydrophobic filter paper to fabricate another membrane for separation. The results revealed that with a pristine filter paper, the membrane performed higher efficiency and more recyclability, and it could separate the emulsions with higher surfactant concentrations. The stabilized water droplets passed the superamphiphilic surface, and hindered by the superhydrophobic surface, generating a surface energy gradient for better separation. In addition, the superhydrophobic membrane could be protected from fire to some degree due to the introduced ZnSn(OH) 6 particles with excellent flame retardancy. This easy and efficient approach via simply bringing in pristine superhydrophilic membrane has great potential applications for water-in-oil emulsion separation or oil purification. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Physical Stability of Whippable Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Munk, Merete Bøgelund

    Whippable emulsions based on vegetable fat are increasingly used as replacement for dairy whipping creams. One of the quality criteria of whippable emulsions is that it should be low-viscous prior to whipping, but sudden viscosity increase or even solidification during storage and transport...... the impact of ingredient composition, with focus on low-molecular-weight (LMW) emulsifiers. Three monoglyceride-based LMW-emulsifiers were selected: Lactic acid ester of saturated monoglyceride (LACTEM), unsaturated monoglyceride (GMU), and saturated monoglyceride (GMS). LMW-emulsifiers had major impact...

  11. Superhydrophobic cellulose-based bionanocomposite films from Pickering emulsions

    Science.gov (United States)

    Bayer, Ilker S.; Steele, Adam; Martorana, Philip J.; Loth, Eric; Miller, Lance

    2009-04-01

    Inherently superhydrophobic and flexible cellulose-based bionanocomposites were fabricated from solid stabilized (Pickering) emulsions. Emulsions were formed by dispersing cyclosiloxanes in water stabilized by layered silicate particles and were subsequently modified by blending into a zinc oxide nanofluid. The polymer matrix was a blend of cellulose nitrate and fluoroacrylic polymer (Zonyl 8740) precompatibilized in solution. Coatings were spray cast onto aluminum substrates from polymer blends dispersed in modified Pickering emulsions. No postsurface treatment was required to induce superhydrophobicity. Effect of antiseptic additives on bionanocomposite superhydrophobicity is also discussed. Replacing cellulose nitrate with commercial liquid bandage solutions produced identical superhydrophobic coatings.

  12. Protective role of ascorbic acid in the decontamination of cow milk casein by gamma-irradiation.

    Science.gov (United States)

    Kouass Sahbani, Saloua; Klarskov, Klaus; Aloui, Amine; Kouass, Salah; Landoulsi, Ahmed

    2013-06-01

    The aim of this work was to investigate the protective role of ascorbic acid on irradiation-induced modification of casein. Casein stock solutions were irradiated with increasing doses 2-10 kGy using (60)Co Gamma rays at a dose rate D• = 136.73 Gy/min at room temperature. The total viable microorganism content of cow milk casein was evaluated by Plate Count Agar (PCA) incubation for 48 h at 37°C. Sodium dodecylsulfate gel electrophoresis (SDS-PAGE) and Matrix-Assisted Laser Desorption-Ionization Time-of-Flight mass spectrometry (MALDI-TOF-MS) analysis were used to evaluate the effect of gamma irradiation on casein integrity. Gamma irradiation reduced the bacterial contamination of casein solutions at a lower irradiation dose when performed in the presence of ascorbic acid. The irradiation treatment of casein in the absence of ascorbic acid with a dose of 4 kGy could reduce 99% of the original amount of bacterial colonies. However, in the presence of ascorbic acid the irradiation treatment of casein with a dose lower than 2 kGy could reduce 99% of the original amount of bacterial colonies which suggested that the irradiation dose lower than 2 kGy achieved almost the entire decontamination result. SDS-PAGE and MALDI-TOF-MS analysis showed that ascorbic acid protected cow milk casein from degradation and subsequent aggregation probably by scavenging oxygen and protein radicals produced by the irradiation. It is demonstrated that the combination of gamma irradiation and ascorbic acid produce additive effects, providing acceptable hygienic quality of cow milk casein and protects caseins against Reactive Oxygen Species (ROS) generated, during the irradiation process.

  13. Rheological properties and physical stability of ecological emulsions stabilized by a surfactant derived from cocoa oil and high pressure homogenization

    Directory of Open Access Journals (Sweden)

    Trujillo-Cayado, L. A.

    2015-09-01

    Full Text Available The goal of this work was to investigate the influence of the emulsification method on the rheological properties, droplet size distribution and physical stability of O/W green emulsions formulated with an eco-friendly surfactant derived from cocoa oil. The methodology used can be applied to other emulsions. Polyoxyethylene glycerol esters are non-ionic surfactants obtained from a renewable source which fulfill the environmental and toxicological requirements to be used as eco-friendly emulsifying agents. In the same way, N,NDimethyloctanamide and α-Pinene (solvents used as oil phase could be considered green solvents. Emulsions with submicron mean diameters and slight shear thinning behavior were obtained regardless of the homogenizer, pressure or number of passes used. All emulsions exhibited destabilization by creaming and a further coalescence process which was applied to the coarse emulsion prepared with a rotor-stator homogenizer. The emulsion obtained with high pressure at 15000 psi and 1-pass was the most stable.El objetivo de este trabajo fue estudiar la influencia del método de emulsificación sobre las propiedades reológicas, la distribución de tamaños de gota y la estabilidad física de emulsiones verdes O/W formuladas con un tensioactivo derivado del aceite de coco respetuoso con el medioambiente. La metodología empleada puede ser aplicada a cualquier otro tipo de emulsiones. Los ésteres polietoxilados de glicerina son tensioactivos no iónicos obtenidos de fuentes renovables que cumplen requisitos medioambientales y toxicológicos para ser usados como agentes emulsionantes ecológicos. Del mismo modo, la N,N-dimetil octanamida y el α-Pineno (disolventes usados como fase oleosa pueden ser considerados como disolventes verdes. Se han obtenido emulsiones con diámetros medio submicrónicos y comportamiento ligeramente pseudoplástico independientemente del equipo, la presión o el número de pasadas empleados. Todas las

  14. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    Science.gov (United States)

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.

  15. Compatibility and stability of aloxi (palonosetron hydrochloride) admixed with dexamethasone sodium phosphate.

    Science.gov (United States)

    Trissel, Lawrence A; Zhang, Yanping

    2004-01-01

    The purpose of this study was to evaluate the physical and chemical stability of palonosetron hydrochloride 0.25 mg admixed with dexamethasone (as sodium phophate) 10 mg or 20 mg in 5% dextrose injection or 0.9% sodium chloride injection in polyvinylchloride minibags, and also admixed with dexamethasone (as sodium phosphate) 3.3 mg in 5% dextrose injection or 0.9% sodium chloride injection in polypropylene syringes, at 4 deg C stored in the dark for 14 days, and at 23 deg C exposed to normal laboratory fluorescent light over 48 hours. Test samples of palonosetron hydrochloride 5 micrograms/mL with dexamethasone (as sodium phosphate) 0.2 mg/mL and also 0.4 mg/mL were prepared in polyvinylchloride minibags of each infusion solution. Additionally, palonosetron hydrochloride 25 micrograms/mL with dexamethasone (as sodium phosphate) 0.33 mg/mL in each infusion solution were prepared as 10 mL of test solution in 20-mL polypropylene syringes. Evaluations for physical and chemical stability were performed on samples taken initially and after 1, 3, 7 and 14 days of storage at 4 deg C and after 1, 4, 24 and 48 hours at 23 deg C. Physical stability was assessed using visual observation in normal room light and using a high-intensity monodirectional light beam. In addition, turbidity and particle content were measured electronically. Chemical stability of the drug was evaluated by using a stability-indicating high-performance liquid chromatographic analytical technique. All samples were physically compatible throughout the study. The solutions remained clear and showed little or no change in particulate burden and haze level. Additionally, little or no loss of palonosetron hydrochloride and dexamethasone occurred in any of the samples at either temperature throughout the entire study period. Admixtures of palonosetron hydrochloride with dexamethasone sodium phosphate in 5% dextrose injection or in 0.9% sodium chloride injection packaged in polyvinylchloride minibags or in

  16. Relationship between the color stability and impurity profile of cefotaxime sodium.

    Science.gov (United States)

    Sun, Hua; Cui, Xuejun; Liu, Baoshu; Zhang, Junli

    2017-09-15

    The color grade, mainly introduced in the processes of semisynthesis and storage, is an important index used to evaluate the quality of cefotaxime sodium. Because the drug itself is prone to degradation under susceptible conditions, including those involving moisture, heat, ultraviolet light, acids, alkalis, and oxidants, and a series of degradation products as impurities are generated. In this study, the factors affecting color grade stability and the degradation mechanisms of cefotaxime sodium were investigated by designing different accelerated stability tests under the aforementioned conditions. The degradation extent was studied by using analytical methods, such as a solution color comparison method, ultraviolet spectrophotometry, and HPLC. The relationship between the color grade stability of cefotaxime sodium and its impurity profile has been explored, and a reasonable degradation mechanism has been proposed. The manufacturing conditions of inspection have been optimized, and a scientific basis for drug packaging, storage, and transportation conditions has been established. The results show that the color grade stability of cefotaxime sodium is related to the impurity profile to some degree, and the difference between the actual color and the standard color can reflect the levels of impurities to some extent. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.

    Science.gov (United States)

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2009-01-01

    Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of beta-casein occurred in the monotreme lineage, as opposed to more ancient duplications of alpha-casein in the eutherian lineage, while marsupials possess only single copies of alpha- and beta-caseins. Despite this variability, the close proximity of the main alpha- and beta-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

  18. The effects of low-molecular-weight emulsifiers in O/W-emulsions on microviscosity of non-solidified oil in fat globules and the mobility of emulsifiers at the globule surfaces

    DEFF Research Database (Denmark)

    Munk, Merete B.; Erichsen, Henriette Rifbjerg; Andersen, Mogens Larsen

    2014-01-01

    caseinate and different combinations of lactic acid ester of monoglyceride (LACTEM), unsaturated monoglycerides (GMU) or saturated monoglyceride (GMS) were studied. The non-solidified oil in emulsions made with LACTEM. +. GMU had a high microviscosity, whereas the emulsion made with GMS had a low...... of the spin probe on the droplet surfaces. Conversely, in presence of LACTEM and GMS, the protein surface loads decreased and high surface mobilities were observed. Based on these results it is argued that the high macroscopic viscosity and lipid agglomeration of emulsions containing GMU is due to a lipid...

  19. Tailoring the Wettability of Colloidal Particles for Pickering Emulsions via Surface Modification and Roughness

    Directory of Open Access Journals (Sweden)

    Meina Xiao

    2018-06-01

    Full Text Available Pickering emulsions are water or oil droplets that are stabilized by colloidal particles and have been intensely studied since the late 90s. The surfactant-free nature of these emulsions has little adverse effects such as irritancy and contamination of environment and typically exhibit enhanced stability compared to surfactant-stabilized emulsions. Therefore, they offer promising applications in cosmetics, food science, controlled release, and the manufacturing of microcapsules and porous materials. The wettability of the colloidal particles is the main parameter determining the formation and stability of Pickering emulsions. Tailoring the wettability by surface chemistry or surface roughness offers considerable scope for the design of a variety of hybrid nanoparticles that may serve as novel efficient Pickering emulsion stabilizers. In this review, we will discuss the recent advances in the development of surface modification of nanoparticles.

  20. Inhibition and Promotion of Heat-Induced Gelation of Whey Proteins in the Presence of Calcium by Addition of Sodium Caseinate.

    Science.gov (United States)

    Nguyen, Bach T; Balakrishnan, Gireeshkumar; Jacquette, Boris; Nicolai, Taco; Chassenieux, Christophe; Schmitt, Christophe; Bovetto, Lionel

    2016-11-14

    Heat-induced aggregation and gelation of aqueous solutions of whey protein isolate (WPI) in the presence of sodium caseinate (SC) and CaCl 2 was studied at pH 6.6. The effect of adding SC (0-100 g/L) on the structure of the aggregates and the gels was investigated by light scattering and confocal laser scanning microscopy at different CaCl 2 concentration ([CaCl 2 ] = 0-30 mM). The gelation process was studied by oscillatory shear rheology. At the whey protein concentrations studied here (34 and 60 g/L), no gels were formed in the absence of CaCl 2 and SC. However, WPI solutions gelled above a critical CaCl 2 concentration that increased with increasing SC concentration. In the absence of CaCl 2 , WPI gels were formed only above a critical SC concentration. The critical SC concentration needed to induce WPI gelation decreased weakly when CaCl 2 was added. In an intermediate range of CaCl 2 concentrations, gels were formed both at low and high SC concentrations, but not at intermediate SC concentrations. Finally, at high CaCl 2 concentrations gels were formed at all SC concentrations. The gelation rate and the gel structure of the gels formed at low and high casein concentrations were very different. The effect of SC on the thermal gelation of WPI was interpreted by competition for Ca 2+ , a chaperon effect, and microphase separation.

  1. Molecular cloning and expression of bovine kappa-casein in Escherichia coli

    International Nuclear Information System (INIS)

    Kang, Y.C.; Richardson, T.

    1988-01-01

    A cDNA library was constructed using poly(A) + RNA from bovine mammary gland. This cDNA library of 6000 clones was screened employing colony hybridization using 32 P-labelled oligonucleotide probes and restriction endonuclease mapping. The cDNA from the selected plasmid, pKR76, was sequenced using the dideoxy-chain termination method. The cDNA insert of pKR76 carries the full-length sequence, which codes for mature kappa-casein protein. The amino acid sequence deduced from the cDNA sequence fits the published amino acid sequence with three exceptions; the reported pyroglutamic acid at position 1, tyrosine at position 35, and aspartic acid at position 81 are, respectively, a glutamine, a histidine, and an asparagine in the clone containing pKR76. The MspI-, NlaIV-cleaved fragment (630 base pair) from the kappa-casein cDNA insert has been subcloned into expression vectors pUC18 and pKK233-2, which contain a lac promoter and a trc promoter, respectively. Escherichia coli cells carrying the recombinant expression plasmids were shown to produce kappa-casein protein having the expected mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and being recognized by specific antibodies raised against natural bovine kappa-casein

  2. Emulsion design for the delivery of β-carotene in complex food systems.

    Science.gov (United States)

    Mao, Like; Wang, Di; Liu, Fuguo; Gao, Yanxiang

    2018-03-24

    β-Carotene has been widely investigated both in the industry and academia, due to its unique bioactive attributes as an antioxidant and pro-vitamin A. Many attempts were made to design delivery systems for β-carotene to improve its dispersant state and chemical stability, and finally to enhance the functionality. Different types of oil-in-water emulsions were proved to be effective delivery systems for lipophilic bioactive ingredients, and intensive studies were performed on β-carotene emulsions in the last decade. Emulsions are thermodynamically unstable, and emulsions with intact structures are preferable in delivering β-carotene during processing and storage. β-Carotene in emulsions with smaller particle size has poor stability, and protein-type emulsifiers and additional antioxidants are effective in protecting β-carotene from degradation. Recent development in the design of protein-polyphenol conjugates has provided a novel approach to improve the stability of β-carotene emulsions. When β-carotene is consumed, its bioaccessibility is highly influenced by the digestion of lipids, and β-carotene in smaller oil droplets containing long-chain fatty acids has a higher bioaccessibility. In order to better deliver β-carotene in complex food products, some novel emulsions with tailor-made structures have been developed, e.g., multilayer emulsions, solid lipid particles, Pickering emulsions. This review summarizes the updated understanding of emulsion-based delivery systems for β-carotene, and how emulsions can be better designed to fulfill the benefits of β-carotene in functional foods.

  3. Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors' electrodes

    Science.gov (United States)

    Varzi, Alberto; Raccichini, Rinaldo; Marinaro, Mario; Wohlfahrt-Mehrens, Margret; Passerini, Stefano

    2016-09-01

    Casein from bovine milk is evaluated in this work as binding agent for electrochemical double layer capacitors (EDLCs) electrodes. It is demonstrated that casein provides excellent adhesion strength to the current collector (1187 kPa compared to 51 kPa achieved with PVdF), thus leading to mechanically stable electrodes. At the same time, it offers high thermal stability (above 200 °C) and electrochemical stability in organic electrolytes. Apparently though, the casein-based electrodes offer lower electronic conductivity than those based on other state-of-the-art binders, which can limit the rate performance of the resulting EDLC. In the attempt of improving the electrochemical performance, it is found that the application of a pressing step can solve this issue, leading to excellent rate capability (up to 84% capacitance retention at 50 mA cm-2) and cycling stability (96.8% after 10,000 cycles at 10 mA cm-2) in both PC- and ACN-based electrolytes. Although the adhesive power casein is known since ancient times, this report presents the first proof of concept of its employment in electrochemical power sources.

  4. Low-fat frankfurters formulated with a healthier lipid combination as functional ingredient: microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation.

    Science.gov (United States)

    Delgado-Pando, Gonzalo; Cofrades, Susana; Ruiz-Capillas, Claudia; Solas, Maria Teresa; Triki, Mehdi; Jiménez-Colmenero, Francisco

    2011-09-01

    Oil (healthier lipid combination of olive, linseed and fish oils)-in-water emulsions stabilized with different protein systems (prepared with sodium caseinate (SC), soy protein isolate (SPI), and microbial transglutaminase (MTG)) were used as pork backfat replacers in low-fat frankfurters. Microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation of frankfurters were analyzed and found to be affected by the type of oil-in-water emulsion and by chilling storage (2° C, 41 days). Although the lipid oxidation levels attained were low, replacement of animal fat by healthier oil combinations in frankfurter formulation did promote a slight increase in lipid oxidation. Residual nitrite was affected (P nitrite was detectable in the product after processing and 17-46% at the end of storage. The microbial population was low in all formulations during chilling storage. Spermine was the most abundant amine (19-20 mg/kg), but similar in level to all samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Preparation and Characterization of Astaxanthin Nanoparticles by Solvent-Diffusion Technique

    International Nuclear Information System (INIS)

    Anarjan, N.; Tan, C.P.

    2011-01-01

    In this work, astaxanthin nanoparticles were prepared in aqueous media using solvent-diffusion technique. Sodium caseinate, gelatin, Polysorbate 20 and gum Arabic were selected as different food grade surface active molecules for the stabilization of the produced nanoparticles. Results showed that among produced astaxanthin nanoparticles, the Polysorbate 20-stabilized nanoparticles showed the smallest particle size; gum Arabic-stabilized nanoparticles had the smallest polydispersity index and highest physical stability in simulated gastric fluid (SGF); and those stabilized using gelatin had the highest zeta potential. Sodium caseinate stabilized nanoparticles had the highest astaxanthin content in fresh samples as compared to other prepared nano dispersions. (author)

  6. Evaluation of Structure, Chaperone-Like Activity and Allergenicity of Reduced Glycated Adduct of Bovine β-casein.

    Science.gov (United States)

    Yousefi, Reza; Ferdowsi, Leila; Tavaf, Zohreh; Sadeghian, Tanaz; Tamaddon, Ali M; Moghtaderi, Mozhgan; Pourpak, Zahra

    2017-01-01

    Milk has a potent reducing environment with an important quantity of sugar levels. In the current study β-casein was glycated in the presence of D-glucose and sodium cyanoborohydride as a reducing agent. Then, the reduced glucitol adduct of β-casein was used for the structural and functional analyses using different spectroscopic techniques. The results of fluorescence and far ultraviolet circular dichroism assessments suggest important structural alteration upon non-enzymatic glycation of β-casein. In addition, the chaperone activity, micellization properties and antioxidant activity of this protein were altered upon glucose modification. Also, as a result of reduced glycation, the allergenicity profile of this protein remained largely unchanged. Additional to its energetic and nutritional values, β-casein has important functional properties. The native structure of this protein is important to perform accurately its biological functions. Non-enzymatic glycation under reducing state was capable to alter both structural and functional aspects of β-casein. Due to effective reducing environment and significant quantity of reducing sugar of human milk, similar structural and functional alterations are most likely to occur upon reducing glycation of β-casein in vivo. Also, these changes might be even intensified during chronic hyperglycemia in diabetic mothers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. The evolution of milk casein genes from tooth genes before the origin of mammals.

    Science.gov (United States)

    Kawasaki, Kazuhiko; Lafont, Anne-Gaelle; Sire, Jean-Yves

    2011-07-01

    Caseins are among cardinal proteins that evolved in the lineage leading to mammals. In milk, caseins and calcium phosphate (CaP) form a huge complex called casein micelle. By forming the micelle, milk maintains high CaP concentrations, which help altricial mammalian neonates to grow bone and teeth. Two types of caseins are known. Ca-sensitive caseins (α(s)- and β-caseins) bind Ca but precipitate at high Ca concentrations, whereas Ca-insensitive casein (κ-casein) does not usually interact with Ca but instead stabilizes the micelle. Thus, it is thought that these two types of caseins are both necessary for stable micelle formation. Both types of caseins show high substitution rates, which make it difficult to elucidate the evolution of caseins. Yet, recent studies have revealed that all casein genes belong to the secretory calcium-binding phosphoprotein (SCPP) gene family that arose by gene duplication. In the present study, we investigated exon-intron structures and phylogenetic distributions of casein and other SCPP genes, particularly the odontogenic ameloblast-associated (ODAM) gene, the SCPP-Pro-Gln-rich 1 (SCPPPQ1) gene, and the follicular dendritic cell secreted peptide (FDCSP) gene. The results suggest that contemporary Ca-sensitive casein genes arose from a putative common ancestor, which we refer to as CSN1/2. The six putative exons comprising CSN1/2 are all found in SCPPPQ1, although ODAM also shares four of these exons. By contrast, the five exons of the Ca-insensitive casein gene are all reminiscent of FDCSP. The phylogenetic distribution of these genes suggests that both SCPPPQ1 and FDCSP arose from ODAM. We thus argue that all casein genes evolved from ODAM via two different pathways; Ca-sensitive casein genes likely originated directly from SCPPPQ1, whereas the Ca-insensitive casein genes directly differentiated from FDCSP. Further, expression of ODAM, SCPPPQ1, and FDCSP was detected in dental tissues, supporting the idea that both types of caseins

  8. Stability of extemporaneously prepared sodium phenylbutyrate oral suspensions.

    Science.gov (United States)

    Caruthers, Regine L; Johnson, Cary E

    2007-07-15

    In an effort to minimize barriers to compliance and adherence and to improve the accuracy of dosage measurement, sugar-containing and sugar-free sodium phenylbutyrate suspensions were formulated, and the stability of these products over a 90-day period was determined. An oral suspension of sodium phenylbutyrate 200 mg/mL was prepared by thoroughly grinding 12 g of Sodium Phenylbutyrate Powder, USP, in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of either Ora-Sweet or Ora-Sweet SF were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of each formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and were stored at room temperature. A 500-microL sample was withdrawn from each of the six bottles with a micropipette immediately after preparation and at 7, 14, 28, 60, and 90 days. After further dilution to an expected concentration of 100 microg/mL with the mobile phase, the samples were assayed by high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 95% of the initial sodium phenylbutyrate concentration remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth in any sample. Extemporaneously compounded suspensions of sodium phenylbutyrate, 200 mg/mL, in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.

  9. Natural variation in casein composition of milk

    NARCIS (Netherlands)

    Bijl, E.

    2014-01-01

    Bovine milk contains 3-4 % protein and almost 80% of the milk protein fraction consist of four caseins; αs1-casein, β-casein, αs2-casein and κ-casein. Most of the caseins in milk are assembled in casein micelles, which consist of several thousands of individual casein

  10. Formulation and characterization of a multiple emulsion containing 1 ...

    African Journals Online (AJOL)

    The purpose of the study was to prepare a stable multiple emulsion containing a skin anti-aging agent and using paraffin oil. Vitamin C, was incorporated into the inner aqueous phase of water-in-oil-in-water (w/o/w) multiple emulsion at a concentration of 1%. Multiple emulsion was prepared by two step method. Stability ...

  11. Natural variation in casein composition of milk

    OpenAIRE

    Bijl, E.

    2014-01-01

    Bovine milk contains 3-4 % protein and almost 80% of the milk protein fraction consist of four caseins; αs1-casein, β-casein, αs2-casein and κ-casein. Most of the caseins in milk are assembled in casein micelles, which consist of several thousands of individual casein molecules and salts. The unique structure of casein micelles allows the delivery of large amounts of calcium and phosphate to the neonate. Considerable natural variation in casein content and composition exists between milk sam...

  12. Structure formation in pH-sensitive hydrogels composed of sodium caseinate and N,O-carboxymethyl chitosan.

    Science.gov (United States)

    Wei, Yanxia; Xie, Rui; Lin, Yanbin; Xu, Yunfei; Wang, Fengxia; Liang, Wanfu; Zhang, Ji

    2016-08-01

    The pH-sensitive hydrogels composed of sodium caseinate (SC) and N,O-carboxymethyl chitosan (NOCC) were prepared and a new method to characterize the gelation process was presented in this work. Reological tests suggested that RSC/NOCC=3/7 (the weight ratio of SC and NOCC) was the best ratio of hydrogel. The well-developed three-dimensional network structures in the hydrogel were confirmed by AFM. Two structural parameters, tIS and tCS, denoted as the initial and critical structure formation time, respectively, were used to provide an exact determination of the start of structure formation and description of gelation process. The gelation process strongly depended on temperature changes, a high temperature resulted in an early start of gelation. The non-kinetic model suggested the higher activation energy in the higher temperatures was disadvantageous to structure formation, and vice versa. Due to the smart gel reported here was very stable at room temperature, we believed that the gel is required for applications in drug delivery or could be exploited in the development of potential application as molecular switches in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation.

    Science.gov (United States)

    Liao, Yalin; Weber, Darren; Xu, Wei; Durbin-Johnson, Blythe P; Phinney, Brett S; Lönnerdal, Bo

    2017-11-03

    Whey proteins and caseins in breast milk provide bioactivities and also have different amino acid composition. Accurate determination of these two major protein classes provides a better understanding of human milk composition and function, and further aids in developing improved infant formulas based on bovine whey proteins and caseins. In this study, we implemented a LC-MS/MS quantitative analysis based on iBAQ label-free quantitation, to estimate absolute concentrations of α-casein, β-casein, and κ-casein in human milk samples (n = 88) collected between day 1 and day 360 postpartum. Total protein concentration ranged from 2.03 to 17.52 with a mean of 9.37 ± 3.65 g/L. Casein subunits ranged from 0.04 to 1.68 g/L (α-), 0.04 to 4.42 g/L (β-), and 0.10 to 1.72 g/L (α-), with β-casein having the highest average concentration among the three subunits. Calculated whey/casein ratio ranged from 45:55 to 97:3. Linear regression analyses show significant decreases in total protein, β-casein, κ-casein, total casein, and a significant increase of whey/casein ratio during the course of lactation. Our study presents a novel and accurate quantitative analysis of human milk casein content, demonstrating a lower casein content than earlier believed, which has implications for improved infants formulas.

  14. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions.

    Science.gov (United States)

    Moran-Valero, María I; Ruiz-Henestrosa, Víctor M Pizones; Pilosof, Ana M R

    2017-03-01

    The effects of the combination of two low-molecular weight emulsifiers (lecithin and glycerol-monostearate (GMS)) on the stability, the dynamic interfacial properties and rheology of emulsions have been studied. Different lecithin/GMS ratios were tested in order to assess their impact in the formation and stabilization of oil in water emulsions. The combination of the two surfactants showed a synergistic behaviour, mainly when combined at the same ratio. The dynamic film properties and ζ-potential showed that lecithin dominated the surface of oil droplets, providing stability to the emulsions against flocculation and coalescence, while allowing the formation of small oil droplets. At long times of adsorption, all of the mixtures showed similar interfacial activity. However, higher values of interfacial pressure at the initial times were reached when lecithin and GMS were at the same ratio. Interfacial viscoelasticity and viscosity of mixed films were also similar to that of lecithin alone. On the other hand, emulsions viscosity was dominated by GMS. The synergistic performance of lecithin-GMS blends as stabilizers of oil/water emulsions is attributed to their interaction both in the bulk and at the interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A soluble star-shaped silsesquioxane-cored polymer-towards novel stabilization of pH-dependent high internal phase emulsions.

    Science.gov (United States)

    Xing, Yuxiu; Peng, Jun; Xu, Kai; Gao, Shuxi; Gui, Xuefeng; Liang, Shengyuan; Sun, Longfeng; Chen, Mingcai

    2017-08-30

    A well-defined pH-responsive star-shaped polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) arms and a cage-like methacryloxypropyl silsesquioxane (CMSQ-T 10 ) core was used as an interfacial stabilizer for emulsions consisting of m-xylene and water. We explored the properties of the CMSQ/PDMA star-shaped polymer using the characteristic results of nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), dynamic light scattering (DLS), and zeta potential and conductivity measurements. The interfacial tension results showed that the CMSQ/PDMA star-shaped polymer reduced the interfacial tension between water and oil in a pH-dependent manner. Gelled high internal phase emulsions (HIPEs) including o/w and w/o types were formed in the pH ranges of 1.2-5.8 and 9.1-12.3 with the CMSQ/PDMA star-shaped polymer as a stabilizer, when the oil fractions were 80-90 vol% and 10-20 vol%, respectively. The soluble star-shaped polymer aggregated spontaneously to form a microgel that adsorbed to the two immiscible phases. Images of the fluorescently labeled polymers demonstrated that there was a star-shaped polymer in the continuous phase, and the non-Pickering stabilization based on the percolating network of the star-shaped polymer also contributed to the stabilization of the HIPE. This pH-dependent HIPE was prepared with a novel stabilization mechanism consisting of microgel adsorption and non-Pickering stabilization. Moreover, the preparation of HIPEs provided the possibility of their application in porous materials and responsive materials.

  16. Rheological characterization and stability study of an emulsion made with a dairy by-product enriched with omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Angela María Ormaza ZAPATA

    2015-03-01

    Full Text Available This study involved a rheological characterization of a W/O emulsion manufactured on a pilot scale using omega-3 fatty acids as part of the oil phase and butter milk as the emulsifier. Polyunsaturated omega-3 fatty acids are essential to prevent cardiovascular diseases, improve pulmonary function and also form part of the neurological structure. Buttermilk is a by-product of the dairy industry and has a high organic load which possesses surfactant properties and constitutes a good substitute for conventional emulsifiers in the food industry. The microstructural nature of the emulsion was characterized from the viscoelastic parameters and mechanical spectra. The linear viscoelastic range was determined, from which the maximum stress that the emulsion could withstand from the processing conditions without altering its microstructure was established. In addition, the storage stability of the emulsion was studied to instrumentally predict the rheological behaviour before sensory destabilization of the emulsion was observed. At the frequencies used, a significant decrease in dynamic viscoelastic parameters was periodically observed (G 'and G'', showing a structural change during storage. Furthermore, a coalescence phenomenon was observed after 18 months. The formulation with added omega-3 fatty acids and buttermilk provided a basis for obtaining a functional food as well as adding value to an industrial by-product.

  17. PROPRIEDADES EMULSIFICANTES E SOLUBILIDADE DA CASEÍNA BOVINA E DE SEUS HIDROLISADOS TRÍPTICOS: 1. EFEITO DO PH E DO TEMPO DE HIDRÓLISE EMULSIFYING PROPERTIES AND SOLUBILITY OF CASEIN AND IT’S TRYPTIC HYDROLYSATES: 1. EFFECTS OF PH AND HYDROLYSIS TIME

    Directory of Open Access Journals (Sweden)

    Ângela Jardim DUARTE

    1998-08-01

    Full Text Available Visando a aplicação industrial da caseína e de seus hidrolisados trípticos, foram estudados os efeitos da variação do pH e do tempo de hidrólise sobre suas características de solubilidade e propriedades emulsificantes. Testou-se os valores de pH de 3,0; 4,0; 5,0; 6,0; 7,0 e 8,0 e os tempos de hidrólise: 5, 10 15, 30 e 60min. Foram medidos a solubilidade, a capacidade emulsificante, o índice de atividade emulsificante, a estabilidade da emulsão, e calculdado o tamanho dos glóbulos de gordura. Os resultados obtidos para a caseína nativa indicaram que os melhores valores para estas propriedades funcionais foram encontrados em pH acima de 5,0. A hidrólise tríptica da caseína foi benéfica para sua solubilidade e capacidade emulsificante e prejudicou sua estabilidade, em todos os valores de pH e tempos de hidrólise, exceto no pH 5,0 com 5 min de reação. Por outro lado, este tratamento enzimático contribuiu para melhorar o índice de atividade emulsificante da caseína, entre valores de pH 3,0 e 5,0 e após 10 min de reação.The effects of pH and hydrolysis time on the solubility and emulsifying properties were studied, in view of the industrial application of casein and its tryptic hydrolyzates. It has been tested the pH values of 3,0; 4,0; 5,0; 6,0; 7,0 and 8,0 and the reaction times: 5, 10, 15, 30 and 60 min. It has been evaluated the solubility, the emulsifying capacity, the emulsifying activity index and the emulsion stability. The results show that the best values for the functional properties of native casein were achieved at pH above 5,0. The tryptic hydrolysis of casein favored the solubility and emulsifying capacity but reduced the emulsion stability, at all pH and hydrolysis times, except in pH 5,0 with 5min of reaction. Otherwise, this enzymatic treatment improved the emulsifying activity index of casein only between pH 3,0- 5,0, after 10 min of reaction.

  18. Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products.

    Science.gov (United States)

    Salminen, Hanna; Herrmann, Kurt; Weiss, Jochen

    2013-03-01

    The oxidative and physical stabilities of oil-in-water emulsions containing n-3 fatty acids (25 wt.% oil, 2.5 wt.% whey protein, pH 3.0 or pH 6.0), and their subsequent incorporation into meat products were investigated. The physical stability of fish oil emulsions was excellent and neither coalescence nor aggregation occurred during storage. Oxidative stability was better at pH 6.0 compared to pH 3.0 likely due to antioxidative continuous phase proteins. Incorporation of fish oil emulsions into pork sausages led to an increase in oxidation compared to sausages without the added fish oil emulsion. Confocal microscopy of pork sausages with fish oil emulsions revealed that droplets had coalesced in the meat matrix over time which may have contributed to the decreased oxidative stability. Results demonstrate that although interfacial engineering of n-3 fatty acids containing oil-in-water emulsions provides physical and oxidative stability of the base-emulsion, their incorporation into complex meat matrices is a non-trivial undertaking and products may incur changes in quality over time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Egg white powder-stabilised multiple (water-in-olive oil-in-water) emulsions as beef fat replacers in model system meat emulsions.

    Science.gov (United States)

    Öztürk, Burcu; Urgu, Müge; Serdaroğlu, Meltem

    2017-05-01

    Today, multiple emulsions are believed to have a considerable application potential in food industry. We aimed to investigate physical, chemical and textural quality characteristics of model system meat emulsions (MSME) in which beef fat (C) was totally replaced by 10% (E-10), 20% (E-20) or 30% (E-30) multiple emulsions (W 1 /O/W 2 ) prepared with olive oil and egg white powder (EWP). Incorporation of W 1 /O/W 2 emulsion resulted in reduced fat (from 11.54% to 4.01%), increased protein content (from 13.66% to 14.74%), and modified fatty acid composition, significantly increasing mono- and polyunsaturated fatty acid content and decreasing saturated fatty acid content. E-20 and E-30 samples had lower jelly and fat separation (5.77% and 5.25%) compared to C and E-10 (9.67% and 8.55%). W 1 /O/W 2 emulsion treatments had higher water-holding capacity (93.96-94.35%) than C samples (91.84%), and also showed the desired storage stability over time. Emulsion stability results showed that E-20 and E-30 samples had lower total expressible fluid (14.05% and 14.53%) and lower total expressible fat (5.06% and 5.33%) compared to C samples (19.13% and 6.09%). Increased concentrations of W 1 /O/W 2 emulsions led to alterations in colour and texture parameters. TBA values of samples were lower in W 1 /O/W 2 emulsion treatments than control treatment during 60 days of storage. Our results indicated that multiple emulsions prepared with olive oil and EWP had promising impacts on reducing fat, modifying the lipid composition and developing both technologically and oxidatively stable meat systems. These are the first findings concerning beef matrix fat replacement with multiple emulsions stabilised by EWP. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Preparation of Lipid Nano emulsions Incorporating Curcumin for Cancer Therapy

    International Nuclear Information System (INIS)

    Anuchapreeda, S.; Anuchapreeda, S.; Fukumori, Y.; Ichikawa, H.; Okonogi, S.

    2012-01-01

    The aim of this study was to develop a new formulation of a curcumin lipid nano emulsion having the smallest particle size, the highest loading, and a good physical stability for cancer chemotherapy. Curcumin lipid nano emulsions were prepared by a modified thin-film hydration method followed by sonication. Soybean oil, hydrogenated L-α-phosphatidylcholine from egg yolk, and co surfactants were used to formulate the emulsions. The resultant nano emulsions showed mean particle diameter of 47-55 nm, could incorporate 23-28 mg curcumin per 30 mL, and were stable in particle size for 60 days at 4 degree C. The cytotoxicity studies of curucumin solution and curcumin-loaded nano emulsion using B16F10 and leukemic cell lines showed IC 50 values ranging from 3.5 to 30.1 and 22.2 to 53.7μM, respectively. These results demonstrated the successful incorporation of curcumin into lipid nano emulsion particles with small particle size, high loading capacity, good physical stability, and preserved cytotoxicity

  1. Rennet-induced gelation of concentrated milk in the presence of sodium caseinate: differences between milk concentration using ultrafiltration and osmotic stressing.

    Science.gov (United States)

    Krishnankutty Nair, P; Corredig, M

    2015-01-01

    Concentrating milk is a common unit operation in the dairy industry. With the reduction of water, the particles interact more frequently with each other and the functionality of the casein micelles may depend on the interactions occurring during concentration. The objective of this research was to investigate the effect of concentration on the renneting properties of the casein micelles by comparing 2 concentration methods: ultrafiltration and osmotic stressing. Both methods selectively concentrate the protein fraction of milk, while the composition of the soluble phase is unaltered. To evaluate possible differences in the rearrangements of the casein micelles during concentration, renneting properties were evaluated with or without the addition of soluble caseins, added either before or after concentration. The results indicate that casein micelles undergo rearrangements during concentration and that shear during membrane filtration may play a role in affecting the final properties of the milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Characteristics of Nano-emulsion for Cold Thermal Storage

    Science.gov (United States)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.

  3. KARAKTERISTIK MIKROKAPSUL MINYAK KAYA ASAM LEMAK OMEGA-3 DARI HASIL SAMPING PENEPUNGAN LEMURU [Characteristics of Microcapsule of omega-3 Fatty Acids Enriched Oil from Lemuru Meal Processing

    Directory of Open Access Journals (Sweden)

    Teti Estiasih 1

    2008-12-01

    Full Text Available Omega-3 fatty acids enriched fish oil from lemuru fishmeal processing met the quality standard of food grade fish oil, but it was susceptible to oxidation. Microencapsulation by spray drying was one method that could protect this oil against oxidation and the microcapsule could be applied more widely and easier to handle. The important factor that affected microencapsulation process by spray drying method was encapsulant to core ratio. The objective of research was to elucidate the effect of encapsulant to core ratio (2:1; 3:1; 4:1; 5:1; and 6:1 (w/w on characteristics of omega-3 fatty acids enriched fish oil microcapsule. The increase of microencapsulation efficiency and the decrease of surface oil proportion were related to better emulsion stability prior to spray drying and film forming ability around oil globule as the sodium caseinate proportion increased. Emulsification and heating during spray drying could induce hydrolysis of triglycerides in fish oil. Therefore, the quantity of free fatty acids relatively unchanged although the proportion of encapsulated oil decreased. The decrease of oxidation degree is caused by better protective effect of sodium caseinate during emulsification and spray drying due to better film forming ability as proportion of encapsulant increased. However, it was followed by the decrease of omega-3 fatty acids content that related to decreasing proportion of fish oil. This phenomenon was supported by unchanging omega-3 fatty acids retention that showed protective effect of sodium caseinate on oxidation during microencapsulation. Different encapsulant to core ratio did not change yield of microcapsule. Different proportion of surface oil did not affect microcapsule recovery.

  4. Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine α/sub s1-/, β-, and kappa-casein

    International Nuclear Information System (INIS)

    Visser, S.; Exterkate, F.A.; Slangen, C.J.; de Veer, G.J.C.M.

    1986-01-01

    Experiments are described in which partially purified cell wall proteinases of eight strains of S. cremoris, including strain HP, were compared in their action on α/sub s1 - /, β-, and kappa-casein, as visualized by starch gel electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and TLC, and also in their action on methyl- 14 C-labeled β-casein

  5. Vinyl Acetate/butyl acrylate/acrylate Research of Ternary Soap-free Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available Through the vinyl acetate/butyl acrylate/acrylic acrylic emulsion preparation without soap vinegar, with solid content, gel, emulsion stability and film forming properties and tensile strength as the main index to study the effect of raw materials on the properties of emulsion. Through the infrared spectrometer soap-free emulsion for microscopic analysis research. Study of the ternary soap-free vinegar acrylic emulsion with good performance.

  6. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods.

    Science.gov (United States)

    Holt, C; Carver, J A; Ecroyd, H; Thorn, D C

    2013-10-01

    A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional

  7. Physical stability of asphalt emulsion admix seal radon barrier for uranium mill tailings

    International Nuclear Information System (INIS)

    Gates, T.E.

    1983-09-01

    Pacific Northwest Laboratory, is investigating the use of an asphalt emulsion admix seal to reduce the release of radon from uranium mill tailings. A key requirement of any cover system is its long-term stability; the cover must withstand failure over very long periods of time. An important determinant of overall cover system stability is the integrity of the 6.35-cm (2.5-in.) thick asphalt admix seal. Therefore, the physical stability of this seal was examined. The investigation considered the mechanical interaction between the tailings pile and cover. The potential effect of differential settlement of the tailings pile on the integrity of the seal system was also examined. Results indicate that the minimum span length the seal could withstand without failing is 0.34 m (1.1 ft). This assumes a differential settlement of 4.92 cm (1.94 in.) at the center resulting from the application of a 0.76-m (2.5-ft) cover. At spans greater than 0.60 m (1.97 ft), no tensile strain would develop

  8. Antioxidant Behavior of Olive Phenolics in Oil-in-Water Emulsions.

    Science.gov (United States)

    Paradiso, Vito Michele; Di Mattia, Carla; Giarnetti, Mariagrazia; Chiarini, Marco; Andrich, Lucia; Caponio, Francesco

    2016-07-27

    The effect of the surrounding molecular environment (β-lactoglobulin as an emulsion stabilizer and maltodextrin as a viscosity modifier) on the antioxidant activity of three olive oil phenolic compounds (PCs) in olive oil-in-water emulsions was investigated. Oxidation potential, phenolic partitioning, and radical quenching capacity were assessed in solution and in emulsion for oleuropein, hydroxytyrosol, and tyrosol; the influence of β-lactoglobulin and maltodextrin concentration was also evaluated. Finally, the observed properties were related to the oxidative stability of the emulsions containing the PCs to explain their behavior. The order hydroxytyrosol > oleuropein > tyrosol was observed among the antioxidants for both oxidation potential and radical quenching activity. Radical quenching capacity in emulsion and anodic potential were complementary indices of antioxidant effectiveness. As the intrinsic susceptibility of an antioxidant to oxidation expressed by its anodic potential decreased, the environmental conditions (molecular interactions and changes in continuous phase viscosity) played a major role in the antioxidant effectiveness in preventing hydroperoxide decomposition.

  9. Influence of processing parameters on morphology of polymethoxyflavone in emulsions.

    Science.gov (United States)

    Ting, Yuwen; Li, Colin C; Wang, Yin; Ho, Chi-Tang; Huang, Qingrong

    2015-01-21

    Polymethoxyflavones (PMFs) are groups of compounds isolated from citrus peels that have been documented with wide arrays of health-promoting bioactivities. Because of their hydrophobic structure and high melting point, crystallized PMFs usually have poor systemic bioavailability when consumed orally. To improve the oral efficiency of PMFs, a viscoelastic emulsion system was formulated. Because of the crystalline nature, the inclusion of PMFs into the emulsion system faces great challenges in having sufficient loading capacity and stabilities. In this study, the process of optimizing the quality of emulsion-based formulation intended for PMF oral delivery was systematically studied. With alteration of the PMF loading concentration, processing temperature, and pressure, the emulsion with the desired droplet and crystal size can be effectively fabricated. Moreover, storage temperatures significantly influenced the stability of the crystal-containing emulsion system. The results from this study are a good illustration of system optimization and serve as a great reference for future formulation design of other hydrophobic crystalline compounds.

  10. Studies of water-in-oil emulsions : energy and work threshold as a function of temperature

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Lerouge, L.

    2001-01-01

    A study was conducted in which the effect of temperature on the kinetics and stability of water-in-oil formation was examined. Previous studies have shown that viscosity influences the formation and stability of water in oil emulsions, therefore a viscosity window has been postulated as necessary for the formation of stable emulsions. The temperature dependence of this physical property is examined through a study of 3 oils, Green Canyon, Arabian Light and Point Arguello. The oils were subjected to mixing at 5, 15 and 25 degrees C. Both Arabian Light and Point Arguello formed meso-stable emulsions at 15 degrees C and were examined further. Arabian Light had a relatively high viscosity, while Point Arguello had a low viscosity. The objective was to examine the effects of changing viscosity resulting from changes in temperature on oil at either end of the observed viscosity window. The total energy applied to the oil/water in the emulsion formation apparatus was varied from about 50 to 600,000 ergs. Work was varied from 1 to 5123 Joules per second. It was determined that a minimum energy threshold is needed for most emulsion formation, but only work correlates with the stability value. The emulsions formed at lower temperatures exhibited higher stability than would be expected from the increase in viscosity. This is most likely because the increase was insufficient, in the case of Green Canyon oil, to result in the formation of emulsions. It was concluded that the stability of an emulsion formed from a given oil increases with decreasing formation temperature. The apparent viscosity is higher at the lower temperature. The work was found to correlate most closely with the stability of the emulsion or water-in-oil state. 7 refs., 4 tabs., 6 figs

  11. The Influence of Emulgator on Stability of Emulsion H3PO4 in Topo-Kerosene and Efficiency at Emulsion Membrane Extraction of La and Nd Concentrate Product of Monazite Sand Treatment

    International Nuclear Information System (INIS)

    Purwani, MV.; Bintarti, AN.; Subagiono, R.

    2002-01-01

    The making of La and Nd concentrate from monazite sand have been done. The separation of La and Nd by emulsion 1M H 3 PO 4 in 5 % TOPO-Kerosene membrane extraction. The feed or aqueous phase was La and Nd concentrate in 1M HNO 3 . Emulgator Span-80 and Tween-80 were used to stabilize emulsion membrane. The influence parameters were percentage of Span-80 and ratio of Span-80 and Tween-80. After formation of emulsion membrane, the extraction process was carried out. Ratio of volume of feed : volume membrane phase = 1 : 1, ratio of volume of 5% TOPO - Kerosene : ratio of volume of 1M H 3 PO 4 1 : 1. The best yield were obtained time of emulsification was 10 minutes with the speed of emulsion was 6000 rpm and concentration of span-80 was 5%. At this condition was obtained the extraction efficiency of La was 55.55%, the extraction efficiency of Nd was 41.6% the stripping efficiency of La was 35.05%, the stripping efficiency of Nd was 87.32 %, the total efficiency of La was 19.46%, the total efficiency of Nd was 36.30% and Separation factor of Nd and La = 1.87. (author)

  12. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    Science.gov (United States)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  13. Determination of hydrophilic–lipophilic balance value and emulsion properties of sacha inchi oil

    Directory of Open Access Journals (Sweden)

    Kiattiphumi Saengsorn

    2017-12-01

    Full Text Available Objective: To determine hydrophilic–lipophilic balance (HLB value, stability of formulate emulsion and properties of sacha inchi oil. Methods: The physiochemical characteristics of sacha inchi oil were first investigated. Free radical scavenging property was studied by DPPH assay. HLB value of sacha inchi oil was experimentally determined by preparing the emulsion using emulsifiers at different HLB value. Sacha inchi oil emulsion was prepared using the obtained HLB and its stability was conducted by centrifugation, temperature cycling, and accelerated stability test. The efficiency of the prepared emulsion was clinically investigated by 15 volunteers. The primary skin irritation was performed using closed patch test. Subjective sensory assessment was evaluated by using 5-point hedonic scale method. Results: Peroxide value of sacha inchi oil was 18.40 meq O2/kg oil and acid value was 1.86 KOH/g oil. The major fatty acids are omega-3 (44%, omega-6 (35% and omega-9 (9%. The vitamin E content was 226 mg/100 g oil. Moreover, sacha inchi oil (167 ppm and its emulsion showed 85% and 89% DPPH inhibition, respectively. The experimental HLB value of sacha inchi oil was 8.5. The sacha inchi oil emulsion exhibited good stability after stability test. The emulsion was classified as non-irritant after tested by primary skin irritation method. The skin hydration value significantly increased from 38.59 to 45.21 (P < 0.05 after applying sacha inchi oil emulsion for 1 month and the overall product satisfaction of volunteers after use was with score of 4.2. Conclusions: This work provides information on HLB value and emulsion properties of sacha inchi oil which is useful for cosmetic and pharmaceutical application. Keywords: Sacha inchi oil, Hydrophilic–lipophilic balance value, Emulsion stability, Efficacy test, Sensory test

  14. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate.

    Science.gov (United States)

    Li, Feng; Chen, Yan; Liu, Shubo; Qi, Jian; Wang, Weiying; Wang, Chenhua; Zhong, Ruiyue; Chen, Zhijun; Li, Xiaoming; Guan, Yuanzhou; Kong, Wei; Zhang, Yong

    2017-01-01

    Zein-based nano/microparticles have been demonstrated to be promising carrier systems for both the food industry and biomedical applications. However, the fabrication of size-controlled zein particles has been a challenging issue. In this study, a modified anti-solvent precipitation method was developed, and the effects of various factors, such as mixing method, solvent/anti-solvent ratio, temperature, zein concentrations and the presence of sodium caseinate (SC) on properties of zein particles were investigated. Evidence is presented that, among the previously mentioned factors, the mixing method, especially mixing rate, could be used as an effective parameter to control the size of zein particles without changing other parameters. Moreover, through fine-tuning the mixing rate together with zein concentration, particles with sizes ranging from nanometers to micrometers and low polydispersity index values could be easily obtained. Based on the size-controlled fabrication method, SC-coated zein nanoparticles could also be obtained in a size-controlled manner by incubation of the coating material with the already-formed zein particles. The resultant nanoparticles showed better performance in both drug loading and controlled release, compared with zein/SC hybrid nanoparticles fabricated by adding aqueous ethanol solution to SC solution. The possible mechanisms of the nanoprecipitation process and self-assembly formation of these nanoparticles are discussed.

  15. Concanavalin-A conjugated fine-multiple emulsion loaded with 6-mercaptopurine.

    Science.gov (United States)

    Khopade, A J; Jain, N K

    2000-01-01

    Fine-multiple (water-in-oil-in-water) emulsions were prepared by two-step emulsification using sonication. They were coated with concanavalin-A (Con-A) by three methods. The one involving covalent coupling of Con-A to the multiple emulsion incorporated anchor was better compared with lipid derivatized Con-A anchoring or the glutaraldehyde-based cross-linking method, as shown by the faster rate of dextran-induced aggregation. The selected multiple emulsions were characterized by physical properties such as droplet size, encapsulation efficiency, and zeta potential. Stability parameters such as droplet size, creaming, leakage, and aggregation as a function of relative turbidity were monitored over a 1-month period, which revealed good stability of the formulations. The release profile of 6-mercaptopurine followed zero-order kinetics. Pharmacokinetic studies showed an increase in half-life and bioavailability from multiple emulsion formulations administered intravenously. There was prolonged retention of drug in various tissues of rats when treated with Con-A-coated multiple emulsion as compared with uncoated one. Our study demonstrates the suitability of fine-multiple emulsion for intravenous administration and the potential for prolonged retention of drugs and targeting in biological systems.

  16. Emulsifier development for high-concentrated reverse emulsions

    Directory of Open Access Journals (Sweden)

    I.L. Kovalenko

    2016-05-01

    Full Text Available The reverse emulsions have found broad application in ore mining industry as matrixes of emulsion explosive substances and boring washing waters. The defining characteristic of reverse emulsions of industrial explosive substances is the high stability and immunity to crystallization. Aim: The aim of this work is to assess the mechanism of emulsifiers effect like SMO and some PIBSA-derivatives, that are most abundantly used in world practice, and also to develop an effective domestic emulsifier of reverse emulsions. Materials and methods: Using the semi-dynamic method with use of the reverse stalagmometer it was determined the decreasing in interfacial tension on “water / diesel fuel” border in the presence of 0.5 wt % sorbitan monooleate of various producers. Emulsions with use of the chosen emulsifiers using the dynamic mixer on the basis of monosolution of ammonium nitrate and diesel fuel have been produced. The emulsions have the following composition, wt %: ammonium nitrate – 76.8; water – 15.6; diesel fuel – 6.0; emulsifier – 1.6. Results: By the researches results of the interfacial tension “surfactant water / solution in diesel fuel”, the stability of emulsions using monosolution of ammonium nitrate and the IR spectrums of SMO of various producers it is established that presence in product of impurity of oleic acid, di- and trioleates leads to decreasing in interphase activity, increasing of emulsifier oil solubility and decreasing the resistance of emulsions to crystallization. On the basis of the spectral data analysis it is suggested about possibility of specific interaction on the mechanism of “spectral resonance” between emulsifiers of the PIBSA-MEA, LZX type and crystals nucleus of NH4NO3 ammonium nitrate in dispersed phase of emulsion. Amidation of vegetable oils by monoethanol amine is implemented at the reduced temperatures (90…100 °C. It was proved the availability mainly of fatty acids amides in product

  17. Stabilization of Model Crude Oil Emulsion using Different ...

    African Journals Online (AJOL)

    MBI

    2015-12-31

    Dec 31, 2015 ... interaction of asphaltene with the prepared model oils can be used as a ... techniques, microscopy, interfacial pressure, and ... conclusion that these compounds were asphaltene .... The emulsion may invert from oil in water.

  18. ZETA POTENTIAL AND COLOR INVESTIGATIONS OF VEGETABLE OIL BASED EMULSIONS AS ECO-FRIENDLY LUBRICANTS

    Directory of Open Access Journals (Sweden)

    ROMICĂ CREŢU

    2017-06-01

    Full Text Available In the past 10 years, the need for biodegradable lubricants has been more and more emphasized. The use of vegetable oils as lubricants offers several advantages. The vegetable oils are biodegradable; thus, the environmental pollution is minimal either during or after their use. The aim of this paper is to presents a preliminary study concerning the influence of some preparation conditions on the stability of vegetable oil-in-water (O/W emulsions as eco-friendly lubricants stabilized by nonionic surfactant. In this context, vegetable oil-in-water emulsions characteristics where assessed using microscopically observation and zeta potential. In addition, the color of these emulsions can be evaluated. It can be observed that the emulsions tend to stabilize in time.

  19. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    Science.gov (United States)

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.

  20. Aqueous polymer emulsions by chemical modifications of thermosetting alternating polyketones

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, A. A.; Picchioni, F.

    2007-01-01

    Aqueous polymer emulsions were prepared by chemical modifications of thermosetting alternating polyketones in a one-pot reaction. Polymeric amines derived from the polyketones can act as polymeric surfactants for the self-emulsification of polyketones. The stability and structure of the emulsions

  1. Increasing of registering capacity of nuclear emulsion for autoradiography

    International Nuclear Information System (INIS)

    Romanovskaya, K.M.; Savvateeva, J.P.; Tolkacheva, E.N.

    1977-01-01

    The ways of increasing detecting power of the type M nuclear emulsion gel have been investigated in these studies. There have been found conditions under which type M emulsion sensitivity increased by 15 to 20% without increasing fog grain background. The stability of photographic sensitivity during emulsion gel storage increased by two times. The prevention of latent image fading (by means of layer moisture content) decreased to 1.2% and increasing the detecting power of the emulsion (by means of exposure temperature) by up to 37 0 C. The exposure time of tritium labelled autographs has been decreased to about 20%. (author)

  2. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    Science.gov (United States)

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Interplay between Colloids and Interfaces : Emulsions, Foams and Microtubes

    NARCIS (Netherlands)

    de Folter, J.W.J.

    2013-01-01

    The central theme of this thesis is the interplay between colloids and interfaces. The adsorption of colloids at fluid-fluid interfaces is the main topic and covers Chapters 2-6. Pickering emulsions where colloidal particles act as emulsion stabilizers in the absence of surfactants are studied in a

  4. Mixing Time, Inversion and Multiple Emulsion Formation in a Limonene and Water Pickering Emulsion

    Directory of Open Access Journals (Sweden)

    Laura Sawiak

    2018-05-01

    Full Text Available It has previously been demonstrated that particle-stabilized emulsions comprised of limonene, water and fumed silica particles exhibit complex emulsification behavior as a function of composition and the duration of the emulsification step. Most notably the system can invert from being oil-continuous to being water-continuous under prolonged mixing. Here we investigate this phenomenon experimentally for the regime where water is the majority liquid. We prepare samples using a range of different emulsification times and we examine the final properties in bulk and via confocal microscopy. We use the images to quantitatively track the sizes of droplets and clusters of particles. We find that a dense emulsion of water droplets forms initially which is transformed, in time, into a water-in-oil-in-water multiple emulsion with concomitant changes in droplet and cluster sizes. In parallel we carry out rheological studies of water-in-limonene emulsions using different concentrations of fumed silica particles. We unite our observations to propose a mechanism for inversion based on the changes in flow properties and the availability of particles during emulsification.

  5. Preparation of LDPE/LNR Blend Via Emulsion Dispersion

    International Nuclear Information System (INIS)

    Rusli Daik; Yee Lee Ching

    2007-01-01

    Low density polyethylene (LDPE)/ liquid natural rubber (LNR) blends with the composition of 100LDPE/ 0LNR, 70LDPE/ 30LNR, 60LDPE/ 40LNR and 40LDPE/ 60LNR were prepared via dispersion of LDPE and LNR emulsion. LNR was obtained via photochemical sensitization of natural rubber (NR). Emulsion of LNR was prepared by using sodium dodecyl sulfate (SDS) and 1-hexanol as the emulsifier and co- emulsifier respectively. Emulsion of LDPE was prepared in the same way by using LDPE solution in carbon tetrachloride, SDS and 1-hexanol. LDPE/ LNR blends were prepared via mixing of LNR and LDPE emulsions. Mechanical properties of the blends were analyzed by tensile, hardness and impact test. Optimum mechanical properties were observed for composite with composition of 60LDPE/ 40LNR that showed the maximum value of stress and strain. The glass transition temperature, T g , of the blends as obtained from differential scanning calorimetric (DSC) showed that the blends were homogeneous. Morphology study by using scanning electron microscopy (SEM) also indicates the homogeneity of LDPE/ LNR blends produced. (author)

  6. Formulation and characterization of a multiple emulsion containing 1% L-ascorbic acid

    Directory of Open Access Journals (Sweden)

    Naveed Akhtar

    2010-04-01

    Full Text Available The purpose of the study was to prepare a stable multiple emulsion containing a skin anti-aging agent and using paraffin oil. Vitamin C, was incorporated into the inner aqueous phase of water-in-oil-in-water (w/o/w multiple emulsion at a concentration of 1%. Multiple emulsion was prepared by two step method. Stability studies were performed at different accelerated conditions, i.e. 8 oC (in refrigerator, 25 oC (in oven, 40 oC (in oven, and 40 oC at 75% RH (in stability cabin for 28 days to predict the stability of formulations. Different parameters, namely pH, globule size, electrical conductivity and effect of centrifugation (simulating gravity were determined during stability studies. Data obtained was evaluated statistically using ANOVA two way analyses and LSD tests. Multiple emulsion formulated was found to be stable at lower temperatures (i.e. 8 and 25 oC for 28 days. No phase separation was observed in the samples during stability testing. It was found that there was no significant change (p > 0.05 in globule sizes in most of the samples kept at various conditions. Insignificant changes (p > 0.05 in both pH and conductivity values were determined for the samples kept at 8, 40, and 40 oC at 75% RH, throughout the study period. Further studies are needed to formulate more stable emulsions with other emulsifying agents.

  7. Formulating orange oil-in-water beverage emulsions for effective delivery of bioactives: Improvements in chemical stability, antioxidant activity and gastrointestinal fate of lycopene using carrier oils.

    Science.gov (United States)

    Meroni, Erika; Raikos, Vassilios

    2018-04-01

    The influence of carrier oil type on the chemical stability, antioxidant properties and bioaccessibility of lycopene in orange oil-in-water beverage emulsions was investigated. The emulsions were formulated with orange oil (A), which was partially (50%) replaced with tributyrin (B) or corn oil (C) because of their distinctively different fatty acid composition. The addition of corn oil enhanced the physical stability of the beverage during chilled storage by inhibiting Ostwald ripening. The formation of oxidation products was insignificant after storage for 28 days at 4 °C, regardless the type of added oil. Lycopene was more susceptible to chemical degradation in the presence of unsaturated, long chain triglycerides and the retention followed the order: A (87.94%), B (64.41%) and C (57.39%). Interestingly, bioaccessibility of lycopene was significantly lower for emulsions formulated with 50% corn oil as opposed to 100% orange oil as indicated by the simulated in vitro gastric digestion model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effect of lipid viscosity and high-pressure homogenization on the physical stability of "Vitamin E" enriched emulsion.

    Science.gov (United States)

    Alayoubi, Alaadin; Abu-Fayyad, Ahmed; Rawas-Qalaji, Mutasem M; Sylvester, Paul W; Nazzal, Sami

    2015-01-01

    Recently there has been a growing interest in vitamin E for its potential use in cancer therapy. The objective of this work was therefore to formulate a physically stable parenteral lipid emulsion to deliver higher doses of vitamin E than commonly used in commercial products. Specifically, the objectives were to study the effects of homogenization pressure, number of homogenizing cycles, viscosity of the oil phase, and oil content on the physical stability of emulsions fortified with high doses of vitamin E (up to 20% by weight). This was done by the use of a 27-run, 4-factor, 3-level Box-Behnken statistical design. Viscosity, homogenization pressure, and number of cycles were found to have a significant effect on particle size, which ranged from 213 to 633 nm, and on the percentage of vitamin E remaining emulsified after storage, which ranged from 17 to 100%. Increasing oil content from 10 to 20% had insignificant effect on the responses. Based on the results it was concluded that stable vitamin E rich emulsions could be prepared by repeated homogenization at higher pressures and by lowering the viscosity of the oil phase, which could be adjusted by blending the viscous vitamin E with medium-chain triglycerides (MCT).

  9. Radiation processing of polymer emulsion, (4). Radiation-induced emulsion polymerization of methyl methacrylate at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo; Katakai, Akio; Ito, Hiroshi; Hayakawa, Naohiro; Araki, Kunio (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1983-06-01

    Methyl methacrylate was polymerized in emulsion by Co-60 ..gamma..-rays below 19 deg C in a batch reactor by using sodium lauryl sulfate as emulsifier. The conversion-time curves of the polymerization system showed two rate regions, i.e., a fact conversion rate in early stage, and a much slower rate in latter stage. The change in rate occurred at about 70 % conversion. The molecular weight of product polymer decreased with increasing conversion during the course of polymerization in latter stage, in contrast to the behavior in early stage. The distribution of the monomer in emulsion in latter stage was evaluated by nuclear magnetic resonance technique. The decrease of the molecular weight with conversion is due to the radiation-induced degradation of product polymer accelerated by the monomers absorbed in the polymer particles.

  10. Physical and oxidative stability of fish oil-in-water emulsions fortified with enzymatic hydrolysates from common carp (Cyprinus carpio) roe

    DEFF Research Database (Denmark)

    Ghelichi, Sakhi; Sørensen, Ann-Dorit Moltke; García Moreno, Pedro Jesús

    2017-01-01

    Physical and oxidative stability of 5% (by weight) cod liver oil-in-water emulsions fortified with common carp (C. carpio) roe protein hydrolysate (CRPH) were examined. CRPH was obtained by enzymatic hydrolysis of discarded roe by using Alcalase 2.4 L for 30, 60, 90, and 120 min to yield different...

  11. Impact of casein and egg white proteins on the structure of wheat gluten-based protein-rich food.

    Science.gov (United States)

    Wouters, Arno G B; Rombouts, Ine; Lagrain, Bert; Delcour, Jan A

    2016-02-01

    There is a growing interest in texturally and nutritionally satisfying vegetable alternatives to meat. Wheat gluten proteins have unique functional properties but a poor nutritional value in comparison to animal proteins. This study investigated the potential of egg white and bovine milk casein with well-balanced amino acid composition to increase the quality of wheat gluten-based protein-rich foods. Heating a wheat gluten (51.4 g)-water (100.0 mL) blend for 120 min at 100 °C increased its firmness less than heating a wheat gluten (33.0 g)-freeze-dried egg white (16.8 g)-water (100.0 mL) blend. In contrast, the addition of casein to the gluten-water blend negatively impacted firmness after heating. Firmness was correlated with loss of protein extractability in sodium dodecyl sulfate containing medium during heating, which was higher with egg white than with casein. Even more, heat-induced polymerization of the gluten-water blend with egg white but not with casein was greater than expected from the losses in extractability of gluten and egg white on their own. Structure formation was favored by mixing gluten with egg white but not with casein. These observations were linked to the intrinsic polymerization behavior of egg white and casein, but also to their interaction with gluten. Thus not all nutritionally suitable proteins can be used for enrichment of gluten-based protein-rich foods. © 2015 Society of Chemical Industry.

  12. Stability-Indicating Assay for the Determination of Pentobarbital Sodium in Liquid Formulations

    Directory of Open Access Journals (Sweden)

    Myriam Ajemni

    2015-01-01

    Full Text Available A stability-indicating assay by reversed-phase high performance liquid chromatography (RP-HPLC method was developed for the determination of pentobarbital sodium in oral formulations: a drug used for infant sedation in computed tomography (CT or magnetic resonance imaging (MRI scan. The chromatographic separation was achieved on a reversed-phase C18 column, using isocratic elution and a detector set at 214 nm. The optimized mobile phase consisted of a 0.01 M potassium buffer pH 3 and methanol (40 : 60, v/v. The flow rate was 1.0 mL/min and the run time of analysis was 5 min. The linearity of the method was demonstrated in the range of 5 to 250 μg/mL pentobarbital sodium solution (r2 = 0.999. The limit of detection and limit of quantification were 2.10 and 3.97 μg/mL, respectively. The intraday and interday precisions were less than 2.1%. Accuracy of the method ranged from 99.2 to 101.3%. Stability studies indicate that the drug is stable to sunlight and in aqueous solution. Accelerated pentobarbital sodium breakdown by strong alkaline, acidic, or oxidative stress produced noninterfering peaks. This method allows accurate and reliable determination of pentobarbital sodium for drug stability assay in pharmaceutical studies.

  13. Water-in-oil emulsions results of formation studies and applicability to oil spill modelling

    International Nuclear Information System (INIS)

    Fingas, Merv; Fieldhouse, Ben; Mullin, Joe

    1999-01-01

    This paper summarises studies of water-in-oil emulsions, their stability, and modelling of their formation. Studies show that water-in-oil emulsions might be characterised into three categories (stable, mesostable and unstable). These categories were established by visual appearance, elasticity and viscosity difference. It was also shown that water content was not an important factor. A fourth category of water-in-oil exists, that of water entrainment, which is not an emulsion. Water-in-oil emulsions made from crude oils have different classes of stabilities as a result of the asphaltene and resin contents. The differences in the emulsion types are readily distinguished both by their rheological properties, and simply by appearance. The apparent viscosity of a stable emulsion at a shear rate of one reciprocal second, is at least three orders-of-magnitude greater than the starting oil. An unstable emulsion usually has a viscosity no more than one order-of-magnitude greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. Stable emulsions have sufficient asphaltenes (>∼7%) to establish films of these compounds around water droplets. Mesostable emulsions have insufficient asphaltenes to render them completely stable. Stability is achieved by visco-elastic retention of water and secondarily by the presence of asphaltene or resin films. Mesostable emulsions display apparent viscosities of about 80-600 times that of the starting oil and true viscosities of 20-200 times that of the starting oil. Mesostable emulsions have an asphaltene and resin content greater than 3%. Entrained water occurs when a viscous oil retains larger water droplets, but conditions are not suitable for the formation of an emulsion. Entrained water may have a viscosity that is similar or slightly greater (∼ 2-10 times) than the starting oil. It was found that emulsion formation occurs at a threshold energy, however this energy

  14. Study of interactions between anionic exopolysaccharides produced by newly isolated probiotic bacteria and sodium caseinate.

    Science.gov (United States)

    Abid, Yousra; Joulak, Ichrak; Ben Amara, Chedia; Casillo, Angela; Attia, Hamadi; Gharsallaoui, Adem; Azabou, Samia

    2018-07-01

    The present study aims to evaluate the interactions between four exopolysaccharides (EPS) produced by probiotic bacteria and sodium caseinate (Cas) in order to simulate their behavior in dairy products. Complexation between the produced EPS samples and Cas was investigated as a function of polysaccharide to protein ratio. The highest turbidity and average size of complexes were formed at an EPS/Cas ratio of 3 (corresponding to 1 g/L of EPS and 0.33 g/L of Cas) as a result of the combination of individual complexes to form aggregates. Zeta potential measurements and Cas surface hydrophobicity results suggested that complex formation occurred essentially through electrostatic attractions with a possible contribution of hydrophobic interaction for EPS-GM which was produced by Bacillus tequilensis-GM. Afterwards, the effect of pH on the complexation between biopolymers was studied when EPS and Cas concentrations were maintained constant at 1 and 0.33 g/L, respectively. pH was adjusted to 3.0 and 3.5, respectively. Results showed that the highest amount and sizes of EPS/Cas complexes were formed at pH 3.5 and that EPS-GM enabled to obtain the biggest and highest amount of aggregates. Therefore, the obtained results support the fact that the simultaneous presence of EPS and Cas in dairy products results in complexes formation via electrostatic interactions depending on EPS/Cas ratio and pH of the medium. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Rheological properties of emulsions stabilized by green banana (Musa cavendishii pulp fitted by power law model

    Directory of Open Access Journals (Sweden)

    Dayane Rosalyn Izidoro

    2009-12-01

    Full Text Available In this work, the rheological behaviour of emulsions (mayonnaises stabilized by green banana pulp using the response surface methodology was studied. In addition, the emulsions stability was investigated. Five formulations were developed, according to design for constrained surfaces and mixtures, with the proportion, respectively: water/soy oil/green banana pulp: F1 (0.10/0.20/0.70, F2 (0.20/0.20/0.60, F3 (0.10/0.25/0.65, F4 (0.20/0.25/0.55 and F5 (0.15/0.225/0.625 .Emulsions rheological properties were performed with a rotational Haake Rheostress 600 rheometer and a cone and plate geometry sensor (60-mm diameter, 2º cone angle, using a gap distance of 1mm. The emulsions showed pseudoplastic behaviour and were adequately described by the Power Law model. The rheological responses were influenced by the difference in green banana pulp proportions and also by the temperatures (10 and 25ºC. The formulations with high pulp content (F1 and F3 presented higher shear stress and apparent viscosity. Response surface methodology, described by the quadratic model,showed that the consistency coefficient (K increased with the interaction between green banana pulp and soy oil concentration and the water fraction contributed to the flow behaviour index increase for all emulsions samples. Analysis of variance showed that the second-order model had not significant lack-of-fit and a significant F-value, indicating that quadratic model fitted well into the experimental data. The emulsions that presented better stability were the formulations F4 (0.20/0.25/0.55 and F5 (0.15/0.225/0.625.No presente trabalho, foi estudado o comportamento reológico de emulsões adicionadas de polpa de banana verde utilizando a metodologia de superfície de resposta e também foram investigadas a estabilidade das emulsões. Foram desenvolvidas cinco formulações, de acordo com o delineamento para superfícies limitadas e misturas, com as proporções respectivamente: água/óleo de

  16. A Novel Submicron Emulsion System Loaded with Doxorubicin Overcome Multi-Drug Resistance in MCF-7/ADR Cells.

    Science.gov (United States)

    Zhou, W P; Hua, H Y; Sun, P C; Zhao, Y X

    2015-01-01

    The purpose of the present study was to develop the Solutol HS15-based doxorubicin submicron emulsion with good stability and overcoming multi-drug resistance. In this study, we prepared doxorubicin submicron emulsion, and examined the stability after autoclaving, the in vitro cytotoxic activity, the intracellular accumulation and apoptpsis of doxorubicin submicron emulsion in MCF-7/ADR cells. The physicochemical properties of doxorubicin submicron emulsion were not significantly affected after autoclaving. The doxorubicin submicron emulsion significantly increased the intracellular accumulation of doxorubicin submicron emulsion and enhanced cytotoxic activity and apoptotic effects of doxorubicin. These results may be correlated to doxorubicin submicron emulsion inhibitory effects on efflux pumps through the progressive release of intracellular free Solutol HS15 from doxorubicin submicron emulsion. Furthermore, these in vitro results suggest that the Solutol HS15-based submicron emulsion may be a potentially useful drug delivery system to circumvent multi-drug resistance of tumor cells.

  17. Radiation processing of polymer emulsion, (4)

    International Nuclear Information System (INIS)

    Makuuchi, Keizo; Katakai, Akio; Ito, Hiroshi; Hayakawa, Naohiro; Araki, Kunio

    1983-01-01

    Methyl methacrylate was polymerized in emulsion by Co-60 γ-rays below 19 deg C in a batch reactor by using sodium lauryl sulfate as emulsifier. The conversion-time curves of the polymerization system showed two rate regions, i.e., a fact conversion rate in early stage, and a much slower rate in latter stage. The change in rate occurred at about 70 % conversion. The molecular weight of product polymer decreased with increasing conversion during the course of polymerization in latter stage, in contrast to the behavior in early stage. The distribution of the monomer in emulsion in latter stage was evaluated by nuclear magnetic resonance technique. The decrease of the molecular weight with conversion is due to the radiation-induced degradation of product polymer accelerated by the monomers absorbed in the polymer particles. (author)

  18. W/O Emulsions in High Electric Fields as Studied by Means of Time Domain Dielectric Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Foerdedal, Harald

    1995-11-01

    Since oil and brine coexist in the oil reservoirs, the crude oil produced contains free and emulsified water. The type of emulsion formed, water-in-oil or vice versa, generally depends on the amounts of water and oil before mixing. However, the presence of stabilisers, which occur naturally in crude oil, is also of major importance. It is found that dielectric spectroscopy is an appropriate experimental technique for investigating water-in-oil emulsion. When the instrumentation is equipped with an external power supply, information about the coalescence process can be obtained when the critical electric field is approached. Two distinctly different behaviours are observed. In model emulsions stabilised by commercial liquid surfactants a decrease in the static permittivity is observed as the electric field is applied. On the other hand, model emulsions stabilised by indigenous surfactants extracted from crude oils show an increase in the static permittivity as they are exposed to the external electric field. A quantitative parameter is derived for the emulsion stability. The value of the critical electric field is found to be sensitive to changes in the interfacial conditions, and multivariate analysis proves to be suitable for obtaining information about the general trends of variables on the emulsion stability. The stability of emulsions depends on several parameters, such as the amount and properties of the phases, the properties of the stabiliser, etc. Multivariate analysis reveals what variables are most important in characterising the stability/instability of emulsions.

  19. Relating the variation of secondary structure of gelatin at fish oil-water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability.

    Science.gov (United States)

    Liu, Huihua; Wang, Bo; Barrow, Colin J; Adhikari, Benu

    2014-01-15

    The objectives of this study were to quantify the relationship between secondary structure of gelatin and its adsorption at the fish-oil/water interface and to quantify the implication of the adsorption on the dynamic interfacial tension (DST) and emulsion stability. The surface hydrophobicity of the gelatin solutions decreased when the pH increased from 4.0 to 6.0, while opposite tend was observed in the viscosity of the solution. The DST values decreased as the pH increased from 4.0 to 6.0, indicating that higher positive charges (measured trough zeta potential) in the gelatin solution tended to result in higher DST values. The adsorption kinetics of the gelatin solution was examined through the calculated diffusion coefficients (Deff). The addition of acid promoted the random coil and β-turn structures at the expense of α-helical structure. The addition of NaOH decreased the β-turn and increased the α-helix and random coil. The decrease in the random coil and triple helix structures in the gelatin solution resulted into increased Deff values. The highest diffusion coefficients, the highest emulsion stability and the lowest amount of random coil and triple helix structures were observed at pH=4.8. The lowest amount of random coil and triple helix structures in the interfacial protein layer correlated with the highest stability of the emulsion (highest ESI value). The lower amount of random coil and triple helix structures allowed higher coverage of the oil-water interface by relatively highly ordered secondary structure of gelatin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination

    Science.gov (United States)

    Xia, Yufei; Wu, Jie; Wei, Wei; Du, Yiqun; Wan, Tao; Ma, Xiaowei; An, Wenqi; Guo, Aiying; Miao, Chunyu; Yue, Hua; Li, Shuoguo; Cao, Xuetao; Su, Zhiguo; Ma, Guanghui

    2018-02-01

    A major challenge in vaccine formulations is the stimulation of both the humoral and cellular immune response for well-defined antigens with high efficacy and safety. Adjuvant research has focused on developing particulate carriers to model the sizes, shapes and compositions of microbes or diseased cells, but not antigen fluidity and pliability. Here, we develop Pickering emulsions--that is, particle-stabilized emulsions that retain the force-dependent deformability and lateral mobility of presented antigens while displaying high biosafety and antigen-loading capabilities. Compared with solid particles and conventional surfactant-stabilized emulsions, the optimized Pickering emulsions enhance the recruitment, antigen uptake and activation of antigen-presenting cells, potently stimulating both humoral and cellular adaptive responses, and thus increasing the survival of mice upon lethal challenge. The pliability and lateral mobility of antigen-loaded Pickering emulsions may provide a facile, effective, safe and broadly applicable strategy to enhance adaptive immunity against infections and diseases.

  1. Enhanced fish oil-in-water emulsions enabled by rapeseed lecithins obtained under different processing conditions.

    Science.gov (United States)

    Li, Jingbo; Pedersen, Jacob Nedergaard; Anankanbil, Sampson; Guo, Zheng

    2018-10-30

    It is hypothesized that rapeseed lecithins may have different emulsifying and antioxidant properties in delivering fish oil compared to soy lecithin based on previous studies. The results showed that in vitro antioxidant activities of rapeseed lecithins were stronger than those of soy lecithin. Emulsions stabilized by rapeseed based lecithins and DATEM were stable over 3 months at 4 °C, whereas the creaming of emulsions containing soy lecithin started immediately after its preparation. Zeta-potential of rapeseed lecithins was higher than soy lecithin and DATEM, which partially contributed to the emulsion stability. Although the particle sizes of emulsions prepared by rapeseed lecithins increased after 14 days storage, no creaming was observed. Lipid oxidation as indicated by TBARS values suggested that DATEM was the most unfavorable, followed by soy lecithin. It is concluded that rapeseed lecithins are better than soy lecithin and DATEM in terms of emulsion stability and antioxidant capability, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist; Lorenzen, Janne Kunchel; Gomes, Sisse

    2014-01-01

    Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC......) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic...

  3. Evaluation of Soybean–Navy Bean Emulsions Using Different Processing Technologies

    Directory of Open Access Journals (Sweden)

    Sean X. Liu

    2017-05-01

    Full Text Available In this study, an innovative emulsion made from soybean and navy bean blends of different proportionalities was developed. In addition, two processing methods were used: traditional cooking and jet-cooking. The physical attributes and storage stability were measured and compared. This study found that the high content of starch and fiber in navy bean flour contributes to the increase in viscosity of the emulsions, at both room and refrigeration temperatures, as the proportion of navy bean flour in the blends increased. The steam jet-cooked emulsions with higher soybean content has better shelf life stability, smaller particle size, higher fat, lower starch, and lower viscosity, whereas the traditional kettle cooking method is better in reducing anti-nutritional components. No significant difference was found between the two cooking methods in terms of nutritional contents in the emulsions, such as protein, crude fat, and total starch. The traditional kettle cooking, with its longer cooking time, seems to reduce more trypsin inhibitor in the emulsions than those prepared with the steam jet-cooking. This exploratory study is the first to report soybean–navy bean beverage prototypes having desirable nutritional value and the potential for functional beverage market.

  4. Milk Intolerance, Beta-Casein and Lactose.

    Science.gov (United States)

    Pal, Sebely; Woodford, Keith; Kukuljan, Sonja; Ho, Suleen

    2015-08-31

    True lactose intolerance (symptoms stemming from lactose malabsorption) is less common than is widely perceived, and should be viewed as just one potential cause of cows' milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows' milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows' milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  5. Milk Intolerance, Beta-Casein and Lactose

    Directory of Open Access Journals (Sweden)

    Sebely Pal

    2015-08-01

    Full Text Available True lactose intolerance (symptoms stemming from lactose malabsorption is less common than is widely perceived, and should be viewed as just one potential cause of cows’ milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows’ milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows’ milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  6. Influence of non-migratory metal-chelating active packaging film on food quality: impact on physical and chemical stability of emulsions.

    Science.gov (United States)

    Tian, Fang; Decker, Eric A; McClements, D Julian; Goddard, Julie M

    2014-05-15

    Previously, we developed a novel metal-chelating packaging film (PP-g-PAA) by grafting acrylic acid (AA) monomer from polypropylene (PP) film surface, and demonstrated its potential in controlling iron-promoted lipid oxidation. Herein, we further established the industrial practicality of this active film. Specifically, the influence of film surface area-to-product volume ratio (SA/V) and product pH on the application of the film was investigated using an oil-in-water emulsion system. The films equally inhibited lipid oxidation throughout the range of SA/V ratios tested (2-8 cm(2)/ml). PP-g-PAA films were most effective at pH 7.0, and the activity decreased with decreasing pH. The particle size examination of emulsions indicated no adverse influence from the active film on the stability of this emulsion system. FTIR analysis suggested a non-migratory nature of PP-g-PAA films. These results provide fundamental knowledge that will facilitate the application of this effective and economical active packaging film in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Slowing the Starch Digestion by Structural Modification through Preparing Zein/Pectin Particle Stabilized Water-in-Water Emulsion.

    Science.gov (United States)

    Chen, Jia-Feng; Guo, Jian; Zhang, Tao; Wan, Zhi-Li; Yang, Juan; Yang, Xiao-Quan

    2018-04-25

    Slowing the digestion of starch is one of the dominant concerns in the food industry. A colloidal structural modification strategy for solving this problem was proposed in this work. Due to thermodynamic incompatibility between two biopolymers, water/water emulsion of waxy corn starch (WCS) droplets dispersed in a continuous aqueous guar gum (GG) was prepared, and zein particles (ZPs), obtained by antisolvent precipitation and pectin modification, were used as stabilizer. As the ratio of zein to pectin in the particles was 1:1, their wetting properties in the two polysaccharides were similar, which made them accumulate at the interface and cover the WCS-rich droplets. The analysis of digestibility curves indicated that a rapid (rate constant k 1 : 0.145 min -1 ) and a slow phase ( k 2 : 0.022 min -1 ) existed during WCS digestion. However, only one slow phase ( k 2 : 0.019 min -1 ) was found in the WCS/GG emulsion, suggesting that this structure was effective in slowing starch digestion.

  8. In vitro digestibility of beta-casein and beta-lactoglobulin under simulated human gastric and duodenal conditions: A multi-laboratory evaluation

    DEFF Research Database (Denmark)

    Mandalari, G.; Adel-Patient, K.; Barkholt, Vibeke

    2009-01-01

    Initially the resistance to digestion of two cow's milk allergens, beta-casein, and beta-lactoglobulin (beta-Lg), was compared using a "high-protease assay" and a "low-protease assay" in a single laboratory. The low-protease assay represents an alternative standardised protocol mimicking conditions...... found in the gastrointestinal tract. For the high-protease assay, both proteins were incubated with either pepsin or pancreatin and digestion monitored by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and reverse phase-high performance liquid chromatography. The low-protease assay involved...... gastroduodenal digestion in the presence or absence of phosphatidylcholine (PC). Both beta-casein and beta-Lg were susceptible to hydrolysis by pepsin and pancreatin in the high-protease assay. In contrast, the kinetics of beta-casein digestion in the low-protease assay were slower, beta-Lg being pepsin...

  9. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface

    Directory of Open Access Journals (Sweden)

    Johannes Kiefer

    2016-04-01

    Full Text Available Water-in-oil (w/o emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR infrared (IR spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion.

  10. Genetic variability of the equine casein genes.

    Science.gov (United States)

    Brinkmann, J; Jagannathan, V; Drögemüller, C; Rieder, S; Leeb, T; Thaller, G; Tetens, J

    2016-07-01

    The casein genes are known to be highly variable in typical dairy species, such as cattle and goat, but the knowledge about equine casein genes is limited. Nevertheless, mare milk production and consumption is gaining importance because of its high nutritive value, use in naturopathy, and hypoallergenic properties with respect to cow milk protein allergies. In the current study, the open reading frames of the 4 casein genes CSN1S1 (αS1-casein), CSN2 (β-casein), CSN1S2 (αS2-casein), and CSN3 (κ-casein) were resequenced in 253 horses of 14 breeds. The analysis revealed 21 nonsynonymous nucleotide exchanges, as well as 11 synonymous nucleotide exchanges, leading to a total of 31 putative protein isoforms predicted at the DNA level, 26 of which considered novel. Although the majority of the alleles need to be confirmed at the transcript and protein level, a preliminary nomenclature was established for the equine casein alleles. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Interactions of casein micelles with calcium phosphate particles.

    Science.gov (United States)

    Tercinier, Lucile; Ye, Aiqian; Anema, Skelte G; Singh, Anne; Singh, Harjinder

    2014-06-25

    Insoluble calcium phosphate particles, such as hydroxyapatite (HA), are often used in calcium-fortified milks as they are considered to be chemically unreactive. However, this study showed that there was an interaction between the casein micelles in milk and HA particles. The caseins in milk were shown to bind to the HA particles, with the relative proportions of bound β-casein, αS-casein, and κ-casein different from the proportions of the individual caseins present in milk. Transmission electron microscopy showed no evidence of intact casein micelles on the surface of the HA particles, which suggested that the casein micelles dissociated either before or during binding. The HA particles behaved as ion chelators, with the ability to bind the ions contained in the milk serum phase. Consequently, the depletion of the serum minerals disrupted the milk mineral equilibrium, resulting in dissociation of the casein micelles in milk.

  12. The development of polyurethane modified bitumen emulsions for cold mix applications

    OpenAIRE

    Carrera Páez, Virginia; Cuadri Vega, Antonio Abad; García Morales, Moisés; Partal López, Pedro

    2015-01-01

    Bitumen emulsions stand for an alternative paving practice to the traditional hot-mix asphalts. In addition, modified bitumen emulsions show a better performance than unmodified ones. This work studies the feasibility of obtaining polyurethane modified bitumen emulsions, in which an isocyanate-functionalized polyol constitutes the bitumen modifier (in varying concentration from 1 to 4 wt.%). Storage stability and high in-service performance are evaluated by means of evolution of droplet size ...

  13. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions

    Science.gov (United States)

    Izak, Piotr; Ogłaza, Longin; Mozgawa, Włodzimierz; Mastalska-Popławska, Joanna; Stempkowska, Agata

    2018-05-01

    To avoid agglomeration and sedimentation of grains, ceramic slurries should be modified by stabilizers in order to increase the electrostatic interactions between the dispersed particles. In this study we present the spectral analysis of aqueous sodium silicates obtained by different synthesis methods and their influence on the rheological properties of kaolin based slurries. Infrared and Raman spectra can be used to describe the structure of silicate structural units present in aqueous sodium silicates. It was confirmed that the best stabilization results possess aqueous sodium silicates of the silicate moduli of about 2 and the optimal concentration of the used fluidizer is 0.3 wt% to the kaolin clay dry mass. One of the most important conclusions is that the synthesis method of the fluidizer has no significant effect on its stabilization properties but used medium does create adequate stabilization mechanism depending on the silicate structures present in the sodium silicate solution.

  14. Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion.

    Science.gov (United States)

    Ou, Hongxiang; Chen, Qunhui; Pan, Jianming; Zhang, Yunlei; Huang, Yong; Qi, Xueyong

    2015-05-30

    Magnetic imprinted polymers (MIPs) were synthesized by Pickering emulsion polymerization and used to adsorb erythromycin (ERY) from aqueous solution. The oil-in-water Pickering emulsion was stabilized by chitosan nanoparticles with hydrophobic Fe3O4 nanoparticles as magnetic carrier. The imprinting system was fabricated by radical polymerization with functional and crosslinked monomer in the oil phase. Batches of static and dynamic adsorption experiments were conducted to analyze the adsorption performance on ERY. Isotherm data of MIPs well fitted the Freundlich model (from 15 °C to 35 °C), which indicated heterogeneous adsorption for ERY. The ERY adsorption capacity of MIPs was about 52.32 μmol/g at 15 °C. The adsorption kinetics was well described by the pseudo-first-order model, which suggested that physical interactions were primarily responsible for ERY adsorption. The Thomas model used in the fixed-bed adsorption design provided a better fit to the experimental data. Meanwhile, ERY exhibited higher affinity during adsorption on the MIPs compared with the adsorption capacity of azithromycin and chloramphenicol. The MIPs also exhibited excellent regeneration capacity with only about 5.04% adsorption efficiency loss in at least three repeated adsorption-desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Casein maps: Effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles

    Science.gov (United States)

    Ye, Ran; Harte, Federico

    2015-01-01

    Although conditions favoring casein micelle aggregation are well known, factors promoting the dissociation of the casein micelle are not fully understood. It was our objective to investigate the ethanol-induced dissociation of micellar casein as affected by temperature and a wide range of pH, along with the concentrations of calcium and casein. Two different concentrations of casein micelles were dispersed in imidazole buffer with 0 to 80% ethanol (vol/vol) and 2 and 10 mM calcium. Apparent micelle size was determined by dynamic light scattering at 5, 30, and 60°C. In the absence of ethanol, casein precipitation occurred at pH 4.6 in imidazole buffer. Ten to forty percent ethanol promoted casein aggregation (>1,000 nm) and higher temperature (30 and 60°C) enhanced this effect. Higher ethanol concentrations at 50 to 80% induced the dissociation (casein micelle upon acidification (pH 8) in imidazole buffer. In addition, higher concentrations of casein (0.25 mg/mL) and calcium (20 mM) caused the formation of larger aggregates (>1,000 nm) in the presence of ethanol when comparing with the initial lower concentrations of casein (0.1 mg/mL) and calcium (2 mM). Casein micelle dissociation can be achieved near the isoelectric pH by modifying the solvent composition and temperature. PMID:23200467

  16. Preparation of Pickering emulsions through interfacial adsorption by soft cyclodextrin nanogels

    Directory of Open Access Journals (Sweden)

    Shintaro Kawano

    2015-11-01

    Full Text Available Background: Emulsions stabilized by colloidal particles are known as Pickering emulsions. To date, soft microgel particles as well as inorganic and organic particles have been utilized as Pickering emulsifiers. Although cyclodextrin (CD works as an attractive emulsion stabilizer through the formation of a CD–oil complex at the oil–water interface, a high concentration of CD is normally required. Our research focuses on an effective Pickering emulsifier based on a soft colloidal CD polymer (CD nanogel with a unique surface-active property.Results: CD nanogels were prepared by crosslinking heptakis(2,6-di-O-methyl-β-cyclodextrin with phenyl diisocyanate and subsequent immersion of the resulting polymer in water. A dynamic light scattering study shows that primary CD nanogels with 30–50 nm diameter assemble into larger CD nanogels with 120 nm diameter by an increase in the concentration of CD nanogel from 0.01 to 0.1 wt %. The CD nanogel has a surface-active property at the air–water interface, which reduces the surface tension of water. The CD nanogel works as an effective Pickering emulsion stabilizer even at a low concentration (0.1 wt %, forming stable oil-in-water emulsions through interfacial adsorption by the CD nanogels.Conclusion: Soft CD nanogel particles adsorb at the oil–water interface with an effective coverage by forming a strong interconnected network and form a stable Pickering emulsion. The adsorption property of CD nanogels on the droplet surface has great potential to become new microcapsule building blocks with porous surfaces. These microcapsules may act as stimuli-responsive nanocarriers and nanocontainers.

  17. Physical stability of 20% lipid injectable emulsions via simulated syringe infusion: effects of glass vs plastic product packaging.

    Science.gov (United States)

    Driscoll, David F; Ling, Pei-Ra; Bistrian, Bruce R

    2007-01-01

    The United States Pharmacopeia (USP) has proposed large-globule-size limits to ensure the physical stability of lipid injectable emulsions, expressed as the percent fat >5 microm, or PFAT(5), not exceeding 0.05%. Visibly obvious phase separation as free oil has been shown to occur in some samples if PFAT(5) is >0.4%. We recently found that lipids, newly packaged in plastic (P), exceed the proposed USP limits and seem to produce less stable total nutrient admixtures compared with those made from conventional glass (G), which do meet proposed USP standards. We tested the possible stability differences between 20% lipid injectable emulsions in either P or G in a simulated neonatal syringe infusion study. Eighteen individual syringes were prepared from each 20% lipid injectable emulsion product (n = 36) and attached to a syringe pump set at an infusion rate of 0.5 mL/hour. The starting PFAT(5) levels were measured at time 0 and after 24 hours of infusion, using a laser-based light obscuration technique as described by the USP Chapter . The data were assessed by a 2-way analysis of variance (ANOVA) with Container (G vs P) and Time as the independent variables and PFAT as the dependent variable. At time 0, the starting PFAT(5) level for lipids packaged in G was 0.006% +/- 0.001% vs 0.162% +/- 0.026% for P, whereas at the end of the infusion they were 0.013% +/- 0.003% and 0.328% +/- 0.046%, respectively. Significant differences were noted overall between groups for Container, Time, and Container-Time interaction (all p emulsions packaged in newly introduced plastic containers exceed the proposed USP PFAT(5) limits and subsequently become significantly less stable during a simulated syringe-based infusion. Although modest growth (p = NS) in large-diameter fat globules was observed for the glass-based lipids, they remained within proposed USP globule size limits throughout the study. Glass-based lipids seem to be a more stable dosage form and potentially a safer way to

  18. Factors influencing casein micelle size in milk of individual cows: Genetic variants and glycosylation of k-casein

    NARCIS (Netherlands)

    Bijl, E.; Vries, de R.F.M.; Valenberg, van H.J.F.; Huppertz, T.; Hooijdonk, van A.C.M.

    2014-01-01

    The average casein micelle size varies widely between milk samples of individual cows. The factors that cause this variation in size are not known but could provide more insight into casein micelle structure and into the physiology of casein micelle formation. The objective of this research was

  19. Jussara berry (Euterpe edulis M.) oil-in-water emulsions are highly stable: the role of natural antioxidants in the fruit oil.

    Science.gov (United States)

    Carvalho, Aline G A; Silva, Kelly A; Silva, Laís O; Costa, André M M; Akil, Emília; Coelho, Maria A Z; Torres, Alexandre G

    2018-05-23

    Antioxidants help prevent lipid oxidation, and therefore are critical to maintain sensory quality and chemical characteristics of edible oils. Jussara berry (Euterpe edulis M.) oil is a source of minor compounds with potential antioxidant activity. The aim of this work was to investigate the role of such compounds on the effectiveness to prevent or delay oxidation of oil present in oil-in-water emulsions, and how the emulsions physical stability would be affected. Jussara berry oil extracted by ethanol extraction, its stripped variations (partially stripped, highly stripped and highly stripped with added BHT), and expeller pressed oil were used to prepare oil-in-water emulsions. Jussara berry oils were analyzed before emulsions preparation to ensure its initial quality and composition, and oil-in-water emulsions were analyzed regarding their oxidative and physical stability. Ethanol extracted oil emulsion presented higher oxidative stability when compared to highly stripped oil emulsion with added synthetic antioxidant BHT (oxidative stability index 45% lower, after 60 days, and reached undetectable levels after 90 days). All emulsions maintained physically stable for up to 120 days of storage. Our results indicate that natural antioxidants in jussara berry oil protect emulsions from oxidation while keeping physical stability unchanged. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Imobilização de lipases em filme de caseinato de sódio/glicerol: aplicação na síntese de ésteres Lipase immobilization in sodium caseinate/glycerol film: application in ester synthesis

    OpenAIRE

    Damianni Sebrão; Vanessa Dutra Silva; Maria da Graça Nascimento; Marcelo Alves Moreira

    2007-01-01

    Lipases from different sources were immobilized in sodium caseinate/glycerol film and used in the esterification reactions of aliphatic acids with alcohols in the presence of organic solvents. Lipases from Pseudomonas sp and Rhizopus oryzae were selected and the influence of several parameters was analyzed, including: lipase loading, organic solvent polarity, reaction temperature, chain length of alcohol and acid and enzyme/support reuse. For comparison, free enzymes were used under similar e...

  1. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate.

    Science.gov (United States)

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-11-19

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na⁺ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol-gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids' final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.

  2. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    Science.gov (United States)

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-01-01

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules. PMID:27869768

  3. Effect of castor oil emulsion eyedrops on tear film composition and stability.

    Science.gov (United States)

    Maïssa, Cécile; Guillon, Michel; Simmons, Peter; Vehige, Joseph

    2010-04-01

    An emulsion eyedrop containing castor oil has been shown to modify the tear film lipid layer and increase tear film stability. The primary objectives of this investigation were to measure the prevalence of castor oil in the tear fluid over time and quantify the effects on the lipid layer. A secondary objective was to quantify the initial effects on ocular symptomatology. The investigation was an open label pilot study on 5 normal and 10 dry eye subjects. A single eyedrop (Castor oil emulsion, Allergan) was instilled in each eye; the tear film appearance and composition were monitored for 4h via in vivo visualisation using the Tearscope and post in vivo tear samples analysis by HPLC. Combined results for both normal and dry eye subjects showed that castor oil was detected up to 4h after a single eyedrop instillation and associated with an increase in the level of tear film lipid. The relative amount of various lipid families was also changed. An increase in tear lipid layer thickness was significant up to one hour post-instillation for the symptomatic sub-population. The changes in tear film characteristics were associated with significantly lower symptoms up to four hours post-instillation for the symptomatic sub-population. This pilot investigation showed that castor oil eyedrops achieved a residence time of at least four hours post-instillation, producing a more stable tear film and an associated significant decrease in ocular symptoms over the entire follow-up period for the symptomatic subjects. 2009 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  4. Stability of i.v. admixture containing metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate in 0.9% sodium chloride injection.

    Science.gov (United States)

    Kintzel, Polly E; Zhao, Ting; Wen, Bo; Sun, Duxin

    2014-12-01

    The chemical stability of a sterile admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was evaluated. Triplicate samples were prepared and stored at room temperature without light protection for a total of 48 hours. Aliquots from each sample were tested for chemical stability immediately after preparation and at 1, 4, 8, 24, and 48 hours using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate were selectively monitored using multiple-reaction monitoring. Samples were diluted differently for quantitation using three individual LC-MS/MS methods. To determine the drug concentration of the three compounds in the samples, three calibration curves were constructed by plotting the peak area or the peak area ratio versus the concentration of the calibration standards of each tested compound. Apixaban was used as an internal standard. Linearity of the calibration curve was evaluated by the correlation coefficient r(2). Constituents of the admixture of metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection retained more than 90% of their initial concentrations over 48 hours of storage at room temperature without protection from light. The observed variability in concentrations of these three compounds was within the limits of assay variability. An i.v. admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was chemically stable for 48 hours when stored at room temperature without light protection. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  5. αS1-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form

    Science.gov (United States)

    2010-01-01

    Background Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure of the casein micelle are poorly known. Results In this study, we investigate primary steps of casein micelle formation in rough endoplasmic reticulum-derived vesicles prepared from rat or goat mammary tissues. The majority of both αS1- and β-casein which are cysteine-containing casein was dimeric in the endoplasmic reticulum. Saponin permeabilisation of microsomal membranes in physico-chemical conditions believed to conserve casein interactions demonstrated that rat immature β-casein is weakly aggregated in the endoplasmic reticulum. In striking contrast, a large proportion of immature αS1-casein was recovered in permeabilised microsomes when incubated in conservative conditions. Furthermore, a substantial amount of αS1-casein remained associated with microsomal or post-ER membranes after saponin permeabilisation in non-conservative conditions or carbonate extraction at pH11, all in the presence of DTT. Finally, we show that protein dimerisation via disulfide bond is involved in the interaction of αS1-casein with membranes. Conclusions These experiments reveal for the first time the existence of a membrane-associated form of αS1-casein in the endoplasmic reticulum and in more distal compartments of the secretory pathway of mammary epithelial cells. Our data suggest that αS1-casein, which is required for efficient export of the other caseins from the endoplasmic reticulum, plays a key role in early steps of casein micelle biogenesis and casein transport in the secretory pathway. PMID:20704729

  6. Serum separation and structure of depletion- and bridging-flocculated emulsions: a comparison

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Winden, van A.J.M.; Vliet, van T.; Aken, van G.A.

    2004-01-01

    Stability against demixing, rheology and microstructure of emulsions that were flocculated by depletion or bridging were compared. Flocculation by depletion and bridging was induced by addition of the polysaccharide carboxy-methylcellulose (CMC) to emulsions that were stabilised by ß-lactoglobulin

  7. Casein Fermentate of Lactobacillus animalis DPC6134 Contains a Range of Novel Propeptide Angiotensin-Converting Enzyme Inhibitors▿

    Science.gov (United States)

    Hayes, M.; Stanton, C.; Slattery, H.; O'Sullivan, O.; Hill, C.; Fitzgerald, G. F.; Ross, R. P.

    2007-01-01

    This work evaluated the angiotensin-converting-enzyme (ACE)-inhibitory activities of a bovine sodium caseinate fermentate generated using the proteolytic capabilities of the porcine small intestinal isolate Lactobacillus animalis DPC6134 (NCIMB deposit 41355). The crude 10-kDa L. animalis DPC6134 fermentate exhibited ACE-inhibitory activity of 85.51% (±15%) and had a 50% inhibitory concentration (IC50) of 0.8 mg protein/ml compared to captopril, which had an IC50 value of 0.005 mg/ml. Fractionation of the crude L. animalis DPC6134 fermentate by membrane filtration and reversed-phase high-performance liquid chromatography (HPLC) generated three bioactive fractions from a total of 72 fractions. Fractions 10, 19, and 43 displayed ACE-inhibitory activity percentages of 67.53 (±15), 83.71 (±19), and 42.36 (±11), respectively, where ACE inhibition was determined with 80 μl of the fractions with protein concentrations of 0.5 mg/ml. HPLC and mass spectrometry analysis identified 25 distinct peptide sequences derived from α-, β-, and κ-caseins. In silico predictions, based on the C-terminal tetrapeptide sequences, suggested that peptide NIPPLTQTPVVVPPFIQ, corresponding to β-casein f(73-89); peptide IGSENSEKTTMP, corresponding to αs1-casein f(201212); peptide SQSKVLPVPQ, corresponding to β-casein f(166-175); peptide MPFPKYPVEP, corresponding to β-casein f(124133); and peptide EPVLGPVRGPFP, corresponding to β-casein f(210-221), contained ACE-inhibitory activities. These peptides were chosen for chemical synthesis to confirm the ACE-inhibitory activity of the fractions. Chemically synthesized peptides displayed IC50 values in the range of 92 μM to 790 μM. Additionally, a simulated gastrointestinal digestion confirmed that the ACE-inhibitory 10-kDa L. animalis DPC6134 fermentation was resistant to a cocktail of digestive enzymes found in the gastrointestinal tract. PMID:17483275

  8. Nonaqueous Dispersion Formed by an Emulsion Solvent Evaporation Method Using Block-Random Copolymer Surfactant Synthesized by RAFT Polymerization.

    Science.gov (United States)

    Ezaki, Naofumi; Watanabe, Yoshifumi; Mori, Hideharu

    2015-10-27

    As surfactants for preparation of nonaqueous microcapsule dispersions by the emulsion solvent evaporation method, three copolymers composed of stearyl methacrylate (SMA) and glycidyl methacrylate (GMA) with different monomer sequences (i.e., random, block, and block-random) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Despite having the same comonomer composition, the copolymers exhibited different functionality as surfactants for creating emulsions with respective dispersed and continuous phases consisting of methanol and isoparaffin solvent. The optimal monomer sequence for the surfactant was determined based on the droplet sizes and the stabilities of the emulsions created using these copolymers. The block-random copolymer led to an emulsion with better stability than obtained using the random copolymer and a smaller droplet size than achieved with the block copolymer. Modification of the epoxy group of the GMA unit by diethanolamine (DEA) further decreased the droplet size, leading to higher stability of the emulsion. The DEA-modified block-random copolymer gave rise to nonaqueous microcapsule dispersions after evaporation of methanol from the emulsions containing colored dyes in their dispersed phases. These dispersions exhibited high stability, and the particle sizes were small enough for application to the inkjet printing process.

  9. Stabilized sulfur as cathodes for room temperature sodium-ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yunhua [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Zhu, Yujie [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Zheng, Shiyou [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yihang [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Luo, Chao [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Gaskell, Karen [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Eichhorn, Bryan [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wang, Chunsheng [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering

    2013-05-01

    Sodium-sulfur batteries, offering high capacity and low cost, are promising alternative to lithium-ion batteries for large-scale energy storage applications. The conventional sodium-sulfur batteries, operating at a high temperature of 300–350°C in a molten state, could lead to severe safety problems. However, the room temperature sodium-sulfur batteries using common organic liuid electrolytes still face a significant challenge due to the dissolution of intermediate sodium polysulfides. For this study, we developed room temperatue sodium-sulfur batteries using a unique porous carbon/sulfur (C/S) composite cathode, which was synthesized by infusing sulfur vapor into porous carbon sphere particles at a high temperatrure of 600°C. The porous C/S composites delivered a reversible capacity of ~860 mAh/g and retained 83% after 300 cycles. The Coulombic efficiency of as high as 97% was observed over 300 cycles. The superior electrochemical performance is attrbuted to the super sulfur stability as evidenced by its lower sensitivity to probe beam irradiation in TEM, XPS and Raman charaterization and high evaperation temperature in TGA. The results make it promising for large-scale grid energy storage and electric vehicles.

  10. Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions.

    Science.gov (United States)

    Celus, Miete; Salvia-Trujillo, Laura; Kyomugasho, Clare; Maes, Ine; Van Loey, Ann M; Grauwet, Tara; Hendrickx, Marc E

    2018-02-15

    The present work explored the lipid antioxidant capacity of citrus pectin addition to 5%(w/v) linseed/sunflower oil emulsions stabilized with 0.5%(w/v) Tween 80, as affected by pectin molecular characteristics. The peroxide formation in the emulsions, containing tailored pectin structures, was studied during two weeks of storage at 35°C. Low demethylesterified pectin (≤33%) exhibited a higher antioxidant capacity than high demethylesterified pectin (≥58%), probably due to its higher chelating capacity of pro-oxidative metal ions (Fe 2+ ), whereas the distribution pattern of methylesters along the pectin chain only slightly affected the antioxidant capacity. Nevertheless, pectin addition to the emulsions caused emulsion destabilization probably due to depletion or bridging effect, independent of the pectin structural characteristics. These results evidence the potential of structurally modified citrus pectin as a natural antioxidant in emulsions. However, optimal conditions for emulsion stability should be carefully selected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ultra structure of oil-in-water emulsions a comparison of different microscopy- and preparation methods

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Loussert, C.; Humbel, B.M.

    of food grade emulsifiers such as whey protein, sodium caseinate and milk phospholipids; layers that are expected to be in the range of only a few nm. Furthermore, the liquid nature and high water content of the samples further complicates the preparation process;especially since water is a major...

  12. Multilayer emulsions as a strategy for linseed oil and α-lipoic acid micro-encapsulation: study on preparation and in vitro characterization.

    Science.gov (United States)

    Huang, Juan; Wang, Qiang; Li, Tong; Xia, Nan; Xia, Qiang

    2018-01-04

    Linseed oil and α-lipoic acid are bioactive ingredients, which play an important role in human nutrition and health. However, their application in functional foods is limited because of their instabilities and poor solubilities in hydrophilic matrices. Multilayer emulsions are particularly useful to protect encapsulated bioactive ingredients. The aim of this study was to fabricate multilayer emulsions by a high-pressure homogenization method to encapsulate linseed oil and α-lipoic acid simultaneously. Tween 20 and lecithin were used as surfactants to stabilize the oil droplets of primary emulsions. Multilayer emulsions were produced by using an electrostatic layer-by-layer deposition process of lecithin-chitosan membranes. Thermal treatment exhibited that chitosan encapsulation could improve the thermal stability of primary emulsions. During in vitro digestion, it was found that chitosan encapsulation had little effect on the lipolysis of linseed oil and bioaccessibility of α-lipoic acid. The oxidation stability of linseed oil in multilayer emulsions was improved effectively by chitosan encapsulation and α-lipoic acid. Chitosan encapsulation could inhibit the degradation of α-lipoic acid. A physical stability study indicated that multilayer emulsions had good centrifugal, dilution and storage stabilities. Multilayer emulsion is an effective delivery system to incorporate linseed oil and α-lipoic acid into functional foods and beverages. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Functionalities of chitosan conjugated with stearic acid and gallic acid and application of the modified chitosan in stabilizing labile aroma compounds in an oil-in-water emulsion.

    Science.gov (United States)

    Yang, Tsung-Shi; Liu, Tai-Ti; Lin, I-Hwa

    2017-08-01

    The aims of this research were to conjugate chitosan (CT) with stearic acid (SA) and gallic acid (GA), and apply the modified chitosan to stabilize labile aroma compounds such as allyl isothiocyanate (AITC) and limonene in oil-in-water emulsions. Generally, the antioxidant activity of CT-SA-GA increased as the GA content in the conjugate increased. In most assays, GA had a lower IC 50 value than that of CT-SA-GA; however, CT-SA-GA exhibited better performance than GA in the Fe 2+ -chelating activity. In accelerated tests (heating or illumination) for evaluating the chemical stability of AITC and limonene during storage, CT-SA and CT-SA-GA were used to prepare AITC and limonene O/W emulsions, respectively. Tween 80 and Span 80 (T-S-80), an emulsifier mixture, were used as a control in both emulsions for comparison. The results show that CT-SA or CT-SA-GA could protect AITC or limonene from degradation or oxidation more effectively than T-S-80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals.

    Science.gov (United States)

    Bai, Long; Xiang, Wenchao; Huan, Siqi; Rojas, Orlando J

    2018-05-14

    We report on high-internal-phase, oil-in-water Pickering emulsions that are stable against coalescence during storage. Viscous, edible oil (sunflower) was emulsified by combining naturally derived cellulose nanocrystals (CNCs) and a food-grade, biobased cationic surfactant obtained from lauric acid and L-arginine (ethyl lauroyl arginate, LAE). The interactions between CNC and LAE were elucidated by isothermal titration calorimetry (ITC) and supplementary techniques. LAE adsorption on CNC surfaces and its effect on nanoparticle electrostatic stabilization, aggregation state, and emulsifying ability was studied and related to the properties of resultant oil-in-water emulsions. Pickering systems with tunable droplet diameter and stability against oil coalescence during long-term storage were controllably achieved depending on LAE loading. The underlying stabilization mechanism was found to depend on the type of complex formed, the LAE structures adsorbed on the cellulose nanoparticles (as unimer or as adsorbed admicelles), the presence of free LAE in the aqueous phase, and the equivalent alkane number of the oil phase (sunflower and dodecane oils were compared). The results extend the potential of CNC in the formulation of high-quality and edible Pickering emulsions. The functional properties imparted by LAE, a highly effective molecule against food pathogens and spoilage organisms, open new opportunities in food, cosmetics, and pharmaceutical applications, where the presence of CNC plays a critical role in achieving synergistic effects with LAE.

  15. Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions

    DEFF Research Database (Denmark)

    Frankel, E.N.; Satue-Gracia, T.; Meyer, Anne Boye Strunge

    2002-01-01

    from algae are unusually stable to oxidation, Addition of ethylenediaminetetraacetic acid (EDTA) prevented oxidation of both fish and algal oil emulsions without added iron and at low iron:EDTA molar concentrations. EDTA, however, promoted the oxidation of the corresponding emulsions that contained...... high iron:EDTA ratios. Therefore, to be effective as a metal chelator, EDTA must be added at molar concentrations higher than that of iron to inhibit oxidation of foods containing long-chain PUFA from either fish or algae and fortified with iron.......The oxidative stability of long-chain polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA)-containing fish and algae oils varies widely according to their fatty acid composition, the physical and colloidal states of the lipids, the contents of tocopherols and other antioxidants...

  16. A new strategy for imaging biomolecular events through interactions between liquid crystals and oil-in-water emulsions.

    Science.gov (United States)

    Hu, Qiong-Zheng; Jang, Chang-Hyun

    2012-11-21

    In this study, we demonstrate a new strategy to image biomolecular events through interactions between liquid crystals (LCs) and oil-in-water emulsions. The optical response had a dark appearance when a nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), is in contact with emulsion droplets of glyceryl trioleate (GT). In contrast, the optical response had a bright appearance when 5CB is in contact with GT emulsions decorated with surfactants such as sodium oleate. Since lipase can hydrolyze GT and produce oleic acid, the optical response also displays a bright appearance after 5CB has been in contact with a mixture of lipase and GT emulsions. These results indicate the feasibility of monitoring biomolecular events through interactions between LCs and oil-in-water emulsions.

  17. Front-face fluorescence spectroscopy study of globular proteins in emulsions: influence of droplet flocculation.

    Science.gov (United States)

    Rampon, V; Genot, C; Riaublanc, A; Anton, M; Axelos, M A V; McClements, D J

    2003-04-23

    Measurement of the intensity (I(MAX)) and/or wavelength (lambda(MAX)) of the maximum in the tryptophan (TRP) emission spectrum using front-face fluorescence spectroscopy (FFFS) can be used to provide information about the molecular environment of proteins in nondiluted emulsions. Many protein-stabilized emulsions in the food industry are flocculated, and therefore, we examined the influence of droplet flocculation on FFFS. Stock oil-in-water emulsions stabilized by bovine serum albumin were prepared by high-pressure valve homogenization (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7). These emulsions were used to create model systems with different degrees of droplet flocculation, either by changing the pH, adding surfactant, or adding xanthan. Emulsions (21 wt % n-hexadecane, 0.22 wt % BSA) with different pH (5 and 7) and molar ratios of Tween 20 to BSA (R = 0-131) were prepared by dilution of the stock emulsion. As the surfactant concentration was increased, the protein was displaced from the droplet surfaces, which caused an increase in both I(MAX) and lambda(MAX), because of the change in TRP environment. The dependence of I(MAX) and lambda(MAX) on surfactant concentration followed a similar pattern in emulsions that were initially flocculated (pH 5) and nonflocculated (pH 7). Relatively small changes in FFFS emission spectra were observed in emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7) with different levels of depletion flocculation induced by adding xanthan. These results suggested that droplet flocculation did not have a major impact on FFFS. This study shows that FFFS is a powerful technique for nondestructively providing information about the molecular environment of proteins in concentrated and flocculated protein-stabilized emulsions. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.

  18. Imobilização de lipases em filme de caseinato de sódio/glicerol: aplicação na síntese de ésteres Lipase immobilization in sodium caseinate/glycerol film: application in ester synthesis

    Directory of Open Access Journals (Sweden)

    Damianni Sebrão

    2007-10-01

    Full Text Available Lipases from different sources were immobilized in sodium caseinate/glycerol film and used in the esterification reactions of aliphatic acids with alcohols in the presence of organic solvents. Lipases from Pseudomonas sp and Rhizopus oryzae were selected and the influence of several parameters was analyzed, including: lipase loading, organic solvent polarity, reaction temperature, chain length of alcohol and acid and enzyme/support reuse. For comparison, free enzymes were used under similar experimental conditions.

  19. The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava.

    Science.gov (United States)

    Murmu, Sanchita Biswas; Mishra, Hari Niwas

    2018-04-15

    The effect of five coating formulations viz.: (A) 5% Arabic gum (AG)+1% sodium caseinate (SC)+1% cinnamon oil (CE); (B) 5% AG + 1% SC + 2% CE; (C) 5% AG + 1% SC + 1% lemongrass oil (LG); (D) 5% AG + 1% SC + 2% LG; and (E) 5% AG + 1% SC + 2% CE + 2% LG on guava during 35 days storage at 4-7 °C was investigated. Thereafter samples were allowed to ripen for five days at 25 ± 2 °C. The quality of guava was analyzed at an interval of 7, 21, 35 and 40 days. The coating applications resulted in lower activity of PPO & POD, higher DPPH radical scavenging activity, higher retention of ascorbic acid, phenol & flavonoid content, exhibited slower rise of reducing and total sugar in guava pulp. Samples in treatment B and D were the best formulations for extending shelf-life of guava up to 40 days versus seven days of uncoated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    Directory of Open Access Journals (Sweden)

    Catalin Ilie Spataru

    2016-11-01

    Full Text Available The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA and its alkaline salt (OLANa. Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA, with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1 required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG and differential scanning calorimetry (DSC (TG-DSC analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.