WorldWideScience

Sample records for sodium borohydride nabh4

  1. Effect of sodium borohydride synthesis on NaBH4-H2 system economics

    International Nuclear Information System (INIS)

    Tabakoglu, F. oeznur; Kurtulus, Guelbahar

    2007-01-01

    The hazards and negative impacts of fossil fuel usage on environment and the prospect of fossil fuel depletion in near future have urged scientists to search for and use clean energy sources and alternative fuels. Hydrogen is the best fuel among others, which can minimize the effects of global warming. Although it is currently more expensive than other fuels, it will be cheaper following further developments in hydrogen technologies from production till end-use. Hydrogen storage is a critical issue in terms of safety and economics of hydrogen energy system. Chemical hydrides are an attractive hydrogen storage method due to their potential of achieving high volumetric and gravimetric storage densities. Among chemical hydrides, sodium borohydride (NaBH 4 ) is given a big attention, due to its 10.8% theoretical hydrogen storage capacity. Hydrogen, which can be released by sodium borohydride hydrolysis reaction on-site, can be used in a proton exchange membrane fuel cell (PEMFC) at anode. on the other hand, sodium borohydride solution can be used directly in a borohydride fuel cell (DBFC) at anode. Like the other chemical hydrides, sodium borohydride has been an expensive material up to now, constituting a major obstacle to commercialization of sodium borohydride as a hydrogen storage method. This paper aims to give an approximate estimation process cost of the NaBH 4 -H 2 system by taking into account both the energy and raw material costs, starting with sodium borohydride production till recycling of it. Two different methods to synthesize sodium borohydride are analyzed and their effects on total cost are compared. It was found that the usage of Bayer process to synthesize sodium borohydride makes the overall sodium borohydride - hydrogen system cost higher than the total cost of the alternative process which starts with the production of sodium borohydride from borax decahydrate. (authors)

  2. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    Science.gov (United States)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  3. Hydrolysis and regeneration of sodium borohydride (NaBH4) - A combination of hydrogen production and storage

    Science.gov (United States)

    Chen, W.; Ouyang, L. Z.; Liu, J. W.; Yao, X. D.; Wang, H.; Liu, Z. W.; Zhu, M.

    2017-08-01

    Sodium borohydride (NaBH4) hydrolysis is a promising approach for hydrogen generation, but it is limited by high costs, low efficiency of recycling the by-product, and a lack of effective gravimetric storage methods. Here we demonstrate the regeneration of NaBH4 by ball milling the by-product, NaBO2·2H2O or NaBO2·4H2O, with MgH2 at room temperature and atmospheric pressure without any further post-treatment. Record yields of NaBH4 at 90.0% for NaBO2·2H2O and 88.3% for NaBO2·4H2O are achieved. This process also produces hydrogen from the splitting of coordinate water in hydrated sodium metaborate. This compensates the need for extra hydrogen for generating MgH2. Accordingly, we conclude that our unique approach realizes an efficient and cost-effective closed loop system for hydrogen production and storage.

  4. Economical Aspects of Sodium Borohydride for Hydrogen Storage

    International Nuclear Information System (INIS)

    Ture, I. Engin; Tabakoglu, F. Oznur; Kurtulus, Gulbahar

    2006-01-01

    Hydrogen is the best fuel among others, which can minimize the cause to global warming. Turkey has an important location with respect to hydrogen energy applications. Moreover, Turkey has 72.2% of the world's total boron reserves. Sodium borohydride (NaBH 4 ) which can be produced from borax has high hydrogen storage capacity. Hence, it is important for Turkey to lead studies about sodium borohydride to make it one of the most feasible hydrogen storage methods. In this paper an approximate process cost analysis of a NaBH 4 -H 2 system is given, starting with NaBH 4 production till recycling of it. It is found that, the usage of NaBH 4 as hydrogen storage material is relatively an expensive method but after improving reactions and by-product removal in the system and reducing the energy and reactant costs, sodium borohydride is one of the best candidates among hydrogen storage technologies. (authors)

  5. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst

    International Nuclear Information System (INIS)

    Ozkar, S.; Zahmakiran, M.

    2005-01-01

    Sodium borohydride is stable in aqueous alkaline solution, however, it hydrolyses in water to hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. Generating H 2 catalytically from NaBH 4 solutions has many advantages: NaBH 4 solutions are nonflammable, reaction products are environmentally benign, rate of H 2 generation is easily controlled, the reaction product NaBO 2 can be recycled, H 2 can be generated even at low temperatures. All of the catalysts that has been used in hydrolysis of sodium borohydride are bulk metals and they act as heterogeneous catalysts. The limited surface area of the heterogeneous catalysts causes lower catalytic activity as the activity of catalyst is directly related to its surface area. Thus, the use of metal nanoparticles with large surface area provides potential route to increase the catalytic activity. Here, we report, for the first time, the use of ruthenium(0) nanoclusters as catalyst in the hydrolysis of sodium borohydride liberating hydrogen gas. The ruthenium nanoparticles are generated from the reduction of ruthenium(III) chloride by sodium borohydride in water and stabilized by specific ligand. The ruthenium(0) nanoclusters are found to be highly active catalyst for the hydrolysis of sodium borohydride

  6. Sodium borohydride hydrolysis in the presence of intermetallic compound LaNi5

    International Nuclear Information System (INIS)

    Korobov, I.I.; Mozgina, N.G.

    1992-01-01

    Kinetics of catalytic hydrolysis of sodium borohydride in the 1 mol/l solution of caustic sodium within the range of 298-318 K in presence of LaNi 5 intermetallic compound is studied. It is established that the reaction has zero order by NaBH 4 and the first one by LaNi 5 . The apparent activation energy of NaBH 4 catalytic hydrolysis in presence of LaNi 5 , calculated on the basis of temperature dependence of reaction velocity, is constant within the temperature range under investigation and constitutes 56$+-$1.5 kJ/mol. Recombination of surface hydrogen on LaNi 5 in molecular one is limiting stage determining NaBH 4 hydrolysis rate

  7. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    Science.gov (United States)

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides.

  8. 1 kWe sodium borohydride hydrogen generation system Part II: Reactor modeling

    OpenAIRE

    Zhang, Jinsong; Zheng, Yuan; Gore, Jay P; Mudawar, Issam; Fisher, Timothy

    2007-01-01

    Sodium borohydride (NaBH4) hydrogen storage systems offer many advantages for hydrogen storage applications. The physical processes inside a NaBH4 packed bed reactor involve multi-component and multi-phase flow and multi-mode heat and mass transfer. These processes are also coupled with reaction kinetics. To guide reactor design and optimization, a reactor model involving all of these processes is desired. A onedimensional numerical model in conjunction with the assumption of homogeneous cata...

  9. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte

    International Nuclear Information System (INIS)

    Chatenet, Marian; Micoud, Fabrice; Roche, Ivan; Chainet, Eric

    2006-01-01

    The direct oxidation of sodium borohydride in concentrated sodium hydroxide medium has been studied by cyclic and linear voltammetry, chronoamperometry and chronopotentiometry for silver and gold electrocatalysts, either bulk and polycrystalline or nanodispersed over high area carbon blacks. Gold and silver yield rather complete utilisation of the reducer: around 7.5 electrons are delivered on these materials, versus 4 at the most for platinum as a result of the BH 4 - non-negligible hydrolysis taking place on this latter material. The kinetic parameters for the direct borohydride oxidation are better for gold than for silver. A strong influence of the ratio of sodium hydroxide versus sodium borohydride is found: whereas the theoretical stoichiometry does forecast that eight hydroxide ions are needed for each borohydride ion, our experimental results prove that a larger excess hydroxide ion is necessary in quasi-steady state conditions. When the above-mentioned ratio is unity (1 M NaOH and 1 M NaBH 4 ), the tetrahydroborate ions direct oxidation is limited by the hydroxide concentration, and their hydrolysis is no longer negligible. The hydrolysis products are probably BH 3 OH - ions, for which gold displays a rather good oxidation activity. Additionally, silver, which is a weak BH 4 - oxidation electrocatalyst, exhibits the best activity of all the studied materials towards the BH 3 OH - direct oxidation. Finally, carbon-supported gold nanoparticles seem promising as anode material to be used in direct borohydride fuel cells

  10. The Removal of Cu (II) from Aqueous Solution using Sodium Borohydride as a Reducing Agent

    Science.gov (United States)

    Sithole, N. T.; Ntuli, F.; Mashifana, T.

    2018-03-01

    The removal and recovery of metals from wastewater has been a subject of significant importance due the negative impact these toxic metals have on human health and the environment as a result of water and soil pollution. Increased use of the metals and chemicals in the process industries has resulted in generation of large quantity of effluents that contains high level of toxic metals and other pollutants. The objective of this work was to recover of Cu in its elemental form as metallic powder from aqueous solution using NaBH4 as a reducing agent. Reductive precipitation was achieved in a batch reactor at 65°C using Cu powder as a seeding material. This study also investigated the effect of concentration of sodium borohydride (NaBH4) as a reducing agent. The amount of NaBH4 was varied based on mole ratios which are 1:1, 1:0.25 and 1:0.1 to recover Cu from synthetic wastewater. The results obtained showed that sodium borohydride is an effective reducing agent to recover Cu from wastewater. The optimum concentration of NaBH4 that gives the best results the 1:1 molar ratio with over 99% Cu removal.

  11. Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)

    International Nuclear Information System (INIS)

    Li, Fang; Arthur, Ernest Evans; La, Dahye; Li, Qiming; Kim, Hern

    2014-01-01

    Composite nanofiber sheets containing multiwalled carbon nanotubes and cobalt chloride dispersed in PAN (polyacrylonitrile) were produced by an electrospinning technique. The synthesized PAN/CoCl 2 /CNTs composite nanofiber was used as the catalyst for hydrogen production from the hydrolysis of sodium borohydride. FT-IR characterization showed that the pretreated CNTs possess different organic functional groups which help improve the compatibility between CNTs and PAN organic polymer. SEM (scanning electron microscopy), TEM (transmission electron microscopy) and EDX (energy-dispersive X-ray technique) were used to characterize the composite nanofiber and it was found that CNTs can be coaxially dispersed into the PAN nanofiber. During the hydrolysis of NaBH 4 , this PAN/CoCl 2 /CNTs composite nanofiber exhibited higher catalytic activity compared to the composite without CNTs doping. Kinetic analysis of NaBH 4 hydrolysis shows that the reaction of NaBH 4 hydrolysis based on this catalyst can be ascribed to the first-order reaction and the activation energy of the catalyst was approximately 52.857 kJ/mol. Meanwhile, the composite nanofiber catalyst shows excellent stability and reusability in the recycling experiment. - Highlights: • Composite nanofiber sheets were prepared via electrospinning. • PAN (polyacrylonitrile)/CoCl 2 (cobalt chloride)/CNTs (carbon nanotubes) nanofiber was used as the catalyst for hydrogen production. • CNTs can be coaxially dispersed into the PAN nanofiber. • PAN/CoCl 2 /CNTs composite nanofiber exhibited higher catalytic activity. • The composite nanofiber catalyst shows excellent stability and reusability

  12. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Kim, Taegyu

    2014-01-01

    A proton exchange membrane fuel cell system integrated with a NaBH 4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH 4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH 4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  13. Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis.

    Science.gov (United States)

    Budroni, M A; Biosa, E; Garroni, S; Mulas, G R C; Marchettini, N; Culeddu, N; Rustici, M

    2013-11-14

    The hydrolysis of borohydride salts represents one of the most promising processes for the generation of high purity molecular hydrogen under mild conditions. In this work we show that the sodium borohydride hydrolysis exhibits a fingerprinting periodic oscillatory transient in the hydrogen flow over a wide range of experimental conditions. We disproved the possibility that flow oscillations are driven by supersaturation phenomena of gaseous bubbles in the reactive mixture or by a nonlinear thermal feedback according to a thermokinetic model. Our experimental results indicate that the NaBH4 hydrolysis is a spontaneous inorganic oscillator, in which the hydrogen flow oscillations are coupled to an "oscillophor" in the reactive solution. The discovery of this original oscillator paves the way for a new class of chemical oscillators, with fundamental implications not only for testing the general theory on oscillations, but also with a view to chemical control of borohydride systems used as a source of hydrogen based green fuel.

  14. Melting Behavior and Thermolysis of NaBH4−Mg(BH42 and NaBH4−Ca(BH42 Composites

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-04-01

    Full Text Available The physical properties and the hydrogen release of NaBH4–Mg(BH42 and NaBH4−Ca(BH42 composites are investigated using in situ synchrotron radiation powder X-ray diffraction, thermal analysis and temperature programmed photographic analysis. The composite, xNaBH4–(1 − xMg(BH42, x = 0.4 to 0.5, shows melting/frothing between 205 and 220 °C. However, the sample does not become a transparent molten phase. This behavior is similar to other alkali-alkaline earth metal borohydride composites. In the xNaBH4–(1 − xCa(BH42 system, eutectic melting is not observed. Interestingly, eutectic melting in metal borohydrides systems leads to partial thermolysis and hydrogen release at lower temperatures and the control of sample melting may open new routes for obtaining high-capacity hydrogen storage materials.

  15. Development of an on-board H2 storage and recovery system based on lithium borohydride.

    Science.gov (United States)

    2014-02-28

    Alkali metal borohydrides based on sodium and lithium, NaBH4 and LiBH4, have been evaluated as a potential hydrogen storage and recovery system for on-board vehicle use. The borohydride salts could be dissolved in water, followed by a hydrolytic reac...

  16. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  17. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  18. Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis

    International Nuclear Information System (INIS)

    Huang, Yao-Hui; Su, Chia-Chi; Wang, Shu-Ling; Lu, Ming-Chun

    2012-01-01

    A recyclable and reusable Ru/Al 2 O 3 catalyst is prepared for hydrogen generation from the hydrolysis process of alkaline sodium borohydride (NaBH 4 ) solution. The hydrogen generation rate by the hydrolysis and methanolysis of alkaline NaBH 4 was explored as a function of NaOH concentration. Meantime, the byproducts derived from the spent alkaline NaBH 4 solution were characterized by X-ray diffraction (XRD), scanning electro microscope/energy dispersive spectrometer (SEM/EDS) and NMR (Nuclear Magnetic Resonance). The effect of NaOH concentration on the hydrogen generation from the hydrolysis of NaBH 4 significantly depends on the type of catalysts. With increasing NaOH concentration, the hydrogen generation rates decrease when using ruthenium (Ru) composite as a catalyst. The hydrogen generation rate of the methanolysis of NaBH 4 is significantly inhibited in the presence of NaOH as compared with the hydrolysis of NaBH 4 . The durability test of the Ru/Al 2 O 3 catalyst shows that the hydrogen generation rate decreases with recycling and reuse. The XRD and NMR analysis results show that the borate hydrate (NaBO 2 H 2 O) was derived from the hydrolysis of 20 wt% and 30 wt% NaBH 4 . -- Highlights: ► A recyclable Ru/Al 2 O 3 catalyst was synthesized for hydrogen generation. ► Ru/Al 2 O 3 significantly promotes the hydrogen generation rate from alkaline NaBH 4 solution. ► The prepared Ru/Al 2 O 3 catalyst can easily collect from the spent alkaline NaBH 4 solution.

  19. Investigation of the role of NaBH4 in the chemical synthesis of gold nanorods

    International Nuclear Information System (INIS)

    Samal, Akshaya K.; Sreeprasad, Theruvakkattil S.; Pradeep, Thalappil

    2010-01-01

    An improvement in the previously reported seed-mediated chemical synthesis of gold nanorods (GNRs) is reported. Monodisperse GNRs have been synthesized in a one-step protocol. The addition of controlled quantity of sodium borohydride (NaBH 4 ) directly into the growth solution produced uniform GNRs, formed by in situ nucleation and growth. In order to arrive at the conclusion, we studied the formation of GNRs with various seeds, of metals of widely differing crystal structures, and there were no variations in the properties of the GNRs formed. The role of NaBH 4 in the growth of GNR, which has not been covered in previous reports, is discussed in detail. The dependence of longitudinal plasmon peak on the concentration of NaBH 4 is compared with the dependence of residual concentration of NaBH 4 in the seed solution, which is added to the growth solution in seed-mediated synthesis. The study shows that NaBH 4 plays an important role in the formation of GNRs. This proposed protocol offers a number of advantages: one-step preparation of GNRs, significant reduction in the preparation time to 10 min, high monodispersity of GNRs, and tailorability of the aspect ratio depending on NaBH 4 concentration. It is suggested that NaBH 4 added to the growth solution leads to in situ formation of the seed particles of the size of 3-5 nm which enables the growth of GNRs. The growth of GNRs suggested here is likely to have an impact on the preparation of other anisotropic structures. Our single-pot methodology makes the procedure directly adaptable for commercial-scale production of GNRs and for their synthesis even in undergraduate laboratories.

  20. Stability of aqueous-alkaline sodium borohydride formulations

    International Nuclear Information System (INIS)

    Minkina, V.G.; Shabunya, S.I.; Kalinin, V.I.; Martynenko, V.V.

    2008-01-01

    Stability of sodium borohydride in the form of concentrated solutions and suspensions and solids corresponding to a crystal hydrate in composition was studied. The effects of temperature, concentrations of sodium borohydride and alkali, and nature of alkali metal cation on the rate of sodium borohydride hydrolysis were studied [ru

  1. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Science.gov (United States)

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  2. On the purity assessment of solid sodium borohydride

    Science.gov (United States)

    Botasini, Santiago; Méndez, Eduardo

    2012-01-01

    Since sodium borohydride has become extensively used as chemical hydrogen storage material in fuel cells, many techniques have been proposed to assess the purity of this substance. However, all of them are developed in aqueous media, where the reagent is unstable. In addition, its hygroscopic nature was difficults in any attempt to make precise quantifications. The present work compares three different methods, namely, voltammetric, titrimetric, and Fourier transformed infrared spectroscopy (FTIR) in order to assess the purity of sodium borohydride, using an expired and a new sodium borohydride samples as references. Our results show that only the FTIR measurements provide a simple and semi-quantitative means to assess the purity of sodium borohydride due to the fact that it is the only one that measures the sample in the solid state. A comparison between the experimental data and theoretical calculation reveals the identification of the absorption bands at 1437 cm-1 of sodium metaborate and 2291 cm-1 of sodium borohydride which represent a good fingerprint for the qualitative assessment of the sample quality.

  3. Co3O4 nanowires as efficient catalyst precursor for hydrogen generation from sodium borohydride hydrolysis

    Science.gov (United States)

    Wei, Lei; Cao, Xurong; Ma, Maixia; Lu, Yanhong; Wang, Dongsheng; Zhang, Suling; Wang, Qian

    Hydrogen generation from the catalytic hydrolysis of sodium borohydride has many advantages, and therefore, significant research has been undertaken on the development of highly efficient catalysts for this purpose. In our present work, Co3O4 nanowires were successfully synthesized as catalyst precursor by employing SBA-15 as a hard template. For material characterization, high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and N2 adsorption isotherms were employed, respectively. To measure the catalyst activity, typical water-displacement method was carried out. Using a reaction solution comprising 10wt.% NaBH4 and 2wt.% NaOH, the hydrogen generation rate (HGR) was observed to be as high as 7.74L min-1 g-1 at 25∘C in the presence of Co3O4 nanowires, which is significantly higher than that of CoB nanoparticles and commercial Co3O4 powder. Apparent activation energy was calculated to be 50.9kJ mol-1. After recycling the Co3O4 nanowires six times, HGR was decreased to be 72.6% of the initial level.

  4. A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells

    Science.gov (United States)

    Wee, Jung-Ho

    Two types of fuel cell systems using NaBH 4 aqueous solution as a fuel are possible: the hydrogen/air proton exchange membrane fuel cell (PEMFC) which uses onsite H 2 generated via the NaBH 4 hydrolysis reaction (B-PEMFC) at the anode and the direct borohydride fuel cell (DBFC) system which directly uses NaBH 4 aqueous solution at the anode and air at the cathode. Recently, research on these two types of fuel cells has begun to attract interest due to the various benefits of this liquid fuel for fuel cell systems for portable applications. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two fuel cells. Considering their current technologies and the high price of NaBH 4, this paper evaluated and analyzed the factors influencing the relative favorability of each type of fuel cell. Their relative competitiveness was strongly dependent on the extent of the NaBH 4 crossover. When considering the crossover in DBFC systems, the total costs of the B-PEMFC system were the most competitive among the fuel cell systems. On the other hand, if the crossover problem were to be completely overcome, the total cost of the DBFC system generating six electrons (6e-DBFC) would be very similar to that of the B-PEMFC system. The DBFC system generating eight electrons (8e-DBFC) became even more competitive if the problem of crossover can be overcome. However, in this case, the volume of NaBH 4 aqueous solution consumed by the DBFC was larger than that consumed by the B-PEMFC.

  5. Vapor Pressure Measurements of LiBH4, NaBH 4 and Ca(BH4)2 using Knudsen Torsion Effusion Gravimetric Method

    Science.gov (United States)

    Danyan, Mohammad Masoumi

    Hydrogen storage is one of the critical technologies needed on the path towards commercialization for mobile applications. In the past few years, a range of new light weight hydrogen containing material has been discovered with good storage properties. Among them, lithium borohydride (LiBH 4) sodium borohydride (NaBH4) and calcium borohydride (Ca(BH 4)2) have shown promising results to be used as solid state hydrogen storage material. In this work, we have determined equilibrium vapor pressures of LiBH 4 NaBH4 and Ca(BH4)2 obtained by Torsion effusion thermogravimetric method. Results for all the three hydrides exhibited that a small fraction of the materials showed congruency, and sublimed as gaseous compound, but the majority of the material showed incongruent vaporization. Two Knudsen cells of 0.3 and 0.6mm orifice size was employed to measure the total vapor pressures. A Whitman-Motzfeldt method is used to extrapolate the measured vapor pressures to zero orifice size to calculate the equilibrium vapor pressures. In the case of LiBH4 we found that 2% of the material evaporated congruently (LiBH4(s) → LiBH4(g)) according to the equation: logPLiBH4/P 0 =-3263.5 +/-309/T + (1.079 +/-0.69) and rest as incongruent vaporization to LiH, B, and hydrogen gas according to the equation logPeq/P0 =(-3263.5 +/-309)/T+ (2.458 +/-0.69) with DeltaH evap.= 62.47+/-5.9 kJ/mol of H2, DeltaSevap. = 47.05+/-13 J/mol of H2.K. The NaBH4 also had somewhat similar behavior, with 9% congruent evaporation and equilibrium vapor pressure equation of logPLiBH4=-7700+/-335/ T+ (6.7+/-1.5) and 91% incongruent decomposition to Na and Boron metal, and hydrogen gas. The enthalpy of vaporization; DeltaHevap. = 147.2+/-6.4kJ/molH2 and DeltaSevap.= 142 +/-28 kJ/molH2.K (550-650K). The Ca(BH4) 2 exhibited similar vaporization behavior with congruency of 3.2%. The decomposition products are CaH2 and Boron metal with evolution of hydrogen gas varying with the pressure equation as logPeq /P0 =(-1562

  6. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    , it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed......, and the crystal structures and thermal decompositions are investigated. Mixtures of NH4BH4 - NaBH4 do not react, while solid solutions, K1-x(NH4)xBH4, are formed for NH4BH4 - KBH4. For the other composites, novel ammonium metal borohydrides are formed. Several of these structures have been solved from high...

  7. Hydrogen generation from the hydrolysis of sodium borohydride using chemically modified multiwalled carbon nanotubes with pyridinium based ionic liquid and decorated with highly dispersed Mn nanoparticles

    Science.gov (United States)

    Chinnappan, Amutha; Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2015-10-01

    Multiwalled carbon nanotubes (MWCNTs)/Ionic liquid (IL)/Mn nanohybrids are synthesized and their catalytic activity is examined for hydrogen generation from the hydrolysis of sodium borohydride (NaBH4). Transmission electron microscopy reveals that Mn nanoparticles well-distributed on the MWCNTs surface. Energy dispersive x-ray spectrometer and x-ray photoelectron spectroscopy confirms the presence of Mn and Ni atom in the nanohybrids. The nanohybrids exhibit excellent catalytic lifetime and gives the total turnover number of 18496 mol H2/mol catalyst in the hydrolysis of NaBH4, which can be attributed to the presence of Mn atom and IL containing nickel halide anion. It is worthy of note that a very small amount of catalyst is used for this hydrolysis reaction. The activation energy is found to be 40.8 kJ/mol by MWCNTs/IL/Mn nanohybrids from the kinetic study of the hydrogen generation from the hydrolysis of NaBH4. The improved hydrogen generation rate, lower activation energy, and less expensive make the nanohybrids promising candidate as catalyst for the hydrogen generation from NaBH4 solution. The nanohybrids are easy to prepare, store and yet catalytically active. The recycling process is very simple and further purification is not tedious.

  8. Quantification of protein thiols and dithiols in the picomolar range using sodium borohydride and 4,4'-dithiodipyridine

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Østergaard, Henrik; Nørgaard, Per

    2007-01-01

    Experimental determination of the number of thiols in a protein requires methodology that combines high sensitivity and reproducibility with low intrinsic thiol oxidation disposition. In detection of disulfide bonds, it is also necessary to efficiently reduce disulfides and to quantify...... the liberated thiols. Ellman's reagent (5,5'-dithiobis-[2-nitrobenzoic acid], DTNB) is the most widely used reagent for quantification of protein thiols, whereas dithiothreitol (DTT) is commonly used for disulfide reduction. DTNB suffers from a relatively low sensitivity, whereas DTT reduction is inconvenient...... sodium borohydride and the thiol reagent 4,4'-dithiodipyridine (4-DPS). Because borohydride is efficiently destroyed by the addition of acid, the complete reduction and quantification can be performed conveniently in one tube without desalting steps. Furthermore, the use of reverse-phase high...

  9. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Chatenet, M.; Molina-Concha, M.B.; El-Kissi, N.; Parrour, G.; Diard, J.-P.

    2009-01-01

    This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH 4 electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.01 M NaBH 4 at 25 deg. C in the present study vs. ca. 1.6 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.02 M NaBH 4 at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H 2 bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H 2 bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the disk to reach the ring trough a distance several orders

  10. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  11. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH{sub 4}-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.H. [Department of Materials and Engineering, Zhejiang University (China); Li, Z.P.; Chen, L.L. [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-05-15

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH{sub 4} gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH{sub 4} concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl{sub 2} catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH{sub 4} gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH{sub 4} solution. The NaBH{sub 4} gel also successfully powered a NaBH{sub 4}-air battery. (author)

  12. Bleaching of Wool with Sodium Borohydride

    OpenAIRE

    Duygu Yilmazer, MSc.; Mehmet Kanik, Ph.D.

    2009-01-01

    An untreated wool fabric was bleached both with sodium borohydride (SBH) in the presence of sodium bisulphite (SBS) solution and with a commercial H2O2 bleaching method. The concentration effects of SBH and SBS, bleaching time, pH and temperature on SBH bleaching process were investigated. Whiteness, yellowness and alkali solubility results were assessed for both bleaching methods. The results showed that whiteness degrees obtained with SBH bleaching was comparable with that of H2O2 bleaching...

  13. Preparation method of Ni@Pt/C nanocatalyst affects the performance of direct borohydride-hydrogen peroxide fuel cell: Improved power density and increased catalytic oxidation of borohydride.

    Science.gov (United States)

    Hosseini, Mir Ghasem; Mahmoodi, Raana

    2017-08-15

    The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH 4 - oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92Ag Pt -1 ) in comparison with a catalyst prepared in the presence of SDS (17766.15Ag Pt -1 ) in NaBH 4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH 4 and 2M H 2 O 2 (133.38mWcm -2 ). Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Melting Behavior and Thermolysis of NaBH4−Mg(BH4)2 and NaBH4−Ca(BH4)2 Composites

    OpenAIRE

    Ley, Morten; Roedern, Elsa; Thygesen, Peter; Jensen, Torben

    2015-01-01

    The physical properties and the hydrogen release of NaBH 4 –Mg(BH 4 ) 2 and NaBH 4 −Ca(BH 4 ) 2 composites are investigated using in situ synchrotron radiation powder X-ray diffraction, thermal analysis and temperature programmed photographic analysis. The composite, x NaBH 4 –(1 − x )Mg(BH 4 ) 2 , x = 0.4 to 0.5, shows melting/frothing between 205 and 220 °C. However, the sample does not become a transparent molten phase. This behavior is similar to other alkali-alkaline earth metal borohydr...

  15. Optical properties of humic substances and CDOM: effects of borohydride reduction.

    Science.gov (United States)

    Ma, Jiahai; Del Vecchio, Rossana; Golanoski, Kelli S; Boyle, Erin S; Blough, Neil V

    2010-07-15

    Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.

  16. Hydrogen production by sodium borohydride in NaOH aqueous solution

    Science.gov (United States)

    Wang, Q.; Zhang, L. F.; Zhao, Z. G.

    2018-01-01

    The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.

  17. Chemometric study of the effects of PtRu:BH4-molar ratio and solvent used in the preparation of PtRu/C electrocatalysts for for direct methanol fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Polanco, N.S.O.; Neto, A.O.; Spinace, E.V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Tusi, M.M. [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Santiago, RS (Brazil); Brandalise, M. [Instituto Federal Fluminense (IFF), Campos dos Goyracazes, RJ (Brazil)

    2014-07-01

    PtRu/C electrocatalysts were prepared by borohydride reduction method and a chemometric study was performed to evaluate the influence of the solvent (water and isopropyl alcohol) and amount of reducing agent (PtRu:BH4- molar ratios of 5 and 15) in maximum power density. In borohydride reduction method, a solution containing sodium hydroxide and sodium borohydride (NaBH4) is added to a mixture containing water, isopropyl alcohol, metallic precursors and the carbon support Vulcan XC72. The obtained materials were characterized by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Membrane Electrode Assemblies (MEA's) were produced and tests in single direct methanol fuel cells were performed. The amount of sodium borohydride used in the reduction showed more influence on the maximum power density than the change of solvent of the reaction. (author)

  18. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    International Nuclear Information System (INIS)

    Schubert, David; Neiner, Doinita; Bowden, Mark; Whittemore, Sean; Holladay, Jamie; Huang, Zhenguo; Autrey, Tom

    2015-01-01

    Highlights: • Adjusting ratio of Q = Na/B will maximize H 2 storage capacity of liquid carrier. • Mixtures of hydrolysis products are desirable to maximize solubility. • 6.5 wt.% hydrogen and remains liquid from beginning to end. - Abstract: In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH) 3 ) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mol ratio of NaOH to B(OH) 3 , M/B = 1, the ratio of the hydrolysis product formed from NaBH 4 hydrolysis, the sole borate species formed and observed by 11 B NMR is sodium metaborate, NaB(OH) 4 . When the ratio is 1:3 NaOH to B(OH) 3 , M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11 B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB 3 H 8 , can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt.% NaB 3 H 8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 M ratio of NaOH and B(OH) 3 and releases >8 eq of H 2 . By optimizing the M/B ratio a complex mixture of soluble products, including B 3 O 3 (OH) 5 2− , B 4 O 5 (OH) 4 2− , B 3 O 3 (OH) 4 − , B 5 O 6 (OH) 4 − and B(OH) 3 , can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB 3 H 8 can provide a 40% increase in H 2 storage density compared to the hydrolysis of NaBH 4 given the decreased solubility of sodium metaborate

  19. Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride

    Science.gov (United States)

    Koska, Anais; Toshikj, Nikola; Hoett, Sandra; Bernaud, Laurent; Demirci, Umit B.

    2017-01-01

    In the field of "hydrogen energy", sodium borohydride (NaBH[subscript 4]) is a potential hydrogen carrier able to release H[subscript 2] by hydrolysis in the presence of a metal catalyst. Our laboratory experiment focuses on this. It is intended for thirdyear undergraduate students in order to have hands-on laboratory experience through…

  20. Comparison of sodium borohydride hydrolysis kinetics on Co-based nanocomposite catalysts

    International Nuclear Information System (INIS)

    Hristov, Georgi; Chorbadzhiyska, Elitsa; Mitov, Mario; Rashkov, Rashko; Hubenova, Yolina

    2011-01-01

    In this study, we compared the results, obtained with several Co-based nanocomposites (CoMnB, CoNiMnB and CoNiMoW) produced by electrodeposition on Ni-foam, as catalysts for the sodium borohydride hydrolysis reaction. Based on the comparative analyses, we propose CoNiMnB electrodeposits as most suitable catalysts for development of Hydrogen-on-Demand (HOD) system, while CoNiMoW ones as potential anodes for Direct Borohydride Fuel Cells (DBFCs). Keywords: Hydrogen-on-Demand (HOD), Nanocomposites, Hydrolysis, Catalyst, Kinetic

  1. The study of interaction of lanthanum-, cerium- and neodymium chlorides with sodium borohydride in pyridine- and tetrahydrofuran medium

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Rotenberg, T.G.; Dymova, T.N.

    1976-01-01

    Bis-tetrahydrofurans of lanthanum and neodymium borohydrides and bis-pyridinates of lanthanum, cerium and neodymium borohydrides were obtained by interacting sodium borohydride with lanthanum-, cerium and neodymium chlorides in pyridine and tetrahydrofuran media. All operations involving reagent combination, sampling and phase separation are performed in inert atmosphere using argonvacuum equipment. The reaction in pyridine was virtually instantaneous and accompanied by flocculanet precipitation. The interaction of lanthanum chloride and neodymium chloride with sodium borohydride in tetrahydrofuran (THF) was a slow (23-30 hr) heterophase process. The interaction rate was affected by size reduction of the intial substances, temperature, reagent proportion and mixing rate. The reaction time was twice reduced with boiling tetrahydrofuran

  2. Chemical nickel plating in tartrate solutions with borohydride reducing agent

    International Nuclear Information System (INIS)

    Plokhov, V.A.

    1986-01-01

    The authors investigate the influence of various factors on the rate of chemical nickel plating in strongly alkaline tartrate solutions with a borohydride reducing agent. After 30 min of the process of nickel plating, the final concentration of sodium borohydride decreases to 0.26 g/liter, leading to stoppage of the process. The nickel plating process can be intensified by increasing the concentration of sodium hydroxide in the solution, suppressing hydrolysis of borohydride, and also by introducing additives which suppress hydrolysis of borohydride. For chemical deposition of nickel-boron coatings from tartrate solutions the authors recommend the following composition (g/liter): nickel chloride 15-25, Rochelle salt 450-550, sodium hydroxide 140-160, sodium borohydride 0.8-1.0, thallium nitrate 0.003-0.008. The process temperature is 92-95 C, and the deposition rate is 4-6 um/h

  3. Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH4

    International Nuclear Information System (INIS)

    Jung, Hyeon-Seong; Oh, Sung-June; Jeong, Jae-Jin; Na, Il-Chai; Chu, Cheun-Ho; Park, Kwon-Pil; Chu, Cheun-Ho

    2015-01-01

    Aluminum alloy was examined as a material of low weight reactor for hydrolysis of NaBH 4 . Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in NaBH 4 solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of NaBH 4 during storage of NaBH 4 solution. Therefore stability of NaBH 4 and corrosion of aluminum should be considered in determining the optimum NaOH concentration. NaBH 4 stability and corrosion rate of aluminum were measured by hydrogen evolution rate. NaBH 4 stability was tested at 20-50 .deg. C and aluminum corrosion was measured at 60-90 .deg. C. The optimum concentration of NaOH was 0.3 wt%, considering both NaBH 4 stability and aluminun corrosion. NaBH 4 hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at 80-90 .deg. C.

  4. Co@MWNTs-Plastic: A novel electrode for NaBH4 oxidation

    International Nuclear Information System (INIS)

    Zhang, Dongming; Ye, Ke; Cao, Dianxue; Wang, Bin; Cheng, Kui; Li, Yiju; Wang, Guiling; Xu, Yang

    2015-01-01

    Highlights: • MP substrate was fabricated by adhering MWNTs on a piece of obsoleted plastic bag. • Co nano-thorns were prepared by a simple electrodeposition method on the MP surface. • MP owns a superior stability in strong alkaline environment. • CMP exhibits a high catalytic activity for NaBH 4 electrooxidation. • The possible mechanisms of NaBH 4 electrooxidation on CMP was discussed. - Abstract: A novel multi-walled carbon nanotubes (MWNTs)-Plastic (MP) substrate was first fabricated by adhering MWNTs on a piece of obsoleted plastic bag, and Co nano-thorns were subsequently prepared by a simple electrodeposition method on the MP surface. The morphology and phase structure of the as-prepared Co@MWNTs-Plastic (CMP) catalytic electrode are characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffractometer. The catalytic activity of the CMP electrode for NaBH 4 electrooxidation is investigated by means of cyclic voltammetry and chronoamperometry. The employing of waste plastic bags reduces white pollution and the MP substrate exhibits superior stability in alkaline solution. The 3D CMP catalytic electrode owns a high electrochemical activity for NaBH 4 oxidation. Moreover, we discussed the possible mechanisms of NaBH 4 electrooxidation on the CMP

  5. An improved synthesis of 14C labelled glycerol using sodium borohydride

    International Nuclear Information System (INIS)

    Chander, H.; Ramamurthy, T.V.; Viswanathan, K.V.

    1987-01-01

    [1- 14 C]Glyceric acid has been reduced to [1(3)- 14 C]glycerol in high yields via the methyl ester of [1- 14 C]glyceric acid by sodium borohydride in the presence of t-butyl alcohol and methanol. The importance of the procedure is highlighted in relation to other procedures involving lithium aluminium hydride reduction. (author)

  6. Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes - experimental and modelling insights

    Science.gov (United States)

    Olu, Pierre-Yves; Bonnefont, Antoine; Braesch, Guillaume; Martin, Vincent; Savinova, Elena R.; Chatenet, Marian

    2018-01-01

    The Borohydride Oxidation Reaction (BOR), the anode reaction in a Direct borohydride fuel cell (DBFC), is complex and still poorly understood, which impedes the development and deployment of the DBFC technology. In particular, no practical electrocatalyst is capable to prevent gaseous hydrogen generation and escape from its anode upon operation, which lowers the fuel-efficiency of the DBFC and raises safety issues in operation. The nature of the anode electrocatalysts strongly influences the hydrogen escape characteristics of the DBFC, which demonstrates how important it is to isolate the BOR mechanism in conditions relevant to DBFC operation. In this paper, from a selected literature review and BOR experiments performed in differential electrochemical mass spectrometry (DEMS) in a wide range of NaBH4 concentration (5-500 mM), a microkinetic model of the BOR for both Pt and Au surfaces is proposed; this model takes into account the hydrogen generation and escape.

  7. Rotating disk electrode study of borohydride oxidation in a molten eutectic electrolyte and advancements in the intermediate temperature borohydride battery

    Science.gov (United States)

    Wang, Andrew; Gyenge, Előd L.

    2017-08-01

    The electrode kinetics of the NaBH4 oxidation reaction (BOR) in a molten NaOH-KOH eutectic mixture is investigated by rotating disk electrode (RDE) voltammetry on electrochemically oxidized Ni at temperatures between 458 K and 503 K. The BH4- diffusion coefficient in the molten alkali eutectic together with the BOR activation energy, exchange current density, transfer coefficient and number of electrons exchanged, are determined. Electrochemically oxidized Ni shows excellent BOR electrocatalytic activity with a maximum of seven electrons exchanged and a transfer coefficient up to one. X-ray photoelectron spectroscopy (XPS) reveals the formation of NiO as the catalytically active species. The high faradaic efficiency and BOR rate on oxidized Ni anode in the molten electrolyte compared to aqueous alkaline electrolytes is advantageous for power sources. A novel molten electrolyte battery design is investigated using dissolved NaBH4 at the anode and immobilized KIO4 at the cathode. This battery produces a stable open-circuit cell potential of 1.04 V, and a peak power density of 130 mW cm-2 corresponding to a superficial current density of 160 mA cm-2 at 458 K. With further improvements and scale-up borohydride molten electrolyte batteries and fuel cells could be integrated with thermal energy storage systems.

  8. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  9. 1,4-Dihydroxy fatty acids: Artifacts by reduction of di- and polyunsaturated fatty acids with sodium borohydride

    Science.gov (United States)

    Thiemt, Simone; Spiteller, Gerhard

    1997-01-01

    In an effort to detect lipid peroxidation products in human blood plasma, samples were treated with NaBH4 to reduce the reactive hydroperoxides to hydroxy compounds. After saponification of the lipids, the free fatty acid fraction obtained by extraction was methylated and separated by TLC. The fractions containing polar compounds were trimethylsilylated and subjected to gas chromatography-mass spectrometry (GC/MS). Mass spectra allowed us to detect previously unknown 1,4-dihydroxy fatty acids due to their typical fragmentation pattern. If the reduction was carried out with NaBD4 instead of NaBH4, incorporation of two deuterium atoms was observed (appropriate mass shift). The two oxygen atoms of the hydroxyl groups were incorporated from air as shown by an experiment in 18O2 atmosphere. The reaction required the presence of free acids, indicating that BH3 was liberated, added to a 1,4-pentadiene system, and finally produced 1,4-diols by air oxidation.

  10. A Self-Supported Direct Borohydride-Hydrogen Peroxide Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Ashok K. Shukla

    2009-04-01

    Full Text Available A self-supported direct borohydride-hydrogen peroxide fuel cell system with internal manifolds and an auxiliary control unit is reported. The system, while operating under ambient conditions, delivers a peak power of 40 W with about 2 W to run the auxiliary control unit. A critical cause and effect analysis, on the data for single cells and stack, suggests the optimum concentrations of fuel and oxidant to be 8 wt. % NaBH4 and 2 M H2O2, respectively in extending the operating time of the system. Such a fuel cell system is ideally suited for submersible and aerospace applications where anaerobic conditions prevail.

  11. Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Liu, Xinmin; Cao, Changqing; Guo, Qingjie [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-08-01

    Low cost transition metal catalysts with high performance are attractive for the development of on-board hydrogen generation systems by catalytic hydrolysis of sodium borohydride (NaBH{sub 4}) in fuel cell fields. In this study, hydrogen production from alkaline NaBH{sub 4} via hydrolysis process over carbon-supported cobalt catalysts was studied. The catalytic activity of the supported cobalt catalyst was found to be highly dependent on the calcination temperatures. The hydrogen generation rate increases with calcination temperatures in the range of 200-400 C, but a high calcination temperature above 500 C led to markedly decreased activity. X-ray diffraction patterns reveal that the catalysts experience phase transition from amorphous Co-B to crystalline cobalt hydroxide with increase in calcination temperatures. The reaction performance is also dependent on the concentration of NaBH{sub 4}, and the hydrogen generation rate increases for lower NaBH{sub 4} concentrations and decreases after reaching a maximum at 10 wt.% of NaBH{sub 4}. (author)

  12. By-Product Carrying Humidified Hydrogen: An Underestimated Issue in the Hydrolysis of Sodium Borohydride.

    Science.gov (United States)

    Petit, Eddy; Miele, Philippe; Demirci, Umit B

    2016-07-21

    Catalyzed hydrolysis of sodium borohydride generates up to four molecules of hydrogen, but contrary to what has been reported so far, the humidified evolved gas is not pure hydrogen. Elemental and spectroscopic analyses show, for the first time, that borate by-products pollute the stream as well as the vessel. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride

    International Nuclear Information System (INIS)

    Cai, Haokun; Liu, Liping; Chen, Qiang; Lu, Ping; Dong, Jian

    2016-01-01

    Efficient non-precious metal catalysts are crucial for hydrogen production from borohydride compounds in aqueous media via hydrogen atoms in water. A method for preparing magnetic polymer nanoparticles is developed in this study based on the chemical deposition of nickel onto hydrophilic polymer nanogels. High-resolution transmission electron microscopic and XPS analyses show that Ni exists mainly in the form of NiO in nanogels. Excellent catalytic activities of the nanoparticles are demonstrated for hydrogen generation from the hydrolysis of dimethylamine-borane and sodium borohydride in which the initial TOF (turn-over frequencies) are 376 and 1919 h"−"1, respectively. Kinetic studies also reveal an Arrhenius activation energy of 50.96 kJ mol"−"1 for the hydrolysis of dimethylamine-borane and 47.82 kJ mol"−"1 for the hydrolysis of sodium borohydride, which are lower than those catalyzed by Ru metal. Excellent reusability and the use of water for hydrogen production from dimethylamine-borane provide the additional benefit of using a hybrid catalyst. The principle illustrated in the present study offers a new strategy to explore polymer-transition metal hybrid particles for hydrogen energy technology. - Highlights: • Electroless Ni plating on polymer nanogels generated recyclable catalysts. • The Ni particles proved efficient for H_2 production from borohydride compounds. • The catalysts have lower activation energies than Ru for the hydrolysis. • Borohydride hydrolysis is more beneficial than dehydrogenation in organic solvent.

  14. Borohydride, micellar, and exciplex-enhanced dechlorination of chlorobiphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Epling, G.A.; Florio, E.M.; Bourque, A.J.; Qian, H.H.; Stuart, J.D.

    1988-08-01

    The photodechlorination of polychlorinated biphenyls (PCB's) has been studied in the presence of sodium borohydride, detergents, and exciplex-forming additives. In a family of 13 representative PCB's these variations generally led to a dramatically increased rate of photodegradation. Further, the products of photoreaction in the presence of sodium borohydride are more cleanly the simple dechlorinated aromatics, with fewer side reactions than observed with ordinary photolysis.

  15. Electro-oxidation of borohydride on colloidal Os and Os-alloys (Os-Sn, Os-Mo and Os-V)

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, M.H.; Northwood, D.O. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering; Gyenge, E.L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2005-10-15

    Preliminary experimental studies have demonstrated the possibility of using sodium borohydride (NaBH{sub 4}) oxidation catalysis by osmium (Os) in 2 M sodium hydroxide (NaOH) in the presence of thiourea as an inhibitor to hydrogen (H{sub 2}) evolution. The usefulness of this information for low-temperature direct fuel cells involving the anodic oxidation of fuels such as methanol, ethanol and sodium borohydride was discussed with reference to the challenge of high anode surface overpotential affecting the power output of direct fuel cells. This study examined the cyclic voltammetry features of supported colloidal Os and Os alloys with molybdenum, vanadium and tin, in the presence of NaBH{sub 4}. It also examined the potential for electrocatalysis in direct borohydride fuel cells (DBFC). Colloidal Os and Os alloys were tested for their use as electrocatalysts for oxidation of borohydride. The features of an Os cyclic voltammogram in alkaline media with and without BH{sub 4} were discussed along with the redox mediated oxidation of BH{sub 4}. Cyclic voltammetry and chronopotentiometry tests showed that colloidal Os 20 per cent weight supported on Vulcan XC-72R possessed electrocatalytic activity toward borohydride oxidation while the investigated Os-alloys were catalytically inactive. Chronopotentiometry experiments also showed that the 20 per cent weight Os gave the lowest anodic potential, and is therefore recommended as the anode electrocatalyst in direct borohydride fuel cells. 29 refs., 1 tab., 7 figs.

  16. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.M.F.R.; Falcao, D.S. [Departamento de Eng. Quimica, Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, R.A.; Rangel, C.M. [Instituto Nacional de Engenharia e Tecnologia e Inovacao, Paco do Lumiar 22, 1649-038 (Portugal)

    2006-08-15

    The catalytic hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution was studied using a non-noble; nickel-based powered catalyst exhibiting strong activity even after long time storage. This easy-to-prepare catalyst showed an enhanced activity after being recovered from previous use. The effects of temperature, NaBH{sub 4} concentration, NaOH concentration and pressure on the hydrogen generation rate were investigated. Particular importance has the effect of pressure, since the maximum reached pressure of hydrogen is always substantially lower than predictions (considering 100% conversion) due to solubility effects. The solubility of hydrogen is greatly enhanced by the rising pressure during reaction, leading to storage of hydrogen in the liquid phase. This effect can induce new ways of using this type of catalyst and reactor for the construction of hydrogen generators and even containers for portable and in situ applications. (author)

  17. Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao

    2015-01-01

    Full Text Available The development of new practical hydrogen storage materials with high volumetric and gravimetric hydrogen densities is necessary to implement fuel cell technology for both mobile and stationary applications. NaBH4, owing to its low cost and high hydrogen density (10.6 wt%, has received extensive attention as a promising hydrogen storage medium. However, its practical use is hampered by its high thermodynamic stability and slow hydrogen exchange kinetics. Recent developments have been made in promoting H2 release and tuning the thermodynamics of the thermal decomposition of solid NaBH4. These conceptual advances offer a positive outlook for using NaBH4-based materials as viable hydrogen storage carriers for mobile applications. This review summarizes contemporary progress in this field with a focus on the fundamental dehydrogenation and rehydrogenation pathways and properties and on material design strategies towards improved kinetics and thermodynamics such as catalytic doping, nano-engineering, additive destabilization and chemical modification.

  18. Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods

    International Nuclear Information System (INIS)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G.; Thambidurai, M.; Yuvakkumar, R.

    2017-01-01

    Nickel ferrite (Ni-Fe 2 O 4 ) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH 4 ) influence on structural, morphological and magnetic properties of NiFe 2 O 4 nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe 3+ tetrahedral A site and Ni 2+ octahedral B site. The observed Raman characteristic peak at 488 and 683 cm −1 were corresponded to E 1 g and A 1 g mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe 2 O 4 inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe 3+ ions in site A of inverse spinel structure and Ni 2+ ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH 4 concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe 2 O 4 and increase in NaBH 4 concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH 4 concentration. • Further increasing NaBH 4 concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe 2 O 4 .

  19. Attempts to cathodically reduce boron oxides to borohydride in aqueous solution

    International Nuclear Information System (INIS)

    McLafferty, J.; Colominas, S.; Macdonald, D.D.

    2010-01-01

    Sodium borohydride is being considered as a chemical hydrogen storage material (hydrogen being released through hydrolysis) and as an anodic fuel for fuel cells. However, the current cost of sodium borohydride is prohibitively high for automotive applications. Thus, there is interest in recycling the by-product of the hydrolysis or oxidation reaction, sodium metaborate. Numerous patents claim that this reaction is feasible in aqueous solution. Here, we report extensive experiments based upon methods outlined in the patents (particularly, the so-called direct reduction using high overpotential cathode materials). We also attempt to address concerns not discussed in the patents. In particular, to the authors' knowledge, previous reports have not addressed electrostatic repulsion of metaborate anion from the cathode. We further report several methods that were designed to overcome this problem: (1) use of a cathode material having a very negative potential of zero charge, (2) modification of the electrical double layer by using specifically adsorbing tetraalkylammonium hydroxides, (3) use of a rectangular wave pulse, and (4) use of chemically modified cathodes. None of these methods produced measurable quantities of borohydride. We then speculate as to why this reaction is not feasible, at least in aqueous solutions.

  20. hydrogel membrane as electrolyte for direct borohydride fuel cells

    Indian Academy of Sciences (India)

    A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous ...

  1. Sodium borohydride as an additive to enhance the performance of direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lianqin; Fang, Xiang; Shen, Pei Kang [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, The State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Bambagioni, Valentina; Bevilacqua, Manuela; Bianchini, Claudio; Filippi, Jonathan; Lavacchi, Alessandro; Marchionni, Andrea; Vizza, Francesco [Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)

    2010-12-15

    The effect of adding small quantities (0.1-1 wt.%) of sodium borohydride (NaBH{sub 4}) to the anolyte solution of direct ethanol fuel cells (DEFCs) with membrane-electrode assemblies constituted by nanosized Pd/C anode, Fe-Co cathode and anion-exchange membrane (Tokuyama A006) was investigated by means of various techniques. These include cyclic voltammetry, in situ FTIR spectroelectrochemistry, a study of the performance of monoplanar fuel cells and an analysis of the ethanol oxidation products. A comparison with fuel cells fed with aqueous solutions of ethanol proved unambiguously the existence of a promoting effect of NaBH{sub 4} on the ethanol oxidation. Indeed, the potentiodynamic curves of the ethanol-NaBH{sub 4} mixtures showed higher power and current densities, accompanied by a remarkable increase in the fuel consumption at comparable working time of the cell. A {sup 13}C and {sup 11}B {l_brace}{sup 1}H{r_brace}NMR analysis of the cell exhausts and an in situ FTIR spectroelectrochemical study showed that ethanol is converted selectively to acetate while the oxidation product of NaBH{sub 4} is sodium metaborate (NaBO{sub 2}). The enhancement of the overall cell performance has been explained in terms of the ability of NaBH{sub 4} to reduce the PdO layer on the catalyst surface. (author)

  2. Metal borohydrides and derivatives

    DEFF Research Database (Denmark)

    Paskevicius, Mark; Haarh Jepsen, Lars; Schouwink, Pascal

    2017-01-01

    major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH4 -, is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH3, NH3BH3, N2H4, etc. Here, we...

  3. Recycling of chemical hydrogen storage materials

    International Nuclear Information System (INIS)

    Lo, C.F.; Davis, B.R.; Karan, K.

    2004-01-01

    'Full text:' Light weight chemical hydrides such as sodium borohydride (NaBH4) and lithium borohydride (LiBH4) are promising hydrogen storage materials. They offer several advantages including high volumetric storage density, safe storage, practical storage and operating condition, controlled and rapid hydrogen release kinetics in alkaline aqueous media in the presence of catalysts. In addition, borate or borax, the reaction by-product, is environmentally friendly and can be directly disposed or recycled. One technical barrier for utilizing borohydrides as hydrogen storage material is their high production cost. Sodium borohydride currently costs $90 per kg while lithium borohydride costs $8000 per kg. For commercialization, new and improved technology to manufacture borohydrides must be developed - preferably by recycling borates. We are investigating different inorganic recycling routes for regenerating borohydrides from borates. In this paper, the results of a chlorination-based recycling route, incorporating multi-step reactions, will be discussed. Experiments were conducted to establish the efficiency of various steps of the selected regeneration process. The yields of desired products as a function of reaction temperature and composition were obtained from multi-phase batch reactor. Separation efficiency of desired product was also determined. The results obtained so far appear to be promising. (author)

  4. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    Ammonium borohydride, NH4BH4, has a very high gravimetric (ρm = 24.5 wt% H2) and volumetric (157.3 g·H2/L) hydrogen content and releases 18.4 wt% H2 below 170 °C. However, NH4BH4 is metastable at RT and ambient pressure, with a half-life of ~6 h. The decomposition is strongly exothermic; therefore......, it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed...

  5. Mechanism for formation of NaBH4 proposed as low-pressure ...

    Indian Academy of Sciences (India)

    hydrogen cell. It was determined that ... catalyst was studied in batch reactors. It was suggested ... NaBH4 is a non-reversible chemical hydride that was used ... Based on reaction chemistry, when hydrogen gas was to be stored in .... The solid–liquid.

  6. Hydrogen Generation from Al-NiCl2/NaBH4 Mixture Affected by Lanthanum Metal

    Directory of Open Access Journals (Sweden)

    Wen Qiang Sun

    2012-01-01

    Full Text Available The effect of La on Al/NaBH4 hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl2/NaBH4 mixture (Al-15 wt% La-5 wt% NiCl2/NaBH4 weight ratio, 1 : 3 has 126 mL g−1 min−1 maximum hydrogen generation rate and 1764 mL g−1 hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl2, La has great effect on NaBH4 hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl2 in the milling process, which induces that the hydrolysis byproduct Ni2B is highly distributed into Al(OH3 and the catalytic reactivity of Ni2B/Al(OH3 is increased therefore. But hydrolysis byproduct La(OH3 deposits on Al surface and leads to some side effect. The Al-La-NiCl2/NaBH4 mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material.

  7. Hydrogen generation from Al-NiCl2/NaBH4 mixture affected by lanthanum metal.

    Science.gov (United States)

    Sun, Wen Qiang; Fan, Mei-Qiang; Fei, Yong; Pan, Hua; Wang, Liang Liang; Yao, Jun

    2012-01-01

    The effect of La on Al/NaBH(4) hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) mixture (Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) weight ratio, 1 : 3) has 126 mL g(-1 )min(-1) maximum hydrogen generation rate and 1764 mL g(-1) hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl(2), La has great effect on NaBH(4) hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl(2) in the milling process, which induces that the hydrolysis byproduct Ni(2)B is highly distributed into Al(OH)(3) and the catalytic reactivity of Ni(2)B/Al(OH)(3) is increased therefore. But hydrolysis byproduct La(OH)(3) deposits on Al surface and leads to some side effect. The Al-La-NiCl(2)/NaBH(4) mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material.

  8. Fluorinated cobalt for catalyzing hydrogen generation from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Akdim, O.; Demirci, U.B.; Brioude, A.; Miele, P. [Laboratoire des Multimateriaux et Interfaces, UMR 5615 CNRS Universite Lyon 1, Universite de Lyon, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2009-07-15

    The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH{sub 4}). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209-12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co. (author)

  9. Study of NaBH4 reaction with RhCl3·4H2O and H2PtCl6·6H2O in dimethylformamide

    International Nuclear Information System (INIS)

    Khain, V.S.; Val'kova, V.P.

    1988-01-01

    Data on study of NaBH 4 reactions with RhCl 3 x4H 2 O and H 2 PtCl 6 x6H 2 O in dimethylformamide, which is a good solvent of both complex hydride and compounds of platinum metals are presented. Rhodium (3) and platinum (4) reduction by sodium tetrahydridoborate in dimethylformamide proceeds quantitatively up to element state. Depositions of powder-like rhodium and platinum or their sols stable up to 8 months are formed depending on the ratio of concentrations of the reacting substances. Stoichiometry of redox-reactions is established based on spectrophotometric, gasovolumetric measurements,

  10. Sodium tetra-hydro-borate as energy/hydrogen carrier, its history

    International Nuclear Information System (INIS)

    Demirci, U.B.; Miele, Ph.

    2009-01-01

    Sodium tetra-hydro-borate NaBH 4 is considered as being a promising energy/hydrogen carrier. NaBH 4 is not a new compound. It has been discovered in 1940's by Prof. H.C. Brown, Nobel Laureate in Chemistry in 1979. NaBH 4 has thus a history and this history distinguishes the NaBH 4 utilisation as hydrogen carrier from that as energy carrier. In fact, the history of NaBH 4 (for both utilizations) can be divided into three periods, each period being characterised by specific societal challenges. Whereas during the first period the challenges were military and political, the challenges in the third period (i.e. at present) are energetic, environmental, civilian, social and political. The second period was rather calm for NaBH 4 even if it was intensively used as a reducing agent in organic chemistry. (authors)

  11. Determination of inorganic mercury and total mercury in biological and environmental samples by flow injection-cold vapor-atomic absorption spectrometry using sodium borohydride as the sole reducing agent

    International Nuclear Information System (INIS)

    Rio Segade, Susana; Tyson, Julian F.

    2003-01-01

    A simple, fast, precise and accurate method to determine inorganic mercury and total mercury in biological and environmental samples was developed. The optimized flow-injection mercury system permitted the separate determination of inorganic mercury and total mercury using sodium borohydride as reducing agent. Inorganic mercury was selectively determined after reduction with 10 -4 % w/v sodium borohydride, while total mercury was determined after reduction with 0.75% w/v sodium borohydride. The calibration graphs were linear up to 30 ng ml -1 . The detection limits of the method based on three times the standard deviation of the blank were 24 and 3.9 ng l -1 for total mercury and inorganic mercury determination, respectively. The relative standard deviation was less than 1.5% for a 10 ng ml -1 mercury standard. As a means of checking method performance, deionized water and pond water samples were spiked with methylmercury and inorganic mercury; quantitative recovery for total mercury and inorganic mercury was obtained. The accuracy of the method was verified by analyzing alkaline and acid extracts of five biological and sediment reference materials. Microwave-assisted extraction procedures resulted in higher concentrations of recovered mercury species, lower matrix interference with mercury determination and less time involved in sample treatment than conventional extraction procedures. The standard addition method was only needed for calibration when biological samples were analyzed. The detection limits were in the range of 1.2-19 and 6.6-18 ng g -1 in biological and sediment samples for inorganic mercury and total mercury determination, respectively

  12. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  13. Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution

    Science.gov (United States)

    Zhang, Jiao; Hao, Jinghao; Ma, Qianli; Li, Chuanqi; Liu, Yushan; Li, Baojun; Liu, Zhongyi

    2017-06-01

    Ruthenium/reduced graphene oxide nanocomposites (Ru/rGO NCs) were synthesized via an electrostatic self-assembly approach. Polyvinylpyrrolidone (PVP) stabilized and positively charged metallic ruthenium nanoclusters about 1.2 nm were synthesized and uniformly loaded onto negatively charged graphene oxide (GO) sheets via strong electrostatic interactions. The as-prepared Ru/rGO NCs exhibited superior performance in catalytic hydrolysis of sodium borohydride (NaBH4) to generate H2. The hydrogen generation rate was up to 14.87 L H2 min-1 gcat -1 at 318 K with relatively low activation energy of 38.12 kJ mol-1. Kinetics study confirmed that the hydrolysis of NaBH4 was first order with respect to concentration of catalysts. Besides, the conversion of NaBH4 remained at 97% and catalytic activity retained more than 70% after 5 reaction cycles at room temperature. These results suggested that the Ru/rGO NCs have a promising prospect in the field of clean energy.

  14. New hydrogen-rich ammonium metal borohydrides, NH4[M(BH4)4], M = Y, Sc, Al, as potential H2 sources.

    Science.gov (United States)

    Starobrat, A; Jaroń, T; Grochala, W

    2018-03-26

    Three metal-ammonium borohydrides, NH4[M(BH4)4] M = Y, Sc, Al, denoted 1, 2, 3, respectively, were prepared via a low temperature mechanochemical synthesis and characterized using PXRD, FTIR and TGA/DSC/MS. The compounds 1 and 2 adopt the P21/c space group while the compound 3 crystallizes in an orthorhombic unit cell (Fddd). The first decomposition step of all three derivatives of ammonium borohydride has the maximum rate at 48 °C, 53 °C and 35 °C for 1, 2 and 3, respectively, which are comparable to that for NH4BH4 (53 °C). The thermal decomposition of these metal-ammonium borohydrides is a multistep process, with predominantly exothermic low-temperature stages. The compound 1 decomposes via known Y(BH4)3, however, some of the solid decomposition products of the other two compounds have not been fully identified. In the system containing compound 2, a new, more dense polymorph of the previously reported LiSc(BH4)4 has been detected as the intermediate of slow decomposition at room temperature.

  15. Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH2-NaBH4 Hydrogen Storage Composite.

    Science.gov (United States)

    Pei, Ziwei; Bai, Ying; Wang, Yue; Wu, Feng; Wu, Chuan

    2017-09-20

    The lightweight compound material NaNH 2 -NaBH 4 is regarded as a promising hydrogen storage composite due to the high hydrogen density. Mechanical ball milling was employed to synthesize the composite NaNH 2 -NaBH 4 (2/1 molar ratio), and the samples were investigated utilizing thermogravimetric-differential thermal analysis-mass spectroscopy (TG-DTA-MS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The full-spectrum test (range of the ratio of mass to charge: 0-200) shows that the released gaseous species contain H 2 , NH 3 , B 2 H 6 , and N 2 in the heating process from room temperature to 400 °C, and possibly the impurity gas B 6 H 12 also exists. The TG/DTA analyses show that the composite NaNH 2 -NaBH 4 (2/1 molar ratio) is conductive to generate hydrogen so that the dehydrogenation process can be finished before 400 °C. Moreover, the thermal decomposition process from 200 to 400 °C involves two-step dehydrogenation reactions: (1) Na 3 (NH 2 ) 2 BH 4 hydride decomposes into Na 3 BN 2 and H 2 (200-350 °C); (2) remaining Na 3 (NH 2 ) 2 BH 4 reacts with NaBH 4 and Na 3 BN 2 , generating Na, BN, NH 3 , N 2 , and H 2 (350-400 °C). The better mechanism understanding of the thermal decomposition pathway lays a foundation for tailoring the hydrogen storage performance of the composite complex hydrides system.

  16. Investigation of the Performance of Aucore-Pdshell/C as the Anode Catalyst of Direct Borohydride-Hydrogen Peroxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2011-01-01

    Full Text Available The carbon-supported bimetallic Au-Pd catalyst with core-shell structure is prepared by successive reduction method. The core-shell structure, surface morphology, and electrochemical performances of the catalysts are characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, ultraviolet-visible absorption spectrometry, linear sweep voltammetry, and chronopotentiometry. The results show that the Au-Pd/C catalyst with core-shell structure exhibits much higher catalytic activity for the direct oxidation of NaBH4 than pure Au/C catalyst. A direct borohydride-hydrogen peroxide fuel cell, in which the Au-Pd/C with core-shell structure is used as the anode catalyst and the Au/C as the cathode catalyst, shows as high as 68.215 mW cm−2 power density.

  17. Simulating the synthesis and thermodynamic characteristics of the desolvation of lanthanide borohydride tris-Tetrahydrofuranates

    Science.gov (United States)

    Gafurov, B. A.; Mirsaidov, I. U.; Nasrulloeva, D. Kh.; Badalov, A.

    2013-10-01

    Lanthanide borohydride tris-tetrahydrofuranates (Ln(BH4) · 3THF, where THF is tetrahydrofuran and Ln is La, Nd, Sm, Gd, Er, Yb, and Lu) is synthesized via the exchange reaction of lanthanide(III) chloride and sodium borohydride in THF. It is found that synthesis proceeds according to a stepwise mechanism and the product of the reaction (lanthanide borohydride) initiates the process. The two-step character of the desolvation of Ln(BH4)3 · 3THF under steady-state conditions in the temperature range of 300 to 400 K is determined through X-ray phase and chemical analyses, tensiometry, and gas volumetry. It is established that one mole and then two moles of THF are removed from the initial sample at the first and second steps, respectively. Equations for barograms are obtained and the thermodynamic characteristics of desolvation of Ln(BH4)3 · 3THF under study are calculated. Gibbs energy values of the stages of process are determined semi-empirically. The law of its change for the entire series of Ln(BH4)3 · 3THF is determined with the emergence of the tetrad effect.

  18. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction

    International Nuclear Information System (INIS)

    Fontes, Eric Hossein

    2017-01-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H 2 PtCl 6 3•6H 2 0 and (RhNO 3 ) 3 , the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  19. Bis(phenolate)amine-supported lanthanide borohydride complexes for styrene and trans-1,4-isoprene (co-)polymerisations

    NARCIS (Netherlands)

    Bonnet, Fanny; Dyer, Hellen E.; El Kinani, Yassine; Dietz, Carin; Roussel, Pascal; Bria, Marc; Visseaux, Marc; Zinck, Philippe; Mountford, Philip

    2015-01-01

    New bis(phenolate)amine-supported neodymium borohydride complexes and their previously reported samarium analogues were tested as catalysts for the polymerisation of styrene and isoprene. Reaction of Na2O2NL (L = py, OMe, NMe2) with Nd(BH4)3(THF)3 afforded the borohydride complexes

  20. Preparation of Au nanosheets supported on Ni foam and its electrocatalytic performance towards NaBH4 oxidation

    International Nuclear Information System (INIS)

    Yang, Fan; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-01-01

    Highlights: • The unique Au nanosheets are electrodeposited uniformly on Ni foam substrate. • Au NSs/Ni foam electrode shows high catalytic activity for NaBH 4 electrooxidation. • The surface of a single Au sheet is consisted of many nano-scale corrugations. - Abstract: The unique Au nanosheets (Au NSs) are electrodeposited uniformly on Ni foam substrate via a one-step potentiostatic electrodeposition technique. The electrode is characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer and X-ray diffractometer. It shows a unique open structure allowing the full utilization of Au surface active sites. NaBH 4 electrooxidation in KOH solution on the Au NSs/Ni foam electrode are studied by linear sweep voltammetry and chronoamperometry. The electrode exhibits a high catalytic performance outperforming the Au particles made by the same method. At the oxidation potential of 0 V, the current density of 827 mA cm −2 can be achieved on Au NSs/Ni foam electrode, and only 219 mA cm −2 was obtained on Au NPs/Ni foam electrode, indicating that the catalytic activity is increased by 278%, which is attributed to the porous 3D structure, ensuring the full utilization of Au surfaces. Besides, H 2 generated by NaBH 4 hydrolysis can quickly diffuse away from the electrode, preventing surface active sites of Au from blocking by adsorbed gas bubbles

  1. Micromotor-based energy generation.

    Science.gov (United States)

    Singh, Virendra V; Soto, Fernando; Kaufmann, Kevin; Wang, Joseph

    2015-06-01

    A micromotor-based strategy for energy generation, utilizing the conversion of liquid-phase hydrogen to usable hydrogen gas (H2), is described. The new motion-based H2-generation concept relies on the movement of Pt-black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt-black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen-oxygen fuel cell car by an on-board motion-based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on-site energy generation for powering external devices or meeting growing demands on the energy grid. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation and characterization of PtRu/C, PtBi/C, PtRuBi/C electrocatalysts for direct electro-oxidation of ethanol in PEM fuels cells using the method of reduction by sodium borohydride

    International Nuclear Information System (INIS)

    Brandalise, Michele

    2010-01-01

    Pt/C, PtBi/C, PtRu/C and PtRuBi/C electrocatalysts were prepared by a borohydride reduction methodology and tested for ethanol oxidation. This methodology consists in mix a solution with sodium hydroxide and sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. It was studied the addition method of borohydride (drop by drop addition or rapid addition). The obtained electrocatalysts were characterized by energy dispersive X ray spectroscopy (EDX), thermogravimetric analysis (TGA), X ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry. The ethanol electro-oxidation was studied by cyclic voltammetry and chronoamperometry using the thin porous coating technique. The electrocatalysts were tested in real conditions of operation by unit cell tests. The stability of PtRuBi/C electrocatalysts was evaluated by cyclic voltammetry, chronoamperometry using the ultra-thin porous coating technique and ring-disk electrode. The PtRuBi/C electro catalyst apparently presented a good performance for ethanol electro-oxidation but experimental evidences showed accentuated bismuth dissolution. (author)

  3. Experimental advances and preliminary mathematical modeling of the Swiss-roll mixed-reactant direct borohydride fuel cell

    Science.gov (United States)

    Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.

    2014-11-01

    The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.

  4. Synthesis of cerium and nickel doped titanium nanofibers for hydrolysis of sodium borohydride.

    Science.gov (United States)

    Tamboli, Ashif H; Gosavi, S W; Terashima, Chiaki; Fujishima, Akira; Pawar, Atul A; Kim, Hern

    2018-07-01

    A recyclable titanium nanofibers, doped with cerium and nickel doped was successfully synthesized by using sol-gel and electrospinning method for hydrogen generation from alkali free hydrolysis of NaBH 4 . The resultant nanocomposite was characterized to find out the structural and physical-chemical properties by a series of analytical techniques such as FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscope), EDX (energy-dispersive X-ray spectroscopy),N 2 adsorption-desorption and BET (Brunauer-Emmett-Teller), etc. The results revealed that cerium and nickel nanoparticles were homogeneously distributed on the surface of the TiO 2 nanofibers due to having similar oxidation state and atomic radium of TiO 2 nanofibers with CeO 2 and NiO for the effective immobilization of metal ions. The NiO doped catalyst showed superior catalytic performance towards the hydrolysis reaction of NaBH 4 at room temperature. These catalysts have ability to produce 305 mL of H 2 within the time of 160 min at room temperature. Additionally, reusability test revealed that the catalyst is active even after five runs of hydrolytic reaction, implying the as-prepared NiO doped TiO 2 nanofibers could be considered as a potential candidate catalyst for portable hydrogen fuel system such as PEMFC (proton exchange membrane fuel cells). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The metal borohydrides

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2004-01-01

    Publications on borohydrides of metals are systematized in the monograph. Special attention is paid to investigation in the field of synthesis and properties of borohydrides of rare-earth metals, which were carried out under author's supervision. The monograph reviews the basic types of chemical reactions, which are inherent to borohydrides of metals, and structural principles account for their molecular and crystal structures

  6. Fast and efficient method for reduction of carbonyl compounds with NaBH4 /wet SiO2 under solvent free condition

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Bahyar, Tarifeh

    2005-01-01

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO 2 (30% m/m) under solvent free condition. The reactions were performed at room temperature or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  7. Stereoselective sodium borohydride reductions of cyclopentanones: influence of ceric chloride on the stereochemistry of reaction

    Directory of Open Access Journals (Sweden)

    Constantino Mauricio Gomes

    1998-01-01

    Full Text Available In this paper we describe the reduction by NaBH4 of some cyclopentanones containing an oxygenated function at the side chain position beta to the carbonyl group, both in the presence and in the absence of CeCl3. Some suggestions for the rationalization of the results are discussed, considering the stereochemical course of the reactions.

  8. New double-cation borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Inge; Domenech Ferrer, Roger; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, 01171 Dresden (Germany); Filinchuk, Yaroslav [Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Hagemann, Hans; Cerny, Radovan [Department of Physical Chemistry and Crystallography, University of Geneva, 1211 Geneva (Switzerland)

    2011-07-01

    Complex hydrides are under consideration for on-board hydrogen storage due to their high hydrogen density. However, up to now conventional borohydrides are either too stable or unstable for applications as in PEM fuel cells (60-120 C). Recently, double-cation borohydride systems have attracted great interest. The desorption temperature of the borohydrides decreases with increasing electronegativity of the cation. Consequently, it is possible to tailor a feasible on-board hydrogen storage material by the combination of appropriate cations. The stability was found to be intermediate between the single-cation borohydride systems. Two combinations were sucessfully synthesised by metathesis reaction via high energy ball milling. Al-Li-borohydride shows desorption at about 70 C combined with a very high hydrogen density (17.2 wt.%) and the Na-Al-borohydride (14.2 wt.%) decomposes around 90 C. Both desorption temperatures are in the target range for applications. The decomposition pathways were observed by in-situ-Raman spectroscopy, DSC (Differential Scanning Calorimetry), TG (Thermogravimetry) and thermal desorption measurements.

  9. Synthesis of graphene platelets by chemical and electrochemical route

    International Nuclear Information System (INIS)

    Ramachandran, Rajendran; Felix, Sathiyanathan; Joshi, Girish M.; Raghupathy, Bala P.C.; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2013-01-01

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH 4 was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide

  10. Pressure Drop and Catalytic Dehydrogenation of NaBH{sub 4} Solution Across Pin Fin Structures in a Microchannel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Moon [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Choi, Seok Hyun [Key Valve Technologies Ltd., Siheung (Korea, Republic of); Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of)

    2017-06-15

    Dehydrogenation from the hydrolysis of a sodium borohydride (NaBH{sub 4}) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a NaBH4 solution over both a single microchannel with a hydraulic diameter of 300 μm and a staggered array of micro pin fins in the microchannel with hydraulic diameter of 50 μm. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

  11. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chatenet, M. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)], E-mail: Marian.Chatenet@phelma.grenoble-inp.fr; Molina-Concha, M.B. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); El-Kissi, N. [Laboratoire de Rheologie, UMR 5520 CNRS/Grenoble-INP/UJF, 1301 rue de la piscine, 38041 Grenoble Cedex 9 (France); Parrour, G.; Diard, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)

    2009-07-15

    This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH{sub 4} electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.01 M NaBH{sub 4} at 25 deg. C in the present study vs. ca. 1.6 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.02 M NaBH{sub 4} at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H{sub 2} bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H{sub 2} bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the

  12. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Se Guen; Oh, Eun Jung; Chung, Ho Yun; Han, Sang Ik; Kim, Eun Jung; Seo, Song Yi; Ghim, Han Do; Yeum, Jeong Hyun; Choi, Jin Hyun

    2011-11-01

    Excellent colloidal stability and antimicrobial activity are important parameters for silver nanoparticles (AgNPs) in a range of biomedical applications. In this study, polyethyleneimine (PEI)-capped silver nanoparticles (PEI-AgNPs) were synthesized in the presence of sodium borohydride (NaBH(4)) and PEI at room temperature. The PEI-AgNPs had a positive zeta potential of approximately +49 mV, and formed a stable nanocolloid against agglomeration due to electrostatic repulsion. The particle size and hydrodynamic cluster size showed significant correlations with the amount of PEI and NaBH(4). PEI-AgNPs and even PEI showed excellent antimicrobial activity against Staphylococus aureus and Klebsiella pneumoniae. The cytotoxic effects of PEI and PEI-AgNPs were confirmed by an evaluation of the cell viability. The results suggest that the amount of PEI should be minimized to the level that maintains the stability of PEI-AgNPs in a colloidal dispersion. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Science.gov (United States)

    Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping

    2015-05-01

    Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  15. Enhanced catalytic performance in hydrogen generation from NaBH4 hydrolysis by super porous cryogel supported Co and Ni catalysts

    Science.gov (United States)

    Seven, Fahriye; Sahiner, Nurettin

    2014-12-01

    The neutral 3-D superporous cryogel is prepared from a poly(acrylamide) (p(AAm)) hydrogel network modified with an amidoximation reaction to induce chemical changes to produce superporous amidoximated-p(AAm) (amid-p(AAm)) cryogel. The newly-formed strongly ionizable matrices can readily absorb metal ions such as Co(II) and Ni(II) enabling in situ preparation of corresponding metal nanoparticles by NaBH4 treatments. It is found that the superporous amid-p(AAm)-Co cryogel composite is very effective as a catalyst for H2 generation from hydrolysis of NaBH4 in alkaline medium. Furthermore, it is demonstrated that the metal ion loading capacity and catalytic activity of superporous amid-p(AAm)-Co cryogel composites increased with 2nd and 3rd Co(II) ion loading and reduction cycles. The hydrogen generation rate of p(AAm)-Co metal composites is increased to 1926.3 ± 1.1 from 1130.2 ± 1.5 (mL H2) (min)-1 (g of M)-1. The effect of various parameters such as porosity, metal type, the number of reloading and reduction cycles of the metal ion, and temperature are investigated for the hydrolysis of NaBH4. The kinetic parameters such as energy, enthalpy and entropy are determined as Ea = 39.7 ± 0.2 kJ mol-1, ΔH = 37.2 ± 0.1 kJ mol-1 and ΔS = -171.9 ± 0.5 J mol-1 K-1, respectively.

  16. Synthesis of Halide- and Solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Jensen, Torben René

    chloride or LiBH4 is present in the sample. The synthesis pathway has been shown to work for most of the already known metal borohydrides, M = Na, Ca, Sr, Ba, Y, La, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, but also new borohydrides are formed, M = Pr, Nd and Lu. Besides new compounds, new polymorphs...

  17. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  18. Effect of borohydride addition rate on chemically prepared amorphous Fe-B particles

    International Nuclear Information System (INIS)

    Koch, C.B.; Morup, S.; Linderoth, S.

    1991-01-01

    Amorphous Fe-B alloys can be prepared by reacting aqueous solutions of Fe salts and NaBH 4 . In this paper the effect of the addition rate of the NaBH 4 solution to the FeSO 4 solution on the precipitate is investigated. The chemical composition of the amorphous alloys formed varies between Fe 79 B 21 and Fe 68 B 32 . The hyperfine parameters of the alloys, derived from Mossbauer spectra, show a decrease from 29 to 25 T of the magnetic hyperfine field and an increase from 0.19 to 0.28 mms -1 of the isomer shift with increasing NaBH 4 addition rate. The results suggest that alloys with different structures but identical composition may be produced by chemical reduction

  19. Micro poly(3-sulfopropyl methacrylate) hydrogel synthesis for in situ metal nanoparticle preparation and hydrogen generation from hydrolysis of NaBH4

    International Nuclear Information System (INIS)

    Turhan, Tugce; Güvenilir, Yuksel Avcıbası; Sahiner, Nurettin

    2013-01-01

    Polymeric hydrogels derived from SPM (3-sulfopropyl methacrylate) of micrometer size were used in the preparation of a composite-catalyst system for hydrogen generation from hydrolysis of NaBH 4 . In situ Co and Ni nanoparticles were prepared by chemical reduction of absorbed Co (II) and Ni (II) ions inside the hydrogel networks, and the whole composite was used as a catalyst system. The catalytic activity of the metal nanoparticles within the p(SPM) hydrogel matrix was better and faster using Co than with Ni. Additionally, other parameters that affect the hydrogen generation rate, such as temperature, metal reloading, the catalyst amounts as well as reusability, were also investigated. It was found that p(SPM)–Co micro hydrogels were even effective for hydrogen generation at 0 °C with a hydrogen generation rate of 966 (mL H 2 ) (min) −1 (g of Co) −1 . The activation energy, activation enthalpy, and activation entropy for the hydrolysis reaction of NaBH 4 with micro p(SPM)–Co catalyst system were calculated as 44.3 kJ/mol, 43.26 kJ/mol K, and −150.93 J/mol K, respectively. - Highlights: ► Microgel embedding metal catalyst for H 2 production. ► Advanced materials for green energy. ► Soft microgel reactors for H 2 production from NaBH 4 hydrolysis

  20. Effect of chloride substitution on the order–disorder transition in NaBH4 and Na11BD4

    International Nuclear Information System (INIS)

    Olsen, Jørn Eirik; Karen, Pavel; Sørby, Magnus H.; Hauback, Bjørn C.

    2014-01-01

    Graphical abstract: Interactions that order the BD 4 - tetrahedra below the order–disorder transition became increasingly frustrated by the solute in the Na( 11 BD 4 ) 1−x Cl x solid solutions, and the order disappears at x = 0.158. Highlights: • The order–disorder transition temperature for Na(BH 4 ) 1−x Cl x and Na( 11 BD 4 ) 1−x Cl x is highly dependent on the Cl-content, x. • The transition is characterized by DSC for Na( 11 BD 4 ) 1−x Cl x for x = 0, 0.10 and 0.15. • No transition is observed for x ⩾ 0.20 on cooling to 8 K. • The crystal structures are reported for Na 11 BD 4 at room temperature and 8 K and Na( 11 BD 4 ) 1−x Cl x (x = 0.10, 0.15, 0.20 and 0.25) at 8 K from powder neutron diffraction. -- Abstract: Phase transition associated with anion disordering over two orientations in Na 11 BD 4 (NaBH 4 ) and its solid solutions with NaCl, Na( 11 BD 4 ) 1−x Cl x , is investigated with powder diffraction (neutron and synchrotron radiation), differential scanning calorimetry and Raman spectroscopy. Upon heating, the transition temperature extrapolated to zero rate of heating is 192.2 K for Na 11 BD 4 , ΔS = 4.41 J/mol K, hysteresis 1.7 K and the volume increase 0.43%. Thermal parameters of the transition in Na( 11 BD 4 ) 1−x Cl x follow a colligative-property model of an ideal solution, with x = 0.158(1) as the critical concentration at which the ordering interactions and the transition itself are eliminated. On approaching this limit, the tetragonal distortion of the ordered structure decreases somewhat towards the cubic average, and this is associated with a partial disorder of the tetrahedral anions seen by diffraction methods. In fact, a 3% disorder is already present in the pure solvent of the solid solution (Na 11 BD 4 ) at 8 K

  1. Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications

    International Nuclear Information System (INIS)

    Ramachandran, Rajendran; Saranya, Murugan; Velmurugan, Venugopal; Raghupathy, Bala P.C.; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2015-01-01

    Highlights: • Chemical reduction route was adopted for graphene preparation. • Electrochemical measurements were carried out in 6 M KOH. • Better electrochemical properties obtained for graphene than graphene oxide. • A high specific capacitance of 284.3 F/g was observed for SR1:10. - Abstract: A simple chemical route was adopted for the preparation of graphene by chemical reduction route using sodium borohydride (NaBH 4 ) as a reducing agent. A systematic study was done to show the effect of NaBH 4 on the reduction and the obtained graphene samples were characterized using X-ray diffraction, Fourier transform spectroscopy, Raman spectroscopy, Atomic force microcopy and High resolution transmission electron microscopy. Better reduction of GO was observed at GO and NaBH 4 ratio of 1:10 (denoted as SR1:10). Further, the investigation was emphasized to show the effect of the above GO to reductant ratio on its charge storage properties. Electrochemical measurements were carried out in 6 M KOH electrolyte and the results show that the capacitance performance was increased in the order of GO < SR1:8 < SR1:4 < SR1:12 < SR1:10. A high specific capacitance of 284.3 F/g was observed for SR1:10 electrode at 5 mV/s scan rate could be due to better electrical conductivity of sample. The ratio of GO and NaBH 4 was optimized to 1:10 for high degree reduction of graphene, which has higher capacitance towards supercapacitor applications

  2. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Isotopic Labeling with Sodium Borodeuteride in the Introductory Organic Chemistry Laboratory

    Science.gov (United States)

    Kjonaas, Richard A.; Fitch, Richard W.; Noll, Robert J.

    2017-01-01

    A microscale isotopic labeling experiment is described for the introductory organic chemistry laboratory course wherein half of the students use sodium borohydride (NaBH[subscript 4]) and the other half use sodium borodeuteride (NaBD[subscript 4]) to reduce acetophenone to 1-phenylethanol and then compare spectral data. The cost is reasonable, and…

  3. Catalysis by silver nanoparticles/porous silicon for the reduction of nitroaromatics in the presence of sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Cheng, Heming; Cui, Ping

    2014-02-15

    A facile approach of preparing well-dispersed silver nanoparticles (Ag NPs) which fabricated on surface of porous silicon (PSi) generating Ag NPs/PSi chip and the catalyses towards reduction of nitro aromatics are described in detail in this work. Aqueous silver ions are reduced readily by the surface Si-H{sub x} (x =1, 2 or 3) species of PSi within dozens of seconds at room temperature. The resulted Ag NPs are demonstrated by scanning and transmission electron microscopes, ultraviolet-visible spectrum and X-ray powder diffraction. A proposed mechanism of forming Ag NPs on PSi chip is discussed in light of the observed phenomena and the analyses of infrared and energy dispersive X-ray spectra. The stably porous architecture of PSi and the well-dispersed Ag NPs on PSi surface guarantee the highly catalytic activities of the Ag NPs/PSi chip. The progresses of reducing nitro aromatics catalyzed by the Ag NPs/PSi chip in the presence of sodium borohydride are traced by ultraviolet-visible measurements to estimate the catalytic performance of the Ag NPs/PSi chip.

  4. Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Mechanical, Auto, and Materials Engineering, University of Windsor, Windsor, N9B 3P4 (Canada); Gyenge, Elod L. [Chemical and Biological Engineering, The University of British Colombia, Vancouver, BC, V6T 1Z4 (Canada)

    2007-10-15

    In this study, colloidal silver and silver-alloys (Ag-Pt, Ag-Au, Ag-Ir, and Ag-Pd) prepared by the Boenneman technique were evaluated as anode catalysts for sodium borohydride oxidation using cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and rotating disk electrode (RDE) voltammetry. The CV results show that the colloidal Ag-alloys were electrochemically active towards borohydride oxidation with oxidation potentials ranging between -0.7 and 0.4 V vs. Hg/HgO (MOE). The most negative oxidation potential was recorded on Ag-Pt. CA results show that the steady state current density was highest on Ag-Pt, followed by Ag-Ir, Ag-Au, and Ag-Pd. The lowest overpotential was recorded on Ag-Ir for a current step change of 10mAcm{sup -2}. A significant temperature effect and a small rotation speed effect were found in the rotating disc voltammetry for all the investigated colloids. The highest peak current was recorded on Ag-Au, while the most negative peak potential was recorded on Ag-Ir. (author)

  5. Cold-starting portable microenergy system. Autonomous fuel cell system using sodium borohydride as an energy source; Kaltstartfaehiges portables Mikroenergiesystem. Autarkes BZ-System mit Natriumborhydrid als Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Groos, Ulf; Koch, Wolfgang [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    2012-10-15

    A project consortium led by Fraunhofer-Institut fuer Solare Energiesysteme ISE developed an autonomous micro energy system (AMES) with an output of 100 W{sub el} as a charging station for applications in emergency medicine. The system is designed for a wide temperature range of -15 to +50 degC during startup, operation, and shutoff. The cold starting fuel cell system is in accordance with current standards and is suited for serial production. It can be operated with common hydrogen stores, e.g. gas flasks or metal hydrides, or else with a specially developed hydrogen generator based on sodium borohydride. (orig.)

  6. Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage.

    Science.gov (United States)

    Shin, Kyuchul; Kim, Yongkwan; Strobel, Timothy A; Prasad, P S R; Sugahara, Takeshi; Lee, Huen; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-06-11

    In this study, we demonstrate that tetra-n-butylammonium borohydride [(n-C(4)H(9))(4)NBH(4)] can be used to form a hybrid hydrogen storage material. Powder X-ray diffraction measurements verify the formation of tetra-n-butylammonium borohydride semiclathrate, while Raman spectroscopic and direct gas release measurements confirm the storage of molecular hydrogen within the vacant cavities. Subsequent to clathrate decomposition and the release of physically bound H(2), additional hydrogen was produced from the hybrid system via a hydrolysis reaction between the water host molecules and the incorporated BH(4)(-) anions. The additional hydrogen produced from the hydrolysis reaction resulted in a 170% increase in the gravimetric hydrogen storage capacity, or 27% greater storage than fully occupied THF + H(2) hydrate. The decomposition temperature of tetra-n-butylammonium borohydride semiclathrate was measured at 5.7 degrees C, which is higher than that for pure THF hydrate (4.4 degrees C). The present results reveal that the BH(4)(-) anion is capable of stabilizing tetraalkylammonium hydrates.

  7. Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids

    International Nuclear Information System (INIS)

    Thu, Tran Viet; Ko, Pil Ju; Phuc, Nguyen Huu Huy; Sandhu, Adarsh

    2013-01-01

    The synthesis of supported, ultrasmall metallic nanoparticles (NPs) is of great importance for catalytic applications. In this study, silver-reduced graphene oxide nanohybrids (Ag–rGO NHs) were prepared by reducing Ag ions and graphene oxide (GO) at room temperature using sodium borohydride (NaBH 4 ) and trisodium citrate. The resulting products were characterized using UV–Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy. The rich chemistry of GO surface provided many sites for the nucleation of Ag ions and efficiently limited their growth. Ag NPs were uniformly grown on basal planes of rGO with a high density (∼1,700 NPs μm −2 ) and well-defined size (3.6 ± 0.6 nm) as evidenced in SEM and HRTEM studies. The resulting Ag–rGO NHs were readily dispersed in water and exhibited enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 in comparison to unsupported Ag NPs. The role of rGO as an excellent support for Ag catalyst is discussed

  8. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  9. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    Science.gov (United States)

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  10. Li-Al-borohydride as a potential candidate for on-board hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Inge; Domenech Ferrer, Roger; Dunsch, Lothar; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, PO Box 270016, D-01171 Dresden (Germany); Filinchuk, Yaroslav [Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Hagemann, Hans; Cerny, Radovan [University of Geneva, Crystallography and Physical Chemistry Department, 1211 Geneva (Switzerland)

    2010-07-01

    Recently, double-cation borohydride systems have attracted great interest. It was found that the desorption temperature of the borohydrides decreases with increasing electronegativity of the cation. Consequently, it is possible to tailor a feasible on-board hydrogen storage material by combination of appropriate cations. Li-Al-borohydride shows a desorption temperature suitable for applications ({approx} 70 C) combined with an high hydrogen density (17.2 wt.%). It was synthesised via high energy ball milling of AlCl{sub 3} and LiBH{sub 4}. The structure of the compound was obtained from high-resolution synchrotron powder diffraction and shows a unique complex structure within the borohydrides. The material was characterized by means of in-situ-Raman, DSC, TG and thermal desorption measurements to study its decomposition pathway. The desorption at {approx} 70 C results in the formation of LiBH{sub 4} while the high mass loss of about 20% points to the release of not only hydrogen but also diborane. This is right now the main drawback for applications because it hinders reversibility.

  11. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  12. Summary of gold nanoparticles obtained by reduction Au3+

    International Nuclear Information System (INIS)

    Corzo Lucioni, Alberto

    2012-01-01

    In the present investigation were synthesized nanoparticles (NPs) of gold by oxidation-reduction reactions at boiling temperature, starting from dilute solutions of acid tetrachloroauric: H[AuCl 4 ].3H 2 O as a precursor in the presence of organic reducing agents such as trisodium citrate: Na 3 C 6 H 5 O 7 .2H 2 O; potassium sodium tartrate: KNaC 4 H 4 O 6 .4H 2 O and sodium borohydride: inorganic reducing agent NaBH 4 . With the aim of evaluating the particle size according to the type of reducing agent, is designed a series of experiments in which the reducing agent is changed, keeping it constant concentrations, but varying the concentration of H[AuCl 4 ]. The particle size and the absorbance of the plasmon Au were measured in a particle size analyzer and a UV - visible, respectively. In turn, the effect of pH variation on the size of the NP Au, maintaining concentrations of H [AuCl 4 ] constant and reducing agent trisodium citrate, at different pH values under the same conditions. (author).

  13. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    Sesha Srinivasan; Elias Lee Stefanakos; Yogi Goswami

    2006-01-01

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH 4 ) 2 ] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH 4 /MgH 2 catalyzed with ZnCl 2 has been synthesized and characterized using various analytical techniques. (authors)

  14. Synthesis, characterization and fabrication of copper nanoparticles in N-isopropylacrylamide based co-polymer microgels for degradation of p-nitrophenol

    Directory of Open Access Journals (Sweden)

    Farooqi Zahoor H.

    2015-03-01

    Full Text Available Poly(N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AAc] microgels were synthesized by precipitation polymerization. Copper nanoparticles were successfully fabricated inside the microgels by in-situ reduction of copper ions in an aqueous medium. The microgels were characterized by Fourier Transform Infrared Spectroscopy (FT-IR and Dynamic Light Scattering (DLS. Hydrodynamic radius of P(NIPAM-co-AAc microgel particles increased with an increase in pH in aqueous medium at 25 °C. Copper-poly(N-isopropylacrylamide-co-acrylic acid [Cu-P(NIPAM-co-AAc] hybrid microgels were used as a catalyst for the reduction of 4-nitrophenol (4-NP. Effect of temperature, concentration of sodium borohydride (NaBH4 and catalyst dosage on the value of apparent rate constant (kapp for catalytic reduction of 4-NP in the presence of Cu-P(NIPAM-co-AAc hybrid microgels were investigated by UV-Vis spectrophotometry. It was found that the value of kapp for catalytic reduction of 4-NP in the presence of Cu-P(NIPAM-co-AAc hybrid microgel catalyst increased with an increase in catalyst dosage, temperature and concentration of NaBH4 in aqueous medium. The results were discussed in terms of diffusion of reactants towards catalyst surface and swelling-deswelling of hybrid microgels.

  15. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  16. Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage.

    Science.gov (United States)

    Jepsen, Lars H; Ley, Morten B; Filinchuk, Yaroslav; Besenbacher, Flemming; Jensen, Torben R

    2015-04-24

    A series of halide-free ammine manganese borohydrides, Mn(BH4 )2 ⋅nNH3 , n=1, 2, 3, and 6, a new bimetallic compound Li2 Mn(BH4 )4 ⋅6NH3 , and the first ammine metal borohydride solid solution Mg1-x Mnx (BH4 )2 ⋅6NH3 are presented. Four new crystal structures have been determined by synchrotron radiation powder X-ray diffraction and the thermal decomposition is systematically investigated for all the new compounds. The solid-gas reaction between Mn(BH4 )2 and NH3 provides Mn(BH4 )2 ⋅6NH3 . The number of NH3 per Mn has been varied by mechanochemical treatment of Mn(BH4 )2 ⋅6NH3 -Mn(BH4 )2 mixtures giving rise to increased hydrogen purity for n/m≤1 for M(BH4 )m ⋅nNH3 . The structures of Mg(BH4 )2 ⋅3NH3 and Li2 Mg(BH4 )4 ⋅6NH3 have been revisited and new structural models are presented. Finally, we demonstrate that ammonia destabilizes metal borohydrides with low electronegativity of the metal (χp ∼1.6) are generally stabilized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, David; Neiner, Doinita [U.S. Borax Inc., Rio Tinto, Greenwood Village, CO (United States); Bowden, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA (United States); Whittemore, Sean; Holladay, Jamie [Pacific Northwest National Laboratory, Richland, WA (United States); Huang, Zhenguo [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2500 (Australia); Autrey, Tom [Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-10-05

    Highlights: • Adjusting ratio of Q = Na/B will maximize H{sub 2} storage capacity of liquid carrier. • Mixtures of hydrolysis products are desirable to maximize solubility. • 6.5 wt.% hydrogen and remains liquid from beginning to end. - Abstract: In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH){sub 3}) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mol ratio of NaOH to B(OH){sub 3}, M/B = 1, the ratio of the hydrolysis product formed from NaBH{sub 4} hydrolysis, the sole borate species formed and observed by {sup 11}B NMR is sodium metaborate, NaB(OH){sub 4}. When the ratio is 1:3 NaOH to B(OH){sub 3}, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the {sup 11}B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB{sub 3}H{sub 8}, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt.% NaB{sub 3}H{sub 8} solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 M ratio of NaOH and B(OH){sub 3} and releases >8 eq of H{sub 2}. By optimizing the M/B ratio a complex mixture of soluble products, including B{sub 3}O{sub 3}(OH){sub 5}{sup 2−}, B{sub 4}O{sub 5}(OH){sub 4}{sup 2−}, B{sub 3}O{sub 3}(OH){sub 4}{sup −}, B{sub 5}O{sub 6}(OH){sub 4}{sup −} and B(OH){sub 3}, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB{sub 3}H{sub 8} can provide a 40% increase in H{sub 2} storage density compared to the hydrolysis

  18. New borohydride anion B6H7-

    International Nuclear Information System (INIS)

    Kuznetsov, I.Yu.; Vinitskij, D.M.; Solntsev, K.A.

    1985-01-01

    The [Ni(Bipy) 3 ] (B 6 H 7 ) 2 , (Ph 4 P)B 6 H 7 , [Ni(Phen) 3 ](B 6 H 7 ) 2 crystals (where Bipy = bipyridine, Phen = phenathroline, Ph = phenyl) are obtained via the exchange reaction with a subsequent recrystallization from aqua-acetonic and acetonic solutions. The structure is studied of a new borohydride anion B 6 H 7 - possessing a four-valence bond unique for polyhedral borohydride anions. A triangular face of boride skeleton coordinating a hydrogen atom is considerably larger than other faces, and the electron density on this hydrogen atom is evidently much higher than at the end hydride hydrogen atoms. The trend of B 6 H 7 - anion to form statistically disordered structurs testifies to a rather slight effect of the seventh hydrogen atom position on the structure pattern of the ionic crystal lattice

  19. Isotopic Exchange in Porous and Dense Magnesium Borohydride.

    Science.gov (United States)

    Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C

    2015-09-01

    Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A fast method for the determination of lead in honey samples using stabilizer-free silver nanoparticles

    Science.gov (United States)

    Bittar, Dayana Borges; Catelani, Tiago Augusto; Pezza, Leonardo; Pezza, Helena Redigolo

    2018-01-01

    A sensitive, rapid and robust method based on the use of stabilizer-free silver nanoparticles was developed for lead detection in honey. Silver nanoparticles were synthesized without the presence of any stabilizers using silver nitrate and sodium borohydride as precursors where the latter was applied as reducing agent. The optimization of the experimental variables (AgNO3 and NaBH4) for the formation of the nanoparticles was carried out using varying volumes of these solutions. Spectrophotometric measurements at 393 nm showed a linear working range between 0.0500 and 0.167 mg L- 1 lead (R = 0.994), with limits of detection (LOD) and quantification (LOQ) of 0.0135 and 0.0451 mg L- 1, respectively. The proposed method proved to be a significantly sensitive mechanism for lead detection in honey samples.

  1. Magnetic nanofilms of nickel prepared at the liquid-liquid interface

    International Nuclear Information System (INIS)

    Varghese, Neenu; Rao, C.N.R.

    2011-01-01

    Highlights: → Formation of nickel thinfims at the organic-aqueous interface at room temperature. → Thickness of nanofilm is ∼20 nm. → Ni nanofilms exhibit superparamagnetic behavior. → Thicker Ni films are obtained at a higher temperature (60 o C). -- Abstract: Thin films of metallic nickel with a thickness of the order of 20 nm have been prepared at the organic-aqueous interface at room temperature by the reaction of nickel cupferronate [Ni(C 6 H 5 N 2 O 2 ) 2 ] in toluene medium and sodium borohydride (NaBH 4 ) in aqueous medium. The films were characterized with transmission electron microscopy, scanning electron microscopy and atomic force microscopy. Thicker Ni films could be prepared by carrying out the reaction at the interface at 60 o C. The Ni nanofilms exhibit superparamagnetic behavior.

  2. Hydrogen storage using borohydrides

    International Nuclear Information System (INIS)

    Bernard BONNETOT; Laetitia LAVERSENNE

    2006-01-01

    The possibilities of hydrogen storage using borohydrides are presented and discussed specially in regard of the recoverable hydrogen amount and related to the recovering conditions. A rapid analysis of storage possibilities is proposed taking in account the two main ways for hydrogen evolution: the dehydrogenation obtained through thermal decomposition or the hydrolysis of solids or solutions. The recoverable hydrogen is related to the dehydrogenation conditions and the real hydrogen useful percentage is determined for each case of use. The high temperature required for dehydrogenation even when using catalyzed compounds lead to poor outlooks for this storage way. The hydrolysis conditions direct the chemical yield of the water consuming, and this must be related to the experimental conditions which rule the storage capacity of the 'fuel' derived from the borohydride. (authors)

  3. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  4. Synthesis and Heme Polymerization Inhibitory Activity (HPIA Assay of Antiplasmodium of (1-N-(3,4-Dimethoxybenzyl-1,10-Phenanthrolinium Bromide from Vanillin

    Directory of Open Access Journals (Sweden)

    Dhina Fitriastuti

    2014-03-01

    Full Text Available The synthesis of (1-N-(3,4-dimethoxy-benzyl-1,10-phenanthrolinium bromide had been conducted from vanillin. Heme polymerization inhibitory activity assay of the synthesized antiplasmodium has also been carried out. The first step of reaction was methylation of vanillin using dimethylsulfate and NaOH. The mixture was refluxed for 2 h to yield veratraldehyde in the form of light yellow solid (79% yield. Methylation product was reduced using sodium borohydride (NaBH4 with grinding method and yielded veratryl alcohol in the form of yellow liquid (98% yield. Veratryl alcohol was brominated using PBr3 to yield yellowish black liquid (85% yield. The final step was benzylation of 1,10-phenanthroline monohydrate with the synthesized veratryl bromide under reflux condition in acetone for 14 h to afford (1-N-(3,4-dimethoxy-benzyl-1,10-phenanthrolinium bromide (84% as yellow solid with melting point of 166-177 °C. The structures of products were characterized by FT-IR, GC-MS and 1H-NMR spectrometers. The results of heme polymerization inhibitory activity assay of (1-N-(3,4-dimethoxybenzyl-1,10-phenanthrolinium bromide showed that it had IC50 HPIA of 3.63 mM, while chloroquine had IC50 of4.37 mM. These results indicated that (1-N-(3,4-dimethoxybenzyl-1,10-phenanthrolinium bromide was more potential antiplasmodium than chloroquine.

  5. Comparison studies on catalytic properties of silver nanoparticles biosynthesized via aqueous leaves extract of Hibiscus rosa sinensis and Imperata cylindrica

    Science.gov (United States)

    Fairuzi, Afiza Ahmad; Bonnia, Noor Najmi; Akhir, Rabiatuladawiyah Md.; Akil, Hazizan Md; Yahya, Sabrina M.; Rahman, Norafifah A.

    2018-05-01

    Synthesis of silver nanoparticles has been developed by using aqueous leaves extract (ALE) of Hibiscus rosa sinensis (H. rosa sinensis) and Imperata cylindrica (I. cylindrica). Both plants extract acts as reducing and capping agent. The colour change in reaction mixture (pale yellow to dark brown) was observed during the synthesis process. The formation of silver nanoparticles was confirmed by surface Plasmon Resonance (SPR) at range 300-700 nm for both leaves using UV-Vis Spectroscopy. The reduction of silver ions to silver nanoparticles was completed within 2 hour for H. rosa sinensis and 30 minutes for I. cylindrica extract. The synthesized nanoparticles were characterized using UV-Vis spectroscopy, field emission scanning electron microscope (FESEM) and Fourier transform infrared (FTIR) spectroscopy. The morphology of silver nanoparticles was found to be different when synthesized using different plant extract. In addition, this study also reported on the effect of silver nanoparticles on the degradation of organic dye by sodium borohydride (NaBH4). The silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method compared to the conventional physical and physical methods. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer is established in the present study.

  6. Hollow Mesoporous Silica Supported Ruthenium Nanoparticles: A Highly Active and Reusable Catalyst for H2 Generation from the Hydrolysis of NaBH4

    Directory of Open Access Journals (Sweden)

    Shuge Peng

    2015-01-01

    Full Text Available Ru nanoparticles supported on hollow mesoporous silica (HMS, which are prepared via in situ wet chemical reduction, have been investigated as the highly efficient heterogeneous catalyst for H2 generation from the hydrolysis of an alkaline NaBH4 solution. Many techniques, including X-ray diffraction (XRD, transmission electron microscope (TEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the as-prepared nanocatalyst (Ru/HMS. Factors, such as Ru loadings in HMS, catalyst concentration, and solution temperature, on catalytic property and reutilization are investigated in this work. A rate of H2 generation as high as 18.6 L min−1 g−1 (Ru using 1 wt% NaBH4 solution containing 3 wt% NaOH and 40 mg of Ru/HMS catalyst can be reached at room temperature. The minimum apparent activation energy (Ea of H2 generation, obtained by fitting the curve of Ea values versus catalyst amount, is determined to be 46.7 ± 1 kJ/mol. The residual catalytic activity of the repeated Ru/HMS still remains 47.7% after 15 runs, which perhaps results from the incorporation of the residual by-product (NaBO2 in the pores of HMS based on the analysis of XPS.

  7. Synthesis and characterization of Pa(IV), Np(IV), and Pu(IV) borohydrides

    International Nuclear Information System (INIS)

    Banks, R.H.; Edelstein, N.M.

    1979-12-01

    The actinide borohydrides of Pa, Np, and Pu have been prepared and some of their physical and optical properties measured. X-ray powder diffraction photographs of Pa(BH 4 ) 4 have shown that it is isostructural to Th(BH 4 ) 4 and U(BH 4 ) 4 . Np(BH 4 ) 4 and Pu(BH 4 ) 4 are much more volatile than the borohydrides of Th, Pa, and U and are liquids at room temperature. Results from low-temperature single-crystal x-ray diffraction investigation of Np(BH 4 ) 4 show that its structure is very similar to Zr(BH 4 ) 4 . With the data from low-temperature infrared and Raman spectra, a normal coordinate analysis on Np(BH 4 ) 4 and Np(BD 4 ) 4 has been completed. EPR experiments on Np(BH 4 ) 4 /Zr(BH 4 ) 4 and Np(BD 4 ) 4 /Zr(BD 4 ) 4 have characterized the ground electronic state. 5 figures

  8. Synthesis and thermal decomposition behaviors of magnesium borohydride ammoniates with controllable composition as hydrogen storage materials.

    Science.gov (United States)

    Yang, Yanjing; Liu, Yongfeng; Li, You; Gao, Mingxia; Pan, Hongge

    2013-02-01

    An ammonia-redistribution strategy for synthesizing metal borohydride ammoniates with controllable coordination number of NH(3) was proposed, and a series of magnesium borohydride ammoniates were easily synthesized by a mechanochemical reaction between Mg(BH(4))(2) and its hexaammoniate. A strong dependence of the dehydrogenation temperature and purity of the released hydrogen upon heating on the coordination number of NH(3) was elaborated for Mg(BH(4))(2)·xNH(3) owing to the change in the molar ratio of H(δ+) and H(δ-), the charge distribution on H(δ+) and H(δ-), and the strength of the coordinate bond N:→Mg(2+). The monoammoniate of magnesium borohydride (Mg(BH(4))(2)·NH(3)) was obtained for the first time. It can release 6.5% pure hydrogen within 50 minutes at 180 °C. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sodium borohydride reduction of aromatic carboxylic acids via ...

    Indian Academy of Sciences (India)

    Unknown

    using a sodium borohydride–THF–methanol system. The alcohols ... rature using ethanol or methanol as solvent. Although, .... acids, phenylacetic acids, phenylpropanoic acid and cinnamic ... excess of reagent in water or alcohol, involved a.

  10. Hydrogen generation behaviors of NaBH4-NH3BH3 composite by hydrolysis

    Science.gov (United States)

    Xu, Yanmin; Wu, Chaoling; Chen, Yungui; Huang, Zhifen; Luo, Linshan; Wu, Haiwen; Liu, Peipei

    2014-09-01

    In this work, NH3BH3 (AB) is used to induce hydrogen generation during NaBH4 (SB) hydrolysis in order to reduce the use of catalysts, simplify the preparation process, reduce the cost and improve desorption kinetics and hydrogen capacity as well. xNaBH4-yNH3BH3 composites are prepared by ball-milling in different proportions (from x:y = 1:1 to 8:1). The experimental results demonstrate that all composites can release more than 90% of hydrogen at 70 °C within 1 h, and their hydrogen yields can reach 9 wt% (taking reacted water into account). Among them, the composites in the proportion of 4:1 and 5:1, whose hydrogen yields reach no less than 10 wt%, show the best hydrogen generation properties. This is due to the impact of the following aspects: AB additive improves the dispersibility of SB particles, makes the composite more porous, hampers the generated metaborate from adhering to the surface of SB, and decreases the pH value of the composite during hydrolysis. The main solid byproduct of this hydrolysis system is NaBO2·2H2O. By hydrolytic kinetic simulation of the composites, the fitted activation energies of the complexes are between 37.2 and 45.6 kJ mol-1, which are comparable to the catalytic system with some precious metals and alloys.

  11. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH4 in the Presence of Catalytic Amounts of MoCl5

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Yahyaei, Saiedeh

    2003-01-01

    NaBH 4 with catalytic amounts of MoCl 5 can readily reduce a variety of carbonyl compounds such as aldehydes, ketones, acyloins, α-diketones and conjugated enones to their corresponding alcohols in good to excellent yields. Reduction reactions were performed under aprotic condition in CH 3 CN at room temperature or reflux. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing system

  13. Metal Borohydrides synthesized from metal borides and metal hydrides

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    Aarhus C, Denmark email: gallafogh@hotmail.com / sanna-sommer@hotmail.com Magnesium boride, MgB2, ball milled with MH (M = Li, Na, Ca) followed by hydrogenation under high hydrogen pressure, readily forms the corresponding metal borohydrides, M(BH4)x (M = Li, Na, Ca) and MgH2 according to reaction scheme...

  14. Low-Cost Precursors to Novel Hydrogen Storage Materials

    International Nuclear Information System (INIS)

    Linehan, Suzanne W.; Chin, Arthur A.; Allen, Nathan T.; Butterick, Robert; Kendall, Nathan T.; Klawiter, I. Leo; Lipiecki, Francis J.; Millar, Dean M.; Molzahn, David C.; November, Samuel J.; Jain, Puja; Nadeau, Sara; Mancroni, Scott

    2010-01-01

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH 4 ), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH 4 from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H 2 ) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH 4 as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH 4 is a key building block to most boron-based fuels, and the ability to produce NaBH 4 in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering

  15. Thermal stability and electrochemical properties of PVP-protected Ru nanoparticles synthesized at room temperature

    Science.gov (United States)

    Kumar, Manish; Devi, Pooja; Shivling, V. D.

    2017-08-01

    Stable ruthenium nanoparticles (RuNPs) have been synthesized by the chemical reduction of ruthenium trichloride trihydrate (RuCl3 · 3H2O) using sodium borohydride (NaBH4) as a reductant and polyvinylpyrrolidone (PVP) as a protecting agent in the aqueous medium at room temperature. The nanoparticles thus prepared were characterized by their morphology and structural analysis from transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectroscopy, Fourier transformation infrared and thermogravimetric analysis (TGA) techniques. The TEM image suggested a homogeneous distribution of PVP-protected RuNPs having a small average diameter of 2-4 nm with a chain-like network structure. The XRD pattern also confirmed that a crystallite size is around 2 nm of PVP-protected RuNPs having a single broad peak. The thermal stability studied using TGA, indicated good stability and the electrochemical properties of these nanoparticles revealed that saturation current increases for PVP-protected RuNPs/GC.

  16. A new method to radiolabel fulvic acids with tritium for the purpose of tracing organic matter transport at low concentrations

    International Nuclear Information System (INIS)

    Tinnacher, R.M.; Honeyman, B.D.; Leenheer, J.A.

    2005-01-01

    Full text of publication follows: It is increasingly evident that reactive transport models for radionuclides need to include the effects of natural organic ligands, such as bacterial exudates and humic and fulvic acids. Understanding the role of such ligands in radionuclide transport requires an ability to track ligand concentrations in time and space with an analytical resolution similar to that of the target radionuclide. Unfortunately, for many systems of interest for radioactive waste disposal and performance assessment, organic ligand concentrations are quite low (e.g., mg C/ L or less). Radiolabeling organic ligands can provide a means of tracing such species at low levels and for relatively low cost. Currently-used labeling methods, however, show some limitations with respect to the chemical stability of the radiolabel, the ability to produce high label specific activities and method reproducibility. In the procedure that we will describe, fulvic acid is radiolabeled with tritium by its reduction with tritiated sodium borohydride (NaBH 4 ) at alkaline pH and slightly elevated temperatures. The reactant selectively reduces the carbonyl groups of aromatic and aliphatic ketones as well as quinones. This results in the formation of tritium-labeled secondary alcohols. After completion of the labeling reaction, aerobically unstable reduction products of quinones and aromatic ketones are re-oxidized under controlled experimental conditions during an aeration step. Labeling efficiency in terms of reduced reactive fulvic acid groups is in the range of 100 percent with equal weights of fulvic acid and NaBH 4 in the reaction solution. This yields specific activities on the order of 50 to 100 μCi / mg fulvic acid. A quasi-chemical model of the labeling process allows the accurate prediction of the labeling efficiency based on a simplified mass action expression for the labeling reaction and the mass balance equations for fulvic acid and sodium borohydride. Such a

  17. Polyacrylonitrile Fibers Anchored Cobalt/Graphene Sheet Nanocomposite: A Low-Cost, High-Performance and Reusable Catalyst for Hydrogen Generation.

    Science.gov (United States)

    Zhang, Fei; Huang, Guoji; Hou, Chengyi; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-06-01

    Cobalt and its composites are known to be active and inexpensive catalysts in sodium borohydride (NaBH4) hydrolysis to generate clean and renewable hydrogen energy. A novel fiber catalyst, cobalt/graphene sheet nanocomposite anchored on polyacrylonitrile fibers (Co/GRs-PANFs), which can be easily recycled and used in any reactor with different shapes, were synthesized by anchoring cobalt/graphene (Co/GRs) on polyacrylonitrile fibers coated with graphene (GRs-PANFs) at low temperature. The unique structure design effectively prevents the inter-sheet restacking of Co/GRs and fully exploits the large surface area of novel hybrid material for generate hydrogen. And the extra electron transfer path supplied by GRs on the surface of GRs-PANFs can also enhance their catalysis performances. The catalytic activity of the catalyst was investigated by the hydrolysis of NaBH4 in aqueous solution with GRs-PANFs. GRs powders and Co powders were used as control groups. It was found that both GRs and fiber contributed to the hydrogen generation rate of Co/GRs-PANFs (3222 mL x min(-1) x g(-1)), which is much higher than that of cobalt powders (915 mL x min(-1) x g(-1)) and Co/GRs (995 mL x min(-1) x g(-1)). The improved hydrogen generation rate, low cost and uncomplicated recycling make the Co/GRs-PANFs promising candidate as catalysts for hydrogen generation.

  18. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation

    International Nuclear Information System (INIS)

    Sison Escaño, Mary Clare; Arevalo, Ryan Lacdao; Kasai, Hideaki; Gyenge, Elod

    2014-01-01

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH 4 − on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements. (topical review)

  19. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation

    Science.gov (United States)

    Sison Escaño, Mary Clare; Lacdao Arevalo, Ryan; Gyenge, Elod; Kasai, Hideaki

    2014-09-01

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4- on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.

  20. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    International Nuclear Information System (INIS)

    Sadikin, Yolanda; Stare, Katarina; Schouwink, Pascal; Brix Ley, Morten; Jensen, Torben R.; Meden, Anton; Černý, Radovan

    2015-01-01

    The system Li–A–Y–BH 4 (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y 3+ is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH 4 both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A 3 Y(BH 4 ) 6 or c-A 2 LiY(BH 4 ) 6 (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH 4 ) 4 crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH 4 (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y 3+ is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH 4 ) 4 structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH 4 (A=K, Rb, Cs) contains nine compounds in total. • Y 3+ forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH 4 ) 4 crystallize with structure types analogous to metal oxides. • Double-perovskites decompose and form a novel

  1. Rare earth metal oxides as BH4-tolerance cathode electrocatalysts for direct borohydride fuel cells

    Institute of Scientific and Technical Information of China (English)

    NI Xuemin; WANG Yadong; GUO Feng; YAO Pei; PAN Mu

    2012-01-01

    Rare earth metal oxides (REMO) as cathode electrocatalysts in direct borohydride fuel cell (DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH4- in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm2.The DBFC using Sm2O3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm2 was obtained at the cell voltage of 0.52 V.

  2. Improving SERS Detection of Bacillus thuringiensis Using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride

    International Nuclear Information System (INIS)

    Felix-Rivera, H.; Gonzalez, R.; Rodriguez, G.D.M.; Oliva, M. P.; Hernandez-Rivera, S.P.; Rios-Velazquez, C.

    2011-01-01

    The development of techniques that could be useful in fields other than biological warfare agents countermeasures such as medical diagnostics, industrial microbiology, and environmental applications have become a very important subject of research. Raman spectroscopy can be used in near field or at long distances from the sample to obtain fingerprinting information of chemical composition of microorganisms. In this research, biochemical components of the cell wall and endospores of Bacillus thuringiensis (Bt) were identified by surface-enhanced Raman scattering (SERS) spectroscopy using silver (Ag) nanoparticles (NPs) reduced by hydroxylamine and borohydride capped with sodium citrate. Activation of hot spots, aggregation and surface charge modification of the NPs, was studied and optimized to obtain signal enhancements from Bt by SERS. Slight aggregation of the NPs as well as surface charge modification to a more acidic ambient was induced using small-size borohydride-reduced NPs in the form of metallic suspensions aimed at increasing the Ag NP-Bt interactions. Hydroxylamine-reduced NPs required slight aggregation and no pH modifications in order to obtain high spectral quality results in bringing out SERS signatures of Bt.

  3. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, David [U.S. Borax Inc., Rio Tinto, CO (United States); Neiner, Doinita [U.S. Borax Inc., Rio Tinto, CO (United States); Bowden, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whittemore, Sean [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenguo [Univ. of Wollongong, NSW (Australia); Autrey, Tom [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of

  4. Fabrication And Properties Of Silver Based Multiwall Carbon Nanotube Composite Prepared By Spark Plasma Sintering Method

    Directory of Open Access Journals (Sweden)

    Lis M.

    2015-06-01

    Full Text Available The paper presents results of investigations of the obtained nanocomposite materials based on silver with addition of multiwall carbon nanotubes. The powder of carbon nanotubes content from 0.1 to 3 wt. % was produced by application of powder metallurgy methods, through mixing and high-energetic milling, and also chemical methods. Modification of carbon nanotubes included electroless deposition of silver particles on the carbon nanotube active surfaces and chemical reduction with strong reducing agent – sodium borohydride (NaBH4. The obtained powder mixtures were consolidated by SPS – Spark Plasma Sintering method. The formed composites were subjected to tests of relative density, electrical conductivity and electro-erosion properties. Detailed examinations of the structure with application of X-ray microanalysis, with consideration of carbon nanotubes distribution, were also carried out. The effect of manufacturing methods on properties of the obtained composites was observed.

  5. Hydrothermal development and characterization of the wear-resistant boron carbide from Pandanus: a natural carbon precursor

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.

    2018-04-01

    Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.

  6. Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode

    International Nuclear Information System (INIS)

    Cheng, H.; Scott, K.

    2006-01-01

    Borohydride oxidation has been investigated using a rotating disk electrode technique. The parameters, such as apparent rate constant, Tafel slope, Levich slope, number of electrons exchanged and reaction order, have been determined. The borohydride ion is oxidised on the gold electrode with an electrochemical rate constant of around 1 cm s -1 at intermediate potentials where side reactions had less effect. Influences of temperature, concentrations of borohydride and supporting electrolyte (NaOH) on the parameters were evaluated

  7. Water co-adsorption and electric field effects on borohydride structures on Os(1 1 1) by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Escaño, Mary Clare Sison, E-mail: mcescano@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Arevalo, Ryan Lacdao [Department of Precision Science and Technology and Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Gyenge, Elod [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3 (Canada); Kasai, Hideaki [Department of Precision Science and Technology and Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-12-15

    Highlights: ► Difference in Pt, Os electronic structures lead to different borohydride structures. ► Promotion of B–H bond breaking on Os due to water effects. ► Control of borohydride structure on Os catalyst using electric field. -- Abstract: Periodic density functional theory calculations are performed to investigate the nature of the BH{sub 4ad} and its interaction with H{sub 2}O{sub ad} in the presence of homogenous electric field. We observed a significant charge polarity of BH{sub 4ad} on Os(1 1 1) and such property could explain the electrostatic interaction with water monomer (H{sub ad}) with its HOH plane parallel to the surface. This interaction changes the BH{sub ad} molecular structure to BH{sub 3ad} + H{sub ad}. In the presence of homogenous electric field, the water co-adsorption effect is reduced due to the stabilization of H{sub 2}O{sub ad} on the surface and the deviation of the O–H bond from the plane, decreasing the electrostatic interaction between BH{sub 4ad} and H{sub 2}O{sub ad}. These fundamental findings imply accessible control of borohydride structures on an electrode surface, which could be relevant for direct borohydride fuel cell (DBFC) and reversible hydrogen storage/release applications.

  8. Water co-adsorption and electric field effects on borohydride structures on Os(1 1 1) by first-principles calculations

    International Nuclear Information System (INIS)

    Escaño, Mary Clare Sison; Arevalo, Ryan Lacdao; Gyenge, Elod; Kasai, Hideaki

    2013-01-01

    Highlights: ► Difference in Pt, Os electronic structures lead to different borohydride structures. ► Promotion of B–H bond breaking on Os due to water effects. ► Control of borohydride structure on Os catalyst using electric field. -- Abstract: Periodic density functional theory calculations are performed to investigate the nature of the BH 4ad and its interaction with H 2 O ad in the presence of homogenous electric field. We observed a significant charge polarity of BH 4ad on Os(1 1 1) and such property could explain the electrostatic interaction with water monomer (H ad ) with its HOH plane parallel to the surface. This interaction changes the BH ad molecular structure to BH 3ad + H ad . In the presence of homogenous electric field, the water co-adsorption effect is reduced due to the stabilization of H 2 O ad on the surface and the deviation of the O–H bond from the plane, decreasing the electrostatic interaction between BH 4ad and H 2 O ad . These fundamental findings imply accessible control of borohydride structures on an electrode surface, which could be relevant for direct borohydride fuel cell (DBFC) and reversible hydrogen storage/release applications

  9. Reaction of N,N'-dimethylformamide and divalent viologen molecule to generate an organic dopant for molybdenum disulfide

    Science.gov (United States)

    Fukui, A.; Miura, K.; Ichimiya, H.; Tsurusaki, A.; Kariya, K.; Yoshimura, T.; Ashida, A.; Fujimura, N.; Kiriya, D.

    2018-05-01

    Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2) is a semiconducting material composed of atomically thin (˜0.7 nm thickness) layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV) which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4) is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N'-dimethylformamide (DMF), by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature) and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET) structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.

  10. Reaction of N,N’-dimethylformamide and divalent viologen molecule to generate an organic dopant for molybdenum disulfide

    Directory of Open Access Journals (Sweden)

    A. Fukui

    2018-05-01

    Full Text Available Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2 is a semiconducting material composed of atomically thin (∼0.7 nm thickness layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4 is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N’-dimethylformamide (DMF, by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.

  11. Oscillatory instabilities in the electrooxidation of borohydride on platinum

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Eduardo G.; Varela, Hamilton, E-mail: varela@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica

    2014-03-15

    The borohydride ion has been pointed as a promising alternative fuel. Most of the investigation on its electrochemistry is devoted to the electrocatalytic aspects of its electrooxidation on platinum and gold surfaces. Besides the known kinetic limitations and intricate mechanism, our Group has recently found the occurrence of two regions of bi-stability and autocatalysis in the electrode potential during the open circuit interaction of borohydride and oxidized platinum surfaces. Following this previous contribution, the occurrence of more complicated phenomena is here presented: namely the presence of electrochemical oscillations during the electrooxidation of borohydride on platinum in alkaline media. Current oscillations were found to be associated to two distinct instability windows and characterized in the resistance-potential parameter plane. The dynamic features of such oscillations suggest the existence of distinct mechanisms according to the potential region. Previously published results obtained under non-oscillatory regime were used to give some hints on the surface chemistry behind the observed dynamics. (author)

  12. Synthesis and characterization of NiFe2O4–Pd magnetically recyclable catalyst for hydrogenation reaction

    International Nuclear Information System (INIS)

    Karaoğlu, E.; Özel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Sözeri, H.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe 2 O 4 –Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe 2 O 4 –Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe 2 O 4 –Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd 2+ was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH 4 ) and NiFe 2 O 4 nanoparticles was prepared by sonochemically using FeCI 3 ·6H 2 O and NiCl 2 . The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe 2 O 4 –Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe 2 O 4 –Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe 2 O 4 –Pd MRCs showed very efficient catalytic activity and multiple usability.

  13. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    Energy Technology Data Exchange (ETDEWEB)

    Sadikin, Yolanda [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Stare, Katarina [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Schouwink, Pascal [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Brix Ley, Morten; Jensen, Torben R. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C (Denmark); Meden, Anton [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Černý, Radovan, E-mail: radovan.cerny@unige.ch [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland)

    2015-05-15

    The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y{sup 3+} is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH{sub 4} both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A{sub 3}Y(BH{sub 4}){sub 6} or c-A{sub 2}LiY(BH{sub 4}){sub 6} (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH{sub 4}){sub 4} crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y{sup 3+} is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH{sub 4}){sub 4} structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH{sub 4} (A=K, Rb, Cs) contains nine compounds in total. • Y{sup 3+} forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH{sub 4}){sub 4} crystallize with

  14. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4

    International Nuclear Information System (INIS)

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH 4 , and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory

  15. Improving SERS Detection of Bacillus thuringiensis Using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride

    Directory of Open Access Journals (Sweden)

    Hilsamar Félix-Rivera

    2011-01-01

    Full Text Available The development of techniques that could be useful in fields other than biological warfare agents countermeasures such as medical diagnostics, industrial microbiology, and environmental applications have become a very important subject of research. Raman spectroscopy can be used in near field or at long distances from the sample to obtain fingerprinting information of chemical composition of microorganisms. In this research, biochemical components of the cell wall and endospores of Bacillus thuringiensis (Bt were identified by surface-enhanced Raman scattering (SERS spectroscopy using silver (Ag nanoparticles (NPs reduced by hydroxylamine and borohydride capped with sodium citrate. Activation of “hot spots”, aggregation and surface charge modification of the NPs, was studied and optimized to obtain signal enhancements from Bt by SERS. Slight aggregation of the NPs as well as surface charge modification to a more acidic ambient was induced using small-size borohydride-reduced NPs in the form of metallic suspensions aimed at increasing the Ag NP-Bt interactions. Hydroxylamine-reduced NPs required slight aggregation and no pH modifications in order to obtain high spectral quality results in bringing out SERS signatures of Bt.

  16. Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8), a cation solid solution in a bimetallic borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, Radovan, E-mail: radovan.cerny@unige.ch [Laboratory of Crystallography, University of Geneva, 1211 Geneva (Switzerland); Penin, Nicolas [Laboratory of Crystallography, University of Geneva, 1211 Geneva (Switzerland); CNRS, Universite de Bordeaux 1, ICMCB, 87 Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex (France); D' Anna, Vincenza; Hagemann, Hans [Department of Physical Chemistry, University of Geneva, 1211 Geneva (Switzerland); Durand, Etienne [CNRS, Universite de Bordeaux 1, ICMCB, 87 Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex (France); Ruzicka, Jakub [Charles University, Faculty of Science, Department of Inorganic Chemistry, Hlavova 2030, 128 40, Prague 2 (Czech Republic)

    2011-08-15

    Highlights: {yields} The magnesium and manganese borohydrides form a solid solution Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) which conserves the trigonal structure of Mn{sub (}(BH{sub 4}){sub 2}. {yields} Coexistence of both trigonal and hexagonal borohydrides occurs within nominal composition ranging from x{sub Mg} = 0.8-0.9. {yields} The decomposition temperature of trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) does not vary significantly with magnesium content (433-453 K). {yields} The desorbed gas contains mostly hydrogen and 3-7.5 mol.% of diborane B{sub 2}H{sub 6}. - Abstract: A solid solution of magnesium and manganese borohydrides was studied by in situ synchrotron radiation X-ray powder diffraction and infrared spectroscopy. A combination of thermogravimetry, mass and infrared spectroscopy, and atomic emission spectroscopy were applied to clarify the thermal gas desorption of pure Mn(BH{sub 4}){sub 2} and a solid solution of composition Mg{sub 0.5}Mn{sub 0.5}(BH{sub 4}){sub 2}. Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) conserves the trigonal structure of Mn(BH{sub 4}){sub 2} at room temperature. Manganese is dissolved in the hexagonal structure of {alpha}-Mg(BH{sub 4}){sub 2}, with the upper solubility limit not exceeding 10 mol.% at room temperature. There exists a two-phase region of trigonal and hexagonal borohydrides within the compositional range x = 0.8-0.9 at room temperature. Infrared spectra show splitting of various vibrational modes, indicating the presence of two cations in the trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} solid solutions, as well as the appearance of a second phase, hexagonal {alpha}-Mg(BH{sub 4}){sub 2}, at higher magnesium contents. All vibrational frequencies are shifted to higher values with increasing magnesium content. The decomposition temperature of the trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) does not vary significantly as a function of the magnesium

  17. Synthesis of [2,4-3H] 17β-dihydroequilin sulfate

    International Nuclear Information System (INIS)

    Bhavnani, B.R.

    1994-01-01

    [2,4- 3 H] 17β-dihydroequilin-3-sulfate ammonium salt suitable for in vivo pharmacokinetic studies was synthesized from [2,4- 3 H] equilin. Sulfation of [2,4- 3 H] equilin with pyridine-chlorosulfonic acid mixture gave in high yields [2,4- 3 H] equilin sulfate, which was then reduced with sodium borohydride to yield [2,4- 3 H] 17β-dihydroequilin sulfate. The reduction was sterospecific and no 17α-reduced products were formed. (author)

  18. Selective heterogeneous catalytic hydrogenation of ketone (C═O) to alcohol (OH) by magnetite nanoparticles following Langmuir-Hinshelwood kinetic approach.

    Science.gov (United States)

    Shah, Muhammad Tariq; Balouch, Aamna; Rajar, Kausar; Sirajuddin; Brohi, Imdad Ali; Umar, Akrajas Ali

    2015-04-01

    Magnetite nanoparticles were successfully synthesized and effectively employed as heterogeneous catalyst for hydrogenation of ketone moiety to alcohol moiety by NaBH4 under the microwave radiation process. The improvement was achieved in percent recovery of isopropyl alcohol by varying and optimizing reaction time, power of microwave radiations and amount of catalyst. The catalytic study revealed that acetone would be converted into isopropyl alcohol (IPA) with 99.5% yield in short period of reaction time, using 10 μg of magnetite NPs (Fe3O4). It was observed that the catalytic hydrogenation reaction, followed second-order of reaction and the Langmuir-Hinshelwood kinetic mechanism, which elucidated that both reactants get adsorb onto the surface of silica coated magnetite nanocatalyst to react. Consequently, the rate-determining step was the surface reaction of acetone and sodium borohydride. The current study revealed an environment friendly conversion of acetone to IPA on the basis of its fast, efficient, and highly economical method of utilization of microwave irradiation process and easy catalyst recovery.

  19. Probing molecular dynamics of metal borohydrides on the surface of mesoporous scaffolds by multinuclear high resolution solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Son-Jong, E-mail: Sonjong@cheme.caltech.edu [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Hyun-Sook [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); To, Magnus [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Young-Su; Cho, Young Whan [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, Hyungkeun; Kim, Chul [Department of Chemistry, Hannam University, Daejeon 305-811 (Korea, Republic of)

    2015-10-05

    Graphical abstract: In situ variable temperature multinuclear solid state NMR allows to probe surface wetting, diffusivity, and confinement of metal borohydrides into nanopores. - Abstract: Understanding of surface interactions between borohydride molecules and the surfaces of porous supports have gained growing attention for successful development of nano-confinement engineering. By use of in situ variable temperature (VT) magic angle spinning (MAS) NMR, molecular mobility changes of LiBH{sub 4} crystalline solid has been investigated in the presence of silica based and carbonaceous surfaces. Spin–spin J-coupling of {sup 1}H–{sup 11}B in LiBH{sub 4} was monitored in series of VT NMR spectra to probe translational mobility of LiBH{sub 4} that appeared to be greatly enhanced upon surface contact. Such enhanced diffusivity was found to be effective in the formation of solid solution and co-confinement with other metal borohydrides. Co-confinement of LiBH{sub 4}–Ca(BH{sub 4}){sub 2} mixture was demonstrated at temperature as low as 100 °C, much lower than the reported bulk eutectic melting temperature. The discovery adds a novel property of LiBH{sub 4} that has been proven to be highly versatile in many energy related applications.

  20. Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Oh, Taek Hyun; Gang, Byeong Gyu; Kim, Hyuntak; Kwon, Sejin

    2015-01-01

    The response characteristics of electroless-deposited Co–P/Ni foam catalysts for sodium borohydride hydrolysis were investigated. The effect of nickel foam geometry on the properties of the catalysts was evaluated. As the PPI (pores per inch) of the nickel foam increased, the hydrogen generation rate per gram of the deposited catalyst increased due to an increase in surface area. The response characteristics of various catalysts were compared under real operating conditions. When a thin nickel foam with high PPI was used, the response characteristics of the catalyst improved due to an increase in the amount of the deposited catalyst and surface area. Finally, a 200 W PEMFC (proton exchange membrane fuel cell) system using electroless-deposited Co–P/Ni foam (110 PPI) catalyst was investigated. The response time to reach a hydrogen generation rate sufficient for a 200 W PEMFC was 71 s, and the energy density of a 200 W fuel cell system for producing 600 Wh was 252.1 Wh/kg. A fuel cell system using Co–P/Ni foam catalysts can be widely used as a power source for mobile applications due to fast response characteristics and high energy density. - Highlights: • Response characteristics of Co–P/Ni foam catalysts are investigated. • Catalytic activity is improved with increase in PPI (pores per inch) of Ni foam. • Co–P/Ni foam (110 PPI) catalyst has improved response characteristics. • The energy density of a 200 W PEMFC system for producing 600 Wh is 252.1 Wh/kg. • Co–P/Ni foam (110 PPI) catalyst is suitable for fuel cell system.

  1. Boronic acid recognition of non-interacting carbohydrates for biomedical applications: increasing fluorescence signals of minimally interacting aldoses and sucralose.

    Science.gov (United States)

    Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc; Singaram, Bakthan

    2017-11-22

    To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen-HPTS (4,4'-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH 4 ) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4-25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H 2 O 2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4'-o-BBV-HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc.

  2. Ballmilling of metal borohydrides for hydrogen storage

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    of the renewable energy sources [2]. Borohydrides have received great attention as energy carrier due to their high gravimetric content of hydrogen, though unfortunately they are currently not applicable for industrial use due to high thermal stability and poor recycling. The purpose of the investigation...

  3. Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: Modification of metal naoparticles with poly(diallyldimethylammonium chloride)

    Energy Technology Data Exchange (ETDEWEB)

    You, Jyun-Guo; Shanmugam, Chandirasekar [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Liu, Yao-Wen; Yu, Cheng-Ju [Department of Applied Physics and Chemistry, University of Taipei, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China)

    2017-02-15

    Highlights: • The choice of capping ligand determines catalytic activity of metal nanocatalysts. • PDDA-capped metal nanoparticles electrostatically interact with 4-NP and BH4{sup −}. • PDDA-capped metal nanoparticles have good recyclability and large scalability. • PDDA-capped Pd nanoparticles show the highest rate constant and activity parameter. - Abstract: Most of the previously reported studies have focused on the change in the size, morphology, and composition of metal nanocatalysts for improving their catalytic activity. Herein, we report poly(diallyldimethylammonium chloride) [PDDA]-stabilized nanoparticles (NPs) of platinum (Pt) and palladium (Pd) as highly active and efficient catalysts for hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH4. PDDA-stabilized Pt and Pd NPs possessed similar particle size and same facet with citrate-capped Pt and Pd NPs, making this study to investigate the inter-relationship between catalytic activity and surface ligand without the consideration of the effects of particle size and facet. Compared to citrate-capped Pt and Pd NPs, PDDA-stabilized Pt and Pd NPs exhibited excellent pH and salt stability. PDDA could serve as an electron acceptor for metal NPs to produce the net positive charges on the metal surface, which provide strong electrostatic attraction with negatively charged nitrophenolate and borohydride ions. The activity parameter and rate constant of PDDA-stabilized metal NPs were higher than those of citrate-capped metal NPs. Compared to the previously reported Pd nanomaterials for the catalysis of NaBH4-mediated reduction of 4-NP, PDDA-stabilized Pd NPs exhibited the extremely high activity parameter (195 s{sup −1} g{sup −1}) and provided excellent scalability and reusability.

  4. Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells

    International Nuclear Information System (INIS)

    Gyenge, Elod

    2004-01-01

    The electrochemical oxidation of BH 4 - in 2 M NaOH on Pt and Au (i.e. catalytic and non-catalytic electrodes, respectively, for BH 4 - hydrolysis accompanied by H 2 evolution) has been studied by cyclic voltammetry, chrono-techniques (i.e., potentiometry, amperometry, coulometry) and electrochemical impedance spectroscopy. In the case of Pt the cyclic voltammetry behaviour of BH 4 - is influenced by both, the catalytic hydrolysis of BH 4 - yielding H 2 (followed by electrooxidation of the latter at peak potentials between -0.7 and -0.9 V versus Ag/AgCl, KCl std ) and direct oxidation of BH 4 - at more positive potentials, i.e., between -0.15 and -0.05 V. Thiourea (TU, 1.5x10 -3 M) was an effective inhibitor of the catalytic hydrolysis associated with BH 4 - electrooxidation on Pt. Therefore, in the presence of TU, only the direct oxidation of BH 4 - has been detected, with peak potentials between -0.2 and 0 V. It is proposed that TU could improve the BH 4 - utilization efficiency and the coulombic efficiency of direct borohydride fuel cells using catalytic anodes. The electrooxidation of BH 4 - on Pt/TU is an overall four-electron process, instead of the maximum eight electrons reported for Au, and it is affected by adsorbed species such as BH 4 - (fractional surface coverage ∼0.3), TU and possibly reaction intermediates

  5. Effect of halideions on the surface-enhanced Raman spectroscopy of methylene blue for borohydride-reduced silver colloid

    International Nuclear Information System (INIS)

    Dong Xiao; Gu Huaimin; Liu Fang

    2011-01-01

    The surface enhanced Raman scattering (SERS) spectrum of methylene blue (MB) was studied when adding a range of halideions to borohydride-reduced silver colloid. The halideions such as chloride, bromide and iodide were added as aggregating agents to study the effects of halideions on SERS spectroscopy of MB and observe which halideion gives the greatest enhancement for borohydride-reduced silver colloids. The SERS spectra of MB were also detected over a wide range of concentrations of halideions to find the optimum concentration of halideions for SERS enhancement. From the results of this study, the intensity of SERS signal of MB was enhanced significantly when adding halideions to the colloid. Among the three kinds of halideions, chloride gives the greatest enhancement on SERS signal. The enhancement factors for MB with optimal concentration of chloride, bromide and iodide are 3.44x10 4 , 2.04x10 4 , and 1.0x10 4 , respectively. The differences of the SERS spectra of MB when adding different kinds and concentrations of halideions to the colloid may be attributed to the both effects of extent of aggregation of the colloid and the modification of silver surface chemistry. The purpose of this study is to further investigate the effect of halideions on borohydride-reduced silver colloid and to make the experimental conditions suitable for detecting some analytes in high efficiency on rational principles.

  6. Preparation and spectroscopic properties of three new actinide (IV) borohydrides

    International Nuclear Information System (INIS)

    Banks, R.H.

    1979-12-01

    New tetrakis-borohydrides of Pa, Np, and Pu have been synthesized. The crystal structure of Pa(BH 4 ) 4 is isostructural to those of Th(BH 4 ) 4 and U(BH 4 ) 4 and is of the tetragonal space group P4 3 2 1 2, where a = 7.53 (3) A, c = 13.22 (5) A, and Z = 4. Its calculated density is 2.57 gm-cm -3 . Pa(BH 4 ) 4 is an orange, air-sensitive compound which is soluble in THF and sublimes at 55 0 in vacuum. Due to the thermal instabilities of Np(BH 4 ) 4 and Pu(BH 4 ) 4 , their reaction temperatures are maintained at 0 0 and the compounds must be stored at low temperature. Low temperature x-ray diffraction studies have shown that Np(BH 4 ) 4 and Pu(BH 4 ) 4 are isomorphous and exhibit a unique crystal structure which is very similar to that of Zr(BH 4 ) 4 . The details of this new structure were determined by single crystal x-ray diffraction methods at 130K for Np(BH 4 ) 4 . Neptunium borohydride is monomeric and crystallizes into the tetragonal space group P4 2 /nmc, where a = 8.559 (9) A, c = 6.017 (9) A, and Z = 2. The 12 coordinate Np atom is triply hydrogen-bridged bonded to four terminal BH 4 - groups disposed tetrahedrally around it giving Np-B distances of 2.46 (3) A. Solid-state, low temperature infrared (25-7400 cm -1 ) and Raman (100-2600 cm -1 ) spectra were taken for Np(BH 4 ) 4 and Np(BD 4 ) 4 . A normal coordinate analysis was carried out using the assigned fundamental frequencies obtained from the spectra and determined a reasonable set of force constants and calculated values for the frequencies of the unobserved T 1 modes. Based on results of the analysis, isotopic impurity, overtone, and combination bands were identified in the infrared spectra

  7. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract

    Directory of Open Access Journals (Sweden)

    G. Manjari

    2017-07-01

    Full Text Available The phytogenic synthesis method to highly active, recoverable and recyclable heterogeneous copper oxide nanocatalyst and encapsulated within biomaterial that acts as a nontoxic and renewable source of reducing and stabilizing agent. The biosynthesized CuO NPs were characterized using UV–Vis absorption spectroscopy, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM and thermo gravimetric analysis-differential scanning calorimetry (TGA–DSC, techniques. The formation of CuO NPs with the size 20–45 nm range is shown in TEM image. Significantly, in aqueous phase CuO NPs have high catalytic activity for the reduction of Congo red (CR, methylene blue (MB and 4-nitrophenol (4-NP in the presence of the sodium borohydride (NaBH4 at room temperature. In addition, CuO NPs catalyst can be easily recovered by centrifugation and reused for 6 cycles with more than 90% conversion efficiency. CuO nanocatalyst, leaching after catalytic application was investigated by ICPAES (Inductively coupled plasma atomic emission spectroscopy. CuO NPs possess great prospects in reduction of pernicious dyes and nitro organic pollutants in water.

  8. Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, E. [University of British Columbia, Vancouver (Canada). Dept. of Chemical and Biological Engineering

    2004-03-01

    The electrochemical oxidation of BH{sub 4}{sup -} in 2M NaOH on Pt and Au (i.e. catalytic and non-catalytic electrodes, respectively, for BH{sub 4}{sup -} hydrolysis accompanied by H{sub 2} evolution) has been studied by cyclic voltammetry, chrono-techniques (i.e., potentiometry, amperometry, coulometry) and electrochemical impedance spectroscopy. In the case of Pt the cyclic voltammetry behaviour of BH{sub 4}{sup -} is influenced by both, the catalytic hydrolysis of BH{sub 4}{sup -} yielding H{sub 2} followed by electrooxidation of the latter at peak potentials between -0.7 and -0.9 V versus Ag/AgCl, KCl{sub std} and direct oxidation of BH{sub 4}{sup -} at more positive potentials, i.e., between -0.15 and -0.05 V. Thiourea (TU, 1.5 x 10{sup -3} M) was an effective inhibitor of the catalytic hydrolysis associated with BH{sub 4}{sup -} electrooxidation on Pt. Therefore, in the presence of TU, only the direct oxidation of BH{sub 4}{sup -} has been detected, with peak potentials between -0.2 and 0 V. It is proposed that TU could improve the BH{sub 4}{sup -} utilization efficiency and the coulombic efficiency of direct borohydride fuel cells using catalytic anodes. The electrooxidation of BH{sub 4}{sup -} on Pt/TU is an overall four-electron process, instead of the maximum eight electrons reported for Au, and it is affected by adsorbed species such as BH{sub 4}{sup -} (fractional surface coverage {approx}0.3), TU and possibly reaction intermediates. (author)

  9. Seed-mediated growth and manipulation of Au nanorods via size-controlled synthesis of Au seeds

    International Nuclear Information System (INIS)

    Liu Juncheng; Duggan, Jennifer N.; Morgan, Joshua; Roberts, Christopher B.

    2012-01-01

    Seed-mediated growth of gold (Au) nanorods with highly controllable length, width, and aspect ratio was accomplished via carefully size-controlled synthesis of the original Au seeds. A slow dynamic growth of Au nanoparticle seeds was observed after reduction of the Au salt (i.e., hydrogen tetrachloroaurate (III) hydrate) by sodium borohydride (NaBH 4 ) in the presence of cetyltrimethyl ammonium bromide (CTAB). As such, the size of the Au nanoparticle seeds can therefore be manipulated through control over the duration of the reaction period (i.e., aging times of 2, 8, 48, 72, and 144 h were used in this study). These differently sized Au nanoparticles were subsequently used as seeds for the growth of Au nanorods, where the additions of Au salt, CTAB, AgNO 3 , and ascorbic acid were employed. Smaller Au nanoparticle seeds obtained via short growth/aging time resulted in Au nanorods with higher aspect ratio and thus longer longitudinal surface plasmon wavelength (LSPW). The larger Au nanoparticle seeds obtained via longer growth/aging time resulted in Au nanorods with lower aspect ratio and shorter LSPW.

  10. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction; Oxidação eletroquímica do etanol utilizando eletrocatalisadores PtRh/C em meio alcalino e sintetizados via borohidreto de sódio e redução por álcool

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Eric Hossein

    2017-07-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H{sub 2}PtCl{sub 6}3•6H{sub 2}0 and (RhNO{sub 3}){sub 3}, the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  11. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  12. Process for production of a borohydride compound

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  13. Modified Borohydrides for Reversible Hydrogen Storage (2)

    International Nuclear Information System (INIS)

    Ming Au

    2006-01-01

    This paper reports the results in the effort to destabilize lithium borohydride for reversible hydrogen storage. A number of metals, metal hydrides, metal chlorides and complex hydrides were selected and evaluated as the destabilization agents for reducing de-hydriding temperature and generating de-hydriding-re-hydriding reversibility. It is found that some additives are effective. The Raman spectroscopic analysis shows the change of B-H binding nature. (authors)

  14. Benzannulated tris(2-mercapto-1-imidazolyl)hydroborato ligands: tetradentate κ4-S3H binding and access to monomeric monovalent thallium in an [S3] coordination environment.

    Science.gov (United States)

    Rong, Yi; Palmer, Joshua H; Parkin, Gerard

    2014-01-21

    The benzannulated tris(mercaptoimidazolyl)borohydride sodium complex, [Tm(Bu(t)Benz)]Na, has been synthesized via the reaction of NaBH4 with 1-tert-butyl-1,3-dihydro-2H-benzimidazole-2-thione, while [Tm(MeBenz)]K has been synthesized via the reaction of KBH4 with 1-methyl-1,3-dihydro-2H-benzimidazole-2-thione. The molecular structures of the solvated adducts, {[Tm(Bu(t)Benz)]Na(THF)}2(μ-THF)2 and [Tm(MeBenz)]K(OCMe2)3, have been determined by X-ray diffraction, which demonstrates that the [Tm(R)] ligands in these complexes adopt different coordination modes to that in {[Tm(MeBenz)]Na}2(μ-THF)3. Specifically, while the [Tm(MeBenz)] ligand of the sodium complex {[Tm(MeBenz)]Na}2(μ-THF)3 adopts a κ(3)-S3 coordination mode, the potassium complex [Tm(MeBenz)]K(OCMe2)3 adopts a most uncommon inverted κ(4)-S3H coordination mode in which the potassium binds to all three sulfur donors and the hydrogen of the B-H group in a linear KH-B manner. Furthermore, the [Tm(Bu(t)Benz)] ligand of {[Tm(Bu(t)Benz)]Na(THF)}2(μ-THF)2 adopts a κ(3)-S2H coordination mode, thereby demonstrating the flexibility of this ligand system. The monovalent thallium compounds, [Tm(MeBenz)]Tl and [Tm(Bu(t)Benz)]Tl, have been obtained via the corresponding reactions of [Tm(MeBenz)]Na and [Tm(Bu(t)Benz)]Na with TlOAc. X-ray diffraction demonstrates that the three sulfur donors of the [Tm(RBenz)] ligands of both [Tm(MeBenz)]Tl and [Tm(Bu(t)Benz)]Tl chelate to thallium. This coordination mode is in marked contrast to that in other [Tm(R)]Tl compounds, which exist as dinuclear molecules wherein two of the sulfur donors coordinate to different thallium centers. As such, this observation provides further evidence that benzannulation promotes κ(3)-S3 coordination in this system.

  15. Novel routes to 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines and 5,6,9,10,11,11a-hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines.

    Science.gov (United States)

    Katritzky, Alan R; Jain, Ritu; Xu, Yong-Jiang; Steel, Peter J

    2002-11-15

    Condensation reactions of benzotriazole and 2-(pyrrol-1-yl)-1-ethylamine (1) with formaldehyde and glutaric dialdehyde, respectively, afforded intermediates 2 and 6. Subsequent nucleophilic substitutions of the benzotriazole group in 2 and 6 with Grignard reagents, sodium cyanide, and sodium borohydride gave 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 3a-e, 4, 5 and 5,6,9,10,11,11a-hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines 7a-c, 8, 9, respectively, in good yields.

  16. Are extracted materials truly representative of original samples? Impact of C18 extraction on CDOM optical and chemical properties

    Directory of Open Access Journals (Sweden)

    Andrea A Andrew

    2016-02-01

    Full Text Available Some properties of dissolved organic matter (DOM and chromophoric dissolved organic matter (CDOM can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB and the Equatorial Atlantic Ocean (EAO. Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4.C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission and quantum yield of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters.

  17. Are Extracted Materials Truly Representative of Original Samples? Impact of C18 Extraction on CDOM Optical and Chemical Properties.

    Science.gov (United States)

    Andrew, Andrea A; Del Vecchio, Rossana; Zhang, Yi; Subramaniam, Ajit; Blough, Neil V

    2016-01-01

    Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction (SPE) is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission, and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters.

  18. Antifungal activity of gold nanoparticles prepared by solvothermal method

    International Nuclear Information System (INIS)

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-01

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m 2 /g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m 2/ g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl 2 and NaBH 4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl 2 , however, NaBH 4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m 2 /g for 7 nm and 269 m 2 /g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H + efflux of the Candida species than 15 nm sized gold nanoparticles.

  19. Are extracted materials truly representative of original samples? Impact of C18 extraction on CDOM optical and chemical properties

    Science.gov (United States)

    Andrew, Andrea; Del Vecchio, Rossana; Zhang, Yi; Subramaniam, Ajit; Blough, Neil

    2016-02-01

    Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters.

  20. Benzannulated Tris(2-mercapto-1-imidazolyl)hydroborato Ligands: Tetradentate κ4–S3H Binding and Access to Monomeric Monovalent Thallium in an [S3] Coordination Environment

    Science.gov (United States)

    Rong, Yi; Palmer, Joshua H.; Parkin, Gerard

    2013-01-01

    The benzannulated tris(mercaptoimidazolyl)borohydride sodium complex, [TmButBenz]Na, has been synthesized via the reaction of NaBH4 with 1-tert-butyl-1,3-dihydro-2H-benzimidazole-2-thione, while [TmMeBenz]K has been synthesized via the reaction of KBH4 with 1-methyl-1,3-dihydro-2H-benzimidazole-2-thione. The molecular structures of the solvated adducts, {[TmButBenz]Na(THF)}2(μ-THF)2 and [TmMeBenz]K(OCMe2)3, have been determined by X-ray diffraction, which demonstrates that the [TmR] ligands in these complexes adopt different coordination modes to that in {[TmMeBenz]Na}2(μ-THF)3. Specifically, while the [TmMeBenz] ligand of the sodium complex {[TmMeBenz]Na}2(μ-THF)3 adopts a κ3-S3 coordination mode, the potassium complex [TmMeBenz]K(OCMe2)3 adopts a most uncommon inverted κ4-S3H coordination mode in which the potassium binds to all three sulfur donors and the hydrogen of the B–H group in a linear K•••H–B manner. Furthermore, the [TmButBenz] ligand of {[TmButBenz]Na(THF)}2(μ-THF)2 adopts a κ3-S2H coordination mode, thereby demonstrating the flexibility of this ligand system. The monovalent thallium compounds, [TmMeBenz]Tl and [TmButBenz]Tl, have been obtained via the corresponding reactions of [TmMeBenz]Na and [TmButBenz]Na with TlOAc. X-ray diffraction demonstrates that the three sulfur donors of the [TmRBenz] ligands of both [TmMeBenz]Tl and [TmButBenz]Tl chelate to thallium. This coordination mode is in marked contrast to that in other [TmR]Tl compounds, which exist as dinuclear molecules wherein two of the sulfur donors coordinate to different thallium centers. As such, this observation provides further evidence that benzannulation promotes κ3-S3 coordination in this system. PMID:24201311

  1. ILC (ionic liquid colloids) based on p(4-VP) (poly(4-vinyl pyridine)) microgels: Synthesis, characterization and use in hydrogen production

    International Nuclear Information System (INIS)

    Sahiner, Nurettin; Turhan, Tugce; Lyon, L. Andrew

    2014-01-01

    In this study for the first time p(4-VP) (poly(4-vinyl pyridine)) colloidal ionic liquid particles derived from 4-VP (4-vinyl pyridine) are reported, used in the preparation of a catalyst system by loading metal salts such as CoCl 2 and NiCl 2 from ethyl alcohol solutions into the modified p(4-VP) particles, and used for hydrogen generation from NaOH-free hydrolysis of NaBH 4 . Colloidal ionic liquids containing 0.054 mmol Co and Ni were used in NaOH-free hydrolysis of 0.30 g NaBH 4 in 50 mL water at 40 °C and 1000 rpm mixing rate. The reaction rates relating to hydrolysis of NaBH 4 were 3148 (mL H 2 ) (min) −1 (g of Co) −1 for Co, and 1803 (mL H 2 ) (min) −1 (g of Ni) −1 for Ni. The effect of metal loading time, NaBH 4 concentration, temperature, and kinetic parameters were also investigated. The activation energy, enthalpy, and activation entropy for the reaction of NaBH 4 in the presence of the colloidal dicationic catalyst system were calculated as 43.98 kJ/mol, 40.38 kJ/mol, and −178.22 J/mol.K, respectively. - Highlights: • Microgel Ionic liquid colloid reactors for H 2 production. • P(4-VP) microgel ILC (ionic liquid colloid). • Modified microgel for green energy. • Ionic liquid microgel embedding metals salts NaBH 4 hydrolysis. • Ionic liquid microgel catalyst systems

  2. Synthesis of Pt/rGO catalysts with two different reducing agents and their methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Tran, Thanh Thuy Thi, E-mail: tranthithanhthuygl@gmail.com [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Le, Hong Ngan Thi; Tran, Lien Thi; Nguyen, Phuong Hoa Thi; Nguyen, Minh Dang [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Quynh, Bui Ngoc [Institut de recherches sur la catalyse et l’environnement de Lyon, UMR5256, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France)

    2016-01-15

    Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH{sub 4} or ethylene glycol. • Synthesis using NaBH{sub 4} could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH{sub 4} showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated by cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.

  3. Magnetic and electrical properties of oxygen stabilized nickel nanofibers prepared by the borohydride reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, V. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur West Bengal 721 302 India (India)], E-mail: veeturi@phy.iitkgp.ernet.in; Barik, S K; Bodo, Bhaskarjyoti [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur West Bengal 721 302 India (India); Karmakar, Debjani; Chandrasekhar Rao, T V [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Bombay 400085 India (India)

    2008-03-15

    Fine nickel fibers have been synthesized by chemical reduction of nickel ions in aqueous medium with sodium borohydride. The thermal stability and relevant properties of these fibers, as-prepared as well as air-annealed, have been investigated by structural, magnetic and electrical measurements. As-prepared samples appear to have a novel crystal structure due to the presence of interstitial oxygen. Upon annealing in air, the fcc-Ni phase emerges out initially and develops into a nanocomposite subsequently by retaining its fiber-like structure in nano phase. The as-prepared sample is observed to be weakly magnetic at room temperature, but attains surprisingly high magnetization values at low temperatures. This is attributed to the modified spin structure, presumably due to the presence of interstitial oxygen in the lattice. Development of a weakly ferromagnetic and electrically conducting phase upon annealing in air is attributed to the formation of the fcc-Ni phase. The structural phase transformations corroborate well with magnetic and electrical measurements.

  4. Magnetic and electrical properties of oxygen stabilized nickel nanofibers prepared by the borohydride reduction method

    International Nuclear Information System (INIS)

    Srinivas, V.; Barik, S.K.; Bodo, Bhaskarjyoti; Karmakar, Debjani; Chandrasekhar Rao, T.V.

    2008-01-01

    Fine nickel fibers have been synthesized by chemical reduction of nickel ions in aqueous medium with sodium borohydride. The thermal stability and relevant properties of these fibers, as-prepared as well as air-annealed, have been investigated by structural, magnetic and electrical measurements. As-prepared samples appear to have a novel crystal structure due to the presence of interstitial oxygen. Upon annealing in air, the fcc-Ni phase emerges out initially and develops into a nanocomposite subsequently by retaining its fiber-like structure in nano phase. The as-prepared sample is observed to be weakly magnetic at room temperature, but attains surprisingly high magnetization values at low temperatures. This is attributed to the modified spin structure, presumably due to the presence of interstitial oxygen in the lattice. Development of a weakly ferromagnetic and electrically conducting phase upon annealing in air is attributed to the formation of the fcc-Ni phase. The structural phase transformations corroborate well with magnetic and electrical measurements

  5. A theoretical study of the structure and stability of borohydride on 3d transition metals

    Science.gov (United States)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Gyenge, Elod; Kasai, Hideaki

    2012-12-01

    The adsorption of borohydride on 3d transition metals (Cr, Mn, Fe, Co, Ni and Cu) was studied using first principles calculations within spin-polarized density functional theory. Magnetic effect on the stability of borohydride is noted. Molecular adsorption is favorable on Co, Ni and Cu, which is characterized by the strong s-dzz hybridization of the adsorbate-substrate states. Dissociated adsorption structure yielding one or two H adatom fragments on the surface is observed for Cr, Mn and Fe.

  6. Generation and thermally adjustable catalysis of silver nanoparticle immobilized temperature-sensitive nanocomposite

    Science.gov (United States)

    Xu, Jun; Zhou, Tao; Jia, Lei; Shen, Xiaoke; Li, Xiaohui; Li, Huijun; Xu, Zhouqing; Cao, Jianliang

    2017-03-01

    The rise in environmental issues due to the catalytic degradation of pollutants in water has received much attention. In this report, a facile method was developed for the generation of a novel thermosensitive Ag-decorated catalyst, SiO2@PNIPAM@Ag (the average particle size is around 540 nm), through atom transfer radical polymerization (ATRP) and mild reducing reactions. First, poly(N-isopropylacrylamide) (PNIPAM) was used to create a shell around mercapto-silica spheres that allowed for enhanced catalyst support dispersion into water. Second, through a mild reducing reaction, these Ag nanoparticles (NPs) were then anchored to the surface of SiO2@PNIPAM spheres. The resulting catalyst revealed catalytic activity to degrade various nitrobenzenes and organic dyes in an aqueous solution with sodium borohydride (NaBH4) at ambient temperature. The catalytic activity can be adjusted in different temperatures through the aggregation or dispersion of Ag catalyst on the polymer supporters, which is due to the thermosensitive PNIPAM shell. The ease of preparation and efficient catalytic activity of the catalyst can make it a promising candidate for the use in degrading organic pollutants for environmental remediation.

  7. Poly(N-isopropylacrylamide-co-methacrylic acid microgel stabilized copper nanoparticles for catalytic reduction of nitrobenzene

    Directory of Open Access Journals (Sweden)

    Farooqi Zahoor H.

    2015-09-01

    Full Text Available Poly(N-isopropylacrylamide-co-methacrylic acid microgels [p(NIPAM-co-MAAc] were synthesized by precipitation polymerization of N-isopropylacrylamide and methacrylic acid in aqueous medium. These microgels were characterized by dynamic light scattering and Fourier transform infrared spectroscopy. These microgels were used as micro-reactors for in situ synthesis of copper nanoparticles using sodium borohydride (NaBH4 as reducing agent. The hybrid microgels were used as catalysts for the reduction of nitrobenzene in aqueous media. The reaction was performed with different concentrations of cat­alyst and reducing agent. A linear relationship was found between apparent rate constant (kapp and amount of catalyst. When the amount of catalyst was increased from 0.13 to 0.76 mg/mL then kapp was increased from 0.03 to 0.14 min-1. Activation parameters were also determined by performing reaction at two different temperatures. The catalytic process has been discussed in terms of energy of activation, enthalpy of activation and entropy of activation. The synthesized particles were found to be stable even after 14 weeks and showed catalytic activity for the reduction of nitrobenzene.

  8. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, S [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Nakayama, A [Department of Materials Science and Engineering, Meijo University, Nagoya 468-8502 (Japan); Kikegawa, T [Photon Factory (PF), Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan)], E-mail: NAKANO.Satoshi@nims.go.jp

    2008-07-15

    Lithium borohydride (LiBH{sub 4}) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P4{sub 2}/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH{sub 4}.

  9. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers

    Science.gov (United States)

    Shanmugam Ranjith, Kugalur; Celebioglu, Asli; Uyar, Tamer

    2018-06-01

    Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min‑1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.

  10. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    Science.gov (United States)

    Nakano, S.; Nakayama, A.; Kikegawa, T.

    2008-07-01

    Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.

  11. The electrocatalytic application of RuO2 in direct borohydride fuel cells

    International Nuclear Information System (INIS)

    Yang, Xiaodong; Wei, Xiaozhu; Liu, Ce; Liu, Yongning

    2014-01-01

    A high electrocatalytic activity of RuO 2 has been found for oxygen reduction reaction (ORR) in the cathode of direct borohydride fuel cells (DBFCs). The electron transfer number n during the ORR changes from 3.58 to 3.86 and the percentage of the intermediate product H 2 O 2 decreases from 20.8% to 7.2% correspondingly when the disk potential scans negatively from −0.39 V to −0.8 V versus Hg/HgO. Peak power densities of 425 mW cm −2 has been obtained at 60 °C, when RuO 2 has been used as a cathodic catalyst in DBFCs. RuO 2 displays low sensitivity to the BH 4 − oxidation in DBFCs. Moreover, RuO 2 , as a cathodic catalyst, demonstrates a superb stability during a 200-h durability test. The identical X-ray diffraction (XRD) patterns of the RuO 2 before and after the durability test also prove its stability. - Highlights: • RuO 2 exhibits oxygen reduction reaction (ORR) activity in an alkaline solution. • RuO 2 provides 3.58–3.86 electron transfer number during the ORR. • Direct borohydride fuel cell (DBFC) with RuO 2 cathode displays a peak power density of 425 mW cm −2 at 60 °C. • DBFC with RuO 2 cathode exhibits a superb stability during a 200-h durability test

  12. Scandium and vanadium borohydride ammoniates: Enhanced dehydrogenation behavior upon coordinative expansion and establishment of Hδ+⋯−δH interactions

    International Nuclear Information System (INIS)

    Tang, Ziwei; Yuan, Feng; Gu, Qinfen; Tan, Yingbin; Chen, Xiaowei; Jensen, Craig M.; Yu, Xuebin

    2013-01-01

    Graphical abstract: Two novel metal borohydride ammoniates—ScLi(BH 4 ) 4 ·4NH 3 and V(BH 4 ) 3 ·3NH 3 are shown to exhibit superior dehydrogenation performances established upon intensive interactions and balanced stoichiometry of dihydrogen. -- Abstract: LiSc(BH 4 ) 4 ·4NH 3 and V(BH 4 ) 3 ·3NH 3 , two novel metal borohydride ammoniates (MBAs), have been successfully synthesized via ball-milling the mixtures of MCl 3 ·xNH 3 (M = Sc, V and x = 3, 4) with LiBH 4 . Structure analysis reveals that LiSc(BH 4 ) 4 ·4NH 3 crystallizes in an orthorhombic structure with lattice parameters of a = 7.4376(3) Å, b = 11.1538(5) Å and c = 14.5132(7) Å and space group of Pc2 1 n, in which the base octahedral units are composed of central metal and an equivalent number of BH 4 and NH 3 units, distinct from other reported MBAs. Base units with the above constitution are also observed in the crystal structure of V(BH 4 ) 3 ·3NH 3 , which is identified as a cubic structure with lattice parameters of a = 10.78060(25) Å and space group of F23. These two compounds exhibit a favorable dehydrogenation capability, releasing 15.1 and 14.3 wt.% high-purity hydrogen, respectively, below 300 °C. Isothermal measurements reveal that, at a constant temperature of 110 °C, which meets the operation requirement of fuel cells, >8 and >10 wt.% pure hydrogen is released from the two compounds with favorable kinetics, respectively. Moreover, by reacting with N 2 H 4 in liquid ammonia, the decomposed LiSc(BH 4 ) 4 ·4NH 3 can be partly hydrogenated and can possibly establish a system that will undergo reversible dehydrogenation. These favorable properties point to potential on-board application. The dehydrogenation capacity, purity and temperature of the two systems can be adjusted, by tuning the ratios of the starting reagents LiBH 4 and MCl 3 ·xNH 3 , to achieve expected stoichiometric proportions of BH 4 and NH 3 units, which provides a facile and viable strategy for the synthesis of

  13. Grafting of 4-aminomethylbenzensulfonamide-lipoic acid conjugate on gold nanoparticles

    Science.gov (United States)

    Stiti, M.; Bouzit, H.; Abdaoui, M.; Winum, J. Y.

    2012-02-01

    In this paper, we describe the synthesis of goldnanoparticles bearing aminomethylbenzensulfonamide via a lipoyl moiety. The resulting stable nanoparticles with an average size of 4.0 nm have been achieved by a facile and high-yielding one phase method, by the action of 4-aminomethylbenzensulfonamide-lipoic acid bioconjugate on chloroauric acide, using dimethylsulfoxide (DMSO) as the solvent and sodium tetrahydridoborate (NaBH4) as the reducing agent. UV-vis absorption, transmission electron microscopy (TEM) and X-ray diffraction were used to analyse the morphology and the structure of the obtained nanoparticles. Preliminary study shows that these new nanoparticles are endowed with highly and specific inhibitory activity for the isoform (IX) of carbonic anhydrase over expressed in many cancers, and are therefore attractive candidate to be used both in diagnosis and in treatment of tumours.

  14. Reduction of Nitroarenes into Aryl Amines and N-Aryl hydroxylamines via Activation of NaBH4 and Ammonia-Borane Complexes by Ag/TiO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Dimitrios Andreou

    2016-03-01

    Full Text Available In this study, we report the fabrication of mesoporous assemblies of silver and TiO2 nanoparticles (Ag/MTA and demonstrate their catalytic efficiency for the selective reduction of nitroarenes. The Ag/TiO2 assemblies, which show large surface areas (119–128 m2·g−1 and narrow-sized mesopores (ca. 7.1–7.4 nm, perform as highly active catalysts for the reduction of nitroarenes, giving the corresponding aryl amines and N-aryl hydroxylamines with NaBH4 and ammonia-borane (NH3BH3, respectively, in moderate to high yields, even in large scale reactions (up to 5 mmol. Kinetic studies indicate that nitroarenes substituted with electron-withdrawing groups reduced faster than those with electron-donating groups. The measured positive ρ values from the formal Hammett-type kinetic analysis of X-substituted nitroarenes are consistent with the proposed mechanism that include the formation of possible [Ag]-H hybrid species, which are responsible for the reduction process. Because of the high observed chemo selectivities and the clean reaction processes, the present catalytic systems, i.e., Ag/MTA-NaBH4 and Ag/MTA-NH3BH3, show promise for the efficient synthesis of aryl amines and N-aryl hydroxylamines at industrial levels.

  15. Increasing Hydrogen Density with the Cation-Anion Pair BH4−-NH4+ in Perovskite-Type NH4Ca(BH43

    Directory of Open Access Journals (Sweden)

    Pascal Schouwink

    2015-08-01

    Full Text Available A novel metal borohydride ammonia-borane complex Ca(BH42·NH3BH3 is characterized as the decomposition product of the recently reported perovskite-type metal borohydride NH4Ca(BH43, suggesting that ammonium-based metal borohydrides release hydrogen gas via ammonia-borane-complexes. For the first time the concept of proton-hydride interactions to promote hydrogen release is applied to a cation-anion pair in a complex metal hydride. NH4Ca(BH43 is prepared mechanochemically from Ca(BH42 and NH4Cl as well as NH4BH4 following two different protocols, where the synthesis procedures are modified in the latter to solvent-based ball-milling using diethyl ether to maximize the phase yield in chlorine-free samples. During decomposition of NH4Ca(BH43 pure H2 is released, prior to the decomposition of the complex to its constituents. As opposed to a previously reported adduct between Ca(BH42 and NH3BH3, the present complex is described as NH3BH3-stuffed α-Ca(BH42.

  16. Seedless synthesis and efficient recyclable catalytic activity of Ag@Fe nanocomposites towards methyl orange

    Science.gov (United States)

    Alzahrani, Salma Ahmed; Malik, Maqsood Ahmad; Al-Thabaiti, Shaeel Ahmed; Khan, Zaheer

    2018-03-01

    This work demonstrates a competitive reduction method of synthesis of nanomaterials. In this method along cetyltrimethylammonium bromide (CTAB), the reduction of Ag+ and Fe3+ ions is achieved by ascorbic acid-to-bimetallic Ag@Fe yellow-colored nanomaterials. The shape of UV-visible spectra and wavelengths absorbed of Ag@Fe can be tuned from ca. 290-600 nm by controlling [CTAB] and [Ag+]. The apparent first-order rate constants were calculated within the approximation of 6.1 × 10-3 s-1. The as-prepared Ag@Fe NPs have been found to be very important catalyst in terms of depredate methyl orange in vicinity of sodium borohydride (NaBH4), which exhibits excellent efficiency and re-usability in the prototypical reaction. The cmc of cationic surfactant CTAB has been determined by conductivity method under different experimental conditions. In the presence of CTAB, Ag+ and Fe3+ ions reduce to Ag@Fe core/shell nanoparticles, comprehend a change in wavelength and intensity of SRP band. The apparent first-order rate constant, activation energy, and turnover frequency for the methyl orange reduction catalyzed by Ag@Fe NPs were found to be 1.6 × 10-3 s-1, 58.2 kJ mol-1, and 1.1 × 10-3 s-1, respectively.

  17. Co-P-B catalyst thin films prepared by electroless and pulsed laser deposition for hydrogen generation by hydrolysis of alkaline sodium borohydride: A comparison

    International Nuclear Information System (INIS)

    Patel, N.; Fernandes, R.; Bazzanella, N.; Miotello, A.

    2010-01-01

    Co-P-B catalyst thin films have been synthesized on Ni-foam and glass substrate by using electroless deposition (ED) and pulsed laser deposition (PLD) respectively. The efficiency of these catalyst films was tested by catalytic hydrolysis of NaBH 4 for H 2 generation. While the chemically produced Co-P-B film on Ni-foam shows similar activity as that of their corresponding powder, the Co-P-B film deposited by PLD exhibits much superior H 2 generation rate as compared to Co-P-B powder. We attribute this increased efficiency to the special features of the Co-P-B films which are in the form of nanoparticle-assembled films, a peculiar characteristic of PLD films for appropriate choice of the pulse laser parameters. The surface nanoparticle-configuration increases the active surface area and also favors electronic exchange mechanisms to promote hydrolysis process for H 2 gas generation. The films deposited by using laser energy density of 3 J/cm 2 show the highest activity in connection to the best configuration of the ablated nanoparticles. Different numbers of Co-P-B layers were deposited on Ni-foam by ED and it was found that at least four layers are required for complete coverage of the foam to have the best activity.

  18. Study of the ultrafast polarization dynamics in lithium borohydride by means of femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Stingl, Johannes

    2013-01-01

    In this thesis the ultrafast electronic polarisation in the crystalline material lithium borohydride (LiBH 4 ) is examined. The material is excited by a femtosecond long optical pulse and scanned by a likewise short X-ray pulse. Using X-ray scattering the optically induced spatial rearrangement of electronic charge can be directly mapped with atomic spatial resolution. Copper K-alpha X-rays for the experiment are produced in a laboratory table-top laserplasma source with 1 kHz repetition rate. This radiation is then focused on a powdered sample. Debye-Scherrer rings produced from powder diffraction are collected on a large area detector and processed to yield intensity profiles. Using pump-probe technique the change in diffracted intensity, triggered by excitation with a femtosecond optical pulse is examined. The temporal resolution is given by the delay between pump and probe pulse. This way insight is gained into the dynamic electronic evolution of the system. Intensity changes can be correlated to changes in charge density in the relevant material to elucidate structural dynamics on the femtosecond time scale. Lithium borohydride was chosen since it displays necessary characteristics for the exploration of ultrafast electronic polarisation. Up to date there has been no spatially resolved research in the femtosecond regime elucidating this electronic phenomenon. This work presents the ultrafast resonse in Lithiumborhydrid (LiBH 4 ) to strong electronic fields with optical frequencies, which leads to charge relocation accompanied by electronic polarisation.

  19. PtRu/C and PtRuBi/C electrocatalysts prepared by two different methodologies of borohydride reduction process for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Brandalise, Michele; Tusi, Marcelo Marques; Piasentin, Ricardo Marcelo; Correa, Olandir Vercino; Linardi, Marcelo; Spinace, Estevam Vitorio; Oliveira Neto, Almir, E-mail: brandalise@usp.br, E-mail: mmtusi@usp.br, E-mail: rmpiasen@ipen.br, E-mail: ovcorrea@ipen.br, E-mail: mlinardi@ipen.br, E-mail: espinace@ipen.br, E-mail: aolivei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtRu/C (50:50) and PtRuBi/C (50:40:10) electrocatalysts were prepared by borohydride reduction using H{sub 2}PtCl{sub 6.6}H{sub 2}O, RuCl{sub 3.x}H{sub 2}O and Bi(NO{sub 3}){sub 3.5}H{sub 2}O as metals sources and Vulcan XC72 as support. The borohydride solution was added in two different ways: drop by drop and rapid addition of all the solution. The obtained electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electro-oxidation of ethanol was studied by cyclic voltammetry and chronoamperometry at room temperature and on a single cell of a direct ethanol fuel cell (DEFC) at 100 deg C. PtRuBi/C electrocatalysts showed superior performance for ethanol electro-oxidation than PtRu/C electrocatalysts prepared in a similar way. However, PtRuBi/C electrocatalyst prepared by rapid addition of the borohydride solution showed superior performance for ethanol electro oxidation at room temperature, while PtRuBi/C electrocatalyst prepared by addition drop by drop of borohydride solution showed superior performance on DEFC at 100 deg C. (author)

  20. PtRu/C and PtRuBi/C electrocatalysts prepared by two different methodologies of borohydride reduction process for ethanol electro-oxidation

    International Nuclear Information System (INIS)

    Brandalise, Michele; Tusi, Marcelo Marques; Piasentin, Ricardo Marcelo; Correa, Olandir Vercino; Linardi, Marcelo; Spinace, Estevam Vitorio; Oliveira Neto, Almir

    2009-01-01

    PtRu/C (50:50) and PtRuBi/C (50:40:10) electrocatalysts were prepared by borohydride reduction using H 2 PtCl 6.6 H 2 O, RuCl 3.x H 2 O and Bi(NO 3 ) 3.5 H 2 O as metals sources and Vulcan XC72 as support. The borohydride solution was added in two different ways: drop by drop and rapid addition of all the solution. The obtained electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electro-oxidation of ethanol was studied by cyclic voltammetry and chronoamperometry at room temperature and on a single cell of a direct ethanol fuel cell (DEFC) at 100 deg C. PtRuBi/C electrocatalysts showed superior performance for ethanol electro-oxidation than PtRu/C electrocatalysts prepared in a similar way. However, PtRuBi/C electrocatalyst prepared by rapid addition of the borohydride solution showed superior performance for ethanol electro oxidation at room temperature, while PtRuBi/C electrocatalyst prepared by addition drop by drop of borohydride solution showed superior performance on DEFC at 100 deg C. (author)

  1. Amorphous boron-doped sodium titanates hydrates: Efficient and reusable adsorbents for the removal of Pb{sup 2+} from water

    Energy Technology Data Exchange (ETDEWEB)

    Di Bitonto, Luigi; Volpe, Angela; Pagano, Michele; Bagnuolo, Giuseppe; Mascolo, Giuseppe [CNR-IRSA, Via de Blasio 5, 70132 Bari (Italy); La Parola, Valeria [CNR-ISMN, Via U. La Malfa, 153, 90146 Palermo (Italy); Di Leo, Paola [CNR-IMAA, Via S. Loja, Tito Scalo (PZ) (Italy); Pastore, Carlo, E-mail: carlo.pastore@ba.irsa.cnr.it [CNR-IRSA, Via de Blasio 5, 70132 Bari (Italy)

    2017-02-15

    Highlights: • Amorphous B-doped sodium titanates hydrates were mildly synthesized. • These compounds resulted efficiently used in removing Pb{sup 2+} from natural water. • Adsorption occurs with a partial ionic exchange mechanism. • Adsorbents were easily recoverable and reusable for further new cycles. - Abstract: Amorphous titanium hydroxide and boron-doped (B-doped) sodium titanates hydrates were synthetized and used as adsorbents for the removal of Pb{sup 2+} from water. The use of sodium borohydride (NaBH{sub 4}) and titanium(IV) isopropoxide (TTIP) as precursors permits a very easy synthesis of B-doped adsorbents at 298 K. The new adsorbent materials were first chemically characterized (XRD, XPS, SEM, DRIFT and elemental analysis) and then tested in Pb{sup 2+} adsorption batch experiments, in order to define kinetics and equilibrium studies. The nature of interaction between such sorbent materials and Pb{sup 2+} was also well defined: besides a pure adsorption due to hydroxyl interaction functionalities, there is also an ionic exchange between Pb{sup 2+} and sodium ions even working at pH 4.4. Langmuir model presented the best fitting with a maximum adsorption capacity up to 385 mg/g. The effect of solution pH and common ions (i.e. Na{sup +}, Ca{sup 2+} and Mg{sup 2+}) onto Pb{sup 2+} sorption were also investigated. Finally, recovery was positively conducted using EDTA. Very efficient adsorption (>99.9%) was verified even using tap water spiked with traces of Pb{sup 2+} (50 ppb).

  2. Stereochemistry of nitrogenous heterocycles. 61. Synthesis and configuration of an eighth isomer of 2-methyl-4-hydroxydecahydroquinoline

    International Nuclear Information System (INIS)

    Litvinenko, G.S.; Voronenko, L.A.

    1987-01-01

    Reduction of 1-benzoyl-2α-methyl-4-oxo-cis-decahydroquinoline with dodium borohydride and sodium in alcohol has given 1-benzoyl-2α-methyl-4β-hydroxy-cis-decahydroquinoline, which exists in the steroidal conformation with diaxial α, α'-substituents in the piperidine ring and with an equatorial hydroxy-group. Debenzoylation of this has given the last of the eight theoretically possible isomers of 2-methyl-4-hydroxydecahydroquinoline, namely 2α-methyl-4β-hydroxy-cis-decahydroquinoline, which exists in the nonsteroidal conformation with an axial hydroxy-group. IR spectra were obtained on a UR-20 spectrometer in KBr disks, and PMR spectra on a BS487 instrument (80 MHz), internal standard HMDS

  3. Facile and efficient room temperature solid state reaction enabled synthesis of antimony nanoparticles embedded within reduced graphene oxide for enhanced sodium-ion storage

    Science.gov (United States)

    Zhang, Xiukui; Wu, Ping; Jiang, Li; Zhang, Xiaofang; Shi, Hongxia; Zhu, Xiaoshu; Wei, Shaohua; Zhou, Yiming

    2018-06-01

    Herein, a very simple and cost-effective solid state reaction method is employed to obtain, for the first time, the antimony nanoparticles embedded within reduced graphene oxide matrices (designated as Sb/rGO). By directly grinding antimony chloride and sodium hydroxide together at room temperature in the presence of graphene oxide (GO), Sb4O5Cl2 precursor was quickly obtained, which is evenly incorporated in the graphene oxide matrices. After subsequent chemical reduction by NaBH4, the Sb/rGO composite was successfully synthesized. The as-prepared Sb/rGO composite consists of uniform Sb nanoparticles of sub-20 nm, all of which have been wrapped in and protected by the rGO matrices. The Sb nanoparticles serve as a sufficient sodium ion reservoir while the rGO matrices provide highly efficient pathways for transport of sodium ions and electrons. Moreover, the volume expansion of Sb during sodiation can be buffered in the rGO matrices. As a result, the Sb/rGO composite exhibits excellent electrochemical performance in sodium-ion batteries (SIBs), including an enhanced cycling stability with a highly reversible charge capacity of 455 mA h g-1 after 45 cycles at 100 mA g-1, and a coulombic efficiency exceeding 98% during cycling. The findings in the present work pave the way to not only synthesize the designated promising electrode materials for high performance SIBs, but also thoroughly understand the solid-state reaction.

  4. The Analysis of Silver Nanoparticles After the Manipulation of Synthesis Parameters and with the Addition of Potassium 2-(9-Carboxy-1-Octylnonylsulfanyl)-Malonate

    International Nuclear Information System (INIS)

    Chin, S.Y.; Hakam, M.A.O.; Goh, S.C.; Yarmo, M.A.

    2011-01-01

    This research aimed to synthesize and characterize silver nanoparticles by manipulating the parameters involved in stabilizing the particles. The silver nanoparticles in this research were synthesized by reduction process of silver nitrate (AgNO 3 ) with sodium borohydrate (NaBH 4 ) as the reducing agent. The addition of potassium 2- (9-carboxy-1-octylnonylsulfanyl)-malonate into silver nanoparticles solution functioned as a stabilizing agent. The parameters involved in this research were the effect of time towards stability of silver nanoparticles, the effect of addition of potassium 2-(9-carboxy-1-octylnonylsulfanyl)- malonate and the pH level effect towards the synthesized silver nanoparticles. Based on the results obtained from Transmission Electron Microscopy (TEM), we have observed that the incorporation of potassium 2-(9-carboxy-1- octyl-nonanesulfonyl)-malonate as the stabilizing agent can prevent the agglomeration of silver nanoparticles within 16 days which is a breakthrough for the synthesis of silver nanoparticles by using sodium borohydride. The micrograph showed that the size of silver nanoparticles synthesized were within the range of 1.5 nm to 8.3 nm. In addition to that, Dynamic Light Scattering (DLS) technique was used in this research to measure the average size of the silver nanoparticles which stabilized with potassium 2-(9-carboxy-1-octyl-nonanesulfonyl)-malonate. X-Ray Diffraction (XRD) analysis was carried out to view the effect of manipulated pH level on crystalline silver nanoparticles structure. The XRD diffractogram showed the diffraction peaks which can be indexed to planes of face- centered cubic (fcc) of pure silver. (author)

  5. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    Science.gov (United States)

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  6. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics

    KAUST Repository

    Tai, Yanlong; Yang, ZG

    2015-01-01

    Metal conductive ink for flexible electroncs has exhibited a promising future recently. Here, an innovative strategy was reported to synthesize silver nanocolloid (2.5 ± 0.5 nm) and separate solid silver nanoparticles (<10 nm) effectively. Specifically, silver nitrate (AgNO3) was used as silver precursor, sodium borohydride (NaBH4) as reducing agent, fatty acid (CnH2n+1COOH) as dispersant agent, ammonia (NH3•H2O) and hydrochloride (HCl) as pH regulator and complexing agent in aqueous. The main mechanism is the solubility changes of fatty acid salts (CnH2n+1 COO-NH4+) and fatty acid (CnH2n+1 COOH) coated on the synthesized silver nanoparticles (NPs) in aqueous. This change determinates the suspension and precipitation of silver NPs directly. The results show that when n in dispersant is 12, and molar ratio (C12H24O2/AgNO3) is 1.0, the separation yield of silver NPs is up to 94.8 %. After sintered at 125 ℃ for 20 minutes, the as-prepared conductive silver nanoink (20 wt. %) presents a satisfactory resistivity (as low as 6.6 μΩ.cm on polyester-PET substrate), about 4 times the bulk silver. In addition, the efficacy of the as-prepared conductive ink was verified with the construction of radio frequency antenna by inkjet printing and conductive character pattern (Fudan-Fudan) by direct wiring, showing with excellent electrical performance.

  7. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics

    KAUST Repository

    Tai, Yanlong

    2015-07-02

    Metal conductive ink for flexible electroncs has exhibited a promising future recently. Here, an innovative strategy was reported to synthesize silver nanocolloid (2.5 ± 0.5 nm) and separate solid silver nanoparticles (<10 nm) effectively. Specifically, silver nitrate (AgNO3) was used as silver precursor, sodium borohydride (NaBH4) as reducing agent, fatty acid (CnH2n+1COOH) as dispersant agent, ammonia (NH3•H2O) and hydrochloride (HCl) as pH regulator and complexing agent in aqueous. The main mechanism is the solubility changes of fatty acid salts (CnH2n+1 COO-NH4+) and fatty acid (CnH2n+1 COOH) coated on the synthesized silver nanoparticles (NPs) in aqueous. This change determinates the suspension and precipitation of silver NPs directly. The results show that when n in dispersant is 12, and molar ratio (C12H24O2/AgNO3) is 1.0, the separation yield of silver NPs is up to 94.8 %. After sintered at 125 ℃ for 20 minutes, the as-prepared conductive silver nanoink (20 wt. %) presents a satisfactory resistivity (as low as 6.6 μΩ.cm on polyester-PET substrate), about 4 times the bulk silver. In addition, the efficacy of the as-prepared conductive ink was verified with the construction of radio frequency antenna by inkjet printing and conductive character pattern (Fudan-Fudan) by direct wiring, showing with excellent electrical performance.

  8. Selective hydrogenation of 4-isobutylacetophenone over a sodium-promoted Pd/C catalyst

    International Nuclear Information System (INIS)

    Cho, Hong-Baek; Lee, Bae Uk; Nakayama, Tadachika; Park, Yeung-Ho; Ryu, Chung-Han

    2013-01-01

    The effect of sodium promotion on the selective hydrogenation of 4-isobutylacetophenone, 4-IBAP, was investigated over a Pd/C catalyst. A precipitation and deposition method was used to prepare the catalyst, and sodium was promoted on the Pd/C catalyst via post-impregnation while varying the sodium content. The sodium-promoted Pd/C catalyst resulted in a significantly improved yield greater than 96% of the desired product, 1-(4-isobutylphenyl) ethanol (4-IBPE), compared with the non-patented literature results under a mild hydrogenation condition. A detailed hydrogenation network over the Pd/C catalyst was suggested. The reaction mechanism for the yield and selectivity enhancement of 4-IBPE induced-by the promoted Pd/C was elucidated in relation to the geometric and electronic effects of reactant molecules in the microporous support depending on the reaction steps

  9. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells.

    Science.gov (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine

    2007-11-23

    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  10. Leaching and antimicrobial properties of silver nanoparticles loaded onto natural zeolite clinoptilolite by ion exchange and wet impregnation

    CSIR Research Space (South Africa)

    Missengue, RNM

    2015-11-01

    Full Text Available This study aimed to compare the leaching and antimicrobial properties of silver that was loaded onto the natural zeolite clinoptilolite by ion exchange and wet impregnation. Silver ions were reduced using sodium borohydride (NaBH(sub4...

  11. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Wen; Chen, Chuh-Yung; Huang, Yao-Hui [Department of Chemical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China)

    2009-03-15

    A method of preparing a polymer-supported catalyst for hydrogen generation is introduced in this article. This polymer-supported catalyst is the structure of ruthenium (Ru) nanoparticle immobilized on a monodisperse polystyrene (PSt) microsphere. The diameter of the Ru nanoparticle is around 16 nm, and the diameter of the PSt microsphere is 2.65 um. This preparation method is accomplished by two unique techniques: one is sodium lauryl sulfate/sodium formaldehyde sulfoxylate (SLS/SFS) interface-initiated system, the other is 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) chelating monomer. By taking advantage of these two techniques, Ru{sup 3+} ion will be chelated and then reduced to Ru{sup (0)} nanoparticle over PSt surface predominantly. The hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution catalyzed by this Ru-immobilized polymer-supported catalyst is also examined in this article. It reveals that the hydrogen generation rate is 215.9 ml/min g-cat. in a diluted solution containing 1 wt.% NaBH{sub 4} and 1 wt.% NaOH, and this Ru-immobilized polymer-supported catalyst could be recycled during the reaction. (author)

  12. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2

    Science.gov (United States)

    Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias

    2018-04-01

    The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.

  13. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application

    International Nuclear Information System (INIS)

    Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L.

    2014-01-01

    Silver colloids were produced by chemical reduction of silver salt (silver nitrate, AgNO 3 ) solution. As reducing agents, trisodium citrate, sodium borohydride, ascorbic acid, polyvinylpyrrolidone, and glucose were used. The colloids were characterized by UV–Vis, DLS, zeta potential measurements, and SEM. The colloids were stabilized with negative groups or large molecules attached to their surface. The surface-enhanced Raman scattering (SERS) effect of stabilized nanoparticles was measured by using pyridine and rhodamine 6G molecules as analytes and NaNO 3 , KCl, and KBr at different concentrations as aggregating agents. The best Raman signal enhancement was achieved using silver nanoparticles of 40 nm size reduced and stabilized with citrate. The SERS signal of analyte molecules was further enhanced with the addition of sodium borohydride as an alternative aggregating agent. The borohydride had the strongest impact on the SERS effect of the colloid consistent of large (0.5 µm) silver nanoparticles stabilized with aminodextran. The mixture colloid-borohydride-pyridine was stable for hours. The mechanism of borohydride in the colloids is discussed

  14. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application

    Energy Technology Data Exchange (ETDEWEB)

    Mikac, L.; Ivanda, M., E-mail: ivanda@irb.hr [Ruđer Bošković Institute, Laboratory for Molecular Physics (Croatia); Gotić, M. [Ruđer Bošković Institute, Laboratory for Synthesis of New Materials (Croatia); Mihelj, T. [Ruđer Bošković Institute, Laboratory for Synthesis and Processes of Self-assembling of Organic Molecules (Croatia); Horvat, L. [Ruđer Bošković Institute, Laboratory for Electron Microscopy (Croatia)

    2014-12-15

    Silver colloids were produced by chemical reduction of silver salt (silver nitrate, AgNO{sub 3}) solution. As reducing agents, trisodium citrate, sodium borohydride, ascorbic acid, polyvinylpyrrolidone, and glucose were used. The colloids were characterized by UV–Vis, DLS, zeta potential measurements, and SEM. The colloids were stabilized with negative groups or large molecules attached to their surface. The surface-enhanced Raman scattering (SERS) effect of stabilized nanoparticles was measured by using pyridine and rhodamine 6G molecules as analytes and NaNO{sub 3}, KCl, and KBr at different concentrations as aggregating agents. The best Raman signal enhancement was achieved using silver nanoparticles of 40 nm size reduced and stabilized with citrate. The SERS signal of analyte molecules was further enhanced with the addition of sodium borohydride as an alternative aggregating agent. The borohydride had the strongest impact on the SERS effect of the colloid consistent of large (0.5 µm) silver nanoparticles stabilized with aminodextran. The mixture colloid-borohydride-pyridine was stable for hours. The mechanism of borohydride in the colloids is discussed.

  15. Evaluation of colloidal Pd and Pd-alloys as anode electrocatalysts for direct borohydride fuel cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, M.H. [General Motors R and D Technical Center, Warren, MI (United States); Gyenge, E.L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Northwood, D.O. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2010-07-01

    An evaluation was conducted to assess the use of colloidal palladium (Pd) and Pd alloys as anode electrocatalysts for direct borohydride fuel cell applications. A modified Bonneman method was used to investigate borohydride oxidation on supported Pd and Pd-alloy nano-electrocatalysts. Cyclic voltammetry (CV), rotating disk electrode (RDE) voltammetry, and single fuel cell test stations were used to determine Tafel slopes, exchange current densities, oxidation peak potentials, and fuel cell performance. The study also investigated the influence of temperature and oxidant flow and fuel flow rates on fuel cell performance. The study showed that the current density of the fuel cell increased with increases in temperature for all the investigated Pd electrocatalysts. However, the increase in current density was not as high as expected when fuel flow rates were increased. A current density of 50 mA cm{sup -2} was observed at 298 K with a Pd-Ir anode catalyst operating at a cell voltage of 0.5 V. 28 refs., 1 tab., 15 figs.

  16. Thermal decomposition study of Mn doped Fe3O4 nanoparticles

    Science.gov (United States)

    Malek, Tasmira J.; Chaki, S. H.; Tailor, J. P.; Deshpande, M. P.

    2016-05-01

    Fe3O4 is an excellent magnetic material among iron oxides. It has a cubic inverse spinel structure exhibiting distinguished electric and magnetic properties. In this paper the authors report the synthesis of Mn doped Fe3O4 nanoparticles by wet chemical reduction technique at ambient temperature and its thermal characterization. Ferric chloride hexa-hydrate (FeCl3•6H2O), manganese chloride tetra-hydrate (MnCl2•4H2O) and sodium boro-hydrate (NaBH4) were used for synthesis of Fe3O4 nanoparticles at ambient temperature. The elemental composition of the as-synthesized Mn doped Fe3O4 nanoparticles were determined by energy dispersive analysis of X-rays (EDAX) technique. Thermogravimetric (TG) and differential thermal analysis (DTA) were carried out on the Mn doped Fe3O4 nanoparticles in the temperature range of ambient to 1124 K. The thermo-curves revealed that the particles decompose by four steps. The kinetic parameters were evaluated using non-mechanistic equations for the thermal decomposition.

  17. Hydrogen rotational and translational diffusion in calcium borohydride from quasielastic neutron scattering and DFT

    DEFF Research Database (Denmark)

    Blanchard, Didier; Riktor, M.D.; Maronsson, Jon Bergmann

    2010-01-01

    Hydrogen dynamics in crystalline calcium borohydride can be initiated by long-range diffusion or localized motion such as rotations, librations, and vibrations. Herein, the rotational and translational diffusion were studied by quasielastic neutron scattering (QENS) by using two instruments...... with different time scales in combination with density functional theory (DFT) calculations. Two thermally activated reorientational motions were observed, around the 2-fold (C2) and 3-fold (C3) axes of the BH4− units, at temperature from 95 to 280K. The experimental energy barriers (EaC2 = 0.14 eV and EaC3 = 0...... of the interstitial H2 might come from the synthesis of the compound or a side reaction with trapped synthesis residue leading to the partial oxidation of the compound and hydrogen release....

  18. Thermal decomposition behaviors of magnesium borohydride doped with metal fluoride additives

    International Nuclear Information System (INIS)

    Zhang, Z.G.; Wang, H.; Liu, J.W.; Zhu, M.

    2013-01-01

    Highlights: • The decomposition proceeded through several distinct steps. • The mixed materials show a dramatically low initial hydrogen release temperature. • The additives react with the Mg–B–H compounds rather than acting as catalysts. • The reaction process was studied using an in situ TEM. - Abstract: The thermal decomposition behaviors of Magnesium borohydride [Mg(BH 4 ) 2 ] and metal fluoride doped mixtures were studied by temperature programmed desorption measurement/mass spectrometry (TPD/MS), differential scanning calorimetry (DSC) and in situ transmission electron microscope (TEM) observations. The decomposition and release of hydrogen proceeded through several distinct steps, including two polymorphic transitions, ionic Mg(BH 4 ) 2 melting with solid Mg–B–H amorphous phase formation and Mg–B–H decomposition. The addition of additives such as CaF 2 , ZnF 2 and TiF 3 resulted in a decrease in the hydrogen release temperature. ZnF 2 and TiF 3 reduced the initial hydrogen release temperature to ca. 50 °C. However, hydrogen release during the transformation from γ-Mg(BH 4 ) 2 to the amorphous Mg–B–H compounds at ca. 300 °C was only 4.5 wt.% in contrast to 9.8 wt.% for the direct decomposition of pure Mg(BH 4 ) 2 . TEM observations confirmed that ZnF 2 and TiF 3 reacted with amorphous Mg–B–H compounds rather than acting as catalysts

  19. Effects of Na4EDTA and EDTA on seeded precipitation of sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    吕保林; 陈启元; 尹周澜; 胡慧萍

    2010-01-01

    Na4EDTA and EDTA were adopted as new additives to intensify the seeded precipitation process of sodium aluminate solution. The effects of the two additives at certain concentrations on the seeded precipitation rate of sodium aluminate solution, particle size distribution (PSD) and morphology of precipitated gibbsite were investigated using titration method, particle size analyzer and scanning electron microscope (SEM), respectively. The results show that the two additives can accelerate the seeded precipitation rate of sodium aluminate solution. At relatively high concentration, the facilitative effect of EDTA on sodium aluminate solution is more obvious than that of Na4EDTA. EDTA makes gibbsite particles thinner than Na4EDTA. The Na+ and H+ result in the different effects on the seeded precipitation rate of sodium aluminate solution in spite of the same EDTA anion in the two additives.

  20. Synthesis of optically pure deuterium-labelled nicotine, nornicotine and cotinine

    International Nuclear Information System (INIS)

    Jacob, P. III; Benowitz, N.L.; Shulgin, A.T.; California Univ., San Francisco

    1988-01-01

    We describe methods for the synthesis of enantiomerically pure (S)-nicotine-3',3'-d 2 , (S)-nornicotine-3',3-d 2 , and (S)-cotinine-4',4'-d 2 . The key intermediate was 5-bromomyosmine, which underwent base catalyzed exchange with deuterium oxide to give 5-bromomyosmine-3',3'- d 2 with >99% incorporation of label. This intermediate was reduced to (±)-5-bromo-nornicotine-3',3'-d 2 with sodium borohydride, resolved, and converted to (S)-nornicotine-3',3'-d(sub)2 by reductive debromination with hydrogen and a palladium catalyst. Reductive alkylation with formaldehyde and sodium borohydride provided (S)-nicotine-3',3'-d 2 , which was converted to (S)-cotinine-4',4'-d 2 by reaction with bromine followed by zinc reduction. The deuterium label is located at positions that are not attacked in the major routes of mammalian metabolism of these alkaloids. Syntheses of tetradeuterated analogs of nicotine and cotinine and a pentadeuterated analog of nicotine, in which additional deuterium atoms are incorporated in the methyl groups, are also reported. (author)

  1. Synthesis of graphene platelets by chemical and electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, Rajendran; Felix, Sathiyanathan [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Joshi, Girish M. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India); Raghupathy, Bala P.C., E-mail: balapraveen2000@yahoo.com [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Research and Advanced Engineering Division (Materials), Renault Nissan Technology and Business Center India (P) Ltd., Chennai, Tamil Nadu (India); Jeong, Soon Kwan, E-mail: jeongsk@kier.re.kr [Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Grace, Andrews Nirmala, E-mail: anirmalagrace@vit.ac.in [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2013-10-15

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH{sub 4} was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide.

  2. Improved hydrogen generation from alkaline NaBH{sub 4} solution using cobalt catalysts supported on modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Guo, Qingjie; Yue, Xuehai [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-12-15

    Hydrogen production from alkaline sodium borohydride (NaBH{sub 4}) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO{sub 3}. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO{sub 3} oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability. (author)

  3. Cell patterning on poly(sodium 4-styrenesulfonate)-patterned fluoropolymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan-Joong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Polymer Science and Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Jung, Chang-Hee; Hwang, In-Tae [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Jung, Chan-Hee, E-mail: jch@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Choi, Jae-Hak, E-mail: jaehakchoi@cnu.ac.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Polymer Science and Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Hong, Sung-Kwon [Department of Polymer Science and Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2013-10-15

    Highlights: •PFA films were functionalized by ion-beam induced surface graft polymerization. •Poly(sodium 4-styrenesulfonate) (PSS)-patterned PFA films were prepared. •Well-organized cell patterns were obtained on PSS-patterned PFA films. •This method is useful to fabricate bio-platforms for cell-based biodevices. -- Abstract: The surface functionalization of bio-inert fluoropolymer films through ion beam-induced surface graft polymerization was investigated to control the cellular behavior. The surface of poly(tetrafluoroethylene-co-perfluoropropl vinyl ether) (PFA) films was selectively activated by 150 keV H{sup +} ion implantation in the presence of a pattern mask and sodium 4-styrenesulfonate (SS) was then graft polymerized onto the implanted PFA films to form hydrophilic poly(sodium 4-styrenesulfonate) (PSS)-patterned PFA films. The surface of the resulting PSS-patterned PFA films was investigated in terms of the degree of graft polymerization, chemical structure, chemical composition, wettability, and morphology. The analytical results revealed that PSS was selectively grafted onto the implanted regions of the PFA films. Furthermore, in vitro cell culture on the PSS-patterned PFA films exhibited a preferential adhesion and growth of cells onto the PSS-grafted regions, resulting in well-organized 100 μm cell patterns.

  4. Cell patterning on poly(sodium 4-styrenesulfonate)-patterned fluoropolymer substrate

    International Nuclear Information System (INIS)

    Kim, Wan-Joong; Jung, Chang-Hee; Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak; Hong, Sung-Kwon

    2013-01-01

    Highlights: •PFA films were functionalized by ion-beam induced surface graft polymerization. •Poly(sodium 4-styrenesulfonate) (PSS)-patterned PFA films were prepared. •Well-organized cell patterns were obtained on PSS-patterned PFA films. •This method is useful to fabricate bio-platforms for cell-based biodevices. -- Abstract: The surface functionalization of bio-inert fluoropolymer films through ion beam-induced surface graft polymerization was investigated to control the cellular behavior. The surface of poly(tetrafluoroethylene-co-perfluoropropl vinyl ether) (PFA) films was selectively activated by 150 keV H + ion implantation in the presence of a pattern mask and sodium 4-styrenesulfonate (SS) was then graft polymerized onto the implanted PFA films to form hydrophilic poly(sodium 4-styrenesulfonate) (PSS)-patterned PFA films. The surface of the resulting PSS-patterned PFA films was investigated in terms of the degree of graft polymerization, chemical structure, chemical composition, wettability, and morphology. The analytical results revealed that PSS was selectively grafted onto the implanted regions of the PFA films. Furthermore, in vitro cell culture on the PSS-patterned PFA films exhibited a preferential adhesion and growth of cells onto the PSS-grafted regions, resulting in well-organized 100 μm cell patterns

  5. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    International Nuclear Information System (INIS)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E.

    2014-01-01

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH 4 amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green

  6. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  7. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Science.gov (United States)

    Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.

  8. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Department of Mechanical, Auto and Materials Engineering, University of Windsor, Windsor (Canada N9B 3P4); Macdonald, Charles L.B. [Department of Chemistry and Biochemistry, University of Windsor, Windsor (Canada N9B 3P4); Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC (Canada V6T 1Z4)

    2006-07-14

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20wt% metal load) were prepared by the Bonneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH{sub 4}{sup -}, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH{sub 4}{sup -} oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5mgcm{sup -2} colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47V at 100mAcm{sup -2} and 333K, while under identical conditions the cell voltage using colloidal Au was 0.17V. (author)

  9. Hydrogen storage properties of rare earth (RE) borohydrides (RE = La, Er) in composite mixtures with LiBH{sub 4} and LiH

    Energy Technology Data Exchange (ETDEWEB)

    Frommen, Christoph; Heere, Michael [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); Riktor, Marit D. [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); SINTEF Materials and Chemistry, Forskningsveien 1, NO-0314 Oslo (Norway); Sørby, Magnus H. [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); Hauback, Bjørn C., E-mail: bjorn.hauback@ife.no [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway)

    2015-10-05

    Highlights: • 6LiBH{sub 4}–RECl{sub 3}–3LiH composites (RE = La, Er) studied for the first time. • Drastically reduced decomposition temperature (300 {sup o}C) compared to LiBH{sub 4} (>400 °C). • Partial reversibility for 6LiBH{sub 4}–LaCl{sub 3}–3LiH: (19% at 340 °C, 10 MPa). • Excellent reversibility for 6LiBH{sub 4}–ErCl{sub 3}–3LiH: (80% at 340 °C, 10 MPa). • Reversibility comparable to that obtained for pure LiBH{sub 4} (76% at 600 °C and 15.5 MPa). - Abstract: Mixtures of 6LiBH{sub 4}–RECl{sub 3}–3LiH (RE = La, Er) have been produced by mechanochemical milling and their structure, thermal decomposition and reversibility have been studied. Hydrogen desorption starts around 300 °C in both composites. Heating to 400 °C yields LaB{sub 6}, ErB{sub 4} and REH{sub 2+δ} as major decomposition products. LiBH{sub 4} is destabilized by REH{sub 2+δ} formed through decomposition of the parent borohydrides LiLa(BH{sub 4}){sub 3}Cl and Er(BH{sub 4}){sub 3}, respectively, and its hydrogen release temperature is reduced by 100 °C as compared to pure ball-milled LiBH{sub 4}. The lanthanum-containing composite releases 4.2 wt.% H between 300 and 350 °C and shows a limited reversibility of ∼20% (340 °C, 10 MPa) probably due to hydrogen uptake by some amorphous boron-containing phases. For 6LiBH{sub 4}–ErCl{sub 3}–3LiH about 3 wt.% H is evolved up to 400 °C. Desorption against 0.5 MPa backpressure results in an increased reversibility (∼80%) as compared to vacuum (∼66%). Rehydrogenation (340 °C, 10 MPa) shows the formation of ErH{sub 3} and LiBH{sub 4} at drastically reduced conditions compared to pure LiBH{sub 4} (>400 °C, >10 MPa)

  10. Formation of the reduced form of furaneol® (2,5-dimethyl-4-hydroxy-tetrahydrofuran-3-one) during the Maillard reaction through catalysis of amino acid metal salts.

    Science.gov (United States)

    Nashalian, Ossanna; Wang, Xi; Yaylayan, Varoujan A

    2016-11-01

    Under pyrolytic conditions the acidity/basicity of Maillard reaction mixtures can be controlled through the use of hydrochloride or sodium salts of amino acids to generate a diversity of products. When the degradation of glucose was studied under pyrolytic conditions using excess sodium glycinate the reaction was found to generate a major unknown peak having a molecular ion at m/z 130. Subsequent in-depth isotope labelling studies indicated that acetol was an important precursor of this compound under pyrolytic and aqueous heating conditions. The dimerisation and cyclisation of acetol into 2,5-dimethyl-4-hydroxy-tetrahydrofuran-3-one was found to be catalysed by amino acid metal salts. Also, ESI/qTOF/MS studies indicated that the unknown peak has expected molecular formula of C6H10O3. Finally, a peak having the same retention time and mass spectrum was also generated pyrolytically when furaneol® was reduced with NaBH4 confirming the initial hypothesis regarding the unknown peak to be the reduced form of furaneol®. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sodium citrate assisted facile synthesis of AuPd alloy networks for ethanol electrooxidation with high activity and durability

    Science.gov (United States)

    Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan

    2016-10-01

    The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.

  12. Preparation of ultrafine poly(sodium 4-styrenesulfonate) fibres via ...

    Indian Academy of Sciences (India)

    The ultrafine poly (sodium 4-styrenesulfonate) (NaPSS) fibres have been prepared for the first time by electrospinning. The spinning solutions (NaPSS aqueous solutions) in varied concentrations were studied for electrospinning into ultrafine fibres. The results indicated that the smooth fibre could be formed when the ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    step sequence under microwave irradiation involving the reaction of commercially available Merrifield resin with vanillin, followed by reduction with sodium borohydride. MBBA resin was treated with bromides in the presence of sodium hydride to ...

  14. Fabrication of silica-coated gold nanorods and investigation of their property of photothermal conversion

    International Nuclear Information System (INIS)

    Inose, Tomoya; Oikawa, Takahiro; Shibuya, Kyosuke; Tokunaga, Masayuki; Hatoyama, Keiichiro; Nakashima, Kouichi; Kamei, Takashi; Gonda, Kohsuke; Kobayashi, Yoshio

    2017-01-01

    This study described the preparation of silica-coated Au nanorods (AuNR/SiO 2 ) in a colloidal solution, assessed their property of photothermal conversion, and investigated their ability to kill cancer cells using photothermal conversion. Au-seed nanoparticles were produced by reducing hydrogen tetrachloroaurate (HAuCl 4 ) with sodium borohydride (NaBH 4 ) in aqueous n-hexadecyltrimethylammonium bromide (CTAB) solution. AuNRs were then fabricated by reducing HAuCl 4 and silver nitrate (AgNO 3 ) with L-ascorbic acid in the aqueous CTAB solution in the presence of Au-seed nanoparticles. The as-prepared AuNRs were washed by a process composed mainly of centrifugation to remove the CTAB. The washed AuNRs were coated with silica by mixing the AuNR colloidal solution, an aqueous solution of (3-aminopropyl)trimethoxysilane, and tetraethylorthosilicate/ethanol solution with a water/ethanol solution. We found that the addition of AuNR/SiO 2 in water, in mice, and in a culture medium with cancer cells, followed by irradiation with a laser, cause an increase in temperature, demonstrating that AuNR/SiO 2 have the ability of photothermal conversion. In addition, the cancer cells in the culture medium were found to be killed due to the increase in temperature caused by the photothermal conversion. - Highlights: • This study described the preparation of silica-coated Au nanorods (AuNR/SiO 2 ) colloidal solution. • The AuNR/SiO 2 had the ability of photothermal conversion. • The AuNR/SiO 2 also had the ability to kill cancer cells using the photothermal conversion.

  15. Effects of sodium environment on the mechanical properties of Fe-2 1/4Cr-1Mo steel

    International Nuclear Information System (INIS)

    Chopra, O.K.

    Mechanical property data on isothermally annealed, thermally aged, and sodium-exposed Fe-2 1/4Cr-1Mo steel are analyzed to evaluate the influence of the sodium environment as well as the effects of the microstructural and compositional changes that occur in the steel during long-term exposure to sodium. Correlations are developed to predict the environmental effects on tensile, creep, fatigue, and creep-fatigue properties of Fe-2 1/4Cr-1Mo steel in sodium. The results indicate that at temperatures <823 K (550 deg. C), degradation of mechanical properties is essentially due to thermal aging. Loss of carbon from the steel reduces both the tensile and creep-rupture strength, but has little or no effect on the fatigue properties. The cyclic properties of Fe-2 1/4Cr-1Mo steel in sodium are superior to those in air. The creep-fatigue behaviour in sodium is significantly different from that in an air environment. The creep-fatigue data are analyzed using the interactive damage rate equations to predict the time-dependent fatigue bahaviour of isothermally annealed Fe-2 1/4Cr-1Mo steel in sodium. (author)

  16. Effects of sodium environment on the mechanical properties of Fe-2 1/4Cr-1Mo steel

    International Nuclear Information System (INIS)

    Chopra, O.K.

    1983-09-01

    Mechanical property data on isothermally annealed, thermally aged, and sodium-exposed Fe-2 1/4Cr-1Mo steel are analyzed to evaluate the influence of the sodium environment as well as the effects of the microstructural and compositional changes that occur in the steel during long-term exposure to sodium. Correlations are developed to predict the environmental effects on tensile, creep, fatigue, and creep-fatigue properties of Fe-2 1/4Cr-1Mo steel in sodium. The results indicate that at temperatures 0 C), degradation of mechanical properties is essentially due to thermal aging. Loss of carbon from the steel reduces both the tensile and creep-rupture strength, but has little or no effect on the fatigue properties. The cyclic properties of Fe-2 1/4Cr-1Mo steel in sodium are superior to those in air. The creep-fatigue behavior in sodium is significantly different from that in an air environment. The creep-fatigue data are analyzed using the interactive damage rate equations to predict the time-dependent fatigue behavior of isothermally annealed Fe-2 1/4Cr-1Mo steel in sodium. 15 references, 7 figures, 1 table

  17. Studies on the nature of intermediates in enzyme mechanisms

    International Nuclear Information System (INIS)

    Clark, J.D.

    1988-01-01

    The reaction pathway followed by malate synthase has been studied by the double isotope fractionation method to determine whether the reaction is stepwise or concerted. A primary deuterium kinetic isotope effect ( D V/K) of 1.3 ± 0.1 has been found using [ 2 H 3 ]acetyl-CoA as substrate. The 13 C isotope effect at the aldehydic carbon of glyoxylate has also been measured. For this determination, the malate product was quantitatively transformed into a new sample of malate having the carbon of interest at C-4. This material was decarboxylated to produce the appropriate CO 2 for isotope ratio mass spectrometric analysis. If the essential Zn(II) ion of yeast aldolase interacts with the carbonyl groups of bound substrates, we can expect that these will be more reactive toward reduction by borohydrides than those free in solution. Tritiated sodium borohydride was therefore used to reduce the substrates of yeast aldolase in the presence and absence of enzyme, and the enantiomeric and diastereomeric ratios of the products were analyzed. Experiments were conducted in an effort to distinguish between endocyclic and exocyclic cleavage in the hydrolysis catalyzed by lysozyme. Tritiated sodium borohydride was used in an attempt to trap the putative oxocarbonium intermediate

  18. 3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na4V2(PO4)3∥Na3V2(PO4)3.

    Science.gov (United States)

    Yao, Xuhui; Zhu, Zixuan; Li, Qi; Wang, Xuanpeng; Xu, Xiaoming; Meng, Jiashen; Ren, Wenhao; Zhang, Xinhe; Huang, Yunhui; Mai, Liqiang

    2018-03-28

    Symmetric sodium-ion batteries (SIBs) are considered as promising candidates for large-scale energy storage owing to the simplified manufacture and wide abundance of sodium resources. However, most symmetric SIBs suffer from suppressed energy density. Here, a superior congeneric Na 4 V 2 (PO 4 ) 3 anode is synthesized via electrochemical preintercalation, and a high energy density symmetric SIB (Na 3 V 2 (PO 4 ) 3 as a cathode and Na 4 V 2 (PO 4 ) 3 as an anode) based on the deepened redox couple of V 4+ /V 2+ is built for the first time. When measured in half cell, both electrodes show stabilized electrochemical performance (over 3000 cycles). The symmetric SIBs exhibit an output voltage of 3.0 V and a cell-level energy density of 138 W h kg -1 . Furthermore, the sodium storage mechanism under the expanded measurement range of 0.01-3.9 V is disclosed through an in situ X-ray diffraction technique.

  19. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2008-01-01

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate

  20. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2008-05-15

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate.

  1. To4, the first Tityus obscurus β-toxin fully electrophysiologically characterized on human sodium channel isoforms.

    Science.gov (United States)

    Duque, Harry Morales; Mourão, Caroline Barbosa Farias; Tibery, Diogo Vieira; Barbosa, Eder Alves; Campos, Leandro Ambrósio; Schwartz, Elisabeth Ferroni

    2017-09-01

    Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or β-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked β-type effect on different sodium channel subtypes (hNa v 1.1-hNa v 1.7) at low concentrations, and has more pronounced activity on hNa v 1.1, hNa v 1.2 and hNa v 1.4. By comparing To4 primary structure with other Tityus β-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system

    Science.gov (United States)

    Kokail, Christian; von der Linden, Wolfgang; Boeri, Lilia

    2017-12-01

    We investigate the superconducting ternary lithium borohydride phase diagram at pressures of 0 and 200 GPa using methods for evolutionary crystal structure prediction and linear-response calculations for the electron-phonon coupling. Our calculations show that the ground state phase at ambient pressure, LiBH4, stays in the P n m a space group and remains a wide band-gap insulator at all pressures investigated. Other phases along the 1 :1 :x Li:B:H line are also insulating. However, a full search of the ternary phase diagram at 200 GPa revealed a metallic Li2BH6 phase, which is thermodynamically stable down to 100 GPa. This superhydride phase, crystallizing in a F m 3 ¯m space group, is characterized by sixfold hydrogen-coordinated boron atoms occupying the fcc sites of the unit cell. Due to strong hydrogen-boron bonding this phase displays a critical temperature of ˜100 K between 100 and 200 GPa. Our investigations confirm that ternary compounds used in hydrogen-storage applications should exhibit high-Tc conventional superconductivity in diamond anvil cell experiments, and suggest a viable route to optimize the superconducting behavior of high-pressure hydrides, exploiting metallic covalent bonds.

  3. Facile synthesis of palladium nanoparticle doped polyaniline nanowires in soft templates for catalytic applications

    Science.gov (United States)

    Kshirasagar, Krushna J.; Markad, Uddhav S.; Saha, Abhijit; Sharma, Kiran Kumar K.; Sharma, Geeta K.

    2017-02-01

    Palladium nanoparticles doped polyaniline (Pd-PANI) nanocomposite (NCs) is synthesized in surfactant based liquid crystalline mesophase by chemical oxidation followed by radiolysis. The confinement of the liquid crystalline mesophase facilitates polymerization of aniline monomers and their 1D growth into polyaniline (PANI) nanowires by using ammonium persulfate. The PANI nanowires have an average diameter of 30-40 nm. The in situ radiolytic reduction of palladium ions ensures uniform size distribution of the palladium (Pd) nanoparticles on the surface of the PANI nanowires. The synthesized Pd-PANI nanocomposites show wire like structures of PANI (diameter ~30-40 nm) on which Pd nanoparticles of the size 10 nm are decorated. The identical average diameter of the PANI nanowires before and post gamma irradiation suggest high stability of the PANI nanowires in liquid crystalline mesophase. Surface characterization of the NCs were carried out using BET and XPS. The catalytic activity of Pd-PANI NCs are investigated in the reduction of methylene blue (MB) and 4-nitro phenol (4-NP) by sodium borohydride (NaBH4). The kinetics of the Pd-PANI NCs catalysed reactions are analysed using the Langmuir-Hinshelwood model. The apparent rate constant (k app) for the MB and 4-NP reduction reactions is 29  ×  10-3 s-1 and 20  ×  10-3 s-1 respectively with an actual Pd catalyst loading of 2.665  ×  10-4 ppm. Further, the recyclability of the Pd-PANI NCs catalyst in both the reduction reactions shows the stability of the catalyst up to four reaction cycles tested in this investigation and the multifunctional nature of the catalyst. The study provides a new approach for the directional synthesis of conducting polymer-metal nanocomposites and their possible application as a nanocatalyst in environmental remediation.

  4. General methods for the preparation of α and/or β deuterium labelled 6-hydroxydopamine derivatives

    International Nuclear Information System (INIS)

    Borchardt, R.T.; Simmons, J.E.

    1982-01-01

    A convenient method for the synthesis of 6-hydroxydopamine and its phenethylamine derivatives has been developed. Mono-and di-deuteration has been accomplished using sodium borodeuteride and sodium borohydride in the presence of a deuterium source. (U.K.)

  5. Immobilization of Candida antarctica Lipase B by Covalent Attachment to Green Coconut Fiber

    Science.gov (United States)

    Brígida, Ana I. S.; Pinheiro, Álvaro D. T.; Ferreira, Andrea L. O.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The objective of this study was to covalently immobilize Candida antarctica type B lipase (CALB) onto silanized green coconut fibers. Variables known to control the number of bonds between enzyme and support were evaluated including contact time, pH, and final reduction with sodium borohydride. Optimal conditions for lipase immobilization were found to be 2h incubation at both pH 7.0 and 10.0. Thermal stability studies at 60°C showed that the immobilized lipase prepared at pH 10.0 (CALB-10) was 363-fold more stable than the soluble enzyme and 5.4-fold more stable than the biocatalyst prepared at pH 7.0 (CALB-7). CALB-7 was found to have higher specific activity and better stability when stored at 5°C. When sodium borohydride was used as reducing agent on CALB-10 there were no improvement in storage stability and at 60°C stability was reduced for both CALB-7 and CALB-10.

  6. Effect of size of copper nanoparticles on its catalytic behaviour in ...

    Indian Academy of Sciences (India)

    WINTEC

    reduction of cupric salt solution using sodium borohydride in the presence of capping agent. In a typical set, 10 ml ... ammonium chloride followed by 2⋅5 ml of dichloro- methane which separated two layers with the .... nation and the formation of the aryl–aryl carbon bond. 4. Conclusions. In this paper, we have described a ...

  7. The Effects of Short Wave UV Irradiation (254-366nm on Color Values of Recycled and Bleached ONP/OMP Pulps

    Directory of Open Access Journals (Sweden)

    Emrah Peşman

    2011-04-01

    Full Text Available ABSTRACT As it is known, mechanical pulp papers include significant amount of lignin and carbohydrates as well as cellulose. Thus, when these lignin reach papers irradiated with short wave UV light they could not protect their color. In this study, bleaching of ONP/OMG recycled pulps with hydrogen peroxide, sodium percarbonate, sodium dithyonite, sodium borohydride and formamidin sulfunic acid were performed. Then the test papers of these pulps were irradiated with 254-366nm UV light and changes in the ISO Brightness, CIE L*a*b*, yellowness (YI and whiteness (WI values were observed. At the result of study, all bleaching agents were determined as insufficient in the respect of color stability. But if they compared with each other, the two stages sodium percarbonate-sodium borohydride bleaching sequence was gave the best results against to color reversion. Keywords: Old news/old magazine papers (ONP/OMG, Bleaching, Color Stability, UV Irradiation

  8. The dissipation and risk assessment of 2,4-D sodium, a preharvest anti-fruit-drop plant hormone in bayberries.

    Science.gov (United States)

    Zhao, Huiyu; Yang, Guiling; Liang, Senmiao; Huang, Qianbin; Wang, Qiang; Dai, Wanze; Zhang, Zhiheng; Wang, Wen; Song, Wen; Cai, Zheng

    2017-11-01

    Preharvest fruit-drop is a challenge to bayberry production. 2,4-D sodium as a commonly used anti-fruit-drop hormone on bayberry can reduce the yield loss caused by preharvest fruit-drop. The persistence and risk assessment of 2,4-D sodium after applying on bayberries were investigated. A method for determining 2,4-D sodium in bayberry was established based on LC-MS-MS. The average recoveries of 2,4-D sodium were at the range of 93.7-95.8% with relative standard deviations (RSDs) ranging from 0.9 to 2.8%. The dissipation rates of 2,4-D sodium were described using first-order kinetics, and its half-life ranged from 11.2 to 13.8 days. A bayberry consumption survey was carried out for Chinese adults for the first time. The safety assessments of 2,4-D sodium were conducted by using field trail data as well as monitoring data. Results showed that the chronic risk quotient and the acute risk quotient were calculated to be 0.23-0.59 and 0.02-0.05%, respectively, for Chinese adults, indicating low dietary risk for adults and children. In the end, the household cleaning steps were compared, and results showed that water rinsing for 1 min can remove 49.9% 2,4-D sodium residue, which provides pesticide removal suggestion for consumers.

  9. Reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere. Fundamental study on sodium carbonate process in FBR bulk sodium coolant disposal technology

    International Nuclear Information System (INIS)

    Tadokoro, Yutaka; Yoshida, Eiichi

    1999-11-01

    A sodium carbonate processing method, which changes sodium to sodium carbonate and/or sodium bicarbonate by humid carbon dioxide, has been examined and about to be applied to large test loops dismantling. However, that the basic data regarding the progress of the reaction is insufficient on the other hand, is a present condition. The present report therefore aims at presenting basic data regarding the reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere, and observing the reaction progress, for the application to large test loops dismantling. The test result is summarized as follows. (1) Although the reaction velocity of sodium varied with sodium specimen sizes and velocity measurement methods, the reaction velocity of sodium hydration was in about 0.16 ∼ 0.34 mmh -1 (0.016 ∼ 0.033g cm -2 h -1 , 6.8x10 -4 ∼ 1.4x10 -3 mol cm -2 h -1 ) and that of sodium carbonation was in about 0.16 ∼ 0.27mmh -1 (0.016 ∼ 0.023g cm -2 h -1 , 6.8x10 -4 ∼ 1.1x10 -3 mol cm -2 h -1 ) (26 ∼ 31degC, RH 100%). (2) The reaction velocity of sodium in carbon dioxide atmosphere was greatly affected by vapor partial pressure (absolutely humidity). And the velocity was estimated in 0.08 ∼ 0.12mmh -1 (0.008 ∼ 0.012g cm -2 h -1 , 3.4x10 -4 ∼ 5.2x10 -4 mol cm -2 h -1 ) in the carbon dioxide atmosphere, whose temperature of 20degC and relative humidity of 80% are assumed real sodium carbonate process condition. (3) By the X-ray diffraction method, NaOH was found in humid air reaction product. Na 2 CO 3 , NaHCO 3 were found in carbon dioxide atmosphere reaction product. It was considered that Sodium changes to NaOH, and subsequently to NaHCO 3 through Na 2 CO 3 . (4) For the application to large test loops dismantling, it is considered possible to change sodium to a target amount of sodium carbonate (or sodium bicarbonate) by setting up gas supply quantity and also processing time appropriately according to the surface area

  10. Flax fibers as a raw material: How to bleach efficiently a non-woody plant to obtain high-quality pulp

    International Nuclear Information System (INIS)

    Fillat, Ursula; Pepio, Montserrat; Vidal, Teresa; Roncero, M. Blanca

    2010-01-01

    Fiber crops constitute a good alternative to wood fiber for manufacturing pulp and paper. In fact, fiber plants like flax surpass wood fiber in some technical respects and also in the environmental benignity of their processing. In this work, flax fiber was subjected to environmentally friendly bleaching sequences in order to obtain a high-quality pulp. The totally chlorine-free sequences (TCF) used for this purpose (LE and LRE) included an enzyme treatment with laccase in the presence of HBT as mediator (L stage), an alkaline extraction (E stage) and a reductive treatment with NaBH 4 (R stage). The operating conditions for the L stage (laccase and HBT doses, reaction time and oxygen pressure) were optimised by using a sequential statistical plan to assess their influence on pulp properties after the E stage. Mathematical models accurately predicting brightness and kappa number in terms of the previous four variables were developed based on which the most influential factors were the laccase and HBT rates, and treatment time. By contrast, oxygen pressures of 0.2-0.6 MPa in the reactor had no effect on brightness or kappa number. The flax pulp obtained contained some oxidized cellulose that was partially degraded in the alkaline extraction step and reduced viscosity as a result. The viscosity loss associated with the presence of oxidized cellulose in the control and enzyme-treated pulp samples was efficiently recovered by using a reductive stage with sodium borohydride. Effluent was also analysed in order to assess the environmental impact of the process.

  11. Preparation of Zn(BH4)2 and diborane and hydrogen release properties of Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15)

    Science.gov (United States)

    Kwak, Young Jun; Kwon, Sung Nam; Song, Myoung Youp

    2015-09-01

    Zn(BH4)2 was prepared by milling ZnCl2 and NaBH4 in a planetary ball mill under Ar atmosphere, and Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15) samples were prepared. Diborane (B2H6) and hydrogen release characteristics of the Zn(BH4)2 and Zn(BH4)2+xMgH2 samples were studied. The samples synthesized by milling ZnCl2 and NaBH4 contained Zn(BH4)2 and NaCl, together with small amounts of ZnCl2 and NaBH4. We designated these samples as Zn(BH4)2(+NaCl). The weight loss up to 400 °C of the Zn(BH4)2(+NaCl) sample synthesized by milling 4 h was 11.2 wt%. FT-IR analysis showed that Zn(BH4)2 was formed in the Zn(BH4)2(+NaCl) samples. MgH2 was also milled in a planetary ball mill, and mixed with the Zn(BH4)2(+NaCl) synthesized by milling for 4 h in a mortar and pestle. The weight loss up to 400 °C of Zn(BH4)2(+NaCl)+MgH2 was 8.2 wt%, corresponding to the weight % of diborane and hydrogen released from the Zn(BH4)2(+NaCl)+MgH2 sample, with respect to the sample weight. DTA results of Zn(BH4)2(+NaCl)+xMgH2 showed that the decomposition peak of Zn(BH4)2 was at about 61 °C, and that of MgH2 was at about 370-389 °C.

  12. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  13. Sodium fire test at broad ranges of temperature and oxygen concentration. 4. Low temperature sodium spray fire tests

    International Nuclear Information System (INIS)

    Kawata, Koji; Miyahara, Shinya

    2005-08-01

    Sodium spray fire tests at the initial sodium temperature of 250degC were conducted under the atmospheric conditions of air and 3% oxygen containing nitrogen to determine the sodium burning rate and the aerosol release fraction and compare them with the test results at the initial sodium temperature of 500degC in air atmosphere. In the tests, sodium was supplied using a commercial spray nozzle into a stainless steel vessel of 100 m 3 volume (SOLFA-2). The sodium burning rate was calculated from two independent methods: the consumption rate of oxygen in the vessel and the enthalpy change of vessel components during the test. The aerosol release fraction was determined from the comparison between the measured aerosol concentrations and the calculated ones by the ABC-INTG code. The main conclusions were as follows, (1) In air atmosphere, a) sodium droplets ignited instantaneously and the spray fire was observed, and b) the sodium burning rate was about 440 g-Na/s and the fraction of supplied sodium was about 70%. (2) In 3% oxygen containing nitrogen, a) ignition of sodium droplets was not observed, and b) the sodium burning rate was about 44 g-Na/s and the fraction of supplied sodium was less than 10%. (author)

  14. Fast and efficient method for reduction of carbonyl compounds with NaBH{sub 4} /wet SiO{sub 2} under solvent free condition

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Bahyar, Tarifeh [Urmia University, Urmia (Iran, Islamic Republic of). Faculty of Sciences. Dept. of Chemistry]. E-mail: b.zeynizadeh@mail.urmia.ac.ir

    2005-11-15

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, {alpha},{beta}-unsaturated enals and enones, {alpha}-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO{sub 2} (30% m/m) under solvent free condition. The reactions were performed at room tempere or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  15. Water soluble and metal-containing electron beam resist poly(sodium 4-styrenesulfonate)

    International Nuclear Information System (INIS)

    Abbas, Arwa Saud; Alqarni, Sondos; Shokouhi, Babak Baradaran; Yavuz, Mustafa; Cui, Bo

    2014-01-01

    Popular electron beam resists such as PMMA, ZEP and HSQ all use solvent or base solutions for processing, which may attack the sub-layers or substrate that are made out of organic semiconducting materials. In this study we show that water soluble poly(sodium 4-styrenesulfonate), or sodium PSS, can be used as a negative electron beam resist developed in water. Moreover, since PSS contains metal sodium, its dry etching resistance is much higher than PMMA. It is notable that sodium PSS’s sensitivity and contrast is still far inferior to organic resists such as PMMA, thus it is not suitable for patterning dense and high-resolution structures. Nevertheless, feature size down to 40 nm was achieved for sparse patterns. Lastly, using very low energy (here 2 keV) electron beam lithography and liftoff process using water only, patterning of metal layer on an organic conductive material P3HT was achieved. The metallization of an organic conducting material may find applications in organic semiconductor devices such as OLED. (paper)

  16. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment.

    Science.gov (United States)

    Jin, Xuefang; Wu, Nana; Dai, Juji; Li, Qiuxia; Xiao, XiaoQiang

    2017-02-01

    Sodium butyrate (NaBu) and sodium 4-phenylbutyrate (4PBA) have promising futures in cancer treatment; however, their underlying molecular mechanisms are not clearly understood. Here, we show A549 cell death induced by NaBu and 4PBA are not the same. NaBu treatment induces a significantly higher level of A549 cell death than 4PBA. A gene expression microarray identified more than 5000 transcripts that were altered (>1.5-fold) in NaBu-treated A549 cells, but fewer than 2000 transcripts that were altered in 4PBA. Moreover, more than 100 cell cycle-associated genes were greatly repressed by NaBu, but slightly repressed by 4PBA; few genes were significantly upregulated only in 4PBA-treated cells. Gene expression was further validated by other experiments. Additionally, A549 cells that were treated with these showed changes in glucose consumption, caspase 3/7 activation and histone modifications, as well as enhanced mitochondrial superoxide production. TXNIP was strongly induced by NaBu (30- to 40-fold mRNA) but was only slightly induced by 4PBA (two to fivefold) in A549 cells. TXNIP knockdown by shRNA in A549 cells significantly attenuated caspase 3/7 activation and restored cell viability, while TXNIP overexpression significantly increased caspase 3/7 activation and cell death only in NaBu-treated cells. Moreover, TXNIP also regulated NaBu- but not 4PBA-induced H4K5 acetylation and H3K4 trimethylation, possibly by increasing WDR5 expression. Finally, we demonstrated that 4PBA induced a mitochondrial superoxide-associated cell death, while NaBu did so mainly through a TXNIP-mediated pathway. The above data might benefit the future clinic application. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. Effect of carbon activity on the creep behaviour of 21/4Cr, 1Mo steel in sodium

    International Nuclear Information System (INIS)

    Cordwell, J.E.; Charnock, W.; Nicholson, R.D.

    1979-02-01

    The creep endurance and creep cracking behaviour of 2 1/4Cr, 1Mo steel in sodium at 475 0 C have been studied at three different sodium carbon activities. Creep endurance was found to increase with increasing carbon activity of the sodium. Tests carried out in high carbon activity sodium were discontinued before fracture. Creep crack initiation displacement at notches decreased with increasing carbon activity, presumably as a result of notch tip carburisation. The plastic zones at the tips of blunt notches in specimens exposed in high carbon activity sodium were preferentially carburised. These observations were similar to those made previously on 9Cr, 1Mo steel. One difference detected metallographically was that in a high carburising environment uniform carburisation was obtained in the 2 1/4Cr, 1Mo steel specimens whereas carburisation gradients were observed in the 9Cr, 1Mo steel. Creep crack propagation rates for given notch opening displacement rates in low and intermediate carbon activity sodium were indistinguishable. However, the strenthening that resulted from the mild carburisation of the specimen in the intermediate carbon activity sodium caused slower notch opening displacement rates and crack propagation rates than in the low carbon activity sodium, when the rates were compared at the same crack length. (author)

  18. Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery

    Science.gov (United States)

    Law, Markas; Ramar, Vishwanathan; Balaya, Palani

    2017-08-01

    Here we report a polyanion-based cathode material for sodium-ion batteries, Na2MnSiO4, registering impressive sodium storage performances with discharge capacity of 210 mAh g-1 at an average voltage of 3 V at 0.1 C, along with excellent long-term cycling stability (500 cycles at 1 C). Insertion/extraction of ∼1.5 mol of sodium ion per formula unit of the silicate-based compound is reported and the utilisation of Mn2+ ⇋ Mn4+ redox couple is also demonstrated by ex-situ XPS. Besides, this study involves a systematic investigation of influence of the electrolyte additive (with different content) on the sodium storage performance of Na2MnSiO4. The electrolyte additive forms an optimum protective passivation film on the electrode surface, successfully reducing manganese dissolution.

  19. An Investigation of Technologies for Hazardous Sludge Reduction at AFLC (Air Force Logistics Command) Industrial Waste Treatment Plants. Volume 1. Sodium Borohydride Treatment and Sludge Handling Technologies.

    Science.gov (United States)

    1983-12-01

    Fisher Cupric sulfate-CuSO 4 . 5H20, Certified ACS Fisher Sodium Bicarbonate-NaHCO3, Certified ACS Fisher NaOH-Certified ACS Electrolytic Pellets , Fisher...The dryer (D-1), burner , and air handling system are part of a package unit including a 4-foot diameter by 24 foot long free-standing rotary dryer, a...blower with a rated capacity of 6,200 scfm of air at 500C, a burner capable of heating that volume of air to 125*C and a cyclonic dust separator to

  20. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    Science.gov (United States)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  1. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  2. Cubic KTi2(PO4)3 as electrode materials for sodium-ion batteries.

    Science.gov (United States)

    Han, Jin; Xu, Maowen; Niu, Yubin; Jia, Min; Liu, Ting; Li, Chang Ming

    2016-12-01

    A novel cubic KTi2(PO4)3 is successfully synthesized via a facile hydrothermal method combined with a subsequent annealing treatment and further used as electrode material for sodium-ion batteries for the first time. For comparison, carbon-coated KTi2(PO4)3 obtained by a normal cane sugar-assisted method reveals superior electrochemical performances in sodium-ion battery. Besides of the high coulombic efficiency of nearly 100% after 100 cycles, a stable capacity of 112mAhg(-1) can be achieved at 0.5C after 100 cycles, and still maintains to 105mAhg(-1) after 500 cycles with capacity retention of approximately 90%. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  4. A novel approach to isoindolo[2,1-a]indol-6-ones.

    Science.gov (United States)

    Duncanson, Philip; Cheong, Yuen-Ki; Motevalli, Majid; Griffiths, D Vaughan

    2012-06-07

    A convenient route to isoindolo[2,1-a]indol-6-ones has been developed starting from the appropriate 2-(N-phthaloyl)benzoic acids. Formation of the acid chlorides with thionyl chloride followed by heating with triethyl phosphite in a suitable solvent resulted in a multistep reaction giving tetracyclic β-ketophosphonates that on reduction with sodium borohydride gave the required indolones in good overall yields. Analogous β-ketophosphonates were also prepared starting with N,N-(1,8-naphthaloyl)-2-aminobenzoic acid and 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acids although of these only the naphthaloyl product could be reduced with sodium borohydride without cleaving the amide bond in the ring system.

  5. Hidden Sodium

    Centers for Disease Control (CDC) Podcasts

    2013-03-04

    In this podcast, learn about reducing sodium intake by knowing what to eat and the main sources of sodium in the diet. It's important for a healthy lifestyle.  Created: 3/4/2013 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/4/2013.

  6. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    NARCIS (Netherlands)

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride

  7. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2012-07-01

    Full Text Available Direct borohydride fuel cells (DBFC, which operate on sodium borohydride (NaBH4 as the fuel, and hydrogen peroxide (H2O2 as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S and a cation-exchange membrane (CMI-7000S, are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  8. Synthesis and characterization of polypropiolate sodium (PPNa)-Fe3O4 nanocomposite

    International Nuclear Information System (INIS)

    Bahceci, S.; Unal, B.; Baykal, A.; Soezeri, H.; Karaoglu, E.; Esat, B.

    2011-01-01

    Highlights: · Polypropiolate sodium (PPNa)-Fe 3 O 4 nanocomposite was successfully synthesized by reflux route. · FT-IR, TGA and TEM analyses showed that the presence of PPNa onto the surface of Fe 3 O 4 NP's. · Magnetization measurements revealed that (PPNa)-Fe 3 O 4 nanocomposite has superparamagnetic properties at room temperature. · Magnetic core size, particle size and crystallite size are coinciding with each other. · It is pointed out that the a.c. conductivity of the nanocomposite studied here obeys the well-known power law of frequency in which it also varies with temperatures. - Abstract: Polypropiolate sodium (PPNa)-Fe 3 O 4 nanocomposites were successfully synthesized by the precipitation of Fe 3 O 4 in the presence of sodium polypropiolate and followed by reflux route. Structural, morphological, electrical and magnetic properties evaluation of the nanocomposite were performed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), vibrating scanning magnetometry (VSM) and conductivity measurements. Crystalline phase was identified as magnetite with an average crystallite size of 7 ± 3 nm as estimated from X-ray line profile fitting. Particle size estimated from TEM, by log-normal fitting, is ∼9 ± 1 nm. FT-IR analysis shows that the binding of PPNa on the surface of iron oxide is through bidentate linkage of carboxyl group. TGA analysis showed the presence of 20% PPNa around 80% magnetic core (Fe 3 O 4 )...PPNa-Fe 3 O 4 nanocomposite show superparamagnetic characteristics at room temperature. It is found that the a.c. conductivity of the nanocomposites obeys the well-known power law of frequency in which it also depends on temperature. Additionally, its d.c. conductivity showed that two operating regions of the activation energy. Both real and imaginary parts of either permittivity exhibit almost the same attitudes which are the indication of

  9. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique

    Directory of Open Access Journals (Sweden)

    Ana Queiroz

    2017-08-01

    Full Text Available This study aimed to evaluate the urinary excretion of sodium and potassium, and to estimate the main food sources of sodium in Maputo dwellers. A cross-sectional evaluation of a sample of 100 hospital workers was conducted between October 2012 and May 2013. Sodium and potassium urinary excretion was assessed in a 24-h urine sample; creatinine excretion was used to exclude unlikely urine values. Food intake in the same period of urine collection was assessed using a 24-h dietary recall. The Food Processor Plus® was used to estimate sodium intake corresponding to naturally occurring sodium and sodium added to processed foods (non-discretionary sodium. Salt added during culinary preparations (discretionary sodium was computed as the difference between urinary sodium excretion and non-discretionary sodium. The mean (standard deviation urinary sodium excretion was 4220 (1830 mg/day, and 92% of the participants were above the World Health Organization (WHO recommendations. Discretionary sodium contributed 60.1% of total dietary sodium intake, followed by sodium from processed foods (29.0% and naturally occurring sodium (10.9%. The mean (standard deviation urinary potassium excretion was 1909 (778 mg/day, and 96% of the participants were below the WHO potassium intake recommendation. The mean (standard deviation sodium to potassium molar ratio was 4.2 (2.4. Interventions to decrease sodium and increase potassium intake are needed in Mozambique.

  10. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A 4 /J 4 -neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH 4 ), which concurrently abrogated A 4 /J 4 -NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A 4 /J 4 NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A 4 /J 4 -NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  11. Fabrication of Bi-Fe{sub 3}O{sub 4}@RGO hybrids and their catalytic performance for the reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefang; Xia, Fengling; Li, Xichuan; Xu, Xiaoyang; Wang, Huan; Yang, Nian; Gao, Jianping, E-mail: jianpinggaols@126.com [Tianjin University, School of Science (China)

    2015-11-15

    Nanocatalysts are frequently connected to magnetic nanoparticles. These composites are easy to be retrieved from the reaction system under a magnetic field because of their magnetic properties. Magnetic separation is particularly promising in industry since it can solve many issues present in filtration, centrifugation, or gravitation separation. Herein, a facile method to prepare bismuth and Fe{sub 3}O{sub 4} nanoparticles loaded on reduced graphene oxide magnetic hybrids (Bi-Fe{sub 3}O{sub 4}@RGO) using soluble starch as a dispersant is demonstrated. The magnetic Fe{sub 3}O{sub 4} nanoparticles were synthesized by the co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions, and Bi nanoparticles were fabricated by the redox reactions between sodium borohydride and ammonium bismuth citrate in the presence of soluble starch. Transmission electron microscopy images demonstrate that the average diameter of the Fe{sub 3}O{sub 4} nanoparticles is about 5 nm and the diameters of Bi nanoparticles range from 10 to 20 nm. The magnetic Bi-Fe{sub 3}O{sub 4}@RGO hybrids exhibit high catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH{sub 4} with a first-order rate constant (K) of 0.00808 s{sup −1} and is magnetically recyclable for at least five cycles. This strategy provides an efficient and recyclable catalyst for the use in environmental protection applications.

  12. The study of the effect of 5-(4-(tret-butylphenyl-4-R-amino-4H-1,2,4-triazole-3-thiols on the duration of thiopental-sodium narcosis for laboratory rats

    Directory of Open Access Journals (Sweden)

    I. I. Aksyonova-Seliuk

    2016-10-01

    Full Text Available The purpose of the work was to investigate the effect of 5-(4-(tret-butylphenyl-4-R-amino-4H-1,2,4-triazole-3-thiols on the duration of thiopental-sodium narcosis for laboratory rats and to identify the regularities of the dependence “chemical structure – biological effect”. Materials and methods. The objects of research were 15 new compounds, derivatives of 4-amino-5-(4-(tret-butylphenyl-4H-1,2,4-triazole-3-thiols. These compounds are the crystal substances which are odorless, insoluble in water and soluble in organic solvents. The combined reception and interaction of the compounds with anesthetic agents for rats were considered. The time of the anesthetic thiopental sodium narcosis was marked by the time while the animal was in lateral position, since losing reversal’s reflex. Aminazine and caffeine-sodium benzoate (10 mg/kg and 50 mg/kg were used as a standard of comparison. Results and discussion. In the study we have found that 5-(4-(tret-butylphenyl-4-R-amino-4H-1,2,4-triazole-3-thiols exhibit different effects – deprimo action or analeptic action. For example, the presence of fluorine in the structure of compound contributes to some analeptic activity and vice versa the transition to disubstituted fluoride molecules causes small deprimo action. However the presence of chlorine leads to the appearance of clear raising to a higher power actions regarding to sodium thiopental, that is more than standard of comparison – aminazine. It is interesting to observe the activity change of a series of nitro containing compounds. Conclusions. The leader compound has been identified among the investigated compounds. It exceeds the standard of comparing (aminazine by indexes. Some regularities “chemical structure – biological effect” have been established. These results can be used in the future for targeted search of substances with analeptic or deprimo activity.

  13. Sodium 4-phenylbutyrate suppresses the development of dextran sulfate sodium-induced colitis in mice.

    Science.gov (United States)

    Ono, Kazuhiko; Nimura, Satoshi; Nishinakagawa, Takuya; Hideshima, Yuko; Enjyoji, Munechika; Nabeshima, Kazuki; Nakashima, Manabu

    2014-03-01

    Sodium 4-phenylbutyrate (PBA) exhibits anti-inflammatory effects by suppressing nuclear factor-κB (NF-κB) activation. In the present study, the effects of PBA on a mouse model of dextran sulfate sodium (DSS)-induced colitis were investigated. The therapeutic efficacy of PBA (150 mg/kg body weight) in DSS-induced colitis was assessed based on the disease activity index (DAI), colon length, the production of inflammatory cytokines and histopathological examination. The results showed an increase in the median survival time in the PBA-treated group compared with that of the untreated DSS control group. DAI scores were lower in the PBA-treated group than in the DSS control group during the 12 days of the experiment. Additionally, PBA treatment inhibited shortening of the colon and the production of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and IL-6, which were measured in the colonic lavage fluids. Histopathological examination of the DSS control group showed diffused clusters of chronic inflammatory cells infiltrating the lamina propria, partial exfoliation of the surface epithelium and decreased numbers of mature goblet cells. By contrast, in the PBA-treated group the histopathological findings were the same as those of the normal healthy controls. These results suggest that PBA strongly prevents DSS-induced colitis by suppressing the mechanisms involved in its pathogenesis.

  14. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  15. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  16. Preliminary Results on a Contact between 4 kg of Molten UO2 and Liquid Sodium

    International Nuclear Information System (INIS)

    Amblard, M.

    1976-01-01

    The CORECT II Experiment consists in simulating the penetration of sodium into an assembly when the fuel is molten. In other words, it is a shock-tube type of experiment with dimensions representative of a full-scale assembly. the experiment consists in dropping a 100 litre column of sodium onto partially molten UO 2 . The following measurements are carried out in transient regime: - sodium velocity in the column; - pressure in the interaction chamber; - pressures at the bottom and at the top of a 5 m tube; - pressure in the argon blanket. The experimental parameters are: - the mass of UO 2 involved (about 4 or 7 kg of 80% molten UO 2 ); - the initial temperature of the sodium (up to 700 deg. C); - the pressure of the residual gas in the interaction chamber during the fall of the sodium; - the dimensions of the interaction chamber and the sodium supply tube; - the form of contact between the UO 2 and the sodium (the sodium may fall on partially liquid and settled UO 2 or on UO 2 pre-dispersed by forced trapping of sodium). To date, 6 tests have been performed. These tests have always resulted in fine fragmentation without any violent interaction. Since no knowledge is available on the change of grain size distribution with time, on the temperature of grain formation, and on the grain movement in the sodium, it is very difficult to interpret these UO 2 -Na tests. We intend to carry out more severe interaction tests on this experimental set-up, by eliminating as much as possible the non-condensable gas which cushions the mechanical impact of the sodium on the UO 2 (tests have shown that by strongly de-pressurizing the liquid UO 2 the fuel could be dispersed by boiling, and this effect should also improve the possibilities of a liquid/liquid contact). - by injecting a little sodium into the UO 2 to facilitate its dispersion in the coolant

  17. Theoretical investigation of structure and stability of molecules of borohydrides B2H6, AlBH6 and ScBH6

    International Nuclear Information System (INIS)

    Musaev, D.G.; Zyubin, A.S.; Charkin, O.P.; Bonakkorsi, R.; Tomazi, Ya.

    1988-01-01

    Geometry of alternative structures of M 3+ BH 6 molecules are optimized on the two-exponent bases; their energies are refined with a fuller basis DEHD taking into account electron correlation within the frames of the MP3 method. The tendencies in the change of relative energies of the structures and their stability to decomposition are analyzed. It is noted that AlBH 6 and ScBH 6 molecules are not rigid to migration of M 3+ H 2 + ''cation'' round BH 4 - anion, as well ScBH 6 molecules are flexible to rotation of H 2 Sc group round the Sc-B axis. The data are compared with the results of previous similar calculations of borohydrides of elements in the first two groups (Li-Cu and Be-Zn)

  18. Effects of wood saw dust ash admixed with treated sisal fibre on the geotechnical properties of lateritic soil

    Directory of Open Access Journals (Sweden)

    John Engbonye SANI

    2017-12-01

    Full Text Available The preliminary investigation conducted on the lateritic soil collected at Shika, Zaria shows that it falls under A-7-6 (10 classification for AASHTO (1986 and CL according to unified soil classification system USCS (ASTM 1992. The soil was treated with both wood saw dust ash (WSDA and treated sisal fiber, in stepped concentration of 0,2,4,6, and 8% for WSDA and 0, 0.25, 0.5, 0.75 and 1% treated sisal fibre by dry weight of soil using Standard proctor. The Sisal Fibre was treated with Sodium Borohydride (NaBH4 (1% wt/vol for 60 minutes at room temperature to remove the cellulose content present in the Fibre. Statistical analysis was carried out on the obtained results using XLSTART 2017 software and analysis of variance with the Microsoft Excel Analysis Tool Pak Software Package. The liquid limit (LL of the soil was found to be 48% while the plastic limit(PL is 21.27%. The maximum dry density(MDDhowever, decreases generally from a value of 1.85 Mg/m3 to 1.68Mg/m3 at 0.25% sisal fiber content/0% WSDA. It has its least value of 1.57Mg/m3 at 1% sisal fiber and 8% WSDA. The OMC increased from 18 % of the natural soil to 23.7% at 0.75% sisal fiber / 6% WSDA content. There was a general increase in the value of UCS of the soil-sisal fibre mixture with WSDA content from 100 kN/m2 of the natural soil to 696 kN/m2 at 0.75 % sisal fibre content / 6% WSDA. The UCS value met the standard of 687-1373 kN/m2 requirements of sub base for adequate lime and cement stabilization, respectively (Ingas and Metcalf 1972.

  19. Methodology for Extraction of Remaining Sodium of Used Sodium Containers

    International Nuclear Information System (INIS)

    Jung, Minhwan; Kim, Jongman; Cho, Youngil; Jeong, Jiyoung

    2014-01-01

    Sodium used as a coolant in the SFR (Sodium-cooled Fast Reactor) reacts easily with most elements due to its high reactivity. If sodium at high temperature leaks outside of a system boundary and makes contact with oxygen, it starts to burn and toxic aerosols are produced. In addition, it generates flammable hydrogen gas through a reaction with water. Hydrogen gas can be explosive within the range of 4.75 vol%. Therefore, the sodium should be handled carefully in accordance with standard procedures even though there is a small amount of target sodium remainings inside the containers and drums used for experiment. After the experiment, all sodium experimental apparatuses should be dismantled carefully through a series of draining, residual sodium extraction, and cleaning if they are no longer reused. In this work, a system for the extraction of the remaining sodium of used sodium drums has been developed and an operation procedure for the system has been established. In this work, a methodology for the extraction of remaining sodium out of the used sodium container has been developed as one of the sodium facility maintenance works. The sodium extraction system for remaining sodium of the used drums was designed and tested successfully. This work will contribute to an establishment of sodium handling technology for PGSFR. (Prototype Gen-IV Sodium-cooled Fast Reactor)

  20. Sodium pool combustion test for small-scale leakage. Run-F7-4 and Run-F8-2

    International Nuclear Information System (INIS)

    Futagami, Satoshi; Ohno, Shuji

    2003-06-01

    Since 1998, the test (Run-F7 series) was performed to acquire the fundamental knowledge about the sodium pool growth and floor liner temperature in the case of small-scale leakage of sodium. And the test (Run-F8 series) was performed to know the floor liner material corrosion mechanism under high moisture conditions. In both test series, those influences are investigated by making the rate of sodium leakage, and moisture conditions of supply air into main parameters. As the last test, (1) Run-F7-4 (June 28, 2000) and (2) Run-F8-2 (January 26, 2000) were carried out. The conclusion of the following which receives sodium small-scale leakage (about 10 kg/h) was obtained from these experiments and the result of old Run-F7 and Run-F8 series. The peak temperature of a catch pan tends to become lower with decrease of sodium leak rate. Moreover, height of leak point and moisture conditions also become the factor which raises the catch pan peak temperature. Although it grows up in proportion [almost]to time in early stages of leakage about growth of a sodium pool, growth stops during the leakage. Moreover, the final growth area is mostly proportional to the rate of sodium leakage. It was suggested by the measured value of catch pan corrosion thickness and a material analysis result that the dominant corrosion mechanism was relatively slow Na-Fe double oxidization type corrosion even under the high moisture condition of 4.6 to 4.8%. And the chemical analysis result of a deposits also suggested that the catch pan material was in the environment in which molten salt type corrosion was not easy to occur. (author)

  1. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    Science.gov (United States)

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life.

    Science.gov (United States)

    Gu, Jianan; Gu, Yue; Yang, Shubin

    2017-11-23

    Sodium-ion batteries (SIBs) have aroused increasing interest as one of the most promising replacements for lithium-ion batteries (LIBs). Here, a novel organic-inorganic 3D Na 4 C 6 O 6 -graphene architecture was successfully fabricated from commercial Na 2 C 6 O 6 and for the first time applied for sodium storage. Hence, the 3D Na 4 C 6 O 6 -graphene architecture exhibits a high reversible capacity, good cyclic performance and high-rate capability for sodium storage.

  3. Near infrared magnetic circular dichroism of uranium borohydride, U(BH4)4

    International Nuclear Information System (INIS)

    Keiderling, T.A.; Schulz, W.C.

    1980-01-01

    The magnetic circular dichroism of U(BH 4 ) 4 in Hf(BH 4 ) 4 at low temperatures has been measured in the near. The A terms resulting can be interpreted to confirm the E symmetry ground state and three excited state assignments. (orig.)

  4. Neodymium and uranium borohydride complexes, precursors to cationic derivatives: comparison of 4f and 5f element complexes; Complexes borohydrures du neodyme et de l'uranium, precurseurs de derives cationiques: comparaison de complexes des elements 4f et 5f

    Energy Technology Data Exchange (ETDEWEB)

    Cendrowski-Guillaume, S.M. [Bordeaux-1 Univ., Lab. de Chimie des Polymeres Organiques, CNRS (UMR 5629), ENSCPB, 33 - Pessac (France); Le Gland, G.; Lance, M.; Nierlich, M.; Ephritikhine, M. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules, 91 - Gif sur Yvette (France)

    2002-02-01

    Nd(BH{sub 4}){sub 3}(THF){sub 3}, 1, reacted with KCp{sup *}, KP{sup *} and K{sub 2}COT (Cp{sup *} = {eta}-C{sub 5}Me{sub 5}, P{sup *} = {eta}-PC{sub 4}Me{sub 4}, COT = {eta}-C{sub 8}H{sub 8}) to form (Cp{sup *})Nd(BH{sub 4}){sub 2}(THF){sub 2}, 2, [K(THF)][(P{sup *}){sub 2}Nd(BH{sub 4}){sub 2}], 3 and (COT)Nd(BH{sub 4})(THF){sub 2}, 4a, respectively. The mixed ring complexes (COT)Nd(Cp{sup *})(THF), 6, and [(COT)Nd(P{sup *})(THF)], 7a, the alkoxide [(COT)Nd(OEt)(THF)]{sub 2}, 8, and the thiolates [Na][(COT)Nd-(S{sup t}Bu){sub 2}], 11, and [Na(THF){sub 2}][(COT)Nd((COT)Nd){sub 2}(S{sup t}Bu){sub 3}], 12, were similarly synthesised from 4a by reaction with the alkali metal salt of the respective ligand. Protonolysis of the metal-borohydride bonds in 4a or (COT)U(BH{sub 4}){sub 2}(THF), with NEt{sub 3}HBPh{sub 4} in THF afforded the cations [(COT)Nd(THF){sub 4}][BPh{sub 4}), 5, [(COT)U(BH{sub 4})(THF){sub 2}][BPh{sub 4}], 13, and [(COT)U(HMPA){sub 3}][BPh{sub 4}]{sub 2}, 14. These cations allowed the preparation of (COT)U(P{sup *})(HMPA){sub 2}, 15, [(COT)U(P{sup *})(HMPA){sub 2}][BPh{sub 4}], 16, and [(COT)U(HMPA){sub 3}][BPh{sub 4}], 17. The X-ray crystal structures of [(COT)M(HMPA){sub 3}[BPh{sub 4}], M = Nd, 18, U, 17, have been determined, allowing comparison of Nd(III) and U(III) derivatives. (authors)

  5. The effect of artificial seawater on SERS spectra of amino acids-Ag colloids: An experiment of prebiotic chemistry

    Science.gov (United States)

    Nascimento, Fernanda C.; Carneiro, Cristine E. A.; Santana, Henrique de; Zaia, Dimas A. M.

    2014-01-01

    The large enhancement of signal observed in surface enhanced Raman spectroscopy (SERS) could be helpful for identifying amino acids on the surface of other planets, in particular for Mars, as well as in prebiotic chemistry experiments of interaction minerals/amino acids. This paper reports the effect of several substances (NaCl, MgCl2, KBr, CaSO4, K2SO4, MgSO4, KI, NH4Cl, SrCl2, CaCl2, Na2SO4, KOH, NaOH, H3BO3) on the SERS spectra of colloid of sodium citrate-CSC and colloid of sodium borohydride-CSB. The effect of four different artificial seawaters and these artificial seawaters plus amino acids (α-Ala-alanine, Gly-glycine, Cys-cysteine, AIB-2-aminoisobutiric acid) on SERS spectra using both CSC and CSB was also studied. For CSC, the effect of water, after dilution of the colloid, was the appearance of several absorption bands belonging to sodium citrate in the SERS spectrum. In general, artificial seawaters enhanced several bands in SERS spectra using CSC and CSB and CSC was more sensitive to those artificial seawaters than CSB. The identification of Gly, α-Ala and AIB using CSC or CSB was not possible because several bands belonging to artificial seawaters, sodium citrate or sodium borohydride were enhanced. On the other hand, artificial seawaters did not interfere in the SERS spectra of Cys using CSC or CSB, although the interaction of Cys with each colloid was different. For CSC the band at 2568 cm-1 (S-H stretching) of Cys vanished and for CSB the intensity of this band decreased, indicating the -SH of Cys was bonded to Ag to form -S-Ag. Thus SERS spectroscopy could be used for Cys detection on Mars soils using Mars land rovers as well as to study the interaction between Cys and minerals in prebiotic chemistry experiments.

  6. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    Science.gov (United States)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  7. Synthesis and characterization of iron cobalt (FECO) nanorods ...

    African Journals Online (AJOL)

    Synthesis and characterization of iron cobalt (FECO) nanorods prepared by simple ... shaped by increasing annealing temperature from room temperature to 800 ... Keywords: FeCo nanoparticles, sodium borohydrid, CTAB, chemical synthesis ...

  8. Biofilms from micro/nanocellulose of NaBH4-modified kraft pulp

    Indian Academy of Sciences (India)

    2017-07-26

    Jul 26, 2017 ... 2Polymer Engineering Department, Faculty of Technology, Duzce University, 81620 Duzce, .... performed in a plastic bag, which was placed in a water bath .... double air-bearing probe and a zirconium oxide rotor (4 mm).

  9. Thermal expansion of the nuclear fuel-sodium reaction product Na3(U0.84(2),Na0.16(2))O4 - Structural mechanism and comparison with related sodium-metal ternary oxides

    Science.gov (United States)

    Illy, Marie-Claire; Smith, Anna L.; Wallez, Gilles; Raison, Philippe E.; Caciuffo, Roberto; Konings, Rudy J. M.

    2017-07-01

    Na3.16(2)UV,VI0.84(2)O4 is obtained from the reaction of sodium with uranium dioxide under oxygen potential conditions typical of a sodium-cooled fast nuclear reactor. In the event of a breach of the steel cladding, it would be the dominant reaction product forming at the rim of the mixed (U,Pu)O2 fuel pellets. High-temperature X-ray diffraction measurements show that a distortion of the uranium environment in Na3.16(2)UV,VI0.84(2)O4 results in a strongly anisotropic thermal expansion. A comparison with several related sodium metallates Nan-2Mn+On-1 - including Na3SbO4 and Na3TaO4, whose crystal structures are reported for the first time - has allowed us to assess the role played in the lattice expansion by the Mn+ cation radius and the Na/M ratio. On this basis, the thermomechanical behavior of the title compound is discussed, along with those of several related double oxides of sodium and actinide elements, surrogate elements, or fission products.

  10. SINTESIS 4,10,16,22-TETRAMETOKSIKALIKS[4] ARENA DARI MINYAK ADAS (SYNTHESIS OF 4,10,16,22-TETRAMETHOXYCALIX [4] ARENE FROM ANISE OIL

    Directory of Open Access Journals (Sweden)

    Ratna Ningsih S

    2015-01-01

    Full Text Available One kind of calixarenes, i.e. 4,10,16,22-tetramethoxycalix[4]arene (4, has been synthesized from anethole (1, which was isolated from anise oil. The synthesis of 4 was carried out via acid-catalyzed procedure. The reaction route consists of three stages, i.e. (i oxidation of 1 with KMnO4 at 40oC for 15 minutes, (ii reduction p-anisaldehyde (2 with NaBH4 at 76oC for 3 hours, and  (iii cyclotetramerization of p-anisilalcohol (3 with AlCl3 at 20oC for 2 hours. Oxidation of 1 produced 2 in 77%, whereas reduction of 2 gave 3 in 55 %. The cyclotetramerization of 3 yielded 4 in 95 %.  Key Words: 4,10,16,22-tetramethoxycalix[4]arene, Anise Oil, Anethole

  11. Transformation of sodium from the Rapsodie fast breeder reactor into sodium hydroxide

    International Nuclear Information System (INIS)

    Roger, J.; Latge, C.; Rodriguez, G.

    1994-01-01

    One of the major problems raised by decommissioning a fast breeder reactor (FBR) concerns the disposal of the sodium coolant. The Desora operation was undertaken to eliminate the Rapsodie primary sodium as part of the partial decommissioning program, and to develop an operational sodium treatment unit for other needs. The process involves reacting small quantities of sodium in water inside a closed vessel, producing aqueous sodium hydroxide and hydrogen gas. It is described in this work. (O.L.). 4 figs

  12. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.

    Science.gov (United States)

    Shen, Wei; Wang, Cong; Liu, Haimei; Yang, Wensheng

    2013-10-18

    A porous Na3 V2 (PO4 )3 cathode material coated uniformly with a layer of approximately 6 nm carbon has been synthesized by the sol-gel method combined with a freeze-drying process. The special porous morphology and structure significantly increases the specific surface area of the material, which greatly enlarges the contact area between the electrode and electrolyte, and consequently supplies more active sites for sodium ions. When employed as a cathode material of sodium-ion batteries, this porous Na3 V2 (PO4 )3 /C exhibits excellent rate performance and cycling stability; for instance, it shows quite a flat potential plateau at 3.4 V in the potential window of 2.7-4.0 V versus Na(+) /Na and delivers an initial capacity as high as 118.9 and 98.0 mA h g(-1) at current rates of 0.05 and 0.5 C, respectively, and after 50 cycles, a good capacity retention of 92.7 and 93.6 % are maintained. Moreover, even when the discharge current density is increased to 5 C (590 mA g(-1) ), an initial capacity of 97.6 mA h g(-1) can still be achieved, and an exciting capacity retention of 88.6 % is obtained after 100 cycles. The good cycle performance, excellent rate capability, and moreover, the low cost of Na3 V2 (PO4 )3 /C suggest that this material is a promising cathode for large-scale sodium-ion rechargeable batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Investigation for the sodium leak Monju. Sodium fire test-II

    International Nuclear Information System (INIS)

    Uchiyama, Naoki; Takai, Toshihide; Nishimura, Masahiro; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    2000-08-01

    As a part of the work for investigating the sodium leak accident which occurred in the Monju reactor (hereinafter referred to as Monju), sodium fire test-II was carried out using the SOLFA-1 (Sodium Leak, Fire and Aerosol) facility at OEC/PNC. In the test, the piping, ventilation duct, grating and floor liner were all full-sized and arranged in a rectangular concrete cell in the same manner as in Monju. The main objectives of the test were to confirm the leak and burning behavior of sodium from the damaged thermometer, and the effects of the sodium fire on the integrity of the surrounding structure. The main conclusions obtained from the test are shown below: (1) Burning Behavior of Leaked Sodium : Images taken with a cameras in the test reveal that in the early stages of the sodium leak, the sodium dropped down out of the flexible tube in drips. (2) Damage to the Ventilation Duct and Grating : The temperature of the ventilation duct's inner surface fluctuated between approximately 600degC and 700degC. The temperature of the grating began rising at the outset of the test, then fluctuated between roughly 600degC and 900degC. The maximum temperature was about 1000degC. After the test, damage to the ventilation duct and the grating was found. Damage to the duct was greater than that at Monju. (3) Effects on the Floor Liner : The temperature of the floor liner under the leak point exceed 1,000degC at 3 hours and 20 minutes into the test. A post test inspection of the liner revealed five holes in an area about 1m x 1m square under the leak point. There was also a decrease of the liner thickness on the north and west side of the leak point. (4) Effects on Concrete : The post test inspection revealed no surface damage on either the concrete side walls or the ceiling. However, the floor concrete was eroded to a maximum depth 8 cm due to a sodium-concrete reaction. The compressive strength of the concrete was not degraded in spite of the thermal effect. (5) Chemical

  14. Effects from additives on deacetylation of chitin; Efeito de aditivos na desacetilacao de quitina

    Energy Technology Data Exchange (ETDEWEB)

    Campana Filho, Sergio P.; Signini, Roberta [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: scampana@iqsc.sc.usp.br

    2001-12-01

    Deacetylation reactions of commercial chitin were carried out in aqueous sodium hydroxide solution at 115 deg C for 6 hours. The effect from additives (sodium borohydride or anthraquinone) and of bubbling inert gas (nitrogen or argon) on the characteristics of deacetylated samples were evaluated. Average degrees of acetylation and intrinsic viscosity were determined by {sup 1}H NMR spectroscopy and capillary viscometry, respectively. X-ray diffraction was employed to evaluate changes in crystallinity and infrared spectroscopy was used to monitor structural changes due to deacetylation. The bubbling of inert gas during the deacetylation reaction resulted in more crystalline samples of chitosan. Deacetylation carried out without any additive produced slightly more deacetylated chitosan but they were severely depolymerized. The depolymerization process was much less important when sodium borohydride was added to the reaction medium but the addition of anthraquinone and the bubbling of nitrogen, or argon, did not have any effect, this suggests that oxygen is not required for depolymerization. (author)

  15. Effects from additives on deacetylation of chitin

    International Nuclear Information System (INIS)

    Campana Filho, Sergio P.; Signini, Roberta

    2001-01-01

    Deacetylation reactions of commercial chitin were carried out in aqueous sodium hydroxide solution at 115 deg C for 6 hours. The effect from additives (sodium borohydride or anthraquinone) and of bubbling inert gas (nitrogen or argon) on the characteristics of deacetylated samples were evaluated. Average degrees of acetylation and intrinsic viscosity were determined by 1 H NMR spectroscopy and capillary viscometry, respectively. X-ray diffraction was employed to evaluate changes in crystallinity and infrared spectroscopy was used to monitor structural changes due to deacetylation. The bubbling of inert gas during the deacetylation reaction resulted in more crystalline samples of chitosan. Deacetylation carried out without any additive produced slightly more deacetylated chitosan but they were severely depolymerized. The depolymerization process was much less important when sodium borohydride was added to the reaction medium but the addition of anthraquinone and the bubbling of nitrogen, or argon, did not have any effect, this suggests that oxygen is not required for depolymerization. (author)

  16. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    Science.gov (United States)

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-04-26

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  17. Spectrophotometric determination of molybdenum(VI) with sodium 2-bromo-4, 5-dihydroxyazobenzene-4'-sulfonate in the presence of cetyltrimethylammonium chloride

    International Nuclear Information System (INIS)

    Wakamatsu, Yoshinobu

    1977-01-01

    Sodium 2-bromo-4,5-dihydroxyazobenzene-4'-sulfonate (abbreviated as BDAS) reacts with molybdenum(VI) in the presence of excessive cetyltrimethylammonium chloride(CTMAC) to form a water-soluble ternary complex. The combining ratio of molybdenum(VI) and BDAS in the ternary complex was shown to be 1 : 2. The ternary complex having its absorption maximum at 525 nm is quantitatively formed between pH 1.0 and 2.0. A constant absorbance was obtained when the concentrations of BDAS and CTMAC were more than 1.8 x 10 -4 M and (1.2 -- 1.6) x 10 -3 M, respectively. The procedure for the determination of molybdenum(VI) is as follows: Transfer the sample solution containing up to 28 μg of molybdenum(VI) to a 25 ml volumetric flask. Add 3 ml of 2.0 x 10 -3 M BDAS solution and an appropriate amount of a masking agent such as ascorbic acid, EDTA or sodium fluoride. Adjust the pH to about 1.6 with hydrochloric acid and sodium acetate. Add 3.5 ml of 0.01 M CTMAC solution and dilute the solution to the mark with water. Measure the absorbance at 525 nm against the reagent blank. A linear calibration curve was obtained over the concentration range 0 -- 28 μg of molybdenum(VI). The apparent molar absorptivity is 6.1 x 10 4 l cm -1 mol -1 at 525 nm, and the sensitivity of the reaction is 1.5 x 10 -3 μg cm -2 . The interference from metal ions such as iron(III), titanium(IV), zirconium(IV) and vanadium(V) could be eliminated by the addition of ascorbic acid, EDTA, sodium fluoride, or a mixture of these reagents. Tungsten(VI), however, interfered with the determination of molybdenum(VI) even when present at microgram levels. The present method was applied to the determination of molybdenum in three standard steel samples. Analytical results were satisfactory. (auth.)

  18. Attenuation of primary nonfunction for syngeneic islet graft using sodium 4-phenylbutyrate.

    Science.gov (United States)

    Fu, S-H; Chen, S-T; Hsu, B R-S

    2005-05-01

    Sodium 4-phenylbutyrate (4-SPB), an aromatic derivative of butyric acid, was examined to elucidate its effect on islet engraftment in a syngeneic transplantation model using C57BL/6 mice. Diabetic mice that received subrenal implantation of 150 islets on day 0 and oral administration of twice daily 4-SPB (500 mg/kg body weight) on days -2 through 28 displayed a significantly shorter duration of posttransplantation temporary hyperglycemia than diabetic mice that received islets in isotonic sodium chloride solution (NaCl), namely 16 +/- 2 (n = 12) vs 23 +/- 2 days (n = 7; P < .05). Four weeks after transplantation, the insulin content (IC) of grafts from mice treated with islets and 4-SPB was substantially higher than that of grafts from mice treated with islets and NaCl, namely 2.59 +/- 0.37 (n = 8) vs 1.36 +/- 0.36 mug (n = 13; P < .01). The IC of pancreatic remnants showed no significant difference between groups after 2 and 4 weeks of incubation. In vitro studies demonstrated that the net glucose-stimulated insulin secretion (GSIS) and the ratio of net GSIS to the IC of islets cultured with 4-SPB (1 mM) did not differ significantly from those cultured with NaCl. The lipopolysaccharide-stimulated secretions of IL-1beta, IL-10, and IFNgamma from peritoneal exudate monocytes were significantly reduced by co-incubation with 4-SPB (1 mM). In conclusion, our data suggest that daily administration of 4-SPB reduces primary nonfunction and enhances islet engraftment in a syngeneic mouse transplantation model.

  19. Chemical reduction of rust on 2 1/4 Cr-1 Mo steel surface in sodium

    International Nuclear Information System (INIS)

    Yokota, N.; Shimoyashiki, S.

    1986-01-01

    Low-alloy Fe-2 1/4 Cr-1 Mo ferritic steel has been favored for the tube material of steam generators in fast breeder reactors (FBRs). However, this material rusts easily due to moisture condensation on its surface when left in air. Therefore, measures to prevent tube materials from rusting have been taken during manufacturing of the steam generators. When rust is present on tube surfaces, its oxygen and iron dissolve into liquid sodium. When the concentration of these impurities in the sodium increases rapidly, the cold traps can become choked locally and lose their removal ability. This work has been done, therefore, to clarify reduction processes of rust in sodium and to select optimum operating temperatures of steam generators in the initial operation

  20. Thermal expansion of the nuclear fuel-sodium reaction product Na{sub 3}(U{sub 0.84(2)},Na{sub 0.16(2)})O{sub 4} - Structural mechanism and comparison with related sodium-metal ternary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Illy, Marie-Claire [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris (France); European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe (Germany); Smith, Anna L. [European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe (Germany); Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science & Technology, Nuclear Energy and Radiation Applications (NERA), Mekelweg 15, 2629 JB, Delft (Netherlands); Wallez, Gilles, E-mail: gilles.wallez@upmc.fr [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris (France); Sorbonne University, UPMC Université, Paris 06, 75005 Paris (France); Raison, Philippe E.; Caciuffo, Roberto; Konings, Rudy J.M. [European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2017-07-15

    Na{sub 3.16(2)}U{sup V,VI}{sub 0.84(2)}O{sub 4} is obtained from the reaction of sodium with uranium dioxide under oxygen potential conditions typical of a sodium-cooled fast nuclear reactor. In the event of a breach of the steel cladding, it would be the dominant reaction product forming at the rim of the mixed (U,Pu)O{sub 2} fuel pellets. High-temperature X-ray diffraction measurements show that a distortion of the uranium environment in Na{sub 3.16(2)}U{sup V,VI}{sub 0.84(2)}O{sub 4} results in a strongly anisotropic thermal expansion. A comparison with several related sodium metallates Na{sub n-2}M{sup n+}O{sub n-1} - including Na{sub 3}SbO{sub 4} and Na{sub 3}TaO{sub 4}, whose crystal structures are reported for the first time - has allowed us to assess the role played in the lattice expansion by the M{sup n+} cation radius and the Na/M ratio. On this basis, the thermomechanical behavior of the title compound is discussed, along with those of several related double oxides of sodium and actinide elements, surrogate elements, or fission products. - Highlights: •Thermal expansion and structural mechanism of Na{sub 3}(U{sub 0.84(2)},Na{sub 0.16(2)})O{sub 4}, main product of the reaction of sodium with nuclear fuel. •Thermomechanical behavior of sodium uranate suggests possible strains on the fuel cladding and risks of de-cohesion with the fuel pin. •Effect of homo- and aliovalent cation substitutions allows to predict the thermomechanical behavior of sodium metallates involving fission products or minor actinide elements. •Crystal structure of new compounds Na{sub 3}SbO{sub 4} and Na{sub 3}TaO{sub 4}.

  1. Microstructure and magnetic properties of MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Wu, Sizhu [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Feng [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Yue, Ming [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022 (China); Liu, J. Ping [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2015-05-07

    Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  2. Intravitreal flomoxef sodium in rabbits.

    Science.gov (United States)

    Mochizuki, K; Torisaki, M; Yamashita, Y; Komatsu, M; Tanahashi, T

    1993-01-01

    We studied the intraocular concentration of flomoxef sodium in nonvitrectomized and vitrectomized eyes of albino rabbits after intravenous administration of 100 mg/kg flomoxef sodium. The concentration of flomoxef sodium in the vitreous body was undetectable (flomoxef sodium was investigated with ophthalmoscopy, electroretinography (ERG) and light microscopy after intravitreal injection of 200, 500, 1,000 and 2,000 micrograms flomoxef sodium in albino and pigmented rabbits. No ERG changes were induced with 200 micrograms. Other higher doses caused transient ERG changes. After the 200-micrograms injection, the intravitreal concentration decreased exponentially, the half-life being 4.4 h. The antibacterial activity, broad coverage and low intravitreal toxicity of flomoxef sodium suggest that this compound may be used to treat bacterial endophthalmitis.

  3. Diastereoselective and enantioselective reduction of tetralin-1,4-dione

    OpenAIRE

    Kündig, E Peter; Enriquez-Garcia, Alvaro

    2008-01-01

    Summary Background The chemistry of tetralin-1,4-dione, the stable tautomer of 1,4-dihydroxynaphthalene, has not been explored previously. It is readily accessible and offers interesting opportunities for synthesis. Results The title reactions were explored. L-Selectride reduced the diketone to give preferentially the cis-diol (d.r. 84 : 16). Red-Al gave preferentially the trans-diol (d.r. 13 : 87). NaBH4, LiAlH4, and BH3 gave lower diastereoselectivities (yields: 76–98%). Fractional crystall...

  4. Sodium 4-phenylbutyrate protects against cerebral ischemic injury.

    Science.gov (United States)

    Qi, Xin; Hosoi, Toru; Okuma, Yasunobu; Kaneko, Masayuki; Nomura, Yasuyuki

    2004-10-01

    Sodium 4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid that has been used for treatment of urea cycle disorders in children, sickle cell disease, and thalassemia. It has been demonstrated recently that 4-PBA can act as a chemical chaperone by reducing the load of mutant or mislocated proteins retained in the endoplasmic reticulum (ER) under conditions associated with cystic fibrosis and liver injury. In the present study, we evaluated the neuroprotective effect of 4-PBA on cerebral ischemic injury. Pre- or post-treatment with 4-PBA at therapeutic doses attenuated infarction volume, hemispheric swelling, and apoptosis and improved neurological status in a mouse model of hypoxia-ischemia. Moreover, 4-PBA suppressed ER-mediated apoptosis by inhibiting eukaryotic initiation factor 2alpha phosphorylation, CCAAT/enhancer-binding protein homologous protein induction, and caspase-12 activation. In neuroblastoma neuro2a cells, 4-PBA reduced caspase-12 activation, DNA fragmentation, and cell death induced by hypoxia/reoxygenation. It protected against ER stress-induced but not mitochondria-mediated cell death. Additionally, 4-PBA inhibited the expression of inducible nitric-oxide synthase and tumor necrosis factor-alpha in primary cultured glial cells under hypoxia/reoxygenation. These results indicate that 4-PBA could protect against cerebral ischemia through inhibition of ER stress-mediated apoptosis and inflammation. Therefore, the multiple actions of 4-PBA may provide a strong effect in treatment of cerebral ischemia, and its use as a chemical chaperone would provide a novel approach for the treatment of stroke.

  5. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    OpenAIRE

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride gave [2-13C]2-nitropropane in 14,3% overall yield.

  6. Wet SiO2 As a Suitable Media for Fast and Efficient Reduction of Carbonyl Compounds with NaBH3CN under Solvent-Free and Acid-Free Conditions

    International Nuclear Information System (INIS)

    Kouhkan, Mehri; Zeynizadeh, Behzad

    2010-01-01

    Reduction of carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins was carried out readily with NaBH 3 CN in the presence of wet SiO 2 as a neutral media. The reactions were performed at solvent-free conditions in oil bath (70 - 80 .deg. C) or under microwave irradiation (240 W) to give the product alcohols in high to excellent yields. Regioselective 1,2-reduction of conjugated carbonyl compounds took place in a perfect selectivity without any side product formation

  7. Influence of negative charge on the optical properties of a silver sol

    Directory of Open Access Journals (Sweden)

    JOVAN M. NEDELJKOVIC

    2000-03-01

    Full Text Available The effects of negative charge on the optical properties of a silver sol prepared using sodium borohydride as a reductant were studied. The oscillations in the position of the maximum and the intensity of the surface plasmon absorption band were obesrved. The observed effects were explained as a consequence of the fluctuation of the density of free electrons due to the alternate charging and discharging of the silver particles. The charging process involves electron injection from borohydride ions and intermediate species formed during the course of the metal-catalyzed hydrolysis of borohydride ions (BH3OH-, BH2(OH2 and BH(OH3- into the silver particles, while discharge of the silver sol, by reduction of water to hydrogen, limits the attainable negative charge on the particles.

  8. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  9. Expression of the Sodium/Calcium/Potassium Exchanger, NCKX4, in Ameloblasts

    Science.gov (United States)

    Hu, Ping; Lacruz, Rodrigo S.; Smith, Charles E.; Smith, Susan M.; Kurtz, Ira; Paine, Michael L.

    2012-01-01

    Transcellular calcium transport is an essential activity in mineralized tissue formation, including dental hard tissues. In many organ systems, this activity is regulated by membrane-bound sodium/calcium (Na+/Ca2+) exchangers, which include the NCX and NCKX [sodium/calcium-potassium (Na+/Ca2+-K+ ) exchanger] proteins. During enamel maturation, when crystals expand in thickness, Ca2+ requirements vastly increase but exactly how Ca2+ traffics through ameloblasts remains uncertain. Previous studies have shown that several NCX proteins are expressed in ameloblasts, although no significant shifts in expression were observed during maturation which pointed to the possible identification of other Ca2+ membrane transporters. NCKX proteins are encoded by members of the solute carrier gene family, Slc24a, which include 6 different proteins (NCKX1–6). NCKX are bidirectional electrogenic transporters regulating Ca2+ transport in and out of cells dependent on the transmembrane ion gradient. In this study we show that all NCKX mRNAs are expressed in dental tissues. Real-time PCR indicates that of all the members of the NCKX group, NCKX4 is the most highly expressed gene transcript during the late stages of amelogenesis. In situ hybridization and immunolocalization analyses clearly establish that in the enamel organ, NCKX4 is expressed primarily by ameloblasts during the maturation stage. Further, during the mid-late maturation stages of amelogenesis, the expression of NCKX4 in ameloblasts is most prominent at the apical poles and at the lateral membranes proximal to the apical ends. These data suggest that NCKX4 might be an important regulator of Ca2+ transport during amelogenesis. PMID:22677781

  10. SNL/JAEA Collaborations on Sodium Fire Benchmarking.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Andrew Jordan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Takata, Takashi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ohshima, Hiroyuki [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Two sodium spray fire experiments performed by Sandia National Laboratories (SNL) were used for a code - to - code comparison between CONTAIN - LMR and SPHINCS. Both computer codes are used for modeling sodium accidents in sodium fast reactors. The comparison between the two codes provides insights into the ability of both codes to model sodium spray fires. The SNL T3 and T4 experiments are 20 kg sodium spray fires with sodium spray temperature s of 200 deg C and 500 deg C, respe ctively. Given the relatively low sodium temperature in the SNL T3 experiment, the sodium spray experienced a period of non - combustion. The vessel in the SNL T4 experiment experienced a rapid pressurization that caused of the instrumentation ports to fail during the sodium spray. Despite these unforeseen difficulties, both codes were shown in good agreement with the experiment s . The subsequent pool fire that develops from the unburned sodium spray is a significant characteristic of the T3 experiment. SPHIN CS showed better long - term agreement with the SNL T3 experiment than CONTAIN - LMR. The unexpected port failure during the SNL T4 experiment presented modelling challenges. The time at which the port failure occurred is unknown, but is believed to have occur red at about 11 seconds into the sodium spray fire. The sensitivity analysis for the SNL T4 experiment shows that with a port failure, the sodium spray fire can still maintain elevated pressures during the spray.

  11. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  12. Studies on the preparation of labelled compounds for γ-scintigraphy use

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Park, Kyung Bae; Awh, Ok Doo

    1991-03-01

    To develop 99m Tc instant labelling kit of d,1-HMPAO and 131 I labelled IMP for the regional cerebral blood flow scintigraphic use, d,1-HMPAO and IMP were synthesized. The former was prepared from 2,3-butadione monoxim and 2,2-dimethyl-1,3-propanediamine in the presence of cation exchange resin, and then selective reduction of imine bond with sodium borohydride followed by fractional crystallization of diastereometric mixture of HMPAO. The latter was prepared by condensation of p-iodophenylpropanone with isopropylamine, and then reduction of double bond with sodium borohydride. For the preparation of 99m Tc labelled HSA, experiments on incorporation of bifunctional chelating agent of DTPA to HSA, establishment of optimal conditions of 99m Tc labelling, determination of labelling yield and radiochemical purity, and examination of stability were carried out. (Author)

  13. Report of sodium cavitation

    International Nuclear Information System (INIS)

    Murai, Hitoshi; Shima, Akira; Oba, Toshisaburo; Kobayashi, Ryoji; Hashimoto, Hiroyuki

    1975-01-01

    The damage of components for LMFBRs due to sodium cavitation is serious problem. This report summarizes the following items, (1) mechanism of the incipience of sodium cavitation, (2) damage due to sodium cavitation, (3) detection method for sodium cavitation, and (4) estimation method for sodium cavitation by the comparison with water cavitation. Materials were collected from the reports on liquid metal cavitation, sodium cavitation and water cavitation published from 1965 to now. The mechanism of the incipience of sodium cavitation cavitation parameters (mean location, distributed amount or occurrence aspect and stability), experiment of causing cavitation with Venturi tube, and growth of bubbles within superheated sodium. The sodium cavitation damage was caused by magnetostriction vibration method and with Venturi tube. The state of damage was investigated with the cavitation performance of a sodium pump, and the damage was examined in view of the safety of LMFBR plants. Sodium cavitation was detected with acoustic method, radiation method, and electric method. The effect of physical property of liquid on incipient cavitation was studied. These are thermodynamic effect based on quasistatic thermal equilibrium condition and the effect of the physical property of liquid based on bubble dynamics. (Iwase, T.)

  14. Thermal performance tests on a sodium-to-sodium heat exchanger

    International Nuclear Information System (INIS)

    Prahlad, B.; Kale, R.D.; Rajan, K.K.

    1990-01-01

    Thermal performance of a 3 MW sodium-to-sodium intermediate heat exchanger (IHX) was evaluated under temperature conditions typical of a Fast Breeder Reactor IHX. A regenerative figure of eight loop was used with the heat exchanger at the cross over point, and a 500 kW heat source and an air cooled sink to maintain the desired test conditions. The overall heat transfer coefficient was found to vary from 4.02 to 4.87 kW/m 2 ·K for Peclet numbers varying from 37 to 112.5 on the shell side and 44.4 to 133.5 on the tube side respectively. The Peclet numbers were representative of low turbulent regime in this case. While the overall heat transfer coefficient was found close to predictions using Lubarsky's correlation, it was somewhat lower than that predicted by later correlations of Spukunsky and Borishansky. The reasons for the lower overall heat transfer coefficient have been explained in terms of possible maldistribution of shell side flow in low turbulent regime reducing the effective heat transfer area and increased thermal contact resistance. Based on their findings the authors feel that heat transfer in a sodium-to-sodium heat exchanger at low Peclet numbers is expected to differ from that obtained with large Peclet numbers. (author)

  15. Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol

    Science.gov (United States)

    Edison, T. Jebakumar Immanuel; Sethuraman, M. G.

    2013-03-01

    A robust synthesis of silver nanoparticles (AgNPs) using the peel extract of Punica granatum is reported in this article. The formation of AgNPs was confirmed by the appearance of brownish yellow color and the Surface Plasmon Resonance (SPR) peak at 432 nm. The biogenic AgNPs were found to have the size approximately 30 nm with distorted spherical shape. The high negative zeta potential values of AgNPs revealed their high stability which could be attributed to the capping of AgNPs by the phytoconstituents of the Punica granatum peel. The biogenic AgNPs were also found to function as an effective green catalyst in the reduction of anthropogenic pollutant viz., 4-nitrophenol (4-NP) by solid sodium borohydride, which was evident from the instantaneous color change of bright yellow (400 nm) to colorless (294 nm) solution, after the addition of AgNPs. The catalytic action of biogenic AgNPs in the reduction of 4-NP could be explained on the basis of Langmuir-Hinshelwood model.

  16. Sodium 4-phenylbutyrate reduces myofiber damage in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Begam, Morium; Abro, Valerie M; Mueller, Amber L; Roche, Joseph A

    2016-10-01

    We performed a placebo-controlled pre-clinical study to determine if sodium 4-phenylbutyrate (4PB) can reduce contraction-induced myofiber damage in the mdx mouse model of Duchenne muscular dystrophy (DMD). At 72 h post-eccentric contractions, 4PB significantly increased contractile torque and reduced myofiber damage and macrophage infiltration. We conclude that 4PB, which is approved by Health Canada (Pheburane) and the United States Food and Drug Administration (Buphenyl) for urea cycle disorders, might modify disease severity in patients with DMD.

  17. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  18. Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition

    International Nuclear Information System (INIS)

    Saura Cardoso, Vinicius; Carvalho Filgueiras, Marcelo de; Medeiros Dutra, Yago; Gomes Teles, Ramon Handerson; Rodrigues de Araújo, Alyne; Primo, Fernando Lucas; Mafud, Ana Carolina; Batista, Larissa Fernandes; Mascarenhas, Yvonne Primerano

    2017-01-01

    Collagen is considered the most abundant protein in the animal kingdom, comprising 30% of the total amount of proteins and 6% of the human body by weight. Studies that examine the interaction between silver nanoparticles and proteins have been highlighted in the literature in order to understand the stability of the nanoparticle system, the effects observed in biological systems, and the appearance of new chemical pharmaceutical products. The objective of this study was to analyze the behavior of silver nanoparticles stabilized with collagen (AgNPcol) and to check the skin permeation capacity and action in paw edema induced by carrageenan. AgNPcol synthesis was carried out using solutions of reducing agent sodium borohydride (NaBH 4 ), silver nitrate (AgNO 3 ) and collagen. Characterization was done by using dynamic light scattering (DLS) and X-ray diffraction (XRD) and AFM. Cellular viability testing was performed by using flow cytometry in human melanoma cancer (MV3) and murine fibroblast (L929) cells. The skin permeation study was conducted using a Franz diffusion cell, and the efficiency of AgNPcol against the formation of paw edema in mice was evaluated. The hydrodynamic diameter and zeta potential of AgNPcol were 140.7 ± 7.8 nm and 20.1 ± 0.7 mV, respectively. AgNPcol failed to induce early apoptosis, late apoptosis, and necrosis in L929 cells; however, it exhibited enhanced toxicity in cancer cells (MV3) compared to normal cells (L929). AgNPcol demonstrated increased toxicological effects in cancer MV3 cells, promoting skin permeation, and preventing paw edema. - Highlights: • Silver nanoparticles were synthesized with type I collagen (AgNPcol). • AgNPcol which was characterized by XRD and DLS. • AgNPcol exhibited enhanced toxicity in cancer cells. • The efficiency of the AgNPcol against the paw edema was evaluated.

  19. Removal of Nitrate from Aqueous Solutions by Starch Stabilized nano Zero-Valent Iron(nZVI

    Directory of Open Access Journals (Sweden)

    Kaveh Yaghmaeian

    2016-09-01

    Full Text Available Background and Objective: Nitrate is one of the inorganic anions derived as a result of oxidation of elemental nitrogen. Urban and industrial wastewater, animal and vegetable waste products in large cities that have organic nitrogen are excreted along the soil. The primary risk of Nitrate in drinking water occurs when nitrate in the gastrointestinal tract switch to nitrite. Nitrite causes the oxidation of iron in hemoglobin of red blood cells, result in red blood cells could not carry the oxygen, a condition called methemoglobinemia. Therefore, achieving the new technologies for nitrate removal is necessary. Material and Methods: The present study was conducted at laboratory Scale in non-continuous batches. Stabilized adsorbent was produced through reducing Iron sulfate by sodium borohydride (NaBH4 in presence of Starch (0.2W % as a stabilizer. At first, the effect of various parameters such as contact time (10-90min, pH (3-11, adsorbent dose (0.5-3 g/L and initial concentration of arsenate (50-250 mg/L were investigated on process efficiency. Freundlich and Langmuir isotherm model equilibrium constant, were calculated. Residual nitrate were measured by using the DR5000 spectrophotometer. Results: The optimum values based on RSM for pH, absorbent dose, contact time, and initial concentration of nitrate were 5.87, 2.25 g/L, 55.7 min, and 110.35 mg/L respectively. Langmuir isotherm with R2= 0.9932 for nitrate was the best graph for the experimental data. The maximum amount of nitrate adsorption was 138.88mg/g. Conclusion: Stabilized absorbent due to have numerous absorption sites and Fe0 as a reducing agent could have great potential in nitrate removal from water.

  20. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics

    International Nuclear Information System (INIS)

    Rastogi, Lori; Kora, Aruna Jyothi; Arunachalam, J.

    2012-01-01

    A method for the production of highly stable gold nanoparticles (Au NP) was optimized using sodium borohydride as reducing agent and bovine serum albumin as capping agent. The synthesized nanoparticles were characterized using UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction (XRD) and dynamic light scattering techniques. The formation of gold nanoparticles was confirmed from the appearance of pink colour and an absorption maximum at 532 nm. These protein capped nanoparticles exhibited excellent stability towards pH modification and electrolyte addition. The produced nanoparticles were found to be spherical in shape, nearly monodispersed and with an average particle size of 7.8 ± 1.7 nm. Crystalline nature of the nanoparticles in face centered cubic structure is confirmed from the selected‐area electron diffraction and XRD patterns. The nanoparticles were functionalized with various amino-glycosidic antibiotics for utilizing them as drug delivery vehicles. Using Fourier transform infrared spectroscopy, the possible functional groups of antibiotics bound to the nanoparticle surface have been examined. These drug loaded nanoparticle solutions were tested for their antibacterial activity against Gram-negative and Gram-positive bacterial strains, by well diffusion assay. The antibiotic conjugated Au NP exhibited enhanced antibacterial activity, compared to pure antibiotic at the same concentration. Being protein capped and highly stable, these gold nanoparticles can act as effective carriers for drugs and might have considerable applications in the field of infection prevention and therapeutics. - Highlights: ► Method for NaBH 4 reduced and BSA capped gold nanoparticle was standardized. ► Nanoparticles were spherical and nearly monodispersed with a size of 7.8 nm. ► Nanoparticles are extremely stable towards pH modification and electrolyte addition. ► Antibiotic conjugated nanoparticles exhibited enhanced antibacterial activity

  1. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Modibedi, RM

    2011-04-01

    Full Text Available Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  2. Carbon supported Pd-Ni and Pd-Ru-Ni nanocatalysts for the alkaline direct ethanol fuel cell (DEFC)

    CSIR Research Space (South Africa)

    Mathe, MK

    2011-08-01

    Full Text Available Carbon supported Pd-Ni and Pd-Ru-Ni nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  3. Crystal structure analysis of human serum albumin complexed with sodium 4-phenylbutyrate

    Directory of Open Access Journals (Sweden)

    Akito Kawai

    2018-03-01

    Full Text Available Sodium 4-phenylbutyrate (PB is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA–PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug–HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings. Keywords: Human serum albumin, X-ray crystallography, Sodium 4-phenylbutyrate, Drug interaction, Drug site 2

  4. Effect of sodium lactate /sodium diacetate in combination with sodium nitrite on physiochemical, microbial properties and sensory evaluation of cow sausage

    Directory of Open Access Journals (Sweden)

    Habib Sedghi

    2014-11-01

    Full Text Available Sodium nitrite has been always considered as one of the common additives due to its antibacterial effects on Clostridium botulinum and meat products' color, however it produces cancer creating nitrosamine. Recently, organic acids and their salts such as lactates have been employed as antimicrobial compounds. Lactates also improve organileptic properties including color, texture and taste and antioxidant properties. Sodium lactate causes to more reduction of anaerobic spore former bacteria than nitrite, inhibits botulin produced by Clostridium botulinum. Sodium lactate produces a permanent reddish pink color through reduction of deoxymygloboline and producing deoxymyoglobuline. In this study, the decrease of sodium nitrite amount from 120ppm to 15ppm by adding sodium lactate / sodium diacetate led to achieve an acceptable product. The best results revealed through adding 3.0625% of sodium lactate / sodium diacetate in combination with 30ppm sodium nitrite. Results also exhibited more reduction of pathogens' growth than nitrite, enhanced flavor slightly, but unable to produce reddish pink color as produced by nitrite. Results also exhibited that sodium lactate / diacetate cause to retard in microbial growth, reducing chemical change, enhance sensory properties, partially improvement in taste and texture. Although inappropriate color demonstrated sodium lactate / diacetate's inability in red pink color production in 4th sample (contains 15 ppm nitrite, its synergy effect in combination with sodium nitrite on nitroso myoglobuline production has been proven, led to sodium nitrite reduction in sausages.

  5. Specialists' meeting on sodium fires

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Kuznetsova, R.I.

    1989-01-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires

  6. Specialists' meeting on sodium fires

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, F A; Kuznetsova, R I [eds.

    1989-07-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires.

  7. Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis.

    Science.gov (United States)

    Yam, Gary Hin-Fai; Gaplovska-Kysela, Katarina; Zuber, Christian; Roth, Jürgen

    2007-04-01

    To evaluate the effect of chemical chaperones on the trafficking of secretion-incompetent primary open-angle glaucoma-associated mutant myocilin and the possibility to rescue cells coexpressing mutant and wild-type myocilin from endoplasmic reticulum (ER) stress and apoptosis. CHO-K1, HEK293 and human trabecular meshwork cells were transfected to express wild-type or mutant (C245Y, G364V, P370L, Y437H) myocilin-green fluorescent protein fusion protein and were treated or not with various chemical chaperones (glycerol, dimethylsulfoxide, or sodium 4-phenylbutyrate) for different time periods. The secretion, Triton X-100 solubility, and intracellular distribution of wild-type and mutant myocilin were analyzed by immunoprecipitation, Western blotting, and confocal double immunofluorescence. The effect of sodium 4-phenylbutyrate on ER stress proteins and apoptosis was examined in cells coexpressing mutant and wild-type myocilin. Treatment with sodium 4-phenylbutyrate, but not with glycerol or dimethylsulfoxide, reduced the amount of detergent-insoluble myocilin aggregates, diminished myocilin interaction with calreticulin, and restored the secretion of mutant myocilin. Heteromeric complexes formed by mutant and wild-type myocilin induced the ER stress-associated phosphorylated form of ER-localized eukaryotic initiation factor (eIF)-2alpha kinase and the active form of caspase 3, which resulted in an increased rate of apoptosis. Sodium 4-phenylbutyrate treatment of cells coexpressing mutant and wild-type myocilin relieved ER stress and significantly reduced the rate of apoptosis. These findings indicate that sodium 4-phenylbutyrate protects cells from the deleterious effects of ER-retained aggregated mutant myocilin. These data point to the possibility of a chemical chaperone treatment for myocilin-caused primary open-angle glaucoma.

  8. Stability of polymyxin B sulfate diluted in 0.9% sodium chloride injection and stored at 4 or 25 degrees C.

    Science.gov (United States)

    He, Jie; Figueroa, Deborah A; Lim, Tze-Peng; Chow, Diana S; Tam, Vincent H

    2010-07-15

    The stability of polymyxin B sulfate in infusion bags containing 0.9% sodium chloride injection stored at 4 and 25 degrees C was studied. Seven manufacturing batches of polymyxin B from different sources were tested. The products were reconstituted in sterile water for injection, diluted in infusion bags containing 0.9% sodium chloride injection, and stored at room temperature (25 degrees C) or under refrigeration (4 degrees C). Samples were withdrawn at the same time on days 0, 1, 2, 3, 5, and 7. A modified microbiological assay was used to determine the concentrations, as indicated by zones of inhibition, of polymyxin B. Bordetella bronchiseptica served as the reference organism. Stability was defined as retention of >90% of the initial concentration. The decomposition kinetics of polymyxin B in 0.9% sodium chloride injection were evaluated by plotting the polymyxin B concentration remaining versus time. On average, the samples retained over 90% of their initial concentration for up to two days at both storage temperatures. All samples retained over 90% of their initial concentration at 24 hours. The decomposition kinetics of polymyxin B in infusion bags containing 0.9% sodium chloride injection exhibited pseudo-first-order kinetics, with rate constants of 0.024-0.075 day(-1) at 25 degrees C and 0.022-0.043 day(-1) at 4 degrees C (p > 0.05). Polymyxin B was stable for at least one day when stored at 4 or 25 degrees C in infusion bags containing 0.9% sodium chloride injection. Stability did not differ significantly between the two storage temperatures.

  9. Use of 8.4% Sodium Bicarbonate in Buffering Commonly Administered Vancomycin Hydrochloride Solutions for Use with Midline or Peripheral Line Catheters.

    Science.gov (United States)

    Puertos, Enrique; Spencer, Melissa

    2015-01-01

    The primary objective of this study was to evaluate the use of 8.4% sodium bicarbonate in the buffering of commonly administered vancomycin hydrochloride solutions for use with midline or peripheral line catheters. Nine admixtures of vancomycin hydrochloride were aseptically prepared for this study. Vancomycin hydrochloride solutions were prepared in triplicates in the following strengths, 1 gram, 2 grams, and 3 grams, which were added to 250-mL bags of sodium chloride 0.9% injection (with overfill). To each prepared solution of vancomycin hydrochloride, 0.5 mL of 8.4% sodium bicarbonate was added. The pH was measured to obtain a baseline level. At day 9, the pH of each sample was measured and compared to those at baseline. The osmolality of each sample was also measured. There was no statistical difference in the pH at baseline and at day 9 (α = 0.05, P = 0.347). A solution of vancomycin hydrochloride that is compounded in 250 mL of sodium chloride 0.9% injection (including overfill) and buffered with 0.5 mL of 8.4% sodium bicarbonate maintained a pH in the range of 5 to 9 and an osmolality in the range of 150 mOsm/kg to 500 mOsm/kg.

  10. Sodium leak at Monju (II): Sodium leak, burning and aerosol behavior

    International Nuclear Information System (INIS)

    Funada, T.; Yamagishi, Y.

    1996-01-01

    The amount of leaked sodium was estimated as approximately 640 kg during the 220 minute leak. The ventilation duct and the walkway grating under the leak site were severely damaged by Na-Fe-O reaction, but the floor liner and the concrete wall were not. A total 100 kg of sodium aerosol was deposited in the reactor auxiliary building and 230 kg was released to the atmosphere. The sodium concentration at the site boundary was calculated as 0.05 mg/m 3 , NaOH equivalent, which was low in comparison with the permitted level of 2 mg/m 3 . The tritium quantity released was estimated as 4.4 x 10 7 Bq, which was about 0.03% of the average released value per month for a LWR. (author)

  11. Sodium and potassium content and their ratio in meatballs in tomato sauce produced with lower amounts of sodium

    Science.gov (United States)

    Lilić, S.; Nikolić, D.; Pejkovski, Z.; Velebit, B.; Lakićević, B.; Korićanac, V.; Vranić, D.

    2017-09-01

    The goal of this study was to examine the possibility of partial replacement of sodium chloride with potassium chloride and ammonium chloride, with the target of achieving less sodium content in meatballs and tomato sauce as well as achieving a better Na:K ratio. The trial consisted of five groups. In the control group of meatballs and sauce, only sodium chloride was added. In group 1, half of the sodium chloride was replaced with potassium chloride related to control group while in group 2 one third of the sodium chloride was replaced with potassium chloride. In group 3, one third of the sodium chloride was replaced with ammonium chloride, and in group 4, sodium chloride was reduced to half the amount in the control group, and 1 g (0.25%) of ammonium chloride was also added. All products were acceptable according to sensory analyses. The largest reductions of sodium content were 44.64%, achieved in meatballs from group 1 and 50.62% in tomato sauce from group 4 in relation to meatballs and tomato sauce from control group. The highest Na:K ratio was calculated in meatballs and tomato sauce from control group, 2.88 and 4.39, respectively. The best Na:K ratio was in meatballs and tomato sauce from group 1, 0.60 and 0.92, respectively, in which half of sodium chloride was replaced with potassium chloride. However, in meatballs and tomato sauce from group 4, with only half the amount of sodium chloride related to control group, the Na:K ratio was worse because in these products, potassium chloride was not added.

  12. Preparation of Li4Ti5O12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance

    International Nuclear Information System (INIS)

    Zhang, Jingwei; Zhang, Fenli; Li, Jiuhe; Cai, Wei; Zhang, Jiwei; Yu, Laigui; Jin, Zhensheng; Zhang, Zhijun

    2013-01-01

    Nano-sized spinel lithium titanate (Li 4 Ti 5 O 12 ) was synthesized using sodium titanate nanotube as precursor via a facile solution ion-exchange method in association with subsequent calcination treatment at relatively low temperature. The influences of precursors, ion-exchange condition, and calcination temperature on the microstructure and electrochemical performance of the products were studied. Results indicate that pure-phase Li 4 Ti 5 O 12 can be harvested from sodium titanate nanotube precursor through an ion-exchanging at room temperature and calcination at 500 °C. The products exhibit a better performance as Li-ion battery anode material than the counterparts prepared from protonic titanate nanotube (H-titanate) precursor. The reason may lie in that sodium titanate nanotube is easier than protonic titanate nanotube to synthesize lithium titanate without TiO 2 impurity, resulting in reduced electron transfer ability and Li-ion transport ability. The capacity of Li 4 Ti 5 O 12 prepared from sodium titanate nanotube is 146 mAh/g at 10 C, and it has only 0.7 % decay after 200 charge/discharge cycles

  13. The Performance of a Direct Borohydride/Peroxide Fuel Cell Using Graphite Felts as Electrodes

    Directory of Open Access Journals (Sweden)

    Heng-Yi Lee

    2017-08-01

    Full Text Available A direct borohydride/peroxide fuel cell (DBPFC generates electrical power by recirculating liquid anolyte and catholyte between the stack and reservoirs, which is similar to the operation of flow batteries. To enhance the accessibility of the catalyst layer to the liquid anolyte/catholyte, graphite felts are employed as the porous diffusion layer of a single-cell DBPFC instead of carbon paper/cloth. The effects of the type of anode alkaline solution and operating conditions, including flow rate and temperature of the anolyte/catholyte, on DBPFC performance are investigated and discussed. The durability of the DBPFC is also evaluated by galvanostatic discharge at 0.1 A∙cm−2 for over 50 h. The results of this preliminary study show that a DBPFC with porous graphite electrodes can provide a maximum power density of 0.24 W∙cm−2 at 0.8 V. The performance of the DBPFC drops slightly after 50 h of operation; however, the discharge capacity shows no significant decrease.

  14. Effects of the addition of an organic polymer on the hydrolysis of sodium tetrahydroborate in batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit, Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal)

    2010-10-15

    An experimental study is presented both on the generation and storage of molecular hydrogen (H{sub 2}) by small additions of an organic polymer -carboxymethyl cellulose (CMC) - to sodium borohydride (NaBH{sub 4}) through the alkaline hydrolysis, in the presence of a powdered nickel-ruthenium based catalyst reused from 274 to 282 times. The experiments were performed at 45 C in two batch reactors with internal volumes of 0.229 L and 0.369 L, made of stainless-steel with bottom conical shape, positioned vertically. The results showed that working at moderate pressures, up to 2.7 MPa, increases slightly the H{sub 2} dissolution in the liquid phase, enhanced by the changing of the polarity of the remained solution inside the reactor: a value of 0.182 for dimensionless H{sub 2} solubility in the liquid phase with 0.25 wt% CMC was found, at 45 C, based on Henry's law. As a consequence, sodium tetrahydroxoborate, NaB(OH){sub 4} by-product was produced in the presence of CMC additive, showing the absence of crystalline water in its crystal structure (NaB(OH){sub 4} presents structural water, with boron atoms linked to four hydroxyl groups). This new finding never reported to form at < 50 C, has a positive impact in recyclability costs of NaBO{sub 2} back to NaBH{sub 4} due to the elimination of two energy consuming steps in the metaborate dehydration kinetics. In fact our system of compressed hydrogen, shows that both H{sub 2} generation rates and yields and hydrogen storage capacities can be augmented, the latter to reach {approx} 6 wt%, by adding small amounts of an organic polymer (CMC) to the classic NaBH{sub 4} hydrolysis, performed with stoichiometric amount of water. The eventual success of this new route will depend upon developing a advantageous method of converting borates into tetrahydroborate and also finding materials (chemicals) which enhance the solubility of H{sub 2

  15. Spot urine sodium measurements do not accurately estimate dietary sodium intake in chronic kidney disease12

    Science.gov (United States)

    Dougher, Carly E; Rifkin, Dena E; Anderson, Cheryl AM; Smits, Gerard; Persky, Martha S; Block, Geoffrey A; Ix, Joachim H

    2016-01-01

    Background: Sodium intake influences blood pressure and proteinuria, yet the impact on long-term outcomes is uncertain in chronic kidney disease (CKD). Accurate assessment is essential for clinical and public policy recommendations, but few large-scale studies use 24-h urine collections. Recent studies that used spot urine sodium and associated estimating equations suggest that they may provide a suitable alternative, but their accuracy in patients with CKD is unknown. Objective: We compared the accuracy of 4 equations [the Nerbass, INTERSALT (International Cooperative Study on Salt, Other Factors, and Blood Pressure), Tanaka, and Kawasaki equations] that use spot urine sodium to estimate 24-h sodium excretion in patients with moderate to advanced CKD. Design: We evaluated the accuracy of spot urine sodium to predict mean 24-h urine sodium excretion over 9 mo in 129 participants with stage 3–4 CKD. Spot morning urine sodium was used in 4 estimating equations. Bias, precision, and accuracy were assessed and compared across each equation. Results: The mean age of the participants was 67 y, 52% were female, and the mean estimated glomerular filtration rate was 31 ± 9 mL · min–1 · 1.73 m–2. The mean ± SD number of 24-h urine collections was 3.5 ± 0.8/participant, and the mean 24-h sodium excretion was 168.2 ± 67.5 mmol/d. Although the Tanaka equation demonstrated the least bias (mean: −8.2 mmol/d), all 4 equations had poor precision and accuracy. The INTERSALT equation demonstrated the highest accuracy but derived an estimate only within 30% of mean measured sodium excretion in only 57% of observations. Bland-Altman plots revealed systematic bias with the Nerbass, INTERSALT, and Tanaka equations, underestimating sodium excretion when intake was high. Conclusion: These findings do not support the use of spot urine specimens to estimate dietary sodium intake in patients with CKD and research studies enriched with patients with CKD. The parent data for this

  16. Technology for analysis of sodium pool fire characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Ho; Jeong, K C; Jeong, J Y; Kim, T J; Choi, J H; Choi, Y D; Hwang, S T

    2000-09-01

    Basic and detail design for medium sodium fire test facility was carried out and medium sodium fire test facility was constructed. Design data is as follows. - Test cell material : Concrete with high strength - Test cell dimension ; 48m{sup 3} (3x4x4m) - Design temp. ; 700 deg C - Operation temp. ; 530 deg C - Design pressure ; 1 bar (max.) - Dimension(Inside) : 3 x 4 x 4(m) - Test cell thickness ; 45cm - Liner plate with (Thickness : 3mm) In this study, sodium fire characteristics was analyzed and data for validation of computer code was produced. Oxygen and sodium filled in pool pan didn't burns instantly, but pool fire occurred through pre-ignition. Distribution of temperature in test cell was divided by two parts, and temperature at upper position appeared to be higher than temperature at lower position. The temperature in test cell increased with the feed of sodium. The pressure in test cell increased with the feed of sodium. When the feed of sodium was 8kg, peak pressure was 0.075 bar. Peak temperature in sodium pool appeared to be 854 deg C regardless of the feed of sodium. Decrease of 1% in oxygen concentration showed the rise of 0.036bar in pressure.

  17. Technology for analysis of sodium pool fire characteristics

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, K. C.; Jeong, J. Y.; Kim, T. J.; Choi, J. H.; Choi, Y. D.; Hwang, S. T.

    2000-09-01

    Basic and detail design for medium sodium fire test facility was carried out and medium sodium fire test facility was constructed. Design data is as follows. - Test cell material : Concrete with high strength - Test cell dimension ; 48m 3 (3x4x4m) - Design temp. ; 700 deg C - Operation temp. ; 530 deg C - Design pressure ; 1 bar (max.) - Dimension(Inside) : 3 x 4 x 4(m) - Test cell thickness ; 45cm - Liner plate with (Thickness : 3mm) In this study, sodium fire characteristics was analyzed and data for validation of computer code was produced. Oxygen and sodium filled in pool pan didn't burns instantly, but pool fire occurred through pre-ignition. Distribution of temperature in test cell was divided by two parts, and temperature at upper position appeared to be higher than temperature at lower position. The temperature in test cell increased with the feed of sodium. The pressure in test cell increased with the feed of sodium. When the feed of sodium was 8kg, peak pressure was 0.075 bar. Peak temperature in sodium pool appeared to be 854 deg C regardless of the feed of sodium. Decrease of 1% in oxygen concentration showed the rise of 0.036bar in pressure

  18. Technology for analysis of sodium pool fire characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Ho; Jeong, K. C.; Jeong, J. Y.; Kim, T. J.; Choi, J. H.; Choi, Y. D.; Hwang, S. T

    2000-09-01

    Basic and detail design for medium sodium fire test facility was carried out and medium sodium fire test facility was constructed. Design data is as follows. - Test cell material : Concrete with high strength - Test cell dimension ; 48m{sup 3} (3x4x4m) - Design temp. ; 700 deg C - Operation temp. ; 530 deg C - Design pressure ; 1 bar (max.) - Dimension(Inside) : 3 x 4 x 4(m) - Test cell thickness ; 45cm - Liner plate with (Thickness : 3mm) In this study, sodium fire characteristics was analyzed and data for validation of computer code was produced. Oxygen and sodium filled in pool pan didn't burns instantly, but pool fire occurred through pre-ignition. Distribution of temperature in test cell was divided by two parts, and temperature at upper position appeared to be higher than temperature at lower position. The temperature in test cell increased with the feed of sodium. The pressure in test cell increased with the feed of sodium. When the feed of sodium was 8kg, peak pressure was 0.075 bar. Peak temperature in sodium pool appeared to be 854 deg C regardless of the feed of sodium. Decrease of 1% in oxygen concentration showed the rise of 0.036bar in pressure.

  19. Tumorigenicity of sodium ascorbate in male rats.

    Science.gov (United States)

    Cohen, S M; Anderson, T A; de Oliveira, L M; Arnold, L L

    1998-06-15

    Sodium ascorbate, like other sodium salts such as saccharin, glutamate, and bicarbonate, produces urinary alterations when fed at high doses to rats, which results in mild superficial urothelial cytotoxicity and regeneration but not tumors in a standard 2-year bioassay. Sodium saccharin was shown to produce a low incidence of bladder tumors in rats if administered in a two-generation bioassay. In the present study, we evaluated sodium ascorbate in a two-generation bioassay that involved feeding to the male and female parental F344 rats for 4 weeks before mating, feeding the dams during gestation and lactation, and then feeding the weaned (at 28 days of age) male F1 generation rats for the remainder of their lifetime (up to 128 weeks of the experiment). Dietary levels of 1.0, 5.0, and 7.0% sodium ascorbate were tested. At 5.0 and 7.0% sodium ascorbate, there was an increase in urinary bladder urothelial papillary and nodular hyperplasia and the induction of a few papillomas and carcinomas. There was a dose-responsive increase in renal pelvic calcification and hyperplasia and inhibition of the aging nephropathy of rats even at the level of 1% sodium ascorbate. Because the short-term urothelial effects of sodium ascorbate in rats are inhibited by treatments producing urinary acidification to pH sodium ascorbate to evaluate the long-term effects. The combination of 7.0% sodium ascorbate plus 2.78% NH4Cl in the diet was toxic, and the group was terminated early during the course of the experiment. The group fed 5.0% sodium ascorbate plus 2.04% NH4Cl showed complete inhibition of the urothelial effects of sodium ascorbate and significant inhibition of its renal effects. We also demonstrated the presence of a calcium phosphate-containing urinary precipitate in rats fed sodium ascorbate at all doses, in a dose-responsive manner. The formation of the precipitate was inhibited by coadministration with NH4Cl. The proliferative effects of sodium ascorbate on the male rat

  20. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  1. NaBH{sub 4}/H{sub 2}O{sub 2} fuel cells for air independent power systems

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Nie; Miley, G.H.; Kim, Kyu-Jung [Department of Nuclear Engineering, University of Illinois, 104 S. Wright, Urbana, IL 61801 (United States); Burton, Rodney [Department of Aerospace Engineering, University of Illinois, 104 S. Wright, Urbana, IL 61801 (United States); Huang, Xinyu [Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-12-01

    The performance and characteristics of direct sodium-borohydride/hydrogen-peroxide (NaBH{sub 4}/H{sub 2}O{sub 2}) fuel cells are studied in the context of potential applications for air independent propulsion for outer space and underwater. Due to the existence of ocean (sea) water as a natural heat sink, this new fuel cell technology is best suited for underwater propulsion/power systems for small scale high performance marine vehicles. The characteristics of such a power system are compared to other options, specifically for the underwater scenario. The potential of this fuel cell is demonstrated in laboratory experiments. Power density over 1.5 W cm{sup -2}, at 65 C and ambient pressure, have been achieved with the help of some unique treatments of the fuel cell. One such treatment is an in-situ electroplating technique, which results in electrodes with power density 20-40% higher, than that of the electrodes produced by the ordinary ex-situ electroplating method. This unique process also makes repair or reconditioning of the fuel cell possible and convenient. (author)

  2. Download this PDF file

    African Journals Online (AJOL)

    quinoxalin-2-one (5), was identical with that prepared from the D-erythro analog. The IH NMR spectrum of 5 showed two NH protons (6 11.20 and 12.50) and an aldehydic proton (6 9.58). Reduction of 5 with sodium borohydride afforded ...

  3. OPTICAL PROPERTY ANALYSIS OF THERMALLY AND PHOTOLYTICALLY AGED EUCALYPTUS CAMALDULENSIS CHEMITHERMOMECHANICAL PULP (CTMP

    Directory of Open Access Journals (Sweden)

    Yao Chen,

    2012-02-01

    Full Text Available To investigate the optical properties of chemithermomechanical pulp (CTMP from Eucalyptus camaldulensis, one group of samples of CTMP was aged by heating, and another group was first subjected to bleaching with different bleaching agents, and then aging by exposure to sunlight. Chromophores were analyzed using diffuse reflectance UV-Vis spectra (DRUV, and the brightness and color parameters (L*, a*, b* were analyzed using colorimetry. Results showed that the color reactions of the pulp, upon heating, were enhanced in the presence of moisture. There was a linear relationship between the pulp initial moisture content (MC and the intensity of UV-Vis absorption. The contribution of different chromophores to pulp color was analyzed with the help of bleaching agents: hydrogen peroxide, sodium dithionite, and sodium borohydride. Sodium borohydride and hydrogen peroxide treatments resulted in a decrease in the absorption band at 280 nm along with the shoulder near 320 nm, which could be attributed to conjugated C=O and C=C systems. Similarly, sodium dithionite treatment also led to a decrease in absorption of the carbonyls and double bonds conjugated with aromatic double bonds. The chromaticity parameters of bleached pulp increased after exposure to sunlight. A correspondingly higher concentration of quinoid structures was found.

  4. Enhancing engraftment of islets using perioperative sodium 4-phenylbutyrate.

    Science.gov (United States)

    Hsu, Brend Ray-Sea; Chen, Szu-Tah; Fu, Shin-Huei

    2006-12-20

    Primary nonfunction (PNF) adversely impacts islet transplantation. In addition to determining whether sodium 4-phenylbutyrate (4-SPB), an anti-inflammatory agent, reduces PNF, this study investigates how 4-SPB affects PNF. Streptozotocin-induced diabetic C57BL/6 mice, that received 75 syngeneic islets underneath left subrenal space, were fed twice daily of either 4-SPB at 500 mg/kg body weight or isotonic saline (NaCl) from 2 days before through 7 days after transplantation. The graft was removed at days 3, 10 and 84 following transplantation. At 68 h following transplantation, serum levels of interleukin-1beta (IL-1beta) were 2.2+/-0.4 and 0.4+/-0.2 pmol/L (n=6, p<0.005) for NaCl and 4-SPB groups, respectively. Graft genetic expression of IL-1beta was significantly suppressed in 4-SPB group (p<0.01). At day 10, the blood glucose levels were 22.7+/-1.0 and 17.1+/-1.7 mmol/L (n=12, p<0.05) and graft insulin contents (IC) were 35.0+/-8.3 and 107.6+/-29.7 pmol (n=12, p<0.05) for NaCl and 4-SPB groups, respectively. Moreover, the 4-SPB group had a shorter temporary hyperglycemia (15+/-2, n=21 vs. 25+/-2 days, n=19, p=0.001) and a higher cumulative cure rate of diabetes (p<0.001) than the NaCl group. In-vitro studies indicated that 4-SPB did not impact the islets function. These experimental results demonstrated that perioperative administration of 4-SPB decreased serum level and graft genetic expression of IL-1beta and attenuated PNF, which enhanced islet engraftment in a syngeneic transplantation mouse model.

  5. Synthesis and Characterization of Fe3O4 Magnetic Nanoparticles Coated with Carboxymethyl Chitosan Grafted Sodium Methacrylate

    Directory of Open Access Journals (Sweden)

    S. Asgari

    2014-01-01

    Full Text Available N-sodium acrylate-O-carboxymethyl chitosan [CMCH-g-PAA(Na] bound Fe3O4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. CMCH-g-PAA (Na was obtained by grafting of sodium polyacrylate on O-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegradability properties. According to the great interest for improving the stability of Fe3O4 nanoparticles, CMCH-g-PAA (Na was used as a stabilizer to prepare a well dispersed suspension of magnetic nanoparticle According to the results,the presence of CMCH-g-PAA(Na could eliminate agglomeration of magnetic nanoparticles without destroying the superparamagnetic  properties

  6. Determination of tributyltin in environmental water matrices using stir bar sorptive extraction with in-situ derivatisation and large volume injection-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Neng, N R; Santalla, R P; Nogueira, J M F

    2014-08-01

    Stir bar sorptive extraction with in-situ derivatization using sodium tetrahydridoborate (NaBH4) followed by liquid desorption and large volume injection-gas chromatography-mass spectrometry detection under the selected ion monitoring mode (SBSE(NaBH4)in-situ-LD/LVI-GC-MS(SIM)) was successfully developed for the determination of tributyltin (TBT) in environmental water matrices. NaBH4 proved to be an effective and easy in-situ speciation agent for TBT in aqueous media, allowing the formation of adducts with enough stability and suitable polarity for SBSE analysis. Assays performed on water samples spiked at the 10.0μg/L, yielded convenient recoveries (68.2±3.0%), showed good accuracy, suitable precision (RSD<9.0%), low detection limits (23ng/L) and excellent linear dynamic range (r(2)=0.9999) from 0.1 to 170.0µg/L, under optimized experimental conditions. By using the standard addition method, the application of the present methodology to real surface water samples allowed very good performance at the trace level. The proposed methodology proved to be a feasible alternative for routine quality control analysis, easy to implement, reliable and sensitive to monitor TBT in environmental water matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Tailorable thiolated trimethyl chitosans for covalently stabilized nanoparticles.

    Science.gov (United States)

    Verheul, Rolf J; van der Wal, Steffen; Hennink, Wim E

    2010-08-09

    A novel four-step method is presented to synthesize partially thiolated trimethylated chitosan (TMC) with a tailorable degree of quaternization and thiolation. First, chitosan was partially N-carboxylated with glyoxylic acid and sodium borohydride. Next, the remaining amines were quantitatively dimethylated with formaldehyde and sodium borohydride and then quaternized with iodomethane in NMP. Subsequently, these partially carboxylated TMCs dissolved in water were reacted with cystamine at pH 5.5 using EDC as coupling agent. After addition of DTT and dialysis, thiolated TMCs were obtained, varying in degree of quaternization (25-54%) and degree of thiolation (5-7%), as determined with (1)H NMR and Ellman's assay. Gel permeation chromatography with light scattering detection indicated limited intermolecular cross-linking. All thiolated TMCs showed rapid oxidation to yield disulfide cross-linked TMC at pH 7.4, while the thiolated polymers were rather stable at pH 4.0. When Calu-3 cells were used, XTT and LDH cell viability tests showed a slight reduction in cytotoxicity for thiolated TMCs as compared to the nonthiolated polymers with similar DQs. Positively charged nanoparticles loaded with fluorescently labeled ovalbumin were made from thiolated TMCs and thiolated hyaluronic acid. The stability of these particles was confirmed in 0.8 M NaCl, in contrast to particles made from nonthiolated polymers that dissociated under these conditions, demonstrating that the particles were held together by intermolecular disulfide bonds.

  8. Easy access to 6-membered iminoalditols - important glycosidase inhibitors

    DEFF Research Database (Denmark)

    Lundt, Inge

    of 6-membered iminoalditols were observed. The use of triethylamine in methanol thus gave methylesters of 6-membered iminouronic acids. Reduction of the ester group with sodium borohydride gave the target compounds. The mechanisms of the reactions will be discussed as well as specific results obtained...

  9. Orally administered sodium 4-phenylbutyrate suppresses the development of dextran sulfate sodium-induced colitis in mice.

    Science.gov (United States)

    Ono, Kazuhiko; Nimura, Satoshi; Hideshima, Yuko; Nabeshima, Kazuki; Nakashima, Manabu

    2017-12-01

    Sodium 4-phenylbutyrate (PBA) exerts therapeutic effects in a wide range of pathologies. A previous study by the present authors revealed that intraperitoneal administration of PBA suppresses the onset of dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, the effects of orally administered PBA are investigated, as this route of administration is more clinically relevant. The therapeutic efficacy of PBA (10 mg/12 h) in mice with experimental colitis was assessed based on the disease activity index, production of inflammatory cytokines, colon length and histopathological investigations. The results of the present study demonstrated a significantly higher survival rate in the PBA-treated group compared with the PBA-untreated (DSS control) group (P=0.0156). PBA treatment improved pathological indices of experimental colitis (P<0.05). Furthermore, the oral administration of PBA significantly inhibited the DSS-induced shortening of the colon (P<0.05) and overproduction of interleukin (IL)-1β and IL-6 (both P<0.05) as measured in colonic lavage fluids. A marked attenuation of the DSS-induced overproduction of tumor necrosis factor was also observed. For histopathological analysis, a marked decrease in mature goblet cells and increase in enlarged nuclei of the absorptive cells was observed in colon lesions of DSS control mice as compared with normal untreated mice. However, in the PBA-treated mice, no such lesions were observed and the mucosa resembled that of DSS-untreated mice. The results of the present study, combined with those results of a previous study, suggest that oral and intraperitoneal administration of PBA have similar preventative effects on DSS-induced colitis, achieved by suppressing its pathogenesis.

  10. Simultaneous HPLC method for determination of sodium trimethoprim phenylpropanol disulphonate and sodium sulfaquinoxaline in veterinary drugs

    Directory of Open Access Journals (Sweden)

    Puangkaew Lakkanatinaporn

    2004-11-01

    Full Text Available A simple HPLC method has been developed for the separation and determination of sodium trimethoprim phenylpropanol disulphonate and sodium sulfaquinoxaline in veterinary preparations. Both drugs were separated well on a Kromasil C18 column (5 µm, 150 × 4.6 mm using a mixture of acetonitrile and 0.5% triethylamine in 1% acetic acid, pH 3 (18:82, v/v as the mobile phase at the flow rate of 1.5 ml/ min. The presence of both substances was monitored by UV absorption detection at 271 nm. The retention times of sodium trimethoprim phenylpropanol disulphonate and sodium sulfaquinoxaline were 3.2 and 16.0 min, respectively. The performance of the developed method was tested. Linear responses of both drugs were achieved between 48-145% of labeled amount over the concentration ranges of 35-101 µg/ml and 102-306 µg/ ml for sodium trimethoprim phenylpropanol disulphonate and sodium sulfaquinoxaline with correlation coefficients (R2 of 0.9980 and 0.9998, respectively. Accuracy expressed in term of recoveries were 101.4± 1.21% (n=6 for sodium trimethoprim phenylpropanol disulphonate and 99.7±0.92% (n=6 for sodium sulfaquinoxaline. Precision of the method in terms of the relative standard deviation is not more than 2% in all cases. These figures of merit indicated the validity of the developed method.

  11. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B2: Catalytic Polymerisation of Aniline and Pyrrole

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2008-01-01

    Full Text Available For the first time, we report green chemistry approach using vitamin B2 in the synthesis of silver (Ag and palladium (Pd, nanospheres, nanowires, and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4 or hydroxylamine hydrochloride and any special capping or dispersing agent. Vitamin B2 was used as reducing agent as well as capping agent due to its high-water solubility, biodegradability, and low-toxicity compared with other reducing agents. The average particle size of nanoprticle was found to be Ag (average size 6.1±0.1 nm and Pd (average size 4.1±0.1 nm nanoparticles in ethylene glycol and Ag (average size 5.9±0.1 nm, and average size 6.1±0.1 nanoparticles in acetic acid and NMP, respectively. The formation of noble multiple shape nanostructures and their self assembly were dependent on the solvent employed for the preparation. When water was used as solvent media, Ag and Pd nanoparticles started to self-assemble into rod-like structures and in isopropanol Ag and Pd nanoparticles yielded wire-like structures with a thickness in the range of 10 to 20 nm and several hundred microns in length. In acetone and acetonitrile medium, the Ag and Pd nanoparticles are self-assembled into a regular pattern making nanorod structures with thicknesses ranging from 100 to 200 nm and lengths of a few microns. The so-synthesized nanostructures were characterized using scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray (EDX analysis, and UV spectroscopy. The ensuing Ag and Pd nanoparticles catalyzed the reactions of aniline and pyrrole to generate polyaniline and polypyrrole nanofibers and may find various technological and biological applications. This single-step greener approach is general and can be extended to other noble metals and transition metal oxides.

  12. Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    Science.gov (United States)

    Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama

    2018-03-01

    The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.

  13. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  14. Investigation for the sodium leak in Monju. Sodium leak and fire test-1

    International Nuclear Information System (INIS)

    Kawata, Koji; Ohno, Shuji; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    2000-08-01

    As a part of the work for investigating the sodium leak accident which occurred in the Monju reactor (hereinafter referred to as Monju) on December 8, 1995, three tests, (1) a sodium leak test, (2) a sodium leak and fire test-1, and (3) a sodium leak and fire test-II, were carried out at OEC/PEC. The main objectives of these tests were to confirm the leak and burning behavior of sodium from the damaged thermometer, and the effects of the sodium fire on the integrity of the surrounding structure. This report describes the results of the sodium fire test-I carried out as a preliminary test. The test was performed using the SOLFA-2 (Sodium Leak, Fire and Aerosol) facility on April 8, 1996. In this test, sodium heated to 480degC was leaked for approximately 1.5 hours from a leak simulating apparatus and caused to drop onto a ventilation duct and a grating with the same dimensions and layout as those in Monju. The main conclusions obtained from the test are shown below: 1) Observation from video cameras in the test revealed that in the early stages of the sodium leak, sodium dripped out of the flexible tube of the thermometer. This dripping and burning expanded in range as the sodium splashed on the duct. 2) No damage to the duct itself was detected. However, the aluminum louver frame of the ventilation duct's lower inlet was damaged. Its machine screws came off, leaving half of the grill (on the grating side) detached. 3) No large hole, like the one seen at Monju, was found when the grating was removed from the testing system for inspection, although the area centered on the point were the sodium dripped was damaged in a way indicating the first stages of grating failure. The 5mm square lattice was corroded through in some parts, and numerous blades (originally 3.2 mm thick) had become sharpened like the blade of a knife. 4) The burning pan underside thermocouple near the leak point measured 700degC in within approximately 10 minutes, and for the next hour remained

  15. Sodium bicarbonate in-duct injection with sodium sulfate recovery for SO2/NOx control

    International Nuclear Information System (INIS)

    Bennett, R.; Darmstaedter, E.

    1991-01-01

    Dry sodium injection with sodium bicarbonate has been used commercially at industrial sites since the mid 1980's. In the past three years, five full scale commercial demonstrations have been completed on electric utility coal fired units. Up to 75% SO 2 removal with 0-40% NO x removal has been achieved on units equipped with ESPs. Recent slip stream studies have proven up to 90% SO 2 removal and 25% NO x removal when injection is ahead of a baghouse. If dry sodium bicarbonate sorbent injection technology is used prior to a retrofitted baghouse, but after an existing ESP the sodium sulfate by-product/flyash mixture in the baghouse is over 90% Na 2 SO 4 . Simple filtration and crystallization will yield a high value 99% + pure Na 2 SO 4 for sale. In this application, no liquid discharge occurs and potentially no solids discharge, since flyash recovered from the filter is either recycled to the boiler with the coal stream or reinjected into the boiler. EPA IAPCS model Version 4 is modified to project costs for this SO 2 /NO x removal technology when couples with Na 2 SO 4 recovery. In this paper an example is used to show hardware requirements, consumables accountability, by-product recovery rates, capital costs and levelized costs

  16. Synthesis and fluorescence study of sodium-2-(4'-dimethyl-aminocinnamicacyl)-3,3-(1',3'-alkylenedithio) acrylate

    International Nuclear Information System (INIS)

    Si Zhenjun; Shao Yun; Li Chunxia; Liu Qun

    2007-01-01

    We synthesized two new compounds: Sodium 2-(4'-dimethyl-aminocinnamicacyl)-3,3-(1',3'- ethyl- enedithio) acrylate (STAA-1) and Sodium 2-(4'-dimethyl-aminocinnamicacyl)-3, 3-(1',3'-propylenedithio) acrylate (STAA-2). The maximum absorption of these compounds ranges from 460 to 520 nm with different molecular structures in different solvents. Meanwhile, the emission peak of these compounds arranges from yellow (510 nm) to red (605 nm). The emission spectra show red shift according to the strength of the hydrogen bonding property of the solvent. But the absorption spectra do not show clearly relationship with the strength of the hydrogen bonding property of the solvent. The Stoke shift of the compounds ranges from 42 to 102 nm. It changes in the following order, EtOH>H 2 O>DMF, and STAA-1>STAA-2 in the same solvent. The fluorescent quantum yield of STAA-1 was measured to be 7.12% with quinine sulphate as the standard compound in ethanol. Furthermore, the relationship of the fluorescence of STAA-1 with pH (ranges form 4 to 14) in water (c=∼10 -4 ) was studied to make sure that these compounds could be used as proton sensors

  17. Magnetic Cobalt and Cobalt Oxide Nanoparticles in Hyperbranched Polyester Polyol Matrix

    Directory of Open Access Journals (Sweden)

    O. I. Medvedeva

    2017-01-01

    Full Text Available A series of cobalt (Co and its oxides based nanoparticles were synthesized by using hyperbranched polyester polyol Boltorn H20 as a platform and sodium borohydride as a reducing agent. UV, FT-IR, XRD, NTA, and TEM methods were employed to obtain physicochemical characteristics of the products. The average diameter of Co nanoparticles was approximately 8.2±3.4 nm. Their magnetic properties, including hysteresis loop, field-cooled, and zero field-cooled curves were investigated. The nanoparticles exhibit superparamagnetism at room temperature, accompanied by magnetic hysteresis below the blocking temperature.

  18. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas.

    Science.gov (United States)

    Becknell, Brian; Smoyer, William E; O'Brien, Nicole F

    2014-11-01

    This study aimed to demonstrate the importance of considering hemodialysis as a treatment option in the management of sodium phosphate toxicity. This is a case report of a 4-year-old who presented to the emergency department with shock, decreased mental status, seizures, and tetany due to sodium phosphate toxicity from sodium phosphate enemas. Traditional management of hyperphosphatemia with aggressive hydration and diuretics was insufficient to reverse the hemodynamic and neurological abnormalities in this child. This is the first report of the use of hemodialysis in a child without preexisting renal failure for the successful management of near-fatal sodium phosphate toxicity. Hemodialysis can safely be used as an adjunctive therapy in sodium phosphate toxicity to rapidly reduce serum phosphate levels and increase serum calcium levels in children not responding to conventional management.

  19. Evaluation of steam-to-sodium leak detectors in the sodium components test installation (SCTI)

    Energy Technology Data Exchange (ETDEWEB)

    McKee, J M; Simmons, W R

    1975-07-01

    Two nickel diffusion-membrane type hydrogen detectors were installed in the secondary sodium system of the Sodium Components Test Installation and evaluated during the 12-month performance test of the Modular Steam Generator (MSG). Hydrogen in the expansion tank cover gas was monitored with a gas chromatograph. During this period, numerous steam and hydrogen injections were made, simulating steam leaks into the sodium of an LMFBR steam generator. The response of the detectors was evaluated for leak sizes ranging from 10{sup -6} to 10{sup -4} 1b H{sub 2}O/sec, injection periods of 0.5 to 300 min, secondary sodium flow rates of 0.2 x 10{sup 6} to 1.5 x 10{sup 6} 1b/hr, and sodium temperatures of 400 to 950 deg. F. The response of the leak detection system was influenced significantly by two regimes of sodium temperature. Below 600 deg. F, the cover gas hydrogen detector gave the largest response; this is attributed to the long dissolution time of hydrogen bubbles relative to the transit time of hydrogen to the expansion tank. Above 600 deg. F, the hydrogen apparently dissolved rapidly and the detectors were much more effective in the sodium than in the cover gas. At least 75% of the hydrogen and 50% of the oxygen content of injected steam appeared as detectable activity if the reaction products were dispersed in the sodium stream and the sodium was above 600 deg. F. Hydrogen injections into semi-stagnant sodium at the MSG tube sheets were detected with better sensitivity than steam injections into the main sodium stream. It appeared that high local concentrations of hydrogen were quickly carried to the nearest detector by upward currents created by the injected gas. The alarm system functioned as expected, 2.1 ppb/min being the smallest rate-of-rise in hydrogen concentration to give an automatic alarm. With more sensitive rate-of-rise alarm settings, leaks as small as 2 x 10{sup -5} 1b H{sub 2}O/sec could be detected in a system such as the Clinch River Breeder

  20. Evaluation of steam-to-sodium leak detectors in the sodium components test installation (SCTI)

    International Nuclear Information System (INIS)

    McKee, J.M.; Simmons, W.R.

    1975-01-01

    Two nickel diffusion-membrane type hydrogen detectors were installed in the secondary sodium system of the Sodium Components Test Installation and evaluated during the 12-month performance test of the Modular Steam Generator (MSG). Hydrogen in the expansion tank cover gas was monitored with a gas chromatograph. During this period, numerous steam and hydrogen injections were made, simulating steam leaks into the sodium of an LMFBR steam generator. The response of the detectors was evaluated for leak sizes ranging from 10 -6 to 10 -4 1b H 2 O/sec, injection periods of 0.5 to 300 min, secondary sodium flow rates of 0.2 x 10 6 to 1.5 x 10 6 1b/hr, and sodium temperatures of 400 to 950 deg. F. The response of the leak detection system was influenced significantly by two regimes of sodium temperature. Below 600 deg. F, the cover gas hydrogen detector gave the largest response; this is attributed to the long dissolution time of hydrogen bubbles relative to the transit time of hydrogen to the expansion tank. Above 600 deg. F, the hydrogen apparently dissolved rapidly and the detectors were much more effective in the sodium than in the cover gas. At least 75% of the hydrogen and 50% of the oxygen content of injected steam appeared as detectable activity if the reaction products were dispersed in the sodium stream and the sodium was above 600 deg. F. Hydrogen injections into semi-stagnant sodium at the MSG tube sheets were detected with better sensitivity than steam injections into the main sodium stream. It appeared that high local concentrations of hydrogen were quickly carried to the nearest detector by upward currents created by the injected gas. The alarm system functioned as expected, 2.1 ppb/min being the smallest rate-of-rise in hydrogen concentration to give an automatic alarm. With more sensitive rate-of-rise alarm settings, leaks as small as 2 x 10 -5 1b H 2 O/sec could be detected in a system such as the Clinch River Breeder Reactor Plant. A preliminary

  1. Sodium setpoint and gradient in bicarbonate hemodialysis.

    Science.gov (United States)

    Basile, Carlo; Libutti, Pasquale; Lisi, Piero; Vernaglione, Luigi; Casucci, Francesco; Losurdo, Nicola; Teutonico, Annalisa; Lomonte, Carlo

    2013-01-01

    The demonstration of an individual osmolar setpoint in hemodialysis (HD) is crucial to individualize dialysate sodium concentrations. Furthermore, the diffusive gradient between plasma and dialysate sodium is important in the "fine tuning" of the intradialytic sodium mass balance (MB). The design of this study included part A: a retrospective analysis of predialysis plasma sodium concentrations extracted from a 6-year database in our HD population (147 prevalent white anuric patients); and part B: study of intradialytic sodium kinetics in 48 patients undergoing one 4-hour bicarbonate HD session. Direct potentiometry with an ion-selective electrode was used for sodium measurements. Study part A: the mean number of plasma sodium measurements per patient was 16.06 ± 14.03 over a mean follow-up of 3.55 ± 1.76 years. The mean of the averaged plasma sodium concentrations was 136.7 ± 2.1 mmol/L, with a low mean intraindividual coefficient of variation (1.39 ± 0.4). Study part B: mean predialysis and postdialysis plasma sodium concentrations were 135.8 ± 0.9 and 138.0 ± 0.9 mmol/L (p<0.001). Mean inlet dialyzer sodium concentration was 138.7 ± 1.1 mmol/L; the hourly diffusion concentration gradients showed a statistically significant transfer from dialysate to plasma (Wilks ? <0.0001). A statistically significant relationship was found between sodium MB and diffusion gradient (p<0.02), and between sodium MB and ultrafiltration volume (p<0.01). A relatively "fixed" and individual osmolar setpoint in HD patients was shown for the first time in a long-term follow-up. A dialysate sodium concentration of 140 mmol/L determined a dialysate to plasma sodium gradient.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Facile reduction of p-nitrophenol to p-aminophenol by sodium borohydride catalysed by cobalt nanoparticles (CoNPs) has been discussed. A simple approach has been made to synthesize highly active and ordered structures of CoNPs. The air-stable nanoparticles were prepared from cobalt sulphate using tetrabutyl ...

  3. Synthesis of [5-14C]pentostatin, an antileukemic agent and potent adenosine deaminase inhibitor

    International Nuclear Information System (INIS)

    Woo, P.W.K.; Lee, H.T.

    1990-01-01

    Reaction of triethyl ortho[ 14 C]formate (2) with 2-amino-1-(5-amino-1H-imidazol-4-yl)ethanone dihydrochloride (1) in the presence of molecular sieves 4A gave 6,7-dihydro[5- 14 C]imidazo[4,5-d]{1,3]diazepin-8(3H)-one hydrochloride monodimethyl sulfoxide (3) (radiochemical yield, 60%). The latter was persilylated with bis(trimethylsilyl)trifluroacetamide (4) and glycosylated with 2-deoxy-3,5-di-0-p-toluoyl-α-D-erythro-pentufuranosyl chloride (6) to give a mixture from which the 3-N-β-glycosylated product 8 was isolated by chromatography and crystallization (13%). Deprotective saponification with methanolic sodium methoxide and subsequent sodium borohydride reduction of the 8-keto function gave a (R,S)-mixture from which the desired (R)-isomer, [5- 14 C]pentostatin (11), was isolated by preparative HPLC over a C18 column, desalting with Diaion-HP20, and subsequent crystallization (39%). (author)

  4. Surface Chemistry Manipulation of Gold Nanorods Displays High Cellular Uptake In Vitro While Preserving Optical Properties for Bio-Imaging and Photo-Thermal Applications

    Science.gov (United States)

    2016-03-28

    at room temperature with a growth solution of CTAB (0.1 M), chlorauric acid (0.1 M) silver nitrate (0.1 M) ascorbic acid (0.1 M). The CTAB was...purchased from GFS chemicals (Powell, OH, USA). The chloroauric acid, ascorbic acid, silver nitrate , sodium borohydride, sodium Chloride, MOPS buffer and...Figure 6B). This supports the finding of Zhang et al (2013a) that demonstrated the long term retention of gold nanoparticles in NDA-MB-231 breast cancer

  5. Sodium hydrazinidoborane: a chemical hydrogen-storage material.

    Science.gov (United States)

    Moury, Romain; Demirci, Umit B; Ichikawa, Takayuki; Filinchuk, Yaroslav; Chiriac, Rodica; van der Lee, Arie; Miele, Philippe

    2013-04-01

    Herein, we present the successful synthesis and full characterization (by (11) B magic-angle-spinning nuclear magnetic resonance spectroscopy, infrared spectroscopy, powder X-ray diffraction) of sodium hydrazinidoborane (NaN2 H3 BH3 , with a hydrogen content of 8.85 wt %), a new material for chemical hydrogen storage. Using lab-prepared pure hydrazine borane (N2 H4 BH3 ) and commercial sodium hydride as precursors, sodium hydrazinidoborane was synthesized by ball-milling at low temperature (-30 °C) under an argon atmosphere. Its thermal stability was assessed by thermogravimetric analysis and differential scanning calorimetry. It was found that under heating sodium hydrazinidoborane starts to liberate hydrogen below 60 °C. Within the range of 60-150 °C, the overall mass loss is as high as 7.6 wt %. Relative to the parent N2 H4 BH3 , sodium hydrazinidoborane shows improved dehydrogenation properties, further confirmed by dehydrogenation experiments under prolonged heating at constant temperatures of 80, 90, 95, 100, and 110 °C. Hence, sodium hydrazinidoborane appears to be more suitable for chemical hydrogen storage than N2 H4 BH3 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.

    Science.gov (United States)

    Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng

    2014-02-01

    A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  7. Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO2 composites as recyclable nanocatalysts for 4-nitrophenol reduction

    Science.gov (United States)

    Xiao, Gang; Zhao, Yilin; Li, Linghui; Pratt, Jonathan O.; Su, Haijia; Tan, Tianwei

    2018-04-01

    This paper presents a facile, rapid, and controllable procedure for the recovery of trace Ag+ ions and in situ assembly of well dispersed Ag nanoparticles on chitosan-TiO2 composites through bioaffinity adsorption followed by photocatalytic reduction. The prepared Ag nanoparticles are proven to be efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. Well dispersed quasi-spherical Ag NPs are synthesized in 20 min in the designed inner-irradiated photocatalytic system under a wide range of Ag+ concentrations (50-200 mg l-1), temperatures (10 °C-25 °C) conditions, and UV or visible light irradiation. The synthesized Ag NPs can catalyze the reduction of 4-nitrophenol by NaBH4 at 100% conversion in 120 min and preserve the catalytic activity in five successive cycles. This procedure for trace Ag+ ions recovery and Ag NPs assembly has the potential to be scaled up for the mass production of recyclable Ag nanocatalysts. The present work provides a green and efficient procedure for the conversion of hazardous 4-nitrophenol to industrially important 4-aminophenol and also sheds a light on designing scaled-up procedures for treating high volumes of wastewater with dilute heavy metals to produce recyclable metallic nanocatalysts in aqueous systems.

  8. Chemoselective reduction of 1,4,6-cholestatrien-3-one and 1,4,6-androstatriene-3,17-dione by various hydride reagents.

    Science.gov (United States)

    Kim, Eunjeong; Ma, Eunsook

    2007-04-01

    The chemoselectivity of rigid cyclic alpha,beta-unsaturated carbonyl group on the reducing agents was influenced by the ring size and steric factor. Cholesterol (cholest-5-en-3beta-ol) and dehydroepiandrosterone (DHEA) were oxidized with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to form 1,4,6-cholestatrien-3-one and 1,4,6-androstatriene-3,17-dione. They were reduced with NaBH(4), lithium tri-sec-butylborohydride (l-Selectride), LiAlH(4), 9-borabicyclo[3.3.1]nonane (9-BBN), lithium triethylborohydride (Super-hydride), and BH(3) x (CH(3))(2)S in various conditions, respectively. Reduction of 1,4,6-cholestatrien-3-one and 1,4,6-androstatriene-3,17-dione by NaBH(4) (4 equiv.) produced 4,6-cholestadien-3beta-ol and 4,6-androstadiene-3beta,17beta-diol, respectively. Reduction by l-Selectride (12 equiv.) afforded 4,6-cholestadien-3alpha-ol and 4,6-androstadiene-3alpha,17beta-diol, chemoselectively. Reaction with Super-hydride (12 equiv.) produced 4,6-cholestadien-3-one and 3-oxo-4,6-androstadien-17beta-ol. Reduction of 1,4,6-cholestatrien-3-one by 9-BBN (14 equiv.) produced 1,4,6-cholestatrien-3alpha-ol, but 1,4,6-androstatriene-3,17-dione was not reacted with 9-BBN in the reaction conditions. Reaction of LiAlH(4) (6 equiv.) formed 4,6-cholestadien-3beta-ol and 3-oxo-1,4,6-androstatrien-17beta-ol. Reduction of 1,4,6-cholestatrien-3-one by BH(3) x (CH(3))(2)S (11 equiv.) gave cholestane as major compound and unlike reactivity of cholesterol, 1,4,6-androstatriene-3,17-dione by 8 equiv. of BH(3) x (CH(3))(2)S formed 3-oxo-1,4,6-androstatrien-17beta-ol. LiAlH(4) and BH(3) x (CH(3))(2)S showed relatively low chemoselectivity.

  9. Preparation of silver nanoparticles/polydopamine functionalized polyacrylonitrile fiber paper and its catalytic activity for the reduction 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shixiang, E-mail: shixianglu@bit.edu.cn [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Yu, Jianying; Cheng, Yuanyuan [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, Qian; Barras, Alexandre [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Xu, Wenguo [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Szunerits, Sabine [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Cornu, David [Institut Européen des Membranes, UMR 5635, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), CNRS, Université Montpellier 2, 276 rue de la Galéra, Montpellier 34000 (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France)

    2017-07-31

    Graphical abstract: Illustration of the preparation of Ag nanoparticles coated paper and its catalytic application for 4-nitrophenol reduction into the corresponding 4-aminophenol. - Highlights: • Polyacrylonitrile paper was functionalized with polydopamine and Ag nanoparticles. • Polydopamine coating layer played both reductive and adhesive roles. • The composite material displayed good catalytic activity for 4-nitrophenol reduction. • The process was environmentally benign and facile. - Abstract: The study reports on the preparation of polyacrylonitrile fiber paper (PANFP) functionalized with polydopamine (PD) and silver nanoparticles (Ag NPs), named as Ag NPs/PD/PANFP. The composite material was obtained via a simple two-step chemical process. First, a thin polydopamine layer was coated onto the PANFP surface through immersion into an alkaline dopamine (pH 8.5) aqueous solution at room temperature. The reductive properties of polydopamine were further exploited for the deposition of Ag NPs. The morphology and chemical composition of the composite material were characterized using scanning electron microscopy (SEM), X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the nanocomposite was evaluated for the reduction of 4-nitrophenol using sodium borohydride (NaBH{sub 4}) at room temperature. The Ag NPs/PD/PANFP displayed good catalytic performance with a full reduction of 4-nitrophenol into the corresponding 4-aminophenol within 30 min. Moreover, the composite material exhibited a good stability up to 4 cycles without a significant loss of its catalytic activity.

  10. Cucurbit[7]uril as a tool in the green synthesis of gold nanoparticles.

    Science.gov (United States)

    Premkumar, Thathan; Geckeler, Kurt E

    2010-12-03

    A simple, green, one-pot synthesis of gold nanoparticles was achieved through the reaction of an aqueous mixture of potassium tetrachloroaurate(III) and the macrocycle cucurbit[7]uril in the presence of sodium hydroxide at room temperature without introducing any kind of traditional reducing agents and/or external energy. The as-prepared gold nanoparticles showed catalytic activity for the reduction reaction of 4-nitrophenol in the presence of NaBH(4), which has been established by visual inspection and UV/Vis spectroscopy. This report is the first for the preparation of gold nanoparticles using cucurbit[7]uril in aqueous media through chemical reduction without employing conventional reducing agents and/or external energy.

  11. Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol

    Science.gov (United States)

    Srivastava, Sarvesh Kumar; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko

    2013-02-01

    Room-temperature extracellular biosynthesis of gold nanoparticles (Au NPs) was achieved using Escherichia coli K12 cells without the addition of growth media, pH adjustments or inclusion of electron donors/stabilizing agents. The resulting nanoparticles were analysed by ultraviolet-visible (UV-vis) spectrophotometry, atomic force microscopy, transmission electron microscopy and X-ray diffraction. Highly dispersed gold nanoplates were achieved in the order of around 50 nm. Further, the underlying mechanism was found to be controlled by certain extracellular membrane-bound proteins, which was confirmed by Fourier transformation-infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis. We observed that certain membrane-bound peptides are responsible for reduction and subsequent stabilization of Au NPs (confirmed by zeta potential analysis). Upon de-activation of these proteins, no nanoparticle formation was observed. Also, we prepared a novel biocatalyst with Au NPs attached to the membrane-bound fraction of E. coli K12 cells serving as an efficient heterogeneous catalyst in complete reduction of 4-nitrophenol in the presence of NaBH4 which was studied with UV-vis spectroscopy. This is the first report on bacterial membrane-Au NP nanobiocomposite serving as an efficient heterogeneous catalyst in complete reduction of nitroaromatic pollutant in water.

  12. Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance

    International Nuclear Information System (INIS)

    Du Feipeng; Wang Jingjing; Tang, Chak-Yin; Tsui, Chi-Pong; Zhou Xingping; Xie Xiaolin; Liao Yonggui

    2012-01-01

    Water-soluble poly(sodium 4-styrenesulfonate) modified graphene (PSSS-GR) was successfully synthesized via covalently grafting poly(sodium 4-styrenesulfonate) (PSSS) on the surfaces of graphene (GR) nanosheets. The structure of PSSS-GR was investigated with Fourier transform infrared, x-ray photoelectron and Raman spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy and atomic force microscopy. The PSSS chains made the GR nanosheets fully exfoliate into a single-layer structure, and the PSSS layer on GR reached 90 wt%. PSSS chains displayed mutually repulsive effects on promoting GR sheets that were more stable in water. The performances of supercapacitors made of PSSS-GR and unmodified GR electrodes were compared using cyclic voltammetry and galvanostatic charge/discharge techniques. The results showed that PSSS is an effective binder for graphene sheets and can increase the specific capacitance of PSSS-GR based supercapacitors and improve their rate capability. The maximum specific capacitance of the PSSS-GR based supercapacitor was 210 F g −1 at 5 A g −1 , which was 166% higher than for one made of unmodified graphene electrodes. Electrochemical impedance spectroscopy demonstrated fast ion diffusion in the PSSS-GR electrode structure. PSSS-GR based supercapacitors can fulfil one of the essential requirements for potential electric energy storage applications. (paper)

  13. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  14. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells.

    Science.gov (United States)

    Gildea, John J; Xu, Peng; Kemp, Brandon A; Carlson, Julia M; Tran, Hanh T; Bigler Wang, Dora; Langouët-Astrié, Christophe J; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2018-01-01

    Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normotensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2 gene, SLC4A5, are associated with increased blood pressure in several ethnic groups. SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension. However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2 regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5 rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure. To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV) of SLC4A5. The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. However, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3- exchanger activity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte

  15. Biosynthesis of gold nanoparticles by Aspergillum sp. WL-Au for degradation of aromatic pollutants

    Science.gov (United States)

    Qu, Yuanyuan; Pei, Xiaofang; Shen, Wenli; Zhang, Xuwang; Wang, Jingwei; Zhang, Zhaojing; Li, Shuzhen; You, Shengnan; Ma, Fang; Zhou, Jiti

    2017-04-01

    A simple method for synthesis of gold nanoparticles (AuNPs) using Aspergillum sp. WL-Au was presented in this study. According to UV-vis spectra and transmission electron microscopy images, the shape and size of AuNPs were affected by different parameters, including buffer solution, pH, biomass and HAuCl4 concentrations. Phosphate sodium buffer was more suitable for extracellular synthesis of AuNPs, and the optimal conditions for AuNPs synthesis were pH 7.0, biomass 100 mg/mL and HAuCl4 3 mM, leading to the production of spherical and pseudo-spherical nanoparticles. The biosynthesized AuNPs possessed excellent catalytic activities for the reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitroaniline and m-nitroaniline in the presence of NaBH4, and the catalytic rate constants were calculated to be 6.3×10-3 s-1, 5.5×10-3 s-1, 10.6×10-3 s-1, 8.4×10-3 s-1 and 13.8×10-3 s-1, respectively. The AuNPs were also able to catalyze the decolorization of various azo dyes (e.g. Cationic Red X-GRL, Acid Orange II and Acid scarlet GR) using NaBH4 as the reductant, and the decolorization rates reached 91.0-96.4% within 7 min. The present study should provide a potential candidate for green synthesis of AuNPs, which could serve as efficient catalysts for aromatic pollutants degradation.

  16. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  17. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  18. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    Science.gov (United States)

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  19. Synthesis and electrochemical sodium and lithium insertion properties of sodium titanium oxide with the tunnel type structure

    Science.gov (United States)

    Kataoka, Kunimitsu; Akimoto, Junji

    2016-02-01

    Polycrystalline sample of sodium titanium oxide Na2Ti4O9 with the tunnel-type structure was prepared by topotactic sodium extraction in air atmosphere from the as prepared Na3Ti4O9 sample. The starting Na3Ti4O9 compound was synthesized by solid state reaction at 1273 K in Ar atmosphere. The completeness of oxidation reaction from Na3Ti4O9 to Na2Ti4O9 was monitored by the change in color from dark blue to white, and was also confirmed by the Rietveld refinement using the powder X-ray diffraction data. The sodium deficient Na2Ti4O9 maintained the original Na2.08Ti4O9-type tunnel structure and had the monoclinic crystal system, space group C2/m, and the lattice parameters of a = 23.1698(3) Å, b = 2.9406(1) Å, c = 10.6038(2) Å, β = 102.422(3)°, and V = 705.57(2) Å3. The electrochemical measurements of thus obtained Na2Ti4O9 sample showed the reversible sodium insertion and extraction reactions at 1.1 V, 1.5 V, and 1.8 V vs. Na/Na+, and reversible lithium insertion and extraction reactions at around 1.4 V, 1.8 V, and 2.0 V vs. Li/Li+. The reversible capacity for the lithium cell was achieved to be 104 mAh g-1 at the 100th cycle.

  20. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.

    Science.gov (United States)

    Naraginti, Saraschandra; Sivakumar, A

    2014-07-15

    The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (111), (200), (222) and (311) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. 4. generation sodium-cooled fast reactors. The ASTRID technological demonstrator

    International Nuclear Information System (INIS)

    2012-12-01

    The sodium-cooled fast reactor (SFR) concept is one of the four fast neutron concepts selected by the Generation IV International Forum (GIF). SFRs have favourable technical characteristics and they are the sole type of reactor for which significant industrial experience feedback is available. After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  2. Sodium-carbonate co-substituted hydroxyapatite ceramics

    Directory of Open Access Journals (Sweden)

    Zoltan Z. Zyman

    2013-12-01

    Full Text Available Powders of sodium-carbonate co-substituted hydroxyapatite, having sodium content in the range of 0.25–1.5 wt.% with a 0.25 wt.% step, were prepared by a precipitation-solid state reaction route. Compacts of the powders were sintered in a CO2 flow (4 mL/min at 1100 °C for 2 h. The sintered ceramics contained sodium and carbonate ions in the ranges of 0–1.5 wt.% and 1.3–6 wt.%, respectively, which are typical impurity concentrations in biological apatite. A relationship between sodium and carbonate contents and the type of carbonate substitution was found. The total carbonate content progressively increased with the sodium content. The obtained ceramics showed an AB-type carbonate substitution. However, the substitution became more B-type as the sodium content increased. As a result, the carbonation was almost B-type (94 % for the highest sodium content (1.5 wt.%.

  3. Intelligent type sodium instrumentations for LMFR

    International Nuclear Information System (INIS)

    Daolong Chen

    1996-01-01

    The constructions and their performances of a lot of newly developed intelligent type sodium instrumentations that consist of the intelligent type sodium flowmeter, the intelligent type immersed sodium flowmeter, the intelligent type sodium manometer and the intelligent type sodium level gauge are described. The graduation characteristic equations for corresponding transducer using the medium temperature as the parameter are given. Because the operating temperature limit of measured medium (sodium) is wide, so the on-line compensation of the temperature effect of their graduation characteristics much be considered. The tests show that these intelligent type sodium instrumentations possess of good linearity. The accurate sodium process parameter (flowrate, pressure and level) measurement data can be obtained by means of their on-line compensation function of the temperature effect. Moreover, these intelligent type sodium instrumentations possess of the self-inspection, the electric shutoff protection, the setting of full-scale, the setting of alarm limits (two upper limits and two lower limits alarms), the thermocouple breaking alarm, each other isolative the 0-10V direct-current analogue output and CENTRONICS standard digital output, and the alarm relay contact output. These intelligent type sodium instrumentations are suitable particularly for the instrument, control and protective systems of LMFR by means of these excellent functions based on microprocessor. The basic error of the intelligent type sodium flowmeter, immersed sodium flowmeter, sodium manometer and sodium level gauge is respectively ±2%, ±2.3%, ±0.3% and ±1.9% of measuring range. (author). 4 refs, 9 figs

  4. Rare Earth Borohydrides—Crystal Structures and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Christoph Frommen

    2017-12-01

    Full Text Available Rare earth (RE borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE-borohydrides, light-weight metal borohydrides such as LiBH4 and additives such as LiH.

  5. Data acquisition for the Sodium Loop Safety Facility experiment P4

    International Nuclear Information System (INIS)

    Baldwin, R.D.; Kraimer, M.R.; Wilson, R.E.; Gilbert, D.M.

    1982-01-01

    Data acquisition for the Sodium Loop Safety Facility (SLSF) experiment P4 used three computers for the continuous collection of data and two computers for the routing and displaying of data. Four of these computer systems were located at the Engineering Test Reactor (ETR) site, in Idaho, to access sensor signals from the analog to digital interfaces. The fifth system was located at Argonne National Laboratory (ANL), in Illinois, and was used mainly for display and storage of data. All display computers were connected together using the DECNET software package. The transmission of data was managed over a dedicated phone line using 9600 baud long distance modems. A stand-alone high speed data acquisition system was also used to record data during planned reactor transients

  6. Enhancement of thermal stability of multiwalled carbon nanotubes via different silanization routes

    International Nuclear Information System (INIS)

    Scheibe, B.; Borowiak-Palen, E.; Kalenczuk, R.J.

    2010-01-01

    This work presents an effect of two different silanization procedures on thermal and structural properties of oxidized and oxidized followed by sodium borohydrate (NaBH 4 ) reduction of multiwalled carbon nanotubes (MWCNTs). Purified sample was oxidized in a mixture of nitric and sulfuric acids in a reflux. An oxidized material was divided into two batches. The first batch underwent a silanization procedure directly, while the second batch was reduced by NaBH 4 treatment prior to the silanization. The silanization experiments were performed: (A) with γ-aminopropyltriethoxysilane (APTES) at room temperature in acetone (pH ∼7) and (B) with condensated γ-aminopropyltriethoxysilane at 40 o C in water (pH 4). The extent of the functionalization of the samples after each procedure was examined by Raman spectroscopy. The vibrational properties of the materials were studied via Fourier transform infrared spectroscopy. Boehms titration technique was applied to quantify the amount of the functional groups on MWCNTs. The morphology of the pristine and functionalized carbon nanotubes was exposed to high-resolution transmission electron microscopy analysis. The energy dispersive X-ray (EDX) analysis was used to characterize the elemental composition of each sample. The effect of the silanization process on the thermal properties of MWCNTs was investigated by thermogravimetry analysis. Interestingly, the significant increase of the thermal stability of silanized MWCNTs samples in respect to the pristine MWCNTs was observed.

  7. Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells

    Science.gov (United States)

    Zhou, Yongfang; Wang, Min; Wang, Liang; Liu, Shuli; Chen, Shufen; Cao, Kun; Shang, Wenjuan; Mai, Jiangquan; Zhao, Baomin; Feng, Jing; Lu, Xinhui; Huang, Wei

    2017-09-01

    An insulated poly(sodium 4-styrenseulfonate) (PSS) was used to modify monolayer graphene for anode applications of organic photovoltaics (OPVs). With this PSS interfacial modification layer, the OPVs showed a significant increase of 56.4% in efficiency due to an improved work function and hydrophilic feature of graphene and an enlarged recombination resistance of carriers/excitons. Doping a highly contorted 1,2,5-thiadiazole-fused 12-ring polyaromatic hydrocarbon into the active layer to form ternary blended OPVs further enlarged the recombination resistance of carriers/excitons and improved light absorption of the active layer, with which a high power conversion efficiency of 6.29% was acquired.

  8. Sodium intake in US ethnic subgroups and potential impact of a new sodium reduction technology: NHANES Dietary Modeling.

    Science.gov (United States)

    Fulgoni, Victor L; Agarwal, Sanjiv; Spence, Lisa; Samuel, Priscilla

    2014-12-18

    Because excessive dietary sodium intake is a major contributor to hypertension, a reduction in dietary sodium has been recommended for the US population. Using the National Health and Nutrition Examination Survey (NHANES) 2007-2010 data, we estimated current sodium intake in US population ethnic subgroups and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were analyzed using The National Cancer Institute method to estimate usual intake in population subgroups. Potential impact of SODA-LO® Salt Microspheres sodium reduction technology on sodium intake was modeled using suggested sodium reductions of 20-30% in 953 foods and assuming various market penetrations. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across age, gender and ethnic groups. Current sodium intake across all population subgroups exceeds the Dietary Guidelines 2010 recommendations and has not changed during the last decade. However, sodium intake measured as a function of food intake has decreased significantly during the last decade for all ethnicities. "Grain Products" and "Meat, Poultry, Fish, & Mixtures" contribute about 2/3rd of total sodium intake. Sodium reduction, using SODA-LO® Salt Microspheres sodium reduction technology (with 100% market penetration) was estimated to be 185-323 mg/day or 6.3-8.4% of intake depending upon age, gender and ethnic group. Current sodium intake in US ethnic subgroups exceeds the recommendations and sodium reduction technologies could potentially help reduce dietary sodium intake among those groups.

  9. Green coconut ( Cocos nucifera Linn) shell extract mediated size controlled green synthesis of polyshaped gold nanoparticles and its application in catalysis

    Science.gov (United States)

    Paul, Koushik; Bag, Braja Gopal; Samanta, Kousik

    2014-08-01

    The shell extract of green coconut ( Cocos nucifera Linn) has been utilized for the synthesis of gold nanoparticles at room temperature under very mild condition without any extra stabilizing or capping agents. The size of the synthesized gold nanoparticles could be controlled by varying the concentration of the shell extract. The stabilized gold nanoparticles were analyzed by surface plasmon resonance spectroscopy, HRTEM, Energy dispersive X-ray spectroscopy and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles was studied for the sodium borohydride reduction of 4-nitrophenol and the kinetics of the reduction reaction were studied spectrophotometrically.

  10. Novel materials for fuel cells operating on liquid fuels

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2017-05-01

    Full Text Available Towards commercialization of fuel cell products in the coming years, the fuel cell systems are being redefined by means of lowering costs of basic elements, such as electrolytes and membranes, electrode and catalyst materials, as well as of increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. It is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this paper these main directions will be considered.

  11. The early and late effects of digoxin treatment on the sodium transport, sodium content and Na+K+- ATPase or erythrocytes.

    Science.gov (United States)

    Cumberbatch, M; Zareian, K; Davidson, C; Morgan, D B; Swaminathan, R

    1981-01-01

    1 Erythrocyte sodium content, sodium transport (ouabain sensitive sodium flux Eos, and ouabain sensitive efflux rate constant ERCos) sodium, potassium activated ouabain sensitive adenosine triphosphatase (Na+K+ATPase) and plasma digoxin were measured in patients during acute digitalisation and in patients who were on long-term digoxin treatment. 2 In the six patients who were studied during digitalisation, the ERCos and Na+K+ATPase activity decreased and erythrocyte sodium content increased during days 2-4 treatment, but there was no change in Eos. 3 In 39 patients on long term digoxin therapy (2-119 months) the erythrocyte sodium content was normal, but the erythrocyte Na+K+ATPase activity was higher than the control group. When the results from these 39 patients were divided according to the duration of treatment it was found that the erythrocyte sodium content was higher in patients treated for 2-4 months than in patients treated for longer periods and the erythrocyte Na+K+ATPase activity increased with duration of treatment. In eight patients (duration of treatment greater than 29 months) in whom ERCos and Eos were measured, ERCos and Eos were higher than the control group. 4 The results suggest that the effects of digoxin on erythrocytes which occur during acute digoxin treatment do not persist in the long term. 5 The possible explanation for the higher ERCos, Eos and Na+K+ATPase activity in patients treated with digoxin for more than 2 months is discussed. PMID:6268133

  12. Compatibility of ondansetron hydrochloride and methylprednisolone sodium succinate in multilayer polyolefin containers.

    Science.gov (United States)

    Bougouin, Christelle; Thelcide, Chloë; Crespin-Maillard, Fabienne; Maillard, Christian; Kinowski, Jean Marie; Favier, Mireille

    2005-10-01

    The compatibility of ondansetron hydrochloride and methylprednisolone sodium succinate in 5% dextrose injection and 0.9% sodium chloride injection was studied. Test solutions of ondansetron hydrochloride 0.16 mg/mL and methylprednisolone sodium succinate 2.4 mg/mL were prepared in triplicate and tested in duplicate. Total volumes of 4 and 2 mL of ondansetron hydrochloride solution and methylprednisolone sodium succinate solution, respectively, were added to 50-mL multilayer polyolefin bags containing 5% dextrose injection or 0.9% sodium chloride injection. Bags were stored for 24 hours at 20-25 degrees C and for 48 hours at 4-8 degrees C. Chemical compatibility was measured with high-performance liquid chromatography, and physical compatibility was determined visually. Ondansetron hydrochloride was stable for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C. Methylprednisolone sodium succinate was stable for up to 48 hours at 4-8 degrees C. When stored at 20-25 degrees C, methylprednisolone sodium succinate was stable for up to 7 hours in 5% dextrose injection and up to 24 hours in 0.9% sodium chloride injection. Compatibility data for solutions containing ondansetron hydrochloride plus methylprednisolone sodium succinate revealed that each drug was stable for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C. Ondansetron 0.16 mg/mL (as the hydrochloride) and methylprednisolone 2.4 mg/mL (as the sodium succinate) mixed in 50-mL multilayer polyolefin bags were stable in both 5% dextrose injection and 0.9% sodium chloride injection for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C.

  13. Sodium 4-Phenylbutyrate Attenuates Myocardial Reperfusion Injury by Reducing the Unfolded Protein Response.

    Science.gov (United States)

    Takatori, Osamu; Usui, Soichiro; Okajima, Masaki; Kaneko, Shuichi; Ootsuji, Hiroshi; Takashima, Shin-Ichiro; Kobayashi, Daisuke; Murai, Hisayoshi; Furusho, Hiroshi; Takamura, Masayuki

    2017-05-01

    The unfolded protein response (UPR) plays a pivotal role in ischemia-reperfusion (I/R) injury in various organs such as heart, brain, and liver. Sodium 4-phenylbutyrate (PBA) reportedly acts as a chemical chaperone that reduces UPR. In the present study, we evaluated the effect of PBA on reducing the UPR and protecting against myocardial I/R injury in mice. Male C57BL/6 mice were subjected to 30-minute myocardial I/R, and were treated with phosphate-buffered saline (as a vehicle) or PBA. At 4 hours after reperfusion, mice treated with PBA had reduced serum cardiac troponin I levels and numbers of apoptotic cells in left ventricles (LVs) in myocardial I/R. Infarct size had also reduced in mice treated with PBA at 48 hours after reperfusion. At 2 hours after reperfusion, UPR markers, including eukaryotic initiation of the factor 2α-subunit, activating transcription factor-6, inositol-requiring enzyme-1, glucose-regulated protein 78, CCAAT/enhancer-binding protein (C/EBP) homologous protein, and caspase-12, were significantly increased in mice treated with vehicle compared to sham-operated mice. Administration of PBA significantly reduced the I/R-induced increases of these markers. Cardiac function and dimensions were assessed at 21 days after I/R. Sodium 4-phenylbutyrate dedicated to the improvement of cardiac parameters deterioration including LV end-diastolic diameter and LV fractional shortening. Consistently, PBA reduced messenger RNA expression levels of cardiac remodeling markers such as collagen type 1α1, brain natriuretic peptide, and α skeletal muscle actin in LV at 21 days after I/R. Unfolded protein response mediates myocardial I/R injury. Administration of PBA reduces the UPR, apoptosis, infarct size, and preserved cardiac function. Hence, PBA may be a therapeutic option to attenuate myocardial I/R injury in clinical practice.

  14. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  15. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine.

    Science.gov (United States)

    Weisbord, Steven D; Gallagher, Martin; Jneid, Hani; Garcia, Santiago; Cass, Alan; Thwin, Soe-Soe; Conner, Todd A; Chertow, Glenn M; Bhatt, Deepak L; Shunk, Kendrick; Parikh, Chirag R; McFalls, Edward O; Brophy, Mary; Ferguson, Ryan; Wu, Hongsheng; Androsenko, Maria; Myles, John; Kaufman, James; Palevsky, Paul M

    2018-02-15

    Intravenous sodium bicarbonate and oral acetylcysteine are widely used to prevent acute kidney injury and associated adverse outcomes after angiography without definitive evidence of their efficacy. Using a 2-by-2 factorial design, we randomly assigned 5177 patients at high risk for renal complications who were scheduled for angiography to receive intravenous 1.26% sodium bicarbonate or intravenous 0.9% sodium chloride and 5 days of oral acetylcysteine or oral placebo; of these patients, 4993 were included in the modified intention-to-treat analysis. The primary end point was a composite of death, the need for dialysis, or a persistent increase of at least 50% from baseline in the serum creatinine level at 90 days. Contrast-associated acute kidney injury was a secondary end point. The sponsor stopped the trial after a prespecified interim analysis. There was no interaction between sodium bicarbonate and acetylcysteine with respect to the primary end point (P=0.33). The primary end point occurred in 110 of 2511 patients (4.4%) in the sodium bicarbonate group as compared with 116 of 2482 (4.7%) in the sodium chloride group (odds ratio, 0.93; 95% confidence interval [CI], 0.72 to 1.22; P=0.62) and in 114 of 2495 patients (4.6%) in the acetylcysteine group as compared with 112 of 2498 (4.5%) in the placebo group (odds ratio, 1.02; 95% CI, 0.78 to 1.33; P=0.88). There were no significant between-group differences in the rates of contrast-associated acute kidney injury. Among patients at high risk for renal complications who were undergoing angiography, there was no benefit of intravenous sodium bicarbonate over intravenous sodium chloride or of oral acetylcysteine over placebo for the prevention of death, need for dialysis, or persistent decline in kidney function at 90 days or for the prevention of contrast-associated acute kidney injury. (Funded by the U.S. Department of Veterans Affairs Office of Research and Development and the National Health and Medical Research

  16. Effects of sodium fires on structures and materials. Practical experience with sodium leakage accidents

    International Nuclear Information System (INIS)

    Freudenstein, K.F.

    1989-01-01

    A few sodium leakage, incidents happened in SNR 300 nuclear power plant during pre-nuclear operation which were of minor importance with respect to sodium fires. The most important sodium fire accident in the past happened in the Almeria Solar platform in Spain during the attempt to repair a valve while leaving accidentally the circuit under 4 bar overpressure. Considerable damage to pipes, valves, its insulation and its support structures was observed in the influence zone of the fire. Post accident analysis gave a leaked mass of about 14 m 3 , at a sodium temperature of 225 deg. C, the leakage lasting approximately half an hour, and burning under convective heat exchange with the external air in a section of 40 m 2 up to a height of 6 m down to the catch pans. Some local temperatures were determined by metallurgical means, integral support temperatures estimated from mechanical deformation observed. From these temperatures it was concluded that a massive spray type fire must have happened. The results fall in the interpretation range of sodium-spray fire test results. (author)

  17. Process for synthesis of ammonia borane for bulk hydrogen storage

    Science.gov (United States)

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  18. Cardiotonic steroids trigger non-classical testosterone signaling in Sertoli cells via the α4 isoform of the sodium pump.

    Science.gov (United States)

    Konrad, Lutz; Dietze, Raimund; Kirch, Ulrike; Kirch, Herbert; Eva, Alexander; Scheiner-Bobis, Georgios

    2011-12-01

    The α4 isoform of the Na(+),K(+)-ATPase (sodium pump) is known to be expressed in spermatozoa and to be critical for their motility. In the investigation presented here, we find that the rat-derived Sertoli cell line 93RS2 also expresses considerable amounts of the α4 isoform in addition to the α1 isoform. Since Sertoli cells are not motile, one can assume that the function of the α4 isoform in these cells must differ from that in spermatozoa. Thus, we assessed a potential involvement of this isoform in signaling pathways that are activated by the cardiotonic steroid (CTS) ouabain, a highly specific sodium pump ligand. Treatment of 93RS2 cells with ouabain leads to activation of the c-Src/c-Raf/Erk1/2 signaling cascade. Furthermore, we show for the first time that the activation of this cascade by ouabain results in phosphorylation and activation of the transcription factor CREB. This signaling cascade is induced at low nanomolar concentrations of ouabain, consistent with the involvement of the α4 isoform. This is further supported by experiments involving siRNA: silencing of α4 expression entirely blocks ouabain-induced activation of Erk1/2 whereas silencing of α1 has no effect. The findings of this study unveil new aspects in CTS/sodium pump interactions by demonstrating for the first time ouabain-induced signaling through the α4 isoform. The c-Src/c-Raf/Erk1/2/CREB cascade activated by ouabain is identical to the so-called non-classical signaling cascade that is normally triggered in Sertoli cells by testosterone. Taking into consideration that CTS are produced endogenously, our results may help to gain new insights into the physiological mechanisms associated with male fertility and reproduction. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Hydrolysis of Mg(BH4)2 and its coordination compounds as a way to obtain hydrogen

    Science.gov (United States)

    Solovev, Mikhail V.; Chashchikhin, Oleg V.; Dorovatovskii, Pavel V.; Khrustalev, Victor N.; Zyubin, A. S.; Zyubina, T. S.; Kravchenko, O. V.; Zaytsev, Alexey A.; Dobrovolsky, Yu. A.

    2018-02-01

    Three ligand-stabilized Mg(BH4)2-based complexes have been synthesized and evaluated as potential hydrogen storage media for portable fuel cell applications. The new borohydrides: Mg(BH4)2 × 0.5Et2O and Mg(BH4)2 × diglyme (diglyme - CH3O(CH2)2O(CH2)2OCH3) have been synthesized and examined by X-ray single crystal diffraction method. Hydrolysis reactions of the compounds liberate hydrogen in quantities ranging from 46 to 96% of the theoretical yield. The hydrolysis of Mg(BH4)2 and other borohydrides is also accompanied by the diborane formation. The amount of liberated diborane depends on the Mg-coordination environment. To explain this fact quantum-chemical calculations have been performed. It is shown that formation of Mg-O-Mg-bridges enables the side process of diborane generation. It means that the size and denticity of the ligand directly affects the amount of released diborane. In general, the larger the ligand and the higher its denticity, the smaller is amount of diborane produced. The new compound Mg(BH4)2 × diglyme decomposes without diborane formation that allows one to be considered as a new promising chemical hydrogen storage compound for the practical usage.

  20. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Mizukami, Taketomo; Orihashi, Kazumasa; Herlambang, Bagus; Takahashi, Shinya; Hamaishi, Makoto; Okada, Kenji; Sueda, Taijiro

    2010-12-01

    Delayed paraplegia after operation on the thoracoabdominal aorta is considered to be related to vulnerability of motor neurons to ischemia. Previous studies have demonstrated the relationship between neuronal vulnerability and endoplasmic reticulum (ER) stress after transient ischemia in the spinal cord. The aim of this study was to investigate whether sodium 4-phenylbutyrate (PBA), a chemical chaperone that reduces the load of mutant or unfolded proteins retained in the ER during cellular stress, can protect against ischemic spinal cord damage. Spinal cord ischemia was induced in rabbits by direct aortic cross-clamping (below the renal artery and above the bifurcation) for 15 minutes at normothermia. Group A (n = 6) was a sham operation control group. In group B (n = 6) and group C (n = 6), vehicle or 15 mg/kg/h of sodium 4-PBA was infused intravenously, respectively, from 30 minutes before the induction of ischemia until 30 minutes after reperfusion. Neurologic function was assessed at 8 hours, and 2 and 7 days after reperfusion with a Tarlov score. Histologic changes were studied with hematoxylin-eosin staining. Immunohistochemistry analysis for ER stress-related molecules, including caspase12 and GRP78 were examined. The mean Tarlov scores were 4.0 in every group at 8 hours, but were 4.0, 2.5, and 3.9 at 2 days; and 4.0, 0.7, and 4.0 at 7 days in groups A, B, and C, respectively. The numbers of intact motor neurons at 7 days after reperfusion were 47.4, 21.5, and 44.9 in groups A, B, and C, respectively. There was no significant difference in terms of viable neurons between groups A and C. Caspase12 and GRP78 immunoreactivities were induced in motor neurons in group B, whereas they were not observed in groups A and C. Reduction in ER stress-induced spinal cord injury was achieved by the administration of 4-PBA. 4-PBA may be a strong candidate for use as a therapeutic agent in the treatment of ischemic spinal cord injury. Copyright © 2010 Society for Vascular

  1. [Dietary sodium intakes and resources among residents in Shandong province].

    Science.gov (United States)

    Lu, Zilong; Zhang, Xiaofei; Li, Jianhong; Zhang, Jiyu; Zhao, Wenhua; Ma, Jixiang; Guo, Xiaolei; Yan, Liuxia; Chu, Jie; Xu, Aiqiang

    2014-01-01

    To describe dietary sodium intakes and resources among residents in Shandong province. A total of 2184 subjects were selected by multi-stage stratified cluster random sampling method from 18-69 years old people in Shandong province in June, 2011. A total of 2140 subjects completed the study, the completion rate was 98.0%. Three-day (24-hour per day) dietary recalls and weighting methods were conducted to collect information about all the foods and condiments consumed by the subjects. Individual dietary sodium intake was calculated, the differences of dietary sodium intake among subjects with different characteristics were analyzed, and the proportions of different dietary sodium resources were also analyzed. The amount of individual dietary sodium intake was 5745.0 (95%CI:5427.6-6062.5) mg/d in Shandong; 6147.4 (95%CI: 5823.8-6471.0) mg/d for male residents, 5339.3 (95%CI:5005.8-5672.8) mg/d for female residents. There was a significant difference between males and females (F = 75.22, P sodium intake was 5910.1 (95%CI:5449.3-6370.8) mg/d, 5341.6 (95%CI:5007.0-5676.1) mg/d for rural residents and urban residents respectively, and there was also a significant difference (F = 5.53, P sodium intake was 4640.3 (95%CI:4360.2-4920.4) mg/d, which was the largest contributor to sodium intake, accounting for 80.8% (95%CI:79.9%-81.6%) of total intake. Sodium intake from cereals was 650.7 (95%CI: 590.5-711.0) mg/d, accounting for 11.3% (95%CI:10.3%-12.3%) of total intake. Sodium intake from eggs was 118.9 (95%CI:95.2-142.6) mg/d, accounting for 2.1% (95%CI:1.6%-2.6%) of total intake. The amount of manufactured food sodium intake was 582.1(95%CI: 497.8-666.4) mg/d, accounting for 10.1% (95%CI:8.9%-11.4%) of total intake. Sodium intakes remain high among residents of Shandong province, and sodium from condiments was the largest source of dietary sodium intake, sodium of manufactured food only accounting for small part.

  2. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.

    Science.gov (United States)

    Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen

    2014-08-01

    A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structural studies of the high-temperature modifications of sodium and silver orthophosphates, II-Na3PO4 and II-Ag3PO4, and of the low-temperature form I-Ag3PO4

    International Nuclear Information System (INIS)

    Newsam, J.M.; Cheetham, A.K.; Tofield, B.C.

    1980-01-01

    The crystal structures of the high-temperature modifications of sodium and silver orthophosphates have been determined using powder neutron diffraction (PND) data. II-Na 3 PO 4 adopts the space group Fm3m with a = 7.512(3) A at 400 0 C. The PO 4 3- group is centred around the origin, but it shows high orientational disorder. The sodium ions occupy the (1/4, 1/4, 1/4) and (1/2, 1/2, 1/2) sites. II-Ag 3 PO 4 , at 650 0 C, is similar with a = 7.722 (5) A. The structure of I-Ag 3 PO 4 at room temperature (P4 - 3n, a = 6.0095 (6) A) has been re-examined by single-crystal X-ray diffraction. The derived model, with R = 0.019 for 116 independent reflections, is in agreement with the latest work reported in the literature. The structure of I-Ag 3 PO 4 at 375 0 C, as determined by PND, has a = 6.061(1) A, and displays no gross modifications from that observed at 25 0 C, although the anisotropic nature of the silver sites is markedly more pronounced at this higher temperature. The cation mobility is discussed in relation to the high-temperature structures. (Auth.)

  4. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol

    Directory of Open Access Journals (Sweden)

    Gelson Perin

    2017-02-01

    Full Text Available A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ, from the reaction of elemental selenium with NaBH4, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the (Z,Z-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl selenide 3f with (4-methoxyphenylmagnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  5. Bazı çam türlerinden kraft kağıt hamuru elde etme sürecinde sodyum borhidrür ilavesinin etkileri

    Directory of Open Access Journals (Sweden)

    Akın SARAÇBAŞI

    2016-12-01

    Full Text Available Bu araştırmada, kızılçam (Pinus brutia Ten. ve Monteri çamı (Pinus radiata D. Don. türlerinden toplam verim ve delignifikasyonu geliştirmek amacı ile alternatif bir Sodyum borhidrür (NaBH4-Kraft kâğıt hamuru elde etme yöntemi üzerinde çalışılmıştır. Delignifikasyon derecesi ve hamur verimi üzerinde reaksiyon koşullarının etkileri değerlendirilmiştir.Sonuçlar, sodyum borhidrür ilavesinin bilinen Kraft yöntemine göre her iki çam türünün hem verim hem de delignifikasyonunu geliştirmek için daha etkili olduğunu göstermektedir. Sodyum borhidrür (NaBH4-Kraft yönteminin, geleneksel Kraft yönteminin tek başına verdiği kappa numarası ve yüksek verim açısından, daha hızlı ve daha seçici olduğu düşünülmektedir. Ancak, kızılçam için en iyi Sodyum borhidrür (NaBH4-Kraft kâğıt hamuru üretim koşulu Aktif Alkali: %16, Sülfidite: %28, NaBH4 oranı: %0.5 iken, Monteri çamı için en iyi Sodyum borhidrür (NaBH4-Kraft kâğıt hamuru üretim koşulunun ise Aktif Alkali: %20, Sülfidite: %26, NaBH4 Oranı: %0.7 olduğu bulunmuştur.

  6. Synthesis, characterization and catalytic activity of CoFe{sub 2}O{sub 4}-APTES-Pd magnetic recyclable catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Demirelli, M. [Department of Chemistry, Faculty of Arts and Sciences, Yıldız Teknik University Davutpaşa Campus, Esenler, İstanbul (Turkey); Department of Chemistry, Faculty of Arts and Sciences, Fatih University, B. Cekmece, İstanbul 34500 (Turkey); Karaoğlu, E., E-mail: ebubekirkaraoglu@gmail.com [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, B. Cekmece, İstanbul 34500 (Turkey); Department of Medical Biochemistry, Faculty of Medicine, Sakarya University, Korucuk, Sakarya (Turkey); Baykal, A. [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, B. Cekmece, İstanbul 34500 (Turkey); Sözeri, H.; Uysal, E. [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470 Gebze, Kocaeli (Turkey)

    2014-01-05

    Highlights: • CoFe{sub 2}O{sub 4}-APTES-Pd (0) nanocomposite, as effective catalysts for reduction reactions. • It could be reused several times without significant loss in hydrogenation reaction. • So far, CoFe{sub 2}O{sub 4}-APTES-Pd (0) nanocomposite have not been synthesized. • CoFe{sub 2}O{sub 4}-APTES-Pd (0) nanocomposite was confirmed by XRD, FT-IR. • Pd containing nanoparticles embedded in organic surfactant observed by TEM. -- Abstract: A new magnetically recyclable catalyst, CoFe{sub 2}O{sub 4}-APTES-Pd(0) nanocomposite, as highly effective catalysts for reduction reactions in liquid phase was fabricated and characterized. The reduction of Pd{sup 2+} was accomplished with sodium borohydride (NaBH{sub 4}). The chemical characterization of the product was done with X-ray diffractometry, infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy and inductively coupled plasma. It was found that the combination of CoFe{sub 2}O{sub 4} and 3-aminopropyltriethoxysilane (APTES) could give rise to structurally stable catalytic sites. Furthermore, the high magnetization CoFe{sub 2}O{sub 4}-APTES-Pd(0) catalyst can be recovered by magnet and reused for ten runs for hydrogenation reaction of 4-nitro aniline, 1,3 dinitro and cyclohexanone. The catalyst was easily isolated from the reaction mixture by a magnetic bar and reused at least 10 times without significant degradation in the activity which shows the indicative of a potential applications of these catalysts in industry.

  7. Investigation on 3H-labelled bilirubin for study of blood-brain barrier

    International Nuclear Information System (INIS)

    Cao Rongzhen; Dong Mo; Zhang Yulong; Zhou Ruiju

    1996-01-01

    Synthesis of 3 H-labelled bilirubin is described. 3 H-bilirubin is prepared by the reduction of biliverdin using sodium boro-[ 3 H]-hydride in methanol solvent. But biliverdin is synthesized through dehydrogenation of bilirubin with 2,3- dichloro-5, 6-dicyanobenzoquinone (DDQ) in dimethyl sulphoxide and sodium boro-[ 3 H]-hydride is produced by exchange of sodium boro-hydride with tritium gas using nickel catalyst at high temperature. The specific activity of obtained 3 H-bilirubin is 306 GBq/mmol, while the radiochemical purity is over 95% by HPLC and paper chromatography. The permeated profile of 3 H-labelled bilirubin in rat brain has been obtained in animal experiments

  8. Effect of tripanossomicide benznidazole (Rochagan) on the biodistribution of sodium pertechnetate (Na{sup 99m}TcO4) in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Vanessa Santos de Arruda; Holanda, Cecilia Maria de Carvalho Xavier; Silva, Roseane Pereira da; Medeiros, Aldo Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Ciencias da Saude]. E-mail: vambio@oi.com.br; Oliveira, Daniel Pereira de; Silva Junior, Mauricio Ferreira da; Oliveira, Elias Herculano de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Biociencias. Dept. de Microbiologia e Parasitologia; Spyrides, Maria Helena Constantino [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Estatistica

    2008-12-15

    Benznidazole, a drug with specific anti-Trypanosoma cruzi activity, is used in the treatment of Chagas' disease. The radiopharmaceutical sodium pertechnetate (Na{sup 99m}TcO{sub 4}) is used to obtain diagnostic images of the stomach, thyroid, parathyroids, salivary glands, brain and in the study of esophageal reflux and blood flow. This study aimed at evaluating in vivo the influence of benznidazole treatment on the sodium pertechnetate biodistribution in Wistar rats. The percentage of radioactivity per gram (%ATI/g) of various organs (brain, heart, esophagus, stomach, small intestine, large intestine, spleen, liver, muscle and blood) was determined. Comparing the treated rats with the controls, we observed that sodium pertechnetate biodistribution did not change when administered to rats treated for thirty days with benznidazole. (author)

  9. The study of UV-spectra of the sodium (3-oxo-3,4-dihydro-2H-[1,2,4]triazino[4,3-c]quinazolin-4-ylacetate

    Directory of Open Access Journals (Sweden)

    О. V. Kryvoshey

    2016-04-01

    Full Text Available Despite the potential of [1,2,4]triazino[4,3-c]quinazoline derivatives as promising bioactive compounds, their electronic spectra has not been studied. Present manuscript is aimed to the estimation of relationships of molecules structure with the nature of their UV-spectra and identifying spectral patterns of pharmacophore that determines the pharmacological activity of the substance. Mentioned information undoubtedly contributes to the development of the theory of the purposeful synthesis of organic compounds. Methods and results. UV-spectra of sodium (3-oxo-3,4-dihydro-2H-[1,2,4]triazino[4,3-c]quinazolin-4-ylacetate in different polarity solvents have been studied. It allowed to identify types of electron transitions, which were responsible of emergence of the observed absorption bands. Conclusions. It was found that the UV-spectra of the studied compounds in solvents with different polarity were characterized by three absorption bands in the range 190–227 nm, 260–284 nm and 328–348 nm. According to Braude classification the first absorption band should be classified as 1La, the second – as 1Lb, and the third band is due to p-π- conjugation in the molecule of the whole molecule structure.

  10. Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study.

    Science.gov (United States)

    Derkach, Andriy; Sampson, Joshua; Joseph, Justin; Playdon, Mary C; Stolzenberg-Solomon, Rachael Z

    2017-10-01

    Background: High sodium intake is known to increase blood pressure and is difficult to measure in epidemiologic studies. Objective: We examined the effect of sodium intake on metabolites within the DASH (Dietary Approaches to Stop Hypertension Trial)-Sodium Trial to further our understanding of the biological effects of sodium intake beyond blood pressure. Design: The DASH-Sodium Trial randomly assigned individuals to either the DASH diet (low in fat and high in protein, low-fat dairy, and fruits and vegetables) or a control diet for 12 wk. Participants within each diet arm received, in random order, diets containing high (150 nmol or 3450 mg), medium (100 nmol or 2300 mg), and low (50 nmol or 1150 mg) amounts of sodium for 30 d (crossover design). Fasting blood samples were collected at the end of each sodium intervention. We measured 531 identified plasma metabolites in 73 participants at the end of their high- and low-sodium interventions and in 46 participants at the end of their high- and medium-sodium interventions ( N = 119). We used linear mixed-effects regression to model the relation between each log-transformed metabolite and sodium intake. We also combined the resulting P values with Fisher's method to estimate the association between sodium intake and 38 metabolic pathways or groups. Results: Six pathways were associated with sodium intake at a Bonferroni-corrected threshold of 0.0013 (e.g., fatty acid, food component or plant, benzoate, γ-glutamyl amino acid, methionine, and tryptophan). Although 82 metabolites were associated with sodium intake at a false discovery rate ≤0.10, only 4-ethylphenylsufate, a xenobiotic related to benzoate metabolism, was significant at a Bonferroni-corrected threshold ( P Sodium intake is associated with changes in circulating metabolites, including gut microbial, tryptophan, plant component, and γ-glutamyl amino acid-related metabolites. This trial was registered at clinicaltrials.gov as NCT00000608. © 2017

  11. Sodium fire tests for investigating the sodium leak in Monju

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    1996-01-01

    As a part of the work for investigating the sodium leak accident which occurred in Monju on December 8, 1995, three tests, (1) sodium leak test, (2) sodium fire test-I, and (3) sodium fire test-II, were carried out at OEC/PNC. Main objectives of these tests are to confirm leak and burning behavior of sodium from the damaged thermometer, and effects of the sodium fire on integrity of the surrounding structure, etc. The main conclusions obtained from the tests are shown as below. 1) Average sodium leak rate obtained from the sodium leak test was about 50 g/sec. This was equivalent to the value estimated from level change in the sodium overflow tank in the Monju accident. 2) Observation from video cameras in the sodium fire tests revealed that in early stages of sodium leak, sodium dropped down out of the flexible tube of thermometer in drips. This dripping and burning were expanded in range as sodium splashed on the duct. 3) Though, in the sodium fire test-I, there was a decrease of about 1 mm at a thickness of the burning pan in the vicinity in just under in the leak point, there were completely no crack and failure. In the meantime, in the sodium fire test-II the six open holes were found in the floor liner. By this liner failure, the reaction between sodium and concrete might take place. At present, while the detailed evaluation on the sodium fire test-II has been mainly carried out, the investigation for clarifying the cause of the liner failure has been also carried out. (author)

  12. Developing powerful tritide technique: Organic and biological molecule labeling

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Complex hydrides are very important reagents in organic synthesis due to the range of reducing powers and selectivities available from different agents. Unfortunately, the availability of these compounds for radiosynthesis has been extremely limited due to the difficulty of making them with adequate levels of tritium. Investigators at the Lawrence Berkeley Laboratory (LBL) National Tritium Labeling Facility have developed a new addition to the repertoire of the tritium-labeling chemist. The new method allows site-specific incorporation of tritium into organic and biological molecules by efficient reduction processes. Exceptionally reactive and selective reducing agents are prepared and used for labeling in a on-pot process. Three new tritide reagents - supertritide (lithium triethyl borotritide), LiAlT 4 (lithium aluminum tritide), and L-Selectride (sterically hindered lithium tri-sec-butyl borotritide) - have been synthesized at carrier-free levels, and have been demonstrated to be fully reactive. The availability of these versatile and reactive reagents gives the tritium radiochemist great control over chemoselectivity and stereoselectivity. The LBL tritide reagents can drive numerous conventional chemical reactions, and have been used to reduce p-toluene sulfonates, amides, lactones, esters, and aldehydes. These reactions produce good yields and result in products with maximum specific activities. The reagents clearly exhibit superior reactivity and may be used in many more synthetic processes than sodium borohydride, which is the currently used reagent. In addition, tritide reagents such as L-selectride have been shown to give greater control over stereochemistry and selectivity than sodium borohydride

  13. Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials

    International Nuclear Information System (INIS)

    Reddy Channu, V.S.; Holze, Rudolf; Yeo, In-Hyeong; Mho, Sun-il; Kalluru, Rajamohan R.

    2011-01-01

    Sodium vanadate nanomaterials were synthesized at different pH-values of a sodium hydroxide solution of vanadium pentoxide. Polyaniline-modified sodium vanadate nanomaterials were prepared at room temperature and at 3 C by a chemical polymerization method. The crystal structure and phase purity of the samples have been examined by powder XRD. The samples were identified as HNaV 6 O 16 .4H 2 O and Na 1.1 V 3 O 7.9 . The electrochemical measurements show that polyaniline-modified sodium vanadate hydrated nanomaterials provide higher current density than the sodium vanadate nanomaterials. (orig.)

  14. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  15. Synthesis, Structure, and Sodium Mobility of Sodium Vanadium Nitridophosphate: A Zero-Strain and Safe High Voltage Cathode Material for Sodium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Huang Zhang

    2017-06-01

    Full Text Available Herein, the nitridophosphate Na3V(PO33N is synthesized by solid state method. X-ray diffraction (XRD and Rietveld refinement confirm the cubic symmetry with P213 space group. The material exhibits very good thermal stability and high operating voltage of 4.0 V vs. Na/Na+ due to V3+/V4+ redox couple. In situ X-ray diffraction studies confirm the two-phase (de-sodiation process to occur with very low volume changes. The refinement of the sodium occupancies reveal the low accessibility of sodium cations in the Na2 and Na3 sites as the main origin for the lower experimental capacity (0.38 eq. Na+, 28 mAh g−1 versus the theoretical one (1.0 eq. Na+, 74 mAh g−1. These observations provide valuable information for the further optimization of this materials class in order to access their theoretical electrochemical performance as a potentially interesting zero-strain and safe high-voltage cathode material for sodium-ion batteries.

  16. Neutronic spectrometry measurements in sodium

    International Nuclear Information System (INIS)

    Perlini, G.; Acerbis, S.

    1987-01-01

    Measurements were made of neutronic penetration in sodium, which could serve as a reference and as a benchmark for computer codes. The model employed consisted of an assembly of 7 containers full of sodium for a total of 10 tons and a useful length of almost 4 metres. Measurements were performed at various depths along the central axis of the structure with proton recoil proportional counters. The energy band explored was between 100 and 650 keV. Here we report not only the original spectra of the impulses but also the neutronic spectra found by unfolding with the SPEC-4 code

  17. Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells

    Science.gov (United States)

    Qin, Haiying; Lin, Longxia; Chu, Wen; Jiang, Wei; He, Yan; Shi, Qiao; Deng, Yonghong; Ji, Zhenguo; Liu, Jiabin; Tao, Shanwen

    2018-01-01

    A catalytic material is introduced into the polymer matrix to prepare a novel polymeric alkaline electrolyte membrane (AEM) which simultaneously increases ionic conductivity, reduces the fuel cross-over. In this work, the hydroxide anion exchange membrane is mainly composed of poly(vinylalcohol) and alkaline exchange resin. CoCl2 is added into the poly(vinylalcohol) and alkaline exchange resin gel before casting the membrane to introduce catalytic materials. CoCl2 is converted into CoOOH after the reaction with KOH solution. The crystallinity of the polymer matrix decreases and the ionic conductivity of the composite membrane is notably improved by the introduction of Co-species. A direct borohydride fuel cell using the composite membrane exhibits an open circuit voltage of 1.11 V at 30 °C, which is notably higher than that of cells using other AEMs. The cell using the composite membrane achieves a maximum power density of 283 mW cm-2 at 60 °C while the cell using the membrane without Co-species only reaches 117 mW cm-2 at the same conditions. The outstanding performance of the cell using the composite membrane benefits from impregnation of the catalytic Co-species in the membrane, which not only increases the ionic conductivity but also reduces electrode polarization thus improves the fuel cell performance. This work provides a new approach to develop high-performance fuel cells through adding catalysts in the electrolyte membrane.

  18. Method for processing radioactive wastes containing sodium

    International Nuclear Information System (INIS)

    Kubota, Takeshi.

    1975-01-01

    Object: To bake, solidify and process even radioactive wastes highly containing sodium. Structure: H and or NH 4 zeolites of more than 90g per chemical equivalent of sodium present in the waste is added to and left in radioactive wastes containing sodium, after which they are fed to a baker such as rotary cylindrical baker, spray baker and the like to bake and solidify the wastes at 350 to 800 0 C. Thereby, it is possible to bake and solidify even radioactive wastes highly containing sodium, which has been impossible to do so previously. (Kamimura, M.)

  19. Iodine release from sodium pool combustion

    International Nuclear Information System (INIS)

    Sagawa, N.; Fukushima, Y.; Yokota, N.; Akagane, K.; Mochizuki, K.

    1979-01-01

    Iodine release associated with sodium pool combustion was determined by heating 20 gr sodium containing sodium iodide, which was labelled with 131 I and dissolved in the sodium in concentration of 1∼1,000 ppm, to burn on a nickel crucible in conditioned atmosphere in a closed vessel of 0.4 m 3 . Oxygen concentration was changed in 5∼21% and humidity in 0∼89% by mixing nitrogen gas and air. Combustion products were trapped by a Maypack filter composed of particle filters, copper screens and activated charcoal beds and by a glass beads pack cooled by liquid argon. Iodine collected on these filter elements was determined by radio-gas chromatography. When the sodium sample burned in the atmosphere of air at room temperature, the release fractions observed were 6∼33% for sodium and 1∼20% for iodine added in the sodium. The release iodine was present in aerosol at a ratio of 98%, and the remainder in the gas form. The release fraction of iodine trended to decrease as oxygen concentration and humidity in the atmosphere increased. No organic iodide was detected in the combustion products. (author)

  20. Synthesis and characterization of nanosilver-silicone hydrogel composites for inhibition of bacteria growth.

    Science.gov (United States)

    Helaly, F M; El-Sawy, S M; Hashem, A I; Khattab, A A; Mourad, R M

    2017-02-01

    Nanosilver-silicone hydrogel (NAgSiH) composites for contact lenses were synthesized to asses the antimicrobial effects. Silicone hydrogel (SiH) films were synthesized followed by impregnation in silver nitrate solutions (10, 20, 30, 40, 60, 80ppm) and in-situ chemical reduction of silver ions using sodium borohydride (NaBH 4 ). The silver nano particles (AgNPS) were identified by UV-vis absorption spectroscopy, Energy-dispersive X-ray spectroscopy (EDX) mapping and EDX spectrum. Physico-mechanical and chemical properties of NAgSIH films were studied. The antimicrobial effect of the hydrogels against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus was evaluated. The numbers of viable bacterial cells on NAgSiH surface or in solution compared to control SiH were examined. The NAgSiH films were successfully synthesized. FTIR results indicated that AgNPS had no effect on the bulk structure of the prepared SiH films. From TGA analysis, NAgSiH(R80) and SiH(R0) films had the same maximum decomposition temperature (404°C). UV-vis absorption spectroscopy and EDX mapping and spectrum emphasized that AgNPS were in spherical shape. The maximum absorption wavelength of NAgSiH films were around 400nm. The light transmittance decreased as the concentration of AgNPS increased, but still greater than 90% at wavelength around 555nm. The Young's modulus increased gradually from 1.06MPa of SiH(R0) to highest value 1.38MPa of NAgSiH(R80). AgNPS incorporated into SiH films reduced the bacterial cell growth and prevented colonization. Groups NAgSiH(R60,R80) demonstrated an excellent reduction in bacterial viability in solution and on the SiH surface. NAgSiH composites were successfully synthesized and possessed an excellent antimicrobial effects. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. IAEA sodium void reactivity benchmark calculations

    International Nuclear Information System (INIS)

    Hill, R.N.; Finck, P.J.

    1992-01-01

    In this paper, the IAEA-1 992 ''Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated

  2. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  3. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.

    OpenAIRE

    Morgan, K; Brown, R C; Spurlock, G; Southgate, K; Mir, M A

    1986-01-01

    An inhibitor of ouabain-insensitive sodium/sodium exchange in erythrocytes has been isolated from leukemic promyelocytes. To explore the specific effects of this inhibitor, named inhibitin, sodium transport experiments were carried out in human erythrocytes. Inhibitin reduced ouabain-insensitive bidirectional sodium transport. It did not change net sodium fluxes, had no significant effect on rubidium influx, and did not inhibit sodium-potassium-ATPase activity. The inhibitory effect of inhibi...

  4. Deposition of nano-size particles on reticulated vitreous carbon using colloidal precursors : three-dimensional anodes for borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Gyenge, E.L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2006-07-01

    In addition to their inherently larger specific surface area, mesoscopic materials also possess a higher density of surface constrained sites, which could serve as active sites in catalysis as well as facilitate the surface diffusion of small molecules and ions relevant to various catalytic steps. This study investigated the organosol method for the deposition of platinum (Pt), iridium (Ir), gold (Au) and nickel (Ni) nano-particles on reticulated vitreous carbon to evaluate the electrocatalytic activity for BH{sub 4} oxidation by both fundamental electrochemical studies and fuel cell experiments. The application of the organosol nanometal preparation technique was based on the quaternary ammonium compound N(C{sub 8}H{sub 17}){sub 4}B(C{sub 2}H{sub 5}){sub 3}H acting as both reductant and colloid stabilizer. A current assisted variant was also studied where the reticulated vitreous carbon substrate served as the cathode operating at superficial current densities between 1.0 and 2.5 mA per cm{sup 2}. The organosol method produced a low catalyst load on reticulated vitreous carbons between 0.01 and 0.12 mg per cm{sup 2}. The electrodes were evaluated for catalytic activity toward the electro-oxidation of BH{sub 4} by cyclic voltammetry, chronopotentiometry and fuel cell experiments. Borohydride fuel cells with liquid electrolyte (2 M NaOH) were assembled using a 3-dimensional anode, a cation exchange membrane and a commercial oxygen cathode. Results showed that the anode catalyst mass activity was higher for the 3-D design compared to the case when a gas diffusion electrode served as the anode. It was concluded that the extended reaction zone of the three-dimensional anode with liquid electrolyte improved the catalyst utilization efficiency by allowing the reduction of the catalyst load. 6 refs., 1 fig.

  5. VS4 Nanoparticles Anchored on Graphene Sheets as a High-Rate and Stable Electrode Material for Sodium Ion Batteries.

    Science.gov (United States)

    Pang, Qiang; Zhao, Yingying; Yu, Yanhao; Bian, Xiaofei; Wang, Xudong; Wei, Yingjin; Gao, Yu; Chen, Gang

    2018-02-22

    The size and conductivity of the electrode materials play a significant role in the kinetics of sodium-ion batteries. Various characterizations reveal that size-controllable VS 4 nanoparticles can be successfully anchored on the surface of graphene sheets (GSs) by a simple cationic-surfactant-assisted hydrothermal method. When used as an electrode material for sodium-ion batteries, these VS 4 @GS nanocomposites show large specific capacity (349.1 mAh g -1 after 100 cycles), excellent long-term stability (84 % capacity retention after 1200 cycles), and high rate capability (188.1 mAh g -1 at 4000 mA g -1 ). A large proportion of the capacity was contributed by capacitive processes. This remarkable electrochemical performance was attributed to synergistic interactions between nanosized VS 4 particles and a highly conductive graphene network, which provided short diffusion pathways for Na + ions and large contact areas between the electrolyte and electrode, resulting in considerably improved electrochemical kinetic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  7. Functional rescue of mutant ABCA1 proteins by sodium 4-phenylbutyrate.

    Science.gov (United States)

    Sorrenson, Brie; Suetani, Rachel J; Williams, Michael J A; Bickley, Vivienne M; George, Peter M; Jones, Gregory T; McCormick, Sally P A

    2013-01-01

    Mutations in the ATP-binding cassette transporter A1 (ABCA1) are a major cause of decreased HDL cholesterol (HDL-C), which infers an increased risk of cardiovascular disease (CVD). Many ABCA1 mutants show impaired localization to the plasma membrane. The aim of this study was to investigate whether the chemical chaperone, sodium 4-phenylbutyrate (4-PBA) could improve cellular localization and function of ABCA1 mutants. Nine different ABCA1 mutants (p.A594T, p.I659V, p.R1068H, p.T1512M, p.Y1767D, p.N1800H, p.R2004K, p.A2028V, p.Q2239N) expressed in HEK293 cells, displaying different degrees of mislocalization to the plasma membrane and discrete impacts on cholesterol efflux, were subject to treatment with 4-PBA. Treatment restored localization to the plasma membrane and increased cholesterol efflux function for the majority of mutants. Treatment with 4-PBA also increased ABCA1 protein expression in all transfected cell lines. In fibroblast cells obtained from low HDL-C subjects expressing two of the ABCA1 mutants (p.R1068H and p.N1800H), 4-PBA increased cholesterol efflux without any increase in ABCA1 expression. Our study is the first to investigate the effect of the chemical chaperone, 4-PBA on ABCA1 and shows that it is capable of restoring plasma membrane localization and enhancing the cholesterol efflux function of mutant ABCA1s both in vitro and ex vivo. These results suggest 4-PBA may warrant further investigation as a potential therapy for increasing cholesterol efflux and HDL-C levels.

  8. Electrode Materials for Lithium/Sodium-Ion Batteries

    DEFF Research Database (Denmark)

    Shen, Yanbin

    2014-01-01

    The synthesis of electrode materials for lithium/sodium ion batteries and their structural stability during lithium/sodium insertion/extraction are the two essential issues that have limited battery application in the fields requiring long cycle life and high safety. During her PhD studies, Yanbin...... Shen systematically investigated the controlled synthesis of electrode materials for lithium/sodium ion batteries. She also investigated their formation mechanisms and structural evolution during the operation of batteries using in situ/operando X-ray diffraction techniques. The research findings...... provide insights into formation mechanisms of Li4Ti5O12 anode material from both hydrothermal and solid-state reaction. The results also contribute to a thorough understanding of the intercalation and decay mechanisms of O3/P2 layered sodium cathode materials in sodium ion batteries....

  9. Red blood cell sodium transport in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Lütken; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming

    2016-01-01

    Patients with advanced cirrhosis have abnormal sodium homoeostasis. The study was undertaken to quantify the sodium transport across the plasma membrane of red blood cells (RBC) in patients with cirrhosis. RBC efflux and influx of sodium were studied in vitro with tracer (22) Na(+) according...... to linear kinetics in 24 patients with cirrhosis and 14 healthy controls. The sodium efflux was modified by ouabain (O), furosemide (F) and a combination of O and F (O + F). RBC sodium was significantly decreased (4·6 versus control 6·3 mmol l(-1) , Psodium (r = 0·57, P......sodium efflux was higher in patients with cirrhosis (+46%, Psodium buffers showed that the F-insensitive sodium efflux was twice as high in cirrhosis as in controls (P = 0...

  10. Synthesis of tritiated sex pheromones of the processionary moth Thaumetopoea pityocampa and the Egyptian armyworm Spodoptera littoralis

    International Nuclear Information System (INIS)

    Guerrero, Angel; Feixas, Joan

    1996-01-01

    Synthesis of tritiated sex phenomones of the processionary moth Thaumetopoea pityocampa and the Egyptian armyworm Spodoptera littoralis has been accomplished by a simple route involving tritiated sodium borohydride reduction of the corresponding aldehyde followed by acetylation of the resulting radiolabelled alcohol. The process occurs with high chemical and radiochemical yields and the compounds have been used in pheromone catabolism studies. (author)

  11. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    International Nuclear Information System (INIS)

    Okano, Y.; Yamaguchi, A.

    2001-01-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar

  12. Sodium in diet

    Science.gov (United States)

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... Too much sodium in the diet may lead to: High blood pressure in some people A serious buildup of fluid in people with heart failure , cirrhosis of ...

  13. The Renal Sodium Bicarbonate Cotransporter NBCe2: Is It a Major Contributor to Sodium and pH Homeostasis?

    Science.gov (United States)

    Felder, Robin A; Jose, Pedro A; Xu, Peng; Gildea, John J

    2016-09-01

    The sodium bicarbonate cotransporter (NBCe2, aka NBC4) was originally isolated from the human testis and heart (Pushkin et al. IUBMB Life 50:13-19, 2000). Subsequently, NBCe2 was found in diverse locations where it plays a role in regulating sodium and bicarbonate transport, influencing intracellular, extracellular, interstitial, and ultimately plasma pH (Boron et al. J Exp Biol. 212:1697-1706, 2009; Parker and Boron, Physiol Rev. 93:803-959, 2013; Romero et al. Mol Asp Med. 34:159-182, 2013). NBCe2 is located in human and rodent renal-collecting duct and proximal tubule. While much is known about the two electrogenic sodium bicarbonate cotransporters, NBCe1 and NBCe2, in the regulation of sodium homeostasis and pH balance in the rodent kidney, little is known about their roles in human renal physiology. NBCe2 is located in the proximal tubule Golgi apparatus under basal conditions and then disperses throughout the cell, but particularly into the apical membrane microvilli, during various maneuvers that increase intracellular sodium. This review will summarize our current understanding of the distribution and function of NBCe2 in the human kidney and how genetic variants of its gene, SLC4A5, contribute to salt sensitivity of blood pressure.

  14. In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode

    OpenAIRE

    Yuhki Yui; Masahiko Hayashi; Jiro Nakamura

    2016-01-01

    Electrochemical sodium deposition/dissolution behaviors in propylene carbonate-based electrolyte solution were observed by means of in situ light microscopy. First, granular sodium was deposited at pits in a sodium electrode in the cathodic process. Then, the sodium particles grew linearly from the electrode surface, becoming needle-like in shape. In the subsequent anodic process, the sodium dissolved near the base of the needles on the sodium electrode and the so-called ?dead sodium? broke a...

  15. Evaluation tissue dissolution property of 2.5 % Sodium Hypochlorite Prepared by Hydrochloric Acid and Sodium Bicarbonate: An in vitro

    Directory of Open Access Journals (Sweden)

    Hamid Razavian

    2016-08-01

    Full Text Available Successful endodontic treatment requires chemical preparation in addition to mechanical preparation. The most common material for chemical preparations is sodium hypochlorite. One way to reduce the effects of pH adjustment is the use of sodium hypochlorite. The present paper was conducted to examine the effect of dilution with hydrochloric acid and sodium bicarbonate and reduce pH on ability of tissue solubility of sodium hypochlorite. The present study was conducted in vitro on bovine muscle tissue. Ability of tissue solubility was conducted in four groups respectively with active ingredient including 1 sodium hypochlorite diluted with distilled water 2 sodium hypochlorite diluted with sodium bicarbonate 3 sodium hypochlorite diluted with hydrochloric acid and finally 4 distilled water (control group. Each sample was firstly weighed and then placed in contact with 10 m/L solution for 60 minutes (five 12 -minute intervals. The sample was weighted every five minutes and solution was renewed. The results were analyzed using SPSS-21 Software based on variance analysis, Tukey and T-test (α=0.05. The findings showed that there was significant difference between first, second and third groups in terms of ability of tissue solubility. However, the tissue solubility in second and third groups was lower than first group and it was similar in second and third groups (P Value <0.001. Reduction of sodium bicarbonate PH using sodium hypochlorite and hydrochloric acid reduces ability of tissue solubility in sodium hypochlorite.

  16. Reducing biomass recalcitrance via mild sodium carbonate pretreatment.

    Science.gov (United States)

    Mirmohamadsadeghi, Safoora; Chen, Zhu; Wan, Caixia

    2016-06-01

    This study examined the effects of mild sodium carbonate (Na2CO3) pretreatment on enzymatic hydrolysis of different feedstocks (i.e., corn stover, Miscanthus, and switchgrass). The results showed that sodium carbonate pretreatment markedly enhanced the sugar yields of the tested biomass feedstocks. The pretreated corn stover, Miscanthus, and switchgrass gave the glucose yields of 95.1%, 62.3%, and 81.3%, respectively, after enzymatic hydrolysis. The above glucose yields of pretreated feedstocks were 2-4 times that of untreated ones. The pretreatment also enhanced the xylose yields, 4 times for corn stover and 20 times for both Miscanthus and switchgrass. Sodium carbonate pretreatment removed 40-59% lignin from the tested feedstocks while preserving most of cellulose (sodium carbonate pretreatment was effective for reducing biomass recalcitrance and subsequently improving the digestibility of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Stability of sodium bicarbonate solutions in polyolefin bags.

    Science.gov (United States)

    Wear, Jennifer; McPherson, Timothy B; Kolling, William M

    2010-06-15

    The stability of sodium bicarbonate solutions in sterile water for injection or 5% dextrose injection stored at 21-24 degrees C or 2-4 degrees C was evaluated. Sodium bicarbonate injection was obtained in 50-mL vials of 8.4% (1 meq/mL). A total of 50, 100, or 150 meq of sodium bicarbonate was added to each 1-L polyolefin bag of either sterile water for injection or 5% dextrose injection. All solutions were prepared in a laminar-airflow hood using aseptic technique. Bags were punctured once to remove headspace air and once for the addition of each 50 meq of sodium bicarbonate. Six replicates of each test solution were prepared. The solutions were stored at 21-24 degrees C and 2-4 degrees C. Control solutions (50 and 150 meq) were similarly prepared in triplicate. Control solutions were sparged with either nitrogen gas or oxygen gas before storage. Sodium bicarbonate stability was assessed by measuring solution pH. Bicarbonate content was measured utilizing titration. Both pH and bicarbonate concentrations were measured immediately upon preparation and on days 3, 5, and 7 for both test and control solutions. All 95% confidence interval values for sample solution pH remained within 7.0-8.5 for seven days at 2-4 degrees C. Sodium bicarbonate solutions of 50, 100, and 150 meq in sterile water for injection or 5% dextrose injection were stable for up to seven days when refrigerated. The 50-meq solution was stable for up to 48 hours when stored at room temperature, and the 100- and 150-meq solutions were stable for up to 30 hours when stored at room temperature.

  18. Enhancing the stability of colloidal silver nanoparticles using polyhydroxyalkanoates (PHA) from Bacillus circulans (MTCC 8167) isolated from crude oil contaminated soil.

    Science.gov (United States)

    Phukon, Pinkee; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2011-09-01

    Polyhydroxyalkanoate (PHA) was produced by growing Bacillus circulans (MTCC 8167) in the specific detection medium. The identification of the polymer as PHA was confirmed by fluorescence microscopy. The PHA was purified and characterized using FT-IR. The silver nanoparticles (SNP) were synthesized from AgNO3 in the dispersed colloids of PHA (0.085%) using NaBH4 (sodium borohydrate as reducing agent). The stability was tested using wave length scanning with a UV-Vis spectrophotometer and finally with transmission electron microscopy. The PHA stabilized solution was found to be stable for 30 days as against the low stability of silver nanoparticles (SNP) solution alone. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  20. Characterization of Sodium Spray Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. T.; Koontz, R. L.; Silberberg, M. [Atomics International, North American Rockwell Corporation, Canoga Park, CA (United States)

    1968-12-15

    The consequences of pool and spray fires require evaluation in the safety analysis of liquid metal-cooled fast breeder reactors. Sodium spray fires are characterized by high temperature and pressure, produced during the rapid combustion of sodium in air. Following the initial energy release, some fraction of the reaction products are available as aerosols which follow the normal laws of agglomeration, growth, settling, and plating. An experimental study is underway at Atomics International to study the characteristics of high concentration sprays of liquid sodium in reduced oxygen atmospheres and in air. The experiments are conducted in a 31.5 ft{sup 3} (2 ft diam. by 10 ft high) vessel, certified for a pressure of 100 lb/in{sup 2} (gauge). The spray injection apparatus consists of a heated sodium supply pot and a spray nozzle through which liquid sodium is driven by nitrogen pressure. Spray rate and droplet size can be varied by the injection velocity (nozzle size, nitrogen pressure, and sodium temperature). Aerosols produced in 0, 4, and 10 vol. % oxygen environments have been studied. The concentration and particle size distribution of the material remaining in the air after the spray injection and reaction period are measured. Fallout rates are found to be proportional to the concentration of aerosol which remains airborne following the spray period. (author)

  1. A facile approach towards synthesis, characterization, single crystal structure, and DFT study of 5-bromosalicylalcohol

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Rupali, E-mail: rastogirupali@ymail.com [ITM University, Department of Chemistry (India); Tarannum, Nazia [Ch. Charan Singh University, Department of Chemistry (India); Butcher, R. J. [Howard University, Chemistry Department (United States)

    2016-03-15

    5-Bromosalicylalcohol was prepared by the interaction of NaBH{sub 4} and 5-bromosalicylaldehyde. The use of sodium borohydride makes the reaction easy, facile, economic and does not require any toxic catalyst. The compound is characterized by FTIR, {sup 1}H NMR, {sup 13}C NMR, TEM and ESI-mass spectra. Crystal structure is determined by single crystal X-ray analysis. Quantum mechanical calculations of geometries, energies and thermodynamic parameters are carried out using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data.

  2. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhaoxia; Zhou, Yin; Li, Guang Bin; Wang, Shaohong; Wang, Mei Han; Hu, Xiaodan; Li, Siming [Liaoning Province Key Laboratory of New Functional Materials and Chemical Technology, School ofMechanical Engineering, Shenyang University, Shenyang (China)

    2015-06-15

    Graphite oxide was prepared via the modified Hummers’ method and graphene via chemical reduction. Deoxygenation efficiency of graphene oxide was compared among single reductants including sodium borohydride, hydrohalic acids, hydrazine hydrate, and vitamin C. Two-step reduction of graphene oxide was primarily studied. The reduced graphene oxide was characterized by XRD, TG, SEM, XPS, and Raman spectroscopy. Square resistance was measured as well. Results showed that films with single-step N2H4 reduction have the best transmittance and electrical conductivity with square resistance of ~5746 Ω/sq at 70% transmittance. This provided an experimental basis of using graphene for electronic device applications.

  3. Synthesis and reactions of imines of α,β-ethylenic silicon-containing aldehydes with complex metal hydrides

    International Nuclear Information System (INIS)

    Surnin, V.A.; Stadnichuk, M.D.

    1986-01-01

    Imines of 3-trimethylsilyl-2-propenal or its hydrocarbon analog are reduced chemoselectively at the C=N double bond by sodium borohydride. The direction of lithium aluminum hydride reduction of these imines is not influenced by the nature of the element attached to the C=C bond silicon versus carbon, but rather is determined by the nature of the radical group attached to the nitrogen atom; N-arylimines undergo addition with lithium aluminum hydride at the C=N bond exclusively, whereas for N-alkylimines the addition reactions occur either partially or in full in the 1,4-position, depending on the reaction conditions, to give imines of saturated aldehydes after demetallation

  4. Experience on sodium removal from various components

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, M; Kanbe, M; Yagisawa, H; Sasaki, S; Kataoka, H; Fukada, T; Ishii, Y; Saito, R; Mimoto, Y [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  5. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.; Fukada, T.; Ishii, Y.; Saito, R.; Mimoto, Y.

    1978-01-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  6. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.

    1978-02-01

    Since 1970, OEC (O-arai Engineering Center) has been investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of ''JOYO'' and Dummy fuel assembly of ''JOYO'', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of ''JOYO'', a sector model of Sodium-to-Air cooler of ''JOYO'' and a proto-type Isolation valve of ''JOYO'' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental subassemblies, the Fuel Handling Machine of ''MONJU'' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of Sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a ''JOYO'' prototype pump by reinstalling it after sodium removal five times. (author)

  7. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    already use hydrogen for weather balloons . Besides cost, hydrogen has other advantages over helium. Hydrogen has more lift than helium, so larger...of water vapor entering the gas stream, and avoid damaging the balloon /aerostat (aerostats typically have an operational temperature range of -50 to...Aerostats: “Gepard” Tethered Aerostats with Mobile Mooring Systems. Available at http://rosaerosystems.com/aero/obj7. Accessed June 4, 2015. 11

  8. Structure of sodium perbromate monohydrate

    International Nuclear Information System (INIS)

    Blackburn, A.C.; Gallucci, J.C.; Gerkin, R.E.; Reppart, W.J.

    1992-01-01

    NaBrO 4 .H 2 O, M r =184.90, monoclinic, C2/c, a=15.7575(19), b=5.7373(15), c=11.3390(19) A, β=111.193(10)deg. In this structure, there are two inequivalent Na ions, each coordinated by six O atoms. In each of the two types of distorted octahedra, there are three inequivalent Na-O distances; the average Na(1)-O and Na(2)-O distances are 2.379(10) and 2.405(23) A, respectively. The perbromate ion in this structure displays very nearly regular tetrahedral geometry, although it is subject to no symmetry constraints; the average observed Br-O distance is 1.601(4) A, while the average observed O-Br-O angle is 109.5(9)deg. These values agree well with previously reported values. The perbromate ion, but neither of the sodium coordination polyhedra, shows rigid-body behavior. The average rigid-body corrected Br-O distance in the perbromate ion is 1.624(3) A. Refinement of the two inequivalent H atoms permitted detailed analysis of the hydrogen bonding, which is slightly different from that reported for the isomorphic sodium perchlorate monohydrate. Dynamic disordering of the H atoms as detailed by magnetic resonance methods for sodium perchlorate monohydrate is not clearly indicated in our X-ray study of sodium perbromate monohydrate. (orig./GSCH)

  9. Sodium pool fire analysis of sodium-cooled fast reactor by calculation

    International Nuclear Information System (INIS)

    Yu Hong; Xu Mi; Jin Degui

    2002-01-01

    Theoretical models were established according to the characteristic of sodium pool fire, and the SPOOL code was created independently. Some transient processes in sodium pool fire were modeled, including chemical reaction of sodium and oxygen; sodium combustion heat transfer modes in several kids of media; production, deposition and discharge of sodium aerosol; mass and energy exchange between different media in different ventilating conditions. The important characteristic parameters were calculated, such as pressure and temperature of gas, temperature of building materials, mass concentration of sodium aerosol, and so on. The SPOOL code, which provided available safety analysis tool for sodium pool fire accidents in sodium-cooled fast reactor, was well demonstrated with experimental data

  10. A Green Route to a Na2FePO4F-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life.

    Science.gov (United States)

    Deng, Xiang; Shi, Wenxiang; Sunarso, Jaka; Liu, Meilin; Shao, Zongping

    2017-05-17

    Sodium ion batteries (SIBs) are considered one of the most promising alternatives for large-scale energy storage due largely to the abundance and low cost of sodium. However, the lack of high-performance cathode materials at low cost represents a major obstacle toward broad commercialization of SIB technology. In this work, we report a green route strategy that allows cost-effective fabrication of carbon-coated Na 2 FePO 4 F cathode for SIBs. By using vitamin C as a green organic carbon source and environmentally friendly water-based polyacrylic latex as the binder, we have demonstrated that the Na 2 FePO 4 F phase in the as-derived Na 2 FePO 4 F/C electrode shows a high reversible capacity of 117 mAh g -1 at a cycling rate of 0.1 C. More attractively, excellent rate capability is achieved while retaining outstanding cycling stability (∼85% capacity retention after 1000 charge-discharge cycles at a rate of 4 C). Further, in operando X-ray diffraction has been used to probe the evolution of phase structures during the charge-discharge process, confirming the structural robustness of the Na 2 FePO 4 F/C cathode (even when charged to 4.5 V). Accordingly, the poor initial Coulombic efficiency of some anode materials may be compensated by extracting more sodium ions from Na 2 FePO 4 F/C cathode at higher potentials (up to 4.5 V).

  11. Study on the Visible-Light Photocatalytic Performance and Degradation Mechanism of Diclofenac Sodium under the System of Hetero-Structural CuBi2O4/Ag3PO4 with H2O2

    Directory of Open Access Journals (Sweden)

    Xiaojuan Chen

    2018-03-01

    Full Text Available Two kinds of CuBi2O4/Ag3PO4 with different heterojunction structures were prepared based on the combination of hydrothermal and in-situ precipitation methods with surfactant additives (sodium citrate and sodium stearate, and their characteristics were systematically resolved by X-ray Diffraction (XRD, Brunauer–Emmett–Teller (BET, X-ray Photoelectron Spectroscopy (XPS, Scanning Electron Microscope (SEM/ High-resolution Transmission Electron Microscopy (HRTEM, UV-vis Diffuse Reflectance Spectra (DRS and Photoluminescence (PL. Meanwhile, the photocatalytic properties of the catalysts were determined for diclofenac sodium (DS degradation and the photocatalytic mechanism was also explored. The results indicate that both of the two kinds of CuBi2O4/Ag3PO4 exhibit higher photocatalytic efficiency, mineralization rate, and stability than that of pure CuBi2O4 or Ag3PO4. Moreover, the catalytic activity of CuBi2O4/Ag3PO4 can be further enhanced by adding H2O2. The free radical capture experiments show that in the pure CuBi2O4/Ag3PO4 photocatalytic system, the OH• and O2•− are the main species participating in DS degradation; however, in the CuBi2O4/Ag3PO4 photocatalytic system with H2O2, all OH•, h+, and O2•− take part in the DS degradation, and the contribution order is OH• > h+ > O2•−. Accordingly, the photocatalytic mechanism of CuBi2O4/Ag3PO4 could be explained by the Z-Scheme theory, while the catalysis of CuBi2O4/Ag3PO4 with H2O2 follows the heterojunction energy band theory.

  12. New fundamental experimental studies on α-Mg(BH4)2 and other borohydrides

    International Nuclear Information System (INIS)

    Hagemann, Hans; D'Anna, Vincenza; Rapin, Jean-Philippe; Cerny, Radovan; Filinchuk, Yaroslav; Kim, Ki Chul; Sholl, David S.; Parker, Stewart F.

    2011-01-01

    Research highlights: → Eutectic behavior is observed in the LiBH4 -Mg(BH4)2 system. → New INS data show good agreement with theoretical DFT calculations. → Temperature dependent Raman spectra complement previous NMR studies. - Abstract: Several new studies of Mg(BH 4 ) 2 are reported. A 1:1 LiBH 4 :Mg(BH 4 ) 2 mixture was studied by in situ synchrotron X-ray diffraction and reveals an eutectic behavior with the eutectic composition more rich in Mg(BH 4 ) 2 , and the eutectic temperature lower than 456 K. No dual cation compound was observed in this experiment. New vibrational spectra including INS data have been obtained and are compared with theoretical DFT calculations and recent NMR studies, showing good agreement.

  13. Low sodium diet (image)

    Science.gov (United States)

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ...

  14. Scientific Opinion on the safety evaluation of the active substances, sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate, bentonite, sodium chloride, sodium carbonate for use in active food contact materials

    OpenAIRE

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

    2013-01-01

    This scientific opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the powder mixture of the active substances sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate (FCM substance No 1009), bentonite (CAS No 1302-78-9, FCM No 393), sodium chloride (CAS No 7647-14-5, FCM No 985), sodium carbonate (CAS No 497-19-8, FCM No 1008) which are intended to be used as combined oxygen generator and carbon...

  15. Development of sodium disposal technology. Experiment of sodium compound solidification process

    International Nuclear Information System (INIS)

    Matsumoto, Toshiyuki; Ohura, Masato; Yatoh, Yasuo

    2007-07-01

    A large amount of sodium containing radioactive waste will come up at the time of final shutdown/decommission of FBR plant. The radioactive waste is managed as solid state material in a closed can in Japan. As for the sodium, there is no established method to convert the radioactive sodium to solid waste. Further, the sodium is highly reactive. Thus, it is recommended to convert the sodium to a stable substance before the solidification process. One of the stabilizing methods is conversion of sodium into sodium hydroxide solution. These stabilization and solidification processes should be safe, economical, and efficient. In order to develop such sodium disposal technology, nonradioactive sodium was used and a basic experiment was performed. Waste-fluid Slag Solidification method was employed as the solidification process of sodium hydroxide solution. Experimental parameters were mixing ratio of the sodium hydroxide and the slag solidification material, temperature and concentration of the sodium hydroxide. The best parameters were obtained to achieve the maximum filling ratio of the sodium hydroxide under a condition of enough high compressive strength of the solidified waste. In a beaker level test, the solidified waste was kept in a long term and it was shown that there was no change of appearance, density, and also the compressive strength was kept at a target value. In a real scale test, homogeneous profiles of the density and the compressive strength were obtained. The compressive strength was higher than the target value. It was shown that the Waste-fluid Slag Solidification method can be applied to the solidification process of the sodium hydroxide solution, which was produced by the stabilization process. (author)

  16. Dual energy CT monitoring of the renal corticomedullary sodium gradient in swine

    International Nuclear Information System (INIS)

    Kumar, Rahi; Wang, Zhen J.; Forsythe, Carlos; Fu Yanjun; Chen, Yunn-Yi; Yeh, Benjamin M.

    2012-01-01

    Objective: To evaluate the feasibility of dual-energy CT (DECT) for monitoring dynamic changes in the renal corticomedullary sodium gradient in swine. Material and methods: This study was approved by our Institutional Animal Care and Use Committee. Four water-restricted pigs were CT-scanned at 80 and 140 kVp at baseline and at 5 min intervals for 30 min during saline or furosemide diuresis. The renal cortical and medullary CT numbers were recorded. A DECT basis material decomposition method was used to quantify renal cortical and medullary sodium concentrations and medulla-to-cortex sodium ratios at each time point based on the measured CT numbers. The sodium concentrations and medulla-to-cortex sodium ratios were compared between baseline and at 30 min diuresis using paired Student t-tests. The medulla-to-cortex sodium ratios were considered to reflect the corticomedullary sodium gradient. Results: At baseline prior to saline diuresis, the mean medullary and cortical sodium concentrations were 103.8 ± 8.7 and 65.3 ± 1.7 mmol/l, respectively, corresponding to a medulla-to-cortex sodium ratio of 1.59. At 30 min of saline diuresis, the medullary and cortical sodium concentrations decreased to 72.3 ± 1.0 and 56.0 ± 1.4 mmol/l, respectively, corresponding to a significantly reduced medulla-to-cortex sodium ratio of 1.29 (P < 0.05). At baseline prior to furosemide diuresis, the mean medullary and cortical sodium concentrations were 110.5 ± 3.6 and 66.7 ± 4.1 mmol/l, respectively, corresponding to a medulla-to-cortex sodium ratio of 1.66. At 30 min of furosemide diuresis, the medullary and cortical sodium concentrations decreased to 68.5 ± 0.3 and 58.9 ± 4.0 mmol/l, respectively, corresponding to a significantly reduced medulla-to-cortex sodium ratio of 1.16 (P < 0.05). One of the 4 pigs developed acute tubular necrosis likely related to prolonged hypoxia during intubation prior to the furosemide diuresis experiment. The medulla-to-cortex sodium ratio for this

  17. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  18. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  19. Sodium safety manual

    International Nuclear Information System (INIS)

    Hayes, D.J.; Gardiner, R.L.

    1980-09-01

    The sodium safety manual is based upon more than a decade of experience with liquid sodium at Berkeley Nuclear Laboratories (BNL). It draws particularly from the expertise and experience developed in the course of research work into sodium fires and sodium water reactions. It draws also on information obtained from the UKAEA and other sodium users. Many of the broad principles will apply to other Establishments but much of the detail is specific to BNL and as a consequence its application at other sites may well be limited. Accidents with sodium are at best unpleasant and at worst lethal in an extremely painful way. The object of this manual is to help prevent sodium accidents. It is not intended to give detailed advice on specific precautions for particular situations, but rather to set out the overall strategy which will ensure that sodium activities will be pursued safely. More detail is generally conveyed to staff by the use of local instructions known as Sodium Working Procedures (SWP's) which are not reproduced in this manual although a list of current SWP's is included. Much attention is properly given to the safe design and operation of larger facilities; nevertheless evidence suggests that sodium accidents most frequently occur in small-scale work particularly in operations associated with sodium cleaning and special care is needed in all such cases. (U.K.)

  20. Preparation of riboflavin specifically labeled in the 5'-hydroxymethyl terminus using a vitamin B2-aldehyde-forming enzyme from Schizophyllum commune

    International Nuclear Information System (INIS)

    Kekelidze, T.N.; Edmondson, D.E.; McCormick, D.B.

    1995-01-01

    A method is described for synthesis of riboflavin selectively labeled in the hydrogens at the 5'-hydroxymethyl position. In this method, a vitamin B 2 -aldehyde-forming enzyme from Schizophyllum commune is used to specifically and completely oxidize the 5'-hydroxymethyl of riboflavin to the 5'-aldehyde. This reaction is monitored spectrophotometrically by the reduction of 2,6-dichlorophenolindophenol at 600 nm. Appearance of aldehyde product was directly quantitated by reverse-phase high-performance liquid chromatography. Product is extracted from the incubation mixture by phenol after saturation with (NH 4 ) 2 SO 4 and then further purified by benzyl alcohol extraction. The 5'-aldehyde is reduced with appropriately labeled sodium borohydride to yield the vitamin specifically labeled in the 5'-hydroxymethyl group. (author)

  1. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride.

    Science.gov (United States)

    Graudal, Niels Albert; Hubeck-Graudal, Thorbjorn; Jurgens, Gesche

    2017-04-09

    In spite of more than 100 years of investigations the question of whether a reduced sodium intake improves health is still unsolved. To estimate the effects of low sodium intake versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum levels of renin, aldosterone, catecholamines, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides. The Cochrane Hypertension Information Specialist searched the following databases for randomized controlled trials up to March 2016: the Cochrane Hypertension Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov. We also searched the reference lists of relevant articles. Studies randomising persons to low-sodium and high-sodium diets were included if they evaluated at least one of the above outcome parameters. Two review authors independently collected data, which were analysed with Review Manager 5.3. A total of 185 studies were included. The average sodium intake was reduced from 201 mmol/day (corresponding to high usual level) to 66 mmol/day (corresponding to the recommended level).The effect of sodium reduction on blood pressure (BP) was as follows: white people with normotension: SBP: mean difference (MD) -1.09 mmHg (95% confidence interval (CI): -1.63 to -0.56; P = 0.0001); 89 studies, 8569 participants; DBP: + 0.03 mmHg (MD 95% CI: -0.37 to 0.43; P = 0.89); 90 studies, 8833 participants. High-quality evidence. Black people with normotension: SBP: MD -4.02 mmHg (95% CI:-7.37 to -0.68; P = 0.002); seven studies, 506 participants; DBP: MD -2.01 mmHg (95% CI:-4.37 to 0.35; P = 0.09); seven studies, 506 participants. Moderate-quality evidence. Asian people with normotension: SBP: MD -0.72 mmHg (95% CI: -3.86 to 2.41; P = 0.65); DBP: MD -1.63 mmHg (95% CI:-3.35 to 0

  2. Comparison of Prescribed and Measured Dialysate Sodium: A Quality Improvement Project.

    Science.gov (United States)

    Gul, Ambreen; Miskulin, Dana C; Paine, Susan S; Narsipur, Sriram S; Arbeit, Leonard A; Harford, Antonia M; Weiner, Daniel E; Schrader, Ronald; Horowitz, Bruce L; Zager, Philip G

    2016-03-01

    There is controversy regarding the optimal dialysate sodium concentration for hemodialysis patients. Dialysate sodium concentrations of 134 to 138 mEq/L may decrease interdialytic weight gain and improve hypertension control, whereas a higher dialysate sodium concentration may offer protection to patients with low serum sodium concentrations and hypotension. We conducted a quality improvement project to explore the hypothesis that prescribed and delivered dialysate sodium concentrations may differ significantly. Cross-sectional quality improvement project. 333 hemodialysis treatments in 4 facilities operated by Dialysis Clinic, Inc. Measure dialysate sodium to assess the relationships of prescribed and measured dialysate sodium concentrations. Magnitude of differences between prescribed and measured dialysate sodium concentrations. Dialysate sodium measured pre- and late dialysis. The least square mean of the difference between prescribed minus measured dialysate sodium concentration was -2.48 (95% CI, -2.87 to -2.10) mEq/L. Clinics with a greater number of different dialysate sodium prescriptions (clinic 1, n=8; clinic 2, n=7) and that mixed dialysate concentrates on site had greater differences between prescribed and measured dialysate sodium concentrations. Overall, 57% of measured dialysate sodium concentrations were within ±2 mEq/L of the prescribed dialysate sodium concentration. Differences were greater at higher prescribed dialysate sodium concentrations. We only studied 4 facilities and dialysate delivery machines from 2 manufacturers. Because clinics using premixed dialysate used the same type of machine, we were unable to independently assess the impact of these factors. Pressures in dialysate delivery loops were not measured. There were significant differences between prescribed and measured dialysate sodium concentrations. This may have beneficial or deleterious effects on clinical outcomes, as well as confound results from studies assessing the

  3. Sodium MR imaging of human brain neoplasms

    International Nuclear Information System (INIS)

    Kobayashi, Shu; Yoshikawa, Kohki; Takakura, Kintomo; Iio, Masahiro

    1988-01-01

    We reported the experience of the sodium magnetic resonance imaging of 5 patients with brain tumors (4 astrocytomas and 1 craniopharyngioma), using a Siemens 1.5 Tesla superconductive magnet. We used two-dimensional Fourier imaging with a spin-echo scanning sequence (and with the repetition time of 140 msec and the echo time of 11 - 14 msec). The radiofrequency was maintained at 17 MHz. Sodium MR imaging was achieved with a 64 x 64 data acquisition (30 mm slice thickness) in 19.1 min. On the sodium MRI, all four astrocytomas, along with the eye balls and the cerebrospinal fluid spaces, appeared as high-intensity areas. Peritumoral edema is also visualized as highly intense, so that it is difficult to discriminate tumor extent from the surrounding edema. Our comparative studies with malignant glioma cases using the same equipment are needed to clarify the relationship between sodium signal intensities and the malignancy of gliomas, and to evaluate the potential clinical utility of sodium MRI. A craniopharyngioma than contained a yellowish cystic fluid with a sodium concentration as high as CSF was shown on sodium MRI as a mass with highly intense signals. The ability to differentiate extracellular from intracellular sodium, that has been studied by several investigators, would greatly augment the clinical specificity of MR imaging. (author)

  4. Sodium-water clusters and their role in radiation chemistry

    International Nuclear Information System (INIS)

    Dhar, S.; Kestner, N.R.

    1988-01-01

    Studies of sodium-water clusters are presented which could serve as models for the recently suggested intermediate species in the radiation chemistry of water. The ionization potentials and the lower excited states of sodium with n-water molecules are calculated by ab initio quantum chemistry methods. The ionization potential calculated at the SCF level for the water monomer is 4.10 eV, which becomes 4.34 at the MP2 correlation level. The experimental value is 4.379 ± 0.002 eV. Structural data is presented for the lower members of the sodium with n-water clusters. In addition the Hartree-Fock calculations indicate that there should be some strong charge transfer to solvent transitions at higher energies. (author)

  5. High Dietary Sodium Intake Assessed by Estimated 24-h Urinary Sodium Excretion Is Associated with NAFLD and Hepatic Fibrosis.

    Science.gov (United States)

    Huh, Ji Hye; Lee, Kyong Joo; Lim, Jung Soo; Lee, Mi Young; Park, Hong Jun; Kim, Moon Young; Kim, Jae Woo; Chung, Choon Hee; Shin, Jang Yel; Kim, Hyun-Soo; Kwon, Sang Ok; Baik, Soon Koo

    2015-01-01

    Although high sodium intake is associated with obesity and hypertension, few studies have investigated the relationship between sodium intake and non-alcoholic fatty liver disease (NAFLD). We evaluated the association between sodium intake assessed by estimated 24-h urinary sodium excretion and NAFLD in healthy Koreans. We analyzed data from 27,433 participants in the Korea National Health and Nutrition Examination Surveys (2008-2010). The total amount of sodium excretion in 24-h urine was estimated using Tanaka's equations from spot urine specimens. Subjects were defined as having NAFLD when they had high scores in previously validated NAFLD prediction models such as the hepatic steatosis index (HSI) and fatty liver index (FLI). BARD scores and FIB-4 were used to define advanced fibrosis in subjects with NAFLD. The participants were classified into three groups according to estimated 24-h urinary excretion tertiles. The prevalence of NAFLD as assessed by both FLI and HSI was significantly higher in the highest estimated 24-h urinary sodium excretion tertile group. Even after adjustment for confounding factors including body fat and hypertension, the association between higher estimated 24-h urinary sodium excretion and NAFLD remained significant (Odds ratios (OR) 1.39, 95% confidence interval (CI) 1.26-1.55, in HSI; OR 1.75, CI 1.39-2.20, in FLI, both P sodium values. High sodium intake was independently associated with an increased risk of NAFLD and advanced liver fibrosis.

  6. Cross-linking by protein oxidation in the rapidly setting gel-based glues of slugs

    Science.gov (United States)

    Bradshaw, Andrew; Salt, Michael; Bell, Ashley; Zeitler, Matt; Litra, Noelle; Smith, Andrew M.

    2011-01-01

    SUMMARY The terrestrial slug Arion subfuscus secretes a glue that is a dilute gel with remarkable adhesive and cohesive strength. The function of this glue depends on metals, raising the possibility that metal-catalyzed oxidation plays a role. The extent and time course of protein oxidation was measured by immunoblotting to detect the resulting carbonyl groups. Several proteins, particularly one with a relative molecular mass (Mr) of 165×103, were heavily oxidized. Of the proteins known to distinguish the glue from non-adhesive mucus, only specific size variants were oxidized. The oxidation appears to occur within the first few seconds of secretion. Although carbonyls were detected by 2,4-dinitrophenylhydrazine (DNPH) in denatured proteins, they were not easily detected in the native state. The presence of reversible cross-links derived from carbonyls was tested for by treatment with sodium borohydride, which would reduce uncross-linked carbonyls to alcohols, but stabilize imine bonds formed by carbonyls and thus lead to less soluble complexes. Consistent with imine bond formation, sodium borohydride led to a 20–35% decrease in the amount of soluble protein with a Mr of 40–165 (×103) without changing the carbonyl content per protein. In contrast, the nucleophile hydroxylamine, which would competitively disrupt imine bonds, increased protein solubility in the glue. Finally, the primary amine groups on a protein with a Mr of 15×103 were not accessible to acid anhydrides. The results suggest that cross-links between aldehydes and primary amines contribute to the cohesive strength of the glue. PMID:21525316

  7. The determination of specific surface of sodium polyuranates

    International Nuclear Information System (INIS)

    Bilgin, B.; Atun, G.

    2002-01-01

    Three different sodium polyuranates were prepared by titration of uranyl nitrate with a sodium hydroxide solution labeled with 22 Na as the radiotracer. Polyuranates whose composition was *Na 2 O.7,5UO 3 .11H 2 O (sample A), *Na 2 O.4,3 UO 3 .4,7H 2 O (sample B), and *Na 2 O.2UO 3 .4H 2 O (sample C) were precipitated at pH 5.6, 8.5 and 11.2, respectively. The specific surface areas of these samples were determined by the BET method using methylene blue (MB) as the adsorbate. The sodium polyuranate surfaces were saturated by sequential adsorption of MB. The adsorption data gave an S-shaped isotherm and were fitted to the BET equation. The specific surface areas calculated from the BET isotherm decreased in order A > B > C. The isotope and ion exchange reactions between the sodium polyuranates and Li + , Na + , K + , Rb + , Cs + , Ca 2+ , Sr 2+ , and Ba 2+ ions were compared before and after MB coverage. The results showed that the isotope and ion exchange fractions decrease on the covered surfaces indicating particle diffusion mechanism dominated exchange reactions

  8. Molecular Surface of JZTX-V (β-Theraphotoxin-Cj2a Interacting with Voltage-Gated Sodium Channel Subtype NaV1.4

    Directory of Open Access Journals (Sweden)

    Ji Luo

    2014-07-01

    Full Text Available Voltage-gated sodium channels (VGSCs; NaV1.1–NaV1.9 have been proven to be critical in controlling the function of excitable cells, and human genetic evidence shows that aberrant function of these channels causes channelopathies, including epilepsy, arrhythmia, paralytic myotonia, and pain. The effects of peptide toxins, especially those isolated from spider venom, have shed light on the structure–function relationship of these channels. However, most of these toxins have not been analyzed in detail. In particular, the bioactive faces of these toxins have not been determined. Jingzhaotoxin (JZTX-V (also known as β-theraphotoxin-Cj2a is a 29-amino acid peptide toxin isolated from the venom of the spider Chilobrachys jingzhao. JZTX-V adopts an inhibitory cysteine knot (ICK motif and has an inhibitory effect on voltage-gated sodium and potassium channels. Previous experiments have shown that JZTX-V has an inhibitory effect on TTX-S and TTX-R sodium currents on rat DRG cells with IC50 values of 27.6 and 30.2 nM, respectively, and is able to shift the activation and inactivation curves to the depolarizing and the hyperpolarizing direction, respectively. Here, we show that JZTX-V has a much stronger inhibitory effect on NaV1.4, the isoform of voltage-gated sodium channels predominantly expressed in skeletal muscle cells, with an IC50 value of 5.12 nM, compared with IC50 values of 61.7–2700 nM for other heterologously expressed NaV1 subtypes. Furthermore, we investigated the bioactive surface of JZTX-V by alanine-scanning the effect of toxin on NaV1.4 and demonstrate that the bioactive face of JZTX-V is composed of three hydrophobic (W5, M6, and W7 and two cationic (R20 and K22 residues. Our results establish that, consistent with previous assumptions, JZTX-V is a Janus-faced toxin which may be a useful tool for the further investigation of the structure and function of sodium channels.

  9. Assessment of flow induced vibration in a sodium-sodium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)], E-mail: prakash@igcar.gov.in; Thirumalai, M.; Prabhakar, R.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    2009-01-15

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. It is a liquid metal sodium cooled pool type fast reactor with all primary components located inside a sodium pool. The heat produced due to fission in the core is transported by primary sodium to the secondary sodium in a sodium to sodium Intermediate Heat Exchanger (IHX), which in turn is transferred to water in the steam generator. PFBR IHX is a shell and tube type heat exchanger with primary sodium on shell side and secondary sodium in the tube side. Since IHX is one of the critical components placed inside the radioactive primary sodium, trouble-free operation of the IHX is very much essential for power plant availability. To validate the design and the adequacy of the support system provided for the IHX, flow induced vibration (FIV) experiments were carried out in a water test loop on a 60 deg. sector model. This paper discusses the flow induced vibration measurements carried out in 60 deg. sector model of IHX, the modeling criteria, the results and conclusion.

  10. Synthesis and thermolysis of sodium hexachloromolybdate

    International Nuclear Information System (INIS)

    Kushakbaev, A.; Terishkhanova, I.G.; Parpiev, N.A.; Adylova, Sh.N.

    1985-01-01

    Synthesis of Na 3 MoCl 6 and the process of its thermal decomposition are described. Sodium hexachloromolybdate is synthesized by means of molybdenum chloride compolunds (MoCl 5 ; MoCl 5 +Mo, MoCl 3 ) interaction with sodium chloride at moderate temperatures in nitrogen atmosphere. It is shown, that Na 3 MoCl 6 thermolysis in conventional conditions takes place in two stages: the first one (570-600 K) corresponds to the formation of mixture MoO 2 +NaMoCl 4 +5NaCl, the second one (930 K) - to MoO 3 +3NaCl formation. In an inert atmosphere at 920 K a mixture of metal molybdenum and sodium chloride is observed

  11. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, (3)

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Hirata, Masaru.

    1978-01-01

    Sodium vapour and sodium mist in the cover gas of a sodium system of a fast breeder reactor cause various problems. In this report, with the results of measurements of sodium mist concentration, the distribution of sodium mist diameter in cover gas was analytically obtained. The analysis was made by using the different nucleus model B. The measurement of the concentration of sodium mist was carried out with a sodium mist pot designed by the author. The experiment was done at the sodium temperature of 400 and 500 degree centigrade. The relations among sodium temperature, upper wall temperature, and the sodium mist concentration in cover gas were obtained. Evaluation of effective condensed nuclear radius in the cover gas was made by the comparison of analysis and experimental results. The results of this evaluation shows the following conclusions. It is impossible to express the distribution of sodium mist diameter by normal distribution or logarithmic normal distribution. Drop of sodium temperature results in the decrease of weight mean radius of generated sodium mist. Drop of upper wall temperature causes the decrease of weight mean radius, and increases sodium mist concentration. (Kato, T.)

  12. An investigation of sodium iodide solubility in sodium-stainless steel systems

    International Nuclear Information System (INIS)

    Sagawa, Norihiko; Tashiro, Suguru

    1996-01-01

    Sodium iodide and major constituents of stainless steel in sodium are determined by using the steel capsules to obtain a better understanding on contribution of the constituents to the apparent iodide solubility in sodium. The capsule loaded with 20 g sodium and 0.1 - 0.3 g powder of sodium iodide is heated at its upper part in a furnace and cooled at its bottom on brass plates to establish a large temperature gradient along the capsule tube. After a given period of equilibration, the iodide and constituents are fixed in solidified sodium by quick quenching of the capsules. Sodium samples are taken from the sectioned capsule tube and submitted to sodium dissolution by vaporized water for determination of the iodine and to vacuum distillation for determination of the metal elements. Iron and nickel concentrations are observed to be lower in the samples at higher iodine concentrations. Chromium and manganese concentrations are seen to be insensitive to the iodine concentrations. The observations can be interpreted by a model that sodium oxide combines with metal iodide in sodium to form a complex compound and with consideration that the compound will fall and deposit onto the bottom of the capsule by thermal diffusion. (author)

  13. Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Du Feipeng; Yang Yingkui; Xie Xiaolin; Wu Kangbing; Gan Tian; Liu Lang

    2008-01-01

    Water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes (MWNT-g-P(SSS-co-AA)) with core-shell nanostructure were successfully synthesized by in situ free radical copolymerization of sodium 4-strenesulfonate (SSS) and acrylic acid (AA) in the presence of MWNTs terminated with vinyl groups; their structure was characterized by FTIR, 1 H NMR, Raman, TGA and TEM. The results showed that the thickness and content of the copolymer layer grafted onto the MWNT surface are about 7-12 nm and 82.3%, respectively. The P(SSS-co-AA) covalently grafted on MWNTs provides MWNT-g-P(SSS-co-AA) with good hydrophilicity and solubility in water. Then a novel MWNT-g-P(SSS-co-AA)-modified glassy carbon electrode was fabricated by coating; its electrochemical properties were evaluated by electrochemical probe of K 3 [Fe(CN) 6 ], and its catalytic behaviors to the electrochemical oxidation processes of dopamine (DA) and serotonin (5-HT) were investigated. Since the MWNT-g-P(SSS-co-AA)-modified electrode possesses strong electron transfer capability, high electrochemical activity and catalytic ability, it can be used in sensitive, selective, rapid and simultaneous monitoring of biomolecules

  14. 21 CFR 184.1697 - Riboflavin-5′-phosphate (sodium).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Riboflavin-5â²-phosphate (sodium). 184.1697 Section... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1697 Riboflavin-5′-phosphate (sodium). (a) Riboflavin-5′-phosphate (sodium) (C17H20N4O9PNa·2H2O, CAS Reg. No 130-40-5) occurs as the dihydrate in yellow...

  15. 49 CFR 173.189 - Batteries containing sodium or cells containing sodium.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries containing sodium or cells containing sodium. 173.189 Section 173.189 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.189 Batteries containing sodium or cells containing sodium. (a...

  16. Use of Sodium Hypochlorite for the Control of Bakanae Disease in Rice

    Directory of Open Access Journals (Sweden)

    Dong Bum Shin

    2014-12-01

    Full Text Available For application of sodium hypochlorite as a seed disinfectant to the control of bakanae disease caused by Gibberella fujikuroi in rice, we investigated the effects of sodium hypochlorite for antifungal activity, eliminating fungus from seeds and reducing disease occurrence in vitro and greenhouse. The viability of the pathogen was significantly reduced at 80 ml/l concentration of sodium hypochlorite, and the pathogens did not grow at over 100 ml/l concentration of sodium hypochlorite. The effect of eliminating fungus was 90% at treatment of 0.3% sodium hypochlorite solution to infected rice seeds for eight hours. When the rice seeds were soaked into 0.5% and 0.3% sodium hypochlorite solutions for twelve hours, the disease incidences of rice seedling were remarkably reduced to 4.3% and 4.7%, respectively, compared to 97.3% of non-treatment control. The rates of seedling stand were 29.1% and 26.9% higher with the sodium hypochlorite treatment than that of non-treatment control. When prochloraz and sodium hypochlorite was treated to naturally severely infested rice seeds with bakanae disease, the disinfection effect was higher than that of prochloraz alone treatment. When the seeds were soaked in sodium hypochlorite before or after prochloraz, the rate of seed contamination was low as 4.0% or 6.3%, respectively, compared to prochloraz alone as 13.7%. The disease incidence was low as 3.7% or 8.3%, respectively, compared to prochloraz alone as 14.3%. The disinfection effect of treatment with prochloraz after sodium hypochlorite was higher than that of treatment with prochloraz before sodium hypochlorite.

  17. Inert Reassessment Document for Gluconic Acid and Sodium Salt

    Science.gov (United States)

    Gluconic acid and D-gluconic acid are classified as List 3 inert ingredients, sodium gluconate is classified as a List 4B inert ingredient, and D-gluconic acid, sodium salt has not been categorized as to inert ingredient list classification status.

  18. Ultrasonic flow-meter test in sodium

    International Nuclear Information System (INIS)

    Ishii, Y.; Uno, O.; Kamei, M.

    1978-01-01

    As a part of the R and D programme for the prototype fast breeder reactor MONJU, an ultrasonic flow-meter (USFM) test is being carried out in sodium in the O-Arai Engineering Center of PNC. Prior to the present test, an in-water test was done at the manufacturer's as a preliminary investigation. The results reported here are the results up to the present. Calibration tests using the actual fluid were conducted on a 12-inch ultrasonic flow-meter with guide rods fabricated for sodium flow measurement. The test conditions in sodium were a temperature of 200 approximately 400 0 C and flow-rates of 0 approximately 6m/s. The main results are: (1) The linearity of output signal was good and accuracy was within 1%; (2) The alternating type of the USFM was much better than the fixed type in temperature change; (3) 2MHz of transducer frequency was better than 3MHz in sodium; (4) The S/N ratio of the ultrasonic signal and the length/diameter effect in a wide range in sodium surpassed the in-water test. (author)

  19. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    Science.gov (United States)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  20. Cavitation erosion in sodium flow, sodium cavitation tunnel testing

    International Nuclear Information System (INIS)

    Courbiere, Pierre.

    1981-04-01

    The high-volume sodium flows present in fast neutron reactors are liable to induce cavitation phenomena in various portion of the sodium lines and pumps. The absence of sufficient data in this area led the C.E.A. to undertake an erosion research program in cavitating sodium flow. This paper discusses the considerations leading to the definition and execution of sodium cavitation erosion tests, and reviews the tests run with 400 0 C sodium on various steel grades: 316, 316 L, 316 Ti (Z8CNDT17-12), Poral (Z3CND18-12), 304 L and LN2 - clad 316 L (Ni coating-clad 316 L). Acoustic detection and signal processing methods were used with an instrument package designed and implemented at the Cadarache Nuclear Research Center