WorldWideScience

Sample records for sodium aluminosilicate scales

  1. Impact Of Sodium Oxalate, Sodium Aluminosilicate, and Gibbsite/Boehmite on ARP Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodium aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.

  2. Sodium Aluminosilicate Formation in Tank 43H Simulants

    International Nuclear Information System (INIS)

    Wilmarth, W.R.; Walker, D.D.; Fink, S.D.

    1997-11-01

    This work studied the formation of a sodium aluminosilicate, Na 8 Al 6 Si 6 O 24 (NO 3 ) 2?4 H 2 O, at 40 degree 110 degree C in simulated waste solutions with varied amounts of silicon and aluminum. The data agree well with literature solubility data for sodalite, the analogous chloride salt. The following conclusions result from this work: (1) The study shows, by calculation and experiments, that evaporation of the September 1997 Tank 43H inventory will only form minor quantities of the aluminosilicate. (2) The data indicate that the rate of formation of the nitrate enclathrated sodalite solid at these temperatures falls within the residence time (<; 4 h) of liquid in the evaporator. (3) The silicon in entrained Frit 200 transferred to the evaporator with the Tank 43H salt solution will quantitatively convert to the sodium aluminosilicate. One kilogram of Frit 200 produces 2.1 kg of the sodium aluminosilicate

  3. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    International Nuclear Information System (INIS)

    Poirier, M.; Thomas Peters, T.; Fernando Fondeur, F.; Samuel Fink, S.

    2008-01-01

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached ∼10 psi while processing ∼1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and

  4. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  5. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  6. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...

  7. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    International Nuclear Information System (INIS)

    Rosencrance, S.

    2003-01-01

    The synthesis of sodium aluminosilicate solids phases precipitated from NO 2 /NO 3 -free and NO 2 /NO 3 -rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO 2 /NO 3 -rich crystalline sodalite; and (4) NO 2 /NO 3 -rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing

  8. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Xiang, Ye; Du, Jincheng; Smedskjær, Morten Mattrup

    2013-01-01

    the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role...

  9. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses.......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...

  10. Processing of radioactive ruthenium with aluminosilicate gels

    International Nuclear Information System (INIS)

    Kanno, Takuji; Ichinose, Yasuhiro; Ito, Katsuo

    1979-01-01

    Coprecipitation of radioactive Ru with hydroxides has been studied for the purpose of the management of the high level waste from the nuclear fuel reprocessing. Aluminosilicate gel used as coprecipitant was prepared by addition of aqueous sodium hydroxide to sodium aluminate-sodium silicate solution containing ruthenium nitrate. Ruthenium quantitatively precipitates under the conditions, aluminate > 4 x 10 -2 M, Al/Si 0 C. However, volatilization rate of Ru is suppressed by coating with mullite phase into which aluminosilicate gel transformes above 900 0 C. The amount of Ru volatilized in Ar-flow was reduced to about 10% of that in air-flow. (author)

  11. The chemical durability of alkali aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.

    1983-09-01

    The aqueous durabilities of a series of glasses based on the sodium aluminosilicate system (Na 2 O-Al 2 O 3 -SiO 2 ) have been studied. The effects of molecular substitution of K 2 O or CaO for Na 2 O, and B 2 O 3 for Al 2 O 3 have been investigated. The temperature dependence of leaching in the Na 2 O-B 2 O 3 -Al 2 O 3 -SiO 2 system was studied with glasses containing 2 wt percent simulated UO 2 fuel recycle waste. The results confirm that aluminosilicate glasses are more durable than their borosilicate counterparts. The leaching results are explained in terms of glass structure and bonding, and a general leaching mechanism for aluminosilicate glasses is presented

  12. Corrosion of K-3 glass-contact refractory in sodium-rich aluminosilicate melts

    International Nuclear Information System (INIS)

    Lu, X.D.; Gan, H.; Buechele, A.C.; Pegg, I.L.

    1999-01-01

    The corrosion of the glass-contact refractory Monofrax K-3 in two sodium-rich aluminosilicate melts has been studied at 1,208 and 1,283 C using a modified ASTM procedure with constant agitation of the melt by air bubbling. The results for the monolithic refractory indicate a fast initial stage involving phase dissolution and transformation and a later passivated stage in which the surface of the refractory has been substantially modified. The composition of the stable spinel phase in the altered layer on monolithic coupons of K-3 is almost identical to the equilibrium composition bracketed by the dissolution of powdered K-3 into under-saturated melts on the other. The temperature and melt shear viscosity were found to have significant effects on the rates of K-3 dissolution and transformation

  13. Modification of Lime Mortars with Synthesized Aluminosilicates

    Science.gov (United States)

    Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota

    2017-10-01

    The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime

  14. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    Science.gov (United States)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  15. Aqueous dissolution of sodium aluminosilicate geopolymers derived from metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Z., E-mail: zaynab.aly@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Vance, E.R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Perera, D.S. [School of Materials Science, University of NSW, Kensington, NSW 2052 (Australia)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer In dilute solutions, Na, Al and Si releases were not sensitive to pH in range 4-10. Black-Right-Pointing-Pointer On heating from 18 to 90 Degree-Sign C in DIW, Na dissolution rate increased by a factor of {approx}4. Black-Right-Pointing-Pointer Elemental extractions in DIW at 18 Degree-Sign C increased linearly with time over 1-7 days. Black-Right-Pointing-Pointer Na release kinetics in DIW followed a pseudo-second-order kinetic model. Black-Right-Pointing-Pointer Contact with KCl, KHCO{sub 3} and phthalate buffers (pH6 and 10) resulted in Na{sup +} {r_reversible} K{sup +} exchange. - Abstract: In dilute aqueous solutions, the elemental releases of Na, Al and Si from a metakaolin-based sodium aluminosilicate geopolymer were not very sensitive to pH in the range of 4-10 but increased outside this range, particularly on the acidic side. To minimise pH drifts, experiments were carried out using small amounts of graded powders in relatively large volumes of water. In deionised water, the Na dissolution rate in 7 days was dominant and increased by at least a factor of {approx}4 on heating from 18 to 90 Degree-Sign C, with greater increases in the extractions of Al and Si. At 18 Degree-Sign C the elemental extractions in deionised water increased approximately linearly with time over the 1-7 days period. Further exposure led to a slower extraction into solution for Na and Si, with a decrease in extraction of Al. It was deduced that framework dissolution was important in significantly acidic or alkaline solutions, but that contributions from water transfer from pores to elemental extractions were present, even at low temperatures in neutral solutions. It was also deduced from the Na release data that the Na leaching kinetics of geopolymer in deionised water (dilute solutions) followed the pseudo-second-order kinetic model and the pseudo-second-order rate constant evaluated. Contact with KCl, KHCO{sub 3}, and pH {approx}6 and 10

  16. Hydrothermal reaction of albite and a sodium aluminosilicate glass: A solid-state NMR study

    Science.gov (United States)

    Yang, Wang-hong Alex; Kirkpatrick, R. James

    1989-04-01

    We present here a solid-state NMR study of the structure and chemical composition of the products and mechanisms of the reaction of crystalline low albite and a glass of nearly albite composition with aqueous solutions of pH from 1 to 11 at 250°C. For the crystalline albite, there are no detectable bulk or surface structural changes due to aqueous attack, consistent with the idea that both cation exchange and disruption of the aluminosilicate framework occur only near the mineral/solution interface and that the hydrated surface layer, if it exists, is not more than about 30 Å thick. This reaction occurs by solution/reprecipitation, and its rate decreases with increasing solution pH, supporting the idea that the dissolution of feldspar is initiated by cation-exchange. For the glass, the reaction proceeds by cation exchange of protons for Na +, incorporation of molecular water into the bulk glass, and a small amount of depolymerization of the aluminosilicate framework in the interior of the glass. Cation exchange becomes less important with increasing solution pH. The incorporation of molecular water and cation-exchange cause structural changes in the glass via solidstate adjustment without dissolution/reprecipitation. The large cations in the hydrated glass (Na and K) probably have a shell of water molecules around them, with a maximum average coordination number of six. The secondary phases formed from both albite and the glass are often amorphous and can be well characterized by NMR. The compositional and structural variations of the amorphous phases are important factors in these reactions and cannot be ignored in theoretical models of aluminosilicate dissolution. As expected, the aluminum coordination in the secondary phases changes from six-fold to four-fold as the solution pH increases.

  17. Decomposition of aluminosilicate ores of Afghanistan by hydrochloric acid

    International Nuclear Information System (INIS)

    Mamatov, E.D.; Khomidi, A.K.

    2015-01-01

    Present article is devoted to decomposition of aluminosilicate ores of Afghanistan by hydrochloric acid. The physicochemical properties of initial aluminosilicate ores were studied by means of X-ray phase, differential-thermal analysis methods. The chemical and mineral composition of aluminosilicate ores was considered. The kinetics of acid decomposition of aluminosilicate ores composed of two stages was studied as well. The flowsheets of complex processing of aluminium comprising ores by means of chloric and acid methods were proposed.

  18. Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2016-12-01

    Full Text Available Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH and cetyltrimethylammonium bromide (CTAB and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal.

  19. Investigation of aluminosilicate refractory for solid oxide fuel cell applications

    Science.gov (United States)

    Gentile, Paul Steven

    Stationary solid oxide fuel cells (SOFCs) have been demonstrated to provide clean and reliable electricity through electro-chemical conversion of various fuel sources (CH4 and other light hydrocarbons). To become a competitive conversion technology the costs of SOFCs must be reduced to less than $400/kW. Aluminosilicate represents a potential low cost alternative to high purity alumina for SOFC refractory applications. The objectives of this investigation are to: (1) study changes of aluminosilicate chemistry and morphology under SOFC conditions, (2) identify volatile silicon species released by aluminosilicates, (3) identify the mechanisms of aluminosilicate vapor deposition on SOFC materials, and (4) determine the effects of aluminosilicate vapors on SOFC electrochemical performance. It is shown thermodynamically and empirically that low cost aluminosilicate refractory remains chemically and thermally unstable under SOFC operating conditions between 800°C and 1000°C. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) of the aluminosilicate bulk and surface identified increased concentrations of silicon at the surface after exposure to SOFC gases at 1000°C for 100 hours. The presence of water vapor accelerated surface diffusion of silicon, creating a more uniform distribution. Thermodynamic equilibrium modeling showed aluminosilicate remains stable in dry air, but the introduction of water vapor indicative of actual SOFC gas streams creates low temperature (active anode interface.

  20. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    OpenAIRE

    Lago, Diana Carolina; Prado, Miguel Oscar

    2016-01-01

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the cry...

  1. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Science.gov (United States)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  2. Design study on sodium-cooled middle-scale modular reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled middle-scale modular reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled middle-scale modular reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled middle-scale modular reactor performed in JFY2001, which is the first year of Phase 2. As the construction cost of the sodium-cooled middle-scale modular reactor, which has been constructed in Phase 1, was about 10% higher than that of the sodium-cooled large-scale reactor, a new concept of the middle-scale modular reactor, which is expected to be equal to the large-scale reactor from a viewpoint of economic competitiveness, has been re-constructed based on the design of the advanced loop type reactor. After that, fundamental specifications of main systems and components for the new concept have been set, and critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled middle-scale modular reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  3. XPS analysis of aluminosilicate microspheres bioactivity tested in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Todea, M.; Vanea, E. [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania); Bran, S. [University of Medicine and Pharmacy “Iuliu Haţieganu”, Department of Cranio-Maxillofacial Surgery, 400029 Cluj-Napoca (Romania); Berce, P. [Technical University of Cluj-Napoca, Faculty of Machine Building and National Centre of Rapid Prototyping, 400641 Cluj-Napoca (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania)

    2013-04-01

    The study aims to characterize surface properties of aluminosilicate microspheres incorporating yttrium, with potential biomedical applications. Micrometric particles of spherical shape were obtained by spray drying method. The behavior of aluminosilicate microspheres without yttrium and with yttrium was investigated under in vitro conditions, by seven days incubation in simulated body fluid (SBF). The surface elemental composition and the atomic environments on outermost layer of the microspheres, prior to and after incubation in SBF were evaluated by X-ray photoelectron spectroscopy (XPS) in order to investigate their bioactivity. The results were analyzed to underline the effect of yttrium addition on surface properties of the aluminosilicate microspheres and implicitly on the behavior of the samples in simulated body environments.

  4. Investigation on the Stability of Aluminosilicate Colloids by Various Analytical Tools

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Y.; Lee, D. H.; Yun, J. I. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-05-15

    Colloids are ubiquitous in natural aquatic systems. Aquatic colloids may play a significant carrier role for radionuclide migration in aquifer systems. Being omnipresent in natural aquatic systems, aluminosilicate colloids are considered as a kernel for various aquatic colloids. Characterization of aluminosilicate colloids formed under various geochemical conditions is of importance to understand their chemical behavior in natural aquatic systems. In this work, a preliminary study on the formation of aluminosilicate colloids with a help of colorimetry and other colloid detection techniques is presented

  5. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-01-01

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  6. Formation and stability of aluminosilicate colloids by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Yuniati

    2011-02-15

    Colloids are ubiquitous in natural waters. Colloid-facilitated migration is of importance in safety assessment of a nuclear waste disposal. Aluminosilicate colloids are considered to be the kernel of aquatic colloids. Their stability is affected by a number of geochemical parameters. This work aims to study qualitatively and quantitatively the stability of aluminosilicate colloids formed by coprecipitation under various geochemical conditions, i.e. pH, concentration of Al and Si metal ions, ionic strength, and omnipresent cations (Na{sup +}, Ca{sup 2+}, and Mg{sup 2+}). The work is performed by colorimetric method and laser-induced breakdown detection (LIBD). Two consecutive phase separations at 450 nm and 1 kDa are applied to separate the precipitates and colloids from the ionic species. By means of colorimetry, Si and Al can be detected down to 5.8 x10{sup -8} M and 7.4x10{sup -7} M, respectively. On the other hand, LIBD is able to quantify the colloidal size and its number density down to several ppt. Depending on the concentration of Al and Si metal ions, the formation trend of aluminosilicate colloid changes following its solubility curve. The lower the concentration, the higher the pH range in which the colloids start to emerge. Furthermore, the colloids are stable at higher Al and Si concentration and at low ionic strength. In the low pH range, cations provide different effects at low and high ionic strengths. At high ionic strength, the colloids are stable in the presence of a larger cation, while all cations exhibit similar effects at low ionic strength. However, in the high pH range, valence seems to have a stronger effect than ionic radius; colloids are more stable in the presence of monovalent cations than divalent ones. Meanwhile, XRD shows non- and/or poor crystalline structure of the aluminosilicate species. Nevertheless, results from XPS may suggest that the chemical composition (Si/Al ∼ 0.6) of the aluminosilicate precipitates is sillimanite or

  7. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  8. Laboratory-scale sodium-carbonate aggregate concrete interactions

    International Nuclear Information System (INIS)

    Westrich, H.R.; Stockman, H.W.; Suo-Anttila, A.

    1983-09-01

    A series of laboratory-scale experiments was made at 600 0 C to identify the important heat-producing chemical reactions between sodium and carbonate aggregate concretes. Reactions between sodium and carbonate aggregate were found to be responsible for the bulk of heat production in sodium-concrete tests. Exothermic reactions were initiated at 580+-30 0 C for limestone and dolostone aggregates as well as for hydrated limestone concrete, and at 540+-10 0 C for dehydrated limestone concrete, but were ill-defined for dolostone concrete. Major reaction products included CaO, MgO, Na 2 CO 3 , Na 2 O, NaOH, and elemental carbon. Sodium hydroxide, which forms when water is released from cement phases, causes slow erosion of the concrete with little heat production. The time-temperature profiles of these experiments have been modeled with a simplified version of the SLAM computer code, which has allowed derivation of chemical reaction rate coefficients

  9. Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates

    International Nuclear Information System (INIS)

    Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang.

    1996-01-01

    Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer

  10. Large scale sodium interactions. Part 1. Test facility design

    International Nuclear Information System (INIS)

    King, D.L.; Smaardyk, J.E.; Sallach, R.A.

    1977-01-01

    During the design of the test facility for large scale sodium interaction testing, an attempt was made to keep the system as simple and yet versatile as possible; therefore, a once through design was employed as opposed to any type of conventional sodium ''loop.'' The initial series of tests conducted at the facility call for rapidly dropping from 20 kg to 225 kg of sodium at temperatures from 825 0 K to 1125 0 K into concrete crucibles. The basic system layout is described. A commercial drum heater is used to melt the sodium which is in 55 gallon drums and then a slight argon pressurization is used to force the liquid sodium through a metallic filter and into a dump tank. Then the sodium dump tank is heated to the desired temperature. A diaphragm is mechanically ruptured and the sodium is dumped into a crucible that is housed inside a large steel test chamber

  11. Design study on sodium-cooled middle-scale modular reactor

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Hishida, Masahiko; Nibe, Nobuaki

    2003-09-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled middle-scale modular reactor, which has a possibility to fulfill the design requirements of the F/S. This report summarizes the results of the design study on the sodium-cooled middle-scale modular reactor performed in JFY2002, which is the second year of Phase 2. The construction cost of the sodium-cooled middle-scale modular reactor, which has been constructed in JFY2002, was almost achieved the economical goal. But its achievability was not sufficient to accept the concept. In order to reduce the construction cost, the plant concept has been re-constructed based on the 50 MWe plant studied in JFY2002. After that, fundamental specifications of main systems and components for the new concept have been set, and critical subjects have been examined and evaluated. In addition, in order to achieve the further cost reduction, the plant with simplified secondary system, the plant with electric magnetic pump in secondary system, and the fuel handling system are examined and evaluated. As a result of this study, the plant concept of the sodium-cooled middle-scale modular reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  12. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  13. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  14. Development of a New Ferrous Aluminosilicate Refractory Material for Investment Casting of Aluminum Alloys

    Science.gov (United States)

    Yuan, Chen; Jones, Sam; Blackburn, Stuart

    2012-12-01

    Investment casting is a time-consuming, labour intensive process, which produces complex, high value-added components for a variety of specialised industries. Current environmental and economic pressures have resulted in a need for the industry to improve current casting quality, reduce manufacturing costs and explore new markets for the process. Alumino-silicate based refractories are commonly used as both filler and stucco materials for ceramic shell production. A new ceramic material, norite, is now being produced based on ferrous aluminosilicate chemistry, having many potential advantages when used for the production of shell molds for casting aluminum alloy. This paper details the results of a direct comparison made between the properties of a ceramic shell system produced with norite refractories and a typical standard refractory shell system commonly used in casting industry. A range of mechanical and physical properties of the systems was measured, and a full-scale industrial casting trial was also carried out. The unique properties of the norite shell system make it a promising alternative for casting aluminum based alloys in the investment foundry.

  15. Hafnium in peralkaline and peraluminous boro-aluminosilicate glass, and glass subcomponents: a solubility study

    International Nuclear Information System (INIS)

    Davis, Linda L.; Darab, John G.; Qian, Maoxu; Zhao, Donggao; Palenik, Christopher S.; Li, Hong; Strachan, Denis M.; Li, Liyu

    2003-01-01

    A relationship between the solubility of hafnia (HfO2) and the host glass composition was explored by determining the solubility limits of HfO2 in peralkaline and peraluminous borosilicate glasses in the system SiO2-Al2O3-B2O3-Na2O, and in glasses in the system SiO2-Na2O-Al2O3 in air at 1450 C. The only Hf-bearing phase to crystallize in the peralkaline borosilicate melts is hafnia, while in the boron-free melts sodium-hafnium silicates crystallize. All peraluminous borosilicate melts crystallize hafnia, but the slightly peraluminous glasses also have sector-zoned hafnia crystals that contain Al and Si. The more peraluminous borosilicate glasses also crystallize a B-containing mullite. The general morphology of the hafnia crystals changes as peralkalinity (Na2O/(Na2O+Al2O3)) decreases, as expected in melts with increasing viscosity. In all of the glasses with Na2O > Al2O3, the solubility of hafnia is linearly and positively correlated with Na2O/(Na2O + Al2O3) or Na2O - Al2O3 (excess sodium), despite the presence of 5 to 16 mol% B2O3. The solubility of hafnia is higher in the sodium-aluminum borosilicate glasses than in the sodium-aluminosilicate glasses, suggesting that the boron is enhancing the effect that excess sodium has on the incorporation of Hf into the glass structure. The results of this solubility study are compared to other studies of high-valence cation solubility in B-free silicate melts. From this, for peralkaline B-bearing glasses, it is shown that, although the solubility limits are higher, the solution behavior of hafnia is the same as in B-free silicate melts previously studied. By comparison, also, it is shown that in peraluminous melts, there must be a different solution mechanism for hafnia: different than for peralkaline sodium-aluminum borosilicate glasses and different than for B-free silicate melts studied by others

  16. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  17. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    International Nuclear Information System (INIS)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-01-01

    We report results on lithium alumino-silicate ion source development in preparation for warm-dense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCX-II). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ∼1275 C, a space-charge-limited Li + beam current density of J ∼1 mA/cm 2 was obtained. The lifetime of the ion source was ∼50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 (micro) s.

  18. Mechanical Properties of Densified Tectosilicate Calcium-Aluminosilicate Glasses

    DEFF Research Database (Denmark)

    Johnson, Nicole; Lamberson, Lisa; Smedskjær, Morten Mattrup

    Aluminosilicate glasses are widely used in applications such as LCD glass, touchscreens for hand held devices and car windows. We have shown that the tectosilicate compositions exhibit an interesting non-monotonic variation in hardness with increasing SiO2 content. From 40% to 85 mol% SiO2......, hardness and indentation modulus both decrease, consistent with the topological constraint theory. Above 85 mol% SiO2 , hardness increases rapidly with increasing SiO2 content while modulus continues to decrease. A switch from shear to densification based on the species present in the glass has been...... proposed to explain this behavior. To reduce densification and study shear deformation independently, a series of calcium aluminosilicate glasses with tectosilicate compositions were densified by isostatic compression in a gas pressure chamber at elevated temperatures. The compressed glasses have increased...

  19. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  20. Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Elnahrawy, Amany Mohamed [Department of Solid State, Physics Division, National Research Center (NRC), Giza 12622, Cairo (Egypt); Kim, Yong Soo, E-mail: yskim2@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Ali, Ahmed I., E-mail: Ahmed_ali_2010@helwan.edu.eg [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Basic Science Department, Faculty of Industrial Education & Technology, Helwan University, Cairo 11281 (Egypt)

    2016-08-15

    Hybrid chitosan (CS)/calcium aluminosilicate nanocomposites thin films and membranes were prepared using a sol–gel method with three different concentrations of Al{sub 2}O{sub 3} (5, 7 and 10 mol. %). The prepared nanocomposites were characterized by transmission electron microscopy, X-ray diffraction and Fourier Transform Infrared spectroscopy. The optical properties of the prepared samples were analyzed by UV/Vis spectrophotometry and photoluminescence (PL) spectroscopy. The optical parameters revealed an increase in both the refractive index and band gap of the nanocomposites with increasing Al concentration. In addition, the PL spectra revealed a blue shift that was consistent with an increase in the optical band gap. These results suggest that CS/calcium aluminosilicate in two different forms can be a good candidate for optical sensors applications. - Highlights: • We show a large specific surface area of hybrid CS/calcium aluminosilicate thin films and membranes using sol-gel method. • Inorganic SiO{sub 2}-based phase are perfectly embedded onto chitosan matrix has a reliable stability. • CS/calcium aluminosilicate could be usable for optical sensors, planar waveguide, and bio-sensing.

  1. Characterization of Uranium Solids Precipitated with Aluminosilicates

    International Nuclear Information System (INIS)

    DUFF, MC

    2004-01-01

    At the Savannah River Site (SRS), the High-Level Waste (HLW) Tank Farms store and process high-level liquid radioactive wastes from the Canyons and recycle water from the Defense Waste Processing Facility. The waste is concentrated using evaporators to minimize the volume of space required for HLW storage. Recently, the 2H Evaporator was shutdown due to the crystallization of sodium aluminosilicate (NAS) solids (such as cancrinite and sodalite) that contained close to 10 weight percent of elementally-enriched uranium (U). Prior to extensive cleaning,the evaporator deposits resided on the evaporator walls and other exposed internal surfaces within the evaporator pot. Our goal is to support the basis for the continued safe operation of SRS evaporators and to gain more information that could be used to help mitigate U accumulation during evaporator operation. To learn more about the interaction between U(VI) and NAS in HLW salt solutions, we performed several fundamental studies to examine the mechanisms of U accumulation with NAS in highly caustic solutions. This larger group of studies focused on the following processes: co-precipitation/structural incorporation, sorption, and precipitation (with or without NAS), which will be reviewed in this presentation. We will present and discuss local atomic structural characterization data about U that has been co-precipitated with NAS solids (such as amorphous zeolite precursor material and sodalite) using X-ray absorption fine-structure (XAFS) spectroscopic techniques

  2. Immobilization of aqueous radioactive cesium wastes by conversion to aluminosilicate minerals

    International Nuclear Information System (INIS)

    Barney, G.S.

    1975-05-01

    Radioactive cesium (primarily 137 Cs) is a major toxic constituent of liquid wastes from nuclear fuel processing plants. Because of the long half-life, highly penetrating radiation, and mobility of 137 Cs, it is necessary to convert wastes containing this radioisotope into a solid form which will prevent movement to the biosphere during long-term storage. A method for converting cesium wastes to solid, highly insoluble, thermally stable aluminosilicate minerals is described. Aluminum silicate clays (bentonite, kaolin, or pyrophyllite) or hydrous aluminosilicate gels are reacted with basic waste solutions to form pollucite, cesium zeolite (Cs-D), Cs-F, cancrinite, or nepheline. Cesium is trapped in the aluminosilicate crystal lattice of the mineral and is permanently immobilized. The identity of the mineral product is dependent on the waste composition and the SiO 2 /Al 2 O 3 ratio of the clay or gel. The stoichiometry and kinetics of mineral formation reactions are described. The products are evaluated with respect to leachability, thermal stability, and crystal morphology. (U.S.)

  3. Catalysts based on mesoporous aluminosilicates for the hydroisomerization and hydrodearomatization processes

    Energy Technology Data Exchange (ETDEWEB)

    Vilesov, A.S.; Kulikov, A.B. [Russian Academy of Sciences (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis; Ostroumova, V.A.; Baranova, S.V.; Lysenko, S.V.; Kardashev, S.V.; Lasarev, A.V.; Egazaryants, S.V.; Karakhanov, E.A. [Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.; Maximov, A.L. [Russian Academy of Sciences (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis; Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.

    2011-07-01

    In the present work the activity of bifunctional catalysts based on mesoporous aluminosilicates in the hydroisomerization of n-alkanes and the hydrodearomatization (HDA) process has been investigated. The structured mesoporous aluminosilicates (Si/Al = 5/30) were prepared using hexadecylamine and Pluronic P{sub 123} as templates, with a specific surface area up to 1030 m{sup 2}/g and a pore size from 33 to 84 A. Bifunctional catalysts were prepared in the form of extrudates using boehmite as a binder with the platinum content of 0,5% by mass. The experiment was carried out in a flow reactor. The highest selectivity in the isomerization of n-dodecane and n-hexadecane was shown by catalysts based on mesoporous aluminosilicates with Si/Al =10 and 20. In the hydrogenation of a model feed of 10% (wt.) naphthalene in benzene, it was established that, depending on the module aluminosilicate, the conversion of naphthalene to decalin and tetralin may proceed quantitatively with no conversion of benzene to cyclohexane. Selectivity was in the range from 55 to 90% by decalin, and from 10 to 45% by tetralin. We found the conditions under which the only product of the hydrogenation of naphthalene is tetralin, but the conversion of naphthalene was up to 65%. Also, the activity of such catalysts for hydroisomerization and hydrodearomatization processes on the hydrotreated straight-run diesel fraction was investigated. It was established, that due to hydroisomerization, the maximum filtration temperature goes under -38 C, that allows to use it as a component of winter and arctic diesel fuels. (orig.)

  4. Postaccident heat removal: large-scale molten-fuel-sodium interaction experiments

    International Nuclear Information System (INIS)

    Johnson, T.R.; Pavlik, J.R.; Baker, L. Jr.

    1975-02-01

    Kilogram-scale interactions between molten UO 2 and sodium were performed in an unrestrained geometry to study the resulting energetics and fragmentation. The molten UO 2 was producted by the exothrmic reaction between uranium and MoO 3 powders. Under the conditions of the experiments completed to date, the short-rise-time pressure pulses created in the liquid phase had negligible work potential, and their magnitude did not increase with the amount of molten fuel. No significant gas-phase shock pressures were generated. The largest potential for mechanical work was the sodium vapor generated over a period of roughly 1 sec. About 20 percent of the heat was effective in generating vapor. The ex- perimental results show a marked tendency of molten UO 2 to form particulate after passage through only a few inches of sodium. Particle size distributions obtained under the conditions of the experiments were not significantly different from those obtained in prior small-scale tests and in TREAT tests. Also, the results indicate that the metallic component of the molten mixture formed larger particles than the oxide component. (U.S.)

  5. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  6. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  7. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  8. Optical spectroscopy and optical waveguide fabrication in Eu3+ and Eu3+/Tb3+ doped zinc–sodium–aluminosilicate glasses

    International Nuclear Information System (INIS)

    Caldiño, U.; Speghini, A.; Berneschi, S.; Bettinelli, M.; Brenci, M.; Pasquini, E.; Pelli, S.; Righini, G.C.

    2014-01-01

    Optical and spectroscopic properties of 2.0% Eu(PO 3 ) 3 singly doped and 5.0% Tb(PO 3 ) 3 –2.0% Eu(PO 3 ) 3 codoped zinc–sodium–aluminosilicate glasses were investigated. Reddish-orange light emission, with x=0.64 and y=0.36 CIE1931 chromaticity coordinates, is obtained in the europium singly doped glass excited at 393 nm. Such chromaticity coordinates are close to those (0.67,0.33) standard of the National Television System Committee for the red phosphor. When the sodium–zinc–aluminosilicate glass is co-doped with Tb 3+ and Eu 3+ , reddish-orange light emission, with (0.61,0.37) CIE1931 chromaticity coordinates, is obtained upon Tb 3+ excitation at 344 nm. This reddish-orange luminescence is generated mainly by 5 D 0 → 7 F 1 and 5 D 0 → 7 F 2 emissions of Eu 3+ , europium being sensitized by terbium through a non-radiative energy transfer. From an analysis of the Tb 3+ emission decay curves it is inferred that the Tb 3+ →Eu 3+ energy transfer might take place between Tb 3+ and Eu 3+ clusters through a short-range interaction mechanism, so that an electric dipole–quadrupole interaction appears to be the most probable transfer mechanism. The efficiency of this energy transfer is about 62% upon excitation at 344 nm. In the singly doped and codoped glasses multimode optical waveguides were successfully produced by Ag + –Na + ion exchange, and they could be characterized at various wavelengths. -- Highlights: • Reddish-orange light emission can be generated from Tb 3+ and Eu 3+ codoped zinc–sodium–aluminosilicate glasses excited at 344 nm. • The Eu 3+ is sensitized by Tb 3+ through a non-radiative energy transfer. • Highly multimode waveguides can be fabricated by diluted silver–sodium exchange. • This type of AlGaN LEDs pumped glass phosphors might be useful for generation of reddish-orange light

  9. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Santaquiteria, C., E-mail: ruiz.cs@ietcc.csic.es [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain); Skibsted, J. [Instrument Centre for Solid-State NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Fernandez-Jimenez, A.; Palomo, A. [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain)

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  10. An Empirical Model for Build-Up of Sodium and Calcium Ions in Small Scale Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Subriyer Nasir

    2011-05-01

    Full Text Available A simple models for predicting build-up of solute on membrane surface were formulated in this paper. The experiments were conducted with secondary effluent, groundwater and simulated feed water in small-scale of RO with capacity of 2000 L/d. Feed water used in the experiments contained varying concentrations of sodium, calcium, combined sodium and calcium. In order to study the effect of sodium and calcium ions on membrane performance, experiments with ground water and secondary effluent wastewater were also performed. Build-up of salts on the membrane surface was calculated by measuring concentrations of sodium and calcium ions in feed water permeate and reject streams using Atomic Absorption Spectrophotometer (AAS. Multiple linear regression of natural logarithmic transformation was used to develop the model based on four main parameters that affect the build-up of solute in a small scale of RO namely applied pressure, permeate flux, membrane resistance, and feed concentration. Experimental data obtained in a small scale RO unit were used to develop the empirical model. The predicted values of theoretical build-up of sodium and calcium on membrane surface were found in agreement with experimental data. The deviation in the prediction of build-up of sodium and calcium were found to be 1.4 to 10.47 % and 1.12 to 4.46%, respectively.

  11. Potassium/sodium ion exchange of sodium aluminosilicate and soda-lime glasses with potassium nitrate melts

    International Nuclear Information System (INIS)

    Richter, E.

    1983-08-01

    The alkali self-diffusion coefficients, the concentration-dependent interdiffusion coefficients, and the actual equilibrium constants of the ion exchange process were determinated for model glasses of the Na 2 O-Al 2 O 3 -SiO 2 type and the Na 2 O-CaO-SiO 2 type by nuclear techniques. The measured self-diffusion data and interdiffusion coefficients were used to estimate the stress profiles initiated by the K/Na exchange below the transformation temperature in the surface region. The activation volume of the sodium and potassium ions for diffusion through the surface zone stressed by ion exchange was determined. The disturbing influence of small concentrations of determined divalent cations in KNO 3 (especially Ca 2+ ) was investigated and thermodynamically described. Possibilities were demonstrated to remove these disturbances by anionic admixtures to the KNO 3 melt. Conclusions were drawn for the technical process of the chemical strengthening of glass by K/Na ion exchange at lower temperatures. (author)

  12. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    Science.gov (United States)

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  13. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  14. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  15. Large scale sodium-water reaction tests for Monju steam generators

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Hori, M.

    1976-01-01

    To demonstrate the safe design of the steam generator system of the prototype fast reactor Monju against the postulated large leak sodium-water reaction, a large scale test facility SWAT-3 was constructed. SWAT-3 is a 1/2.5 scale model of the Monju secondary loop on the basis of the iso-velocity modeling. Two tests have been conducted in SWAT-3 since its construction. The test items using SWAT-3 are discussed, and the description of the facility and the test results are presented

  16. Conceptual design for accelerator-driven sodium-cooled sub-critical transmutation reactors using scale laws

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates the reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scaled and verified through the methodology in this paper, which is referred to Advanced Liquid Metal Reactor (ALMR). A Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the integrated code system. Integrated Code System (ICS) consists of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related regions are analyzed once-through Results of conceptual design are attached in this paper. 5 refs., 4 figs., 1 tab. (Author)

  17. Investigation of Al–O–Al sites in an Na-aluminosilicate glass

    Indian Academy of Sciences (India)

    Unknown

    Despite 17OMAS NMR spectra of the sample in both fields do not give much information about the ... not be enough alkali or alkaline earth oxides for charge balancing to ... Although oxygen is the most abundant element in the aluminosilicates ...

  18. Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO3 Sodalite

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra; Liu, Qinyuan

    2004-01-01

    The precipitation of aluminosilicate phases from caustic nuclear wastes has proven to be problematic in a number of processes including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). In a collaboration between SNL and UCD, we have investigated why and how these phases form, and which conditions favor the formation of which phases. These studies have involved synthesis and characterization of aluminosilicate phases formed using a variety of synthesis techniques, kinetics of precipitation, structural investigations of aluminosilicate phases, thermodynamic calculations of aluminosilicate solubility, calorimetric studies of aluminosilicate precipitation, and a limited investigation of radionuclide partitioning and ion exchange processes (involving typical tank fluid chemistries and these materials). The predominant phases that are observed in the aluminosilicate precipitates from basic tanks wastes (i.e. Hanford, Savannah River Site ''SRS'' wastes) are the salt enclathrated zeolites: sodium nitrate, sodium carbonate and sodium hydroxide sodalite and cancrinite. These phases precipitate readily from the high ionic strength, highly basic solutions at ambient temperatures as well as at elevated temperatures, with or without the presence of an external Al and Si source (both are contained in the waste solutions), and upon interactions with reactive soil components such as clays

  19. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  20. Sodium-cutting: a new top-down approach to cut open nanostructures on nonplanar surfaces on a large scale.

    Science.gov (United States)

    Chen, Wei; Deng, Da

    2014-11-11

    We report a new, low-cost and simple top-down approach, "sodium-cutting", to cut and open nanostructures deposited on a nonplanar surface on a large scale. The feasibility of sodium-cutting was demonstrated with the successfully cutting open of ∼100% carbon nanospheres into nanobowls on a large scale from Sn@C nanospheres for the first time.

  1. Optimization of diclofenac sodium profile from halloysite nanotubules.

    Science.gov (United States)

    Krejčová, Kateřina; Deasy, Patrick B; Rabišková, Miloslava

    2013-04-01

    Halloysite, aluminosilicate clay with the particle shape of multilayered hollow nanotubes, used in various non-medical applications, e.g. in ceramic industry, was discovered for pharmaceutical purposes in recent years. Several drugs of hydrophilic and lipophilic nature have been successfully encapsulated into halloysite tubules in order to modify their dissolution profile. The main goal of this experiment was to optimize the dissolution profile of diclofenac sodium - a drug with problematic solubility - from halloysite tubules using various polymers. Loading of the drug together with povidone or Eudragit® RS did not lead to drug burst effect reduction and its slower dissolution. In the case of povidone, drug improved wettability and solubilization rather than viscosity increasing expectations were observed. Eudragit® RS formed a solid dispersion with diclofenac sodium and thus the solvent/drug solution penetration through the polymer and not the drug solubility was the dissolution rate limiting factor. Reduction of the burst effect and further prolongation of drug release was achieved by coating the drug-loaded halloysite with chitosan. This formulation exhibited a diffusion-controlled prolonged release following Higuchi kinetic model.

  2. Properties of Aluminosilicate Refractories with Synthesized Boron-Modified TiO2 Nanocrystals

    Directory of Open Access Journals (Sweden)

    Claudia Carlucci

    2015-03-01

    ture was analysed by Scanning Electron Microscopy (SEM and energy dispersion spectroscopy (EDS. The bricks obtained with nanoadditives presented improved mechanical characteristics with respect to the typical aluminosilicates, presumably because of a better compac‐ tion during the raw materials’ mixing stage.

  3. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K....... The glasses with lower fictive temperature exhibit a larger change in the micromechanical properties when comparing wet and dry conditions. Finally, it is found that sub-critical crack growth is larger in the low fictive temperature glasses, indicating a diminished resistance against fatigue and stress...

  4. Creating large second-order optical nonlinearity in optical waveguides written by femtosecond laser pulses in boro-aluminosilicate glass

    Science.gov (United States)

    An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon

    2014-01-01

    The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.

  5. Intermediate-scale tests of sodium interactions with calcite and dolomite aggregate concretes

    International Nuclear Information System (INIS)

    Randich, E.; Acton, R.U.

    1983-09-01

    Two intermediate-scale tests were performed to compare the behavior of calcite and dolomite aggregate concretes when attacked by molten sodium. The tests were performed as part of an interlaboratory comparison between Sandia National Laboratories and Hanford Engineering Development Laboratories. Results of the tests at Sandia National Laboratories are reported here. The results show that both concretes exhibit similar exothermic reactions with molten sodium. The large difference in reaction vigor suggested by thermodynamic considerations of CO 2 release from calcite and dolomite was not realized. Penetration rates of 1.4 to 1.7 mm/min were observed for short periods of time with reaction zone temperatures in excess of 800 0 C during the energetic attack. The penetration was not uniform over the entire sodium-concrete contact area. Rapid attack may be localized due to inhomogeneities in the concrete. The chemical reaction zone is less then one cm thick for the calcite concrete but is about seven cm thick for the dolomite concrete

  6. Eu2+-doped OH− free calcium aluminosilicate glass: A phosphor for smart lighting

    International Nuclear Information System (INIS)

    Lima, S.M.; Andrade, L.H.C.; Rocha, A.C.P.; Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L.; Nunes, L.A.O.; Guyot, Y.; Boulon, G.

    2013-01-01

    In this paper, a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K

  7. Pilot scale-SO{sub 2} control by dry sodium bicarbonate injection and an electrostatic precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Pliat, M.J.; Wilder, J.M. [University of Washington, Seattle, WA (United States). Dept. of Civil & Environmental Engineering

    2007-10-15

    A 500 actual cubic feet gas per minute (acfm) pilot-scale SO{sub 2} control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400{sup o}F (204.5{sup o}C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO{sub 2}. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO{sub 2} concentrations were measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO{sub 2} collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO{sub 2} removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide-sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature.

  8. Optical spectroscopy and optical waveguide fabrication in Eu{sup 3+} and Eu{sup 3+}/Tb{sup 3+} doped zinc–sodium–aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Caldiño, U., E-mail: cald@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F. (Mexico); Speghini, A. [Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Berneschi, S. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Brenci, M. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Pasquini, E. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (Firenze) (Italy); Pelli, S. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Righini, G.C. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-03-15

    Optical and spectroscopic properties of 2.0% Eu(PO{sub 3}){sub 3} singly doped and 5.0% Tb(PO{sub 3}){sub 3}–2.0% Eu(PO{sub 3}){sub 3} codoped zinc–sodium–aluminosilicate glasses were investigated. Reddish-orange light emission, with x=0.64 and y=0.36 CIE1931 chromaticity coordinates, is obtained in the europium singly doped glass excited at 393 nm. Such chromaticity coordinates are close to those (0.67,0.33) standard of the National Television System Committee for the red phosphor. When the sodium–zinc–aluminosilicate glass is co-doped with Tb{sup 3+} and Eu{sup 3+}, reddish-orange light emission, with (0.61,0.37) CIE1931 chromaticity coordinates, is obtained upon Tb{sup 3+} excitation at 344 nm. This reddish-orange luminescence is generated mainly by {sup 5}D{sub 0}→{sup 7}F{sub 1} and {sup 5}D{sub 0} →{sup 7}F{sub 2} emissions of Eu{sup 3+}, europium being sensitized by terbium through a non-radiative energy transfer. From an analysis of the Tb{sup 3+} emission decay curves it is inferred that the Tb{sup 3+}→Eu{sup 3+} energy transfer might take place between Tb{sup 3+} and Eu{sup 3+} clusters through a short-range interaction mechanism, so that an electric dipole–quadrupole interaction appears to be the most probable transfer mechanism. The efficiency of this energy transfer is about 62% upon excitation at 344 nm. In the singly doped and codoped glasses multimode optical waveguides were successfully produced by Ag{sup +}–Na{sup +} ion exchange, and they could be characterized at various wavelengths. -- Highlights: • Reddish-orange light emission can be generated from Tb{sup 3+} and Eu{sup 3+} codoped zinc–sodium–aluminosilicate glasses excited at 344 nm. • The Eu{sup 3+} is sensitized by Tb{sup 3+} through a non-radiative energy transfer. • Highly multimode waveguides can be fabricated by diluted silver–sodium exchange. • This type of AlGaN LEDs pumped glass phosphors might be useful for generation of reddish-orange light.

  9. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  10. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  11. High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses

    International Nuclear Information System (INIS)

    Le Ngoc Chung; Chu Thi Thu Ha; Nguyen Thu Trang; Pham Thu Nga; Pham Van Hoi; Bui Van Thien

    2006-01-01

    High-power whispering-gallery-mode (WGM) lasing from highly erbium-doped sol-gel aluminosilicate microsphere cavity coupled to a half-tapered optical fiber is presented. The lasing output power as high as 0.45 mW (-3.5 dBm) was obtained from sol-gel glass microsphere cavity with diameters in the range of 40-150 μm. The sol-gel method for making highly concentration Er-doped aluminosilicate glasses with Er-ion concentrations from 0.125 to 0.65 mol% of Er 3+ is described. Controlling collected lasing wavelength at each WGM is possible by adjusting the distance between the half-taper fiber and the microcavity and by diameter of the waist of half-taper fiber. Using the analytic formulas we calculated the TE and TM lasing modes and it is shown that the experimental results are in good agreement with the calculation prediction

  12. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    International Nuclear Information System (INIS)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded 137 Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500 0 C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of 137 Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded 137 Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10 -10 kg m -2 s -1 , while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10 -12 kg m -2 s -1 . The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level 137 Cs aluminosilicate pellets were 1.29 x 10 -16 m 2 s -1 , 6.88 x 10 -17 m 2 s -1 , and 1.35 x 10 -17 m 2 s -1 , respectively

  13. Water simulation of sodium reactors

    International Nuclear Information System (INIS)

    Grewal, S.S.; Gluekler, E.L.

    1981-01-01

    The thermal hydraulic simulation of a large sodium reactor by a scaled water model is examined. The Richardson Number, friction coefficient and the Peclet Number can be closely matched with the water system at full power and the similarity is retained for buoyancy driven flows. The simulation of thermal-hydraulic conditions in a reactor vessel provided by a scaled water experiment is better than that by a scaled sodium test. Results from a correctly scaled water test can be tentatively extrapolated to a full size sodium system

  14. Thallium and manganese complexes involved in the luminescence emission of potassium-bearing aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Miguel A., E-mail: miguel.gomez@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garcia-Guinea, Javier, E-mail: guinea@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garrido, Fernando, E-mail: fernando.garrido@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Townsend, Peter D., E-mail: pdtownsend@gmail.com [School of Science and Technology, University of Sussex, Brighton BN1 9QH (United Kingdom); Marco, Jose-Francisco, E-mail: jfmarco@iqfr.csic.es [Instituto de Química-Física Rocasolano, CSIC, Calle Serrano 119, Madrid E-28006 (Spain)

    2015-03-15

    The luminescence emission at 285 nm in natural K-feldspar has been studied by Russian groups and associated with thallium ions in structural positions of K{sup +} sites as artificially thallium-doped feldspars display the same emission band. Here attention is focussed on spectra of CL emission bands centered near 285 and 560 nm from paragenetic adularia, moscovite and quartz micro-inclusions. With accesorial thallium they show clear resemblances to each other. Associated sedimentary and hydrothermal aluminosilicate samples collected from Guadalix (Madrid, Spain) were analyzed with a wide range of experimental techniques including Environmental Scanning Electron Microscopy (ESEM) with an attached X-Ray Energy-Dispersive Spectrometer (EDS) and a cathodoluminescence probe (CL) and Electron Probe Microanalysis (EPMA), X-Ray Fluorescence Spectrometry (XRF), Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), Differential and Thermogravimetric Analyses (DTA-TG), radioluminescence (RL), Mössbauer spectroscopy and X-Ray Photoelectron Spectrometry (XPS). The luminescence emission bands at 285 and 560 nm seem to be associated with hydrous thallium–manganese complexes bonded to potassium-bearing aluminosilicates since various minerals such as K-feldspar, moscovite and quartz micro-inclusions display similar CL spectra, accesorial thallium and hydroxyl groups. The presence of iron introduces a brown color which is attributed to submicroscopic iron oxides detectable in the optical and chemical microanalysis, but this does not contribute to the luminescence emission. The XPS Mn 2p spectrum of the adularia sample at room temperature is composed of a spin–orbit doublet plus clear shake-up satellite structure ∼4 eV above the main photoemision lines and is consistent with Mn{sup 2+} in good agreement with the observed luminescence emission at 560 nm for aluminosilicates produced by a {sup 4}T1({sup 4}G)→{sup 6}A1({sup 6}S) transition in tetrahedrally

  15. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  16. Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas R. Soelberg

    2004-01-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

  17. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    Science.gov (United States)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  18. The aluminosilicate fraction of North Pacific manganese nodules

    Science.gov (United States)

    Bischoff, J.L.; Piper, D.Z.; Leong, K.

    1981-01-01

    Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.

  19. In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids

    Science.gov (United States)

    Daniel, Isabelle; Gillet, Philippe; Poe, Brent T.; McMillan, Paul F.

    1995-03-01

    We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560 590 cm-1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm-1 reflects also some rearrangement of the Si-O-Al network.

  20. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    OpenAIRE

    Zhang, Long; Liu, Peng

    2008-01-01

    AbstractThe uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conduct...

  1. Concrete protection from sodium spills by intentionally defected liners, small-scale tests S9 and S10

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Boehmer, W.D.

    1975-07-01

    Two small scale tests were performed to determine the protection against sodium attack afforded to a concrete surface by a defected steel liner. An inert atmosphere was maintained over the sodium pool, which was heated electrically to 1600 0 F for 2--6 hrs in one test, to 1380 0 F for 19 hrs in the other. The 10 inch diameter vertical concrete surface was separated from the sodium by a liner plate in which small defects had been drilled. The plates provided significant protection against direct chemical attack, but most of the water was released from the concrete through the defects to react in the sodium pool region. The liners were corroded significantly in the defect areas. (U.S.)

  2. Sodium pool combustion test for small-scale leakage. Run-F7-4 and Run-F8-2

    International Nuclear Information System (INIS)

    Futagami, Satoshi; Ohno, Shuji

    2003-06-01

    Since 1998, the test (Run-F7 series) was performed to acquire the fundamental knowledge about the sodium pool growth and floor liner temperature in the case of small-scale leakage of sodium. And the test (Run-F8 series) was performed to know the floor liner material corrosion mechanism under high moisture conditions. In both test series, those influences are investigated by making the rate of sodium leakage, and moisture conditions of supply air into main parameters. As the last test, (1) Run-F7-4 (June 28, 2000) and (2) Run-F8-2 (January 26, 2000) were carried out. The conclusion of the following which receives sodium small-scale leakage (about 10 kg/h) was obtained from these experiments and the result of old Run-F7 and Run-F8 series. The peak temperature of a catch pan tends to become lower with decrease of sodium leak rate. Moreover, height of leak point and moisture conditions also become the factor which raises the catch pan peak temperature. Although it grows up in proportion [almost]to time in early stages of leakage about growth of a sodium pool, growth stops during the leakage. Moreover, the final growth area is mostly proportional to the rate of sodium leakage. It was suggested by the measured value of catch pan corrosion thickness and a material analysis result that the dominant corrosion mechanism was relatively slow Na-Fe double oxidization type corrosion even under the high moisture condition of 4.6 to 4.8%. And the chemical analysis result of a deposits also suggested that the catch pan material was in the environment in which molten salt type corrosion was not easy to occur. (author)

  3. Cavitation erosion scaling: tests on a pump impeller in water and in sodium

    International Nuclear Information System (INIS)

    Dorey, J.M.; Rascalou, T.

    1992-01-01

    Tests to quantify cavitation agressivity carried out in water and in sodium (400 deg) on a model pump impeller are presented. The polished samples method has been used. It can be now applied to curved surfaces such as impeller blades with the help of new measurement devices. Results are discussed regarding scaling laws for fluid-to-fluid transposition

  4. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, K K; Rybaltovsky, A A; Vel' miskin, V V; Likhachev, M E; Bubnov, M M; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Umnikov, A A; Gur' yanov, A N; Vechkanov, N N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Shestakova, I A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicate glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)

  5. Operating experience with sodium valves in the TNO-sodium test facilities

    International Nuclear Information System (INIS)

    Gasselt, M.L.G. van

    1974-01-01

    The development of sodium components for the SNR-300 in Holland has reached the stage where full scale testing in sodium has almost been finished and construction is at its height. It is against this background that a review is given of the weaknesses in one area or the other of the commercially available types of sodium valves used in TNO's smaller test facilities at Apeldoorn and TNO's 50 MW sodium components test facility at Hengelo. (U.S.)

  6. Aluminosilicate melts and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered structural and density changes

    Science.gov (United States)

    Bista, S; Stebbins, Jonathan; Hankins, William B.; Sisson, Thomas W.

    2015-01-01

    In the pressure range in the Earth’s mantle where many basaltic magmas are generated (1 to 3 GPa) (Stolper et al. 1981), increases in the coordination numbers of the network-forming cations in aluminosilicate melts have generally been considered to be minor, although effects on silicon and particularly on aluminum coordination in non-bridging oxygen-rich glasses from the higher, 5 to 12 GPa range, are now well known. Most high-precision measurements of network cation coordination in such samples have been made by spectroscopy (notably 27Al and 29Si NMR) on glasses quenched from high-temperature, high-pressure melts synthesized in solid-media apparatuses and decompressed to room temperature and 1 bar pressure. There are several effects that could lead to the underestimation of the extent of actual structural (and density) changes in high-pressure/temperature melts from such data. For non-bridging oxygen-rich sodium and calcium aluminosilicate compositions in the 1 to 3 GPa range, we show here that glasses annealed near to their glass transition temperatures systematically record higher recovered increases in aluminum coordination and in density than samples quenched from high-temperature melts. In the piston-cylinder apparatus used, rates of cooling through the glass transition are measured as very similar for both higher and lower initial temperatures, indicating that fictive temperature effects are not the likely explanation of these differences. Instead, transient decreases in melt pressure during thermal quenching, which may be especially large for high initial run temperatures, of as much as 0.5 to 1 GPa, may be responsible. As a result, the equilibrium proportion of high-coordinated Al in this pressure range may be 50 to 90% greater than previously estimated, reaching mean coordination numbers (e.g., 4.5) that are probably high enough to significantly affect melt properties. New data on jadeite (NaAlSi2O6) glass confirm that aluminum coordination increase

  7. UK position paper on sodium fires

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, G J [National Nuclear Corporation Ltd., Risley, Warrington, Cheshire (United Kingdom); Glass, D [United Kingdom Atomic Energy Authority, Dounreay Nuclear Power Development Establishment, Thurso, Caithness (United Kingdom); Newman, R N [Central Electricity Generating Board, Berekely Nuclear Laboratory, Berkeley, Gloucestershire (United Kingdom); Ramsdale, S A [United Kingdom Atomic Energy Authority, Safety and Reliability Directorate, Culcheth, Cheshire (United Kingdom); Snelling, K W [United Kingdom Atomic Energy Authority, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1989-07-01

    The UK has over several years developed a philosophy for the prevention, mitigation and extinguishment of sodium fires. The systems which were developed for PFR have been continuously revised and modified and from these considerations systems were proposed for CDFR. The latest phases of this development are described with reference to the CDFR plant. The current analytical and experimental work on fires, aerosols and sodium concrete reactions is also discussed. The UK are developing codes to analyse the effects of a sodium fire in a building and to model aerosol behaviour following a fire. Experimental work on small scale fires, aerosol behaviour, filtration devices and sodium concrete reaction is being carried out on a laboratory scale. Techniques for aerosol measurement and characterisation have also been developed and used both In the laboratory and large scale tests. Larger scale tests of sodium fire extinguishment techniques have also been performed. Currently a programme of tests (SOFA) of large scale fires in the open to investigate the chemical and physical changes in the aerosol and its dispersion in the atmosphere are just beginning. The UK studies are intended to both assist in the development of prevention and mitigation systems for design base and beyond design base accidents in any building which contains sodium (or sodium potassium alloy) and also to provide methods for assessing the risks from such accidents. (author)

  8. UK position paper on sodium fires

    International Nuclear Information System (INIS)

    Vaughan, G.J.; Glass, D.; Newman, R.N.; Ramsdale, S.A.; Snelling, K.W.

    1989-01-01

    The UK has over several years developed a philosophy for the prevention, mitigation and extinguishment of sodium fires. The systems which were developed for PFR have been continuously revised and modified and from these considerations systems were proposed for CDFR. The latest phases of this development are described with reference to the CDFR plant. The current analytical and experimental work on fires, aerosols and sodium concrete reactions is also discussed. The UK are developing codes to analyse the effects of a sodium fire in a building and to model aerosol behaviour following a fire. Experimental work on small scale fires, aerosol behaviour, filtration devices and sodium concrete reaction is being carried out on a laboratory scale. Techniques for aerosol measurement and characterisation have also been developed and used both In the laboratory and large scale tests. Larger scale tests of sodium fire extinguishment techniques have also been performed. Currently a programme of tests (SOFA) of large scale fires in the open to investigate the chemical and physical changes in the aerosol and its dispersion in the atmosphere are just beginning. The UK studies are intended to both assist in the development of prevention and mitigation systems for design base and beyond design base accidents in any building which contains sodium (or sodium potassium alloy) and also to provide methods for assessing the risks from such accidents. (author)

  9. Structure of aluminosilicate melts produced from granite rocks for the manufacturing of petrurgical glass-ceramics construction materials

    Directory of Open Access Journals (Sweden)

    Simakin, A. G.

    2001-12-01

    Full Text Available The aluminosilicate melt is a partly ordered phase and is the origin of glass for producing glassceramics and petrurgical materials. They are well extended used as construction materials for pavings and coatings. Its structure can be described in the terms of the aluminosilica tetrahedras coordination so-called Q speciation. The proportions of tetrahedra with different degree of connectivity with others (from totally connected to free has been studied by NMR and IR methods for sodium-silicate melts. Medium range structure can be characterized by the sizes of irreducible rings composed of the aluminosilica tetrahedra. Systematic increase of the four member rings proportion in the sequence of the Ab-An glasses were observed. The water dissolution in sodium-silicate glass affects the Q speciation. Cations network-modifiers positions in the melt structure are important to know since these cations stabilize particular structure configurations. Modification of the distribution of Na coordination in the sodium-silicate glass at water dissolution was determined by NMR spectroscopy. The observed modification of the hydrous aluminosilicate melt structure resulted in the shift of the eutectic composition in the granite system with decreasing of the crystallization field of feldspars. The feldspar growth rates show practically no dependence on the water content in the concentration range 2-4 wt.%. Likewise, the solved water has a little influence on the crystal growth rate of the lithium silicate phase in lithium containing glasses in accordance with estimated enhancing of the diffusion transport.

    Los fundidos de alumino-silicato son una fase parcialmente ordenada. Su estructura puede ser descrita en términos de la coordinación de tetraedros de alúmina-sílice también denominados especies Q. La proporción de tetraedros con diferente grado de conectividad entre si se ha investigado por espectroscopias de RMN e IR en fundidos de silicatos

  10. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  11. Intermediate-scale sodium-concrete reaction tests with basalt and limestone concrete

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Muhlestein, L.D.

    1981-01-01

    Ten tests were performed to investigate the chemical reactions and rate and extent of attack between sodium and basalt and limestone concretes. Test temperatures ranged from 510 to 870 0 C (950 to 1600 0 F) and test times from 2 to 24 hours. Sodium hydroxide was added to some of the tests to assess the impact of a sodium hydroxide-aided reaction on the overall penetration characteristics. Data suggest that the sodium penetration of concrete surfaces is limited. Penetration of basalt concrete in the presence of sodium hydroxide is shown to be less severe than attack by the metallic sodium alone. Presence of sodium hydroxide changes the characteristics of sodium penetration of limestone concrete, but no major differences in bulk penetration were observed as compared to penetration by metallic sodium

  12. Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass: A phosphor for smart lighting

    Energy Technology Data Exchange (ETDEWEB)

    Lima, S.M., E-mail: smlima@uems.br [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Andrade, L.H.C.; Rocha, A.C.P. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L. [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR (Brazil); Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Guyot, Y.; Boulon, G. [Laboratoire de Physico-Chimie des Matériaux Luminescents, Université de Lyon 1, UMR 5620 CNRS, 69622 Villeurbanne (France)

    2013-11-15

    In this paper, a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K.

  13. H-D exchange on natural aluminosilicates of orthosilicate group

    International Nuclear Information System (INIS)

    Markevich, S.V.; Kolesnikov, I.M.

    1982-01-01

    Experimental data are presented on the effect of aluminium ion coordination in the composition of polyhedrons on the capability of polyhedrons to change the reaction rate of H-D exchange (on the example of ethylene). It is shown that at temperature lower 400 deg C the rate of isotopic exchange reaction is low. Experimental results both for irradiated and non-irradiated minerals are presented. The conclusion is made that the increase of aluminosilicates activity under radiation is connected with the presence of (AlO 4 )-tetrahedrons in the system and change of their state. (AlO 5 ) and (AlO 6 )-polyhedrons are not activated with gamma rays

  14. Adsorption of β-galactosidase on silica and aluminosilicate adsorbents

    Science.gov (United States)

    Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

    2015-03-01

    It is shown that adsorption of β-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-β-D-galactopyranoside. It is concluded that β-galactosidase displays its maximum activity on the surface of biporous adsorbents.

  15. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    Science.gov (United States)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  16. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Němec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Charrier, J. [FOTON, UMR CNRS 6082, Enssat, 6 rue de Kerampont, BP 80518, 22305 Lannion (France); Cathelinaud, M. [Missions des Ressources et Compétences Technologiques, UPS CNRS 2274, 92195 Meudon (France); Allix, M. [CEMHTI-CNRS, Site Haute Température, Orléans (France); Adam, J.-L.; Zhang, S. [Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France); Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.fr [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France)

    2013-07-31

    Amorphous chalcogenide and alumino-silicate thin films were fabricated by the pulsed laser deposition technique. Prepared films were characterized in terms of their morphology, chemical composition, and optical properties. Multilayered thin film stacks for reflectors and vertical microcavities were designed for telecommunication wavelength and the window of atmosphere transparency (band II) at 1.54 μm and 4.65 μm, respectively. Bearing in mind the benefit coming from the opportunity of an efficient wavelength tuning or, conversely, to stabilize the photoinduced effects in chalcogenide films as well as to improve their mechanical properties and/or their chemical durability, several pairs of materials from pure chalcogenide layers to chalcogenide/oxide layers were investigated. Different layer stacks were fabricated in order to check the compatibility between dissimilar materials which can have a strong influence on the interface roughness, adhesion, density, and homogeneity, for instance. Three different reflector designs were formulated and tested including all-chalcogenide layers (As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70}) and mixed chalcogenide-oxide layers (As{sub 40}Se{sub 60}/alumino-silicate and Ga{sub 10}Ge{sub 15}Te{sub 75}/alumino-silicate). Prepared multilayers showed good compatibility between different material pairs deposited by laser ablation despite the diversity of chemical compositions. As{sub 40}Se{sub 60}/alumino-silicate reflector showed the best parameters; its stop band (R > 97% at 8° off-normal incidence) has a bandwidth of ∼ 100 nm and it is centered at 1490 nm. The quality of the different mirrors developed was good enough to try to obtain a microcavity structure for the 1.5 μm telecommunication wavelength made of chalcogenide layers. The microcavity structure consists of Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} (doped with 5000 ppm of Er{sup 3+}) spacer surrounded by two 10-layer As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70

  17. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    Science.gov (United States)

    Zhang, Long; Liu, Peng

    2008-08-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10-5 (Ω·cm)-1.

  18. Properties of Nanocrystals-formulated Aluminosilicate Bricks

    Directory of Open Access Journals (Sweden)

    Francesca Conciauro

    2015-10-01

    insulating and/or mechanical properties. The nanocrystals- modified refractories showed variations in properties, with respect to the untreated aluminosilicate reference in heat- insulating performances (thermal diffusivities were measured by the “hot disk” technique. In general, they also showed improvements in mechanical compression resist‐ ance for all of the samples at 2 wt. %. The best heat insula‐ tion was obtained with the addition of nano-aluminium hydroxide at 2 wt. %, while the highest mechanical compres‐ sion breaking resistance was found with nano-CaCO3 at 2 wt. %. These outcomes were investigated with complemen‐ tary techniques, like mercury porosimetry for porosity, and Archimedes methods to measure physical properties like the bulk and apparent densities, apparent porosities and water absorption. The results show that the nano-alumini‐ um hydroxide modified bricks were the most porous, which could explain the best heat-insulating performances. There is a less straightforward explanation for the mechanical resistance results, as they may have relations with the characteristics of the pores. Furthermore, the nanoparti‐ cles may have possible reactions with the matrix during the heat treatments.

  19. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2008-01-01

    Full Text Available AbstractThe uniform polyaniline (PANI nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10−5(Ω·cm−1.

  20. Transformation kinetics in plasma-sprayed barium- and strontium-doped aluminosilicate (BSAS)

    International Nuclear Information System (INIS)

    Harder, B.J.; Faber, K.T.

    2010-01-01

    The hexacelsian-to-celsian phase transformation in Ba 1-x Sr x Al 2 Si 2 O 8 is of interest for environmental barrier coating applications. Plasma-sprayed microstructures were heat treated above 1100 o C and the kinetics of the hexacelsian-to-celsian transformation were quantified. Activation energies for bulk and crushed materials were determined to be ∼340 and ∼500 kJ mol -1 , respectively. X-ray diffraction and electron backscattered diffraction were used to establish how plasma spraying barium- and strontium-doped aluminosilicate effectively reduces the energy required for its transformation.

  1. Untitled

    Indian Academy of Sciences (India)

    . Sodium metasilicate (2g), sodium aluminate (0.5g) and sodium hydroxide (0.7g) were mixed together and distilled water (50 ml) was added to the mixture to form a composite sodium aluminosilicate gel. Most of the runs were carried out by ...

  2. Dissolution of lanthanide alumino-silicate oxynitride glasses

    Science.gov (United States)

    Bois, L.; Barré, N.; Guillopé, S.; Guittet, M. J.; Gautier-Soyer, M.; Duraud, J. P.; Trocellier, P.; Verdier, P.; Laurent, Y.

    2000-01-01

    The aqueous corrosion behavior of lanthanide aluminosilicate glasses has been studied under static conditions ( T=96°C, duration=1 and 3 months, glass surface area/leachate volume, S/ V=0.3 cm -1) by means of solution and solid analyses. It was found that these glasses exhibit a high chemical durability. The influence of yttrium, magnesium and nitrogen, which are supposed to improve the mechanical properties, on the chemical durability, has been investigated. After a one-month experiment, lanthanum and yttrium releases were found to be about 10 -7 mol l -1, while silicon and aluminum releases were about 10 -5 mol l -1. Yttrium seems to improve the chemical durability. The presence of nitrogen does not seem to modify the glass constituents releases, but seems to improve the surface state of the altered glass. XPS experiments reveal that lanthanum and yttrium are more concentrated near the surface (20-30 Å) of the glass after the leaching test.

  3. Sodium-concrete reaction model development

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Muhlestein, L.D.; Postma, A.K.

    1982-07-01

    Major observations have been formulated after reviewing test results for over 100 sodium-concrete reaction tests. The observations form the basis for developing a mechanistic model to predict the transient behavior of sodium-concrete reactions. The major observations are listed. Mechanisms associated with sodium and water transport to the reaction zone are identified, and represented by appropriate mathematical expressions. The model attempts to explain large-scale, long-term (100 h) test results were sodium-concrete reactions terminated even in the presence of unreacted sodium and concrete

  4. Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; Loganathan, Narasimhan; Bowers, Geoffrey M.; Kirkpatrick, Robert J.; Yazaydin, A. O.; Burton, Sarah D.; Hoyt, David W.; Thanthiriwatte, Sahan; Dixon, David A.; McGrail, Bernard P.; Rosso, Kevin M.; Ilton, Eugene S.; Loring, John S.

    2017-10-11

    Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H2O is well known to be systematically correlated with the hydration free energy of the interlayer cation, in environments dominated by non-polar solvents (i.e. CO2), uptake into the interlayer is not well-understood. Using novel high pressure capabilities, we investigated the interaction of super-critical CO2 with Na+-, NH4+-, and Cs+-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend in H2O, and that cation solvation energies in CO2 suggest a stronger interaction with Na+, both the NH4+- and Cs+-clays readily absorbed CO2 and expanded while the Na+-clay did not. The apparent inertness of the Na+-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO2 intercalation in the Na+-clay, but little or no energy barrier for the NH4+- and Cs+-clays. Consequently, we have shown for the first time that in the presence of a low dielectric constant gas swelling depends more on the strength of the interaction between interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicates swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semi-permeable reactive barriers.

  5. Sodium fire protection

    International Nuclear Information System (INIS)

    Raju, C.; Kale, R.D.

    1979-01-01

    Results of experiments carried out with sodium fires to develop extinguishment techniques are presented. Characteristics, ignition temperature, heat evolution and other aspects of sodium fires are described. Out of the powders tested for extinguishment of 10 Kg sodium fires, sodium bi-carbonate based dry chemical powder has been found to be the best extinguisher followed by large sized vermiculite and then calcium carbonate powders distributed by spray nozzles. Powders, however, do not extinguish large fires effectively due to sodium-concrete reaction. To control large scale fires in a LMFBR, collection trays with protective cover have been found to cause oxygen starvation better than flooding with inert gas. This system has an added advantage in that there is no damage to the sodium facilities as has been in the case of powders which often contain chlorine compounds and cause stress corrosion cracking. (M.G.B.)

  6. A Small-Scale Capsule Test for Investigating the Sodium-Carbon Dioxide Reaction

    International Nuclear Information System (INIS)

    Kim, B. H.; Choi, J. H.; Suk, S. D.; Kim, J. M.; Choi, B. H.; Kim, B. H.; Hahn, D. H.

    2007-01-01

    The utilization of modular sodium-to-supercritical CO 2 heat exchangers may yield significant improvements for an overall plant energy utilization. The consequences of a failure of the sodium CO 2 heat exchanger boundary, however, would involve the blowdown and intermixing of high-pressure CO 2 in a sodium pool, causing a pressurization which may threaten the structural integrity of the heat exchanger. Available data seems to indicate that the chemical reaction between sodium and CO 2 would likely produce sodium oxides, sodium carbonate, carbon and carbon monoxide. Information on the kinetics of the sodium-CO 2 reaction is virtually non-existent

  7. A Small-Scale Capsule Test for Investigating the Sodium-Carbon Dioxide Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. H.; Choi, J. H.; Suk, S. D.; Kim, J. M.; Choi, B. H.; Kim, B. H.; Hahn, D. H

    2007-01-15

    The utilization of modular sodium-to-supercritical CO{sub 2} heat exchangers may yield significant improvements for an overall plant energy utilization. The consequences of a failure of the sodium CO{sub 2} heat exchanger boundary, however, would involve the blowdown and intermixing of high-pressure CO{sub 2} in a sodium pool, causing a pressurization which may threaten the structural integrity of the heat exchanger. Available data seems to indicate that the chemical reaction between sodium and CO{sub 2} would likely produce sodium oxides, sodium carbonate, carbon and carbon monoxide. Information on the kinetics of the sodium-CO{sub 2} reaction is virtually non-existent.

  8. Sodium safety manual

    International Nuclear Information System (INIS)

    Hayes, D.J.; Gardiner, R.L.

    1980-09-01

    The sodium safety manual is based upon more than a decade of experience with liquid sodium at Berkeley Nuclear Laboratories (BNL). It draws particularly from the expertise and experience developed in the course of research work into sodium fires and sodium water reactions. It draws also on information obtained from the UKAEA and other sodium users. Many of the broad principles will apply to other Establishments but much of the detail is specific to BNL and as a consequence its application at other sites may well be limited. Accidents with sodium are at best unpleasant and at worst lethal in an extremely painful way. The object of this manual is to help prevent sodium accidents. It is not intended to give detailed advice on specific precautions for particular situations, but rather to set out the overall strategy which will ensure that sodium activities will be pursued safely. More detail is generally conveyed to staff by the use of local instructions known as Sodium Working Procedures (SWP's) which are not reproduced in this manual although a list of current SWP's is included. Much attention is properly given to the safe design and operation of larger facilities; nevertheless evidence suggests that sodium accidents most frequently occur in small-scale work particularly in operations associated with sodium cleaning and special care is needed in all such cases. (U.K.)

  9. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

  10. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  11. Oxalate molecule as the trap for gamma-irradiation energy in the amorphous aluminosilicate Al2(OH)6H4SiO4

    International Nuclear Information System (INIS)

    Nothig-Laslo, V.; Horvath, L.; Bilinski, H.

    1990-01-01

    Paramagnetic species which were the products of gamma irradiation at 77 K and at room temperature were studied by ESR spectroscopy in the amorphous aluminosilicate, Al2(OH)6H4SiO4, prepared in the presence and in the absence of oxalate ion. The aluminosilicate precipitated from the solution containing the oxalate ion in 10(-4) mol dm-3 concentration contained the oxalate only in trace amounts. When gamma-irradiated at 77 K and at room temperature, this compound gave the stable paramagnetic species represented by the single ESR line centered at g = 2.000. We ascribe this spectrum to the CO2- radical formed from the oxalate ion. The same aluminosilicate prepared in the absence of the oxalate either produced no stable paramagnetic product after gamma irradiation at room temperature or resulted in composite ESR spectra, indicating the presence of several paramagnetic species if irradiated at 77 K. Complex ESR spectra were transformed by heating to the stable paramagnetic centers which differed from the one obtained from oxalate ion. We conclude that in Al2(OH)6H4SiO4 oxalate acts as a trap for the gamma-radiation energy

  12. Home blood sodium monitoring, sliding-scale fluid prescription and subcutaneous DDAVP for infantile diabetes insipidus with impaired thirst mechanism

    Directory of Open Access Journals (Sweden)

    Hameed Shihab

    2012-06-01

    Full Text Available Abstract Background/Aims Infants with diabetes insipidus (DI, especially those with impaired thirst mechanism or hypothalamic hyperphagia, are prone to severe sodium fluctuations, often requiring hospitalization. We aimed to avoid dangerous fluctuations in serum sodium and improve parental independence. Methods A 16-month old girl with central DI, absent thirst mechanism and hyperphagia following surgery for hypothalamic astrocytoma had erratic absorption of oral DDAVP during chemotherapy cycles. She required prolonged hospitalizations for hypernatremia and hyponatremic seizure. Intensive monitoring of fluid balance, weight and clinical assessment of hydration were not helpful in predicting serum sodium. Discharge home was deemed unsafe. Oral DDAVP was switched to subcutaneous (twice-daily injections, starting with 0.01mcg/dose, increasing to 0.024mcg/dose. The parents adjusted daily fluid allocation by sliding-scale, according to the blood sodium level (measured by handheld i-STAT analyser, Abbott. We adjusted the DDAVP dose if fluid allocation differed from maintenance requirements for 3 consecutive days. Results After 2.5 months, sodium was better controlled, with 84% of levels within reference range (135-145 mmol/L vs. only 51% on the old regimen (p = 0.0001. The sodium ranged from 132-154 mmol/L, compared to 120–156 on the old regimen. She was discharged home. Conclusion This practical regimen improved sodium control, parental independence, and allowed discharge home.

  13. Home blood sodium monitoring, sliding-scale fluid prescription and subcutaneous DDAVP for infantile diabetes insipidus with impaired thirst mechanism.

    Science.gov (United States)

    Hameed, Shihab; Mendoza-Cruz, Abel C; Neville, Kristen A; Woodhead, Helen J; Walker, Jan L; Verge, Charles F

    2012-06-09

    Infants with diabetes insipidus (DI), especially those with impaired thirst mechanism or hypothalamic hyperphagia, are prone to severe sodium fluctuations, often requiring hospitalization. We aimed to avoid dangerous fluctuations in serum sodium and improve parental independence. A 16-month old girl with central DI, absent thirst mechanism and hyperphagia following surgery for hypothalamic astrocytoma had erratic absorption of oral DDAVP during chemotherapy cycles. She required prolonged hospitalizations for hypernatremia and hyponatremic seizure. Intensive monitoring of fluid balance, weight and clinical assessment of hydration were not helpful in predicting serum sodium. Discharge home was deemed unsafe. Oral DDAVP was switched to subcutaneous (twice-daily injections, starting with 0.01mcg/dose, increasing to 0.024mcg/dose). The parents adjusted daily fluid allocation by sliding-scale, according to the blood sodium level (measured by handheld i-STAT analyser, Abbott). We adjusted the DDAVP dose if fluid allocation differed from maintenance requirements for 3 consecutive days. After 2.5 months, sodium was better controlled, with 84% of levels within reference range (135-145 mmol/L) vs. only 51% on the old regimen (p = 0.0001). The sodium ranged from 132-154 mmol/L, compared to 120-156 on the old regimen. She was discharged home. This practical regimen improved sodium control, parental independence, and allowed discharge home.

  14. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    International Nuclear Information System (INIS)

    Oji, L.

    2014-01-01

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min -1 and 1.07E-03 ± 7.51E-05 min -1 . Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours

  15. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  16. Large scale sodium interactions. Part 2. Preliminary test results for limestone concrete

    International Nuclear Information System (INIS)

    Smaardyk, J.E.; Sutherland, H.J.; King, D.L.; Dahlgren, D.A.

    1977-01-01

    Any sodium cooled reactor system must consider the interaction of hot sodium with cell liners, and given either a failed liner or a hypothetical core disruptive accident, the interaction of hot sodium with concrete. The data base available for safety assessments involving these interactions is limited, especially for the concrete and failed liner interactions. To better understand what happens when hot sodium comes in contact with concrete, a series of tests is being carried out to investigate sodium-concrete reactions under conditions which are similar to actual reactor accident conditions. Tests cover the cases of sodium spills on bare concrete and on cells with defective steel liners. Specific objectives have been to obtain a complete description of the sodium/concrete interaction including heat balance, gas evolution and flow, movement and heat generation of the reaction zone, reaction product formation, and the layering or movement of the products

  17. Development of sodium disposal technology. Experiment of sodium compound solidification process

    International Nuclear Information System (INIS)

    Matsumoto, Toshiyuki; Ohura, Masato; Yatoh, Yasuo

    2007-07-01

    A large amount of sodium containing radioactive waste will come up at the time of final shutdown/decommission of FBR plant. The radioactive waste is managed as solid state material in a closed can in Japan. As for the sodium, there is no established method to convert the radioactive sodium to solid waste. Further, the sodium is highly reactive. Thus, it is recommended to convert the sodium to a stable substance before the solidification process. One of the stabilizing methods is conversion of sodium into sodium hydroxide solution. These stabilization and solidification processes should be safe, economical, and efficient. In order to develop such sodium disposal technology, nonradioactive sodium was used and a basic experiment was performed. Waste-fluid Slag Solidification method was employed as the solidification process of sodium hydroxide solution. Experimental parameters were mixing ratio of the sodium hydroxide and the slag solidification material, temperature and concentration of the sodium hydroxide. The best parameters were obtained to achieve the maximum filling ratio of the sodium hydroxide under a condition of enough high compressive strength of the solidified waste. In a beaker level test, the solidified waste was kept in a long term and it was shown that there was no change of appearance, density, and also the compressive strength was kept at a target value. In a real scale test, homogeneous profiles of the density and the compressive strength were obtained. The compressive strength was higher than the target value. It was shown that the Waste-fluid Slag Solidification method can be applied to the solidification process of the sodium hydroxide solution, which was produced by the stabilization process. (author)

  18. Large scale sodium interactions. Part 3. Chemical phenomena with limestone concrete

    International Nuclear Information System (INIS)

    Sallach, R.A.

    1977-01-01

    The description of the chemical processes and reaction products resulting from the exposure of concrete to molten sodium metal is important for a thorough, realistic assessment of the safety of CRBR-type reactors. Concretes are in general complex heterogenous substances whose ingredients can be derived from many sources. Consequently a wide variety of reaction processes and products might be anticipated. Initial attention has focused on a concrete in which both the aggregate and sandy components are derived from limestone. Presented are the chemical observations and experimental data from tests in which molten sodium metal at approximately 500 0 C is dropped into cold limestone concrete crucibles. Thermocouples immersed in the sodium pool indicate that the reaction proceeds in two stages. In the first stage which lasts 5 to 8 minutes, the temperature of the reacting mass hovers around 500 0 C. This stage is followed by a second stage of longer duration--greater than 100 minutes--where the temperature is 700 to 800 0 C. The main reaction product is a hard, fused, black slag which contains about 3/4 of the sodium in the initial charge. A secondary product is sodium oxide aerosol which accounts for the remaining 1/4 of the charge. It is significant that no free sodium metal is found in the slag; all sodium has completely reacted

  19. Fabrication of large diameter alumino-silicate K+ sources

    International Nuclear Information System (INIS)

    Baca, D.; Chacon-Golcher, E.; Kwan, J.W.; Wu, J.K.

    2003-01-01

    Alumino-silicate K + sources have been used in HIF experiments for many years. For example the Neutralized Transport Expt. (NTX) and the High Current Transport Expt. (HCX) are now using this type of ion source with diameters of 2.54 cm and 10 cm respectively. These sources have demonstrated ion currents of 80 mA and 700 mA, for typical HIF pulse lengths of 5-10 (micro)s. The corresponding current density is ∼ 10-15 mA/cm 2 , but much higher current density has been observed using smaller size sources. Recently we have improved our fabrication techniques and, therefore, are able to reliably produce large diameter ion sources with high quality emitter surface without defects. This note provides a detailed description of the procedures employed in the fabrication process. The variables in the processing steps affecting surface quality, such as substrate porosity, powder size distribution, coating technique on large area concave surfaces, drying, and heat firing temperature have been investigated

  20. MoO3 incorporation in magnesium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-01-01

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO 3 ) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO 3 can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO 3 increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO 4 2− units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO 4

  1. Thermal properties and modeling of aluminosilicate materials for low-temperature bulk applications

    International Nuclear Information System (INIS)

    Kaushal, S.

    1988-01-01

    This thesis concerns itself with the thermal properties of aluminosilicate materials such as cements, blended cements and clays and their application to the problem of radioactive waste encapsulation. The objective of this thesis is to study the thermal properties (heat of hydration, thermal conductivity and diffusivity) of these materials and to determine their effect on the temperature in large monoliths and on the material itself. In this thesis the hydration temperatures for the extreme conditions (adiabatic) were experimentally measured and compared to those predicted under real conditions. Such a simulation can be made by measuring the thermal properties and studying the temperature distribution predicted by a finite differences computer model. Measurements of adiabatic temperature rise were made using a computer-controlled adiabatic calorimeter which was designed and developed for this thesis. Conditions very close to zero heat exchange with the environment were achieved. The existence of this method made it possible to actually observe the fact that cement hydration results in boiling off of the water in such conditions. A number of additives were tried to prevent this. It was observed that waste or by-product materials such as blast furnace slag and fly ash could be used to dramatically reduced the temperature in large bodies. These materials also reacted extensively with the highly alkaline radioactive waste solution to form hydrogarnet and zeolitic material which had useful cementing properties. The conclusion was reached that a selection of blends of aluminosilicate materials can be utilized for providing the proper thermal environment for long-term geological disposal of radioactive waste

  2. The use of natural and industrial aluminosilicates in the process of adsorption of heavy metals ions

    OpenAIRE

    Tsvetkova, A.; Akayev, O.

    2010-01-01

    The analysis of periodic scientific publications and patent literature was made, in which the possibilities of using natural and industrial silicon-containing compounds as adsorbents of ions of heavy metals are generalized. The conditions of adsorption, as well as the numerical values of the adsorption capacity of the studied materials are described Key words: adsorption, natural and industrial aluminosilicates, heavy metals ions.

  3. Design and Synthesis of Hybrid Ceramic Foams with Tailored Porosity

    OpenAIRE

    Capasso, Ilaria

    2017-01-01

    Alkali activated ceramic foams have been produced by using metakaolin and/or diatomite as aluminosilicate source, an aqueous sodium silicate solution as alkali activator and Na2SiF6 as a catalyst that promotes the gelification of the entire system. Two different techniques of direct foaming have been coupled, one based on chemical reactions with gas production and the other one based on a mechanical foaming. Then, other levels of hierarchical porosity (nanometric and macrometric scale) have b...

  4. The plumber's nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates.

    Science.gov (United States)

    Finnefrock, Adam C; Ulrich, Ralph; Toombes, Gilman E S; Gruner, Sol M; Wiesner, Ulrich

    2003-10-29

    A novel cubic bicontinuous morphology is found in polymer-ceramic nanocomposites and mesoporous aluminosilicates that are derived by an amphiphilic diblock copolymer, poly(isoprene-b-ethylene oxide) (PI-b-PEO), used as a structure-directing agent for an inorganic aluminosilicate. Small-angle X-ray scattering (SAXS) was employed to unambiguously identify the Im(-)3m crystallographic symmetry of the materials by fitting individual Bragg peak positions in the two-dimensional X-ray images. Structure factor calculations, in conjunction with results from transmission electron microscopy, were used to narrow the range of possible structures consistent with the symmetry and showed the plumber's nightmare morphology to be consistent with the data. The samples are made by deposition onto a substrate that imposes a strain field, generating a lattice distortion. This distortion is quantitatively analyzed and shown to have resulted in shrinkage of the crystallites by approximately one-third in a direction perpendicular to the substrate, in both as-made composites and calcined ceramic materials. Finally, the observation of the bicontinuous block-copolymer-derived hybrid morphology is discussed in the context of a pseudo-ternary morphology diagram and compared to existing studies of ternary phase diagrams of amphiphiles in a mixture of two solvents. The calcined mesoporous materials have potential applications in the fields of catalysis, separation technology, and microelectronics.

  5. Assessment of the multi-mycotoxin-binding efficacy of a carbon/aluminosilicate-based product in an in vitro gastrointestinal model

    NARCIS (Netherlands)

    Avantaggiato, G.; Havenaar, R.; Visconti, A.

    2007-01-01

    A laboratory model, set to simulate the in vivo conditions of the porcine gastrointestinal tract, was used to study the small intestinal absorption of several mycotoxins and the effectiveness of Standard Q/FIS (a carbon/aluminosilicate-based product) in reducing mycotoxin absorption when added to

  6. Effects of Sodium Hydroxide and Sodium Aluminate on the Precipitation of Aluminum Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Parker, Kent E.; McCready, David E.; Wang, Li Q.

    2006-01-01

    Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down. Studies were conducted at 80 C to identify the insoluble aluminosilicate phase(s) and to determine the kinetics of their formation and transformation. These tests were carried out under conditions more similar to those that occur in HLW tanks and evaporators. Comparison of our results with those reported from the site show very similar trends. Initially, an amorphous phase precipitates followed by a zeolite phase that transforms to sodalite and which finally converts to cancrinite. Our results also show the expected trend of an increased rate of transformation into denser aluminosilicate phases (sodalite and cancrinite) with time and increasing hydroxide concentrations

  7. The effects of large scale processing on caesium leaching from cemented simulant sodium nitrate waste

    International Nuclear Information System (INIS)

    Lee, D.J.; Brown, D.J.

    1982-01-01

    The effects of large scale processing on the properties of cemented simulant sodium nitrate waste have been investigated. Leach tests have been performed on full-size drums, cores and laboratory samples of cement formulations containing Ordinary Portland Cement (OPC), Sulphate Resisting Portland Cement (SRPC) and a blended cement (90% ground granulated blast furnace slag/10% OPC). In addition, development of the cement hydration exotherms with time and the temperature distribution in 220 dm 3 samples have been followed. (author)

  8. Determination of the crystalline structure of scale solids from the 16H evaporator gravity drain line to tank 38H

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.

  9. Experimental and Numerical Simulation towards Sodium Safety in SFR

    International Nuclear Information System (INIS)

    Ponraju, D.; Rao, Hemanth; Das, Sanjay Kumar; Punitha; Nashine, B.K.; Chellapandi, P.

    2013-01-01

    Summary and future program on sodium fire: Past - Design verification of LCT by experiments; Small scale experiments on sodium resistant concrete; Small sodium spray: - Fire senario; - particle distribution. Current activities - Containment code development; Demonstration of LCT system, effective LCT design; Qualification of extinguishers and sodium resistant contrete; LBB justification; Aerosol distribution. Future - Sodium school; HR development in handing sodium systems; Collaboration with AERB, IRSN, CEA and other International Organizations; Design guidelines

  10. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pcoating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  11. Preliminary Results of Testing of Flow Effects on Evaporator Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, M.Z.

    2002-02-15

    further testing, it does not appear advisable to depend on increased agitation as the primary means for reduction of scale in the 2H, evaporator. (2) The tubes used in the flow tests became clogged with solids when the solutions were below 80 C at the start of the test; a very striking difference from experiments with fully preheated solutions, which yielded only thin films of solids on the tubes. These results suggest that significant differences are found in the ''stickiness'' of solids formed at different temperatures. This may provide opportunities for engineering approaches to reduce solids deposition, such as feed dispersion or feed preheating. It is recommended that further studies be undertaken to determine what forms of sodium aluminosilicates adhere to stainless steel surfaces, under what conditions these materials are created, and what changes in evaporator operation could be made to minimize their formation.

  12. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    International Nuclear Information System (INIS)

    Copuroglu, O.; Fraaij, A.L.A.; Bijen, J.M.J.M.

    2006-01-01

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies the microstructure and improves the resistance of carbonated BFSC paste against frost salt attack

  13. Similarity rules of thermal stratification phenomena for water and sodium

    International Nuclear Information System (INIS)

    Ohtsuka, M.; Ikeda, T.; Yamakawa, M.; Shibata, Y.; Moriya, S.; Ushijima, S.; Fujimoto, K.

    1988-01-01

    Similarity rules for thermal stratification phenomena were studied using sodium and water experiments with scaled cylindrical vessels. The vessel dimensions were identical to focus on the effect of differences in fluid properties upon the phenomena. Comparisons of test results between sodium and water elucidated similar and dissimilar characteristics for thermal stratification phenomena which appeared in the scaled vessels. Results were as follows: (1) The dimensionless upward velocity of the thermal stratification interface was proportional to Ri -0.74 for water and sodium during the period when the buoyancy effect was dominant. (2) Dimensionless temperature transient rate at the outlet slit decreased with Ri for sodium and remained constant for water where Ri>0.2. The applicability of the scaled test results to an actual power plant was also studied by using multi-dimensional numerical analysis which was verified by the water and sodium experiments. Water experiments could simulate liquid metal fast breeder reactor flows more accurately than sodium experiments for dimensionless temperature gradient at the thermal stratification interface and dimensionless temperature transient rate at the intermediate heat exchanger inlet

  14. Calculation of Sodium Fire Test-I (Run-E6) using sodium combustion analysis code ASSCOPS version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Nakagiri, Toshio; Ohno, Shuji; Miyake, Osamu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-11-01

    The calculation of Sodium Fire Test-I (Run-E6) was performed using the ASSCOPS (Analysis of Simultaneous Sodium Combustions in Pool and Spray) code version 2.0 in order to determine the parameters used in the code for the calculations of sodium combustion behavior of small or medium scale sodium leak, and to validate the applicability of the code. The parameters used in the code were determined and the validation of the code was confirmed because calculated temperatures, calculated oxygen concentration and other calculated values almost agreed with the test results. (author)

  15. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Comparison of the postoperative analgesic effects of naproxen sodium and naproxen sodium-codeine phosphate for arthroscopic meniscus surgery

    Directory of Open Access Journals (Sweden)

    Cagla Bali

    2016-04-01

    Full Text Available ABSTRACT BACKGROUND AND OBJECTIVES: Nonsteroidal anti-inflammatory drugs (NSAIDs are frequently used to control arthroscopic pain. Addition of oral effective opioid "codeine" to NSAIDs may be more effective and decrease parenteral opioid consumption in the postoperative period. The aim of this study was to compare the efficacy and side effects of naproxen sodium and a new preparation naproxen sodium-codeine phosphate when administered preemptively for arthroscopic meniscectomy. METHODS: Sixty-one patients were randomized into two groups to receive either oral naproxen sodium (Group N or naproxen sodium-codeine phosphate (Group NC before surgery. The surgery was carried out under general anesthesia. Intravenous meperidine was initiated by patient-controlled analgesia (PCA for all patients. The primary outcome measure was pain score at the first postoperative hour assessed by the Visual Analogue Scale (VAS. Sedation assessed by Ramsey Sedation Scale, first demand time of PCA, postoperative meperidine consumption, side effects and hemodynamic data were also recorded. RESULTS: The groups were demographically comparable. Median VAS scores both at rest and on movement were significantly lower in Group NC compared with Group N, except 18th hour on movement (p 0.05. CONCLUSIONS: The combination of naproxen sodium-codeine phosphate provided more effective analgesia than naproxen sodium and did not increase side effects.

  17. Crystallization, Microstructure, and Viscosity Evolutions in Lithium Aluminosilicate Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-11-01

    Full Text Available Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high temperature X-ray diffraction (HTXRD, beam bending viscometry (BBV, and transmission electron microscopy (TEM. Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (> 109 Pa.s throughout the whole thermal treatment.

  18. Method of gradual acid leaching of uranium ores of silicate and aluminosilicate nature

    International Nuclear Information System (INIS)

    Bosina, B.; Krepelka, J.; Urban, P.; Kropacek, J.; Stransky, J.

    1987-01-01

    Leaching uranium ore pulp is divided into two stages. The first stage takes place without any addition of a leaching agent at elevated pressure and temperature. In the second stage, sulfuric acid is added to the pulp (50 to 1000 kg per tonne of ore) or an oxidation agent. Leaching then proceeds according to routine procedures. The procedure is used to advantage for silicate or aluminosilicate ores which contain uranium minerals which are difficult to leach, pyrite and reducing substances. The two stage leaching allows to use the technology of pressure leaching, reduces consumption of sulfuric acid and oxidation agents and still achieves the required reduction oxidation potential. (E.S.)

  19. Liquid metal fast breeder reactor steam generator survey of the consequences of large scale sodium water reaction

    International Nuclear Information System (INIS)

    Vambenepe, G.

    1978-01-01

    The ''Retona'' three-dimensional hydrodynamic computing code is being developed by Electricity de France to survey the consequences, on the very plant, of a large scale sodium water reaction in liquid metal steam generators. In this communication, the heat-exchanger geometry is schematized and the problem solving process briefly described under assumed simplifying hypotheses. The application of the results to the Creusot-Loire steam generator selected for Super-Phenix are given as an example. (author)

  20. An effective method to screen sodium-based layered materials for sodium ion batteries

    Science.gov (United States)

    Zhang, Xu; Zhang, Zihe; Yao, Sai; Chen, An; Zhao, Xudong; Zhou, Zhen

    2018-03-01

    Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.

  1. Experimental plans for LMFBR cavity liner sodium spill test LT-1

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Newell, G.A.

    1976-01-01

    Reinforced concrete is an important material of construction in LMFBR cavities and cells. Steel liners are often installed on the concrete surfaces to provide a gastight seal for minimizing air inleakage to inerted cell atmospheres and to protect the concrete from direct contact with sodium in the event of a sodium spill. In making safety assessment analyses, it is of interest to determine the adequacy of the liners to maintain their leaktightness during postulated accidents involving large sodium spills. However, data for basing analytical assessments of cell liners are very meager and an experimental program is underway at HEDL to provide some of the needed information. The HEDL cell liner evaluation program consists of both bench-scale feature tests and large-scale sodium spill demonstration tests. The plans for the first large-scale sodium spill test (LT-1) are the subject of this paper

  2. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Daniela A., E-mail: daniela.geraldo@unab.cl [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile); Arancibia-Miranda, Nicolas [CEDENNA, Center for the Development of Nanoscience and Nanotechnology (Chile); Villagra, Nicolas A. [Universidad Andres Bello, Laboratorio de Microbiologia, Facultad de Ciencias Biologicas (Chile); Mora, Guido C. [Universidad Andres Bello, Unidad de Microbiologia, Facultad de Medicina (Chile); Arratia-Perez, Ramiro [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile)

    2012-12-15

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  3. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    International Nuclear Information System (INIS)

    Geraldo, Daniela A.; Arancibia-Miranda, Nicolás; Villagra, Nicolás A.; Mora, Guido C.; Arratia-Perez, Ramiro

    2012-01-01

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV–Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  4. Synthesis and luminescent properties of Eu{sup 3+}/Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bouchouicha, H. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Panczer, G., E-mail: gerard.panczer@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ligny, D. de [Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl für Glas und Keramik, D-91058 Erlangen (Germany); Guyot, Y. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Baesso, M.L. [Departemento de Fisica, Universidade Estadual de Maringa, 87020-900 Maringa, PR (Brazil); Andrade, L.H.C.; Lima, S.M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul – UEMS, C.P. 351, Dourados, MS (Brazil); Ternane, R. [Laboratoire d' Application de la Chimie aux Ressources et Substances Naturelles et à l' Environnement (LACReSNE), Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia)

    2016-01-15

    Eu{sup 3+} and Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics have been prepared by devitrification of calcium aluminosilicate glass using heat-treatment. Control of crystallization in the glass–ceramics was studied by X-ray diffraction (XRD) and Raman spectroscopy. The results showed that crystalline phases in glass–ceramic belong to the family of melilite Ca{sub 2}Mg{sub 0.25}Al{sub 1.5}Si{sub 1.25}O{sub 7} as the major phase and anorthite CaAl{sub 2}Si{sub 2}O{sub 8} as the minor phase. Luminescent properties were investigated by emission; lifetime and the color points were calculated. Emission spectra showed that Eu{sup 2+} entered into the crystalline phase in a two steps mechanism: first as Eu{sup 3+} which is then reduced to Eu{sup 2+}. This incorporation in the crystal enhanced Eu{sup 2+} emission with increasing time of heat-treatment and therefore crystallization. - Highlights: • Crystallization of doped glass–ceramics by heat-treatment controlled by microRaman. • Crystalline phases consist of melilite and anorthite. • Eu{sup 3+} and Eu{sup 2+} emissions characterized by their lifetime and color indexes. • Crystallization process modified efficiently the emission color point.

  5. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    Science.gov (United States)

    Geraldo, Daniela A.; Arancibia-Miranda, Nicolás; Villagra, Nicolás A.; Mora, Guido C.; Arratia-Perez, Ramiro

    2012-12-01

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  6. SLAM: a sodium-limestone concrete ablation model

    International Nuclear Information System (INIS)

    Suo-Anttila, A.J.

    1983-12-01

    SLAM is a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer and dehydrated concrete) region, and a wet (hydrated concrete) region. The model includes a solution to the mass, momentum, and energy equations in each region. A chemical kinetics model is included to provide heat sources due to chemical reactions between the sodium and the concrete. Both isolated model as well as integrated whole code evaluations have been made with good results. The chemical kinetics and water migration models were evaluated separately, with good results. Several small and large-scale sodium limestone concrete experiments were simulated with reasonable agreement between SLAM and the experimental results. The SLAM code was applied to investigate the effects of mixing, pool temperature, pool depth and fluidization. All these phenomena were found to be of significance in the predicted response of the sodium concrete interaction. Pool fluidization is predicted to be the most important variable in large scale interactions

  7. Intelligent type sodium instrumentations for LMFBR

    International Nuclear Information System (INIS)

    Chen Daolong

    1996-07-01

    The constructions and performances of lots of newly developed intelligent type sodium instrumentations are described. The graduation characteristic equations for corresponding transducer using the medium temperature as the parameter are given. These intelligent type sodium instrumentations are possessed of good linearity. The accurate measurement data of sodium process parameters (flowrate, pressure and level) can be obtained by means of their on-line compensation function of the temperature effect. Moreover, these intelligent type sodium instrumentations are possessed of the self-inspection, the electric shutoff protection, the setting of full-scale, the setting of alarm limits (two upper limits and two lower limits alarms), the thermocouple breaking alarm, mutual isolative the 0∼10 V direct-current analogue output and the CENTRONICS standard digital output, and the alarm relay contact output. Theses intelligent type sodium instrumentations are suitable particularly for the instrument, control and protective systems of LMFBR by means of these excellent functions based on microprocessor. The basic errors of the intelligent type sodium flowmeter, immersed sodium flowmeter, sodium manometer and sodium level gauge are +-2%, +-2.3%, +-0.3% and +-1.9% of measuring ranges respectively. (9 figs.)

  8. Flux Decoupling and Chemical Diffusion in Redox Dynamics in Aluminosilicate Melts and Glasses (Invited)

    Science.gov (United States)

    Cooper, R. F.

    2010-12-01

    Measurements of redox dynamics in silicate melts and glasses suggest that, for many compositions and for many external environments, the reaction proceeds and is rate-limited by the diffusive flux of divalent-cation network modifiers. Application of ion-backscattering spectrometry either (i) on oxidized or reduced melts (subsequently quenched before analysis) or (ii) on similarly reacted glasses, both of basalt-composition polymerization, demonstrates that the network modifiers move relative to the (first-order-rigid) aluminosilicate network. Thus, the textures associated with such reactions are often surprising, and frequently include metastable or unstable phases and/or spatial compositional differences. This response is only possible if the motion of cations can be decoupled from that of anions. In many cases, decoupling is accomplished by the presence in the melt/glass of transition-metal cations, whose heterovalency creates distortions in the electronic band structure resulting in electronic defects: electron “holes” in the valence band or electrons in the conduction band. (The prevalence of holes or electrons being a function of bulk chemistry and oxygen activity.) These electronic species make the melt/glass a “defect semiconductor.” Because (a) the critical issue in reaction dynamics is the transport coefficient (the product of species mobility and species concentration) and (b) the electronic species are many orders of magnitude more mobile than are the ions, very low concentrations of transition-metal ions are required for flux decoupling. For example, 0.04 at% Fe keeps a magnesium aluminosilicate melt/glass a defect semiconductor down to 800°C [Cook & Cooper, 2000]. Depending on composition, high-temperature melts can see ion species having a high-enough transport coefficient to allow decoupling, e.g., alkali cations in a basaltic melt [e.g., Pommier et al., 2010]. In this presentation, these ideas will be illustrated by examining redox dynamics

  9. MoO{sub 3} incorporation in magnesium aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-03-15

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO{sub 3}) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO{sub 3} can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO{sub 3} increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO{sub 4}{sup 2−} units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO{sub 4}.

  10. Sodium-immersed self-cooled electromagnetic pump design and development of a large-scale coil for high temperature

    International Nuclear Information System (INIS)

    Oto, Akihiro; Naohara, Nobuyuki; Ishida, Masayoshi; Katsuki, Kenji; Kumazawa, Ryouji

    1995-01-01

    A sodium-immersed, self-cooled electromagnetic (EM) pump was recently studied as a prospective innovative technology to simplify a fast breeder reactor plant system. The EM pump for a primary pump, a pump type, was designed, and the structural concept and the system performance were clarified. For the flow control method, a constant voltage/frequency method was preferable from the point of view of pump performance and efficiency. The insulation life was tested on a large-scale coil at high temperature as part of the development of a large-capacity EM pump. Mechanical and electrical damage were not observed, and the insulation performance was quite good. The insulation system could also be applied to large-scale coils

  11. Development of alumino-silicate refractories in Ghana

    International Nuclear Information System (INIS)

    Kisiedu, A. K.; Tetteh, D.M.B.; Obiri, H. A.; Brenya, E. F.; Ayensu, A.

    2008-01-01

    Alumino-silicate (bauxite), andalusite, kaolin and clay were investigated for suitability in production of alumina, mullite and fireclay brick refractories. The raw materials were characterized by X-ray diffraction, differential thermal and silicate analyses. The x-ray diffraction analysis of alumina and mullite refractories fired at 1450 0 C, and fireclay bricks fired at 1350 0 C, indicated presence of corundum and alpha-alumina crystals. The values of thermal (fired) shrinkage, crushing, strength, porosity, water absorption and bulk density determined were 31.1%, 2.3 x 10 3 kg/m 3 , 4.86 x 10 6 N/m 2 and 13.2 % for mullite; 30.2%, 2.4 x 10 3 kg/m 3 , 3.20 x 10 6 N/m 2 and W = 12.8 % for alumina; and 25.2 %, 2.1 x 10 3 kg/m 3 , 2.61 x 10 6 N/m 2 and W = 11.8% for fireclay, respectively. Bauxite, andalusite and special kaolin were identified as potential raw materials for developing alumina and mullite refractories for construction of high temperature kilns and furnaces operating at 1350 0 C. The clay and kaolin minerals could be used to produce fireclay refractories for construction of incinerators operating at maximum temperatures of about 1000 0 C. The performance of the refractories was demonstrated by producing bricks to construct kilns and incinerators for the ceramic industry and hospitals. (au)

  12. French position paper on sodium fires, design and testing

    International Nuclear Information System (INIS)

    Malet, J.C.; Casselman, C.; Charpenel, J.; Duverger de Cuy, G.; Rzekiecki, R.; Dufresne, J.; Lo Pinto, P.; Montaignac de; Herault, A.

    1983-01-01

    This document gives an up-to-date account of studies carried out in France in the fields of sodium fires, extinction, filtration and prefiltration of aerosols originating from a sodium fire, and of sodium concrete reactions. It also indicates how the CEA, in collaboration with the CNEN, intends to deal with scale effects. (author)

  13. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  14. Toxicity of inhaled 90Sr in fused aluminosilicate particles in beagle dogs. VIII

    International Nuclear Information System (INIS)

    Snipes, M.B.; Hahn, F.F.; Muggenburg, B.A.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1977-01-01

    Studies on the metabolism, dosimetry and biological effects of 90 Sr inhaled in a relatively insoluble form by Beagle dogs have continued during the past year to define the biological consequences of inhaling this important radionuclide in a form which has a long retention time in the lung. One hundred and six dogs were exposed to a polydisperse aerosol of fused aluminosilicate particles labeled with 90 Sr. Initial lung burdens ranged from 0.21 to 94 μCi 90 Sr per kilogram of body weight (μCi/kg). Eighteen control dogs were exposed to an aerosol of stable strontium in fused aluminosilicate particles. These 124 dogs were assigned to the longevity study. An additional 26 dogs were exposed similarly to achieve lung burdens of approximately 1.5 to 12 μCi/kg and assigned for sacrifice at intervals after exposure to define metabolism and dosimetry of this aerosol in Beagle dogs. Of the longevity dogs, 33 dogs having initial lung burdens of 16 to 94 μCi 90 Sr/kg and cumulative doses to lung of 40,000 to 96,000 rads have died from radiation pneumonitis and/or pulmonary fibrosis from 159 to 2373 days after exposure. Thirty-one dogs with initial lung burdens of 3.7 to 36 μCi 90 Sr/kg and cumulative doses to lung of 13,000 to 68,000 rads have died from hemangiosarcomas in the lung or heart between 644 and 2565 days after exposure. In addition, one dog developed a bronchioloalveolar carcinoma, another developed epidermoid carcinoma of the lung, another died of pneumonia while recovering from anesthesia, one dog died at 1821 days after exposure with a hemangiosarcoma of the spleen and two dogs developed squamous cell carcinomas in the nasal cavity. The remaining exposed dogs and controls of the longevity study are surviving at 1022 to 2803 days after exposure

  15. Intelligent type sodium instrumentations for LMFR

    International Nuclear Information System (INIS)

    Daolong Chen

    1996-01-01

    The constructions and their performances of a lot of newly developed intelligent type sodium instrumentations that consist of the intelligent type sodium flowmeter, the intelligent type immersed sodium flowmeter, the intelligent type sodium manometer and the intelligent type sodium level gauge are described. The graduation characteristic equations for corresponding transducer using the medium temperature as the parameter are given. Because the operating temperature limit of measured medium (sodium) is wide, so the on-line compensation of the temperature effect of their graduation characteristics much be considered. The tests show that these intelligent type sodium instrumentations possess of good linearity. The accurate sodium process parameter (flowrate, pressure and level) measurement data can be obtained by means of their on-line compensation function of the temperature effect. Moreover, these intelligent type sodium instrumentations possess of the self-inspection, the electric shutoff protection, the setting of full-scale, the setting of alarm limits (two upper limits and two lower limits alarms), the thermocouple breaking alarm, each other isolative the 0-10V direct-current analogue output and CENTRONICS standard digital output, and the alarm relay contact output. These intelligent type sodium instrumentations are suitable particularly for the instrument, control and protective systems of LMFR by means of these excellent functions based on microprocessor. The basic error of the intelligent type sodium flowmeter, immersed sodium flowmeter, sodium manometer and sodium level gauge is respectively ±2%, ±2.3%, ±0.3% and ±1.9% of measuring range. (author). 4 refs, 9 figs

  16. Medium-scale melt-sodium fragmentation experiments

    International Nuclear Information System (INIS)

    Chu, T.Y.; Beattie, A.G.; Drotning, W.D.; Powers, D.A.

    1979-01-01

    The results of a series of fragmentation experiments involving up to 20 Kg of thermitically produced high temperature melts and 23 Kg of sodium are presented. Except for one experiment where some centimeter size particles are observed, the fragment distributions seem to be in the range of previous data. Spatial distribution of the fragments in the debris bed appears to be stratified. Scanning electron micrographs of fragments indicate fragmentation to be occurring in the molten state for the more intense interactions observed. Interaction data obtained show quiescent periods of 0.5 to 1.5 second between pressure pulses. The force impulse values per unit mass of melt seems to be in the same range as previous experiments

  17. Spying on Fe ions and their role in modified aluminosilicates during the sorption of anions using solid-state NMR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kobera, Libor; Abbrent, Sabina; Holcova, L.; Urbanová, Martina; Koloušek, D.; Doušová, B.; Brus, Jiří

    2017-01-01

    Roč. 241, 15 March (2017), s. 115-122 ISSN 1387-1811 R&D Projects: GA ČR(CZ) GA13-24155S; GA ČR(CZ) GA16-13778S Institutional support: RVO:61389013 Keywords : paramagnetic NMR shift * solid-state NMR * aluminosilicate Subject RIV: JN - Civil Engineering OBOR OECD: Civil engineering Impact factor: 3.615, year: 2016

  18. Multi-scale approach to the modeling of fission gas discharge during hypothetical loss-of-flow accident in gen-IV sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Behafarid, F.; Shaver, D. R. [Rensselaer Polytechnic Inst., Troy, NY (United States); Bolotnov, I. A. [North Carolina State Univ., Raleigh, NC (United States); Jansen, K. E. [Univ. of Colorado, Boulder, CO (United States); Antal, S. P.; Podowski, M. Z. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2012-07-01

    The required technological and safety standards for future Gen IV Reactors can only be achieved if advanced simulation capabilities become available, which combine high performance computing with the necessary level of modeling detail and high accuracy of predictions. The purpose of this paper is to present new results of multi-scale three-dimensional (3D) simulations of the inter-related phenomena, which occur as a result of fuel element heat-up and cladding failure, including the injection of a jet of gaseous fission products into a partially blocked Sodium Fast Reactor (SFR) coolant channel, and gas/molten sodium transport along the coolant channels. The computational approach to the analysis of the overall accident scenario is based on using two different inter-communicating computational multiphase fluid dynamics (CMFD) codes: a CFD code, PHASTA, and a RANS code, NPHASE-CMFD. Using the geometry and time history of cladding failure and the gas injection rate, direct numerical simulations (DNS), combined with the Level Set method, of two-phase turbulent flow have been performed by the PHASTA code. The model allows one to track the evolution of gas/liquid interfaces at a centimeter scale. The simulated phenomena include the formation and breakup of the jet of fission products injected into the liquid sodium coolant. The PHASTA outflow has been averaged over time to obtain mean phasic velocities and volumetric concentrations, as well as the liquid turbulent kinetic energy and turbulence dissipation rate, all of which have served as the input to the core-scale simulations using the NPHASE-CMFD code. A sliding window time averaging has been used to capture mean flow parameters for transient cases. The results presented in the paper include testing and validation of the proposed models, as well the predictions of fission-gas/liquid-sodium transport along a multi-rod fuel assembly of SFR during a partial loss-of-flow accident. (authors)

  19. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    International Nuclear Information System (INIS)

    Eppler, F.H.; Yim, M.S.

    1998-01-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al 2 O 3 to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition

  20. Evaluation of aluminosilicate glass sintering during differential scanning calorimetry

    International Nuclear Information System (INIS)

    Souza, Juliana Pereira de

    2015-01-01

    In this work a difference in the baseline in differential scanning calorimetry analyses, observed in a work where aluminosilicate glasses microspheres containing Ho were studied for application in selective internal radiotherapy as hepatocellular carcinoma treatment, was studied. The glasses with nominal composition 53,7 SiO 2 .10,5 Al 2 O 3 . 35,8 MgO in %mol were produced from traditional melting. The first obtained were milled and sieved in the range of 45 a 63 μm. The material was used to produce glass microspheres by the gravitational fall method. The glass powder and the microspheres were characterized by X ray fluorescence spectrometry, laser diffraction, X ray diffraction, differential scanning calorimetry, differential thermal analysis, thermogravimetry, mass spectrometry, and scanning electron microscopy. After the thermal analyses, pellets were formed in the crucibles and were analyzed by scanning electron microscopy, X ray diffraction, and He pycnometry. The difference in the baseline was associated to the viscous flow sintering process and happens because of the decrease in the detected heat flow due to the sample shrinkage. Other events as concurrent crystallization with the sintering process were also studied. (author)

  1. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  2. Unsteady aspects of sodium-water reaction. Water clearing of sodium containing equipments

    International Nuclear Information System (INIS)

    Carnevali, Sofia

    2012-01-01

    Sodium fast Reactor (FSR) is one of the most promising nuclear reactor concepts in the frame of Generation IV Systems to be commercialised in the next decades. One important safety issue about this technology is the highly exothermal chemical reaction of sodium when brought in contact with liquid water. This situation is likely, in particular during decommissioning, when sodium needs to be firstly converted ('destroyed') into non-reactive species. This is achieved by water washing: the major products are then gaseous hydrogen and corrosive soda. Today, such operations are performed in confined chambers to mitigate the consequences of any possible abnormal conditions. It has for long been believed that the main safety problem was the combustion of hydrogen in the surrounding air despite some pioneering works suggested that even without air the reaction could be explosive. It is extremely important to clarify the phenomenology of sodium-water interactions since available knowledge does not allow a robust extrapolation of existing data/model to full scale plants. The primary objective of this work is to identify and assess the details of the phenomenology, especially at the sodium/water interface, to isolate the leading mechanisms and to propose a robust and innovative modelling approach. A large body of yet unreleased experimental data extracted from the files of the French Commissariat a l'Energie Atomique (CEA) was collated and analysed on the basis of 'explosion' physics. Some additional experiments were also performed to fill some gaps, especially about the kinetics of the reaction. The results strongly suggest that the fast expansion of gas producing a blast wave in certain conditions is a kind of vapour explosion. It also appears that any potential hydrogen-air explosion should be strongly mitigated by the large quantity of water vapour emanating also from the reaction zone. The limitations of existing modelling approaches are clearly

  3. Sodium-water reaction in double pool LMFBR, (5)

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Kumagai, Hiromichi; Nishi, Yoshihisa; Uotani, Masaki

    1990-01-01

    Experiments were conducted using a 1/5 scale model of the Double Pool in order to evaluate a pressure rise caused by a large scale sodium-water reaction. The experiments were focused on the pressure rise caused by the piston motion of liquid sodium. It appeared from the results that the magnitude of this pressure rise depends on the depth of reaction point, and that a pressure rise more than 1 MPa would arise in the real Double Pool plant. A new design of steam generator is proposed to mitigate the pressure rise. (author)

  4. Absorption and luminescence characteristics of {sup 5}I{sub 7} ↔ {sup 5}I{sub 8} transitions of the holmium ion in Ho{sup 3+}-doped aluminosilicate preforms and fibres

    Energy Technology Data Exchange (ETDEWEB)

    Ryabochkina, P A; Chabushkin, A N [N.P. Ogarev Mordovian State University, Saransk (Russian Federation); Kosolapov, A F [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Kurkov, A S [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-02-28

    We have obtained the spectral dependences of the absorption cross sections for the Ho{sup 3+} {sup 5}I{sub 8} → {sup 5}I{sub 6} and {sup 5}I{sub 8} → {sup 5}I{sub 7} transitions in Ho{sup 3+}-doped aluminosilicate fibres and the spectral dependence of the stimulated emission cross section for the Ho{sup 3+} {sup 5}I{sub 7} → {sup 5}I{sub 8} laser transition in Ho{sup 3+}-doped aluminosilicate fibre preforms. The lifetime of the Ho{sup 3+} {sup 5}I{sub 7} upper laser level in the preforms has been determined. (lasers)

  5. Silica, alumina and aluminosilicates as solid stationary phases in gas chromatography

    Directory of Open Access Journals (Sweden)

    S. Faramawy

    2016-09-01

    Full Text Available Silica, alumina and Aluminosilicates of different Si/Al ratios were prepared by conventional precipitation or co-precipitation methods and then subjected to thermal treatment at 800 °C. The parent and thermally treated materials were characterized by means of FTIR, SEM and thermal analysis (DTA and TGA in order to elucidate the main structural properties. Surface textural characteristics were investigated by means of nitrogen adsorption–desorption isotherms at −196 °C. Pore size distribution curves indicated the presence of mesopores (10–150 Å exhibiting maxima at 35 Å. The maxima were shifted toward higher values by increasing the alumina content. Thermodynamic parameters, ΔH, ΔG and ΔS, were determined by means of inverse gas chromatography using n-hexane as a probe. The untreated and thermally treated materials were tested as solid stationary phases in gas chromatography. The separation efficiency of various non polar and polar compounds was explained in terms of surface texture and thermodynamic parameters.

  6. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    Energy Technology Data Exchange (ETDEWEB)

    Enterría, Marina, E-mail: marina@incar.csic.es; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-15

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm{sup 3}/g, respectively. X-ray diffraction and N{sub 2} adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica.

  7. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    International Nuclear Information System (INIS)

    Enterría, Marina; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-01

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm 3 /g, respectively. X-ray diffraction and N 2 adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica

  8. Surface functionalization of aluminosilicate nanotubes with organic molecules

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2012-02-01

    Full Text Available The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid (HT3P and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid 1,1-dioxide (HT3OP, on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene (P3HT chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid.

  9. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Kroll, Jared O. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Peterson, Jacob A. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Matyáš, Josef [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Olszta, Matthew J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Vienna, John D. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-09-14

    This paper discusses the development of aluminosilicates aerogels as scaffolds for Ag0 nanoparticles used for chemisorption of I2(g). The starting materials for these scaffolds included both Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles are added by soaking the aerogels in AgNO3 followed by drying and flowing under H2/Ar to reduce Ag+ → Ag0. In some cases, samples were soaked in 3-(mercaptopropyl)trimethoxysilane under supercritical CO2 to add –SH tethers to the aerogel surfaces for more effective binding of Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogel, Si was replaced with Ag. The Ag-loading of thiolated versus non-thiolated Na-Al-Si-O aerogels was comparable at ~35 at% whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ~ 7 at% after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were > 0.5 g g-1 showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated Al-Si-O aerogel was 0.31 g g-1. The control of Ag uptake over solution residence time and [AgNO3] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the capacity of iodine chemisorption. Consolidation experimental results are also presented.

  10. [Effect of sodium carbonate assisted hydrothermal process on heavy metals stabilization in medical waste incinerator fly ash].

    Science.gov (United States)

    Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-04-01

    A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.

  11. Toddler foods, children's foods: assessing sodium in packaged supermarket foods targeted at children.

    Science.gov (United States)

    Elliott, Charlene D; Conlon, Martin J

    2011-03-01

    To critically examine child-oriented packaged food products sold in Canada for their sodium content, and to assess them light of intake recommendations, the current policy context and suggested targets. Baby/toddler foods (n 186) and child-oriented packaged foods (n 354) were coded for various attributes (including sodium). Summary statistics were created for sodium, then the children's food products were compared with the UK Food Standards Agency (FSA) 'targets' for sodium in packaged foods. Also assessed were the products' per-serving sodium levels were assessed in light of the US Institute of Medicine's dietary reference intakes and Canada's Food Guide. Calgary, Alberta, Canada. None. Twenty per cent of products could be classified as having high sodium levels. Certain sub-categories of food (i.e. toddler entrées, children's packaged lunches, soups and canned pastas) were problematic. Significantly, when scaled in according to Schedule M or viewed in light of the serving sizes on the Nutrition Facts table, the sodium level in various dry goods products generally fell within, and below, the Adequate Intake (AI)/Tolerable Upper Intake Level (UL) band for sodium. When scaled in accordance with the UK FSA targets, however, none of the (same) products met the targets. In light of AI/UL thresholds based on age and per-serving cut-offs, packaged foodstuffs for youngsters fare relatively well, with the exception of some problematic areas. 'Stealth sodium' and 'subtle sodium' are important considerations; so is use of the FSA's scaling method to evaluate sodium content, because it is highly sensitive to the difference between the reference amount and the actual real-world serving size for the product being considered.

  12. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  13. Effects of local alendronate sodium gel as an adjunct to scaling and root planing on smokers with chronic periodontitis: a pilot study

    Directory of Open Access Journals (Sweden)

    Farin Kiany

    2017-04-01

    Full Text Available Background: Chemical treatments for the modulation of host response are applied along with mechanical modalities as adjunctive to periodontal treatment. The objective of this pilot study was to investigate the effects of locally-delivered alendronate sodium gel in adjunction to scaling and root planning on periodontal indices and bone formation within vertical defects of smokers with chronic periodontitis. Methods and Materials: In this study vertical defects (n=8 with depth>5 mm have been investigated. After performing the phase I of periodontal treatment, alendronate sodium gel (1% was applied into the periodontal pockets. The whole procedure was repeated after 4 weeks. Periodontal indices (plaque and bleeding, probing depth, gingival recession, and radiographic parameter (depth of bony defect were measured at the beginning and following 6 months. Results: Compared to pre-treatment, the probing depth, radiographic depth of bony defect and bleeding and plaque indices were significantly reduced by local application of alendronate sodium gel (P=0.026; P=0.012 and P=0.007 respectively. Gingival recession showed significant increase (P=0.011. Conclusion: Local alendronate sodium gel (1% plays an important role in the improvement process of periodontal indices and bone formation within vertical bony defects of smoker patients with chronic periodontitis.

  14. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-03-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.

  15. Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)

    International Nuclear Information System (INIS)

    Grutzeck, Michael W.

    2005-01-01

    Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to ∼700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ((micro)m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''

  16. Comparative Potential Protect Effect of HSCAS, Diatomite and ...

    African Journals Online (AJOL)

    mdenli

    bentonite (Rosa et al., 2001), zeolite (Miazzo et al., 2000), hydrated sodium calcium aluminosilicate. (HSCAS) ... Due to these properties diatomite was selected for use in this experiment to compare ..... Aflatoxins in animal and human health.

  17. Characterization of Samples from the Effluent Treatment Facility Evaporator Waste Concentrate Tank

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, W.R. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-01-31

    During October 1997, the ETF Evaporator Waste Concentrate Tank No. 2 was discovered to contain a significant accumulation of solid deposits. SRTC performed destructive and nondestructive examination of solid samples from the tank. The results of these tests indicate that the solids contain mixtures of sodium oxalate (65 percent), the sulfide enclathrated sodium aluminosilicate (30 percent), and iron oxide (5 percent).

  18. Characterization of Samples from the Effluent Treatment Facility Evaporator Waste Concentrate Tank

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1998-01-01

    During October 1997, the ETF Evaporator Waste Concentrate Tank No. 2 was discovered to contain a significant accumulation of solid deposits. SRTC performed destructive and nondestructive examination of solid samples from the tank. The results of these tests indicate that the solids contain mixtures of sodium oxalate (65 percent), the sulfide enclathrated sodium aluminosilicate (30 percent), and iron oxide (5 percent)

  19. Sodium pool fires consequences on a confined vessel and on the environment

    International Nuclear Information System (INIS)

    Rzekiecki, R.; Charpenel, J.; Malet, J.C.; Cucinotta, A.

    1989-01-01

    This paper presents the PYROS I Code used in France to calculate the effects of a sodium pool fire on a vessel and his validation range. The results or the atmospheric behaviour of the aerosol are given. Predicting the consequences of large sodium fires in large cells from the results of small scaled experiments, claim attention on scale effects. (author)

  20. SnSe2 Two Dimensional Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-01-01

    Sodium-ion batteries (SIBs) are considered as a promising alternative to lithium-ion batteries (LIBs) for large-scale renewable energy storage units due to the abundance of sodium resource and its low cost. However, the development of anode

  1. Enhanced oxidation resistance of carbon fiber reinforced lithium aluminosilicate composites by boron doping

    International Nuclear Information System (INIS)

    Xia, Long; Jin, Feng; Zhang, Tao; Hu, Xueting; Wu, Songsong; Wen, Guangwu

    2015-01-01

    Highlights: • C f /LAS composites exhibit enhanced oxidation resistance by boron doping. • Boron doping is beneficial to the improvement of graphitization degree of carbon fibers. • Graphitization of carbon fibers together with the decrease of viscosity of LAS matrix is responsible to the enhancement of oxidation resistance of C f /LAS composites. - Abstract: Carbon fiber reinforced lithium aluminosilicate matrix composites (C f /LAS) modified with boron doping were fabricated and oxidized for 1 h in static air. Weight loss, residual strength and microstructure were analyzed. The results indicate that boron doping has a remarkable effect on improving the oxidation resistance for C f /LAS. The synergism of low viscosity of LAS matrix at high temperature and formation of graphite crystals on the surface of carbon fibers, is responsible for excellent oxidation resistance of the boron doped C f /LAS.

  2. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  3. Sodium removal by alcohol process: Basic tests and its application

    International Nuclear Information System (INIS)

    Nakai, S.; Yamamoto, S.; Akai, M.; Yatabe, T.

    1997-01-01

    We have various methods for sodium removal; an alcohol cleaning process, a steam cleaning process and a direct burning process. Sodium removal by the alcohol process has a lot of advantages, such as causing no alkali corrosion to steel, short processing time and easy operation. Therefore the alcohol process was selected for the 1MWt double wall tube straight type steam generator. We have already had some experiences of the alcohol process, while still needed to confirm the sodium removal rate in the crevice and to develop an on-line sodium concentration monitoring method in alcohol during sodium removal. We have conducted the small scale sodium removal test with flowing alcohol where the sodium removal rate in the crevice and the alcohol conductivity were measured as functions of sodium concentration in alcohol and alcohol temperature. The sodium removal of the DWTSG was conducted by the devised alcohol process safely and efficiently. The process hour was about 1 day. Visual inspection during dismantling of the DWTSG showed no evidence of any un-reacted sodium. (author)

  4. In situ structural analysis of calcium aluminosilicate glasses under high pressure.

    Science.gov (United States)

    Muniz, R F; de Ligny, D; Martinet, C; Sandrini, M; Medina, A N; Rohling, J H; Baesso, M L; Lima, S M; Andrade, L H C; Guyot, Y

    2016-08-10

    In situ micro-Raman spectroscopy was used to investigate the structural evolution of OH(-)-free calcium aluminosilicate glasses, under high pressure and at room temperature. Evaluation was made of the role of the SiO2 concentration in percalcic join systems, for Al/(Al  +  Si) in the approximate range from 0.9 to 0.2. Under high pressure, the intensity of the main band related to the bending mode of bridging oxygen ([Formula: see text][T-O-T], where T  =  Si or Al) decreased gradually, suggesting that the bonds were severely altered or even destroyed. In Si-rich glasses, compression induced a transformation of Q (n) species to Q (n-1). In the case of Al-rich glass, the Al in the smallest Q (n) units evolved from tetrahedral to higher-coordinated Al (([5])Al and ([6])Al). Permanent structural changes were observed in samples recovered from the highest pressure of around 15 GPa and, particularly for Si-rich samples, the recovered structure showed an increase of three-membered rings in the Si/Al tetrahedral network.

  5. Application of a gradient diffusion and dissipation time scale ratio model for prediction of mean and fluctuating temperature fields in liquid sodium downstream of a multi-bore jet block

    International Nuclear Information System (INIS)

    Bremhorst, K.; Listijono, J.B.H.; Krebs, L.; Mueller, U.

    1989-01-01

    A previously developed diffusivity based based model, for the prediction of mean and fluctuating temperatures in water flow downstream of a multi-bore jet block in which one jet is heated, is applied to a flow of sodium in apparatus of similar geometry. Some measurements not readily possible in sodium or water flows for this geometry are made using air in order to verify assumptions used in the model. The earlier derived mathematical model is modified to remove assumptions relating to turbulence. Reynolds number and turbulence Peclet number in the relationship between velocity and temperature microscales. Spalding's model, relating fluctuating velocity and temperature dissipation rates, is tested. A significant effect on this relationship due to the low Prandtl number of liquid sodium is identified. Measurements performed behind a multi-bore jet block with air as the working fluid have verified the non-isotropic nature of the large-scale flow. Results clearly show that measurements performed in water can be transferred to liquid sodium provided that molecular diffusion is included in the mean temperature equation, allowance is made for the Prandtl number effect on the dissipation time scale ratio and the coefficient of gradient diffusion of mean square temperature fluctuations is assumed equal to the eddy diffusivity of heat. (author)

  6. Stabilized sulfur as cathodes for room temperature sodium-ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yunhua [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Zhu, Yujie [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Zheng, Shiyou [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yihang [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Luo, Chao [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Gaskell, Karen [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Eichhorn, Bryan [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wang, Chunsheng [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering

    2013-05-01

    Sodium-sulfur batteries, offering high capacity and low cost, are promising alternative to lithium-ion batteries for large-scale energy storage applications. The conventional sodium-sulfur batteries, operating at a high temperature of 300–350°C in a molten state, could lead to severe safety problems. However, the room temperature sodium-sulfur batteries using common organic liuid electrolytes still face a significant challenge due to the dissolution of intermediate sodium polysulfides. For this study, we developed room temperatue sodium-sulfur batteries using a unique porous carbon/sulfur (C/S) composite cathode, which was synthesized by infusing sulfur vapor into porous carbon sphere particles at a high temperatrure of 600°C. The porous C/S composites delivered a reversible capacity of ~860 mAh/g and retained 83% after 300 cycles. The Coulombic efficiency of as high as 97% was observed over 300 cycles. The superior electrochemical performance is attrbuted to the super sulfur stability as evidenced by its lower sensitivity to probe beam irradiation in TEM, XPS and Raman charaterization and high evaperation temperature in TGA. The results make it promising for large-scale grid energy storage and electric vehicles.

  7. Numerical Analysis of Flow Distribution in a Sodium Chamber of a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Youngchul; Son, Seokkwon; Kim, Hyungmo; Eoh, Jaehyuk; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    DHR systems consist of two diverse heat removal loops such as passive and active DHR systems, and the heat load imposed on the primary sodium pool is safely rejected into the environment through different kinds of sodium-to-air heat exchangers, e.g. M-shape and helical-coil type air-coolers. The former is called as an FHX(Forced-draft sodium-to-air Heat Exchanger) and the latter is simply called as an AHX(natural-draft sodium-to-Air Heat Exchanger). In a general sodium-to-air heat exchanger design, convection resistance in a shell-side air flow path becomes dominant factor affecting the mechanism of conjugate heat transfer from the sodium flow inside the tube to the air path across the sodium tube wall. Hence verification of the flow and heat transfer characteristics is one of the most important tasks to demonstrate decay heat removal performance. To confirm a kind of ultimate heat sink heat exchanger, a medium-scale Sodium thermal-hydraulic Experiment Loop for Finned-tube sodium-to-Air Heat exchanger (here after called the SELFA) has been designed and is recently being constructed at KAERI site. The introduction of the flow baffle inside the upper sodium chamber of the model FHX unit in the SELFA facility is briefly proposed and discussed as well. The present study aims at introducing a flow baffle design inside the upper sodium chamber to make more equalized flowrates flowing into each heat transfer tube of the model FHX unit. In the cases without the flow baffle geometry, it was observed lager discrepancies in flowrates at the heat transfer tubes. However it was also found that those kinds of discrepancies could be definitely decreased at around 1/10 by employing a flow baffle.

  8. SOCON: a computer model for analyzing the behavior of sodium-concrete reactions

    International Nuclear Information System (INIS)

    Nguyen, D.G.; Muhlestein, L.D.

    1985-03-01

    Guided by experimental evidence available to date, ranging from basic laboratory studies to large scale tests, a mechanistic computer model (the SOCON model) has been developed to analyze the behavior of SOdium-CONcrete reactions. The model accounts for the thermal, chemical and mechanical phenomena which interact to determine the consequences of the reactions. Reaction limiting mechanisms could be any process which reduces water release and sodium transport to fresh concrete; the buildup of the inert reaction product layer would increase the resistance to sodium transport; water dry-out would decrease the bubble agitation transport mechanism. However, stress-induced failure of concrete, such as spalling, crushing and cracking, and a massive release of gaseous products (hydrogen, water vapor and CO 2 ) would increase the transport of sodium to the reaction zone. The results of SOCON calculations are in excellent agreement with measurements obtained from large-scale sodium-limestone concrete reaction tests of duration up to 100 hours conducted at the Hanford Engineering Development Laboratory. 8 refs., 7 figs

  9. Potentiated clinoptilolite: artificially enhanced aluminosilicate reduces symptoms associated with endoscopically negative gastroesophageal reflux disease and nonsteroidal anti-inflammatory drug induced gastritis

    Directory of Open Access Journals (Sweden)

    Potgieter W

    2014-07-01

    Full Text Available Wilna Potgieter, Caroline Selma Samuels, Jacques Renè SnymanDepartment of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, South AfricaPurpose: The cation exchanger, a potentiated clinoptilolite (Absorbatox™ 2.4D, is a synthetically enhanced aluminosilicate. The aim of this study was to evaluate the possible benefits of a potentiated clinoptilolite as a gastroprotective agent in reducing the severity of clinical symptoms and signs associated with 1 endoscopically negative gastroesophageal reflux disease (ENGORD and 2 nonsteroidal anti-inflammatory drug (NSAID medication.Methods and patients: Two randomized, double-blind, placebo-controlled, pilot studies, the ENGORD and NSAID studies, were conducted. After initial negative gastroscopy, a total of 25 patients suffering from ENGORD were randomized to receive either placebo capsules or 750 mg Absorbatox twice daily for 14 days. The NSAID study recruited 23 healthy patients who received orally either 1,500 mg Absorbatox or placebo three times daily, plus 500 mg naproxen twice daily. Patients underwent gastroscopic evaluation of their stomach linings prior to and on day 14 of the study. Gastric biopsies were obtained and evaluated via the upgraded Sydney system, whereas visible gastric events and status of the gastric mucosa were evaluated via a 0–3 rating scale. During both studies, patients recorded gastric symptoms in a daily symptom diary.Results: In the ENGORD study, patients who received the potentiated clinoptilolite reported a significant reduction (P≤0.05 in severity of symptoms including reduction in heartburn (44%, discomfort (54%, and pain (56%. Symptom-free days improved by 41% compared to the group who received placebo (not significant. This was over and above the benefits seen with the proton pump inhibitor. In the NSAID study, the reduction in gastric symptom severity was echoed in the group who received the potentiated

  10. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  11. Clinch River breeder reactor sodium fire protection system design and development

    International Nuclear Information System (INIS)

    Foster, K.W.; Boasso, C.J.; Kaushal, N.N.

    1984-01-01

    To assure the protection of the public and plant equipment, improbable accidents were hypothesized to form the basis for the design of safety systems. One such accident is the postulated failure of the Intermediate Heat Transfer System (IHTS) piping within the Steam Generator Building (SGB), resulting in a large-scale sodium fire. This paper discusses the design and development of plant features to reduce the consequences of the accident to acceptable levels. Additional design solutions were made to mitigate the sodium spray contribution to the accident scenario. Sodium spill tests demonstrated that large sodium leaks can be safely controlled in a sodium-cooled nuclear power plant

  12. A Global Model of Meteoric Sodium

    Science.gov (United States)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  13. Electro-optical parameters of bond polarizability model for aluminosilicates.

    Science.gov (United States)

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  14. Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation Summary Of Prior Lab-Scale Testing

    International Nuclear Information System (INIS)

    Sams, T.L.; Guillot, S.

    2011-01-01

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  15. Emission tunability and local environment in europium-doped OH{sup −}-free calcium aluminosilicate glasses for artificial lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Aline M.; Sandrini, Marcelo; Viana, José Renato M.; Baesso, Mauro L.; Bento, Antônio C.; Rohling, Jurandir H. [Departamento de Física, Universidade Estadual de Maringá, Av Colombo, 5790, 87020-900, Maringá, PR (Brazil); Guyot, Yannick [Laboratoire de Physico–Chimie des Matériaux Luminescents, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, UMR 5620 CNRS 69622 (France); De Ligny, Dominique [Department of Materials Science and Engineering, University of Erlangen Nürnberg, Martens str. 5, 91058, Erlangen (Germany); Nunes, Luiz Antônio O. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense400, 13566-590, São Carlos, SP (Brazil); Gandra, Flávio G. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Sampaio, Juraci A. [Lab Ciências Físicas, Universidade Estadual Norte Fluminense, 28013-602, Campos Dos Goytacazes, RJ (Brazil); Lima, Sandro M.; Andrade, Luis Humberto C. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul-UEMS, Dourados, MS, C. P. 351, CEP 79804-970 (Brazil); and others

    2015-04-15

    The relationship between emission tunability and the local environment of europium ions in OH{sup −}-free calcium aluminosilicate glasses was investigated, focusing on the development of devices for artificial lighting. Significant conversion of Eu{sup 3+} to Eu{sup 2+} was obtained by means of melting the glasses under a vacuum atmosphere and controlling the silica content, resulting in broad, intense, and tunable luminescence ranging from blue to red. Electron spin resonance and X-ray absorption near edge structure measurements enabled correlation of the luminescence behavior of the material with the Eu{sup 2+}/Eu{sup 3+} concentration ratio and changes in the surrounding ions' crystal field. The coordinates of the CIE 1931 chromaticity diagram were calculated from the spectra, and the contour maps showed that the light emitted from Eu{sup 2+} presented broad bands and enhanced color tuning, ranging from reddish-orange to blue. The results showed that these Eu doped glasses can be used for tunable white lighting by combining matrix composition and the adjustment of the pumping wavelength. - Highlights: • Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass as a new source for white lighting. • Correlation between emission tunability and local environment of europium ions. • Significant reduction of Eu{sup 3+} to Eu{sup 2+} by melting the glasses under vacuum atmosphere. • Broad, intense and tunable luminescence ranging from blue to red.

  16. Sodium bicarbonate in-duct injection with sodium sulfate recovery for SO2/NOx control

    International Nuclear Information System (INIS)

    Bennett, R.; Darmstaedter, E.

    1991-01-01

    Dry sodium injection with sodium bicarbonate has been used commercially at industrial sites since the mid 1980's. In the past three years, five full scale commercial demonstrations have been completed on electric utility coal fired units. Up to 75% SO 2 removal with 0-40% NO x removal has been achieved on units equipped with ESPs. Recent slip stream studies have proven up to 90% SO 2 removal and 25% NO x removal when injection is ahead of a baghouse. If dry sodium bicarbonate sorbent injection technology is used prior to a retrofitted baghouse, but after an existing ESP the sodium sulfate by-product/flyash mixture in the baghouse is over 90% Na 2 SO 4 . Simple filtration and crystallization will yield a high value 99% + pure Na 2 SO 4 for sale. In this application, no liquid discharge occurs and potentially no solids discharge, since flyash recovered from the filter is either recycled to the boiler with the coal stream or reinjected into the boiler. EPA IAPCS model Version 4 is modified to project costs for this SO 2 /NO x removal technology when couples with Na 2 SO 4 recovery. In this paper an example is used to show hardware requirements, consumables accountability, by-product recovery rates, capital costs and levelized costs

  17. Spot urine sodium measurements do not accurately estimate dietary sodium intake in chronic kidney disease12

    Science.gov (United States)

    Dougher, Carly E; Rifkin, Dena E; Anderson, Cheryl AM; Smits, Gerard; Persky, Martha S; Block, Geoffrey A; Ix, Joachim H

    2016-01-01

    Background: Sodium intake influences blood pressure and proteinuria, yet the impact on long-term outcomes is uncertain in chronic kidney disease (CKD). Accurate assessment is essential for clinical and public policy recommendations, but few large-scale studies use 24-h urine collections. Recent studies that used spot urine sodium and associated estimating equations suggest that they may provide a suitable alternative, but their accuracy in patients with CKD is unknown. Objective: We compared the accuracy of 4 equations [the Nerbass, INTERSALT (International Cooperative Study on Salt, Other Factors, and Blood Pressure), Tanaka, and Kawasaki equations] that use spot urine sodium to estimate 24-h sodium excretion in patients with moderate to advanced CKD. Design: We evaluated the accuracy of spot urine sodium to predict mean 24-h urine sodium excretion over 9 mo in 129 participants with stage 3–4 CKD. Spot morning urine sodium was used in 4 estimating equations. Bias, precision, and accuracy were assessed and compared across each equation. Results: The mean age of the participants was 67 y, 52% were female, and the mean estimated glomerular filtration rate was 31 ± 9 mL · min–1 · 1.73 m–2. The mean ± SD number of 24-h urine collections was 3.5 ± 0.8/participant, and the mean 24-h sodium excretion was 168.2 ± 67.5 mmol/d. Although the Tanaka equation demonstrated the least bias (mean: −8.2 mmol/d), all 4 equations had poor precision and accuracy. The INTERSALT equation demonstrated the highest accuracy but derived an estimate only within 30% of mean measured sodium excretion in only 57% of observations. Bland-Altman plots revealed systematic bias with the Nerbass, INTERSALT, and Tanaka equations, underestimating sodium excretion when intake was high. Conclusion: These findings do not support the use of spot urine specimens to estimate dietary sodium intake in patients with CKD and research studies enriched with patients with CKD. The parent data for this

  18. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    It is important to safely treat the waste sodium which was produced from the sodium cooled fast reactors and the sodium facilities. About 1.3 tons of sodium waste has accumulated at KAERI from the sodium experiments which have been carried out since 1990. Also, large scaled sodium experiments are scheduled to verify the design of the sodium cooled fast reactor. As a treatment method for the waste sodium produced at the sodium facility, an investigation of the reaction procedure of the waste sodium with the sodium hydroxide aqueous has been developed. The NOAH process was developed in France for the treatment of waste sodium produced from sodium facilities and reactors. In the NOAH process, a small amount of sodium waste is continuously injected into the upper space which is formed on the free surface of the aqueous and slowly reacted with sodium hydroxide aqueous. Since the density of the sodium is lower than that of the aqueous, the injected sodium waste sometimes accumulates above the free surface of the sodium hydroxide aqueous, and its reaction rate becomes slow or suddenly increases. In the improved process, the sodium was injected into a reaction vessel filled with a sodium hydroxide aqueous through an atomizing nozzle installed on a lower level than that of the aqueous to maintain the reaction uniformly. Fig.1 shows the sodium waste process which was proposed in KAERI. The aqueous is composed of 60% sodium hydroxide, and its temperature is about 60 .deg. C. The process is an exothermic reaction. The hydrogen gas is generated, and the concentration of the sodium hydroxide increases in this process. It needs several systems for the process, i.e. a waste sodium injection, a cooling of the aqueous, hydrogen ventilation, and neutralization with nitric acid. The atomizing nozzle was designed to inject the sodium with the nitrogen gas which supplies a heat to the sodium to prevent its solidification and to uniformly mix the sodium with the aqueous. There are

  19. Development and demonstration of sodium fire mitigation system in the SAPFIRE facility

    International Nuclear Information System (INIS)

    Himeno, Y.; Miyahara, S.; Morii, T.; Sasaki, K.

    1989-01-01

    Flow pattern of a realistic sodium leak from the sodium piping equipped with jackets and thermal insulator was experimentally investigated. Then, based on this result, the fire mitigation system consisting of an inclined liner, a drain piping, and a smothering tank has been developed. The performance of the system was, in final, validated in the large-scale sodium leak and fire test in the SAPFIRE facility. (author)

  20. Properties of dry masonry mixtures based on hollow aluminosilicate microspheres

    Directory of Open Access Journals (Sweden)

    Semenov Vyacheslav

    2017-01-01

    Full Text Available At present, there is a steady increase in the volume of housing construction in the Russian Federation. The modern trends in the field of energy and resource saving determine the need of the use of efficient building materials that ensure the safety, comfort and minimum cost of housing construction. Among the materials, often used for erecting of fencing structures, it is possible to note effective small-piece elements (ceramic and light-weight concrete units, etc.. To ensure the solidity of such structures, it is necessary to use the masonry mortars whose properties correspond to those of the main wall material. The existing dry mixes for obtaining of such mortars are expensive and often do not meet the minimum physical-and-mechanical and exploitation requirements. The solution of this problem is the usage of the hollow ceramics (aluminosilicate microspheres as a filler for such mixes. The article presents the results of studies of the main physical-and-mechanical and exploitation characteristics of dry masonry mixes with hollow ceramics microspheres modified with various chemical additives. The effect of the compounding factors on the average density and strength of dry masonry mixes was studied. The compositions have been optimized by the methods of mathematical planning.

  1. Judd-Ofelt Analysis of Dy3+-Activated Aluminosilicate Glasses Prepared by Sol-Gel Method

    Science.gov (United States)

    Sengthong, Buonyavong; Van Tuyen, Ho; An, Nguyen Thi Thai; Van Do, Phan; Hai, Nguyen Thi Quy; Chau, Pham Thi Minh; Quang, Vu Xuan

    2018-04-01

    Aluminosilicate (AS) glasses doped with different Dy3+ concentrations were synthesized via sol-gel method. Absorption, photoluminescence spectra and lifetime of this material have been studied. From analytical results of absorption spectra, the Judd-Ofelt (JO) parameters of prepared samples have been determined. These JO parameters combined with photoluminescence spectra have been used to evaluate transition probabilities ( A R), branching ratios ( β) and the calculated oscillator strengths of AS:Dy3+ glasses. The radiative branching ratio of 4F9/2 → 6H13/2 transition has a minimum value at 62.2% for β R which predicts that this transition in AS:Dy3+ glasses can give rise to lasing action. JO parameters show that the Ω2 increases with the increasing of Dy3+ ion concentration due to the increased polarizability of the average coordination medium and decreased average symmetry.

  2. Production and release of gas and volatile elements from sodium-based targets

    CERN Multimedia

    Plewinski, F; Wildner, E; Catherall, R

    Several large scale facilities being studied for Europe use sodium or a sodium-based alloy either as a target or as a coolant for heavier solid targets subjected to MW proton beams, such as the European Spallation Source (ESS) and $\\beta$-beam projects. ESS will be the neutron source in use from the year 2020 in Europe, providing high intensity neutron fluxes over large energy spectra ( from 10$^{-3}$ eV to 10$^{3}$ eV) to scientists, to explore materials from 10$^{-2}$m to 10$^{-16}$m scale. A sodium-cooled array of tungsten blocks is one of the potential solutions for the target that will convert protons from the 5 MW 2.5 GeV linac into neutrons. Sodium is a tried and tested coolant in fast nuclear reactors with associated technologies and design standards. Its application to a spallation environment however remains to be validated. The ISOLDE facility is well placed to perform detailed measurements of radioisotopes produced in sodium with a proton beam whose energy of 1.4 GeV is very close to the ESS base...

  3. Sodium flow measurement in large pipelines of sodium cooled fast breeder reactors with bypass type flow meters

    International Nuclear Information System (INIS)

    Rajan, K.K.; Jayakumar, T.; Aggarwal, P.K.; Vinod, V.

    2016-01-01

    Highlights: • Bypass type permanent magnet flow meters are more suitable for sodium flow measurement. • A higher sodium velocity through the PMFM sensor will increase its sensitivity and resolution. • By modifying the geometry of bypass line, higher sodium velocity through sensor is achieved. • With optimized geometry the sensitivity of bypass flow meter system was increased by 70%. - Abstract: Liquid sodium flow through the pipelines of sodium cooled fast breeder reactor circuits are measured using electromagnetic flow meters. Bypass type flow meter with a permanent magnet flow meter as sensor in the bypass line is selected for the flow measurement in the 800 NB main secondary pipe line of 500 MWe Prototype Fast Breeder Reactor (PFBR), which is at the advanced stage of construction at Kalpakkam. For increasing the sensitivity of bypass flow meters in future SFRs, alternative bypass geometry was considered. The performance enhancement of the proposed geometry was evaluated by experimental and numerical methods using scaled down models. From the studies it is observed that the new configuration increases the sensitivity of bypass flow meter system by around 70%. Using experimentally validated numerical tools the volumetric flow ratio for the bypass configurations is established for the operating range of Reynolds numbers.

  4. The role of humic acid on the formation of HAS (hydroxy-aluminosilicate) colloid-borne actinides

    Energy Technology Data Exchange (ETDEWEB)

    Priemyshev, A.; Kim, M.A. [Inst. fuer Radiochemie, Technische Universitaet Muenchen, D-85748 Garching (Germany); Breban, D.; Panak, P.J.; Yun, J.I.; Kim, J.I.; Fanghanel, Th. [Inst. fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Mansel, A. [Inst. fuer Interdisziplinaere Isotopenforschung, Georadiochemie, Leipzig, D-04318 Leipzig (Germany)

    2005-07-01

    Full text of publication follows: One of the major unknowns in the process of actinide migration is the formation of their colloid-borne species. Previous studies have been directed to the incorporation of actinides into HAS (hydroxy-aluminosilicate) colloids generated by the nucleation of Si and Al. The present work further pursues the behaviour of actinides at HAS colloid formation but in the presence of humic acid that is known to be an ubiquitous groundwater constituent. The formation and degree of stability of the aluminosilicate binding for the generation of HAS colloids are investigated at first in the absence of actinides. Free and complexed Al resulting from ligand competitions reactions for the complexation of Al with mono-silicic acid, poly-silicic acid and EDTA are monitored spectroscopically by colour reaction. The second part of the study concentrates on the formation and stability of humic colloids using {sup 14}C-labeled humic acid. The activity distribution is ascertained in the ionic, colloidal and precipitated fractions under different conditions of colloid formation, e.g. as a function of pH, time, humic acid and Al concentration. The third part follows the appraisal of appropriate conditions under which stable HAS and humic colloids are formed, and their interaction with actinides, either separately or in competition. Trace actinides of different oxidation states {sup 241}Am(III), {sup 234}Th(IV) and {sup 233}U(VI) are taken for the purpose. HAS colloids generated from poly-silicic acid at neutral pH show EDTA-resistance, whereas HAS colloids formed from mono-silicic acid become EDTA-resistant only by aging (> one month). Humic acid appears to stabilize HAS colloids, unless the loading capacity of humic acid for the Al ion is exceeded. The incorporation of actinides into the colloidal phase is generally enhanced in the presence of humic acid. Synergic effects produce chimeric HAS-humic colloids into which tri-, tetra- and hexavalent actinides

  5. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  6. Esmeralda project for studying extensive sodium fire

    International Nuclear Information System (INIS)

    Sophy, Y.M.; Roy, D.; Bentz, A.; Gerosa, A.; Noel, H.

    1979-01-01

    This paper describes the Esmeralda Project for studying extensive fires involving up to 70 metric tons of sodium. The motivations which prompted the decision to create this research facility are related to construction of the Super-Phenix breeder reactor and to the scale effect problems posed by the use of very large quantities of sodium. Information is included on the dimensions of the installation, the objectives of the project, the means to be employed, the timetable to be followed, and the organization which was created for this project within the context of Franco-Italian cooperation

  7. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

    International Nuclear Information System (INIS)

    Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

    2011-01-01

    To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li + ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 (micro)s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance ∼2 π-mm-mrad. Here, lithium aluminosilicate ion sources, of β-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 (micro)s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V 3/2 . A space-charge limited beam density of ∼1 mA/cm 2 was measured at 1275 C temperature, after allowing a conditioning time of about ∼ 12 hours. Maximum emission limited beam current density of (ge) 1.8mA/cm 2 was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 ± 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino-silicate material either as ions or as neutral

  8. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    International Nuclear Information System (INIS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-01-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al 2 O 3 ) 1−x (SiO 2 ) x , glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO 5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins

  9. Methodology for Extraction of Remaining Sodium of Used Sodium Containers

    International Nuclear Information System (INIS)

    Jung, Minhwan; Kim, Jongman; Cho, Youngil; Jeong, Jiyoung

    2014-01-01

    Sodium used as a coolant in the SFR (Sodium-cooled Fast Reactor) reacts easily with most elements due to its high reactivity. If sodium at high temperature leaks outside of a system boundary and makes contact with oxygen, it starts to burn and toxic aerosols are produced. In addition, it generates flammable hydrogen gas through a reaction with water. Hydrogen gas can be explosive within the range of 4.75 vol%. Therefore, the sodium should be handled carefully in accordance with standard procedures even though there is a small amount of target sodium remainings inside the containers and drums used for experiment. After the experiment, all sodium experimental apparatuses should be dismantled carefully through a series of draining, residual sodium extraction, and cleaning if they are no longer reused. In this work, a system for the extraction of the remaining sodium of used sodium drums has been developed and an operation procedure for the system has been established. In this work, a methodology for the extraction of remaining sodium out of the used sodium container has been developed as one of the sodium facility maintenance works. The sodium extraction system for remaining sodium of the used drums was designed and tested successfully. This work will contribute to an establishment of sodium handling technology for PGSFR. (Prototype Gen-IV Sodium-cooled Fast Reactor)

  10. Thermal properties of alkali-activated aluminosilicates with CNT admixture

    Science.gov (United States)

    Zmeskal, Oldrich; Trhlikova, Lucie; Fiala, Lukas; Florian, Pavel; Cerny, Robert

    2017-07-01

    Material properties of electrically conductive cement-based materials with increased attention paid on electric and thermal properties were often studied in the last years. Both electric and thermal properties play an important role thanks to their possible utilization in various practical applications (e.g. snow-melting systems or building structures monitoring systems without the need of an external monitoring system). The DC/AC characteristics depend significantly on the electrical resistivity and the electrical capacity of bulk materials. With respect to the DC/AC characteristics of cement-based materials, such materials can be basically classified as electric insulators. In order to enhance them, various conductive admixtures such as those based on different forms of carbon, can be used. Typical representatives of carbon-based admixtures are carbon nanotubes (CNT), carbon fibers (CF), graphite powder (GP) and carbon black (CB). With an adequate amount of such admixtures, electric properties significantly change and new materials with higher added value can be prepared. However, other types of materials can be enhanced in the same way. Alkali-activated aluminosilicates (AAA) based on blast furnace slag are materials with high compressive strength comparable with cement-based materials. Moreover, the price of slag is lower than of Portland cement. Therefore, this paper deals with the study of thermal properties of this promising material with different concentrations of CNT. Within the paper a simple method of basic thermal parameters determination based on the thermal transient response to a heat power step is presented.

  11. Effects of local alendronate sodium gel as an adjunct to scaling and root planing on smokers with chronic periodontitis: a pilot study

    OpenAIRE

    Farin Kiany; Hashem Montaseri; Sadaf Adibi; Masoud Golshah; Saba Golshah

    2017-01-01

    Background: Chemical treatments for the modulation of host response are applied along with mechanical modalities as adjunctive to periodontal treatment. The objective of this pilot study was to investigate the effects of locally-delivered alendronate sodium gel in adjunction to scaling and root planning on periodontal indices and bone formation within vertical defects of smokers with chronic periodontitis. Methods and Materials: In this study vertical defects (n=8) with depth>5 mm have be...

  12. Retention of 60Co, 85Sr and 137Cs on inorganic ion exchangers

    International Nuclear Information System (INIS)

    Dozol, J.F.; Eymard, S.

    1983-11-01

    The aim of the study is the treatment of radioactive wastes produced in plutonium fuel fabrication or in spent fuel reprocessing by inorganic ion exchangers for ultimate storage. This rapport, gives the distribution coefficients of 60 Co, 85 Sr, 137 Cs (in sodium nitrate medium at different concentration of sodium: .23g/l, 1 g/l, 10 g/l) obtained with different inorganic exchangers: titanium oxyde, sodium titanate, sodium zirconate, sodium niobate, sodium tantalate, titanium phosphate, zirconium phosphate, ammonium phosphotungstate in zirconium phosphate, polyantimonic acid amorphous aluminosilicate and several zeolites (ZBS 15 from OXYMIN, ZEOLON 400, ZEOLON 500, ZEOLON 900 from Norton, IE 96, A 51, 13 X from Union Carbide) [fr

  13. Development of sodium technology

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D.

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, τ c = δ·g -0.83 ·10 (3570/T Na -3.34) , in 400-500 deg C of liquid sodium atmosphere. The characteristics of pressure propagation and gas flow, and

  14. Development of sodium technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Nam, H Y; Choi, Y D [and others

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, {tau}{sub c} = {delta}{center_dot}g{sup -0.83}{center_dot}10{sup (3570/T{sub Na}-3.34)}, in 400-500 deg C of liquid sodium atmosphere. The characteristics

  15. UKAEA mechanical test work in sodium

    International Nuclear Information System (INIS)

    Wood, D.S.

    1977-01-01

    The main aim of the UKAEA work is to perform mechanical tests in high quality sodium, and on the basis of relatively long term tests to establish whether factors need to be applied to the air data for the design and assessment of components which will have to operate in sodium for up to 30 years. Most of the tests will be performed in sodium containing 5-10 ppm O 2 and ∼ 1 ppm C with a flow rate over the specimen surface of 3m/sec. Some work is also planned to establish the effect of changes in oxygen level up to 30 ppm on the properties and carburization studies will also be performed. Thin work has been in progress on a limited scale for 2-3 years but is now increasing in magnitude to meet the programme requirements. The materials under test include Type 316 steel and 9% Cr steel with most emphasis being placed on the austenitic steel. From the very limited fatigue and stress rupture tests so far performed on Type 316 steel there is no evidence to suggest that high purity sodium may be detrimental. Longer term tests are necessary however to confirm this finding which is based on results from relatively short term tests. Tests are also necessary in less pure sodium

  16. Sodium fire tests for investigating the sodium leak in Monju

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    1996-01-01

    As a part of the work for investigating the sodium leak accident which occurred in Monju on December 8, 1995, three tests, (1) sodium leak test, (2) sodium fire test-I, and (3) sodium fire test-II, were carried out at OEC/PNC. Main objectives of these tests are to confirm leak and burning behavior of sodium from the damaged thermometer, and effects of the sodium fire on integrity of the surrounding structure, etc. The main conclusions obtained from the tests are shown as below. 1) Average sodium leak rate obtained from the sodium leak test was about 50 g/sec. This was equivalent to the value estimated from level change in the sodium overflow tank in the Monju accident. 2) Observation from video cameras in the sodium fire tests revealed that in early stages of sodium leak, sodium dropped down out of the flexible tube of thermometer in drips. This dripping and burning were expanded in range as sodium splashed on the duct. 3) Though, in the sodium fire test-I, there was a decrease of about 1 mm at a thickness of the burning pan in the vicinity in just under in the leak point, there were completely no crack and failure. In the meantime, in the sodium fire test-II the six open holes were found in the floor liner. By this liner failure, the reaction between sodium and concrete might take place. At present, while the detailed evaluation on the sodium fire test-II has been mainly carried out, the investigation for clarifying the cause of the liner failure has been also carried out. (author)

  17. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  18. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.

    OpenAIRE

    Morgan, K; Brown, R C; Spurlock, G; Southgate, K; Mir, M A

    1986-01-01

    An inhibitor of ouabain-insensitive sodium/sodium exchange in erythrocytes has been isolated from leukemic promyelocytes. To explore the specific effects of this inhibitor, named inhibitin, sodium transport experiments were carried out in human erythrocytes. Inhibitin reduced ouabain-insensitive bidirectional sodium transport. It did not change net sodium fluxes, had no significant effect on rubidium influx, and did not inhibit sodium-potassium-ATPase activity. The inhibitory effect of inhibi...

  19. Elasticity of phase-Pi (Al3Si2O7(OH)3) - A hydrous aluminosilicate phase

    Science.gov (United States)

    Peng, Ye; Mookherjee, Mainak; Hermann, Andreas; Bajgain, Suraj; Liu, Songlin; Wunder, Bernd

    2017-08-01

    Phase-Pi (Al3Si2O7(OH)3) is an aluminosilicate hydrous mineral and is likely to be stable in hydrated sedimentary layers of subducting slabs. Phase-Pi is likely to be stable between the depths of 60 and 200 km and is likely to transport water into the Earth's interior. Here, we use first principles simulations based on density functional theory to explore the crystal structure at high-pressure, equation of state, and full elastic stiffness tensor as a function of pressure. We find that the pressure volume results could be described by a finite strain fit with V0 , K0 , and K0‧ being 310.3 Å3, 133 GPa, and 3.6 respectively. At zero pressure, the full elastic stiffness tensor shows significant anisotropy with the diagonal principal components C11 , C22 , and C33 being 235, 292, 266 GPa respectively, the diagonal shear C44 , C55 , and C66 being 86, 92, and 87 GPa respectively, and the off-diagonal stiffness C12 , C13 , C14 ,C15 , C16 , C23 , C24 , C25 , C26 , C34 , C35 , C36 , C45 , C46 , and C56 being 73, 78, 6, -30, 15, 61, 17, 2, 1, -13, -15, 6, 3, 1, and 3 GPa respectively. The zero pressure, shear modulus, G0 and its pressure derivative, G0 ‧ are 90 GPa and 1.9 respectively. Upon compression, hydrogen bonding in phase-Pi shows distinct behavior, with some hydrogen bonds weakening and others strengthening. The latter eventually undergo symmetrization, at pressure greater (>40 GPa) than the thermodynamic stability of phase-Pi. Full elastic constant tensors indicate that phase-Pi is very anisotropic with AVP ∼22.4% and AVS ∼23.7% at 0 GPa. Our results also indicate that the bulk sound velocity of phase-Pi is slower than that of the high-pressure hydrous aluminosilicate phase, topaz-OH.

  20. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.

    chamber to compress bulk glass samples isostatically up to 1 GPa at elevated temperature before or after the ion exchange treatment of an industrial sodium-magnesium aluminosilicate glass. Compression of the samples prior to ion exchange leads to a decreased Na+-K+ inter-diffusivity, increased compressive...

  1. The ESMERALDA project for studying extensive sodium fire

    International Nuclear Information System (INIS)

    Sophy, Y.M.; Roy, D.; Noel, H.; Gerosa, A.

    1979-08-01

    This paper describes the Esmeralda Project for studying extensive fires involving up to 70 metric tons of sodium. The motivations which prompted the decision to create this research facility are related to construction of the Super-Phenix breeder reactor and to the scale effect problems posed by the use of very large quantities of sodium. Information is included on the dimensions of the installation, the objectives of the project, the means to be employed, the timetable to be followed, and the organization which was created for this project within the context of Franco-Italian cooperation

  2. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    International Nuclear Information System (INIS)

    Okano, Y.; Yamaguchi, A.

    2001-01-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar

  3. Sodium in diet

    Science.gov (United States)

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... Too much sodium in the diet may lead to: High blood pressure in some people A serious buildup of fluid in people with heart failure , cirrhosis of ...

  4. In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode

    OpenAIRE

    Yuhki Yui; Masahiko Hayashi; Jiro Nakamura

    2016-01-01

    Electrochemical sodium deposition/dissolution behaviors in propylene carbonate-based electrolyte solution were observed by means of in situ light microscopy. First, granular sodium was deposited at pits in a sodium electrode in the cathodic process. Then, the sodium particles grew linearly from the electrode surface, becoming needle-like in shape. In the subsequent anodic process, the sodium dissolved near the base of the needles on the sodium electrode and the so-called ?dead sodium? broke a...

  5. Structural analyses on piping systems of sodium reactors. 2. Eigenvalue analyses of hot-leg pipelines of large scale sodium reactors

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kasahara, Naoto

    2002-01-01

    Two types of finite element models analyzed eigenvalues of hot-leg pipelines of a large-scale sodium reactor. One is a beam element model, which is usual for pipe analyses. The other is a shell element model to evaluate particular modes in thin pipes with large diameters. Summary of analysis results: (1) A beam element model and a order natural frequency. A beam element model is available to get the first order vibration mode. (2) The maximum difference ratio of beam mode natural frequencies was 14% between a beam element model with no shear deformations and a shell element model. However, its difference becomes very small, when shear deformations are considered in beam element. (3) In the first order horizontal mode, the Y-piece acts like a pendulum, and the elbow acts like the hinge. The natural frequency is strongly affected by the bending and shear rigidities of the outer supporting pipe. (4) In the first order vertical mode, the vertical sections of the outer and inner pipes moves in the axial-directional piston mode, the horizontal section of inner pipe behaves like the cantilever, and the elbow acts like the hinge. The natural frequency is strongly affected by the axial rigidity of outer supporting pipe. (5) Both effective masses and participation factors were small for particular shell modes. (author)

  6. Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Yusuke; Akiyama, Kazuhiko [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan); Kobzi, Balázs; Sinkó, Katalin; Homonnay, Zoltán [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Kuzmann, Ernő [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest 1512 (Hungary); Ristić, Mira; Krehula, Stjepko [Division of Materials Chemistry, RuđerBošković Institute, Bijenička cesta 54, Zagreb 10000 (Croatia); Nishida, Tetsuaki [Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555 (Japan); Kubuki, Shiro, E-mail: kubuki@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan)

    2015-10-05

    Highlights: • Hematite was precipitated by heat treatment of iron aluminosilicate glass. • The hematite phase shows visible light photocatalytic activity. • We could prepare an effective photocatalyst from ‘ubiquitous elements’. - Abstract: A relationship between structure and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate (15Na{sub 2}O⋅15CaO⋅40Fe{sub 2}O{sub 3}⋅xAl{sub 2}O{sub 3}⋅(30−x)SiO{sub 2}) glass (xNCFAS) was investigated by means of {sup 57}Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and UV–visible light absorption spectroscopy (UV–VIS). The {sup 57}Fe-Mössbauer spectrum of 11NCFAS glass measured after heat-treatment at 1000 °C for 100 min was composed of a paramagnetic doublet due to Fe{sup III}(T{sub d}) and two magnetic sextets due to regular hematite (α-Fe{sub 2}O{sub 3}) and hematite with larger internal magnetic field. X-ray diffraction patterns of heat-treated xNCFAS samples resulted in decrease of α-Fe{sub 2}O{sub 3} and increase of Ca{sub 2}Fe{sub 22}O{sub 33} or CaFe{sub 2}O{sub 4} with alumina content. A quick decrease in methylene blue (MB) concentration from 15.6 to 4.7 μmol L{sup −1} was observed in the photocatalytic reaction test with 40 mg of heat-treated 11NCFAS glass under visible light-exposure. The largest first-order rate constant of MB decomposition (k) was estimated to be 9.26 × 10{sup −3} min{sup −1}. Tauc’s plot yielded a band gap energy (E{sub g}) of 1.88 eV for heat-treated 11NCFAS glass, which is smaller than previously reported E{sub g} of 2.2 eV for α-Fe{sub 2}O{sub 3}. These results prove that addition of Al{sub 2}O{sub 3} into iron-containing soda lime silicate glass is favorable for the preparation of improved visible light-photocatalyst with ‘ubiquitous’ elements.

  7. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  8. Performance Tests of a Mechanical Pump in Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Water is often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Nevertheless, to ensure the performance, safety, and operability of major components before its installation in the SFR, a series of demonstration experiments of some components in sodium environment should be positively necessary. So, SFR NSSS System Design Division of Korea Atomic Energy Research Institute (KAERI) built various sodium experimental facilities, especially STELLA-1 in 2012. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separated effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS). The mechanical pump in-sodium performance test was successfully performed with good reproducibility of the experiment and data to compare hydraulic characteristic of a mechanical pump in-water was collected. In effect of temperature variation on the pump pressure head, reduction of pump pressure head at 250℃ by 0.57% of that of 300℃ maybe the result of an increase in sodium viscosity by 13.6% according to operating temperature decrease by 50℃. Also, we confirmed that the more flywheel weight, the longer halving time and the more initial flow rate when the pump seized, the shorter halving time. The results of the mechanical pump performance test data in sodium environment will be used to compare with that of the in water environment after the evaluation of measurement uncertainty for tests.

  9. Sodium fires in nuclear facilities

    International Nuclear Information System (INIS)

    Menzenhauer, P.

    1974-01-01

    The work deals with the behaviour of liquid sodium when it comes into contact with air, especially in the course of fires in technical plants. The most important fire procedures are constructed as realistically as possible, that is to say that the fires were not only carried out on a laboratory scale but with quantities of up to 200 kg sodium at temperatures of up to 800 0 C. The following was investigated: 1) the course of the fire in rooms, 2) restriction of the fire, 3) removal of the burnt remains, 4) protection measures. The fire was varied in its most important physical appearance such as surface fire, spurt fire and fire on isolated pipe lines. The fires were checked by precautionary, contructive measures - it was not necessary to place persons at the site of the fire - and by active measures such as for example by covering with extinguishing powder. All important test phases were captured in film and slides series. Visible material is thus available for the operation team of sodium plants and fire brigades who might possibly be called upon. (orig./LH) [de

  10. Mobility of chemisorbed molecules and surface regeneration of active centers during dehydration of isopropanol on aluminium oxide and aluminosilicate

    International Nuclear Information System (INIS)

    Makhlis, L.A.; Vasserberg, V.Eh.

    1976-01-01

    By a differential isotope method involving 14 C the authors have investigated the surface mobility of chemisorbed molecules of isopropanol during its dehydration in an adsorption layer on aluminium oxide and aluminosilicate. The chemisorbed alcohol molecules possess marked surface mobility which plays a decisive part in the mechanism of surface regeneration of the active catalyst centers in the process of dehydration. The cessation of the reaction long before the adsorbed alcohol is completely used up is explained by the hypothesis that there is local overpopulation of the active sectors by water formed by the reaction; this hinders further surface regeneration and repetition of the elementary events of dehydration

  11. Sodium pool fire analysis of sodium-cooled fast reactor by calculation

    International Nuclear Information System (INIS)

    Yu Hong; Xu Mi; Jin Degui

    2002-01-01

    Theoretical models were established according to the characteristic of sodium pool fire, and the SPOOL code was created independently. Some transient processes in sodium pool fire were modeled, including chemical reaction of sodium and oxygen; sodium combustion heat transfer modes in several kids of media; production, deposition and discharge of sodium aerosol; mass and energy exchange between different media in different ventilating conditions. The important characteristic parameters were calculated, such as pressure and temperature of gas, temperature of building materials, mass concentration of sodium aerosol, and so on. The SPOOL code, which provided available safety analysis tool for sodium pool fire accidents in sodium-cooled fast reactor, was well demonstrated with experimental data

  12. Molten core debris-sodium interactions: M-Series experiments

    International Nuclear Information System (INIS)

    Sowa, E.S.; Gabor, J.D.; Pavlik, J.R.; Cassulo, J.C.; Cook, C.J.; Baker, L. Jr.

    1979-01-01

    Five new kilogram-scale experiments have been carried out. Four of the experiments simulated the situation where molten core debris flows from a breached reactor vessel into a dry reactor cavity and is followed by a flow of sodium (Ex-vessel case) and one experiment simulated the flow of core debris into an existing pool of sodium (In-vessel case). The core debris was closely simulated by a thermite reaction which produced a molten mixture of UO 2 , ZrO 2 , and stainless steel. There was efficient fragmentation of the debris in all experiments with no explosive interactions observed

  13. Filtration of Sludge and Sodium Nonatitanate Solutions

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2000-01-01

    The proposed facility designs for the ion exchange and solvent extraction flowsheets under development to treat high level waste at the Savannah River Site use crossflow filtration to remove entrained sludge and monosodium titanate (MST). Bench-scale and pilot-scale testing performed with simulated feed streams showed much lower filtration rates than desired for the process. This report documents an investigation of the impact on filtration of using Honeywell sodium nonatitanate (ST), rather than MST, for strontium and actinide removal

  14. Review on supplymentary cementitious materials used in inorganic polymer concrete

    Science.gov (United States)

    Srinivasreddy, K.; Srinivasan, K.

    2017-11-01

    This paper presents a review on various supplementary cementitious materials generated from industries are used in concrete, which one is considered a waste material. These materials are rich in aluminosilicates and are activated by sodium/potassium based alkaline solution to form geopolymer concrete. When these geopolymer concrete is used in civil engineering applications has showed better or similar mechanical properties and durability properties than ordinary Portland cement concrete. This paper also given the overview on sodium hydroxide (NaOH) & sodium silicate solution (Na2SiO3) ratios, curing adopted for different geopolymer concretes and the effect of adding fibres in geopolymer concretes.

  15. Low sodium diet (image)

    Science.gov (United States)

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ...

  16. Corrosion and cleaning aspects of sodium side crevices in components of LMFBR's

    International Nuclear Information System (INIS)

    Chirer, E.G.

    1978-01-01

    Although the presence of crevices is excluded in critical areas of sodium components by design, their occurrence in other areas cannot be eliminated completely. During the lifetime of a component high concentrations of sodium compounds, such as caustics, may be formed in crevices. These compounds can remain within the crevices for some time. In this respect the following situations are recognized: - Reaction products from initial contaminants such as oxide scales. The component with crevices containing oxide scale either from the manufacturing process or insufficient cleaning after water pressure testing is exposed to sodium during actual operation. - Reaction products formed during or after cleaning. Sodium in the crevices of a drained component reacts with water vapour or water during cleaning or during subsequent storing or handling under non-perfect conditions. Before refilling with sodium the component is heated to preheat temperature. Same situation as above, however the component is exposed to sodium at operating temperature. These cycles can be repeated several times. - Products from a small sodium-water reaction. Caustic products from a small sodium-water reaction may be present in crevices or dead ends of a component which is exposed to high temperature during sodium operation or during vacuum distillation. The aims of the investigations are: determination of the corrosive aspects of high concentration of caustic reaction products of sodium in crevices on the structural materials of the component; comparison of the effectiveness of different cleaning procedures in respect to removal of sodium from crevices, e.g. water, steam, alcohol cleaning, vacuum distillation. Concerning the first item, in particular the possibility of the occurrence of intercrystalline corrosion and stress corrosion cracking is investigated. Materials investigated are the Cr-Mo steels 2 1/4Cr1Mo stabilized with Nb, 9Cr1Mo, 12Cr1Mo and the austenitic stainless steal AISI 304. The

  17. Scientific Opinion on the safety evaluation of the active substances, sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate, bentonite, sodium chloride, sodium carbonate for use in active food contact materials

    OpenAIRE

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

    2013-01-01

    This scientific opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the powder mixture of the active substances sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate (FCM substance No 1009), bentonite (CAS No 1302-78-9, FCM No 393), sodium chloride (CAS No 7647-14-5, FCM No 985), sodium carbonate (CAS No 497-19-8, FCM No 1008) which are intended to be used as combined oxygen generator and carbon...

  18. Precipitation of Scale-Forming Species During Processing of High-Level Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Parker, Kent E.; McCready, David E.

    2004-01-01

    High-level wastes from fuel-reprocessing operations are being evaporated at the DOE Savannah River Site to concentrate the liquids to about 30 to 40% of their original volume before they are discharged into a holding tank. Recently, the operation of one of the evaporators became progressively more difficult due to more frequent buildup of limited solubility aluminosilicate compounds resulting in the shutdown of the evaporator. Our research objectives were to identify and characterize the chemistry and microstructure of these scale-forming species and to determine the kinetics of formation and transformation of these solids under evaporator conditions. The data we obtained from these tests showed that hydroxide concentration and process temperature are the key factors that control the rate of formation and transformation of the scale forming solids such as zeolite A, sodalite and cancrinite

  19. Large sodium pool fires in a closed or in a naturally vented cell

    International Nuclear Information System (INIS)

    Rzekiecki, R.; Malet, J.C.; Sophy, Y.; Joly, C.; Claverie, J.

    1986-01-01

    Within the framework of R and D studies related to LMFBR sodium handling safety, a facility named ESMERALDA 1 was provided. This permits full scale demonstration of the control of sodium fires. ESMERALDA is a French-Italian project including EDF, CEA, NERSA, NOVATOME, partners. Large pool fires studies are a part of it. (author)

  20. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  1. Kinetics study of thermal decomposition of sodium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2012-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (sodium acetate, and two types of mixed sodium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for sodium acetate was 226.65 kJ/mol, and the activation energies for the two mixed sodium carboxylate salts were 195.61, and 218.18 kJ/mol. In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak-Berggren model fits all three salt types best. -- Highlights: ► Sodium carboxylate salts from fermentation broth thermally decompose to ketones. ► Activation energy varies with conversion for all three salt types. ► Sestak-Berggren model provides best fit for all three salt types.

  2. Are Diatoms “Green” Aluminosilicate Synthesis Microreactors for Future Catalyst Production?

    Directory of Open Access Journals (Sweden)

    Lydia Köhler

    2017-12-01

    Full Text Available Diatom biosilica may offer an interesting perspective in the search for sustainable solutions meeting the high demand for heterogeneous catalysts. Diatomaceous earth (diatomite, i.e., fossilized diatoms, is already used as adsorbent and carrier material. While diatomite is abundant and inexpensive, freshly harvested and cleaned diatom cell walls have other advantages, with respect to purity and uniformity. The present paper demonstrates an approach to modify diatoms both in vivo and in vitro to produce a porous aluminosilicate that is serving as a potential source for sustainable catalyst production. The obtained material was characterized at various processing stages with respect to morphology, elemental composition, surface area, and acidity. The cell walls appeared normal without morphological changes, while their aluminum content was raised from the molar ratio n(Al:n(Si 1:600 up to 1:50. A specific surface area of 55 m2/g was measured. The acidity of the material increased from 149 to 320 µmol NH3/g by ion exchange, as determined by NH3 TPD. Finally, the biosilica was examined by an acid catalyzed test reaction, the alkylation of benzene. While the cleaned cell walls did not catalyze the reaction at all, and the ion exchanged material was catalytically active. This demonstrates that modified biosilica does indeed has potential as a basis for future catalytically active materials.

  3. Intelligent type sodium level gauge and its graduation calibration facility

    International Nuclear Information System (INIS)

    Chen Daolong; Wang Xuan; Li Xinying; Sun Huiqing; Zhu Jie

    1998-04-01

    The component construction and their performances of the intelligent type sodium level gauge newly-developed and its graduation calibration facility are presented. They can be operated in the temperature limit 100∼550 degree C. Its graduation characteristic calibration test is described. The temperature effect is analyzed. The graduation characteristic equation using the medium temperature as the parameter is given. The calibration errors are analyzed. The measurement system using this sodium level gauge is presented. The tests show that the intelligent type sodium level gauge possesses good linearity. The accurate sodium level measurement data can be obtained by means of its on-line compensation function of the temperature effect. Moreover, it possesses the self-inspection, the electric shutoff protection, the setting of full-scale, the thermocouple breaking alarm, the two upper limits and two lower limits alarms, the standard analog output signal and the digital output signal. Therefore, it is applicable particularly to the instrument, control and protection systems of LMFBR. The basic error of this intelligent type sodium level gauge is +-1.9% of measuring range

  4. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique

    Directory of Open Access Journals (Sweden)

    Ana Queiroz

    2017-08-01

    Full Text Available This study aimed to evaluate the urinary excretion of sodium and potassium, and to estimate the main food sources of sodium in Maputo dwellers. A cross-sectional evaluation of a sample of 100 hospital workers was conducted between October 2012 and May 2013. Sodium and potassium urinary excretion was assessed in a 24-h urine sample; creatinine excretion was used to exclude unlikely urine values. Food intake in the same period of urine collection was assessed using a 24-h dietary recall. The Food Processor Plus® was used to estimate sodium intake corresponding to naturally occurring sodium and sodium added to processed foods (non-discretionary sodium. Salt added during culinary preparations (discretionary sodium was computed as the difference between urinary sodium excretion and non-discretionary sodium. The mean (standard deviation urinary sodium excretion was 4220 (1830 mg/day, and 92% of the participants were above the World Health Organization (WHO recommendations. Discretionary sodium contributed 60.1% of total dietary sodium intake, followed by sodium from processed foods (29.0% and naturally occurring sodium (10.9%. The mean (standard deviation urinary potassium excretion was 1909 (778 mg/day, and 96% of the participants were below the WHO potassium intake recommendation. The mean (standard deviation sodium to potassium molar ratio was 4.2 (2.4. Interventions to decrease sodium and increase potassium intake are needed in Mozambique.

  5. Sodium flow rate measurement method of annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  6. Assessment of flow induced vibration in a sodium-sodium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)], E-mail: prakash@igcar.gov.in; Thirumalai, M.; Prabhakar, R.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    2009-01-15

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. It is a liquid metal sodium cooled pool type fast reactor with all primary components located inside a sodium pool. The heat produced due to fission in the core is transported by primary sodium to the secondary sodium in a sodium to sodium Intermediate Heat Exchanger (IHX), which in turn is transferred to water in the steam generator. PFBR IHX is a shell and tube type heat exchanger with primary sodium on shell side and secondary sodium in the tube side. Since IHX is one of the critical components placed inside the radioactive primary sodium, trouble-free operation of the IHX is very much essential for power plant availability. To validate the design and the adequacy of the support system provided for the IHX, flow induced vibration (FIV) experiments were carried out in a water test loop on a 60 deg. sector model. This paper discusses the flow induced vibration measurements carried out in 60 deg. sector model of IHX, the modeling criteria, the results and conclusion.

  7. Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

    International Nuclear Information System (INIS)

    Andraka, Charles; Bohn, Mark S.; Corey, John; Mehos, Mark; Moreno, James; Rawlinson, Scott

    1999-01-01

    We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6 th -scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750 ampersand deg;C. The air/fuel mixture was electrically preheated to 640 ampersand deg;C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6 th -scale results, we are designing a till-scale hybrid receiver. This is a fully-integrated system, including burner, pin-fin primary heat exchanger, recuperator (in place of the electrical pre-heater used in the prototype system), solar absorber, and sodium heat pipe. The major challenges of the design are to avoid pre-ignition, achieve robust heat-pipe performance, and attain long life of the burner matrix, recuperator, and flue-gas seals. We have used computational fluid dynamics extensively in designing to avoid pre-ignition and for designing the heat-pipe wick, and we have used individual component tests and results of the 1/6 th -scale test to optimize for long life. In this paper, we present our design philosophy and basic details of our design. We describe the sub-scale test rig and compare test results with predictions. Finally, we outline the evolution of our full-scale design, and present its current status

  8. The Effect of Micro/Nano-metrics Size on the Interaction of Jordanian Aluminosilicate Raw Materials with High pH Solution

    Science.gov (United States)

    Aldabsheh, Islam; Garcia-Valles, Maite; Martinez, Salvador

    2014-05-01

    Environmental preservation has become a driving force behind the search for new sustainable and environmentally friendly composites to replace conventional concrete produced from ordinary Portland cement (OPC). Current researches concentrate on developing building products (geopolymers) through geopolymerization. The goal is to produce low cost construction materials for green housing. Geopolymerization is the process of polymerizing minerals with high silica and alumina at low temperature by the use of alkali solutions. Dissolution is the most important process for supplying the high initial Al and Si concentrations to produce the gel phase that is responsible for geopolymerization. This study has been focused on the influence of different micrometric particle sizes of three Jordanian raw materials on their dissolution behavior in sodium hydroxide solution. The samples are kaolinite, volcanic tuff and silica sand. The dissolution properties of each material, alone and mixed with the other two materials were studied in different concentrations (5 and 10 M) using (NaOH) at 25ºC, and shaking time for 24 and 168 h. To better understand the dissolution process, the alkaline solution was renewed after the desired time in order to know if the Al-Si raw material is completely dissolved or not. Different analytical techniques were used to characterize raw materials physically, mineralogically, chemically and thermally. All processed samples either centrifuged solutions or solid residues were fully characterized. The leached concentrations of Al and Si were determined by inductively coupled plasma (ICP). X-ray Diffraction Technique (XRD), Scanning Electron Microscopy (SEM), and Thermo Gravimetric Analysis (TGA) were used to evaluate the solid residue characterization compared with the original ones. The three aluminosilicate raw materials have indicated variable degrees of solubility under highly alkaline conditions. The method for the size reduction of the used raw

  9. Multi-scale characterization of nanostructured sodium aluminum hydride

    Science.gov (United States)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced

  10. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, (3)

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Hirata, Masaru.

    1978-01-01

    Sodium vapour and sodium mist in the cover gas of a sodium system of a fast breeder reactor cause various problems. In this report, with the results of measurements of sodium mist concentration, the distribution of sodium mist diameter in cover gas was analytically obtained. The analysis was made by using the different nucleus model B. The measurement of the concentration of sodium mist was carried out with a sodium mist pot designed by the author. The experiment was done at the sodium temperature of 400 and 500 degree centigrade. The relations among sodium temperature, upper wall temperature, and the sodium mist concentration in cover gas were obtained. Evaluation of effective condensed nuclear radius in the cover gas was made by the comparison of analysis and experimental results. The results of this evaluation shows the following conclusions. It is impossible to express the distribution of sodium mist diameter by normal distribution or logarithmic normal distribution. Drop of sodium temperature results in the decrease of weight mean radius of generated sodium mist. Drop of upper wall temperature causes the decrease of weight mean radius, and increases sodium mist concentration. (Kato, T.)

  11. An investigation of sodium iodide solubility in sodium-stainless steel systems

    International Nuclear Information System (INIS)

    Sagawa, Norihiko; Tashiro, Suguru

    1996-01-01

    Sodium iodide and major constituents of stainless steel in sodium are determined by using the steel capsules to obtain a better understanding on contribution of the constituents to the apparent iodide solubility in sodium. The capsule loaded with 20 g sodium and 0.1 - 0.3 g powder of sodium iodide is heated at its upper part in a furnace and cooled at its bottom on brass plates to establish a large temperature gradient along the capsule tube. After a given period of equilibration, the iodide and constituents are fixed in solidified sodium by quick quenching of the capsules. Sodium samples are taken from the sectioned capsule tube and submitted to sodium dissolution by vaporized water for determination of the iodine and to vacuum distillation for determination of the metal elements. Iron and nickel concentrations are observed to be lower in the samples at higher iodine concentrations. Chromium and manganese concentrations are seen to be insensitive to the iodine concentrations. The observations can be interpreted by a model that sodium oxide combines with metal iodide in sodium to form a complex compound and with consideration that the compound will fall and deposit onto the bottom of the capsule by thermal diffusion. (author)

  12. Comparison of cavitation tests on the SNR 300 prototype sodium pump, carried out using water at room temperature and liquid sodium at 5800C

    International Nuclear Information System (INIS)

    Fakkel, R.H.; Hoornweg, C.J.; Kamerling, B.; Ten Wolde, Tj.; Heslenfeld, M.W.; Mendte, W.K.; Bunjies, J.H.

    1976-01-01

    This paper gives results of tests carried out on a centrifugal pump in both a water and a sodium test facility. The pump tested is a prototype of the primary circulation pumps intended for a LMFBR 300 MWe nuclear power station (the SNR reactor) under construction at Kalkar, West Germany. The pump characteristics under various NPSH-conditions were investigated, and a comparison is made in the paper between the results of cavitation tests using water and liquid sodium. An attempt is made to account for differences in pump characteristics in both types of tests by referring to the physical properties of the liquids used (water and sodium). An attempt is also made to correlate the results obtained with the full-scale prototype to those obtained previously with a half-scale model of the impeller. The various test circuits used should be made identical, in order to avoid that differences in geometry should obscure essential features resulting from using different liquids. Yet, it showed that in this respect, the tests did not obey to this key-rule, reasons why the test results did not fully reveal the essential physical properties of either fluid under cavitating conditions. (author)

  13. 49 CFR 173.189 - Batteries containing sodium or cells containing sodium.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries containing sodium or cells containing sodium. 173.189 Section 173.189 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.189 Batteries containing sodium or cells containing sodium. (a...

  14. Cavitation erosion in sodium flow, sodium cavitation tunnel testing

    International Nuclear Information System (INIS)

    Courbiere, Pierre.

    1981-04-01

    The high-volume sodium flows present in fast neutron reactors are liable to induce cavitation phenomena in various portion of the sodium lines and pumps. The absence of sufficient data in this area led the C.E.A. to undertake an erosion research program in cavitating sodium flow. This paper discusses the considerations leading to the definition and execution of sodium cavitation erosion tests, and reviews the tests run with 400 0 C sodium on various steel grades: 316, 316 L, 316 Ti (Z8CNDT17-12), Poral (Z3CND18-12), 304 L and LN2 - clad 316 L (Ni coating-clad 316 L). Acoustic detection and signal processing methods were used with an instrument package designed and implemented at the Cadarache Nuclear Research Center

  15. Removal of sodium from the component of the sodium purification loop

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Kyung Chai; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  16. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Bajpai, M.B.; Shenoi, M.R.K.; Keni, V.S.

    1994-01-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author)

  17. Corrosion of Steels in the Vicinity of a Sodium-Water Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R. A.; Bray, J. A.; Lyons, J. M. [U.K. Atomic Energy Authority, Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom)

    1967-06-15

    Rapid corrosion of steels in the vicinity of a sodium-water reaction could lead to a major reaction in a sodium-water heat exchanger. An investigation of the magnitude of the corrosion problem has been carried out under conditions simulating both a small water leak and a full size pipe burst, and further tube failures have been obtained. These experiments were carried out on a sodium rig which could accommodate simple full-scale models of sections of heat exchanger, and up to 70 lb of water was injected into 700 lb of sodium in 9.0s. The corrosion phenomena have also been investigated on a small scale under more controllable conditions by pumping water at normal pressures into a pot of sodium. With a flow-rate of 1 ml/min corrosion rates in excess of 0.005 in./min have been obtained. The effect of various parameters on the corrosion rate has been studied, and a comparison has been made of the corrosion rates obtained with a variety of steels. The corrosion appears to be a direct result of conditions during the reaction, and the appearance of the specimen and pattern of damage suggests that the main effect is concentrated where the sodium water reaction front impinges on the metal surface. The corrosion rates are very much lower with stainless steel and nickel alloys than with ferritic materials, and suggest that the phenomena are associated with the formation of (Na{sub 2}O){sub 2}FeO. Iron powder has also been observed in the vicinity of the reaction which would suggest that this is reduced at a later stage, either as a result of the hydrogen produced during reaction, or by thermal cycling. (author)

  18. Interface induced growth and transformation of polymer-conjugated proto-crystalline phases in aluminosilicate hybrids: a multiple-quantum 23Na-23Na MAS NMR correlation spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Kobera, Libor; Urbanová, Martina; Doušová, B.; Lhotka, M.; Koloušek, D.; Kotek, Jiří; Čuba, P.; Czernek, Jiří; Dědeček, Jiří

    2016-01-01

    Roč. 32, č. 11 (2016), s. 2787-2797 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA13-24155S; GA MŠk(CZ) LD14010; GA MŠk(CZ) LO1507 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 ; RVO:61388955 Keywords : aluminosilicate hybrids * hybrid geopolymers * interface Subject RIV: CD - Macromolecular Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 3.833, year: 2016

  19. Apparatus for removing impurities in the sodium of sodium cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, A

    1970-11-11

    An apparatus is provided for removing oxygen from liquid sodium flowing in a sodium cooled reactor. The removal of oxygen is complete with high efficiency. The liquid sodium to be purified is disposed outside a cylindrical wall and negatively charged, whereas sodium as a reducing material is disposed inside the same wall. The cylindrical wall is made of zirconia-calcia (ZrO/sub 2/)sub(0.87)(CaO)sub(0.13) solid electrolyte, the cylinder having a thickness of 2.5mm, a diameter of 3cm and a depth of 20cm under the sodium level. Electric resistance of the solid electrolyte is 2.3 ohm at 500/sup 0/C. A current of 1A by the application of 25 volts treats 0.3g of oxygen. Consequently, 1 liter or 1kg of liquid sodium containing 1,000ppm of oxygen can be purified for about 3 hours at an electrical consumption of 7.5 watt-hour. In one embodiment, a cylindrical electrolytic solid made of zirconia-calcia or zirconia-yttria was disposed in a container. Liquid sodium containing oxygen flowed outside of the cylinder. Liquid sodium as a reducing material was present inside the cylinder and the container and the cylinder were electrically insulated. An electrode was inserted at the center of the cylinder and a baffle plate at the upper portion of the electrode to shield heat and rising sodium vapor was provided. The space above the container was filled with an inert gas. The oxygen in the liquid sodium to be purified transferred through the wall of the cylinder into the interior of the cylinder so as to oxydize the reducing sodium material. The supersaturated sodium oxide inside the cylinder was deposited.

  20. Scattering of light by colloidal aluminosilicate particles produces the unusual sky-blue color of Río Celeste (Tenorio volcano complex, Costa Rica.

    Directory of Open Access Journals (Sweden)

    Erick Castellón

    Full Text Available Río Celeste (Sky-Blue River in Tenorio National Park (Costa Rica, a river that derives from the confluence and mixing of two colorless streams--Río Buenavista (Buenavista River and Quebrada Agria (Sour Creek--is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC and inductively coupled plasma atomic emission spectroscopy (ICP-OES made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS, zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM with energy-dispersive spectra (EDS. Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one.

  1. Decreasing of transfer of caesium and strontium radionuclides from soil to vegetation - Use of modified aluminosilicates for decreasing of transfer of caesium and strontium radionuclides from soil to vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Voronina, Anna V.; Blinova, Marina O.; Semenischev, Vladimir S.; Kutergin, Andrey S. [Ural federal university, 620002 Ekaterinburg (Russian Federation)

    2014-07-01

    The method of addition of sorbents to soils is seemed to be the most efficient for decreasing of transfer of radionuclides from soil to vegetation. Using sorbents should possess affinity to natural systems, high specificity and selectivity and also irreversibility of sorption of radionuclides for effective retention of radionuclides as well as to prevent their migration into vegetation and further movement through food chains. Specificity, selectivity and reversibility of sorption of caesium and strontium radionuclides by natural aluminosilicates (glauconite, clinoptilolite) and modified ferrocyanide sorbents based on them was studied in this work. It was shown that the natural glauconite sorbs caesium from tap water with distribution coefficient K{sub d} = 10{sup (3.5±0.1)} mL/g, static exchange capacity of Cs is 11.0 mg/g; it shows lower specificity to strontium: K{sub d} = 10(2.5±0.1) mL/g, static exchange capacity = 9 mg/g. For clinoptilolite these parameters are for caesium K{sub d} = 10(4.4±0.5) mL/g, static exchange capacity 210 mg/g; for strontium K{sub d} = 10(3.5±0.1) mL/g, capacity = 12 mg/g. Ferrocyanide sorbents concentrate caesium radionuclides more effectively: distribution coefficient of Cs from tap water by mixed nickel-potassium ferrocyanide based on glauconite is 10(5.9±1.6) mL/g, static exchange capacity of Cs is (63.0±2.0) mg/g; for mixed nickel-potassium ferrocyanide based on clinoptilolite these characteristics are respectively 10(7.4±1.3) mL/g, 500 mg/g. In case of modified sorbents specificity to strontium remains the same as for natural aluminosilicates. Reversibility of sorption of caesium by natural glauconite and ferrocyanide sorbent was determined as caesium leaching degree from saturated samples. High caesium leaching rates and degrees are typical for natural glauconite irrespective of leachant salinity: total degree of leaching after 35 days of leaching was: mineral water = 63.4%, tap water = 41.6% and rain water = 28.8%. For

  2. Effect of sodium lactate /sodium diacetate in combination with sodium nitrite on physiochemical, microbial properties and sensory evaluation of cow sausage

    Directory of Open Access Journals (Sweden)

    Habib Sedghi

    2014-11-01

    Full Text Available Sodium nitrite has been always considered as one of the common additives due to its antibacterial effects on Clostridium botulinum and meat products' color, however it produces cancer creating nitrosamine. Recently, organic acids and their salts such as lactates have been employed as antimicrobial compounds. Lactates also improve organileptic properties including color, texture and taste and antioxidant properties. Sodium lactate causes to more reduction of anaerobic spore former bacteria than nitrite, inhibits botulin produced by Clostridium botulinum. Sodium lactate produces a permanent reddish pink color through reduction of deoxymygloboline and producing deoxymyoglobuline. In this study, the decrease of sodium nitrite amount from 120ppm to 15ppm by adding sodium lactate / sodium diacetate led to achieve an acceptable product. The best results revealed through adding 3.0625% of sodium lactate / sodium diacetate in combination with 30ppm sodium nitrite. Results also exhibited more reduction of pathogens' growth than nitrite, enhanced flavor slightly, but unable to produce reddish pink color as produced by nitrite. Results also exhibited that sodium lactate / diacetate cause to retard in microbial growth, reducing chemical change, enhance sensory properties, partially improvement in taste and texture. Although inappropriate color demonstrated sodium lactate / diacetate's inability in red pink color production in 4th sample (contains 15 ppm nitrite, its synergy effect in combination with sodium nitrite on nitroso myoglobuline production has been proven, led to sodium nitrite reduction in sausages.

  3. Use of natural aluminosilicates and porous ceramic materials for the inclusion of radioactive wastes

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Shashukov, E.A.; Kuznetsov, Yu.V.; Lyubtsev, R.I.

    1979-01-01

    Data on using the porous inorganic materials, such as diatomite and shamote, for the incorporation of radioactive wastes are presented. In laboratory-scale experiments on simulated liquid wastes it has been shown that the operations of solution absorption by porous materials, drying and calcination of salts in pores, and the subsequent conversion into glassy phosphate-silicate products seem to be promising from a technological point of view. This product is characterized by a sodium leaching rate of the order of 10 -5 g/cm 2 . d and good resistance to crystallization. The content of various oxides in the wastes can attain 15 to 20 wt %. The data on the dependence of plasticity and open porosity of the clay-like products on Na 2 O, SrO, ZrO 2 , and MnO 2 content are also given. 3 figures, 3 tables

  4. Prevention of solids formation: Results of the FY 1999 studies

    International Nuclear Information System (INIS)

    Hunt, R.D.; Beahm, E.C.; Chase, C.W.; Collins, J.L.; Dillow, T.A.; Weber, C.F.

    1999-01-01

    Tank farm operations at Hanford and Savannah River have been adversely affected by unintentional solids formations. At Hanford, a new cross-site transfer line had to be built because nearly all the original transfer lines were no longer operational due to plugs. At Savannah River, operations at its evaporator system were suspended while a plug in the gravity drain line was physically removed at considerable expense. The plugs as Hanford and Savannah River, which have been characterized, were primarily due to sodium phosphate and sodium aluminosilicate, respectively

  5. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  6. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate

    Science.gov (United States)

    Lee, Minah; Hong, Jihyun; Lopez, Jeffrey; Sun, Yongming; Feng, Dawei; Lim, Kipil; Chueh, William C.; Toney, Michael F.; Cui, Yi; Bao, Zhenan

    2017-11-01

    Sodium-ion batteries (SIBs) for grid-scale applications need active materials that combine a high energy density with sustainability. Given the high theoretical specific capacity 501 mAh g-1, and Earth abundance of disodium rhodizonate (Na2C6O6), it is one of the most promising cathodes for SIBs. However, substantially lower reversible capacities have been obtained compared with the theoretical value and the understanding of this discrepancy has been limited. Here, we reveal that irreversible phase transformation of Na2C6O6 during cycling is the origin of the deteriorating redox activity of Na2C6O6. The active-particle size and electrolyte conditions were identified as key factors to decrease the activation barrier of the phase transformation during desodiation. On the basis of this understanding, we achieved four-sodium storage in a Na2C6O6 electrode with a reversible capacity of 484 mAh g-1, an energy density of 726 Wh kg-1cathode, an energy efficiency above 87% and a good cycle retention.

  7. Study of an electromagnetic pump in a sodium cooled reactor. Design study of secondary sodium main pumps (Joint research)

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Kisohara, Naoyuki; Hishida, Masahiko; Fujii, Tadashi; Konomura, Mamoru; Ara, Kuniaki; Hori, Toru; Uchida, Akihito; Nishiguchi, Youhei; Nibe, Nobuaki

    2006-07-01

    In the feasibility study on commercialized fast breeder cycle system, a medium scale sodium cooled reactor with 750 MW electricity has been designed. In this study, EMPs are applied to the secondary sodium main pump. The EMPs type is selected to be an annular linear induction pump (ALIP) type with double stators which is used in the 160 m 3 /min EMP demonstration test. The inner structure and electromagnetic features are decided reviewing the 160 m 3 /min EMP. Two dimensional electromagnetic fluid analyses by EAGLE code show that Rms (magnetic Reynolds number times slip) is evaluated to be 1.08 which is less than the stability limit 1.4 confirmed by the 160 m 3 /min EMP test, and the instability of the pump head is evaluated to be 3% of the normal operating pump head. Since the EMP stators are cooled by contacting coolant sodium duct, reliability of the inner structures are confirmed by temperature distribution and stator-duct contact pressure analyses. Besides, a power supply system, maintenance and repair feature and R and D plan of EMP are reported. (author)

  8. Model for deposition and long-term disposition of 134Cs-labeled fused aluminosilicate particles inhaled by guinea pigs

    International Nuclear Information System (INIS)

    Snipes, M.B.; McClellan, R.O.

    1986-01-01

    When considering which laboratory animal species to use in inhalation studies, it is important to evaluate the similarities and differences in deposition and fate of the inhaled materials in various laboratory animals compared with humans. Beagle dogs have deposition and clearance patterns of inhaled particles similar to humans. However, some studies require smaller laboratory animals to be cost effective or to allow an adequate number of animals to address the scientific questions. This study evaluated the deposition and clearance of a relatively insoluble aerosol inhaled by guinea pigs. The test aerosol was monodisperse 134 Cs-labeled fused aluminosilicate particles inhaled during 75 minute inhalation exposure. The guinea pigs had deposition similar to rats but respiratory tract retention and clearance patterns were similar to dogs and humans. 5 references, 2 figures, 1 table

  9. Report of sodium cavitation

    International Nuclear Information System (INIS)

    Murai, Hitoshi; Shima, Akira; Oba, Toshisaburo; Kobayashi, Ryoji; Hashimoto, Hiroyuki

    1975-01-01

    The damage of components for LMFBRs due to sodium cavitation is serious problem. This report summarizes the following items, (1) mechanism of the incipience of sodium cavitation, (2) damage due to sodium cavitation, (3) detection method for sodium cavitation, and (4) estimation method for sodium cavitation by the comparison with water cavitation. Materials were collected from the reports on liquid metal cavitation, sodium cavitation and water cavitation published from 1965 to now. The mechanism of the incipience of sodium cavitation cavitation parameters (mean location, distributed amount or occurrence aspect and stability), experiment of causing cavitation with Venturi tube, and growth of bubbles within superheated sodium. The sodium cavitation damage was caused by magnetostriction vibration method and with Venturi tube. The state of damage was investigated with the cavitation performance of a sodium pump, and the damage was examined in view of the safety of LMFBR plants. Sodium cavitation was detected with acoustic method, radiation method, and electric method. The effect of physical property of liquid on incipient cavitation was studied. These are thermodynamic effect based on quasistatic thermal equilibrium condition and the effect of the physical property of liquid based on bubble dynamics. (Iwase, T.)

  10. Total-body sodium and sodium excess

    International Nuclear Information System (INIS)

    Aloia, J.F.; Cohn, S.H.; Abesamis, C.; Babu, T.; Zanzi, I.; Ellis, K.

    1980-01-01

    Total-body levels of sodium (TBNa), chlorine (TBCI), calcium (TBCa), and potassium (TBK) were measured by neutron activation and analysis of results by whole body counting in 66 postmenopausal women. The relationship between TBNa, and TBCl, TBK, and TBCa on the one hand, and height and weight on the other, were found to compare with those previously reported. The hypothesis that TBNa and TBCl are distributed normally could not be rejected. The sodium excess (Na/sub es/) is defined as the sodium that is present in excess of that associated with the extracellular fluid (chlorine) space; the Na/sub es/ approximates nonexchangeable bone sodium. In these 66 postmenopausal women, and in patients with different endocrinopathies previously described, the values on Na/sub es/ did not differ from the normal values except in the thyrotoxicosis patients, where they were decreased. A close relationship between Na/sub es/ and TBCa was maintained in the endocrinopathies studied. This relationship was found in conditions accompanied by either an increment or a loss of skeletal mass. It appears that the NA/sub es/ value is primarily dependent upon the calcium content of bone

  11. FY 2017-Influence of Sodium Environment on the Tensile Properties of Advanced Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Wei-Ying [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This report provides an update on the understanding of the effects of sodium exposures on tensile properties of advanced alloy 709 in support of the design and operation of structural components in sodium-cooled fast reactors (SFRs). The report is a Level 3 deliverable in FY17 (M3AT-17AN1602093), under the Work Package AT-17AN160209, “Sodium Compatibility” performed by Argonne National Laboratory (ANL), as part of Advanced Reactor Technologies Program. Three laboratory-size heats of Alloy 709 austenitic steel were investigated in liquid sodium environments at 550-650°C to understand its corrosion behaviour, microstructural evolution, and tensile properties. In addition, a commercial scale heat has been produced and hot-rolled into plates.

  12. Sodium fluxes in sweet pepper exposed to varying sodium concentrations

    NARCIS (Netherlands)

    Blom-Zandstra, M.; Vogelzang, S.A.; Veen, B.W.

    1998-01-01

    The sodium transport and distribution of sweet pepper (Capsicum annuum L.) under saline conditions were studied after transferring the plants to a sodium-free nutrient solution. Sodium stress up to 60 mM did not affect the growth of sweet pepper, as it appears able to counteract the unfavourable

  13. Reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere. Fundamental study on sodium carbonate process in FBR bulk sodium coolant disposal technology

    International Nuclear Information System (INIS)

    Tadokoro, Yutaka; Yoshida, Eiichi

    1999-11-01

    A sodium carbonate processing method, which changes sodium to sodium carbonate and/or sodium bicarbonate by humid carbon dioxide, has been examined and about to be applied to large test loops dismantling. However, that the basic data regarding the progress of the reaction is insufficient on the other hand, is a present condition. The present report therefore aims at presenting basic data regarding the reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere, and observing the reaction progress, for the application to large test loops dismantling. The test result is summarized as follows. (1) Although the reaction velocity of sodium varied with sodium specimen sizes and velocity measurement methods, the reaction velocity of sodium hydration was in about 0.16 ∼ 0.34 mmh -1 (0.016 ∼ 0.033g cm -2 h -1 , 6.8x10 -4 ∼ 1.4x10 -3 mol cm -2 h -1 ) and that of sodium carbonation was in about 0.16 ∼ 0.27mmh -1 (0.016 ∼ 0.023g cm -2 h -1 , 6.8x10 -4 ∼ 1.1x10 -3 mol cm -2 h -1 ) (26 ∼ 31degC, RH 100%). (2) The reaction velocity of sodium in carbon dioxide atmosphere was greatly affected by vapor partial pressure (absolutely humidity). And the velocity was estimated in 0.08 ∼ 0.12mmh -1 (0.008 ∼ 0.012g cm -2 h -1 , 3.4x10 -4 ∼ 5.2x10 -4 mol cm -2 h -1 ) in the carbon dioxide atmosphere, whose temperature of 20degC and relative humidity of 80% are assumed real sodium carbonate process condition. (3) By the X-ray diffraction method, NaOH was found in humid air reaction product. Na 2 CO 3 , NaHCO 3 were found in carbon dioxide atmosphere reaction product. It was considered that Sodium changes to NaOH, and subsequently to NaHCO 3 through Na 2 CO 3 . (4) For the application to large test loops dismantling, it is considered possible to change sodium to a target amount of sodium carbonate (or sodium bicarbonate) by setting up gas supply quantity and also processing time appropriately according to the surface area

  14. Fast reactor shield sensitivity studies for steel--sodium--iron systems

    International Nuclear Information System (INIS)

    Oblow, E.M.; Weisbin, C.R.

    1977-01-01

    A study was made of the adequacy of the current ENDF/B-IV sodium and iron neutron cross section data files for fast reactor shield design work. Experimental data from 21 fast reactor shield configurations containing large thicknesses of steel, sodium, and iron were analyzed with discrete ordinates calculations and sensitivity methods to assess the data files. This study represents the largest full-scale sensitivity analysis of benchmark quality experimental data to date. Included in the sensitivity studies were the results of the new cross section adjustment algorithms added to the FORSS code system. Conclusions were drawn about the need for more accurate data for sodium and iron elastic and discrete inelastic cross sections above 1 MeV and the values of the total cross section in the vicinity of important minima

  15. Sodium intake and dietary sources of sodium in undergraduate students from Novi Sad, Serbia

    Directory of Open Access Journals (Sweden)

    Jovičić-Bata Jelena

    2016-01-01

    Full Text Available Background/Aim. Data on sodium intake and sources of sodium in the diet in Serbia are limited. The aim of this study was to estimate the sodium intake and identify the sources of sodium in the diet of undergraduate students attending the University of Novi Sad. Methods. Students completed a questionnaire to gather data on their gender, age and university faculty attended, and then a 24 h dietary recall. The sodium intake of the students was calculated using the dietary recall data and data on the sodium content of foods. The contribution of different food groups as well as of specific foodstuffs to the total sodium intake was calculated. Results. The mean estimated sodium intake of the students was 3,938.5 ± 1,708.1 mg/day. The sodium intake of 89.1% of the surveyed students exceeded the guideline for sodium intake, the majority of the sodium coming from processed foods (78.9% of the total sodium intake. The food groups that contributed the most to the total sodium intake of the students were meat and meat products (21.7% and cereals and cereal-based products (18.6%. Bread and other bakery products were responsible for 13.1% of the total sodium intake. Conclusion. High sodium intake in students of the University of Novi Sad puts them at high risk of developing high blood pressure. The food industry should work towards reformulating products with high sodium content, especially bread and other bakery products. Efforts should be taken to reduce sodium intake among undergraduate students in Novi Sad.

  16. Parametric Effect of Sodium Hydroxide and Sodium Carbonate on the Potency of a Degreaser

    OpenAIRE

    Babatope Abimbola Olufemi

    2016-01-01

    Experimental and statistical analysis was carried out on the comparative effect of sodium hydroxide and sodium carbonate on the potency of a laboratory produced degreaser in this work. The materials used include; octadecyl benzene sulphonic acid, sodium hydroxide, sodium carbonate, sodium metasilicate, carboxyl methyl cellulose (C.M.C), formadelhyde, perfume, colourant and distilled water. Different samples of degreaser were produced with varying composition of sodium hydroxide and sodium car...

  17. Test Your Sodium Smarts

    Science.gov (United States)

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  18. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, M B; Shenoi, M R.K.; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author). 3 figs., 2 tabs.

  19. Methods to Compose Sodium Fire Extinguishing Equipment on Sodium Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B H; Kim, J M; Jeong, J Y; Choi, B H

    2008-06-15

    Sodium fire is graded 'D' and it is difficult to extinguish sodium fire. In this report, the characteristics of sodium fire and the methods composing the suitable fire extinguishing systems to suppress fire effectively were described.

  20. Methods to Compose Sodium Fire Extinguishing Equipment on Sodium Test Facility

    International Nuclear Information System (INIS)

    Kim, B. H.; Kim, J. M.; Jeong, J. Y.; Choi, B. H.

    2008-06-01

    Sodium fire is graded 'D' and it is difficult to extinguish sodium fire. In this report, the characteristics of sodium fire and the methods composing the suitable fire extinguishing systems to suppress fire effectively were described

  1. Transformation of sodium from the Rapsodie fast breeder reactor into sodium hydroxide

    International Nuclear Information System (INIS)

    Roger, J.; Latge, C.; Rodriguez, G.

    1994-01-01

    One of the major problems raised by decommissioning a fast breeder reactor (FBR) concerns the disposal of the sodium coolant. The Desora operation was undertaken to eliminate the Rapsodie primary sodium as part of the partial decommissioning program, and to develop an operational sodium treatment unit for other needs. The process involves reacting small quantities of sodium in water inside a closed vessel, producing aqueous sodium hydroxide and hydrogen gas. It is described in this work. (O.L.). 4 figs

  2. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  3. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite.

    Science.gov (United States)

    Nair, Bindu; Elmore, Amy R

    2003-01-01

    Sodium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Potassium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are inorganic salts that function as reducing agents in cosmetic formulations. All except Sodium Metabisulfite also function as hair-waving/straightening agents. In addition, Sodium Sulfite, Potassium Sulfite, Sodium Bisulfite, and Sodium Metabisulfite function as antioxidants. Although Ammonium Sulfite is not in current use, the others are widely used in hair care products. Sulfites that enter mammals via ingestion, inhalation, or injection are metabolized by sulfite oxidase to sulfate. In oral-dose animal toxicity studies, hyperplastic changes in the gastric mucosa were the most common findings at high doses. Ammonium Sulfite aerosol had an acute LC(50) of >400 mg/m(3) in guinea pigs. A single exposure to low concentrations of a Sodium Sulfite fine aerosol produced dose-related changes in the lung capacity parameters of guinea pigs. A 3-day exposure of rats to a Sodium Sulfite fine aerosol produced mild pulmonary edema and irritation of the tracheal epithelium. Severe epithelial changes were observed in dogs exposed for 290 days to 1 mg/m(3) of a Sodium Metabisulfite fine aerosol. These fine aerosols contained fine respirable particle sizes that are not found in cosmetic aerosols or pump sprays. None of the cosmetic product types, however, in which these ingredients are used are aerosolized. Sodium Bisulfite (tested at 38%) and Sodium Metabisulfite (undiluted) were not irritants to rabbits following occlusive exposures. Sodium Metabisulfite (tested at 50%) was irritating to guinea pigs following repeated exposure. In rats, Sodium Sulfite heptahydrate at large doses (up to 3.3 g/kg) produced fetal toxicity but not teratogenicity. Sodium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite were not teratogenic for mice, rats, hamsters, or rabbits at doses up to 160 mg/kg. Generally, Sodium Sulfite, Sodium

  4. Analytical study of sodium combustion phenomena under sodium leak accidents

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, J. Y.; Jeong, K. C.; Kim, T. J.; Choi, J. H.

    2001-12-01

    The rise of temperature and pressure, the release of aerosol in the buildings as a result of sodium fire must be considered for the safety measures of LMR. Therefore for the safety of the LMR, it is necessary to understand the characteristics of sodium fire, resulting from the various type of leakage. ASSCOPS(Analysis of Simultaneous Sodium Combustion in Pool and Spray) is the computer code for the analysis of the thermal consequence of sodium leak and fire in LMR that has been developed by Japan Nuclear Cycle Development Institute(JNC) in Japan. In this study, a preliminary analysis of sodium leak and fire accidents in S/G building of KALIMER is made by using ASSCOPS code. Various phenomena of interest are spray and pool burning, peak pressure, temperature change, local structure temperature, aerosol behavior, drain system into smothering tank, ventilation characteristics at each cell with the safety venting system and nitrogen injection system. In this calculation, the dimension of the S/G building was chosen in accordance with the selected options of LMR name KALIMER(Korea). As a result of this study, it was shown that subsequent effect of sodium fire depended upon whether the sodium continued to leak from the pipe or not, whether the ventilation system was running, whether the inert gas injection system was provided, whether the sodium on floor was drained into the smothering tank or not, whether the building was sealed or not, etc. Specially the excessive rise of pressure into each cell was prevented by installing the pressure release plates on wall of the building

  5. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  6. Electrolyte transport in distal colon of sodium-depleted rats: Effect of sodium repletion

    International Nuclear Information System (INIS)

    Turnamian, S.G.; Binder, H.J.

    1988-01-01

    Dietary sodium depletion increases plasma aldosterone level and, as a result, induces amiloride-sensitive electrogenic sodium absorption and electrogenic potassium secretion and stimulates Na + -K + -ATPase activity in rat distal colon, while inhibiting electroneutral sodium chloride absorption. To assess the events that occur as the aldosterone-stimulated colon reverts to normal, unidirectional 22 Na and 36 Cl fluxes were measured under voltage-clamp conditions across isolated distal colonic mucosa of rats that were initially dietary sodium depleted for 7 days and then sodium repleted for varying periods of time before the study. Within 8 h of dietary sodium repletion, plasma aldosterone level and Na + -K + -ATPase activity declined to normal, amiloride-sensitive electrogenic sodium absorption decreased by >90%, and active electrogenic potassium secretion also decreased markedly. In contrast, electroneutral sodium chloride absorption did not completely return to levels seen in normal animals until ∼64-68 h. These results demonstrate that maintenance of electrogenic sodium absorption and potassium secretion are directly dependent on elevated plasma aldosterone levels. The inhibition of electroneutral sodium absorption, although initiated by excess aldosterone, persists after normalization of the plasma aldosterone level, thereby implying that the inhibition is dependent on additional factor(s)

  7. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, 2

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Hirata, Masaru.

    1977-01-01

    The sodium vapor deposition onto a horizontal flat plate above liquid sodium surface was studied. The analysis was performed by assuming that the sodium mist is emitted into the main flow without condensation and then grows up in the main flow and drops on the sodium surface. The effects of growth of sodium mist to the system were investigated. The model of the phenomena is the sodium deposition onto a horizontal flat plate which is placed above the sodium surface with the medium cover gas. One-dimensional analysis can be done. The rate of deposition is greatly reduced when the temperature of the flat plate is lowered. For the analysis of this phenomena, it is assumed that the sodium mist grows by condensation. One of results is that the real state may be the state between the state that the condensation of mist is made in the boundary layer and the state that the mist is condensed in the main flow. Others are that there is no effect of sodium mist condensation on the rate of deposition, and that the rate of the vaporization of sodium is given by the original and the modified model. (Kato, T.)

  8. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Directory of Open Access Journals (Sweden)

    Amparo Borrell, Olga García-Moreno, Ramón Torrecillas, Victoria García-Rocha and Adolfo Fernández

    2012-01-01

    Full Text Available Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C. The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  9. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    International Nuclear Information System (INIS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-01-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  10. Sodium flow rate measurement method of annular linear induction pumps

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  11. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.; Cui, Yi

    2011-01-01

    needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five

  12. Astrocyte Sodium Signalling and Panglial Spread of Sodium Signals in Brain White Matter.

    Science.gov (United States)

    Moshrefi-Ravasdjani, Behrouz; Hammel, Evelyn L; Kafitz, Karl W; Rose, Christine R

    2017-09-01

    In brain grey matter, excitatory synaptic transmission activates glutamate uptake into astrocytes, inducing sodium signals which propagate into neighboring astrocytes through gap junctions. These sodium signals have been suggested to serve an important role in neuro-metabolic coupling. So far, it is unknown if astrocytes in white matter-that is in brain regions devoid of synapses-are also able to undergo such intra- and intercellular sodium signalling. In the present study, we have addressed this question by performing quantitative sodium imaging in acute tissue slices of mouse corpus callosum. Focal application of glutamate induced sodium transients in SR101-positive astrocytes. These were largely unaltered in the presence of ionotropic glutamate receptors blockers, but strongly dampened upon pharmacological inhibition of glutamate uptake. Sodium signals induced in individual astrocytes readily spread into neighboring SR101-positive cells with peak amplitudes decaying monoexponentially with distance from the stimulated cell. In addition, spread of sodium was largely unaltered during pharmacological inhibition of purinergic and glutamate receptors, indicating gap junction-mediated, passive diffusion of sodium between astrocytes. Using cell-type-specific, transgenic reporter mice, we found that sodium signals also propagated, albeit less effectively, from astrocytes to neighboring oligodendrocytes and NG2 cells. Again, panglial spread was unaltered with purinergic and glutamate receptors blocked. Taken together, our results demonstrate that activation of sodium-dependent glutamate transporters induces sodium signals in white matter astrocytes, which spread within the astrocyte syncytium. In addition, we found a panglial passage of sodium signals from astrocytes to NG2 cells and oligodendrocytes, indicating functional coupling between these macroglial cells in white matter.

  13. Characterization of the liquid sodium spray generated by a pipework hole

    International Nuclear Information System (INIS)

    Torsello, G.; Parozzi, F.; Nericcio, L.; Araneo, L.; Cozzi, F.; Carcassi, M.; Mattei, N.

    2012-01-01

    Due to its advantageous thermodynamic characteristics at high temperature (550 deg. C), liquid sodium is the main candidate to be the cooling fluid for Generation TV nuclear reactors SFR (Sodium-cooled Fast Reactors). Now, sodium reacts very violently, both with the water and the oxygen of the air. Only few data were known about the liquid sodium behaviour when spread in the environment through micro defects. These are often present in a cooling circuit in welded or sealed joints and more rarely in the pipes. Micro defects, on the other hand, can be also generated in a cooling circuit because of the vibrations always present in a circuit into which a fluid runs. A new set-up, named LISOF, was built for testing high temperature liquid sodium when passing through micro defects and generating sprays or jets. Sprays and jets were generated by means of nozzles embedding sub milli-metric holes the diameter of which was: 0.2 mm, 0.4 mm, 0.5 mm. Tests were performed by pressurizing liquid sodium (550 deg. C) at: 3, 6 and 9 barg. Normal and high speed cinematography were used for the direct observation of the liquid sodium sprays while Phase Doppler Interferometry was used for the measurement of the droplets characteristics and velocity. Tests concerning the behaviour of the high temperature liquid sodium firing in air or in contact with the cement cover applied to a scaled down core catcher simulacrum were also performed. The paper presents the built set-up and the collected results. (authors)

  14. Characterization of the liquid sodium spray generated by a pipework hole

    Energy Technology Data Exchange (ETDEWEB)

    Torsello, G.; Parozzi, F.; Nericcio, L. [RSE - Nuclear and Industrial Plant Safety Team, Power Generation System Dept., via Rubattino 54, 20134 Milano (Italy); Araneo, L.; Cozzi, F. [Politecnico di Milano, Energy Dept., via Lambruschini 4, 20156 Milano (Italy); Carcassi, M.; Mattei, N. [Universita di Pisa-Facolta d' Ingegneria DIMNP-Mechanical, Nuclear and Production Dep., Largo L. Lazzarino 2, 56126 Pisa (Italy)

    2012-07-01

    Due to its advantageous thermodynamic characteristics at high temperature (550 deg. C), liquid sodium is the main candidate to be the cooling fluid for Generation TV nuclear reactors SFR (Sodium-cooled Fast Reactors). Now, sodium reacts very violently, both with the water and the oxygen of the air. Only few data were known about the liquid sodium behaviour when spread in the environment through micro defects. These are often present in a cooling circuit in welded or sealed joints and more rarely in the pipes. Micro defects, on the other hand, can be also generated in a cooling circuit because of the vibrations always present in a circuit into which a fluid runs. A new set-up, named LISOF, was built for testing high temperature liquid sodium when passing through micro defects and generating sprays or jets. Sprays and jets were generated by means of nozzles embedding sub milli-metric holes the diameter of which was: 0.2 mm, 0.4 mm, 0.5 mm. Tests were performed by pressurizing liquid sodium (550 deg. C) at: 3, 6 and 9 barg. Normal and high speed cinematography were used for the direct observation of the liquid sodium sprays while Phase Doppler Interferometry was used for the measurement of the droplets characteristics and velocity. Tests concerning the behaviour of the high temperature liquid sodium firing in air or in contact with the cement cover applied to a scaled down core catcher simulacrum were also performed. The paper presents the built set-up and the collected results. (authors)

  15. Dynamic thermal baffle on lower head of FBR sodium-sodium intermediate heat exchanger

    International Nuclear Information System (INIS)

    Charbonnel, A.; Foussat, C.

    1981-01-01

    The cover head of the heat exchanger is bathed on the one side by the primary sodium of the 'cold' header of the vessel and on the other side by the secondary sodium which feeds the heat exchange tube bank through the lower tubesheet. In the case of transient or permanent operating conditions at partial ratings, there are large temperature differences between the inner sodium (inlet temperature conditions of secondary sodium) and the outer sodium (mean temperature conditions in the primary sodium outlet port), hence the necessity of designing a thermal baffle which protects the head and its connection to the tubesheet. A 'static' thermal baffle consisting of a thick steel plate enclosing static sodium around the head proves inadequate during transient operating conditions. This is why a 'dynamic' thermal baffle is used whose design is based on the fact that the primary sodium in the lower part of the outlet port is always at a temperature close to that of the secondary sodium in the inlet header and the head. The primary sodium is taken from the bottom of the outlet port by a ring deflector and circulates in an annulus created by a double housing and the head. It flows out through openings in the lower part of the housing. (orig./GL)

  16. Small liquid sodium leaks

    International Nuclear Information System (INIS)

    Dufresne, J.; Rochedereux, Y.; Antonakas, D.; Casselman, C.; Malet, J.C.

    1986-05-01

    Usually, pessimistic considerations inassessing the safety of secondary sodium loops in LMFBR reactor lead to assume guillotine rupture releasing a large amount of sodium estimate the consequences of large sodium fires. In order to reduce these consequences, one has to detect the smallest leak as soon as possible and to evaluate the future of an initial small leak. Analysis of the relationship between crack size and sodium outflow rate; Analysis of a sodium pipe with a small open crack

  17. Effects of topical flurbiprofen sodium, diclofenac sodium, ketorolac ...

    African Journals Online (AJOL)

    To evaluate corneal sensitivity by using the Cochet-Bonnet® esthesiometer in normal canine eyes at different time points following instillation of three different topical non-steroidal anti-inflammatory drugs (flurbiprofen sodium 0.03%, diclofenac sodium 0.1% and ketorolac tromethamine 0.5%) and benzalkonium chloride ...

  18. Investigation of Plugging of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong; Kim, Tae-joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The supercritical CO{sub 2} Brayton cycle system is known to be a promising power conversion system for improving the efficiency and preventing the sodium water reaction (SWR) of the current SFR concept using a Rankine steam cycle. PCHEs are known to have potential for reducing the volume occupied by the sodium-to-CO{sub 2} exchangers as well as the heat exchanger mass relative to traditional shell-and-tube heat exchangers. Here, we report a study on a plugging test by the interaction of sodium and CO{sub 2} to investigate design parameters of sodium channels in the realistic operating conditions. We investigated a plugging test by an interaction of sodium and CO{sub 2} with different cross sectional areas of the sodium channels. It was found that the flow rate of sodium decreased earlier and faster with a narrower cross sectional area compared to a wider one. Our experimental results are expected to be used for determining the sodium channel areas of PCHEs.

  19. Liquid sodium pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  20. Liquid sodium pool fires

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  1. Investigation for the sodium leak Monju. Sodium fire test-II

    International Nuclear Information System (INIS)

    Uchiyama, Naoki; Takai, Toshihide; Nishimura, Masahiro; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    2000-08-01

    As a part of the work for investigating the sodium leak accident which occurred in the Monju reactor (hereinafter referred to as Monju), sodium fire test-II was carried out using the SOLFA-1 (Sodium Leak, Fire and Aerosol) facility at OEC/PNC. In the test, the piping, ventilation duct, grating and floor liner were all full-sized and arranged in a rectangular concrete cell in the same manner as in Monju. The main objectives of the test were to confirm the leak and burning behavior of sodium from the damaged thermometer, and the effects of the sodium fire on the integrity of the surrounding structure. The main conclusions obtained from the test are shown below: (1) Burning Behavior of Leaked Sodium : Images taken with a cameras in the test reveal that in the early stages of the sodium leak, the sodium dropped down out of the flexible tube in drips. (2) Damage to the Ventilation Duct and Grating : The temperature of the ventilation duct's inner surface fluctuated between approximately 600degC and 700degC. The temperature of the grating began rising at the outset of the test, then fluctuated between roughly 600degC and 900degC. The maximum temperature was about 1000degC. After the test, damage to the ventilation duct and the grating was found. Damage to the duct was greater than that at Monju. (3) Effects on the Floor Liner : The temperature of the floor liner under the leak point exceed 1,000degC at 3 hours and 20 minutes into the test. A post test inspection of the liner revealed five holes in an area about 1m x 1m square under the leak point. There was also a decrease of the liner thickness on the north and west side of the leak point. (4) Effects on Concrete : The post test inspection revealed no surface damage on either the concrete side walls or the ceiling. However, the floor concrete was eroded to a maximum depth 8 cm due to a sodium-concrete reaction. The compressive strength of the concrete was not degraded in spite of the thermal effect. (5) Chemical

  2. Control of sodium fires and sodium-water reactions in breeder reactors

    International Nuclear Information System (INIS)

    Foerster, K.; Ruloff, G.; Voss, J.

    1985-01-01

    The excellent neutronic and thermodynamic properties of sodium as a fast-reactor coolant are somewhat counterbalanced by its high oxygen affinity. Because incidents like sodium fires and sodium-water reactions cannot be absolutely excluded, their effects and preventive measures have to be investigated. Characteristics and counter-measures are discussed. (orig.) [de

  3. Under sodium reliability tests on core components and in-core instrumentation

    International Nuclear Information System (INIS)

    Ruppert, E.; Stehle, H.; Vinzens, K.

    1977-01-01

    A sodium test facility for fast breeder core components (AKB), built by INTERATOM at Bensberg, has been operating since 1971 to test fuel dummies and blanket elements as well as absorber elements under simulated normal and extreme reactor conditions. Individual full-scale fuel or blanket elements and arrays of seven elements, modelling a section of the SNR-300 reactor core, have been tested under a wide range of sodium mass flow and isothermal test conditions up to 925K as well as under cyclic changed temperature transients. Besides endurance testing of the core components a special sodium and high-temperature instrumentation is provided to investigate thermohydraulic and vibrational behaviour of the test objects. During all test periods the main subassembly characteristics could be reproduced and the reliability of the instrumentation could be proven. (orig.) [de

  4. Review of CNEN activities in the field of sodium fires

    International Nuclear Information System (INIS)

    Gerosa, A.

    1979-01-01

    The problems related to sodium fires have received increased attention at CNEN in recent years. Sodium fires have been reported in several countries with a rate that is. relatively high if compared to the number of plants in operation. The consequences of fires have been usually quite limited but it appears that more adequate precautions could often be applied to minimize risk of more serious consequences. Many alternatives exist for fire prevention and for fire extinction, but the fact that many alternatives have not been sufficiently tested make choices rather difficult. CNEN has been facing the problem of sodium fire prevention and extinction in relation to: design of PEC reactor; design of experimental loops in its own centres (Casaccia and Brasimone); safe operation of the same loops and analysis of accidents and potential accident situations; design of facilities for sodium fire experiments; operation of sodium fire facilities; operation of sodium disposal facilities. It is worth mentioning that sodium is also utilized by italian concerns, where it is processed mostly as an intermediate product in the manufacture of tetraethyl lead. A recent accident in a TEL production plant in Italy (Trento in July 1978) has recently once more raised the question if provisions for sodium fire extinction were adequate. Small scale fires for training purposes have been performed by several experimenters at CNEN since 1965. A more systematic approach, initiated in 1973 at Brasimone Centre, has been interrupted after 1976 when studies for the construction of a larger experimental facility (SUPERSATANA) have been abandoned. In 1976 it was proposed a CNEN participation to the French Program ESMERALDA. An accord to run the ESMERALDA Project as a French-Italian common program has recently been taken. Experimental results are presented in this paper

  5. Review of CNEN activities in the field of sodium fires

    Energy Technology Data Exchange (ETDEWEB)

    Gerosa, A [CNEN/CSN Casaccia, Rome (Italy)

    1979-03-01

    The problems related to sodium fires have received increased attention at CNEN in recent years. Sodium fires have been reported in several countries with a rate that is. relatively high if compared to the number of plants in operation. The consequences of fires have been usually quite limited but it appears that more adequate precautions could often be applied to minimize risk of more serious consequences. Many alternatives exist for fire prevention and for fire extinction, but the fact that many alternatives have not been sufficiently tested make choices rather difficult. CNEN has been facing the problem of sodium fire prevention and extinction in relation to: design of PEC reactor; design of experimental loops in its own centres (Casaccia and Brasimone); safe operation of the same loops and analysis of accidents and potential accident situations; design of facilities for sodium fire experiments; operation of sodium fire facilities; operation of sodium disposal facilities. It is worth mentioning that sodium is also utilized by italian concerns, where it is processed mostly as an intermediate product in the manufacture of tetraethyl lead. A recent accident in a TEL production plant in Italy (Trento in July 1978) has recently once more raised the question if provisions for sodium fire extinction were adequate. Small scale fires for training purposes have been performed by several experimenters at CNEN since 1965. A more systematic approach, initiated in 1973 at Brasimone Centre, has been interrupted after 1976 when studies for the construction of a larger experimental facility (SUPERSATANA) have been abandoned. In 1976 it was proposed a CNEN participation to the French Program ESMERALDA. An accord to run the ESMERALDA Project as a French-Italian common program has recently been taken. Experimental results are presented in this paper.

  6. Conceptual core design study for Japan sodium-cooled fast reactor: Review of sodium void reactivity worth evaluation

    International Nuclear Information System (INIS)

    Ohki, Shigeo

    2012-01-01

    The conceptual core design study for a large-scale Japan sodium-cooled fast reactor (JSFR) have been carried out in the framework of the FaCT project. The reference “High-internal conversion” core can satisfy the requirements for enhanced safety, as well as achieving economic competitiveness. In order to increase the design reliability, more rigorous uncertainty evaluation is important. Development of the verification and validation methodology of the core neutronic design method is currently underway. (author)

  7. Sodium aerosol recovering device

    International Nuclear Information System (INIS)

    Fujimori, Koji; Ueda, Mitsuo; Tanaka, Kazuhisa.

    1997-01-01

    A main body of a recovering device is disposed in a sodium cooled reactor or a sodium cooled test device. Air containing sodium aerosol is sucked into the main body of the recovering device by a recycling fan and introduced to a multi-staged metal mesh filter portion. The air about against each of the metal mesh filters, and the sodium aerosol in the air is collected. The air having a reduced sodium aerosol concentration circulates passing through a recycling fan and pipelines to form a circulation air streams. Sodium aerosol deposited on each of the metal mesh filters is scraped off periodically by a scraper driving device to prevent clogging of each of the metal filters. (I.N.)

  8. Sodium characterization during the starting period of a sodium loop

    International Nuclear Information System (INIS)

    Lievens, F.; Parmentier, C.; Soenen, M.

    1976-01-01

    A sodium loop for analytical chemistry studies has been built by S.C.K./C.E.N. at Mol Belgium. Its first working period was used to test analytical methods, to characterize the sodium and to define the operating parameters of the loop. This report covers the working parameters of the loop, the characterization of the filling sodium and its purity evolution during the first working period of the loop

  9. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  10. Educating restaurant owners and cooks to lower their own sodium intake is a potential strategy for reducing the sodium contents of restaurant foods: a small-scale pilot study in South Korea.

    Science.gov (United States)

    Park, Sohyun; Lee, Heeseung; Seo, Dong-Il; Oh, Kwang-Hwan; Hwang, Taik Gun; Choi, Bo Youl

    2016-12-01

    This study was conducted to evaluate the feasibility of a sodium reduction program at local restaurants through nutrition education and examination of the health of restaurant owners and cooks. The study was a single-arm pilot intervention using a pre-post design in one business district with densely populated restaurants in Seoul, South Korea. The intervention focused on improving nutrition behaviors and psychosocial factors through education, health examination, and counseling of restaurant personnel. Forty-eight restaurant owners and cooks completed the baseline survey and participated in the intervention. Forty participants completed the post-intervention survey. The overweight and obesity prevalences were 25.6% and 39.5%, respectively, and 74.4% of participants had elevated blood pressure. After health examination, counseling, and nutrition education, several nutrition behaviors related to sodium intake showed improvement. In addition, those who consumed less salt in their baseline diet (measured with urine dipsticks) were more likely to agree that providing healthy foods to their customers is necessary. This study demonstrated the potential to reduce the sodium contents of restaurant foods by improving restaurant owners' and cooks' psychological factors and their own health behaviors. This small pilot study demonstrated that working with restaurant owners and cooks to improve their own health and sodium intake may have an effect on participation in restaurant-based sodium reduction initiatives. Future intervention studies with a larger sample size and comparison group can focus on improving the health and perceptions of restaurant personnel in order to increase the feasibility and efficacy of restaurant-based sodium reduction programs and policies.

  11. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-12-01

    Full Text Available The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5 were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel in hydrogen cyanide in the presence of sodium benzoate/sodium sulphite inhibitive mixtures range 0.322mmpy to 1.1269mmpy across the three volumetric ratios considered. The 15ml5ml sodium benzoatesodium sulphite mixture had the best average corrosion rate of 0.5123mmpy.The corrosion rate followed reducing pattern after the first 200 hours of immersion. The average corrosion rate in the sodium benzoate / sodium sulphite mixture is less than the rate in sodium sulphite and the mixture is only effective after long time exposure.It is concluded that adding sodium benzoate to sodium sulphite in the volumetric ratio 155ml improves the inhibitive strength of sodium sulphite on the corrosion of mild steel in hydrogen cyanide environment.

  12. Observation of Neutral Sodium Above Mercury During the Transit of November 8, 2006

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.; Reardon, Kevin P.; Bida, T. A.

    2013-01-01

    We mapped the absorption of sunlight by sodium vapor in the exosphere of Mercury during the transit of Mercury on November 8, 2006, using the IBIS Interferometric BIdimensional Spectrometer at the Dunn Solar Telescope operated by the National Solar Observatory at Sunspot, New Mexico. The measurements were reduced to line-of-sight equivalent widths for absorption at the sodium D2 line around the shadow of Mercury. The sodium absorption fell off exponentially with altitude up to about 600 km. However there were regions around north and south polar-regions where relatively uniform sodium absorptions extended above 1000 km. We corrected the 0-600 km altitude profiles for seeing blur using the measured point spread function. Analysis of the corrected altitude distributions yielded surface densities, zenith column densities, temperatures and scale heights for sodium all around the planet. Sodium absorption on the dawn side equatorial terminator was less than on the dusk side, different from previous observations of the relative absorption levels. We also determined Earthward velocities for sodium atoms, and line widths for the absorptions. Earthward velocities resulting from radiation pressure on sodium averaged 0.8 km/s, smaller than a prediction of 1.5 km/s. Most line widths were in the range of 20 mA after correction for instrumental broadening, corresponding to temperatures in the range of 1000 K.

  13. In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    Science.gov (United States)

    Le Losq, Charles; Dalou, Célia; Mysen, Bjorn O.

    2017-07-01

    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + fluid system influences the differences between the ν(O-H) signals from the melts and the fluids and, hence, between their hydrogen partition functions. Quenching modifies the O-H stretching signals: strong hydrogen bonds form in the glasses below the glass transition temperature Tg, and this phenomenon depends on glass composition. Therefore, glasses do not necessarily record the O-H stretching signal shape in melts near Tg. The melt hydrogen partition function thus cannot be assessed with certainty using O-H stretching vibration data from glasses. From the present results, the ratio of the hydrogen partition functions of hydrous silicate melts and aqueous fluids mostly depends on temperature and the bulk melt + fluid system chemical composition. This implies that the fractionation of hydrogen isotopes between magmas and aqueous fluids in water-saturated magmatic systems with differences in temperature and bulk chemical composition will be different.

  14. Influence of sodium chloride on wine yeast fermentation performance

    Directory of Open Access Journals (Sweden)

    Stilianos Logothetis

    2010-06-01

    Full Text Available Stilianos Logothetis1, Elias T Nerantzis2, Anna Gioulioti3, Tasos Kanelis2, Tataridis Panagiotis2, Graeme Walker11University of Abertay Dundee, School of Contemporary Sciences, Dundee, Scotland; 2TEI of Athens Department of Oenology and Spirit Technology, Biotechnology and Industrial Fermentations Lab Agiou Spiridonos, Athens, Greece; 3Ampeloiniki SA Industrial Park Thermi, Thessaloniki, GreeceAbstract: This paper concerns research into the influence of salt (sodium chloride on growth, viability and fermentation performance in a winemaking strain of the yeast, Saccharomyces cerevisiae. Experimental fermentations were conducted in both laboratory-scale and industrial-scale experiments. Preculturing yeasts in elevated levels of sodium chloride, or salt “preconditioning” led to improved fermentation performance. This was manifest by preconditioned yeasts having an improved capability to ferment high-sugar containing media with increased cell viability and with elevated levels of produced ethanol. Salt-preconditioning most likely influenced the stress-tolerance of yeasts by inducing the synthesis of key metabolites such as trehalose and glycerol. These compounds may act to improve cells’ ability to withstand osmostress and ethanol toxicity during fermentations of grape must. Industrial-scale trials using salt-preconditioned yeasts verified the benefit of this novel physiological cell engineering approach to practical winemaking fermentations.Keywords: salt, preconditioning, fermentation performance, Saccharomyces cerevisiae, wine

  15. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  16. Experimental investigation of solid sodium-water reaction: tests results and phenomenological analysis

    International Nuclear Information System (INIS)

    Daudin, K.; Beauchamp, F.; Proust, C.

    2014-01-01

    Sodium-Water Reaction (SWR) is an issue one has to be capable to deal with for the next generation of nuclear reactors (SFR for GEN IV). The background of these experiments is the improvement of safety demonstration regarding SWR in an open volume. This experimental campaign is conducted at the CEA Cadarache inside a cylindrical reactor filled with inert gas. The sodium is inside a loading pot and water comes into contact by immersion. SWR and its physical effects are followed by different pressure and temperature sensors. The results show a limit to the overpressure increasing sodium mass. Global assessment of physical effects of SWR contributes to put forward the relative nature of phenomena with geometric configuration, and the importance of scale effects. (authors)

  17. Numerical thermal-hydraulics study on sodium-water reaction phenomena

    International Nuclear Information System (INIS)

    Takashi, Takata; Akira, Yamaguchi

    2003-01-01

    A new computational program SERAPHIM (Sodium-watEr Reaction Analysis: PHysics of Interdisciplinary Multi-phase flow) is developed to investigate the Sodium-Water Reaction (SWR) phenomena based on parallel computation technology. A compressible three-fluid (liquid water, liquid sodium and mixture gas) and one-pressure model is adopted for multi-phase calculation. The Highly Simplified Maker And Cell (HSMAC) method considering with compressibility is implemented as the numerical solution. The Message-Passing Interface (MPI) is used for the parallel computation. Two types of reactions are considered for the SWR modeling; one is a surface reaction and the other is a gas phase reaction. The surface reaction model assumes that liquid sodium reacts with water vapor on the surface of liquid sodium. An analogy of heat transfer and mass transfer is applied in this model. Reaction heating vaporizes liquid sodium resulting in the gas phase reaction. The ab initio molecular orbital method is applied to investigate the reaction mechanism and evaluate the reaction rate described by the Arrhenius law. A performance of parallel computation is tested on the cluster-PC (16 CPUs) system. The execution time becomes 17.1 times faster in case of 16 CPUs. It seems promising that the SERAPHIM code is practicable for large-scale analysis of the SWR phenomena. Three-dimensional SWR analyses are also carried out to investigate the characteristics of the thermal-hydraulics with the SWR and an influence of initial pressure (0.2 MPa and 0.6 MPa) on an early stage of the SWR phenomenon. As a result, distribution of a gas region, in which water vapor or product of the SWR such as hydrogen and sodium hydroxide exits, velocity and high temperature region differs by 0.2 MPa and 0.6 MPa conditions. However, the maximum gas temperature has an upper bounding and is almost constant both in the analyses. The reason of the upper bounding is attributed to the fact that a hydrogen gas covers up a liquid

  18. Liquid sodium technology research

    International Nuclear Information System (INIS)

    Kim, W.C.; Lee, Y.W.; Nam, H.Y.; Chun, S.Y.; Kim, J.; Won, S.Y.

    1982-01-01

    This report describes the technology of impurity control and measurement of liquid sodium, problems associated with material degradation and change of heat transfer characteristics in liquid sodium, and the conceptual design of multipurpose sodium test loop. Discussion and the subsequent analysis are also made with regard to the test results for the sodium-H 2 0 reaction and its effects on the system. (author)

  19. Development of a sodium ionization detector for sodium-to-gas leaks

    International Nuclear Information System (INIS)

    Swaminathan, K.; Elumalai, G.

    1984-01-01

    A sensitive sodium-to-gas leak detector has been indigenously developed for use in liquid metal cooled fast breeder reactor. The detector relies on the relative ease with which sodium vapour or its aerosols including its oxides and hydroxides can be thermally ionized compared with other possible constituents such as nitrogen, oxygen, water vapour etc. in a carrier gas and is therefore called sodium ionization detector (SID). The ionization current is a measure of sodium concentration in the carrier gas sampled through the detector. Different sensor designs using platinum and rhodium as filament materials in varying sizes were constructed and their responses to different sodium aerosol concentrations in the carrier gas were investigated. Nitrogen was used as the carrier gas. Both the background current and speed of response were found to depend on the diameter of the filament. There was also a particular collector voltage which yielded maximum sensitivity of the detector. The sensor was therefore optimised considering influence of above factors and a detector has been built which demonstrates a sensitivity better than 0.3 nanogram of sodium per cubic centimetre of carrier gas for a signal to background ratio of 1:1. Its usefulness in detecting sodium fires in experimental area was also demonstrated. Currently efforts are under way to improve the life time of the filament used in the above detector. (author)

  20. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Heum; Min, Byong Hun [Suwon University, Suwon (Korea, Republic of)

    1997-07-01

    A small sodium-concrete reaction facility was designed, manufactured and installed. this facility has been operated under inert gas(N{sub 2}) with different experimental variables such as sodium injection temperature, injection amount of sodium, aging period of concrete, sodium reservoir temperature. As a result, it was found that sodium injection temperature and injected amount of sodium has little effect on sodium-concrete reaction. However, sodium reservoir temperature and aging period of concrete has relatively high impact on sodium-concrete reaction. Sodium-concrete reaction model has also been developed and compared with experimental results. (Author) 51 refs., 16 tabs., 64 figs.

  1. Dietary sodium

    DEFF Research Database (Denmark)

    Graudal, Niels

    2015-01-01

    The 2013 Institute of Medicine (IOM) report "Sodium Intake in Populations: Assessment of Evidence" did not support the current recommendations of the IOM and the American Heart Association (AHA) to reduce daily dietary sodium intake to below 2,300 mg. The report concluded that the population...

  2. Experiment on thermal insulation and sodium deposition of shield plug

    International Nuclear Information System (INIS)

    Hashiguchi, K.; Honda, M.; Shiratori, H.; Ozaki, O.; Suzuki, M.

    1986-01-01

    A series of experiments on temperature distribution and thermal insulation characteristics was conducted using a reduced scale model of LMFBR shield plug. Observation and measurement of sodium deposition were also conducted on the model after the experiment. The effect of annulus natural convection was clarified for temperature and the thermal insulation characteristics from evaluating the result. Temperature distribution analysis was conducted successfully by combining the general purpose structural analysis program NASTRAN and vertical annulus natural convection analysis program VANAC. Moreover, significant effect was substantiated for the annulus convection barrier to increase the thermal insulation performance, narrow horizontal gap structure to prevent sodium deposition and thermal insulation plates. (author)

  3. Preliminary Plugging tests in Narrow Sodium Channels by Sodium and Carbon Dioxide reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This report is on the investigation of the physical/chemical phenomena that a slow loss of CO{sub 2} inventory into sodium after the sodium-CO{sub 2} boundary failure in PCHEs in realistic operating conditions. The first phenomenon is potential channel plugging inside the narrow PCHE channel. Unlike a conventional shell and- tube type HXs, failures in a PCHE are expected to be small cracks. If the faulted channel is blocked, it may have a positive function for plant safety because the pressure boundary would automatically recover due to this self-plugging. The other one is damage propagation on pressure boundary, which is referred to as potential wastage with combined corrosion/erosion effect. Physical/chemical phenomena that a slow loss of CO{sub 2} inventory into sodium after the sodium-CO{sub 2} boundary failure in printed circuit heat exchangers (PCHEs) were investigated. Our preliminary experimental results of plugging show that sodium flow immediately stopped as CO{sub 2} was injected through the nozzle at 300-400 .deg. C in 3 mm sodium channels, whereas sodium flow stopped about 60 min after CO{sub 2} injection in 5 mm sodium channels.

  4. Corrosion behaviors of ceramics against liquid sodium. Sodium corrosion characteristics of sintering additives

    International Nuclear Information System (INIS)

    Tachi, Yoshiaki; Kano, Shigeki; Hirakawa, Yasushi; Yoshida, Eiichi

    1998-01-01

    It has been progressed as the Frontier Materials Research to research and develop ceramics to apply for several components of fast breeder reactor using liquid sodium as coolant instead of metallic materials. Grain boundary of ceramics has peculiar properties compared with matrix because most of ceramics are produced by hardening and firing their raw powders. Some previous researchers indicated that ceramics were mainly corroded at grain boundaries by liquid sodium, and ceramics could not be used under corrosive environment. Thus, it is the most important for the usage of ceramics in liquid sodium to improve corrosion resistance of grain boundaries. In order to develop the advanced ceramics having good sodium corrosion resistance among fine ceramics, which have recently been progressed in quality and characteristics remarkably, sodium corrosion behaviors of typical sintering additives such as MgO, Y 2 O 3 and AlN etc. have been examined and evaluated. As a result, the followings have been clarified and some useful knowledge about developing advanced ceramics having good corrosion resistance against liquid sodium has been obtained. (1) Sodium corrosion behavior of MgO depended on Si content. Samples containing large amount of Si were corroded severely by liquid sodium, whereas others with low Si contents showed good corrosion resistance. (2) Both Y 2 O 3 and AlN, which contained little Si, showed good sodium corrosion resistance. (3) MgO, Y 2 O 3 and AlN are thought to be corroded by liquid sodium, if they contain some SiO 2 . Therefore, in order to improve sodium corrosion resistance, it is very important for these ceramics to prevent the contamination of matrix with SiO 2 through purity control of their raw powders. (author)

  5. Sodium waste technology: A summary report

    International Nuclear Information System (INIS)

    Abrams, C.S.; Witbeck, L.C.

    1987-01-01

    The Sodium Waste Technology (SWT) Program was established to resolve long-standing issues regarding disposal of sodium-bearing waste and equipment. Comprehensive SWT research programs investigated a variety of approaches for either removing sodium from sodium-bearing items, or disposal of items containing sodium residuals. The most successful of these programs was the design, test, and the production operation of the Sodium Process Demonstration Facility at ANL-W. The technology used was a series of melt-drain-evaporate operations to remove nonradioactive sodium from sodium-bearing items and then converting the sodium to storable compounds

  6. Urinary Excretion of Sodium, Nitrogen, and Sugar Amounts Are Valid Biomarkers of Dietary Sodium, Protein, and High Sugar Intake in Nonobese Adolescents.

    Science.gov (United States)

    Moore, Lori B; Liu, Sarah V; Halliday, Tanya M; Neilson, Andrew P; Hedrick, Valisa E; Davy, Brenda M

    2017-12-01

    Background: Objective indicators of dietary intake (e.g., biomarkers) are needed to overcome the limitations of self-reported dietary intake assessment methods in adolescents. To our knowledge, no controlled feeding studies to date have evaluated the validity of urinary sodium, nitrogen, or sugar excretion as dietary biomarkers in adolescents. Objective: This investigation aimed to evaluate the validity of urinary sodium, nitrogen, and total sugars (TS) excretion as biomarkers for sodium, protein, and added sugars (AS) intake in nonobese adolescents. Methods: In a crossover controlled feeding study design, 33 adolescents [12-18 y of age, 47 ± 25th percentile (mean ± SD) of body mass index (BMI; in kg/m 2 ) for age] consumed 5% AS [low added sugars (LAS)] and 25% AS [high added sugars (HAS)] isocaloric, macronutrient-matched (55% carbohydrate, 30% fat, and 15% protein) diets for 7 d each, in a randomly assigned order, with a 4-wk washout period between diets. On the final 2 d of each diet period, 24-h urine samples were collected. Thirty-two adolescents completed all measurements (97% retention). Results: Urinary sodium was not different from the expected 90% recovery (mean ± SD: 88% ± 18%, P = 0.50). Urinary nitrogen was correlated with protein intake ( r = 0.69, P sodium appears to be a valid biomarker for sodium intake in nonobese adolescents. Urinary nitrogen is associated with protein intake, but nitrogen excretion rates were less than previously reported for adults, possibly owing to adolescent growth rates. TS excretion reflects AS at 25% AS intake and was responsive to the change in AS intake. Thus, urinary biomarkers are promising objective indicators of dietary intake in adolescents, although larger-scale feeding trials are needed to confirm these findings. This trial was registered at clinicaltrials.gov as NCT02455388. © 2017 American Society for Nutrition.

  7. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  8. Parametric study of sodium aerosols in the cover-gas space of sodium-cooled reactors

    International Nuclear Information System (INIS)

    Sheth, A.

    1975-03-01

    A mathematical model has been developed to describe the behavior of sodium aerosols in the cover-gas space of a sodium-cooled reactor. A review of the literature was first made to examine methods of aerosol generation, mathematical expressions representing aerosol behavior, and pertinent experimental investigations of sodium aerosols. In the development of the model, some terms were derived from basic principles and other terms were estimated from available correlations. The model was simulated on a computer, and important parameters were studied to determine their effects on the overall behavior of sodium aerosols. The parameters studied were sodium pool temperature, source and initial size of particles, film thickness at the sodium pool/cover gas interface, wall plating parameters, cover-gas flow rate, and type of cover gas (argon and helium). The model satisfactorily describes the behavior of sodium aerosol in argon, but not in helium. Possible reasons are given for the failure of the model with helium, and further experimental work is recommended. The mathematical model, with appropriate modifications to describe the behavior of sodium aerosols in helium, would be very useful in designing traps to remove aerosols from the cover gas of sodium-cooled reactors. (U.S.)

  9. A Simple Quantitative Synthesis: Sodium Chloride from Sodium Carbonate.

    Science.gov (United States)

    Gold, Marvin

    1988-01-01

    Describes a simple laboratory procedure for changing sodium carbonate into sodium chloride by adding concentrated HCl to cause the reaction and then evaporating the water. Claims a good stoichiometric yield can be obtained in one three-hour lab period. Suggests using fume hood for the reaction. (ML)

  10. Sodium-water reaction test facility (SWAT-3)

    International Nuclear Information System (INIS)

    Shimazu, Hisashi; Ukechi, Kazutoshi; Sasakura, Kazutake; Kusunoki, Junichi

    1976-01-01

    In the development of the liquid metal cooled fast breeder reactor (LMFBR), the steam generator (SG) is considered one of the most important components. The Power Reactor and Nuclear Fuel Development Corporation (PNC) is now promoting the research and development of the SG system used with the prototype fast breeder reactor ''Monju''. In this research, the phenomena of the sodium-water reaction in the SG are the key which must be investigated for the solution of problems. The test facility (SWAT-3) simulating Monju's SG on the scale of 1/2.5 was designed, fabricated and installed by IHI at Oarai Engineering Center of PNC, its pre-operation being accomplished in February 1975. The purpose of SWAT-3 is summarized as follows: (1) To perform an overall test on the safety of Monju's SG and intermediate heat transport system under the design condition against sodium-water reaction accidents. (2) To investigate the damage of the SG structure caused by the sodium-water reaction, and the possibility of repair and recovery operations. The first test was accomplished successfully on June 9, 1975. As a result of the test, the fundamental function of this test facility was proven to be satisfactory as expected. (auth.)

  11. Hidden Sodium

    Centers for Disease Control (CDC) Podcasts

    2013-03-04

    In this podcast, learn about reducing sodium intake by knowing what to eat and the main sources of sodium in the diet. It's important for a healthy lifestyle.  Created: 3/4/2013 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/4/2013.

  12. [Sodium intake during pregnancy].

    Science.gov (United States)

    Delemarre, F M; Franx, A; Knuist, M; Steegers, E A

    1999-10-23

    International studies have yielded contradictory results on efficacy of a sodium-restricted diet during pregnancy in preventing and curing hypertension of pregnancy. In the Netherlands three studies have been performed to investigate the value of dietary sodium restriction in pregnancy; they concerned epidemiology, prevention and treatment. Midwives often prescribed this dietary intervention. Urinary sodium excretion was not related to blood pressure changes in pregnancy. Dietary sodium restriction from the third month of pregnancy onwards did not reduce the incidence of pregnancy-induced hypertension. Maternal side effects were a decreased intake of nutrients, decreased maternal weight gain, lowered plasma volume and stimulation of the renin-angiotensin-aldosterone system. A dietary sodium restriction in women with early symptoms of pregnancy-induced hypertension showed no therapeutic effect on blood pressure. There is no place for dietary sodium restriction in the prevention or treatment of hypertension in pregnancy.

  13. Review of the sodium fire experiments including sodium-concrete-reactions and summary of the results

    International Nuclear Information System (INIS)

    Cherdron, W.

    1996-01-01

    In the technical and design concept of containment systems of sodium cooled breeder reactors it has to be considered, that leakages in sodium pipes lead to sodium fires. The temperature and pressure rise caused by sodium fires makes it indispensable to analyse these accidents to be able to assess the safety of the whole system. Generally sodium leakages may lead to three different types of fires with different consequences. The main influences are the geometry of the leakage, shape, size, location, and the sodium conditions, such as temperature, flow rate and velocity. It must be also considered the reaction of sodium with surfaces like concrete. The paper gives an overview over all the sodium fire experiments performed in the FAUNA-facility (220 m 3 ) of the Forschungszentrum Karlsruhe in the years 1979 to 1993. The experimental program started with the investigation of pool fires on burning areas between 2 and 12 m 2 with up to 500 kg of Sodium. The experiments had been continued with 3 combined fires and 40 experiments on spray fires. 7 experiments on sodium-concrete reactions completed the program. (author)

  14. Sodium fires and its extinguishment

    International Nuclear Information System (INIS)

    Mikhedov, V.G.

    1979-01-01

    The fire safety problems of NPP with sodium coolants in USSR are presented. The design of sodium reactors is made with premises with sodium coolants being hermetic and filled with nitrogen. Some engineering solutions of fire safety including design, elaboration and choice of construction and protection materials are presented. Some theoretical aspects of sodium burning are presented as well as methods of sodium fire extinguishing methods including the use of powder

  15. Toxicology of plutonium-sodium

    International Nuclear Information System (INIS)

    Hackett, P.L.

    1982-01-01

    Scenarios for liquid-metal fast breeder reactor (LMFBR) accidents predict the loss of sodium coolant, with subsequent core melt-down and release of mixed sodium-fuel aerosols [Na-(PuU)O 2 ] into the environment. Studies in other laboratories demonstrated that mixed aerosols of Na 2 O-PuO 2 were more readily transported from the lung than PuO 2 aerosols. We therefore devised a continuous aerosol-generating system for animal exposures in which laser-generated fuel aerosols were swept through sodium vapor to form sodium-fuel aerosols. These fuel and sodium-fuel aerosols were compared with regard to their physicochemical properties and their biological behavior following inhalation studies in rats and dogs

  16. Low temperature sulfur and sodium metal battery for grid-scale energy storage application

    Science.gov (United States)

    Liu, Gao; Wang, Dongdong

    2018-03-27

    A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.

  17. Sodium sieving in children

    NARCIS (Netherlands)

    Rusthoven, Esther; Krediet, Raymond T.; Willems, Hans L.; Monnens, Leo A.; Schröder, Cornelis H.

    2005-01-01

    Sodium sieving is a consequence of dissociation between the amount of water and sodium transported over the peritoneal membrane. This dissociation occurs in the presence of aquaporin-mediated water transport. Sieving of sodium can be used as a rough measure for aquaporin-mediated water transport.

  18. Investigation for the sodium leak in Monju. Sodium leak and fire test-1

    International Nuclear Information System (INIS)

    Kawata, Koji; Ohno, Shuji; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    2000-08-01

    As a part of the work for investigating the sodium leak accident which occurred in the Monju reactor (hereinafter referred to as Monju) on December 8, 1995, three tests, (1) a sodium leak test, (2) a sodium leak and fire test-1, and (3) a sodium leak and fire test-II, were carried out at OEC/PEC. The main objectives of these tests were to confirm the leak and burning behavior of sodium from the damaged thermometer, and the effects of the sodium fire on the integrity of the surrounding structure. This report describes the results of the sodium fire test-I carried out as a preliminary test. The test was performed using the SOLFA-2 (Sodium Leak, Fire and Aerosol) facility on April 8, 1996. In this test, sodium heated to 480degC was leaked for approximately 1.5 hours from a leak simulating apparatus and caused to drop onto a ventilation duct and a grating with the same dimensions and layout as those in Monju. The main conclusions obtained from the test are shown below: 1) Observation from video cameras in the test revealed that in the early stages of the sodium leak, sodium dripped out of the flexible tube of the thermometer. This dripping and burning expanded in range as the sodium splashed on the duct. 2) No damage to the duct itself was detected. However, the aluminum louver frame of the ventilation duct's lower inlet was damaged. Its machine screws came off, leaving half of the grill (on the grating side) detached. 3) No large hole, like the one seen at Monju, was found when the grating was removed from the testing system for inspection, although the area centered on the point were the sodium dripped was damaged in a way indicating the first stages of grating failure. The 5mm square lattice was corroded through in some parts, and numerous blades (originally 3.2 mm thick) had become sharpened like the blade of a knife. 4) The burning pan underside thermocouple near the leak point measured 700degC in within approximately 10 minutes, and for the next hour remained

  19. A Patient with MSUD: Acute Management with Sodium Phenylacetate/Sodium Benzoate and Sodium Phenylbutyrate

    OpenAIRE

    K?se, Melis; Canda, Ebru; Kagnici, Mehtap; U?ar, Sema Kalkan; ?oker, Mahmut

    2017-01-01

    In treatment of metabolic imbalances caused by maple syrup urine disease (MSUD), peritoneal dialysis, and hemofiltration, pharmacological treatments for elimination of toxic metabolites can be used in addition to basic dietary modifications. Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate (NaPB) in urea-cycle disorder cases has been associated with a reduction in branched-chain amino acid (BCAA) concentrations when the patients are on adequate dietary protein intake. Moreo...

  20. Sodium-NaK engineering handbook. Volume III. Sodium systems, safety, handling, and instrumentation. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Foust, O J [ed.

    1978-01-01

    The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK components and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.

  1. Atmospheric dispersion of sodium aerosol due to a sodium leak in a fast breeder reactor complex

    International Nuclear Information System (INIS)

    Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.

    2008-01-01

    Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model dose not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions. (author)

  2. Sodium intake and dietary sources of sodium in a sample of undergraduate students from Novi Sad, Serbia.

    Science.gov (United States)

    2017-07-01

    Data on sodium intake and sources of sodium in the diet in Serbia are limited. The aim of this study was to estimate the sodium intake and identify the sources of sodium in the diet of undergraduate students attending the University of Novi Sad. Students completed a questionnaire to gather data on their gender, age and university faculty attended, and then a 24 h dietary recall. The sodium intake of the students was calculated using the dietary recall data and data on the sodium content of foods. The contribution of different food groups as well as of specific foodstuffs to the total sodium intake was calculated. The mean estimated sodium intake of the students was 3,938.5 ± 1,708.1 mg/day. The sodium intake of 89.1% of the surveyed students exceeded the guideline for sodium intake, the majority of the sodium coming from processed foods (78.9% of the total sodium intake). The food groups that contributed the most to the total sodium intake of the students were meat and meat products (21.7%) and cereals and cereal-based products (18.6%). Bread and other bakery products were responsible for 13.1% of the total sodium intake. High sodium intake in students of the University of Novi Sad puts them at high risk of developing high blood pressure. The food industry should work towards reformulating products with high sodium content, especially bread and other bakery products. Efforts should be taken to reduce sodium intake among undergraduate students in Novi Sad.

  3. Technology for sodium purity control

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Kim, B. H.; Kim, T. J. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    When sodium is used as heat transfer fluid, the plugging in coolant flow, the corrosion of structure material and the transfer of radioactive material caused by the impurities in sodium are worth considerable. Accordingly, these impurities must be monitored and controlled continuously by sodium purification devices in the heat transfer system which sodium is used as coolant. Sodium purification loop was constructed for the purpose of accumulating the technology for purity control of the coolant, developing and verifying further efficient instruments for sodium purification. The plugging meter and the cold trap is used as the implement for measuring and controlling the oxygen and the hydrogen, the main impurities in sodium coolant. They are capable of excellent performance as the implements which could detect and monitor the impurities to the concentration limit required for nuclear reactor. Sodium purification loop could be used variably according to the experimental purpose. 18 refs., 34 figs., 8 tabs. (Author)

  4. Protective effects of ebselen on sodium-selenite-induced experimental cataract in rats.

    Science.gov (United States)

    Aydemir, Orhan; Güler, Mete; Kaya, Mehmet Kaan; Deniz, Nurettin; Üstündağ, Bilal

    2012-12-01

    To determine whether ebselen has a protective effect or antioxidative potential in a sodium-selenite-induced experimental cataract model. Fırat University, Elazığ, Turkey. Experimental study. Twenty-one Sprague-Dawley rat pups were randomly divided into a control group, a sodium-selenite-induced-cataract group, and an ebselen-treated group; each group contained 7 rat pups. Rats in the control group received dimethyl sulfoxide (DMSO) intraperitoneally only and rats in the sodium-selenite-induced-cataract group received 30 nmol/g body weight sodium selenite subcutaneously and DMSO intraperitoneally 10 days postpartum. Rats in the ebselen group received 30 nmol/g body weight sodium selenite subcutaneously 10 days postpartum and were treated with 5 mg/kg body weight ebselen once a day for 4 consecutive days. Cataract development was assessed weekly for 3 weeks by slitlamp examination and graded using a scale. Reduced glutathione (GSH), total nitrite, and malondialdehyde (MDA) levels in lens supernatants were measured at the end of 3 weeks. In the control group, all lenses were clear. In the ebselen-treated group, the mean cataract stage was significantly lower than in the sodium-selenite-induced-cataract group (P = .022). The GSH levels were significantly lower in the sodium-selenite-induced-cataract group than in the control and ebselen groups (P ebselen group than in the sodium-selenite-induced-cataract group (P ebselen group (P = .001). Ebselen had a protective effect on cataract development in a sodium-selenite-induced experimental model. The protective effect of ebselen appears to be due to inhibition of oxidative stress. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Naproxen sodium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002507.htm Naproxen sodium overdose To use the sharing features on this page, please enable JavaScript. Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) used ...

  6. Sodium-metal halide and sodium-air batteries.

    Science.gov (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-rolling of an aluminosilicate sheet into a single walled imogolite nanotube: The role of the hydroxyl arrangement

    International Nuclear Information System (INIS)

    González, R. I.; Rogan, J.; Valdivia, J. A.; Munoz, F.; Valencia, F.; Ramírez, M.; Kiwi, M.; Ramírez, R.

    2015-01-01

    Imogolite is an inorganic nanotube, that forms naturally in weathered volcanic ashes, and it can be synthesized in nearly monodisperse diameters. However, long after its successful synthesis, the details of the way it is achieved are not fully understood. Here we elaborate on a model of its synthesis, which starts with a planar aluminosilicate sheet that is allowed to evolve freely, by means of classical molecular dynamics, until it achieves its minimum energy configuration. The minimal structures that the system thus adopts are tubular, scrolled, and more complex conformations, depending mainly on temperature as a driving force. Here we focus on the effect that the arrangement of the hydroxyl groups in the inner wall of the nanotube have on the minimal nanotubular configurations that we obtain are monodispersed in diameter, and quite similar to both from the those of weathered natural volcanic ashes, and to the ones that are synthesized in the laboratory. In this contribution we expand on the atomic mechanisms behind those behaviors

  8. Self-rolling of an aluminosilicate sheet into a single walled imogolite nanotube: The role of the hydroxyl arrangement

    Energy Technology Data Exchange (ETDEWEB)

    González, R. I.; Rogan, J.; Valdivia, J. A.; Munoz, F.; Valencia, F.; Ramírez, M.; Kiwi, M. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, 7800024 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago, 9170124 (Chile); Ramírez, R. [Facultad de Física, Universidad Católica de Chile, Casilla 306, Santiago, 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago, 9170124 (Chile)

    2015-12-31

    Imogolite is an inorganic nanotube, that forms naturally in weathered volcanic ashes, and it can be synthesized in nearly monodisperse diameters. However, long after its successful synthesis, the details of the way it is achieved are not fully understood. Here we elaborate on a model of its synthesis, which starts with a planar aluminosilicate sheet that is allowed to evolve freely, by means of classical molecular dynamics, until it achieves its minimum energy configuration. The minimal structures that the system thus adopts are tubular, scrolled, and more complex conformations, depending mainly on temperature as a driving force. Here we focus on the effect that the arrangement of the hydroxyl groups in the inner wall of the nanotube have on the minimal nanotubular configurations that we obtain are monodispersed in diameter, and quite similar to both from the those of weathered natural volcanic ashes, and to the ones that are synthesized in the laboratory. In this contribution we expand on the atomic mechanisms behind those behaviors.

  9. Sodium ordering and the control of magnetism in sodium cobaltate

    International Nuclear Information System (INIS)

    Morris, D.J.P.; Roger, M.; Tennant, D.A.; Goff, J.P.; Gutmann, M.J.; Hoffmann, J.-U.; Prabhakaran, D.; Shannon, N.; Lake, B.; Deen, P.P.

    2007-01-01

    The long-range three-dimensional ordering of Na + ions was studied in a sample of composition Na 0.75 CoO 2 using single-crystal neutron diffraction. Large-scale numerical simulations reveal the ordering principle for this system, the formation of multi-vacancy charged droplets then order long range, and the structure factors from these defect clusters are in good agreement with the observed neutron diffraction intensities. The electrostatic potential is found to be the dominant factor in determining the sodium ordering and its associated distortion field. The superstructures induce a periodic potential in the CoO 2 , giving potential wells that are larger than the single-particle hopping frequency and so able to localize holes. The results readily explain many of the observed electrical and magnetic properties, including the three dimensionality of the magnetic excitations

  10. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  11. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  12. Sodium hydroxide poisoning

    Science.gov (United States)

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  13. Performance evaluation of PFBR wire type sodium leak detectors

    International Nuclear Information System (INIS)

    Vijayakumar, G.; Rajan, K.K.; Nashine, B.K.; Chandramouli, S.; Madhusoodanan, K.; Kalyanasundaram, P.

    2011-01-01

    Highlights: → Performance evaluation of wire type leak detectors was conducted in LEENA facility by creating sodium leaks. → The lowest leak rate of 214 g/h was detected in 50 min and the highest detection time was 6 h for a leak rate of 222 g/h. → Factors affecting the leak detection time are packing density of thermal insulation, layout of heater, temperature, etc. → Relationship between leak rate and detection time was established and a leak rate of 100 g/h is likely to be detected in 11.1 h. → Contact resistance of leaked sodium increased to 3.5 kilo ohms in 20 h. - Abstract: Wire type leak detectors working on conductivity principle are used for detecting sodium leak in the secondary sodium circuits of fast breeder reactors. It is required to assess the performance of these detectors and confirm that they are meeting the requirements. A test facility by name LEENA was constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam to test the wire type leak detector lay out by simulating different sodium leak rates. This test facility consists of a sodium dump tank, a test vessel, interconnecting pipelines with valves, micro filter and test section with leak simulators. There are three different test sections in the test set up of length 1000 mm each. These test sections simulate piping of Prototype Fast Breeder Reactor (PFBR) secondary circuit and the wire type leak detector layout in full scale. All test sections are provided with leak simulators. A leak simulator consists of a hole of size one mm drilled in the test section and closed with a tapered pin. The tapered pin position in the hole is adjusted by a screw mechanism and there by the annular gap of flow area is varied for getting different leak rates. Various experiments were conducted to evaluate the performance of the leak detectors by creating different sodium leak rates. This paper deals with the details of wire type leak detector layout for the secondary sodium circuit of

  14. Assessment of sodium status in large ruminants by measuring the sodium-to-potassium ratio in muzzle secretions.

    Science.gov (United States)

    Singh, S P; Rani, D

    1999-09-01

    To develop a simple diagnostic test to assess sodium status in large ruminants on the basis of the sodium-to-potassium ratio (Na:K) and to determine its relevance. 7 buffalo heifers and 21 lactating, pregnant, and nonpregnant dairy cows and heifers. Buffalo heifers were subjected in 2 experiments to variable dietary sodium intake or sodium depletion and changes in sodium and potassium concentrations; Na:K was simultaneously monitored in various body fluids to study its value for indicating sodium status. Validity of the muzzle secretion test was assessed. Muzzle secretion and urinary Na:K and sodium concentration, but not serum electrolyte concentrations, reflected the sodium status of buffalo heifers in response to the widely variable intake of sodium (0.03 to 0.16% of dry matter [DM]). Progressive sodium depletion during an 11-day period, using saliva deprivation caused reciprocal changes in sodium and potassium concentrations in saliva and muzzle secretion, but not in urine. Decreasing urine sodium concentration was associated with decreasing urine potassium concentration. Saliva, urine, and muzzle secretion Na:K closely reflected the degree of sodium deficit. Buffaloes or dairy cows maintained on optimal sodium intake had muzzle secretion and urine Na:K > 0.30. Muzzle secretion or urine Na:K muzzle secretion Na:K, and to a large extent urine Na:K, may be used as a convenient diagnostic tool to assess sodium status in large ruminants. It has accuracy similar to that of saliva Na:K.

  15. Reducing calories, fat, saturated fat, and sodium in restaurant menu items: Effects on consumer acceptance.

    Science.gov (United States)

    Patel, Anjali A; Lopez, Nanette V; Lawless, Harry T; Njike, Valentine; Beleche, Mariana; Katz, David L

    2016-12-01

    To assess consumer acceptance of reductions of calories, fat, saturated fat, and sodium to current restaurant recipes. Twenty-four menu items, from six restaurant chains, were slightly modified and moderately modified by reducing targeted ingredients. Restaurant customers (n = 1,838) were recruited for a taste test and were blinded to the recipe version as well as the purpose of the study. Overall consumer acceptance was measured using a 9-point hedonic (like/dislike) scale, likelihood to purchase scale, Just-About-Right (JAR) 5-point scale, penalty analysis, and alienation analysis. Overall, modified recipes of 19 menu items were scored similar to (or better than) their respective current versions. Eleven menu items were found to be acceptable in the slightly modified recipe version, and eight menu items were found to be acceptable in the moderately modified recipe version. Acceptable ingredient modifications resulted in a reduction of up to 26% in calories and a reduction of up to 31% in sodium per serving. The majority of restaurant menu items with small reductions of calories, fat, saturated fat, and sodium were acceptable. Given the frequency of eating foods away from home, these reductions could be effective in creating dietary improvements for restaurant diners. © 2016 The Obesity Society.

  16. Sodium fill of FFTF

    International Nuclear Information System (INIS)

    Waldo, J.B.; Greenwell, R.K.; Keasling, T.A.; Collins, J.R.; Klos, D.B.

    1980-02-01

    With construction of the Fast Flux Test Facility (FFTF) completed, the first major objective in the startup program was to fill the sodium systems. A sodium fill sequence was developed to match construction completion, and as systems became available, they were inerted, preheated, and filled with sodium. The secondary sodium systems were filled first while dry refueling system testing was in progress in the reactor vessel. The reactor vessel and the primary loops were filled last. This paper describes the methods used and some of the key results achieved for this major FFTF objective

  17. Fires of sodium installations

    International Nuclear Information System (INIS)

    Hajek, L.; Tlalka, R.

    1984-01-01

    A survey is presented of the literature dealing with fires of sodium installations between 1974 and 1981. Also described are three experimental fires of ca 50 kg of sodium in an open area, monitored by UJV Rez. The experimental conditions of the experiments are described and a phenomenological description is presented of the course of the fires. The experiments showed a relationship between wind velocity in the area surrounding the fire and surface temperature of the sodium flame. Systems analysis methods were applied to sodium area, spray and tube fires. (author)

  18. Construction, assembling and operation of an equipment for sodium purity

    International Nuclear Information System (INIS)

    Becquart, E.T.; Botbol, J.; Echenique, P.N.; Fruchtenicht, F.W.; Gil, D.A.; Perillo, P.; Vardich, R.N.; Vigo, D.E.

    1993-01-01

    The purpose of this work is the production of high purity metallic sodium for bench-scale, research studies. A stainless steel equipment was built and assembled, including high vacuum, heating and cooling systems. It was satisfactorily operated in two successive steps, filtration and vacuum distillation, with a good yield. (Author). 5 refs., 5 figs

  19. Design evaluation on sodium piping system and comparison of the design codes

    International Nuclear Information System (INIS)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon

    2015-01-01

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  20. Design evaluation on sodium piping system and comparison of the design codes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon [KAERI, Daejeon (Korea, Republic of)

    2015-03-15

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  1. [Correlation between the use of sodium bicarbonate and intraventricular hemorrhage in preterms].

    Science.gov (United States)

    García-Pasquel, María José; Iglesias-Leboreiro, José; Bernardez-Zapata, Isabel

    2015-01-01

    Being born preterm implies comorbidities, among them the risk of intraventricular hemorrhage (IVH). The use of sodium bicarbonate has been linked to the presence of IVH. The main purpose of this study was to determine if the infusion of sodium bicarbonate during the first 24 hours increases the risk of IVH in preterm infants. Our study is a cohort; we analyzed the files of 160 patients and divided them into two groups: one in which sodium bicarbonate was not used and another in which it was; this latter group was subdivided into two considering if the use was therapeutic of prophylactic. In our total group of patients 10 % presented IVH; had a mean weight of 1500 g and 31 weeks of gestational age. The incidence of IVH was identical between both groups, although patients in which bicarbonate was used were more premature, unstable, and in worse clinical conditions. Our data indicate the need of large scale studies to determine if the clinical benefits of the use of sodium bicarbonate outweigh the risk of IVH.

  2. Enteric-coated mycophenolate sodium.

    Science.gov (United States)

    Gabardi, Steven; Tran, Jennifer L; Clarkson, Michael R

    2003-11-01

    To review the pharmacology, pharmacokinetics, efficacy, and safety of mycophenolate sodium. Primary literature was obtained via a MEDLINE search (1966-June 2003). Abstracts were obtained from the manufacturer and included in the analysis. All studies and abstracts evaluating mycophenolate sodium in solid organ transplantation were considered for inclusion. English-language studies and abstracts were selected for inclusion, but were limited to those consisting of human subjects. Mycophenolate sodium, a mycophenolic acid prodrug, is an inhibitor of T-lymphocyte proliferation. Mycophenolic acid reduces the incidence of acute rejection in renal transplantation. Mycophenolate sodium is enteric coated and has been suggested as a potential method to reduce the gastrointestinal adverse events seen with mycophenolate mofetil. Both mycophenolate mofetil and mycophenolate sodium have been shown to be therapeutically equivalent at decreasing the incidence of allograft rejection and loss. The frequency of adverse events is similar between both compounds, with the most common events being diarrhea and leukopenia. Mycophenolate sodium is effective in preventing acute rejection in renal transplant recipients. At doses of 720 mg twice daily, the efficacy and safety profiles are similar to those of mycophenolate mofetil 1000 mg twice daily. Mycophenolate sodium has been approved in Switzerland; approval in the US is pending.

  3. The various sodium purification techniques

    International Nuclear Information System (INIS)

    Courouau, J.L.; Masse, F.; Rodriguez, G.; Latge, C.; Redon, B.

    1997-01-01

    In the framework of sodium waste treatment, the sodium purification phase plays an essential role in the chain of operations leading to the transformation of the active sodium, considered as waste, into a stable sodium salt. The objectives of the purification operations are: To keep a low impurity level, particularly a low concentration in oxygen and hydrogen, in order to allow its transfer to a processing plant, and in order to avoid risks of plugging and/or corrosion in sodium facilities; To reduce the sodium activity in order to limit the dose rate close to the facilities, and in order to reduce the activity of the liquid and gaseous effluents. After a recall of the different kind of impurities that can be present in sodium, and of the different purification methods that could be associated with, the following points are highlighted: (i) Oxygen and hydrogen purification needs, and presentation of some selection criteria for a purification unit adapted to a sodium processing plant, as well as 2 cold trap concepts that are in accordance with these criteria: PSICHOS and PIRAMIDE. (ii) Tritium reduction in a bulk of liquid sodium by swamping, isotopic exchange, or permeation throughout a membrane. (iii) Caesium trapping on carbonaceous matrix. The main matrices used at present are R.V.C. (Reticulated Vitreous Carbon) and Actitex/Pica products. Tests in the laboratory and on an experimental device have demonstrated the performances of these materials, which are able to reduce sodium activity in Cs 134 and Cs 137 to very low values. The sodium purification processes as regards to the hydrogen, oxygen and caesium, that are aimed at facilitating the subsequent treatment of sodium, are therefore mastered operations. Regarding the operations associated with the reduction of the tritium activity, the methods are in the process of being qualified, or to be qualified. (author)

  4. Sodium carbonate poisoning

    Science.gov (United States)

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and industrial products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do NOT ...

  5. Sodium removal disassembly and examination of the Fermi secondary sodium pump

    International Nuclear Information System (INIS)

    Maffei, H.P.; Funk, C.W.; Ballif, J.L.

    1974-01-01

    The Fermi secondary pump is a centrifugal single stage design. The pump had been operated more than 42,000 hours between 450 and 800 0 F. Sodium was drained from the pump in 1973 and the system was back filled with carbon dioxide. The pump was fabricated for 2.25 Cr-1 Mo Croloy steel. Prior to cleaning the pump was inerted and heated with 150 0 F nitrogen using the pump casing as the containment vessel. The water-vapor-nitrogen process was used in three increasing stages of water concentration. The hydrogen concentration in the discharge line was followed as an indicator of the sodium-water reaction rate. Upon completion of the hydrogen evolution, the pump was rinsed several times with hot water. Six pounds of sodium were removed from the pump during a process cycle of 79 hours including rinsing. The maximum pump temperature recorded was 175 0 F with no variation exceeding 10 0 F. The hydrogen concentration in the effluent provided a very satisfactory index for control of the reaction by adjustment of the water-vapor concentration feed to the system. Rinsing effectiveness was limited by a pool of water in the volute that was not drainable with the available system hook up. Sodium and its compounds were removed from all internal surfaces that could be observed by the first stage of disassembly. All such surfaces were coated with a black deposit. Areas above the sodium liquid level were coated with a vermillion colored oxide. Sodium was found on the (1) threads of the impeller nut lock screw, (2) impeller nut-tapered shaft interface, and (3) vapor deposited sodium was found in the oil seal

  6. Sodium cleaning from sodium contaminated components and operation for experimental equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. H.; Kim, J. M.; Kim, T. J.; Nam, H. Y.; Jeong, J. Y.; Choi, B. H.; Choi, J. H

    2007-11-15

    An objective of washing technology development for sodium contaminated equipment is to clean and reuse safely and effectively the used equipment through a washing and maintenance, and recovery of the sodium wastes generated during washing.

  7. The occurrence of primary pulmonary neoplasms in rats after inhalation of 147Pm in fused aluminosilicate particles

    International Nuclear Information System (INIS)

    Herbert, R.A.; Scott, B.R.; Hahn, F.F.; Newton, G.J.; Snipes, M.B.; Damon, E.G.; Boecker, B.B.

    1988-01-01

    To determine the biological response following low-energy, beta irradiation of the lung, F344/Crl rats were exposed to aerosols of promethium-147 in fused aluminosilicate particles and observed for their life spans. Radiation pneumonitis and pulmonary fibrosis caused the majority of deaths during the first year after exposure with cumulative doses to the lungs of 210 to 630 Gy. Primary pulmonary neoplasms were responsible for the majority of deaths that occurred beyond 1 yr after exposure and in rats receiving lower cumulative doses to the lung. Hemangiosarcomas and squamous cell carcinomas were the most prevalent pulmonary neoplasms. Three adenocarcinomas were found. The uncorrected crude incidence of primary lung tumors increased with increasing dose to the lung for cumulative doses less than 140 Gy. With higher doses, the incidence declined. Adjusting the data for competing risks eliminated the turnover in the dose-response curve. The times of onset of pulmonary tumors and median survival times were dose-dependent. Rats with higher accumulated radiation doses developed fatal lung tumors at earlier times after exposure. (author)

  8. Specialists' meeting on sodium fires

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Kuznetsova, R.I.

    1989-01-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires

  9. Specialists' meeting on sodium fires

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, F A; Kuznetsova, R I [eds.

    1989-07-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires.

  10. Tables of thermodynamic properties of sodium

    International Nuclear Information System (INIS)

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units

  11. Technical considerations relative to removal of sodium from LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J S; Asquith, J G

    1975-07-01

    Reviewed in this paper are technical considerations which are of importance in choosing between an alcohol process and a moist nitrogen process for the removal of sodium from LMFBR components. Results observed in laboratory tests and in the cleaning of large scale components (e.g. a 28 MWt Modular Steam Generator Test Unit) are presented and discussed. (author)

  12. Intravitreal flomoxef sodium in rabbits.

    Science.gov (United States)

    Mochizuki, K; Torisaki, M; Yamashita, Y; Komatsu, M; Tanahashi, T

    1993-01-01

    We studied the intraocular concentration of flomoxef sodium in nonvitrectomized and vitrectomized eyes of albino rabbits after intravenous administration of 100 mg/kg flomoxef sodium. The concentration of flomoxef sodium in the vitreous body was undetectable (flomoxef sodium was investigated with ophthalmoscopy, electroretinography (ERG) and light microscopy after intravitreal injection of 200, 500, 1,000 and 2,000 micrograms flomoxef sodium in albino and pigmented rabbits. No ERG changes were induced with 200 micrograms. Other higher doses caused transient ERG changes. After the 200-micrograms injection, the intravitreal concentration decreased exponentially, the half-life being 4.4 h. The antibacterial activity, broad coverage and low intravitreal toxicity of flomoxef sodium suggest that this compound may be used to treat bacterial endophthalmitis.

  13. Fast sodium ion conductivity in supertetrahedral phosphidosilicates.

    Science.gov (United States)

    Johrendt, Dirk; Haffner, Arthur; Hatz, Anna Katharina; Moudrakovski, Igor; Lotsch, Bettina Valeska

    2018-04-03

    Fast sodium ion conductors are key components of sodium-based all-solid-state batteries which hold promise as safe systems for large-scale storage of electrical power. Here, we report the synthesis, crystal structure determination and Na+ ion conductivities of six new sodium ion conductors, the phosphidosilicates Na19Si13P25, Na23Si19P33, Na23Si28P45, Na23Si37P57, LT-NaSi2P3 and HT-NaSi2P3, which are entirely based on earth-abundant elements. The new structures exhibit SiP4 tetrahedra assembling interpenetrating networks of T3 to T5 supertetrahedral clusters which can be hierarchically assigned to sphalerite- or diamond-type structures. 23Na solid-state NMR spectra and geometrical pathway analysis indicate Na+ ion mobility between the supertetrahedral cluster networks. Electrochemical impedance spectroscopy revealed Na+ ion conductivities up to σ (Na+) = 4 ∙ 10-4 Scm-1 with an activation energy of Ea = 0.25 eV in HT-NaSi2P3 at 25 °C. The conductivities increase with the size of the supertetrahedral clusters due to the dilution of Na+ ions as the charge density of the anionic supertetrahedral networks decreases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characteristic and composition of smokes in sodium fires

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Torres, A.R.; Brito Aghina, L.O. de; Messere e Castro, P.

    1986-01-01

    The formation ratios of chemical principal compounds appear in smokes of fires up to 50 Kg of sodium in installations for fast reactor researches, were measured for a simulation in a scale of 1:1000. Relations of hydroxide concentrations, carbonate and bicarbonate appear in smokes retained in counter-current washing tower and in dry filters are presented. It is still presented the variation of the temperature profile and composition of burning wastes. (Author) [pt

  15. Sodium outleakage detection

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Effective detection of outleakage from sodium facilities permits timely intervention capable of limiting the consequences of such leakage. Two types of detection systems are described: local and overall detection. The use of two independent systems in sodium facilities is recommended. (author)

  16. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride

    DEFF Research Database (Denmark)

    Graudal, Niels Albert; Hubeck-Graudal, Thorbjorn; Jurgens, Gesche

    2017-01-01

    Background: In spite of more than 100 years of investigations the question of whether a reduced sodium intake improves health is still unsolved. Objectives: To estimate the effects of low sodium intake versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum...... results: A total of 185 studies were included. The average sodium intake was reduced from 201 mmol/day (corresponding to high usual level) to 66 mmol/day (corresponding to the recommended level). The effect of sodium reduction on blood pressure (BP) was as follows: white people with normotension: SBP.......0005) and triglyceride (P sodium intake as compared with high sodium intake. All effects were stable in 125 study populations with a sodium intake below 250 mmol/day and a sodium reduction intervention of at least one week. Authors' conclusions: Sodium reduction from an average high usual sodium...

  17. Are Reductions in Population Sodium Intake Achievable?

    Directory of Open Access Journals (Sweden)

    Jessica L. Levings

    2014-10-01

    Full Text Available The vast majority of Americans consume too much sodium, primarily from packaged and restaurant foods. The evidence linking sodium intake with direct health outcomes indicates a positive relationship between higher levels of sodium intake and cardiovascular disease risk, consistent with the relationship between sodium intake and blood pressure. Despite communication and educational efforts focused on lowering sodium intake over the last three decades data suggest average US sodium intake has remained remarkably elevated, leading some to argue that current sodium guidelines are unattainable. The IOM in 2010 recommended gradual reductions in the sodium content of packaged and restaurant foods as a primary strategy to reduce US sodium intake, and research since that time suggests gradual, downward shifts in mean population sodium intake are achievable and can move the population toward current sodium intake guidelines. The current paper reviews recent evidence indicating: (1 significant reductions in mean population sodium intake can be achieved with gradual sodium reduction in the food supply, (2 gradual sodium reduction in certain cases can be achieved without a noticeable change in taste or consumption of specific products, and (3 lowering mean population sodium intake can move us toward meeting the current individual guidelines for sodium intake.

  18. Study on the utilization of a sodium-sulfuric acid solution for the uranium minerals' leaching

    International Nuclear Information System (INIS)

    Echenique, Patricia; Fruchtenicht, Fernando; Gil, Daniel; Vigo, Daniel; Bouza, Angel; Vert, Gabriela; Becquart, Elena

    1988-01-01

    Argentine uranium minerals have been leached at bench scale with a different agent trying to reduce sulfuric acid consumption. The leaching agent was a sodium sulfate-sulfuric acid solution and the ore was from Sierra Pintada (San Rafael - Mendoza). The work was performed in stirred vessel at atmospheric pressure. The influence of different variables, pH, temperature, oxidant agent, sodium sulfate concentration and time, in the sulfuric acid consumption and the uranium yield was studied. (Author) [es

  19. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  20. Report on the vitrification and devitrification of Hanford, Washington soil. Final report

    International Nuclear Information System (INIS)

    King, J.A.; SubbaRao, S.C.

    1983-01-01

    This study as focused principally on the effects of melting or vitrification and recrystallization or devitrification on soil from the Hanford Reservation in Washington State. The fusion properties of soil are important because the containment of nuclear material in in-situ vitrified soil is a possible requirement. An understanding of the physical and chemical properties of the soil is important in determinaing how the soil can contain the nuclear material. The soil itself is composed of a plagioclastic feldspar, quartz, and hematite. The feldspar is made up of albite and anorthite. When the soil is heated, the first mineral to melt is the albite between 1100 0 C and 1200 0 C. The mineral anorthite melts above 1310 0 C and hematite below 1700 0 C. The quartz does not melt until the temperature exceeds 1715 0 C. The albite in the glass is sodium aluminosilicate. When the albite melts, microscopic spheres of non-crystalline, low-melting sodium silicate form. This indicates that the aluminosilicate matrix decomposes when heated. When crystals, which were previously fused, are heated: crystals begin to reform above 900 0 C. The minerals which crystallize are feldspar and magnetite, an iron oxide. Recrystallization should begin at a temperature 250 0 C below the liquidus point. The leaching of sodium, copper, calcium, and aluminum decreased with increasing fusion temperature, while the leaching of iron and barium increased with increasing fusion temperature

  1. Influence of Gd2O3 on thermal and spectroscopic properties of aluminosilicate glasses

    Science.gov (United States)

    Kasprzyk, Marta; Środa, Marcin

    2018-06-01

    A series of aluminosilicate glasses 25SiO2·(20-x)Al2O3·40Na2O·15BaO-xGd2O3 with 0 ≤ x ≤ 10 were prepared in order to analyze the influence of gadolinium on thermal and spectroscopic properties of these materials. Increasing of thermal parameters (Tg, Tx, Δcp, ΔT) values with higher Gd2O3 content was determined using DSC method. Crystalline phases, formed during heat treatment, were identified with XRD - NaAlSiO4 and BaSiO3 in glass with 0% mol. Gd2O3 and Gd9.33(SiO4)6O2, NaAlSiO4 and BaAl2Si2O6 in glass with 10% mol. Gd2O3. Spectroscopic analysis - FTIR and Raman - revealed Gd2O3 influence on glass structure in the same way like Al2O3, but some differences appear due to the differ bond strength and ionic radius between Gd and Al. Raman spectra confirmed higher network polymerization (enriched with Q2 units). Optical band gap energy (Eopt) and Urbach energy (ΔE) were calculated from the Tauc plot. Mechanical tests demonstrated lower microhardness with increasing content of Gd2O3 content, as a result of higher concentration of atoms with larger radius.

  2. Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology.

    Science.gov (United States)

    Pathmanathan, Pras; Shotwell, Matthew S; Gavaghan, David J; Cordeiro, Jonathan M; Gray, Richard A

    2015-01-01

    Perhaps the most mature area of multi-scale systems biology is the modelling of the heart. Current models are grounded in over fifty years of research in the development of biophysically detailed models of the electrophysiology (EP) of cardiac cells, but one aspect which is inadequately addressed is the incorporation of uncertainty and physiological variability. Uncertainty quantification (UQ) is the identification and characterisation of the uncertainty in model parameters derived from experimental data, and the computation of the resultant uncertainty in model outputs. It is a necessary tool for establishing the credibility of computational models, and will likely be expected of EP models for future safety-critical clinical applications. The focus of this paper is formal UQ of one major sub-component of cardiac EP models, the steady-state inactivation of the fast sodium current, INa. To better capture average behaviour and quantify variability across cells, we have applied for the first time an 'individual-based' statistical methodology to assess voltage clamp data. Advantages of this approach over a more traditional 'population-averaged' approach are highlighted. The method was used to characterise variability amongst cells isolated from canine epi and endocardium, and this variability was then 'propagated forward' through a canine model to determine the resultant uncertainty in model predictions at different scales, such as of upstroke velocity and spiral wave dynamics. Statistically significant differences between epi and endocardial cells (greater half-inactivation and less steep slope of steady state inactivation curve for endo) was observed, and the forward propagation revealed a lack of robustness of the model to underlying variability, but also surprising robustness to variability at the tissue scale. Overall, the methodology can be used to: (i) better analyse voltage clamp data; (ii) characterise underlying population variability; (iii) investigate

  3. Thermal and chemical interaction of hot liquid sodium with limestone concrete in argon atmosphere

    International Nuclear Information System (INIS)

    Fakir, Charan Parida; Sanjay, Kumar Das; Anil, Kumar Sharma; Ramesh, S.S.; Somayajulu, P.A.; Malarvizhi, B.; Kasinathan, N.; Rajan, M.

    2007-01-01

    bound water in the post-test concrete blocks was studied. Preliminary analysis of test results revealed that when hot sodium at 500degC was discharged on cold concrete block, it monotonically cooled with low degree of interaction. But supply of external heat to sodium pool has triggered considerable reaction with or without occurrence of ETT phase under the given test conditions. Critical analysis of published data on large scale tests has indicated that ETT phase has emerged without in situ heating of sodium pool on limestone concrete even at initial sodium temperature of 420degC. (author)

  4. Analgesic effectiveness of prophylactic therapy and continued therapy with naproxen sodium post simple extraction.

    Directory of Open Access Journals (Sweden)

    Angel Asmat-Abanto

    2015-02-01

    Full Text Available To compare the analgesic effectiveness of the prophylactic therapy and continued therapy with naproxen sodium after a simple dental extraction. Material and methods: This prospective randomized, parallel, single-blind clinical trial was developed in the Dental Clinic of the Universidad Alas Peruanas in Trujillo (Peru. The patients, who required simple extraction due to dental caries, were randomly distributed into three groups: 30 of them took 550mg naproxen sodium in the preoperative period and then every 12 hours, other 30 took 550mg naproxen sodium in the postoperative period and then every 12 hours, and 30(control group, received 400mg ibuprofen in the postoperative period and then every 8 hours, depending on the established criteria. The procedure was standardized, analgesic effectiveness was assessed by visual analog scale and the presence of adverse drug reactions was evaluated as well. Data were analyzed using ANOVA and Duncan’s test using IBM SPSS 22 with a significance level of 5%. Results: Continued therapy with naproxen sodium showed greater analgesic effectiveness after a simple extraction at 1, 8 and 24 hours (p<0.005. Conclusion: Continued therapy with naproxen sodium presented greater effectiveness than prophylactic therapy with naproxen sodium after a simple extraction.

  5. Sodium distiller II

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Castro, P.M. e; Torres, A.R.; Correa, S.M.

    1990-01-01

    A sodium distiller allows the evaluation of the sodium purity, contained in plants and circuits of Fast Reactors. The sodium distillers of the IEN Reactor's Department was developed initially as a prototype, for the testing of the distillation process and in a second step, as a equipment dedicated to attendance the operation of these circuits. This last one was build in stainless steel, with external heat, rotating crucible of nickel for four samples, purge system for pipe cleaning and a sight glass that permits the observation of the distillation during all the operation. The major advantage of this equipment is the short time to do a distillation operation, which permits its routine utilization. As a consequence of the development of the distillers and its auxiliary systems an important amount of new information was gathered concerning components and systems behaviour under high temperature, vacuum and sodium. (author)

  6. Sodium intake in US ethnic subgroups and potential impact of a new sodium reduction technology: NHANES Dietary Modeling.

    Science.gov (United States)

    Fulgoni, Victor L; Agarwal, Sanjiv; Spence, Lisa; Samuel, Priscilla

    2014-12-18

    Because excessive dietary sodium intake is a major contributor to hypertension, a reduction in dietary sodium has been recommended for the US population. Using the National Health and Nutrition Examination Survey (NHANES) 2007-2010 data, we estimated current sodium intake in US population ethnic subgroups and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were analyzed using The National Cancer Institute method to estimate usual intake in population subgroups. Potential impact of SODA-LO® Salt Microspheres sodium reduction technology on sodium intake was modeled using suggested sodium reductions of 20-30% in 953 foods and assuming various market penetrations. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across age, gender and ethnic groups. Current sodium intake across all population subgroups exceeds the Dietary Guidelines 2010 recommendations and has not changed during the last decade. However, sodium intake measured as a function of food intake has decreased significantly during the last decade for all ethnicities. "Grain Products" and "Meat, Poultry, Fish, & Mixtures" contribute about 2/3rd of total sodium intake. Sodium reduction, using SODA-LO® Salt Microspheres sodium reduction technology (with 100% market penetration) was estimated to be 185-323 mg/day or 6.3-8.4% of intake depending upon age, gender and ethnic group. Current sodium intake in US ethnic subgroups exceeds the recommendations and sodium reduction technologies could potentially help reduce dietary sodium intake among those groups.

  7. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Minmin [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Hou, Li-an, E-mail: 11liuminmin@tongji.edu.cn [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xi, Beidou; Zhao, Ying; Xia, Xunfeng [China Research Academy of Environmental Science, Beijing 200012 (China)

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and {sup 29}Si and {sup 27}Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  8. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash.

    Science.gov (United States)

    Liu, Minmin; Hou, Li-An; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29 Si and 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  9. Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study.

    Science.gov (United States)

    Derkach, Andriy; Sampson, Joshua; Joseph, Justin; Playdon, Mary C; Stolzenberg-Solomon, Rachael Z

    2017-10-01

    Background: High sodium intake is known to increase blood pressure and is difficult to measure in epidemiologic studies. Objective: We examined the effect of sodium intake on metabolites within the DASH (Dietary Approaches to Stop Hypertension Trial)-Sodium Trial to further our understanding of the biological effects of sodium intake beyond blood pressure. Design: The DASH-Sodium Trial randomly assigned individuals to either the DASH diet (low in fat and high in protein, low-fat dairy, and fruits and vegetables) or a control diet for 12 wk. Participants within each diet arm received, in random order, diets containing high (150 nmol or 3450 mg), medium (100 nmol or 2300 mg), and low (50 nmol or 1150 mg) amounts of sodium for 30 d (crossover design). Fasting blood samples were collected at the end of each sodium intervention. We measured 531 identified plasma metabolites in 73 participants at the end of their high- and low-sodium interventions and in 46 participants at the end of their high- and medium-sodium interventions ( N = 119). We used linear mixed-effects regression to model the relation between each log-transformed metabolite and sodium intake. We also combined the resulting P values with Fisher's method to estimate the association between sodium intake and 38 metabolic pathways or groups. Results: Six pathways were associated with sodium intake at a Bonferroni-corrected threshold of 0.0013 (e.g., fatty acid, food component or plant, benzoate, γ-glutamyl amino acid, methionine, and tryptophan). Although 82 metabolites were associated with sodium intake at a false discovery rate ≤0.10, only 4-ethylphenylsufate, a xenobiotic related to benzoate metabolism, was significant at a Bonferroni-corrected threshold ( P Sodium intake is associated with changes in circulating metabolites, including gut microbial, tryptophan, plant component, and γ-glutamyl amino acid-related metabolites. This trial was registered at clinicaltrials.gov as NCT00000608. © 2017

  10. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  11. Low Temperature Waste Immobilization Testing Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  12. Numerical approach for quantification of self wastage phenomena in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Jang, Sung Hyun; Takata, Takashi; Yamaguchi, Akira; Uchbori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-01-01

    Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called 'self-wastage phenomena'. A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodium-water reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm)

  13. Numerical approach for quantification of self wastage phenomena in sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Hyun; Takata, Takashi [Graduate School of Engineering, Osaka University, Osaka (Japan); Yamaguchi, Akira [Graduate School of Engineering, The University of Tokyo, Ibaraki (Japan); Uchbori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki [Japan Atomic Energy Agency, Ibaraki (Japan)

    2015-10-15

    Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called 'self-wastage phenomena'. A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodium-water reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm)

  14. Sodium and cover gas chemistry in the high temperature sodium facility

    International Nuclear Information System (INIS)

    McCown, J.J.; Duncan, H.C.

    1976-01-01

    The equipment and procedures used in following sodium and cover gas chemistry changes in the High Temperature Sodium Facility are presented. The methods of analysis and results obtained are given. Impurity trends which have been measured during the facility operations are discussed

  15. Method of processing waste sodium

    International Nuclear Information System (INIS)

    Shimoyashiki, Shigehiro; Takahashi, Kazuo.

    1982-01-01

    Purpose: To enable safety store of waste sodium in the form of intermetallic compounds. Method: Waste sodium used in a reactor is mixed with molten metal under an inert gas atmosphere and resulted intermetallic compounds are stored in a closely sealed container to enable quasi-permanent safety store as inert compound. Used waste sodium particularly, waste sodium in the primary system containing radioactive substances is charged in a waste sodium melting tank having a heater on the side, the tank is evacuated by a vacuum pump and then sealed with gaseous argon supplied from a gaseous argon tank, and waste sodium is melted under heating. The temperature and the amount of the liquid are measured by a thermometer and a level meter respectively. While on the other hand, molten metal such as Sn, Pb and Zn having melting point above 300 0 C are charged in a metal melting tank and heated by a heater. The molten sodium and the molten metals are charged into a mixing tank and agitated to mix by an induction type agitator. Sodium vapors in the tank are collected by traps. The air in the tank is replaced with gaseous argon. The molten mixture is closely sealed in a drum can and cooled to solidify for safety storage. (Seki, T.)

  16. Long-term experience with sodium chondroitin sulfate in patients with painful bladder syndrome.

    Science.gov (United States)

    Tornero, J I; Olarte, H; Escudero, F; Gómez, G

    2013-09-01

    To assess the response of patients diagnosed with painful bladder syndrome to treatment with instillations of sodium chondroitin sulfate. We present a series of cases of patients with painful bladder syndrome who followed a bladder instillation protocol with sodium chondroitin sulfate, according to our centre's regimen. The response to treatment was assessed with respect to pain, according to the Downie scale; urinary frequency, according to the voiding diary; and subjective improvement, according to the Patient Global Impression of Improvement (PGI-I) scale. A total of 28 patients with a median age of 59 years (range 22-90) followed this protocol. From the medical histories, 19.4% had suffered an infection of the urinary tract, 3.8% had suffered urinary tuberculosis, 7.6% received pelvic radiation therapy and 26.9% had taken anticholinergic drugs for overactive bladder syndrome. We evaluated the response to treatment at 0, 3, 6 and 12 months and found that at the end of treatment 72.3% of the patients had improved bladder pain and 75% were significantly better. Treatment with sodium chondroitin sulfate through endovesical instillation in painful bladder syndrome improves pain, voiding frequency and quality of life in the long term. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  17. Development of a model to predict flow oscillations in low-flow sodium boiling

    International Nuclear Information System (INIS)

    Levin, A.E.; Griffith, P.

    1980-04-01

    Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed

  18. Some techniques for sodium removal in CIAE

    International Nuclear Information System (INIS)

    Yuan Waimai; Ding Dejun; Guo Huanfang; Hong Shuzhang; Zhou Shuxia; Shen Fenyang; Yang Zhongmin; Xu Yongxing

    1997-01-01

    In this paper the experiment and application on sodium removal and sodium disposal are presented. Steam-nitrogen process was used in CIAE for cleaning cold traps, sodium vapor traps, a sodium tank. Atomized water-nitrogen process was used for cleaning dummy fuel assembly for CEFR and a sintered stainless steel filter. Sprinkle process was used for cleaning some tubes. Bultylcellosolve was used for cleaning sintered stainless steel filter and sodium flow measurement device. Ethanol alcohol was used for cleaning electromagnetic pump. Paraffin, transformer-oil or their mixture was used for cleaning sodium valves, a sodium vapor trap and sodium-potassium alloy absorber. A small sintered stainless steel filter was distillated in vacuum. A simple sodium disposal device has been served for several years in CIA.E. It can dispose about 10 Kg sodium each time and the disposal process is no-aerosol. It operates in open air for non-radioactive sodium. In recent years a small sodium cleaning plant has been built. It can use atomized water, steam or organic alcohol to removal of sodium. The LAVEL cleaning plant and SLAPSO cleaning plant were introduced from Italy. And CEFR preliminary design on sodium cleaning for spent fuel assembly and on sodium removal-decontamination for large reactor components is introduced. Vapour-nitrogen process is planned to use in them. (author)

  19. Aluminosilicate-based sealants for SOFCs and other electrochemical applications - A brief review

    Science.gov (United States)

    Tulyaganov, Dilshat U.; Reddy, Allu Amarnath; Kharton, Vladislav V.; Ferreira, José M. F.

    2013-11-01

    Among different designs of solid oxide fuel cells (SOFCs), planar design is the most promising due to easier fabrication, improved performance and relatively high power density. In planar SOFCs and other solid-electrolyte devices, gas-tight seals must be formed along the edges of each cell and between the stack and gas manifolds. For a sealant to work effectively in high-temperature SOFC environment, equilibrium needs to be achieved amid its mechanical properties and flow behavior so that it does not only maintain its hermeticity at high temperature but is also able to reduce mechanical stresses generated in the seal during thermal cycling. The most common sealants based on glass or glass-ceramic materials have been shown to operate in fuel cells for more than 1000 h with no significant degradation. Analysis of the current literature sources demonstrated that from thermal and chemical stability points of view, silicate based glass systems are more suitable than borate and borosilicate glass systems. In this work, different glass-ceramic (GC) compositions based on alkaline- and alkaline-earth aluminosilicate-based glass systems are reviewed with a special emphasis on their thermal, chemical, mechanical, and electrical properties. Based on these considerations, glass composition design approaches are provided that aid in search of the best seal glasses satisfying the rigid functional requirements. Among all the glass systems studied, a pyroxene based CaO-MgO-SrO-BaO-La2O3-Al2O3-SiO2 seal GC compositions have been specifically discussed because those have achieved appropriate thermal and chemical properties along with high stability. Approaches for further developments and optimization of GC sealants are briefly discussed.

  20. Effect of aging and alkali activator on the porous structure of a geo-polymer

    International Nuclear Information System (INIS)

    Steins, Prune; Poulesquen, Arnaud; Frizon, Fabien; Lambertin, David; Jestin, Jacques; Rossignol, Sylvie

    2014-01-01

    Nitrogen sorption and small- and wide-angle X-ray and neutron scattering techniques were used to study the porous structure of geo-polymers, inorganic polymers synthesized by reaction of a strongly alkaline solution and an aluminosilicate source (metakaolin). The effects of aging and the use of alkali activators (Na"+, K"+) of different sizes were investigated at room temperature. The influence of aging time on the microstructure of both geo-polymer matrixes was verified in terms of pore volume and specific surface area. The results suggested a refinement of the porosity and therefore a reduction in the pore volume over time. Regardless of the age considered, some characteristics of the porous network such as pore size, shape and distribution depend on the alkali activator used. Whatever the technique considered, the potassium geo-polymer has a greater specific surface area than the sodium geo-polymer. According to the scattering results, the refinement of the porosity can be associated with, first, a densification of the solid network and, secondly, a partial closure of the porosity at the nanometer scale. The kinetics are much slower for the sodium geo-polymer than for the potassium geo-polymer in the six months of observation. (authors)

  1. Slicing sodium from bakery products

    NARCIS (Netherlands)

    Noort, M.

    2012-01-01

    The need for sodium reduction in our diet is clear to consumers, dieticians and food manufacturers. As sodium concentration has a strengthening effect on gluten, sodium reduction decreases dough mixing tolerance, dough resistance and induces dough stickiness. In particular, the latter may cause

  2. A Study of Analgesic Efficacy of Ibuprofen and Diclofenac Sodium in Acute Pulpitis Patients

    Directory of Open Access Journals (Sweden)

    G Komali

    2014-01-01

    Results: Time of onset of action of drugs, Time to peak effect, Total analgesic effect and tolerability of the drugs were assessed. From the present study it was found that there were statistically significant differences in the onset of action of drug and Time to peak effect. Onset of action was early in Ibuprofen and Time to peak effect was early in Diclofenac sodium. Patients rated both drugs to be equally good on Global evaluation scales. Conclusion: It was found that Diclofenac Sodium is more potent compared to Ibuprofen.

  3. Containment Sodium Chemistry Models in MELCOR.

    Energy Technology Data Exchange (ETDEWEB)

    Louie, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-01

    To meet regulatory needs for sodium fast reactors’ future development, including licensing requirements, Sandia National Laboratories is modernizing MELCOR, a severe accident analysis computer code developed for the U.S. Nuclear Regulatory Commission (NRC). Specifically, Sandia is modernizing MELCOR to include the capability to model sodium reactors. However, Sandia’s modernization effort primarily focuses on the containment response aspects of the sodium reactor accidents. Sandia began modernizing MELCOR in 2013 to allow a sodium coolant, rather than water, for conventional light water reactors. In the past three years, Sandia has been implementing the sodium chemistry containment models in CONTAIN-LMR, a legacy NRC code, into MELCOR. These chemistry models include spray fire, pool fire and atmosphere chemistry models. Only the first two chemistry models have been implemented though it is intended to implement all these models into MELCOR. A new package called “NAC” has been created to manage the sodium chemistry model more efficiently. In 2017 Sandia began validating the implemented models in MELCOR by simulating available experiments. The CONTAIN-LMR sodium models include sodium atmosphere chemistry and sodium-concrete interaction models. This paper presents sodium property models, the implemented models, implementation issues, and a path towards validation against existing experimental data.

  4. Evolutionary primacy of sodium bioenergetics

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2008-04-01

    Full Text Available Abstract Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts and V-type (found in archaea, some bacteria, and eukaryotic vacuoles ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section.

  5. Sodium fire test at broad ranges of temperature and oxygen concentration. 4. Low temperature sodium spray fire tests

    International Nuclear Information System (INIS)

    Kawata, Koji; Miyahara, Shinya

    2005-08-01

    Sodium spray fire tests at the initial sodium temperature of 250degC were conducted under the atmospheric conditions of air and 3% oxygen containing nitrogen to determine the sodium burning rate and the aerosol release fraction and compare them with the test results at the initial sodium temperature of 500degC in air atmosphere. In the tests, sodium was supplied using a commercial spray nozzle into a stainless steel vessel of 100 m 3 volume (SOLFA-2). The sodium burning rate was calculated from two independent methods: the consumption rate of oxygen in the vessel and the enthalpy change of vessel components during the test. The aerosol release fraction was determined from the comparison between the measured aerosol concentrations and the calculated ones by the ABC-INTG code. The main conclusions were as follows, (1) In air atmosphere, a) sodium droplets ignited instantaneously and the spray fire was observed, and b) the sodium burning rate was about 440 g-Na/s and the fraction of supplied sodium was about 70%. (2) In 3% oxygen containing nitrogen, a) ignition of sodium droplets was not observed, and b) the sodium burning rate was about 44 g-Na/s and the fraction of supplied sodium was less than 10%. (author)

  6. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas.

    Science.gov (United States)

    Becknell, Brian; Smoyer, William E; O'Brien, Nicole F

    2014-11-01

    This study aimed to demonstrate the importance of considering hemodialysis as a treatment option in the management of sodium phosphate toxicity. This is a case report of a 4-year-old who presented to the emergency department with shock, decreased mental status, seizures, and tetany due to sodium phosphate toxicity from sodium phosphate enemas. Traditional management of hyperphosphatemia with aggressive hydration and diuretics was insufficient to reverse the hemodynamic and neurological abnormalities in this child. This is the first report of the use of hemodialysis in a child without preexisting renal failure for the successful management of near-fatal sodium phosphate toxicity. Hemodialysis can safely be used as an adjunctive therapy in sodium phosphate toxicity to rapidly reduce serum phosphate levels and increase serum calcium levels in children not responding to conventional management.

  7. Sodium sampling and impurities determination

    International Nuclear Information System (INIS)

    Docekal, J.; Kovar, C.; Stuchlik, S.

    1980-01-01

    Samples may be obtained from tubes in-built in the sodium facility and further processed or they are taken into crucibles, stored and processed later. Another sampling method is a method involving vacuum distillation of sodium, thus concentrating impurities. Oxygen is determined by malgamation, distillation or vanadium balance methods. Hydrogen is determined by the metal diaphragm extraction, direct extraction or amalgamation methods. Carbon is determined using dry techniques involving burning a sodium sample at 1100 degC or using wet techniques by dissolving the sample with an acid. Trace amounts of metal impurities are determined after dissolving sodium in ethanol. The trace metals are concentrated and sodium excess is removed. (M.S.)

  8. Analysis of sodium pool fire in SFEF for assessing the limiting pool fire

    International Nuclear Information System (INIS)

    Mangarjuna Rao, P.; Ramesh, S.S.; Nashine, B.K.; Kasinathan, N.; Chellapandi, P.

    2011-01-01

    Accidental sodium leaks and resultant sodium fires in Liquid Metal Fast Breeder Reactor (LMFBR) systems can create a threat to the safe operation of the plant. To avoid this defence-in depth approach is implemented from the design stage of reactor itself. Rapid detection of sodium leak and fast dumping of the sodium into the storage tank of a defective circuit, leak collection trays, adequate lining of load bearing structural concrete and extinguishment of the sodium fire are the important defensive measures in the design, construction and operation of a LMFBR for protection against sodium leaks and their resultant fires. Evaluation of sodium leak events and their consequences by conducting large scale engineering experiments is very essential for effective implementation of the above protection measures for sodium fire safety. For this purpose a Sodium Fire Experimental Facility (SFEF) is constructed at SED, IGCAR. SFEF is having an experimental hall of size 9 m x 6 m x 10 m with 540 m 3 volume and its design pressure is 50 kPa. It is a concrete structure and provided with SS 304 liner, which is fixed to the inside surfaces of walls, ceiling and floor. A leak tight door of size (1.8 m x 2.0 m) is provided to the experimental hall and the facility is provided with a sodium equipment hall and a control room. Experimental evaluation of sodium pool fire consequences is an important activity in the LMFBR sodium fire safety related studies. An experimental program has been planned for different types of sodium fire studies in SFEF. A prior to that numerical analysis have been carried out for enclosed sodium pool fires using SOFIRE-II sodium pool fire code for SFEF experimental hall configuration to evaluate the limiting pool fire. This paper brings out results of the analysis carried out for this purpose. Limiting pool fire of SFEF depends on the exposed surface area of the pool, amount of sodium in the pool, oxygen concentration and initial sodium temperature. Limiting

  9. ELTA: Citatrademark: Sodium measurement

    International Nuclear Information System (INIS)

    Mauvais, O.

    2002-01-01

    ELTA is pleased to present its last model of Sodium analyzers: CITA 2340: Automatically controlled sodium meter, integrating more automation and performances results respecting costs and wastes reduction. (authors)

  10. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    OpenAIRE

    Muhammed Olawale Hakeem AMUDA; Olusegun Olusoji SOREMEKUN; Olakunle Wasiu SUBAIR; Atinuke OLADOYE

    2008-01-01

    The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5) were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel i...

  11. Summary of HEDL sodium fire tests

    International Nuclear Information System (INIS)

    Hillard, R.K.

    1978-10-01

    The sodium fire test program and related studies at the Hanford Engineering Development Laboratory (HEDL) are described. The program is analytical and experimental in scope, with computer code development and experimental verification. Tests have ranged in size from gram quantity laboratory tests to 1600-kg sodium spills. The experimental work is performed in two facilities: the Large Sodium Fire Facility (LSFF) and the Containment Systems Test Facility (CSTF). Sodium fire extinguishment tests which verified the Fast Flux Test Facility (FFTF) secondary sodium fire protection system are described and related informaion on sodium burning rates and smoke release rates are correlated. The burning rates are compared to theoretical predictions based on heat and mass transfer analogy, with good agreement. Comparisons with the SOFIRE-II code are also made. Sodium combustion aerosol properties are defined as to chemical and physical nature, settling in closed vessels and effect of added water vapor. The HAA-3B aerosol behavior computer code is compared to tests in the 850-m 3 CSTF containment vessel. Sodium spray tests in the CSTF are compared with the SPRAY computer code. An air cleaning program is described, which has the objective of removing high mass concentration sodium combustion aerosols from vented cells and containment buildings. The aerosol mass holding capacity of commercial filters was measured and an aqueous scrubber system is described. The effects of sodium spills on cell structures were investigated, including water release from heated concrete, the reaction of sodium with concrete, the formation and spontaneous recombination of hydrogen, and the ability of steel cell liners to withstand large spills of high temperature sodium without leaking

  12. Safety measuring for sodium handling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Jeong, K C; Kim, T J; Kim, B H; Choi, J H

    2001-09-01

    This is the report for the safety measures of sodium handling. These contents are prerequisites for the development of sodium technology and thus the workers participate in sodium handling and experiments have to know them perfectly. As an appendix, the relating parts of the laws are presented.

  13. Urinary Sodium Excretion and Dietary Sources of Sodium Intake in Chinese Postmenopausal Women with Prehypertension

    Science.gov (United States)

    Liu, Zhao-min; Ho, Suzanne C.; Tang, Nelson; Chan, Ruth; Chen, Yu-ming; Woo, Jean

    2014-01-01

    Background Reducing salt intake in communities is one of the most effective and affordable public health strategies to prevent hypertension, stroke and renal disease. The present study aimed to determine the sodium intake in Hong Kong Chinese postmenopausal women and identify the major food sources contributing to sodium intake and urine excretion. Methods This was a cross-sectional study among 655 Chinese postmenopausal women with prehypertension who were screened for a randomized controlled trial. Data collection included 24 h urine collection for the measurement of sodium, potassium and creatinine, 3-day dietary records, anthropometric measures and questionnaire survey on demographic data and dietary habits. Results The average salt intake estimated from urinary excretion was 7.8±3.2 g/d with 82.1% women above WHO recommendation of 5 g/day. Food groups as soup (21.6%), rice and noodles (13.5%), baked cereals (12.3%), salted/preserved foods (10.8%), Chinese dim sum (10.2%) and sea foods (10.1%) were the major contributors of non-discretionary salt. Discretionary salt use in cooking made a modest contribution to overall intake. Vegetable and fruit intake, age, sodium intake from salted foods, sea foods and soup were the independent determinants of urinary sodium excretion. Conclusions Our data revealed a significant room for reduction of the sodium intake. Efforts to reduce sodium from diets in Hong Kong Chinese postmenopausal women should focus on both processed foods and discretionary salt during cooking. Sodium reduction in soup and increase in fruit intake would be potentially effective strategy for reducing sodium. PMID:25083775

  14. Mercury Bioaccumulation in Eggs of Hens Experimentally Intoxicated with Methylmercury Chloride and Detoxified with a Humic-Aluminosilicate Preparation

    Directory of Open Access Journals (Sweden)

    R Barej

    2015-12-01

    Full Text Available ABSTRACT The aim of the study was to evaluate the effectiveness of preventive-detox preparation (P-dP based on humic and aluminosilicate substances in the diet of laying hens (3% daily dose previously intoxicated with methylmercury chloride (CH3ClHg, 5 mg Hg/kg feed mixture for six weeks. Mercury content in the whole eggs of the group intoxicated with CH3ClHg increased compared to the control group: 488-fold after 1 wk, 622-fold after 2 wks, and 853-fold after 6 wks of intoxication. The use of P-dP in the group previously intoxicated with CH3ClHg reduced he mercury content of whole eggs by 18.4%, on average, whereas the average was 29.9% two weeks after the discontinuation of CH3ClHg and P-dP supply. Maximum Hg content in the whole egg was observed in group III (299.7 g, whereas the highest mercury level was obtained in the egg albumen.

  15. 21 CFR 522.460 - Cloprostenol sodium.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric acid...

  16. Boundary layer attenuation in turbulent sodium flows

    International Nuclear Information System (INIS)

    Tenchine, D.

    1994-01-01

    Temperature fluctuations are produced in the sodium coolant of Liquid Metal Reactors when flows at different temperatures are mixing. That occurs in various areas of the reactor plant, in the primary and the secondary circuits. This paper deals with secondary circuit pipings, specifically the Superphenix steam generator outlet. The possibility of thermal striping in this area is studied because of the mixing of a main 'hot' flow surrounded by a smaller 'cold' flow in the vertical pipe located below the steam generator. This work was developed in the frame of a collaboration between CEA, EDF and FRAMATOME. The purpose of our study is to measure temperature fluctuations in the fluid and on the structures, on a sodium reduced scale model of the outlet region of the steam generator. We want to evidence the boundary layer attenuation by comparing wall and fluid measurements. From these experimental data, we shall propose a methodology to predict the boundary layer attenuation and the temperature fluctuations at the surface of the structure, for pipe flow configurations

  17. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages.

    Science.gov (United States)

    Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S

    2016-11-01

    The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Compared With Usual Sodium Intake, Low- and Excessive-Sodium Diets Are Associated With Increased Mortality

    DEFF Research Database (Denmark)

    Graudal, Niels; Jürgens, Gesche; Baslund, Bo

    2014-01-01

    BACKGROUND: The effect of sodium intake on population health remains controversial. The objective was to investigate the incidence of all-cause mortality (ACM) and cardiovascular disease events (CVDEs) in populations exposed to dietary intakes of low sodium (<115 mmol), usual sodium (low usual so...

  19. The isolation of water-soluble radionuclides from deteriorating spent nuclear fuel in zeolite cartridge

    International Nuclear Information System (INIS)

    Hassan, N.M.; Thompson, M.C.

    1996-01-01

    A method of isolating water-soluble radionuclides leaching from deteriorating spent nuclear fuel by ion-exchange in zeolite cartridges has been studied. Design calculations of two zeolite cartridges to be incorporated in typical spent fuel storage bundle have been provided. Equilibrium exchange data obtained at several temperatures have shown that the maximum exchange capacity of total cesium in sodium titanium aluminosilicate was 114 mg/g zeolite and the capacity at 95% exchange for radioactive isotope Cs-137 was calculated as 55.2 mg/g zeolite. The kinetic data suggest that the rate of exchange of Cs + in sodium titanium aluminosilicate zeolite takes place by a fast initial exchange step followed by slow diffusion of cesium cations. Design calculations based on the equilibrium exchange data show that water-soluble radionuclides leaching from Mk 31 slugs can be isolated using two zeolite cartridges, each 3.7 inches in inside diameter and 2.5 inches in length. The cartridges are designed to isolate 95% of the Cs + leaching from the spent fuel storage bundle. The results from the thermal induced convective flow tests indicate that the system will provide necessary cooling to the spent fuel by convective currents while isolating the Cs + leaching from spent fuel storage bundle in the cartridges

  20. Sodium vapour aerosol formation and sodium deposition current work within the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Hawtin, P [Chemical Engineering Division, Atomic Energy Research Establishment, Harwell, Didcot, Oxon (United Kingdom); Seed, G [Nuclear Power Company (Risley) Ltd, Risley, Warrington, Cheshire (United Kingdom)

    1977-01-01

    The significance to reactor operation of sodium transport through the cover gas of a sodium-cooled fast reactor and its subsequent deposition on cooled reactor surfaces is fully appreciated in the UK. A programme of work is therefore underway designed to understand the mechanism of sodium transport under these conditions. This paper described the work which has so far been completed, discussed the work presently in progress, and outlines future plans. (author)

  1. Crystallization and structural approaches of rare earths aluminosilicate glasses (Ln = La, Y, Sc)

    International Nuclear Information System (INIS)

    Sadiki, N.; Coutures, J.P.; Hennet, L.; Florian, P.; Vaills, Y.; Massiot, D.

    2010-01-01

    The crystallization behaviour of aluminosilicate glasses of lanthanum, yttrium and scandium has been studied by DTA, XRD, SEM-EDX and EPMA analysis. Young modulus E and hardness H have been measured by using nano-indentation and elastic modulus C 11 and C 44 by Brillouin scattering. The Young modulus measured by nano-indentation agree to those determined by Brillouin scattering and those calculated using Makishima-Mackenzie and Rocherulle model's. The results of DTA analysis indicate that (a) the glass transition temperatures T g are higher for yttrium and scandium containing glasses than their lanthanum counterparts, the melting observed in the yttrium glasses and recently in the scandium glasses correspond to the ternary eutectic Ln 2 O 3 -Al 2 O 3 -SiO 2 (Ln = Y, Sc) (b) the thermal stability is strongly related to the ionic radii of the rare earth. The last results obtained on scandium containing glasses confirm this hypothesis. The XRD results show that the nature of the observed crystallized phases is consistent with the phase diagrams. We also have investigated by NMR-MAS of 27 Al (high field- 17.6 T) these glasses. The results indicate that Al(V) species are correlated to the ionic radii of the rare earth. X-rays and neutron scattering experiments have been respectively performed on the high energy diffraction beam lines ID11 and ID15 at ESRF. The interatomic distances and first-shell coordination numbers were determined. The results are consistent with those performed by NMR-MAS. (authors)

  2. FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste

    International Nuclear Information System (INIS)

    Musick, C.A.

    1997-11-01

    A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997

  3. Development of the immersed sodium flowmeter

    International Nuclear Information System (INIS)

    Chen Daolong

    1994-09-01

    An immersed sodium flowmeter of the range 3 m 3 /h is developed. It is a flowmeter of entire-sealed construction, it can be operated in sodium. Its construction, the theoretical calculation of the calibration characteristic and the pressure loss, the test facility and the calibration test are presented in detail. It analytical expression of the calibration characteristic in the temperature limit 200∼600 degree C and the error analysis are given. The basic error of this immersed sodium flowmeter is below +-2.3% of the measuring range. The immersed sodium flowmeter can be used to resolve the sodium flowrate measuring problems of the in-reactor component of LMFBR, for example, the flowrate measuring of the in-reactor sodium purification loop, the flowrate measuring of the immersed sodium pump and the flowrate measuring of the in-reactor test component

  4. Methodology for sodium fire vulnerability assessment of sodium cooled fast reactor based on the Monte-Carlo principle

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wei [Nuclear and Radiation Safety Center, P. O. Box 8088, Beijing (China); Wu, Yuanyu [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint-Paul-lès-Durance (France); Hu, Wenjun [China Institute of Atomic Energy, P. O. Box 275(34), Beijing (China); Zuo, Jiaxu, E-mail: zuojiaxu@chinansc.cn [Nuclear and Radiation Safety Center, P. O. Box 8088, Beijing (China)

    2015-11-15

    Highlights: • Monte-Carlo principle coupling with fire dynamic code is adopted to perform sodium fire vulnerability assessment. • The method can be used to calculate the failure probability of sodium fire scenarios. • A calculation example and results are given to illustrate the feasibility of the methodology. • Some critical parameters and experience are shared. - Abstract: Sodium fire is a typical and distinctive hazard in sodium cooled fast reactors, which is significant for nuclear safety. In this paper, a method of sodium fire vulnerability assessment based on the Monte-Carlo principle was introduced, which could be used to calculate the probabilities of every failure mode in sodium fire scenarios. After that, the sodium fire scenario vulnerability assessment of primary cold trap room of China Experimental Fast Reactor was performed to illustrate the feasibility of the methodology. The calculation result of the example shows that the conditional failure probability of key cable is 23.6% in the sodium fire scenario which is caused by continuous sodium leakage because of the isolation device failure, but the wall temperature, the room pressure and the aerosol discharge mass are all lower than the safety limits.

  5. Methodology for sodium fire vulnerability assessment of sodium cooled fast reactor based on the Monte-Carlo principle

    International Nuclear Information System (INIS)

    Song, Wei; Wu, Yuanyu; Hu, Wenjun; Zuo, Jiaxu

    2015-01-01

    Highlights: • Monte-Carlo principle coupling with fire dynamic code is adopted to perform sodium fire vulnerability assessment. • The method can be used to calculate the failure probability of sodium fire scenarios. • A calculation example and results are given to illustrate the feasibility of the methodology. • Some critical parameters and experience are shared. - Abstract: Sodium fire is a typical and distinctive hazard in sodium cooled fast reactors, which is significant for nuclear safety. In this paper, a method of sodium fire vulnerability assessment based on the Monte-Carlo principle was introduced, which could be used to calculate the probabilities of every failure mode in sodium fire scenarios. After that, the sodium fire scenario vulnerability assessment of primary cold trap room of China Experimental Fast Reactor was performed to illustrate the feasibility of the methodology. The calculation result of the example shows that the conditional failure probability of key cable is 23.6% in the sodium fire scenario which is caused by continuous sodium leakage because of the isolation device failure, but the wall temperature, the room pressure and the aerosol discharge mass are all lower than the safety limits.

  6. Annular sodium flowsensor

    International Nuclear Information System (INIS)

    Kaiser, W.C.; Brewer, J.; Forster, G.A.

    1983-01-01

    This paper describes a unique eddy-current type liquid sodium flowsensor, designed as a joint effort between Argonne National Laboratory and Kaman Instrumentation Corp. Test results are included for operation of the flowsensor mounted on a sodium test loop whose configuration simulates the actual operating conditions, except for the magnetic field of the ALIP

  7. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  8. Summary of HEDL sodium fire tests

    International Nuclear Information System (INIS)

    Hilliard, R.K.

    1979-01-01

    The sodium fire test program and related studies at the Hanford Engineering Development Laboratory (HEDL), covering the period from 1972 to 1978, are described. The program is analytical and experimental in scope, with computer code development and experimental verification. Tests have ranged in size from gram quantity laboratory tests to 1600-kg sodium spills. The experimental work is performed in two facilities: the Large Sodium Fire Facility (LSFF) and the Containment Systems Test Facility (CSTF). The facilities are described and the experimental results summarized. Sodium fire extinguishment tests which verified the Fast Flux Test Facility (FFTF) secondary sodium fire protection system are described and related information on sodium burning rates and smoke release rates are correlated. The burning rates are compared to theoretical predictions based on heat and mass transfer analogy, with good agreement. Comparisons with the SOFIRE-II code are also made. Sodium combustion aerosol properties are defined as to chemical and physical nature, settling in closed vessels and effect of added water vapor. The HAA-38 aerosol behaviour computer code is compared to tests in the 850-m 3 CSTF containment vessel. Sodium spray tests in the CSTF are compared with the SPRAY computer code. An air cleaning program is described, which has the objective of removing high mass concentration sodium combustion aerosols from vented cells and containment buildings. The aerosol mass holding capacity of commercial filters was measured and an aqueous scrubber system is described. The effects of sodium spills on cell structures were investigated, including water release from heated concrete, the reaction of sodium with concrete, the formation and spontaneous recombination of hydrogen, and the ability of steel cell liners to withstand large spills of high temperature sodium without leaking. (author)

  9. Summary of HEDL sodium fire tests

    Energy Technology Data Exchange (ETDEWEB)

    Hilliard, R K [Hanford Engineering Development Laboratory, Richland, WA (United States)

    1979-03-01

    The sodium fire test program and related studies at the Hanford Engineering Development Laboratory (HEDL), covering the period from 1972 to 1978, are described. The program is analytical and experimental in scope, with computer code development and experimental verification. Tests have ranged in size from gram quantity laboratory tests to 1600-kg sodium spills. The experimental work is performed in two facilities: the Large Sodium Fire Facility (LSFF) and the Containment Systems Test Facility (CSTF). The facilities are described and the experimental results summarized. Sodium fire extinguishment tests which verified the Fast Flux Test Facility (FFTF) secondary sodium fire protection system are described and related information on sodium burning rates and smoke release rates are correlated. The burning rates are compared to theoretical predictions based on heat and mass transfer analogy, with good agreement. Comparisons with the SOFIRE-II code are also made. Sodium combustion aerosol properties are defined as to chemical and physical nature, settling in closed vessels and effect of added water vapor. The HAA-38 aerosol behaviour computer code is compared to tests in the 850-m{sup 3} CSTF containment vessel. Sodium spray tests in the CSTF are compared with the SPRAY computer code. An air cleaning program is described, which has the objective of removing high mass concentration sodium combustion aerosols from vented cells and containment buildings. The aerosol mass holding capacity of commercial filters was measured and an aqueous scrubber system is described. The effects of sodium spills on cell structures were investigated, including water release from heated concrete, the reaction of sodium with concrete, the formation and spontaneous recombination of hydrogen, and the ability of steel cell liners to withstand large spills of high temperature sodium without leaking. (author)

  10. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    Energy Technology Data Exchange (ETDEWEB)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George; Desai, Aditya; Duffey, Kean; Balagopal, Shekar [Ceramatec Inc., Salt Lake City, UT 84119 (United States)

    2012-07-01

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodium management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent

  11. Comparison of surface area changes during sulfation of sodium bicarbonate in a simulated flue gas with and without NO

    Energy Technology Data Exchange (ETDEWEB)

    Weil, A.E.; Keener, T.C.; Khang, S.J. [University of Cincinnati, Cincinnati, OH (United States). Department of Civil and Environmental Engineering

    1994-12-31

    Sodium bicarbonate has been identified as one of the most efficient reagents for flue gas desulfurization. Sodium bicarbonate has been demonstrated both in bench scale and large scale applications by a number of researchers globally. Scattered reporting of plume discolouration during demonstrations of sodium bicarbonate injection have been attributed to the formation of the reddish-brown gas NO{sub 2}. The purpose of this study was to compare the surface area changes of sodium bicarbonate during flue gas desulfurization as it relates to the formation of NO{sub 2} The results of this study have indicated an anomolous behaviour with respect to previously published data for non reactive gas environments. Notably it was shown that flue gas with NO lowered the surface area, most likely due to the formation of a low melting eutectic of sodium nitrate and sulphate. Nitrogen uptake was found to coincide with water evolution from decomposition. The results of this study more clearly define, on the microstructural level, the sulphur uptake mode. A unique laboratory differential fixed bed reactor was designed for this study. The setup included a quick quench zone to quench the reactions for data acquisition. BET surface area, IR elemental analysis, XRD crystallographic identification and SEM imaging were used to characterize microstructural mechanisms and to confirm reaction paths. 4 refs., 3 figs., 2 tabs.

  12. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  13. Unites States position paper on sodium fires. Design basis and testing

    International Nuclear Information System (INIS)

    Lancet, R.T.; Johnson, R.P.; Matlin, E.; Vaughan, E.U.; Fields, D.E.; Glueckler, E.; McCormack, J.D.; Miller, C.W.; Pedersen, D.R.

    1989-01-01

    This paper focuses on designs, analyses, and tests performed since the last Sodium Fires Meeting of the IAEA International Working Group on Fast Reactors in May 1982. Since the U.S. Liquid Metal Reactor (LMR) program is focused on the two advanced LMRs, SAFR and PRISM, the paper relates this work to these designs. First, the design philosophy and approach taken by these advanced pool reactors are described. This includes methods of leak detection, the design basis leaks, and passive accommodation of sodium fires. Then the small- and large-scale sodium fire tests performed in support of the Clinch River Breeder Reactor Plant (CRBRP) program, including post-accident cleanup, are presented and related to the advanced LMR designs. Next, the assessment and behavior of the aerosols generated are discussed including generation rate, behavior within structures, release and dispersal, and deposition on safety-grade equipment. Finally, the impact of these aerosols on the performance of safety-grade decay heat removal heat exchange surfaces is discussed including some test results as well as planned tests. (author)

  14. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  15. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  16. Nutritional impact of sodium reduction strategies on sodium intake from processed foods

    NARCIS (Netherlands)

    Hendriksen, M.A.H.; Verkaik-Kloosterman, J.; Noort, M.W.; Raaij, J.M.A. van

    2015-01-01

    Background/objectives: Sodium intake in the Netherlands is substantially above the recommended intake of 2400 mg/day. This study aimed to estimate the effect of two sodium reduction strategies, that is, modification of the composition of industrially processed foods toward the technologically

  17. Nutritional impact of sodium reduction strategies on sodium intake from processed foods

    NARCIS (Netherlands)

    Hendriksen, M.A.H.; Verkaik-Kloosterman, J.; Noort, M.W.J.; Raaij, van J.M.A.

    2015-01-01

    Background/objectives: Sodium intake in the Netherlands is substantially above the recommended intake of 2400¿mg/day. This study aimed to estimate the effect of two sodium reduction strategies, that is, modification of the composition of industrially processed foods toward the technologically

  18. Preliminary Results on a Contact between 4 kg of Molten UO2 and Liquid Sodium

    International Nuclear Information System (INIS)

    Amblard, M.

    1976-01-01

    The CORECT II Experiment consists in simulating the penetration of sodium into an assembly when the fuel is molten. In other words, it is a shock-tube type of experiment with dimensions representative of a full-scale assembly. the experiment consists in dropping a 100 litre column of sodium onto partially molten UO 2 . The following measurements are carried out in transient regime: - sodium velocity in the column; - pressure in the interaction chamber; - pressures at the bottom and at the top of a 5 m tube; - pressure in the argon blanket. The experimental parameters are: - the mass of UO 2 involved (about 4 or 7 kg of 80% molten UO 2 ); - the initial temperature of the sodium (up to 700 deg. C); - the pressure of the residual gas in the interaction chamber during the fall of the sodium; - the dimensions of the interaction chamber and the sodium supply tube; - the form of contact between the UO 2 and the sodium (the sodium may fall on partially liquid and settled UO 2 or on UO 2 pre-dispersed by forced trapping of sodium). To date, 6 tests have been performed. These tests have always resulted in fine fragmentation without any violent interaction. Since no knowledge is available on the change of grain size distribution with time, on the temperature of grain formation, and on the grain movement in the sodium, it is very difficult to interpret these UO 2 -Na tests. We intend to carry out more severe interaction tests on this experimental set-up, by eliminating as much as possible the non-condensable gas which cushions the mechanical impact of the sodium on the UO 2 (tests have shown that by strongly de-pressurizing the liquid UO 2 the fuel could be dispersed by boiling, and this effect should also improve the possibilities of a liquid/liquid contact). - by injecting a little sodium into the UO 2 to facilitate its dispersion in the coolant

  19. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  20. Friction and wear in sodium

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.

    1973-01-01

    In the design of a safe and reliable sodium-cooled reactor one of the more important problem areas is that of friction and wear of components immersed in liquid sodium or exposed to sodium vapor. Sodium coolant at elevated temperatures may severely affect most oxide-bearing surface layers which provide corrosion resistance and, to some extent, lubrication and surface hardness. Consequently, accelerated deterioration may be experienced on engaged-motion contact surfaces, which could result in unexpected reactor shutdown from component malfunction or failure due to galling and seizure. An overall view of the friction and wear phenomena encountered during oscillatory rubbing of surfaces in high-temperature, liquid-sodium environments is presented. Specific data generated at the Liquid Metal Engineering Center (LMEC) on this subject is also presented. (U.S.)

  1. Sodium ionization detector and sensor

    International Nuclear Information System (INIS)

    Hrizo, J.; Bauerle, J.E.

    1979-01-01

    Work conducted on a basic technology development effort with the Westinghouse Sodium Ionization Detector (SID) sensor is reported. Included are results obtained for three task areas: (1) On-line operational response testing - in-situ calibration techniques; (2) Performance-reliability characteristics of aged filaments; and (3) Evaluation of chemical interference effects. The results showed that a calibrator filament coated with a sodium compound, when activated, does supply the necessary sodium atoms to provide a valid operational in-situ test. The life time of new Cr 2 0 3 -protected SID sensor filaments can be extended by operating at a reduced temperature. However, there also is a reduction in the sensitivity. Non-sodium species, such as products from a smoldering fire and organic aerosols, produce an interference response from the sensor comparable to a typical sodium response

  2. Stakeholder discussion to reduce population-wide sodium intake and decrease sodium in the food supply: a conference report from the American Heart Association Sodium Conference 2013 Planning Group.

    Science.gov (United States)

    Antman, Elliott M; Appel, Lawrence J; Balentine, Douglas; Johnson, Rachel K; Steffen, Lyn M; Miller, Emily Ann; Pappas, Antigoni; Stitzel, Kimberly F; Vafiadis, Dorothea K; Whitsel, Laurie

    2014-06-24

    A 2-day interactive forum was convened to discuss the current status and future implications of reducing sodium in the food supply and to identify opportunities for stakeholder collaboration. Participants included 128 stakeholders engaged in food research and development, food manufacturing and retail, restaurant and food service operations, regulatory and legislative activities, public health initiatives, healthcare, academia and scientific research, and data monitoring and surveillance. Presentation topics included scientific evidence for sodium reduction and public health policy recommendations; consumer sodium intakes, attitudes, and behaviors; food technologies and solutions for sodium reduction and sensory implications; experiences of the food and dining industries; and translation and implementation of sodium intake recommendations. Facilitated breakout sessions were conducted to allow for sharing of current practices, insights, and expertise. A well-established body of scientific research shows that there is a strong relationship between excess sodium intake and high blood pressure and other adverse health outcomes. With Americans getting >75% of their sodium from processed and restaurant food, this evidence creates mounting pressure for less sodium in the food supply. The reduction of sodium in the food supply is a complex issue that involves multiple stakeholders. The success of new technological approaches for reducing sodium will depend on product availability, health effects (both intended and unintended), research and development investments, quality and taste of reformulated foods, supply chain management, operational modifications, consumer acceptance, and cost. The conference facilitated an exchange of ideas and set the stage for potential collaboration opportunities among stakeholders with mutual interest in reducing sodium in the food supply and in Americans' diets. Population-wide sodium reduction remains a critically important component of

  3. Methods in the treatment of sodium wastes

    International Nuclear Information System (INIS)

    Rodriguez, G.

    1997-01-01

    In the domain of sodium waste processing, we have followed a logical route that has enabled us to propose a global method with respect to sodium wastes. This approach has led to: The choice of only those sodium processes using water; The development of sodium purification methods; The development of methods for cutting metallic wastes soiled by or filled with sodium; The transformation of the resulting sodium hydroxide into ultimate solid wastes for surface storage. (author)

  4. Sodium voiding analysis in Kalimer

    International Nuclear Information System (INIS)

    Chang, Won-Pyo; Jeong, Kwan-Seong; Hahn, Dohee

    2001-01-01

    A sodium boiling model has been developed for calculations of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. The sodium boiling in liquid metal reactors using sodium as coolant should be modeled because of phenomenon difference observed from that in light water reactor systems. The developed model is a multiple -bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbles that fill the whole cross section of the coolant channel except for liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble. The present study is focused on not only demonstration of the sodium voiding behavior predicted by the developed model, but also confirmation on qualitative acceptance for the model. In results, the model catches important phenomena for sodium boiling, while further effort should be made for the complete analysis. (author)

  5. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  6. Sodium Fire Demonstration Facility Design and Operation

    International Nuclear Information System (INIS)

    Cho, Youngil; Kim, Jong-Man; Lee, Jewhan; Hong, Jonggan; Yeom, Sujin; Cho, Chungho; Jung, Min-Hwan; Gam, Da-Young; Jeong, Ji-Young

    2014-01-01

    Although sodium has good characteristics such as high heat transfer rate and stable nuclear property, it is difficult to manage because of high reactivity. Sodium is solid at the room temperature and it easily reacts with oxygen resulting in fire due to the reaction heat. Thus, sodium must be stored in a chemically stable place, i.e., an inert gas-sealed or oil filled vessel. When a sodium fire occurs, the Na 2 O of white fume is formed. It is mainly composed of Na 2 O 2 , NaOH, and Na 2 CO 3 , ranging from 0.1 to several tens of micrometers in size. It is known that the particle size increases by aggregation during floating in air. Thus, the protection method is important and should be considered in the design and operation of a sodium system. In this paper, sodium fire characteristics are described, and the demonstration utility of outbreak of sodium fire and its extinguishing is introduced. In this paper, sodium fire characteristics and a demonstration facility are described. The introduced sodium fire demonstration facility is the only training device used to observe a sodium fire and extinguish it domestically. Furthermore, the type of sodium fire will be diversified with the enhancement of the utility. It is expected that this utility will contribute to experience in the safe treatment of sodium by the handlers

  7. Sodium-carbonate co-substituted hydroxyapatite ceramics

    Directory of Open Access Journals (Sweden)

    Zoltan Z. Zyman

    2013-12-01

    Full Text Available Powders of sodium-carbonate co-substituted hydroxyapatite, having sodium content in the range of 0.25–1.5 wt.% with a 0.25 wt.% step, were prepared by a precipitation-solid state reaction route. Compacts of the powders were sintered in a CO2 flow (4 mL/min at 1100 °C for 2 h. The sintered ceramics contained sodium and carbonate ions in the ranges of 0–1.5 wt.% and 1.3–6 wt.%, respectively, which are typical impurity concentrations in biological apatite. A relationship between sodium and carbonate contents and the type of carbonate substitution was found. The total carbonate content progressively increased with the sodium content. The obtained ceramics showed an AB-type carbonate substitution. However, the substitution became more B-type as the sodium content increased. As a result, the carbonation was almost B-type (94 % for the highest sodium content (1.5 wt.%.

  8. Combustion suppressing device for leaked sodium

    International Nuclear Information System (INIS)

    Ooto, Akihiro.

    1985-01-01

    Purpose: To suppress the atmospheric temperature to secure the building safety and shorten the recovery time after the leakage in a chamber for containing sodium leaked from coolant circuit equipments or pipeways of LMFBR type rector by suppressing the combustion of sodium contained in the chamber. Constitution: To the inner wall of a chamber for containing sodium handling equipments, are vertically disposed a panel having a coolant supply port at the upper portion and a coolant discharge port at the lower portion thereof and defined with a coolant flowing channel and a panel for sucking the coolant discharged from the abovementioned panel and exhausting the same externally. Further, a corrugated combustion suppressing plate having apertures for draining the condensated leaked sodium is disposed near the sodium handling equipments. If ruptures are resulted to the sodium handling equipments or pipeway, leaked sodium is passed through the drain apertures in the suppressing plate and stored at the bottom of the containing chamber. (Horiuchi, T.)

  9. 21 CFR 172.822 - Sodium lauryl sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lauryl sulfate. 172.822 Section 172.822 Food... Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely... specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate [CH2(CH2...

  10. Sodium setpoint and gradient in bicarbonate hemodialysis.

    Science.gov (United States)

    Basile, Carlo; Libutti, Pasquale; Lisi, Piero; Vernaglione, Luigi; Casucci, Francesco; Losurdo, Nicola; Teutonico, Annalisa; Lomonte, Carlo

    2013-01-01

    The demonstration of an individual osmolar setpoint in hemodialysis (HD) is crucial to individualize dialysate sodium concentrations. Furthermore, the diffusive gradient between plasma and dialysate sodium is important in the "fine tuning" of the intradialytic sodium mass balance (MB). The design of this study included part A: a retrospective analysis of predialysis plasma sodium concentrations extracted from a 6-year database in our HD population (147 prevalent white anuric patients); and part B: study of intradialytic sodium kinetics in 48 patients undergoing one 4-hour bicarbonate HD session. Direct potentiometry with an ion-selective electrode was used for sodium measurements. Study part A: the mean number of plasma sodium measurements per patient was 16.06 ± 14.03 over a mean follow-up of 3.55 ± 1.76 years. The mean of the averaged plasma sodium concentrations was 136.7 ± 2.1 mmol/L, with a low mean intraindividual coefficient of variation (1.39 ± 0.4). Study part B: mean predialysis and postdialysis plasma sodium concentrations were 135.8 ± 0.9 and 138.0 ± 0.9 mmol/L (p<0.001). Mean inlet dialyzer sodium concentration was 138.7 ± 1.1 mmol/L; the hourly diffusion concentration gradients showed a statistically significant transfer from dialysate to plasma (Wilks ? <0.0001). A statistically significant relationship was found between sodium MB and diffusion gradient (p<0.02), and between sodium MB and ultrafiltration volume (p<0.01). A relatively "fixed" and individual osmolar setpoint in HD patients was shown for the first time in a long-term follow-up. A dialysate sodium concentration of 140 mmol/L determined a dialysate to plasma sodium gradient.

  11. Thermal Conductivity of Aluminosilicate- and Aluminum Oxide-Filled Thermosets for Injection Molding: Effect of Filler Content, Filler Size and Filler Geometry

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2018-04-01

    Full Text Available In this study, epoxy molding compounds (EMCs with aluminosilicate (AlS and aluminum oxide (AlO were fabricated as fillers by a twin-screw-extruder (TSE and shaped to plate samples using injection molding. AlS and AlO, electrical insulating mineral materials, were used as fillers to improve the thermal conductivity (λc of composites. Composites with different filler particle sizes, filler contents and filler geometry were fabricated and the influence of these variables on the λc was studied. The λc of composites was measured with the hot-disk method. The distribution of fillers in composites was observed using scanning electron microscopy (SEM. Using the Lewis-Nielsen equation, experimental values of λc were compared with those predicted. The predicted results fit the experimental values well. The result showed that λc increases significantly when the filler content of composites is approximately over 50 vol %.

  12. Docusate Sodium and Pregnancy

    Science.gov (United States)

    ... a risk of miscarriage. Can use of docusate sodium during pregnancy cause birth defects? Few studies have been done to look at the possible risks of docusate sodium during pregnancy. However, the available studies show that when used ...

  13. Thermal performance tests on a sodium-to-sodium heat exchanger

    International Nuclear Information System (INIS)

    Prahlad, B.; Kale, R.D.; Rajan, K.K.

    1990-01-01

    Thermal performance of a 3 MW sodium-to-sodium intermediate heat exchanger (IHX) was evaluated under temperature conditions typical of a Fast Breeder Reactor IHX. A regenerative figure of eight loop was used with the heat exchanger at the cross over point, and a 500 kW heat source and an air cooled sink to maintain the desired test conditions. The overall heat transfer coefficient was found to vary from 4.02 to 4.87 kW/m 2 ·K for Peclet numbers varying from 37 to 112.5 on the shell side and 44.4 to 133.5 on the tube side respectively. The Peclet numbers were representative of low turbulent regime in this case. While the overall heat transfer coefficient was found close to predictions using Lubarsky's correlation, it was somewhat lower than that predicted by later correlations of Spukunsky and Borishansky. The reasons for the lower overall heat transfer coefficient have been explained in terms of possible maldistribution of shell side flow in low turbulent regime reducing the effective heat transfer area and increased thermal contact resistance. Based on their findings the authors feel that heat transfer in a sodium-to-sodium heat exchanger at low Peclet numbers is expected to differ from that obtained with large Peclet numbers. (author)

  14. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    Science.gov (United States)

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-04-26

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  15. Evaluation of steam-to-sodium leak detectors in the sodium components test installation (SCTI)

    Energy Technology Data Exchange (ETDEWEB)

    McKee, J M; Simmons, W R

    1975-07-01

    Two nickel diffusion-membrane type hydrogen detectors were installed in the secondary sodium system of the Sodium Components Test Installation and evaluated during the 12-month performance test of the Modular Steam Generator (MSG). Hydrogen in the expansion tank cover gas was monitored with a gas chromatograph. During this period, numerous steam and hydrogen injections were made, simulating steam leaks into the sodium of an LMFBR steam generator. The response of the detectors was evaluated for leak sizes ranging from 10{sup -6} to 10{sup -4} 1b H{sub 2}O/sec, injection periods of 0.5 to 300 min, secondary sodium flow rates of 0.2 x 10{sup 6} to 1.5 x 10{sup 6} 1b/hr, and sodium temperatures of 400 to 950 deg. F. The response of the leak detection system was influenced significantly by two regimes of sodium temperature. Below 600 deg. F, the cover gas hydrogen detector gave the largest response; this is attributed to the long dissolution time of hydrogen bubbles relative to the transit time of hydrogen to the expansion tank. Above 600 deg. F, the hydrogen apparently dissolved rapidly and the detectors were much more effective in the sodium than in the cover gas. At least 75% of the hydrogen and 50% of the oxygen content of injected steam appeared as detectable activity if the reaction products were dispersed in the sodium stream and the sodium was above 600 deg. F. Hydrogen injections into semi-stagnant sodium at the MSG tube sheets were detected with better sensitivity than steam injections into the main sodium stream. It appeared that high local concentrations of hydrogen were quickly carried to the nearest detector by upward currents created by the injected gas. The alarm system functioned as expected, 2.1 ppb/min being the smallest rate-of-rise in hydrogen concentration to give an automatic alarm. With more sensitive rate-of-rise alarm settings, leaks as small as 2 x 10{sup -5} 1b H{sub 2}O/sec could be detected in a system such as the Clinch River Breeder

  16. Evaluation of steam-to-sodium leak detectors in the sodium components test installation (SCTI)

    International Nuclear Information System (INIS)

    McKee, J.M.; Simmons, W.R.

    1975-01-01

    Two nickel diffusion-membrane type hydrogen detectors were installed in the secondary sodium system of the Sodium Components Test Installation and evaluated during the 12-month performance test of the Modular Steam Generator (MSG). Hydrogen in the expansion tank cover gas was monitored with a gas chromatograph. During this period, numerous steam and hydrogen injections were made, simulating steam leaks into the sodium of an LMFBR steam generator. The response of the detectors was evaluated for leak sizes ranging from 10 -6 to 10 -4 1b H 2 O/sec, injection periods of 0.5 to 300 min, secondary sodium flow rates of 0.2 x 10 6 to 1.5 x 10 6 1b/hr, and sodium temperatures of 400 to 950 deg. F. The response of the leak detection system was influenced significantly by two regimes of sodium temperature. Below 600 deg. F, the cover gas hydrogen detector gave the largest response; this is attributed to the long dissolution time of hydrogen bubbles relative to the transit time of hydrogen to the expansion tank. Above 600 deg. F, the hydrogen apparently dissolved rapidly and the detectors were much more effective in the sodium than in the cover gas. At least 75% of the hydrogen and 50% of the oxygen content of injected steam appeared as detectable activity if the reaction products were dispersed in the sodium stream and the sodium was above 600 deg. F. Hydrogen injections into semi-stagnant sodium at the MSG tube sheets were detected with better sensitivity than steam injections into the main sodium stream. It appeared that high local concentrations of hydrogen were quickly carried to the nearest detector by upward currents created by the injected gas. The alarm system functioned as expected, 2.1 ppb/min being the smallest rate-of-rise in hydrogen concentration to give an automatic alarm. With more sensitive rate-of-rise alarm settings, leaks as small as 2 x 10 -5 1b H 2 O/sec could be detected in a system such as the Clinch River Breeder Reactor Plant. A preliminary

  17. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 3, Transport of sodium-sulfur and sodium-metal-chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, C J

    1992-09-01

    This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

  18. Development of real time visual evaluation system for sodium transient thermohydraulic experiments

    International Nuclear Information System (INIS)

    Tanigawa, Shingo

    1990-01-01

    A real time visual evaluation system, the Liquid Metal Visual Evaluation System (LIVES), has been developed for the Plant Dynamics Test Loop facility at O-arai Engineering Center. This facility is designed to provide sodium transient thermohydraulic experimental data not only in a fuel subassembly but also in a plant wide system simulating abnormal or accident conditions in liquid metal fast breeder reactors. Since liquid metal sodium is invisible, measurements to obtain experimental data are mainly conducted by numerous thermo couples installed at various locations in the test sections and the facility. The transient thermohydraulic phenomena are a result of complicated interactions among global and local scale three-dimensional phenomena, and short- and long-time scale phenomena. It is, therefore, difficult to grasp intuitively thermohydraulic behaviors and to observe accurately both temperature distribution and flow condition solely by digital data or various types of analog data in evaluating the experimental results. For effectively conducting sodium transient experiments and for making it possible to observe exactly thermohydraulic phenomena, the real time visualization technique for transient thermohydraulics has been developed using the latest Engineering Work Station. The system makes it possible to observe and compare instantly the experiment and analytical results while experiment or analysis is in progress. The results are shown by not only the time trend curves but also the graphic animations. This paper shows an outline of the system and sample applications of the system. (author)

  19. Instrumentation for Sodium Circuits; Instrumentation des Circuits de Sodium

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E. [CEA, Centre d' Etudes Nucleaires de Fontenay-aux-Roses (France); Lions, N. [CEA, Centre d' Etudes Nucleaires de Cadarache (France)

    1967-06-15

    Electromagnetic flow meters, level gauges and differential pressure gauges are among the main measurement instruments designed and tested at the Commissariat a l'Energie Atomique (CEA) for sodium reactors. The main characteristics of the flow meters used with RAPSODIE are indicated. The instruments used in this connection are of the permanent -magnet or electromagnet type (in the primary circuits). A description is given of the calibration methods employed - use is made of diaphragms or Venturi tubes as standard flow meters - and information is given on the results measured for maximum sodium flows of 400 m{sup 3}/h. Three types of continuous level gauge have been studied. Resistance gauge. Two varieties used for the 1 - and 10-MW test circuits of RAPSODIE are described. In one there is a compensation resistance along the whole height of the measuring element (the continuous gauges used with the RAPSODIE reactor are at present of this type). In the other type of gauge a device is incorporated to heat the measurement element and prevent the formation of conducting deposits (prototype sodium tests have been completed). Induction gauge. This type has two coupled coils and is fitted with a device to compensate for temperature effects. A description is given of a prototype which has been built and the results obtained in the course of sodium tests are described. Ultrasonic gauge. With this type, a transmitter is fitted on top of the outside of the sodium container; there is also a vertical wave guide, the bottom of which is immersed in the liquid metal and possesses a reflector system which returns the ultrasonic beam towards the surface. Fixed reference marks provide a permanent means of calibration and the whole apparatus is welded. This type of gauge is now being constructed. The differential pressure gauges that have been built, and used in particular with Venturi tube flow meters, are modified versions of the devices employed with the 1 - and 10-MW test circuits of

  20. Alumino-silicate speciation in aqueous fluids at deep crustal conditions

    Science.gov (United States)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2014-12-01

    Alumina and silica are major oxides in most crustal rocks. While SiO2 is quite soluble in aqueous fluids at metamorphic conditions, behavior of Al2O3 in crustal metamorphic fluids has been poorly understood. It is known that alumina is dramatically less soluble in aqueous fluids and hence it is difficult to explain the common occurrence of quartz with aluminous minerals in metamorphic veins. In order to understand this complex behavior of alumina, we investigated aluminum speciation in aqueous fluids in equilibrium with corundum using in situ Raman spectroscopy in hydrothermal diamond anvil cells to 20 kbar and 1000 oC. In order to better understand the spectral features of the aqueous fluids, we used first principles simulations based on density functional theory to calculate and predict the energetics and vibrational spectra for various aluminum species that are likely to be present in aqueous solutions. The Raman spectra of pure water in equilibrium with Al2O3 are devoid of any characteristic spectral features. In contrast, aqueous fluids with KOH solution in equilibrium with Al2O3 show a sharp band at ~620 cm-1 which could be attributed to the [Al(OH)4]1- species. The band grows in intensity with temperature along an isochore. In the limited pressure, temperature and density explored in the present study, we do not find any evidence for the polymerization of the [Al(OH)4]1- species to dimers [(OH)2-Al-O2-Al(OH)2]2- or [(OH)3-Al-O-Al(OH)3]2-. This is likely due to the relatively low concentration of Al in the solutions and does not rule out significant polymerization at higher pressures and temperatures. We are also investigating the effect of SiO2 on the solubility of Al2O3 and the relative energetics of formation of pure alumina dimer [(OH)3-Al-O-Al(OH)3]2- vs. the aluminosilicate dimers, [(OH)3-Al-O-Si(OH)3]2- at deep crustal conditions. Acknowledgement- MM is supported by the US National Science Foundation grant (EAR-1250477).

  1. Targeting sodium channels in cardiac arrhythmia

    NARCIS (Netherlands)

    Remme, Carol Ann; Wilde, Arthur A. M.

    2014-01-01

    Cardiac voltage-gated sodium channels are responsible for proper electrical conduction in the heart. During acquired pathological conditions and inherited sodium channelopathies, altered sodium channel function causes conduction disturbances and ventricular arrhythmias. Although the clinical,

  2. Simultaneous HPLC method for determination of sodium trimethoprim phenylpropanol disulphonate and sodium sulfaquinoxaline in veterinary drugs

    Directory of Open Access Journals (Sweden)

    Puangkaew Lakkanatinaporn

    2004-11-01

    Full Text Available A simple HPLC method has been developed for the separation and determination of sodium trimethoprim phenylpropanol disulphonate and sodium sulfaquinoxaline in veterinary preparations. Both drugs were separated well on a Kromasil C18 column (5 µm, 150 × 4.6 mm using a mixture of acetonitrile and 0.5% triethylamine in 1% acetic acid, pH 3 (18:82, v/v as the mobile phase at the flow rate of 1.5 ml/ min. The presence of both substances was monitored by UV absorption detection at 271 nm. The retention times of sodium trimethoprim phenylpropanol disulphonate and sodium sulfaquinoxaline were 3.2 and 16.0 min, respectively. The performance of the developed method was tested. Linear responses of both drugs were achieved between 48-145% of labeled amount over the concentration ranges of 35-101 µg/ml and 102-306 µg/ ml for sodium trimethoprim phenylpropanol disulphonate and sodium sulfaquinoxaline with correlation coefficients (R2 of 0.9980 and 0.9998, respectively. Accuracy expressed in term of recoveries were 101.4± 1.21% (n=6 for sodium trimethoprim phenylpropanol disulphonate and 99.7±0.92% (n=6 for sodium sulfaquinoxaline. Precision of the method in terms of the relative standard deviation is not more than 2% in all cases. These figures of merit indicated the validity of the developed method.

  3. SNL/JAEA Collaborations on Sodium Fire Benchmarking.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Andrew Jordan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Takata, Takashi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ohshima, Hiroyuki [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Two sodium spray fire experiments performed by Sandia National Laboratories (SNL) were used for a code - to - code comparison between CONTAIN - LMR and SPHINCS. Both computer codes are used for modeling sodium accidents in sodium fast reactors. The comparison between the two codes provides insights into the ability of both codes to model sodium spray fires. The SNL T3 and T4 experiments are 20 kg sodium spray fires with sodium spray temperature s of 200 deg C and 500 deg C, respe ctively. Given the relatively low sodium temperature in the SNL T3 experiment, the sodium spray experienced a period of non - combustion. The vessel in the SNL T4 experiment experienced a rapid pressurization that caused of the instrumentation ports to fail during the sodium spray. Despite these unforeseen difficulties, both codes were shown in good agreement with the experiment s . The subsequent pool fire that develops from the unburned sodium spray is a significant characteristic of the T3 experiment. SPHIN CS showed better long - term agreement with the SNL T3 experiment than CONTAIN - LMR. The unexpected port failure during the SNL T4 experiment presented modelling challenges. The time at which the port failure occurred is unknown, but is believed to have occur red at about 11 seconds into the sodium spray fire. The sensitivity analysis for the SNL T4 experiment shows that with a port failure, the sodium spray fire can still maintain elevated pressures during the spray.

  4. Wireless sensor network for sodium leak detection

    International Nuclear Information System (INIS)

    Satya Murty, S.A.V.; Raj, Baldev; Sivalingam, Krishna M.; Ebenezer, Jemimah; Chandran, T.; Shanmugavel, M.; Rajan, K.K.

    2012-01-01

    Highlights: ► Early detection of sodium leak is mandatory in any reactor handling liquid sodium. ► Wireless sensor networking technology has been introduced for detecting sodium leak. ► We designed and developed a wireless sensor node in-house. ► We deployed a pilot wireless sensor network for handling nine sodium leak signals. - Abstract: To study the mechanical properties of Prototype Fast Breeder Reactor component materials under the influence of sodium, the IN Sodium Test (INSOT) facility has been erected and commissioned at Indira Gandhi Centre for Atomic Research. Sodium reacts violently with air/moisture leading to fire. Hence early detection of sodium leak if any is mandatory for such plants and almost 140 sodium leak detectors are placed throughout the loop. All these detectors are wired to the control room for data collection and monitoring. To reduce the cost, space and maintenance that are involved in cabling, the wireless sensor networking technology has been introduced in the sodium leak detection system of INSOT. This paper describes about the deployment details of the pilot wireless sensor network and the measures taken for the successful deployment.

  5. Synthesis and characterization of sodium alkoxides

    Indian Academy of Sciences (India)

    Unknown

    technique and IR spectroscopy. The elemental ... for maintenance or disposal, need to be cleaned free of sodium for the ... scenario on sodium removal using different alcohols are ... ethoxide and sodium n-propoxide by KBr pellet method.

  6. Reduced-Sodium Lunches Are Well-Accepted by Uninformed Consumers Over a 3-Week Period and Result in Decreased Daily Dietary Sodium Sodium Intakes: A Randomized Controlled Trial

    NARCIS (Netherlands)

    Janssen, A.M.; Kremer, S.; Stipriaan, van W.L.; Noort, M.W.J.; Vries, de J.H.M.; Temme, E.H.M.

    2015-01-01

    Background Processed foods are major contributors to excessive sodium intake in Western populations. We investigated the effect of food reformulation on daily dietary sodium intake. Objective To determine whether uninformed consumers accept reduced-sodium lunches and to determine the effect of

  7. Salt craving: the psychobiology of pathogenic sodium intake.

    Science.gov (United States)

    Morris, Michael J; Na, Elisa S; Johnson, Alan Kim

    2008-08-06

    Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate--an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environment in which few humans still exist. Our physiological and behavioral means for maintaining body sodium and fluid homeostasis evolved in hot climates where sources of dietary sodium were scarce. For many reasons, contemporary diets are high in salt and daily sodium intakes are excessive. High sodium consumption can have pathological consequences. Although there are a number of obstacles to limiting salt ingestion, high sodium intake, like smoking, is a modifiable behavioral risk factor for many cardiovascular diseases. This review discusses the psychobiological mechanisms that promote and maintain excessive dietary sodium intake. Of particular importance are experience-dependent processes including the sensitization of the neural systems underlying sodium appetite and the effects of sodium balance on hedonic state and mood. Accumulating evidence suggests that plasticity within the central nervous system as a result of experience with high salt intake, sodium depletion, or a chronic unresolved sodium appetite fosters enduring changes in sodium related appetitive and consummatory behaviors.

  8. Too Much Sodium

    Centers for Disease Control (CDC) Podcasts

    This podcast is based on the February 2012 CDC Vital Signs report. Ninety percent of Americans age two and older eat too much sodium which can increase your risk for high blood pressure and often leads to heart disease and stroke, two leading causes of death in the US. Learn several small steps you can take to reduce the amount of sodium in your diet.

  9. Sodium technology at EBR-II

    International Nuclear Information System (INIS)

    Holmes, J.T.; Smith, C.R.F.; Olson, W.H.

    1976-01-01

    Since the installation of purity monitoring systems in 1967, the control of the purity of the primary and secondary sodium and cover gas systems at the Experimental Breeder Reactor II (EBR-II) has been excellent. A rigorous monitoring program is being used to assure that operating limits for more than 25 chemical and radioactive impurities are not exceeded. The program involves the use of sophisticated sampling and analysis techniques and on-line monitors for both sodium and cover gas systems. Sodium purity control is accomplished by essentially continuous cold trapping of a small side stream of the total circulating sodium. The cold traps have been found to be very effective for the removal of the major chemical impurities (oxygen and hydrogen) and tritium but are almost ineffective for 131 I and 137 Cs that enter the sodium from fuel cladding breaks. Purging with pure argon maintains the cover gas purity

  10. Leak detector of liquid sodium

    International Nuclear Information System (INIS)

    Himeno, Yoshiaki.

    1975-01-01

    Object: To arrange a cable core connected to a leakage current detector on the outer wall of piping for liquid sodium, devices or the like and apply a voltage to said core and outer wall to quickly and securely detect the leakage of liquid sodium. Structure: A cable, which is composed of metal coating formed of metal material (copper, steel, stainless, etc.) which is apt to be corroded by reaction products of liquid sodium with water and oxygen in air, and metal oxide (such as magnesium oxide, beryllium oxide, aluminum oxide) as an electric insulator is arranged on the outer wall of pipes or devices. In the event sodium is leaked from the pipes or devices, said metal coating and the insulator are corroded, and the leakage of sodium is sensed by a leakage current detector through the core in the cable. (Kamimura, M.)

  11. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pae, Jae Huem; Min, Byung Hoon; Lee, Joon Sik; Lee, Choong Hui; Chung, Ki Hong; Keum, Choong Ki [Suwon University, Suwon (Korea, Republic of)

    1994-07-15

    Sodium is commonly used as a coolant in liquid metal reactor. A large amount of its leakage may be possible in hypothetical accidents, even though the possibility is very low. In case that the leaked hot sodium comes in direct contact with structural concrete of liquid metal reactor, the reactor`s integrity can be challenged by the rupture of structure materials, hydrogen generation and its explosion, and release of radioactive aerosols due to sodium-concrete reaction. The knowledge of sodium-concrete reaction is evaluated to be one of the important and indispensable technologies for the establishment of safety measure in liquid metal reactor. In this study, the experimental facility of sodium-concrete reaction is to be designed, constructed and operated. And the reaction phenomena of sodium-concrete reaction is also to be analyzed through the experimental results. The aim of this study is to establish the measure of safety and protection for sodium-related facilities and to secure one of the fundamental technologies of liquid metal reactor safety. 47 refs., 7 figs., 13 tab.

  12. Dog rose (Rosa canina L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium nitrite.

    Science.gov (United States)

    Vossen, Els; Utrera, Mariana; De Smet, Stefaan; Morcuende, David; Estévez, Mario

    2012-12-01

    The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and protein oxidation, colour stability and texture of frankfurters was investigated. Four treatments were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite (5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal values were much higher throughout storage in NC compared to RC and PC frankfurters (Prose can act as a natural antioxidant in frankfurters, but not as full replacer for sodium nitrite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effects of oral sodium supplementation on indices of thermoregulation in trained, endurance athletes.

    Science.gov (United States)

    Earhart, Elizabeth L; Weiss, Edward P; Rahman, Rabia; Kelly, Patrick V

    2015-03-01

    Guidelines recommend the consumption of sodium during exercise to replace losses in sweat; however, the effects of sodium on thermoregulation are less clear. To determine the effects of high-dose sodium supplementation on indices of thermoregulation and related outcomes, 11 endurance athletes participated in a double-blind, randomized-sequence, crossover study in which they underwent 2-hrs of endurance exercise at 60% heart rate reserve with 1800 mg of sodium supplementation (SS) during one trial and placebo (PL) during the other trial. A progressive intensity time-to-exhaustion test was performed after the 2-hr steady state exercise as an assessment of exercise performance. Sweat rate was calculated from changes in body weight, accounting for fluid intake and urinary losses. Ratings of perceived exertion (RPE) and heat stress were assessed using verbal numeric scales. Cardiovascular drift was determined from the rise in HR during the 2-hr steady state exercise test. Skin temperature was measured with an infrared thermometer. Dehydration occurred in both SS and PL trials, as evidenced by substantial weight loss (2.03 ± 0.43% and 2.27 ± 0.70%, respectively; p = 0.261 between trials). Sweat rate was 1015.53 ± 239.10 ml·hr(-1) during the SS trial and 1053.60±278.24 ml/hr during the PL trial, with no difference between trials (p = 0.459). Heat stress ratings indicated moderate heat stress ("warm/hot" ratings) but were not different between trials (p = 0.825). Time to exhaustion during the SS trial was 6.88 ± 3.88 minutes and during the PL trial averaged 6.96 ± 3.61 minutes, but did not differ between trials (p = 0.919). Cardiovascular drift, skin temperature, and RPE did not differ between trials (all p > 0.05). High-dose sodium supplementation does not appear to impact thermoregulation, cardiovascular drift, or physical performance in trained, endurance athletes. However, in light of the possibility that high sodium intakes might have other adverse effects

  14. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  15. Delaminated sodium nonatitanate and a method for producing delaminated sodium nonatitanate

    Science.gov (United States)

    Nyman, May D.

    2016-02-02

    A hydrothermal synthesis method of making a delaminated titanate is disclosed. The delaminated titanate has a unique structure or morphology. The delaminated titanate is first formed by forming at a low temperature a layered sodium nonatitanate (SNT), which may be referred to as layered sodium titanate. The layered SNT has a unique morphology. The layered SNT is then synthesized into a delaminated titanate having a unique morphology.

  16. Precipitation and Deposition of Aluminum-Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Wang, Li-Qiong; Dabbs, Daniel M.; Aksay, Ilhan A.

    2002-01-01

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and thereby minimize the volume of high-level waste glass required to encapsulate radioactive sludges. Unfortunately, waste-processing steps that include evaporation can involve solutions that are supersaturated with respect to cementitious aluminosilicates that result in unwanted precipitation and scale formation. Of all the constituents of tank waste, limited solubility cementitious aluminosilicates have the greatest potential for clogging pipes and transfer lines, fouling highly radioactive components such as ion exchangers, and completely shutting down processing operations. For instance, deposit buildup and clogged drain lines experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section of Westinghouse Savannah River Company at SRS now is collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to solve the deposition and clogging problems. The primary objectives of this study are (1) to understand the major factors controlling precipitation, heterogeneous nucleation, and growth phenomena of relatively insoluble aluminosilicates; (2) to determine the role of organics for inhibiting aluminosilicate formation, and (3) to develop a predictive tool to control precipitation, scale formation, and cementation under tank waste processing conditions. The results of this work will provide crucial information for (1) avoiding problematical sludge processing steps and (2) identifying and developing effective technologies to process retrieved sludges and supernatants before ultimate

  17. Effects of sodium fires on structures and materials. Practical experience with sodium leakage accidents

    International Nuclear Information System (INIS)

    Freudenstein, K.F.

    1989-01-01

    A few sodium leakage, incidents happened in SNR 300 nuclear power plant during pre-nuclear operation which were of minor importance with respect to sodium fires. The most important sodium fire accident in the past happened in the Almeria Solar platform in Spain during the attempt to repair a valve while leaving accidentally the circuit under 4 bar overpressure. Considerable damage to pipes, valves, its insulation and its support structures was observed in the influence zone of the fire. Post accident analysis gave a leaked mass of about 14 m 3 , at a sodium temperature of 225 deg. C, the leakage lasting approximately half an hour, and burning under convective heat exchange with the external air in a section of 40 m 2 up to a height of 6 m down to the catch pans. Some local temperatures were determined by metallurgical means, integral support temperatures estimated from mechanical deformation observed. From these temperatures it was concluded that a massive spray type fire must have happened. The results fall in the interpretation range of sodium-spray fire test results. (author)

  18. Under-Sodium-Viewing as one technique for periodic inspections in sodium-cooled fast reactors-- possibilities and limits

    International Nuclear Information System (INIS)

    Weiss, H.

    1979-07-01

    Periodic inspections are gaining increasingly technical importance for fast sodium cooled reactors. Among others the reactor tank and its internals have to be inspected, whereby licensing experts partly are requesting the standards of Light Water Reactors. This leads to difficulties in sodium cooled reactors because of the non-transparent coolant sodium and their compact structure. In order to avoid the complete dumping of the sodium, the under sodium viewing shall be applied besides other inspection methods. Since this is a new method, which is still in its development phase, this report presents and discusses the technical and physical basis and outlines possibilities and limits [de

  19. Coulometric-potentiometric determination of autoprotolysis constant and relative acidity scale of water

    Directory of Open Access Journals (Sweden)

    Džudović Radmila M.

    2010-01-01

    Full Text Available The autoprotolysis constant and relative acidity scale of water were determined by applying the coulometric-potentiometric method and a hydrogen/palladium (H2/Pd generator anode. In the described procedure for the evaluation of autoprotolysis constant, a strong base generated coulometrically at the platinum cathode in situ in the electrolytic cell, in presence of sodium perchlorate as the supporting electrolyte, is titrated with hydrogen ions obtained by the anodic oxidation of hydrogen dissolved in palladium electrode. The titration was carried out with a glass-SCE electrode pair at 25.0±0.1°C. The value obtained pKw = 13.91 ± 0.06 is in agreement with literature data. The range of acidity scale of water is determined from the difference between the halfneutralization potentials of electrogenerated perchloric acid and that of sodium hydroxide in a sodium perchlorate medium. The halfneutralization potentials were measured using both a glass-SCE and a (H2/Pdind-SCE electrode pairs. A wider range of relative acidity scale of water was obtained with the glass-SCE electrode pair.

  20. Clinical impact of nonosmotic sodium storage

    NARCIS (Netherlands)

    Olde Engberink, R.H.G.

    2017-01-01

    High sodium intake is associated with hypertension and increased cardiovascular and renal risk. In this thesis we assessed whether these negative effects of sodium can be neutralised by glycosaminoglycans in the endothelial surface layer (i.e. nonosmotic sodium storage). Also, we investigate the

  1. Designing solid-liquid interphases for sodium batteries

    KAUST Repository

    Choudhury, Snehashis

    2017-10-06

    Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.

  2. Sodium leak at Monju (II): Sodium leak, burning and aerosol behavior

    International Nuclear Information System (INIS)

    Funada, T.; Yamagishi, Y.

    1996-01-01

    The amount of leaked sodium was estimated as approximately 640 kg during the 220 minute leak. The ventilation duct and the walkway grating under the leak site were severely damaged by Na-Fe-O reaction, but the floor liner and the concrete wall were not. A total 100 kg of sodium aerosol was deposited in the reactor auxiliary building and 230 kg was released to the atmosphere. The sodium concentration at the site boundary was calculated as 0.05 mg/m 3 , NaOH equivalent, which was low in comparison with the permitted level of 2 mg/m 3 . The tritium quantity released was estimated as 4.4 x 10 7 Bq, which was about 0.03% of the average released value per month for a LWR. (author)

  3. Mapping of sodium void worth and doppler effect for sodium-cooled fast reactor - 15458

    International Nuclear Information System (INIS)

    Krepel, J.; Pelloni, S.; Bortot, S.; Panadero, A.L.; Mikityuk, K.

    2015-01-01

    The sodium-cooled fast reactor (SFR) represents the reference and the most technologically mastered system among the Generation-IV reactors. Nevertheless, the sodium void worth in the fuel regions of SFR is usually positive. To overcome this safety drawback, low-void sodium-cooled fast spectrum core (CFV) was proposed by CEA. Such a CFV core is used in the frame of WP6 'Core safety' of the FP7 Euratom ESNII+ project as a reference SFR design. The overall sodium void effect is negative for the CFV core. Nevertheless, locally it is positive in the fuel region and negative in the sodium plenum. Similarly, also the Doppler effect is spatially dependent and it varies between the inner and outer fuel regions and between the middle and lower blankets. Accordingly, knowledge of the local distributions or actually mappings of the two safety-related parameters will be necessary, before safety assessment and transient analysis can be done. In this study these maps have been produced using the deterministic code ERANOS. The obtained mapping shows strong local dependency of both safety-related effects. A sensitivity of the void effect to the sodium plenum modeling was also demonstrated. The results may serve as an input for the transient analysis of the CFV core or as a cross-check for the Monte Carlo method based maps. (authors)

  4. Carbon transport in sodium systems

    International Nuclear Information System (INIS)

    Martin Espigares, M.; Lapena, J.; La Torre, M. de

    1983-01-01

    Carbon activities in dynamic non isothermal sodium system are determined using an equilibratium method. Foils of Fe-18 w% Cr-8 W% Ni alloy with low carbon content (in the as received condition) are exposed to dynamic liquid sodium in the temperature range between 450 0 C and 700 0 C. The analysis was used to evaluate the carburization-decarburization behaviour of type 304 stainless steel exposed to sodium. (author)

  5. Ultrasonic imaging in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Lubeigt, E. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France); Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Mensah, S.; Chaix, J.F.; Rakotonarivo, S. [Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Gobillot, G. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2015-07-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  6. Ultrasonic imaging in liquid sodium

    International Nuclear Information System (INIS)

    Lubeigt, E.; Mensah, S.; Chaix, J.F.; Rakotonarivo, S.; Gobillot, G.

    2015-01-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  7. Distributed temperature sensor testing in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig, E-mail: cgerardi@anl.gov; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

    2017-02-15

    Highlights: • Distributed temperature sensors measured high-resolution liquid-sodium temperatures. • DTSs worked well up to 400 °C. • A single DTS simultaneously detected sodium level and temperature. - Abstract: Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400 °C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 μm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  8. Sodium-blood pressure interrelationship in pregnancy.

    Science.gov (United States)

    Franx, A; Steegers, E A; de Boo, T; Thien, T; Merkus, J M

    1999-03-01

    In non-pregnant individuals, a strong positive association of sodium intake with blood pressure has been established, but the relationship between sodium intake and blood pressure in human pregnancy remains obscure up to date. The aim of this prospective observational cohort study was to assess the relationship between urinary sodium excretion (as a measure for intake) and blood pressure from the early second trimester onwards throughout pregnancy. The study group consisted of 667 low-risk women with singleton pregnancies, of whom 350 were nulliparous and 317 parous. Blood pressure was measured in a standardised fashion at predetermined intervals from the first antenatal visit prior to 16 weeks gestation until delivery. Urinary sodium excretion was measured in 24-h urine collections on at least four occasions between 16 and 38 weeks gestation. Main outcome measures were the coefficients of correlation between changes in urinary sodium output and changes in blood pressure during six different gestational epochs. No significant correlations were found between changes in urinary sodium output and changes in blood pressure. Correlation coefficients were alike for nulliparous and parous women and for different gestational intervals. Prior to 32 weeks gestation, no differences were observed in sodium excretion between women who remained normotensive and those who developed gestational hypertension. These results suggest that changes in sodium intake are not associated with blood pressure changes in low-risk pregnant women. Blood pressure increases as observed in the second half of normotensive and hypertensive pregnancies are unlikely to be caused by changes in renal sodium handling.

  9. Surface and microstructural characterization of commercial breeder reactor candidate alloys exposed to 7000C sodium

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Brehm, W.F.

    1979-03-01

    Sodium compatibility screening tests were performed on several commercial austenitic alloys at 700 0 C for 2000 hours for applications as breeder reactor fuel cladding. The sodium-exposed surfaces were characterized by Optical Metallography, Scanning Electron Microscopy (SEM) and Electron Probe Micro Analysis (EPMA). Sodium exposure generally resulted in the depletion of Ni, Cr, Ti, Si, Mn and Nb, and enrichment of Fe and Mo at the surface. The average thickness of the depleted zone was 5 μm. The alloys can be divided into three groups based on corrosion rate, and each group has its own characteristic surface structure. Grain-orientation dependent striations were seen in alloys with low corrosion rates, while alloys with intermediate corrosion rates displayed micron-size nodes enriched with Fe and Mo. The high corrosion rate alloys exhibited scale-like formations on the surface with irregularly shaped holes. In addition, the data importantly point out that a ferrite layer will form at the sodium-exposed surface of these austenitic alloys after prolonged exposure

  10. Computational methodology of sodium-water reaction phenomenon in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Takata, Takashi; Yamaguchi, Akira; Uchibori, Akihiro; Ohshima, Hiroyuki

    2009-01-01

    A new computational methodology of sodium-water reaction (SWR), which occurs in a steam generator of a liquid-sodium-cooled fast reactor when a heat transfer tube in the steam generator fails, has been developed considering multidimensional and multiphysics thermal hydraulics. Two kinds of reaction models are proposed in accordance with a phase of sodium as a reactant. One is the surface reaction model in which water vapor reacts directly with liquid sodium at the interface between the liquid sodium and the water vapor. The reaction heat will lead to a vigorous evaporation of liquid sodium, resulting in a reaction of gas-phase sodium. This is designated as the gas-phase reaction model. These two models are coupled with a multidimensional, multicomponent gas, and multiphase thermal hydraulics simulation method with compressibility (named the 'SERAPHIM' code). Using the present methodology, a numerical investigation of the SWR under a pin-bundle configuration (a benchmark analysis of the SWAT-1R experiment) has been carried out. As a result, the maximum gas temperature of approximately 1,300degC is predicted stably, which lies within the range of previous experimental observations. It is also demonstrated that the maximum temperature of the mass weighted average in the analysis agrees reasonably well with the experimental result measured by thermocouples. The present methodology will be promising to establish a theoretical and mechanical modeling of secondary failure propagation of heat transfer tubes due to such as an overheating rupture and a wastage. (author)

  11. Sodium concrete reaction - Structural considerations

    International Nuclear Information System (INIS)

    Ferskakis, G.N.

    1984-01-01

    An overview of the sodium concrete reaction phenomenon, with emphasis on structural considerations, is presented. Available test results for limestone, basalt, and magnetite concrete with various test article configurations are reviewed. Generally, tests indicate reaction is self limiting before all sodium is used. Uncertainties, however, concerning the mechanism for penetration of sodium into concrete have resulted in different theories about a reaction model. Structural behavior may be significant in the progression of the reaction due to thermal-structuralchemical interactions involving tensile cracking, compressive crushing, or general deterioration of concrete and the exposure of fresh concrete surfaces to react with sodium. Structural behavior of test articles and potential factors that could enhance the progression of the reaction are discussed

  12. Tumorigenicity of sodium ascorbate in male rats.

    Science.gov (United States)

    Cohen, S M; Anderson, T A; de Oliveira, L M; Arnold, L L

    1998-06-15

    Sodium ascorbate, like other sodium salts such as saccharin, glutamate, and bicarbonate, produces urinary alterations when fed at high doses to rats, which results in mild superficial urothelial cytotoxicity and regeneration but not tumors in a standard 2-year bioassay. Sodium saccharin was shown to produce a low incidence of bladder tumors in rats if administered in a two-generation bioassay. In the present study, we evaluated sodium ascorbate in a two-generation bioassay that involved feeding to the male and female parental F344 rats for 4 weeks before mating, feeding the dams during gestation and lactation, and then feeding the weaned (at 28 days of age) male F1 generation rats for the remainder of their lifetime (up to 128 weeks of the experiment). Dietary levels of 1.0, 5.0, and 7.0% sodium ascorbate were tested. At 5.0 and 7.0% sodium ascorbate, there was an increase in urinary bladder urothelial papillary and nodular hyperplasia and the induction of a few papillomas and carcinomas. There was a dose-responsive increase in renal pelvic calcification and hyperplasia and inhibition of the aging nephropathy of rats even at the level of 1% sodium ascorbate. Because the short-term urothelial effects of sodium ascorbate in rats are inhibited by treatments producing urinary acidification to pH sodium ascorbate to evaluate the long-term effects. The combination of 7.0% sodium ascorbate plus 2.78% NH4Cl in the diet was toxic, and the group was terminated early during the course of the experiment. The group fed 5.0% sodium ascorbate plus 2.04% NH4Cl showed complete inhibition of the urothelial effects of sodium ascorbate and significant inhibition of its renal effects. We also demonstrated the presence of a calcium phosphate-containing urinary precipitate in rats fed sodium ascorbate at all doses, in a dose-responsive manner. The formation of the precipitate was inhibited by coadministration with NH4Cl. The proliferative effects of sodium ascorbate on the male rat

  13. Testing of Local Velocity Transducer Used at Sodium Thermal Hydraulic Test Facilities

    International Nuclear Information System (INIS)

    Kim, Tae Joon; Eoh, Jae Hyuk; Hwang, In Koo; Jeong, Ji Young; Kim, Jong Man; Lee, Yong Bum; Kim, Yeong Il

    2012-01-01

    KAERI (Korea Atomic Energy Research Institute) will perform a test for a thermal hydraulic simulation with STELLA-1 for a Component Performance Test Sodium Loop in the year 2012, and subsequently it will construct for STELLA-2 for a Sodium Thermalhydraulic Experimental Facility in the year 2016. The STELLA-2 consists of a scaled reactor vessel with a core of electric heaters, four IHXs, two PHTS pumps, two DHXs, and two AHXs. In STELLA-2, several kinds of flow measurements exists. In this paper, the local velocity transducer as a prototype tested in IPPE (in Russia), was manufactured as a prototype by a shop in KAERI. This local velocity transducer will be used to measure the flow rate in a pool

  14. Improved modelling of sodium-spray fires and sodium-combustion aerosol chemical evolution - 15488

    International Nuclear Information System (INIS)

    Mathe, E.; Kissane, M.; Petitprez, D.

    2015-01-01

    In the context of the Generation IV Initiative, the consequences of a severe-accident in sodium-cooled fast reactor (SFR) must be studied. Being pyrophoric, sodium will burn upon contact with air in a containment creating toxic aerosols and we must take into account these fire aerosols when assessing the source term. We have developed a numerical simulation named NATRAC to calculate the mass of aerosols produced during a spray fire in a SFR severe accident. The results show that the mass of oxide aerosols can involve more than 60% of the ejected sodium. In a second part we have developed a numerical simulation named STARK based on the Cooper model that models the physico-chemical transformations of the aerosols. However, this model has never been validated and the literature does not permit to do so. In these conditions, we have designed and performed our own experiment ESSTIA to obtain the missing values of the parameters that govern Cooper model. The modified Cooper model we propose with the new parameters reproduces correctly the ESSTIA experimental data. The only parameter that has not yet been measured is the tortuosity of the sodium-fire aerosols surface layers. A dedicated experiment using real sodium-fire aerosols could eliminate any doubts about the uncertainty of the proposed Cooper model

  15. Iodine release from sodium pool combustion

    International Nuclear Information System (INIS)

    Sagawa, N.; Fukushima, Y.; Yokota, N.; Akagane, K.; Mochizuki, K.

    1979-01-01

    Iodine release associated with sodium pool combustion was determined by heating 20 gr sodium containing sodium iodide, which was labelled with 131 I and dissolved in the sodium in concentration of 1∼1,000 ppm, to burn on a nickel crucible in conditioned atmosphere in a closed vessel of 0.4 m 3 . Oxygen concentration was changed in 5∼21% and humidity in 0∼89% by mixing nitrogen gas and air. Combustion products were trapped by a Maypack filter composed of particle filters, copper screens and activated charcoal beds and by a glass beads pack cooled by liquid argon. Iodine collected on these filter elements was determined by radio-gas chromatography. When the sodium sample burned in the atmosphere of air at room temperature, the release fractions observed were 6∼33% for sodium and 1∼20% for iodine added in the sodium. The release iodine was present in aerosol at a ratio of 98%, and the remainder in the gas form. The release fraction of iodine trended to decrease as oxygen concentration and humidity in the atmosphere increased. No organic iodide was detected in the combustion products. (author)

  16. Evaluation tissue dissolution property of 2.5 % Sodium Hypochlorite Prepared by Hydrochloric Acid and Sodium Bicarbonate: An in vitro

    Directory of Open Access Journals (Sweden)

    Hamid Razavian

    2016-08-01

    Full Text Available Successful endodontic treatment requires chemical preparation in addition to mechanical preparation. The most common material for chemical preparations is sodium hypochlorite. One way to reduce the effects of pH adjustment is the use of sodium hypochlorite. The present paper was conducted to examine the effect of dilution with hydrochloric acid and sodium bicarbonate and reduce pH on ability of tissue solubility of sodium hypochlorite. The present study was conducted in vitro on bovine muscle tissue. Ability of tissue solubility was conducted in four groups respectively with active ingredient including 1 sodium hypochlorite diluted with distilled water 2 sodium hypochlorite diluted with sodium bicarbonate 3 sodium hypochlorite diluted with hydrochloric acid and finally 4 distilled water (control group. Each sample was firstly weighed and then placed in contact with 10 m/L solution for 60 minutes (five 12 -minute intervals. The sample was weighted every five minutes and solution was renewed. The results were analyzed using SPSS-21 Software based on variance analysis, Tukey and T-test (α=0.05. The findings showed that there was significant difference between first, second and third groups in terms of ability of tissue solubility. However, the tissue solubility in second and third groups was lower than first group and it was similar in second and third groups (P Value <0.001. Reduction of sodium bicarbonate PH using sodium hypochlorite and hydrochloric acid reduces ability of tissue solubility in sodium hypochlorite.

  17. Synthesis and characterizaton of inorganic materials for sodium-ion batteries

    Science.gov (United States)

    Shanmugam, Rengarajan

    Development of low-cost energy storage devices is critical for wide-scale implementation of intermittent renewable energy technologies and improving the electricity grid. Commercial devices remain prohibitively expensive or lack the performance specifications for a wider market reach. Na-ion batteries would perfectly suited for these large-scale applications as the raw materials (such as soda ash, salt, etc.) are plentiful, inexpensive and geographically unconstrained. However, extensive materials research on insertion electrodes is required for better understanding of the electrochemical and structural properties and engineering high performance Na-ion batteries. This thesis research involves exploratory study on new insertion materials with various crystallographic structure-types and extensive characterization of promising new inorganic compositions. Tunnel-type materials, sodium nickel phosphate-Na4Ni7(PO4)6, and sodium cobalt titanate- Na0.8Co0.4Ti1.6O4, were investigated to capitalize on the intrinsic structural stability offered by framework materials. Sol-gel and solid-state reaction synthetic techniques were employed for inorganic powder synthesis. Galvanostatic and potentiostatic testing confirm reversible sodium insertion/de-insertion reactions albeit with inadequate electrochemical characteristics (high voltage hysteresis> 1V). Subsequent efforts involved investigating layer-structured materials supporting fast ionic transport for better electrochemical performance. P2-sodium nickel titanate, Na2/3[Ni1/3Ti2/3]O2 (P2NT), with prismatic sodium co-ordination, was synthesized by solid-state technique. The 'bifunctional' oxide contains Ni2+/4+ and Ti4+/3+ redox couples with redox potentials of 3.6 V, 0.7 V vs. Na/Na+, respectively. This bifunctional approach would simplify electrode processing and provide cost reduction opportunities in battery manufacturing. The structural changes monitored using ex-situ XRD demonstrate a favorably broad solid

  18. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries

    Directory of Open Access Journals (Sweden)

    Jianmin Feng

    2018-04-01

    Full Text Available The poor cycling stability of antimony during a repeated sodium ion insertion and desertion process is the key issue, which leads to an unsatisfactory application as an anode material in a sodium-ion battery. Addressed at this, we report a facile two-step method to coat antimony nanoparticles with an ultrathin carbon layer of few nanometers (denoted Sb@C NPs for sodium-ion battery anode application. This carbon layer could buffer the volume change of antimony in the charge-discharge process and improve the battery cycle performance. Meanwhile, this carbon coating could also enhance the interfacial stability by firmly connecting the sodium alginate binders through its oxygen-rich surface. Benefitted from these advantages, an improved initial discharge capacity (788.5 mA h g−1 and cycling stability capacity (553 mA h g−1 after 50 times cycle have been obtained in a battery using Sb@C NPs as anode materials at 50 mA g−1. Keywords: Sodium-ion battery, Antimony, Sodium alginate, Liquid-phase reduction, Carbon coating

  19. Restricting dietary sodium reduces plasma sodium response to exercise in the heat.

    Science.gov (United States)

    Koenders, E E; Franken, C P G; Cotter, J D; Thornton, S N; Rehrer, N J

    2017-11-01

    Exercise-associated hyponatremia can be life-threatening. Excessive hypotonic fluid ingestion is the primary etiological factor but does not explain all variability. Possible effects of chronic sodium intake are unknown. The aim of this study was to determine whether dietary sodium affects plasma sodium concentration [Na + ] during exercise in the heat, when water intake nearly matches mass loss. Endurance-trained men (n = 9) participated in this crossover experiment. Each followed a low-sodium (lowNa) or high-sodium (highNa) diet for 9 days with 24-h fluid intakes and urine outputs measured before experimental trials (day 10). The trials were ≥2 week apart. Trials comprised 3 h (or if not possible to complete, to exhaustion) cycling (55% VO 2max ; 34 °C, 65% RH) with water intake approximating mass loss. Plasma [Na + ], hematocrit, sweat and urine [Na + ], heart rate, core temperature, and subjective perceptions were monitored. Urine [Na + ] was lower on lowNa 24 h prior to (31 ± 24, 76 ± 30 mmol/L, P = 0.027) and during trials (10 ± 10, 52 ± 32 mmol/L, P = 0.004). Body mass was lower on lowNa (79.6 ± 8.5, 80.5 ± 8.9, P = 0.03). Plasma [Na + ] was lower on lowNa before (137 ± 2, 140 ± 3, P = 0.007) and throughout exercise (P = 0.001). Sweat [Na + ] was unaffected by diet (54.5 ± 40, 54.5 ± 23 mmol/L, P = 0.99). Heart rate and core temperature were higher on lowNa (P ≤ 0.001). Despite decreased urinary sodium losses, plasma sodium was lower on lowNa, with decreased mass indicating (extracellular) water may have been less, explaining greater heart rate and core temperature. General population health recommendations to lower salt intake may not be appropriate for endurance athletes, particularly those training in the heat. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Muzzle secretion electrolytes as a possible indicator of sodium status in buffalo (Bubalus bubalis) calves: effects of sodium depletion and aldosterone administration.

    Science.gov (United States)

    Kumar, S; Singh, S P

    1981-01-01

    In two separate experiments, the effects of sodium depletion and aldosterone administration on sodium and potassium concentrations in muzzle secretion, saliva and urine were studied in buffalo calves. Sodium deficiency in the animals was experimentally produced by unilateral parotid saliva deprivation for 18 days. During sodium depletion, the sodium levels in saliva and muzzle secretion gradually fell while the potassium level gradually rose. The concentrations of both of these cations in urine gradually fell during the course of sodium depletion. Aldosterone administration in normal (sodium-replete) animals simulated the effects of sodium depletion as far as cationic changes in saliva were concerned. However, aldosterone did not affect sodium and potassium concentration in the urine and in muzzle secretion in a manner similar to that caused by sodium depletion. Though the hormone decreased urinary sodium without affecting urinary potassium, it did not affect the muzzle sodium or potassium. Results suggest that aldosterone affects the composition of saliva and urine in buffaloes as it does in sheep and other ruminants. Similar changes in composition of muzzle secretion and saliva during sodium depletion indicate that the concentration of sodium in muzzle secretion could possibly be used to evaluate the sodium status of animals.