WorldWideScience

Sample records for sodium aluminate solutions

  1. Effects of Na4EDTA and EDTA on seeded precipitation of sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    吕保林; 陈启元; 尹周澜; 胡慧萍

    2010-01-01

    Na4EDTA and EDTA were adopted as new additives to intensify the seeded precipitation process of sodium aluminate solution. The effects of the two additives at certain concentrations on the seeded precipitation rate of sodium aluminate solution, particle size distribution (PSD) and morphology of precipitated gibbsite were investigated using titration method, particle size analyzer and scanning electron microscope (SEM), respectively. The results show that the two additives can accelerate the seeded precipitation rate of sodium aluminate solution. At relatively high concentration, the facilitative effect of EDTA on sodium aluminate solution is more obvious than that of Na4EDTA. EDTA makes gibbsite particles thinner than Na4EDTA. The Na+ and H+ result in the different effects on the seeded precipitation rate of sodium aluminate solution in spite of the same EDTA anion in the two additives.

  2. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  3. Nucleation during gibbsites precipitation with seeds from sodium aluminate solution processed under ultrasound

    Institute of Scientific and Technical Information of China (English)

    陈国辉; 陈启元; 尹周澜; 张斌

    2004-01-01

    The secondary nucleation during gibbsite precipitation with seeds from sodium aluminate solution processed by ultrasound was examined by particle size distribution(PSD) analyses. Experiments indicate that at low temperature(<65 ℃ ) and with low frequency ultrasound, the precipitation efficiency and also the secondary nucleation can be improved. Solution processed by low frequency ultrasound has more nuclei than common liquor does at low temperature. At 55 ℃, precipitation efficiency can he improved by 5.31 %, and the effect promoted by low frequency ultrasound decreases with the increase of temperature.

  4. THE MECHANISM OF BONDING PARTICLES DISTENSILIMANITA SODIUM ALUMINATE

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2016-01-01

    Full Text Available The interaction of the filler (distensillimanit or binder (sodium aluminate after mixing them to form a mold wash, drying the paint and removing water of crystallization. The conclusion of the sodium aluminate suitability as a foundry binder paints.

  5. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    OpenAIRE

    Sreerangappa, Ramesh; Debecker, Damien P.

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced from an aqueous solution, by a one-pot spray drying route. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The new catalyst does not leach and is recyclable. NaAlO2 microspheres outcompete commercially available NaAlO2 as well as o...

  6. A contribution to the regeneration of ettringite as a donor of aluminous ions

    Directory of Open Access Journals (Sweden)

    Silvie Heviánková

    2005-11-01

    Full Text Available At our institute was developed a technological procedure of mine water desulphation. The metod consists of chemical precipitation by sodium aluminate and calcium hydroxide. By the application of this metod, very interesting results were obtained. The amount of SO42- anions decreased to almost zero-value, using optimal doses of the chemical reagents. The incurred sludge was subjected to the partial dissolving by sulphuric acid with the aim wiev to obtain aluminous ionts in the solution. From this solution, the aluminous ions were separated selectively by two methods. In the first case is added calcium chloride for the precipitation of sulphates. In the second case is added sodium hydroxide for the controled neutralization.

  7. Sodium leak detection on large pipes. Heat insulating shells made of silico-aluminate

    International Nuclear Information System (INIS)

    Antonakas, D.; Blanc, R.; Casselman, C.; Malet, J.C.

    1986-05-01

    This report presents an equipment installed on the large secondary pipes of fast reactors, ensuring several functions: support and equilibrium of static and dynamic loads, heat insulator, preheating, and the detection of possible sodium leaks. The research programs associated to the development of the shells are briefly evoked; then, the report deals no longer with the studies on silico-aluminate aging and the detection performance [fr

  8. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    OpenAIRE

    Sreerangappa, Ramesh; Debecker, Damien P.; 13th European Congress on Catalysis – EuropaCat 2017

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced by one-pot spray dried route, and are characterized by various physico-chemical methods. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The catalyst does not leach and showed good reusability up to three cycles.

  9. IMPACT OF INCREASED ALUMINATE CONCENTRATIONS ON PROPERTIES OF SALTSTONE MIXES

    International Nuclear Information System (INIS)

    Harbour, J; Tommy Edwards, T; Erich Hansen, E; Vickie Williams, V

    2007-01-01

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. The protocols developed in this variability study are ideally suited as a tool to assess the impact of proposed changes to the processing flow sheet for Liquid Waste Operations (LWO). One such proposal that is currently under consideration is to introduce a leaching step in the treatment of the High Level Waste (HLW) sludge to remove aluminum prior to vitrification at the Defense Waste Processing Facility (DWPF). This leachate would significantly increase the soluble aluminate concentrations as well as the free hydroxide ion concentration in the salt feed that will be processed at the Saltstone Processing Facility (SPF). Consequently, an initial study of the impact of increased aluminate concentration on the Saltstone grout properties was performed. The projected compositions and ranges of the aluminate rich salt stream (which includes the blending strategy) are not yet available and consequently, in this initial report, two separate salt stream compositions were investigated. The first stream starts with the previously projected baseline composition of the salt solution that will be fed to SPF from the Salt Waste Processing Facility (SWPF). The second stream is the solution that results from washing of the current Tank 51 sludge and subsequent transfer of the salt solution to Tank 11. The SWPF simulant has higher nitrate and lower free hydroxide than the Tank 11 simulant. In both of these cases, the aluminate was varied up to a maximum of 0.40 to 0.45M aluminate in order to evaluate the impact of increasing aluminate ion concentration on the grout properties. In general, the fresh grout properties of mixes made with SWPF and Tank 11 simulants were relatively insensitive to an increase in aluminate concentration in the salt solutions. However, the overall

  10. Method of producing spherical lithium aluminate particles

    International Nuclear Information System (INIS)

    Yang, L.; Medico, R.R.; Baugh, W.A.

    1983-01-01

    Spherical particles of lithium aluminate are formed by initially producing aluminium hydroxide spheroids, and immersing the spheroids in a lithium ion-containing solution to infuse lithium ions into the spheroids. The lithium-infused spheroids are rinsed to remove excess lithium ion from the surface, and the rinsed spheroids are soaked for a period of time in a liquid medium, dried and sintered to form lithium aluminate spherical particles. (author)

  11. Use of sodium aluminate in waste water treatment plants: wishes of saving money and innovating; Uso del aluminato sodico en las EDAR: una propuesta para innovar y economizar costes de explotacion

    Energy Technology Data Exchange (ETDEWEB)

    Humbert Fernandez, F.; Delgado Espinola, G.; Soler Cantalosella, M.; Dalman Martori, E.; Iranzo Blasco, C.; Sanz Torrejon, A.

    2006-07-01

    Most waste water treatment plants have processes to remove nutrients in order to avoid eutrophication in water receiving bodies. Regarding phosphorus removal. the most common option is chemical precipitation with ferric or aluminical precipitation with ferric or aluminium salts. We show here the successful experience carried out by the WWTP of Blanes and the company Safloc. A method ato remove phosphorus from waste water was developed by adding sodium aluminate. The use of this compound has turned out to be a sustainable way for this purpose in terms of costs, reliability and minimization of sludge production. (Author)

  12. Hot corrosion of pack cementation aluminized carbon steel

    International Nuclear Information System (INIS)

    Waheed, A.F.; Mohamed, K.E.; Abd El-Azim, M.E.; Soliman, H.M.

    1998-01-01

    Low carbon steel was aluminized by the pack cementation technique at various aluminizing temperatures and times in or der to have different aluminide coatings. The aluminized specimens were sprayed at the beginning of the hot corrosion experiments with Na C 1+Na 2 SO 4 solution. The hot corrosion tests were carried out by thermal cycling at 850 degree C in air. The results were evaluated by, corrosion kinetics based on weight change measurements, scanning electron microscopy and energy dispersive X-ray analysis. It was found that the maximum corrosion resistance to this corrosive environment is achieved by aluminizing at 900 degree C for 19 h or 950 degree C for >4 h. These aliminizing conditions lead to formation of thick aluminide coatings with sufficient aluminium concentration (>15 wt%) at their outer surface necessary for continuous formation of protective Al 2 O 3 scale. The tested materials are used in protection of some components used in electric power stations (conventional or nuclear)

  13. Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements

    International Nuclear Information System (INIS)

    Coulier, Yohann; Tremaine, Peter R.

    2014-01-01

    Highlights: • Heats of solution of NaAlO 2 (s) were measured at five temperatures up to 250 °C. • Standard molar enthalpies of solution were determined from the measured heats of solution. • Standard molar enthalpies of solution were correlated with the density model. • The density model allows us to determine the standard molar heat capacities of reaction. - Abstract: Heats of solution of sodium aluminum oxide, NaAlO 2 (s), were measured in aqueous sodium hydroxide solutions using a Tian–Calvet heat-flow calorimeter (Setaram, Model C80) with high pressure “batch cells” made of hastelloy C-276, at five temperatures from (373.15 to 523.15) K, steam saturation pressure, and concentrations from (0.02 to 0.09) mol · kg −1 . Standard molar enthalpies of solution, Δ soln H ∘ , and relative standard molar enthalpies, [H ∘ (T) − H ∘ (298.15 K)], of NaAl(OH) 4 (aq) were determined from the measured heats of solution. The results were fitted with the “density” model. The temperature dependence of Δ soln H ∘ from the model yielded the standard molar heat capacities of reaction, Δ soln C p ∘ , from which standard partial molar heat capacities for aqueous aluminate, C p ∘ [A1(OH) 4 − ,aq], were calculated. Standard partial molar enthalpies of formation, Δ f H ∘ , and entropies, S ∘ , of A1(OH) 4 − (aq) were also determined. The values for C p ∘ [A1(OH) 4 − ,aq] agree with literature data determined up to T = 413 K from enthalpy of solution and heat capacity measurements to within the combined experimental uncertainties. They are consistent with differential heat capacity measurements up to T = 573 K from Schrödle et al. (2010) [29] using the same calorimeter, but this method has the advantage that measurements could be made at much lower concentrations in the presence of an excess concentration of ligand. To our knowledge, these are the first standard partial molar heat capacities measured under hydrothermal conditions by the

  14. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David L.; Fedosseev, Alexander M.

    2001-01-01

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier

  15. Conditioning highly concentrated borate solutions with calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    Champenois, J.B.; Cau dit Coumes, C.; Poulesquen, A.; Le Bescop, P.; Damidot, D.

    2012-01-01

    The early age hydration by borate solution of 3 calcium sulfo-aluminate cements (CSA), containing respectively 0%, 10% and 20% of gypsum by weight of cement was studied using isothermal calorimetry and dynamic mode rheo-metry. XRD and TGA analysis were carried out on pastes with increasing hydration degrees (up to 90 days) to specify the mineralogy and to figure out the mechanisms of borate immobilisation. It has been shown that the retarding effect of borate anions is due to the precipitation of the amorphous calcium borate C 2 B 3 H 8 ; borate anions were then incorporated in Aft-type phases. The macroscopic properties of hydrated binders (compressive strength, length change) were also followed during 180 days. It appears that the mechanical strength continuously increases with the hydration degree. Length changes under wet-curing and sealed bag remain moderate and seem to be stabilized after 180 days

  16. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F

    Directory of Open Access Journals (Sweden)

    Tatiana Pyatina

    2016-05-01

    Full Text Available An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  17. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F.

    Science.gov (United States)

    Pyatina, Tatiana; Sugama, Toshifumi; Moon, Juhyuk; James, Simon

    2016-05-27

    An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm) and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  18. Some aspects of the tribological behaviour of materials in sodium

    International Nuclear Information System (INIS)

    Campbell, C.S.; Lewis, M.W.J.

    1980-01-01

    Surface metallic oxides are reduced in high-temperature low-oxygen sodium, and tribological behavior is poor. Chromium-containing alloys can react with oxygen-containing sodium to form sodium chromite, NaCrO/sub 2/, on the surfaces. Frictional behavior of typical chromium-containing alloys has been studied as a function of cold trap temperature for exposure temperatures ranging from 650 to 500/degree/C. The behavior of aluminized surfaces has also been studied and results from sliding and fretting wear tests are discussed in the context of the role of a lubricating oxide, believed to be sodium aluminate which is more stable. 10 refs

  19. Recovering uranium and/or aluminium from refractory silico-aluminous material

    International Nuclear Information System (INIS)

    Livesey-Goldblatt, E.; Nagy, I.F.; Tunley, T.H.

    1983-01-01

    A process for recovering uranium and/or aluminium from a refractory silico-aluminous material comprises leaching the material in one or more stages, obtaining a pregnant solution which contains little or no acid and recovering the desired metal from the solution

  20. Lithium aluminate spheroids prepared by emulsion procedure

    International Nuclear Information System (INIS)

    Mateos, A.G.; DiBello, P.M.; Zaleski, A.B.

    1991-01-01

    Lithium aluminate powders were prepared by emulsion evaporation method. The procedure involved preparation of water-in-oil emulsion, with the aqueous phase being a solution of Li and Al nitrates. The mixed salts precursor crystallized to gamma-LiAlO 2 at 700C. Single phase LiAlO 2 occurred as μm spherical particles with average crystallite size of 81 angstrom and surface area of 14 M 2 /g. After prolonged heating at 900C, the aluminate powder crystallite size grew by 5 times with a reduction in particle porosity. The emulsion technique promotes close control of particle size and shape of product and the technique facilitates chemical reaction of constituents and sinterability of resulting product

  1. Stability of sodium bicarbonate solutions in polyolefin bags.

    Science.gov (United States)

    Wear, Jennifer; McPherson, Timothy B; Kolling, William M

    2010-06-15

    The stability of sodium bicarbonate solutions in sterile water for injection or 5% dextrose injection stored at 21-24 degrees C or 2-4 degrees C was evaluated. Sodium bicarbonate injection was obtained in 50-mL vials of 8.4% (1 meq/mL). A total of 50, 100, or 150 meq of sodium bicarbonate was added to each 1-L polyolefin bag of either sterile water for injection or 5% dextrose injection. All solutions were prepared in a laminar-airflow hood using aseptic technique. Bags were punctured once to remove headspace air and once for the addition of each 50 meq of sodium bicarbonate. Six replicates of each test solution were prepared. The solutions were stored at 21-24 degrees C and 2-4 degrees C. Control solutions (50 and 150 meq) were similarly prepared in triplicate. Control solutions were sparged with either nitrogen gas or oxygen gas before storage. Sodium bicarbonate stability was assessed by measuring solution pH. Bicarbonate content was measured utilizing titration. Both pH and bicarbonate concentrations were measured immediately upon preparation and on days 3, 5, and 7 for both test and control solutions. All 95% confidence interval values for sample solution pH remained within 7.0-8.5 for seven days at 2-4 degrees C. Sodium bicarbonate solutions of 50, 100, and 150 meq in sterile water for injection or 5% dextrose injection were stable for up to seven days when refrigerated. The 50-meq solution was stable for up to 48 hours when stored at room temperature, and the 100- and 150-meq solutions were stable for up to 30 hours when stored at room temperature.

  2. Viscosity and density tables of sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fair, J.A.; Ozbek, H. (comps.)

    1977-04-01

    A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

  3. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance

    International Nuclear Information System (INIS)

    Guo, H.F.; An, M.Z.

    2005-01-01

    Micro-arc oxidization of AZ91D magnesium alloys was studied in solutions containing sodium aluminate and potassium fluoride at constant applied current densities. The influence of applied current densities, concentration and constituents of the electrolyte as well as treatment time on micro-arc oxidization process was investigated, respectively; surface morphology and phase structure were analyzed using scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl 2 O 4 and intermetallic phase Al 2 Mg; variation of treatment time arises no obvious difference to phase structure of the ceramic coatings. A few circular pores and micro-cracks are also observed to remain on the ceramic coating surface; the number of the pores is decreasing, while the diameter of the pores is apparently increasing with prolonging of treatment time. The corrosion resistance of ceramic coatings is improved more than 100 times compared with magnesium alloy substrate

  4. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Sodium silicate was dissolved in water in either a monomer form or polymer form; the effects of both forms of sodium silicate aqueous solution on rose powdery mildew and root rot diseases of miniature rose were examined. Both forms of sodium silicate aqueous solution were applied to the roots of the miniature rose.

  5. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    International Nuclear Information System (INIS)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ΔG/sub f, 298/ 0 of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs

  6. Barium aluminate cement: its application

    International Nuclear Information System (INIS)

    Drozdz, M.; Wolek, W.

    1975-01-01

    The technology of manufacturing barium aluminate cement from barium sulfate and alumina, using a rotary kiln for firing the clinker is described. The method of granulation of the homogenized charge was used. Conditions of using the ''to mud'' method in industry were indicated. The physical and chemical properties of barium aluminate cement are determined and the quality of several batches of cement prepared on a semi-industrial scale and their suitability for making highly refractory concretes are tested. The optimal composition of the concretes is determined as a function of the mixing water and barium aluminate cement contents. Several experimental batches of concretes were used in the linings of furnaces in the steel industry. The suitability of these cements for use in fields other than steelmaking is examined. It is established that calcium aluminate cement has certain limited applications [fr

  7. Ecologically safe process for sulfo-aluminizing of steel parts

    Directory of Open Access Journals (Sweden)

    Plyatsuk L. D.

    2018-06-01

    Full Text Available The present technical solution refers to the field of electrophysical and electrochemical processing of parts, in particular, to the electroerosion alloying (EEA of the surfaces of steel parts with aluminum (aluminizing and sulfur (sulfidizing, and it can be used to treat the surfaces of heat-treated steel parts in order to increase their hardness, wear resistance, to prevent frictional seizure and improve the resistance to atmospheric corrosion. When aluminizing steel parts with the use of the method of electroerosion alloying (EEA by aluminum electrode at discharge energy Wp = 0.52–6.8 J and productivity of 1.0–3.0 cm2 / min, before the EEA process by an aluminum electrode, to the surface of the part to be aluminized, there is applied a consistency substance containing sulfur and aluminum powder, and thereafter, not having waited for drying of the consistency substance, the process of aluminizing by the EEL method with an aluminum electrode is carried out, and the consistency substance should have the aluminum powder content of not more than 56 %. There have been carried out metallographic and durametric analyses of the features of the surface layers made of carbon steels after simultaneous aluminizing and sulfidizing them by the EEA method. It is shown that the structure of the layer consists of three portions, namely, a “white” layer, a diffusion zone and a base metal. Such qualitative surface layer parameters as thickness, “white” layer and transition zone microhardness values, and also roughness increase with increasing discharge energy. The “white” layer continuity for all the investigated discharge energies of Wp = 0.52, 2.60 and 6.80 J is 100 %.

  8. Ion-exchange properties of cesium and strontium into zeolites from sodium salt solutions

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki; Ohtani, Tozo.

    1978-01-01

    The ion-exchange properties of cesium and strontium into zeolite from sodium salt solution has been studied in zeolite A, zeolite X, zeolite Y, mordenite and clinoptilolite. The distribution of cesium into mordenite from about 1 -- 2 M sodium chloride and sodium hydroxide solutions is considerably larger than that into zeolite A. The distribution coefficient for 2 M solution of sodium salts was about 300. Therefore, the separation of cesium from sodium salt solution is possible by using mordenite. The distribution of strontium into zeolites form 1 -- 2 M solutions of sodium chloride and sodium nitrate were in the order of zeolite A>zeolite X>zeolite Y asymptoticaly equals mordenite. The distribution coefficient of 230 was obtained for 1 M solutions of sodium salts. The anion in solutions had no effect on the distribution of cesium and strontium into zeolite from sodium salt solution. (author)

  9. Characterizing AISI 1045 steel surface duplex-treated by alternating current field enhanced pack aluminizing and nitriding

    Science.gov (United States)

    Xie, Fei; Zhang, Ge; Pan, Jianwei

    2018-02-01

    Thin cases and long treating time are shortcomings of conventional duplex treatment of aluminizing followed by nitriding (DTAN). Alternating current field (ACF) enhanced DTAN was carried out on AISI 1045 steel by applying an ACF to treated samples and treating agents with a pair of electrodes for overcoming those shortcomings. By investigating cases' structures, phases, composition and hardness distributions of differently treated samples, preliminary studies were made on characterizations of the ACF enhanced duplex treatment to AISI 1045 steel. The results show that, with the help of the ACF, the surface Al-rich phase Al5Fe2 formed in conventional pack aluminizing can be easily avoided and the aluminizing process is dramatically promoted. The aluminizing case can be nitrided either with conventional pack nitriding or ACF enhanced pack nitriding. By applying ACF to pack nitriding, the diffusion of nitrogen into the aluminizing case is promoted. AlN, Fe2∼3N and solid solution of N in iron are efficiently formed as a result of reactions of N with the aluminizing case. A duplex treated case with an effective thickness of more than 170 μm can be obtained by the alternating current field enhanced 4 h pack aluminizing plus 4 h pack nitriding.

  10. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ..delta..G/sub f, 298//sup 0/ of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs.

  11. Density and mechanical properties of calcium aluminate cement

    Science.gov (United States)

    Ahmed, Syed Taqi Uddin; Ahmmad, Shaik Kareem

    2018-04-01

    Calcium aluminate cements are a special type of cements which have their composition mainly dominated by the presence of Monocalcium Aluminates. In the present paper for the first time we have shown theoretical density and elastic constants for various calcium aluminate cements. The density of the present CAS decrease with aluminates presents in the cement. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter.

  12. Study of the interactions between alumina and metallic ion in solution at the liquid/oxide interface during catalysts synthesis; Etude des interactions alumine/ion metallique en solution a l`interface oxyde/liquide lors de la preparation des catalyseurs

    Energy Technology Data Exchange (ETDEWEB)

    Mertens de Wilmars, D.

    1998-01-15

    This work concerns the formation of compounds including metal and Al(III) ions during impregnation of gamma alumina with a solution of the metal precursor. Formation of Li/Al hydroxy-carbonate (Li/Al HDC) on alumina during impregnation by a neutral or basic solution containing Li{sup +} is established. Zeta potential measurements are used to determine the ratio overlay of the alumina by HDC Li/Al. By this technique, residual positive charges are observed on HDC Li/Al surface. The formation of two different compounds including Mo(VI) and Al(III) ions during impregnation of alumina with molybdate or hepta-molybdate solution is reported here for the first time. The use of sodium molybdate solution as impregnation precursor leads to the formation of hydroxy-molybdo-luminate, while the ammonium hepta-molybdate solution forms ammonium hexa-molybdo-aluminate by contact with alumina.Dissolution kinetics of alumina in aqueous solution in absence or in presence of metal ions (Li{sup +}, K{sup +}, Zn{sup 2+}, MoO{sub 4}{sup 2-}, Mo{sub 7}O{sub 24}{sup 6-}) are investigated at different pH. Results show that the support is not inert in aqueous solution, even at neutral pH (near ZPC). The homogeneous nucleation of Li/Al HDC observed for Li/Al{sub 2}O{sub 3} system evidence the permeability of the solid/solution interface: diffusion processus through the interface is more important than previously reported. A dissolution-precipitation mechanism is proposed to account for the formation of Al(III)-containing compounds on alumina surface. Alumina dissolves when contacted with aqueous solution. When Al(III) ions concentration in solution is bigger than the sur-saturation needed for heterogenous nucleation of the Al(III) containing compounds, this one precipitates. This mechanism agrees with all our results. (author) 169 refs.

  13. Reactions between rocks and the hydroxides of calcium, sodium and potassium: progress report no. 1

    International Nuclear Information System (INIS)

    Van Aardt, J.H.P.; Visser, S.

    1982-01-01

    The reaction between the hydroxides of calcium, sodium and potassium, and clay minerals, feldspars, and some rocks (aggregates for use in concrete) was investigated. The reaction products were examined by means of x-ray diffraction and chemical analysis. The solid reaction products identified were hydrated calcium silicates,hydrated calcium aluminates, and hydrated calcium alumina silicates. It was found that, in the presence of water, calcium hydroxide liberated alkali into solution if the rocks and minerals contained alkali metals in their structure. Two crystalline hydrated sodium calcium silicates (12A and 16A) were prepared in the system Na 2 O-CaO-SiO 2 -H 2 O at 80 degrees Celsius. The one compound (12A) was also observed when sodium hydroxide plus calcium hydroxide and water reacted with silica- or silicate-containing rocks

  14. An experiment on multibubble sonoluminescence spectra in sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhan; XU JunFeng; HUANG Wei; CHEN WeiZhong; MIAO GuoQing

    2008-01-01

    We investigated experimentally the spectra of MBSL in sodium chloride water solution with krypton as dissolved gas. We observed and compared the spectra of hydroxyl ion at 310 nm and that of sodium atom at 589 nm. It has been found that under the same experimental condition, the intensity of sodium atom spectra is obviously higher than that of the hydroxyl ion spectra, and is more sensitive to the experimental condition. The krypton content, the concentration of sodium chloride solution, and the driving sound pressure obviously affect the spectra intensity in certain range.

  15. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  16. The radiation chemistry of aqueous sodium terephthalate solutions

    International Nuclear Information System (INIS)

    Matthews, R.W.

    1980-04-01

    The radiation chemistry of cobalt-60 gamma-irradiated aqueous sodium terephthalate solutions has been studied. In aerated 4 x 10 -4 M sodium hydroxide solutions, the main products are hydroxyterephthalate (HTA) (G = 0.99 +- 0.01), carbonate (G = 1.31 +- 0.08), and peroxides (G = 2.84 +- 0.04). The HTA and carbonate species are both formed as a result of hydroxyl radical attack and account for approximately 90 per cent of hydroxyl radical reactions. Oxygen needs to be present for efficient conversion of the terephthalate-OH radical adduct to HTA and oxygenation increases G(HTA) above the aerated solution value. G(HTA) is unaffected by changes in terephthalate concentration between 1 x 10 -4 M and 1 x 10 -2 M in sodium hydroxide solutions at pH 10. Decreasing the solution pH does however affect G(HTA). In phosphate buffered solutions pH 6.85, G(HTA) is 0.93 +- 0.01 and lower values are obtained with further decrease in solution pH. The lowering of the G(HTA) value is attributed to recombination reactions between the terephthalate-OH radical products and reducing radical products. Experimental evidence supporting the recombination postulate was obtained from the measurement of a parallel decrease in the peroxide yield and the observation of a dose rate effect on G(HTA). Competition kinetic studies with the added solutes carbonate and bicarbonate gave the rate ratios k (OH + TA 2- ) : k(OH + CO 3 2- ) : k(OH + HCO 3 - ) = 1 : 0.105 : 0.0036

  17. NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).

    Science.gov (United States)

    Swartz, M L

    1992-02-01

    NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.

  18. Oral sodium phosphate solution: a review of its use as a colorectal cleanser.

    Science.gov (United States)

    Curran, Monique P; Plosker, Greg L

    2004-01-01

    Oral sodium phosphate solution (Fleet Phospho-soda, Casen-Fleet Fosfosoda is a low-volume, hyperosmotic agent used as part of a colorectal-cleansing preparation for surgery, x-ray or endoscopic examination. The efficacy and tolerability of oral sodium phosphate solution was generally similar to, or significantly better than, that of polyethylene glycol (PEG) or other colorectal cleansing regimens in patients preparing for colonoscopy, colorectal surgery or other colorectal-related procedures. Generally, oral sodium phosphate solution was significantly more acceptable to patients than PEG or other regimens. The use of this solution should be considered in most patients (with the exception of those with contraindications) requiring colorectal cleansing. PHARMACOLOGICAL PROPERTIES: After the first and second 45 mL dose of oral sodium phosphate solution, the mean time to onset of bowel activity was 1.7 and 0.7 hours and the mean duration of activity was 4.6 and 2.9 hours. Bowel activity ceased within 4 hours of administration of the second dose in 83% of patients. Elevations in serum phosphorus and falls in serum total and ionised calcium from baseline occurred during the 24 hours after administration of oral sodium phosphate solution in seven healthy volunteers. These changes were not associated with significant changes in clinical assessments. The decrease in serum potassium levels after administration of oral sodium phosphate solution was negatively correlated with baseline intracellular potassium levels. A regimen that administered the first dose of sodium phosphate on the previous evening and a second dose on the morning of the procedure (10-12 hours apart) was significantly more effective than PEG-based regimens for colorectal cleansing in preparation for colonoscopy, sigmoidoscopy or colorectal surgery. A regimen that administered both doses of oral sodium phosphate on the day prior to the procedure offered no colorectal cleansing advantage over PEG

  19. Measurements of the viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 liquid solutions

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Adding UO 2 produces an increase of viscosity of borax and sodium metaborate. For temperatures below 920 0 C the measurements with the borax-UO 2 solution show a phase separation. Contrary to borax the sodium metaborate solutions indicate a well defined melting point. At temperatures slightly below the melting point a solid phase is formed. The tested sodium-borates-UO 2 mixtures are in liquid form. (DG)

  20. Synthesis and physical and chemical properties of poly-hydro-aluminates and poly-halogen-aluminates metals of II A group

    International Nuclear Information System (INIS)

    Khudoydodov, B.O.

    1990-01-01

    The purpose of the present work is investigation of conditions and mechanism of passing of formation reactions of aluminum hydrides, poly-hydride-aluminates and poly-halogen-aluminates of alkaline-earth metals and magnesium and studying of their physical and chemical properties

  1. A low temperature aluminizing treatment of hot work tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Matijevic, B., E-mail: bozidar.matijevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb (Croatia)

    2010-07-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to hot tool steel H13. The aluminizing treating temperature was from 550 to 620°C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the aluminized layer thickness and the oxide layer were studied. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), glow discharge optical spectroscopy (GDOS) were applied to observe the cross-sections and the distribution of elements. (author)

  2. A low temperature aluminizing treatment of hot work tool steel

    International Nuclear Information System (INIS)

    Matijevic, B.

    2010-01-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to hot tool steel H13. The aluminizing treating temperature was from 550 to 620°C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the aluminized layer thickness and the oxide layer were studied. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), glow discharge optical spectroscopy (GDOS) were applied to observe the cross-sections and the distribution of elements. (author)

  3. A LOW TEMPERATURE ALUMINIZING TREATMENT OF HOT WORK TOOL STEEL

    OpenAIRE

    Matijević, Božidar

    2013-01-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to the X40CrMoV5-1 hot tool steel. The aluminizing temperature was from 550 °C to 620 °C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the alumini...

  4. Corrosion phenomena in sodium-potassium coolant resulting from solute interaction in multicomponent solution

    Science.gov (United States)

    Krasin, V. P.; Soyustova, S. I.

    2018-03-01

    The solubility of Fe, Cr, Ni, V, Mn and Mo in sodium-potassium melt has been calculated using the mathematical framework of pseudo-regular solution model. The calculation results are compared with available published experimental data on mass transfer of components of austenitic stainless steel in sodium-potassium loop under non-isothermal conditions. It is shown that the parameters of pair interaction of oxygen with transition metal can be used to predict the corrosion behavior of structural materials in sodium-potassium melt in the presence of oxygen impurity. The results of calculation of threshold concentration of oxygen of ternary oxide formation of sodium with transitional metals (Fe, Cr, Ni, V, Mn, Mo) are given in conditions when pure solid metal comes in contact with sodium-potassium melt.

  5. Factors Affecting Dissolution Resistance of AC Anodizing Al in Sodium Carbonate Solution

    International Nuclear Information System (INIS)

    Abou-Krisha, M.

    2001-01-01

    Studies were performed to determine the effect of different factors on the properties and so the dissolution resistance of the anodic film of Al. Conductance and thermometric measurements were applied to evaluate the dissolution rate. The effect of applied AC voltage concentration of sodium carbonate solution, the anodization time and the temperature of sodium carbonate solutions show a parallel increase in the dissolution resistance of studied Al in hydrochloride acid. The results show that films formed by sodium carbonate solution were of porous type and have pronounced high resistance. Scanning electron microscope and x-ray diffraction further examined the films. The anodic and cathodic behavior and the effect of the scanning rate on the polarization of Al in sodium carbonate solution were studied. The regression analysis was applied to all results. (Author)

  6. Examination of rheological properties of aqueous solutions of sodium caseinate

    OpenAIRE

    Jolanta Gawałek; Piotr Wesołowski

    2012-01-01

    Application of sodium caseinate as a functional additive in manufacturing processes requires production of its concentrated aqueous solutions which, in industrial conditions, presents a number of difficulties. In order to develop an effective and optimal industrial process of mixing – manufacturing a concentrated solution of sodium caseinate, it is essential to know rheological properties in a definite range of concentrations changing in the course of the dissolving process. The materia...

  7. Study of the chemical species of fluorine 18 produced by neutron irradiation of lithium aluminate

    International Nuclear Information System (INIS)

    Jimenez-Becerril, J.

    1990-01-01

    In the present work, the chemical form of fluorine-18 obtained by means of the neutron irradiated lithium aluminate was studied, in order to know its chemical behavior and to observe if it volatilizes and adheres to the walls of a tritium distillation system; for this matter paper chromatography and high voltage electrophoresis techniques were used. Lithium aluminate was synthetized, being characterized as LiAlO 2 which was irradiated with neutrons in order to produce fluorine-18. Lithium aluminate is a non-soluble solid, therefore fluorine produced may not be extracted, unless it is dissolved or extracted through the solid. So as not affect in a drastic way the chemical form, it was submitted to extraction processes, agitating the irradiated samples with different acids and basic solutions in order to analyze fluorine-18. The best extraction agent was found to be HCl, where two forms of fluorine-18 were found, one at the point of application, probably as a complex hexafluoride-aluminate and the other as a characteristic Rf of the fluorine ion. In the tritium distillation with helium as a carrier of a sample irradiated and heated up to 220-250 o C, no volatile types of fluorine-18 were found, thus it can be considered that in commercial production of tritium by means of neutron irradiation of lithium aluminate, fluorine-18 is not a damaging pollutant of the equipment pipe system. (Author)

  8. Thermal expansion properties of calcium aluminate hydrates

    International Nuclear Information System (INIS)

    Song, Tae Woong

    1986-01-01

    In order to eliminate the effect of impurities and aggregates on the thermomechanical properties of the various calcium aluminate hydrates, and to prepare clinkers in which all calcium aluminates are mixed homogeneously, chemically pure CaO and Al 2 O 3 were weighed, blended and heated in various conditions. After quantitative X-ray diffractometry(QXRD), the synthesized clinker was hydrated and cured under the conditions of 30 deg C, W/C=0.5, relative humidity> 90% respectively during 24 hours. And then differential thermal analysis(DTA), thermogravimetry(TG), micro calorimetry, thermomechanical analysis(TMA) and scanning electron microanalysis(SEM) were applied to examine the thermal properties of samples containing, calcium aluminate hydrates in various quantity. (Author)

  9. Contribution to the study of wastes stabilization by sulfo-aluminate cement

    International Nuclear Information System (INIS)

    Peysson, S.

    2005-02-01

    Calcium sulfo-aluminate cement is mainly composed of yeelimite known to be a precursor of ettringite formation. Ettringite is able to incorporate several heavy metals by isomorphous substitutions without altering its crystalline structure. The design of a binder required for immobilizing heavy metals was undertaken. The hydration study of clinker, and cement containing 4 amounts of gypsum has been carried out by means of XRD, DTA and IR spectrometry. It was pointed out that the addition of gypsum enhances hydration. Two binders were selected: 80/20 and 70/30. The immobilisation of 7 pollutants was very successful. Nevertheless, damages appeared with the binder 70/30 containing sodium chromate and dichromate: sodium caused activation of yeelimite reactivity and important dissolution of gypsum leading to important ettringite production. With a great amount of gypsum (30 %), dissolution led to secondary ettringite formation which damaged the hardened paste. Adding polyol enhances the retention of sodium chromate. On the other hand, the immobilisation of two types of weakly radioactive wastes supplied by CEA has been made. Results obtained in terms of setting time, compressive strength and leaching were excellent. (author)

  10. Criterion for selection the optimal physical and chemical properties of cobalt aluminate powder used in investment casting process

    Directory of Open Access Journals (Sweden)

    M. Zielińska

    2009-07-01

    Full Text Available The aim of this work was to determine physical and chemical properties of cobalt aluminate (CoAl2O4 modifiers produced by different companies and the influence of different types of modifiers on the grain size of high temperature creep resisting superalloys: Inconel 713C, René 77 and MAR-M 509.The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three different companies: Remet, Mason Color and Permedia Lublin. There were determined the grain size distribution of cobalt aluminate powder, the average diameter and morphology of powder particles, phase composition, as well as sodium and cobalt content, pH value of water suspension and the bulk density. In the next step, the ceramic moulds were made with different kind of cobalt aluminate (Mason Color, Remet, Permedia Lublin and its concentration (0, 5% in the primary slurry. The samples of stepped shape were poured in the ceramic moulds prepared earlier. The average grain size of the γ phase was determined on the stepped samples.It was established that physical and chemical properties of cobalt aluminate modifier are different up to the manufacturer. For example the modifiers manufactured by Permedia; Mason Color and Remet companies have different the average diameter of particles- 68,050d; 49,6 i 36,7μm, and also cobalt content _CoC=32,53%; 39,43% i 34,79%mass, respectively. The grain size of γ matrix of superalloys depends on the kind of used inoculant. The best grain refinement of the matrix of superalloys: Inconel 713C, René 77 and MAR-M 509 was observed in the castings modified with the use of Mason Color modifier. On the grounds of literature data and obtained results it was established that the cobalt content of cobalt aluminate influences the intensity of nucleation process during the crystallization of superalloys: Inconel 713C, René 77 i MAR-M 509.

  11. Incorporation of tv tube glass waste in aluminous porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J.N.F.; Santos, T.F.; Paes Junior, H.R. [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil)

    2016-07-01

    Full test: This work analyzes the reuse of TV tube glass waste as a method to provide alternative raw material for aluminous porcelain, through of replacement of natural sodic feldspar by up to 30 wt.%. Aluminous porcelain formulations containing TV tube glass waste were pressed and fired in air at 1300 deg C using a fast-firing cycle. Ceramic pieces were characterized by X-ray diffraction, scanning electron microscopy, linear shrinkage, apparent density, apparent porosity, water absorption, and electrical resistivity. XRD and SEM results indicated that all aluminous porcelain pieces are composed essentially of mullite, quartz, and ?-alumina embedded in a vitreous matrix. The results also showed that the aluminous porcelain pieces containing TV tube glass waste presented low water absorption values between 0.42 and 0.45 %, apparent density between 2.44 and 2.46 g/cm3, and volume electrical resistivity between 1.91 and 2.93 x 1011 ?.cm. Thus, the TV tube glass waste could be used into aluminous porcelain formulations, in the range up to 30 wt.%, as a replacement for traditional flux material (sodic feldspar). (author)

  12. Effect of gamma radiation on glucose and sodium chloride solutions for injection

    International Nuclear Information System (INIS)

    Lakoza, G.N.; Grigor'eva, O.L.; Mart'yanova, B.M.; Vorob'eva, E.N.; Kuznetsova, R.M.

    1976-01-01

    Irradiation of 40% glucose solution with 0.5-4.0 Mrads di not affect the detoxicating properties of glucose or its ability to raise blood sugar levels. Such doses had no effect on the toxicological properties of 40% glucose solution and on 0.9% sodium chloride solution. The biological and physicochemical properties of 40% solution and 0.9% sodium chloride solutions irradiated with sterilizing doses showed no significant alterations during storage for one and three years, respectively. It is concluded that the solutions studied may be sterilized by radiation. (auth.)

  13. Bioequivalence of diclofenac sodium 2% and 1.5% topical solutions relative to oral diclofenac sodium in healthy volunteers.

    Science.gov (United States)

    Holt, Robert J; Taiwo, Tolu; Kent, Jeffrey D

    2015-08-01

    Topical formulations of nonsteroidal anti-inflammatory drugs (NSAIDs) are generally considered to be safer alternatives to oral NSAIDs due to lower systemic absorption. We conducted randomized, crossover studies that compared the pharmacokinetics (PK), bioequivalence and safety of topical diclofenac sodium 2% twice daily (BID), diclofenac sodium 1.5% four times daily (QID) and oral diclofenac sodium in healthy subjects. The results of three bioequivalence studies are reviewed. Healthy adult subjects (n = 76) applied topical diclofenac sodium 2% solution (40.4 mg/2 mL) BID; or 1.5% solution (19.3 mg/40 drops) QID to each knee for 7.5 consecutive days separated by a washout period. Subjects (n = 22) in one study also received oral diclofenac sodium 75 mg BID for 7.5 days. Plasma diclofenac concentrations were determined from serial blood samples collected on Days 1 and 8 (steady state), and diclofenac PK parameters were estimated by noncompartmental methods. The studies demonstrated comparable bioequivalence between the 2% and 1.5% topical solutions as well as lower systemic exposure compared to oral dosing (approximately 93% less). Daily systemic exposure was comparable between the two formulations with only a 12% difference in the AUCss(0-24) (p = 0.140). Furthermore, both topical solutions demonstrated delayed elimination with a t(1/2) of 4- to 6-fold longer, as compared to oral diclofenac. The 2% solution provided more consistent dosing relative to the 1.5% solution when comparing AUCss(0-24) and Cmaxss across studies. Mild application site reactions were the most common treatment-emergent adverse event reported with topical diclofenac. The steady-state PK profile of topical diclofenac 2% solution administered BID is similar to that of the 1.5% solution administered QID. Systemic exposure to diclofenac is substantially lower after topical application as compared to oral administration. (Study 2 was registered with ClinicalTrials.gov; NCT01202799; https

  14. Microstructure and oxidation behaviour of aluminized coating of inconel 625

    International Nuclear Information System (INIS)

    Khalid, F.A.; Hussain, N.; Shahid, K.A.; Rehman, S.; Qureshi, A.H.; Khan, I.H.

    1999-01-01

    Microstructural and oxidation characteristics of aluminized coated Inconel 625 have been examined using scanning electron microscopy (SEM) and fine-probe spot and linescan EDS microanalysis techniques. The formation of slowly growing adherent metallic coatings is essential for protection against the severe environments. Aluminising of the superalloy samples was carried out by pack cementation process at 900 deg. C. in an argon atmosphere. The samples were subsequently oxidized in air at various temperatures to examine performance of the pack aluminized coated alloy. The microstructural changes that occurred in the aluminized layer at various exposure temperature and time were examined to study the oxidation behavior and formation of different phases in the aluminized coating deposited on Inconel 625. (author)

  15. Method for ion exchange purification of sodium iodide solution from heavy metals and potassium microimpurities

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Kachur, N.Ya.; Kostromina, O.N.; Ogorodnikova, A.A.; Khajnakov, S.A.

    1990-01-01

    A method of deep ion exchange purification of sodium iodide solution from heavy metals (iron, nickel, copper, lead) and potassium microimpurities is developed. The method includes multiple sorption of microimpurities on titanium phosphate with their subsequent desorption by sorbent processing with a solution with a solution of 3-6 N nitric acid, first, and then with a neutral solution of 2 % sodium thiosulfate. The given method permits to increase the purification degree of sodium iodide solution by 25-30 %. 2 tabs

  16. Calcium aluminates for quick cesium trapping, application for nuclear power plants

    International Nuclear Information System (INIS)

    Capmas, A.; Dubourg, M.; Boch, P.

    1993-01-01

    It has recently been shown that cesium dissolved in water could be trapped in a solid structure by adding cementitious calcium aluminates and fume silica. Calcium aluminates are heat resistant and widely used as refractory products. Extensive studies on the rheological properties has been achieved. It is now possible to obtain flow properties to such an extent as to percolate a slurry through broken structures and give high mechanical strength in a short time. This along with the other properties of thermal shock resistance and cesium trapping makes a solution possible for nuclear building safety as a preventitive or a curative material. For example, at Chernobyl, this material could improve safety by remote casting techniques, construction of a structure which could serve as as ash tray under the coruim. Remotelly controlled equipment needed for this are in operation in more than 50 standardized PWR's. The equipment performs maintenance and inspection tasks with low radiation exposure

  17. Duplex aluminized coatings

    Science.gov (United States)

    Gedwill, M. A.; Grisaffe, S. J. (Inventor)

    1975-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  18. Mutual diffusion of sodium hyaluranate in aqueous solutions

    International Nuclear Information System (INIS)

    Veríssimo, Luís M.P.; Valada, Teresa I.C.; Sobral, Abilio J.F.N.; Azevedo, Eduarda E.F.G.; Azevedo, Maria L.G.; Ribeiro, Ana C.F.

    2014-01-01

    Highlights: • Binary diffusion coefficients for the systems containing sodium hyaluronate. • Influence of the aggregation on diffusion of the sodium hyaluronate in the aqueous media. • Estimation of the thermodynamic and mobility factors from mutual diffusion. -- Abstract: The Taylor dispersion technique has been used for measuring mutual diffusion coefficients of sodium hyaluronate in aqueous solutions at T = 298.15 K, and concentrations ranging from (0.00 to 0.50) g · dm −3 . The results are interpreted on the basis of Nernst, and Onsager and Fuoss theoretical equations. From the diffusion coefficient at infinitesimal concentration, the limiting ionic conductivity and the tracer diffusion coefficient of hyaluronate ion were estimated. These studies have been complemented by molecular mechanics calculations

  19. Corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions

    International Nuclear Information System (INIS)

    Wu, P.C.S.; Grundy, B.R.; Miller, R.L.

    1979-01-01

    The corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions was investigated. Results showed that sodium-corroded Type 316 stainless steel (prototypic Liquid Metal Fast Breeder Reactor (LMFBR) fuel cladding) maintains its integrity after five months exposure in these solutions at 82 0 C and with chloride content up to 500 ppM. In contrast, sensitized and sodium mass transfer deposit-containing Type 304 stainless steel failed in the high chloride solution (500 ppM) within ten days at the same temperature. The failure was initiated by pitting and subsequently accelerated by intergranular attack. The results also show that high pH tends to reduce the susceptibility to failure while procedures commonly used for sodium removal have no significant effect on the water corrosion behavior of the test material. Based on the current results, it is concluded that water shortage is feasible for spent fuels in a LMFBR reprocessing plant

  20. Possibilities of using aluminate cements in high-rise construction

    Science.gov (United States)

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  1. Properties of lithium aluminate for application as an OSL dosimeter

    International Nuclear Information System (INIS)

    Twardak, A.; Bilski, P.; Marczewska, B.; Lee, J.I.; Kim, J.L.; Gieszczyk, W.; Mrozik, A.; Sądel, M.; Wróbel, D.

    2014-01-01

    Several samples of undoped and carbon or copper doped lithium aluminate (LiAlO 2 ) were prepared in an attempt to achieve a material, which can be applicable in optically stimulated luminescence (OSL) dosimetry. All investigated samples are highly sensitive to ionizing radiation and show good reproducibility. The undoped and copper doped samples exhibit sensitivity several times higher than that of Al 2 O 3 :C, while sensitivity of the carbon doped samples is lower. The studied samples exhibit significant fading, but dynamics of signal loss is different for differently doped samples, what indicates a possibility of improving this characteristic by optimizing dopant composition. - Highlights: • OSL properties of lithium aluminate for personal dosimetry. • Doping influence on OSL fading of lithium aluminate. • Application of lithium aluminate in thermal neutron measurements

  2. Metal Oxide Decomposition In Hydrothermal Alkaline Sodium Phosphate Solutions

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Ziemniak

    2003-09-24

    Alkaline hydrothermal solutions of sodium orthophosphate (2.15 < Na/P < 2.75) are shown to decompose transition metal oxides into two families of sodium-metal ion-(hydroxy)phosphate compounds. Equilibria for these reactions are quantified by determining phosphate concentration-temperature thresholds for decomposition of five oxides in the series: Ti(IV), Cr(III), Fe(III, II), Ni(II) and Zn(II). By application of a computational chemistry method General Utility Lattice Program (GULP), it is demonstrated that the unique non-whole-number Na/P molar ratio of sodium ferric hydroxyphosphate is a consequence of its open-cage structure in which the H{sup +} and excess Na{sup +} ions are located.

  3. Investigation of tritium release and retention in lithium aluminate

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Tistchenko, S.; Botter, F.

    1991-01-01

    Tritium release from lithium aluminate, although previously investigated by both in-reactor and ex-reactor experiments, remains poorly understood. Agreement between experiments is lacking, and the mechanisms responsible for tritium release from lithium aluminate are under debate. In an effort to improve our understanding of the mechanisms of tritium release from lithium ceramics, we have investigated tritium release from pure lithium aluminate and lithium aluminate doped with impurities. The results of these experiments on large grain size material indicate that after anneals at low temperature, a large fraction of the tritium present before the anneal remains in the sample. We have modeled this behavior based on first-order release from three types of sites. At the lowest temperature, the release is dominated by one site, while the tritium in the other sites is retained in the solid. Adding magnesium dopant to the ceramic appears to alter the distribution of tritium between the sites. This addition decreases the fraction of tritium released at 777 degree C, while increasing the fractions released at 538 and 950 degree C. 11 refs., 8 figs., 1 tab

  4. Use of Hypertonic Sodium Chloride Solution at Surgery under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    V. V. Lomivorotov

    2012-01-01

    Full Text Available The paper analyzes the data available in the references on different aspects of using hypertonic sodium chloride solution during surgery under extracorporeal circulation in cardiosurgical care. The hypertonic solution is shown to lower positive fluid balance in the perioperative period, to increase cardiac output with simultaneously decreased vascular resistance, to improve lung oxygenating function, and to normalize tissue blood circulation and neurological status in patients exposed to artificial perfusion. There is evidence for its effect on the immune system and capillary endothelium. It is suggested that it is necessary to study the effect of the hypertonic solution on the incidence of complications and death rates during surgery under extracorporeal circulation and it is proposed to use the solution under long-term extracorporeal circulation. Key words: hypertonic saline, sodium chloride, extracorporeal circulation.

  5. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    International Nuclear Information System (INIS)

    Orosco, Pablo; Barbosa, Lucía; Ruiz, María del Carmen

    2014-01-01

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl 2 –N 2 flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al 2 O 3 (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl 2 atmosphere of the MgO–Al 2 O 3 mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C

  6. Processing of radioactive ruthenium with aluminosilicate gels

    International Nuclear Information System (INIS)

    Kanno, Takuji; Ichinose, Yasuhiro; Ito, Katsuo

    1979-01-01

    Coprecipitation of radioactive Ru with hydroxides has been studied for the purpose of the management of the high level waste from the nuclear fuel reprocessing. Aluminosilicate gel used as coprecipitant was prepared by addition of aqueous sodium hydroxide to sodium aluminate-sodium silicate solution containing ruthenium nitrate. Ruthenium quantitatively precipitates under the conditions, aluminate > 4 x 10 -2 M, Al/Si 0 C. However, volatilization rate of Ru is suppressed by coating with mullite phase into which aluminosilicate gel transformes above 900 0 C. The amount of Ru volatilized in Ar-flow was reduced to about 10% of that in air-flow. (author)

  7. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  8. Efficacy and tolerance of sodium phosphates oral solution after diet liberalization.

    Science.gov (United States)

    Scott, Sherrie R; Raymond, Patricia L; Thompson, William O; Galt, Deborah J B

    2005-01-01

    Bowel cleansing regimens commonly require adherence to liquid diets for 24 to 48 hours before examination, which often leads to poor compliance, reduced cleansing, and ultimately inadequate examinations. The authors investigated the efficacy and tolerability of diet liberalization before bowel cleansing with sodium phosphates oral solution. Two hundred patients were randomized into two treatment groups. One group received the standard light breakfast followed by clear liquids the day before colonoscopy; the second had a normal breakfast followed by a low-residue lunch the day before colonoscopy. Both groups had the same bowel preparation with sodium phosphates oral solution (2 x 45-mL, 7 p.m./6 a.m.). There was no difference in clinical efficacy between the two diet regimens (excellent/good in 93% standard, 95% low-residue). Fewer patients receiving the low-residue diet reported hunger, and more patients receiving the low-residue regimen reported energy to perform usual activities. This study supports offering patients a regular breakfast and a low-residue lunch before bowel cleansing with sodium phosphates oral solution.

  9. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    International Nuclear Information System (INIS)

    Lakshmanan, A.R.; Prasad, M.V.R.; Ponraju, D.; Krishnan, H.

    2004-01-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO 4 .7H 2 O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO 4 and Na 2 SO 4 as well as Mg(OH) 2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting

  10. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions

    Science.gov (United States)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-09-01

    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  11. Photoionization of Sodium Salt Solutions in a Liquid Jet

    International Nuclear Information System (INIS)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-01-01

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces

  12. Photoionization of Sodium Salt Solutions in a Liquid Jet

    Energy Technology Data Exchange (ETDEWEB)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-06-05

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces.

  13. The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2007-08-15

    Vapour pressures of water over saturated solutions of sodium acetate, potassium acetate, sodium perchlorate, and potassium perchlorate were determined over the (278 to 318) K temperature range and compared with available in the literature data. The cases of saturated solutions of sodium chlorate and potassium chlorate are also considered. The determined vapour pressures were used to obtain the water activities, the osmotic coefficients, and the molar enthalpies of vaporization in considered systems.

  14. Tritium extraction from neutron-irradiated lithium aluminate

    International Nuclear Information System (INIS)

    Garcia H, F.

    1995-01-01

    Lithium aluminate is being strongly considered as a breeder material because of its thermophysical, chemical and mechanical stability at high temperatures and its favorable irradiation behavior. Furthermore, it is compatible with other blanket and structural materials. In this work, the effects of calcination temperature during preparation, extraction temperature and sweep gas composition were observed. Lithium aluminate prepared by four different methods, was neutron irradiated for 30 minutes at a flux of 10 12 -10 13 n/cm 2 s in the TRIGA Mark III reactor at Salazar, Mexico; and the tritium extraction rate was measured. Calcination temperature do not affect the tritium extraction rate. However, using high calcination temperature, gamma lithium aluminate was formed. The tritium extraction at 600 Centigrade degrees was lower than at 800 Centigrade degrees and the tritium amount extracted by distillation of the solid sample was higher. The sweep gas composition showed that tritium extraction was less with Ar plus 0.5 % H 2 that with Ar plus 0.1 % H 2 . This result was contrary to expected, where the tritium extraction rate could be higher when hydrogen is added to the sweep gas. Probably this effect could be attributed to the gas purity. (Author)

  15. Experimental investigation of aluminum complexing with sodium ion and of gallium and iron (III) speciation in natural solutions

    International Nuclear Information System (INIS)

    Diakonov, Igor

    1995-01-01

    The aim of this work is to acquire thermodynamic data on the aqueous complexes forming between sodium and aluminum, gallium and hydroxide, and iron (III) and hydroxide. These data will provide for a better understanding of the transport and distribution of these elements in surface and hydrothermal fluids. Stability constants of the sodium-aluminate complex (Na Al(OH) 4 deg.) were obtained from boehmite solubility measurements at temperatures from 125 to 350 deg. C in alkaline solutions containing from 0.1 to 1 mol/L sodium. Complementary potentiometric measurements were performed with a sodium selective electrode, between 75 and 200 deg C (the potentiometric study was carried out by Gleb Pokrovski). Analyses of these data within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model allowed determination of the HKF parameters for Na Al(OH) 4 deg. and calculation of its thermodynamic properties to 800 deg. C and 5 kb. The results of this work show that Na Al(OH) 4 deg. complex formation increases significantly the solubility of aluminum-bearing minerals and consequently aluminum mobility in hydrothermal fluids. Gallium speciation in surface and hydrothermal fluids is dominated by the negatively charged species, Ga(OH) 4 - . The thermodynamic properties of this species were determined from of OEGaOOH solubility measurements as a function of pH and temperature from 25 to 250 deg. C. In general, the variation of gallium aqueous speciation with pH is similar to that of aluminum other than at temperatures less than 200 deg. C over the pH range 3 - 6. This difference can account for the independent behavior of gallium versus aluminum in numerous low temperature natural systems. The thermodynamic properties of Fe(OH) 3 deg. which dominates the speciation of Fe(III) in surface waters and Fe(OH) 4 - were determined from hematite solubility measurements as a function of pH, oxygen pressure and temperature from 110 to 300 deg. C. The available thermodynamic data on

  16. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  17. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    International Nuclear Information System (INIS)

    Poirier, M.; Thomas Peters, T.; Fernando Fondeur, F.; Samuel Fink, S.

    2008-01-01

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached ∼10 psi while processing ∼1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and

  18. Some aspects of the tribological behaviour of materials in sodium

    International Nuclear Information System (INIS)

    Campbell, C.S.; Lewis, M.W.J.

    1980-08-01

    The influence of boundary lubricating films formed by reaction of metallic surfaces with oxygen-containing sodium is discussed. In general, pre-existing surface metallic oxides are reduced in high-temperature low-oxygen sodium, and tribological behaviour is accordingly poor. Chromium-containing alloys, however, can react more readily with oxygen-containing sodium to form sodium chromite, NaCrO 2 , on the alloy surfaces. Such an oxide could plausibly account for significantly improved tribological behaviour at higher oxygen levels. Sodium chromite is only marginally stable at typical reactor outlet conditions and frictional behaviour of typical chromium-containing alloys has therefore been studied as a function of rig cold trap temperature for exposure temperatures ranging from 650 to 500 0 C in order to define the effective tribological boundary. The behaviour of aluminised surfaces has also been studied and results from sliding and fretting wear tests are discussed in the context of the role of a lubricating oxide, believed to be sodium aluminate (formed by reaction of aluminium and oxygen-containing sodium) which is considerably more stable than sodium chromite at reactor outlet temperatures. (author)

  19. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  20. Oxidation behavior and compositional analysis of aluminized superalloy

    International Nuclear Information System (INIS)

    Khalid, F.A.; Nawaz, F.

    2003-01-01

    The high temperature oxidation behavior of superalloy specimens used for the manufacture of turbine blades has been examined using scanning electron microscopy (SEM) and fine-probe spot and line scan EDS microanalysis techniques. The performance of aluminized coating applied to the specimens has also been examined. It was observed that complex oxides are formed in both coated and uncoated specimens. However the coated specimens revealed a greater stability of gamma phase and integrity of aluminized coating as compared with uncoated specimens. The microchemical and microstructural changes that occurred during oxidation have been analyzed to examine characteristics of oxide layers. (author)

  1. Neptunium separation in trace levels from uranium solutions by extraction chromatography

    International Nuclear Information System (INIS)

    Cotrim, M.B.; Matsuda, H.T.

    1994-01-01

    Neptunium and uranium behavior in extraction chromatograph system, aiming the separation of micro quantities of neptunium from uranyl solutions is described. Tri-n-octylamine (TOA), Tri-n-butylphosphate (TBP) as stationary phase, alumine, Voltalef UF-300 as support material were verified. The impregnation conditions as well as the best stationary phase/support material ratio were established. TBP/alumine, TBP/Voltalef and TOA/alumine system were selected to uranium and neptunium separation studies. (author) . 12 refs., 03 tabs., 03 figs

  2. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    Science.gov (United States)

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  3. Recovery of uranium from the Syrian phosphate by solid-liquid method using alkaline solutions

    International Nuclear Information System (INIS)

    Shlewit, H.; Alibrahim, M.

    2007-01-01

    Uranium concentrations were analyzed in the Syrian phosphate deposits. Mean concentrations were found between 50 and 110 ppm. As a consequence, an average phosphate dressing of 22 kg/ha phosphate would charge the soil with 5-20 g/ha uranium when added as a mineral fertilizer. Fine grinding phosphate produced at the Syrian mines was used for uranium recovery by carbonate leaching. The formation of the soluble uranyl tricarbonate anion UO 2 (CO 3 ) 3 4- permits use of alkali solutions of sodium carbonate and sodium bicarbonate salts for the nearly selective dissolution of uranium from phosphate. Separation of iron, aluminum, titanium, etc., from the uranium during leaching was carried out. Formation of some small amounts of molybdates, vanadates, phosphates, aluminates, and some complexes metal was investigated. This process could be used before the manufacture of TSP fertilizer, and the final products would contain smaller uranium quantities. (author)

  4. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  5. Acid–base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution

    Directory of Open Access Journals (Sweden)

    Sayed Jalal Hashemi

    2016-01-01

    Conclusion: 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid–base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  6. The formation reaction of calcium hexa-aluminate

    International Nuclear Information System (INIS)

    Tuganova, S.Kh.; Sirajiddinov, N.A.

    1990-01-01

    The formation reaction of CaAl 12 O 19 at interaction of calcium oxide and aluminium in solid form has been studied. Some physical-chemical characteristics of calcium hexa-aluminate are given. (author)

  7. Fatal methemoglobinemia caused by liniment solutions containing sodium nitrite.

    Science.gov (United States)

    Saito, T; Takeichi, S; Yukawa, N; Osawa, M

    1996-01-01

    We describe a case of fatal methemoglobinemia (MetHb-emia) resulting from application of liniment solution containing large quantities of sodium nitrite. As a remedial treatment of atopic dermatitis, the liniment solution was applied all over the boy's body. Autopsy findings showed no significant macroscopic or microscopic findings except blood tinted chocolate brown color and chronic atopic dermatitis over the whole surface of the body. Quantitation of the methemoglobin (MetHb) in the blood was performed using spectrophotometer; MetHb concentration of the blood was 76%. Ion chromatographic determination revealed a nitrite concentration of 1 mg/L in the serum. Such a liniment solution is not authorized by the Ministry of Public Welfare.

  8. SEARCH OF COMPOSITIONS OF FOUNDRY GRADES

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2014-01-01

    Full Text Available Comparative researches of foundry paints showed that the most acceptable basis for them is disthenesillimanite and it is possible to use sodium aluminate solution as a binding agent.

  9. Substituted sodium phenylanthranylates as inhibitors of corrosion in chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.I.; Fialkov, Yu.A.; Popova, L.I.; Ehndel' man, E.S.; Kuznetsova, I.G. (AN SSSR, Moscow. Inst. Fizicheskoj Khimii)

    The efficiency of corrosion protection of armco iron, zinc (Ts-O) aluminium (AB 000) and its alloys (.D16 and AMG6) with sodium phenylanthranylate derivatives in chloride buffer solutions (pH 7.4-8.08) are investigated. It has been ascertained that the introduction of sodium phenylanthranylate into phenyl radical in m- and p-position relative to the amino group of electron-seeking substitutes improves protective properties of an inhibitor. The inhibiting effect of phenylanthranylates and its dependence on electron structure enchances in zinc-aluminium-iron series and decreases in case of transition from pure aluminium to its alloys.

  10. Substituted sodium phenylanthranylates as inhibitors of corrosion in chloride solutions

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Fialkov, Yu.A.; Popova, L.I.; Ehndel'man, E.S.; Kuznetsova, I.G.

    1982-01-01

    The efficiency of corrosion protoction of armco iron, zinc (Ts-O) aluminium (AB 000) and its alloys (.D16 and AMG6) with sodium phenylanthranylate derivatives in clloride buffer solutions (pH 7.4-8.08) are investigated. It has been ascertained that the introduction of sodium phenylantiranylate into phenyl radical in m- and p-position relative to the amino group of electron-seeking substitutes improves protective properties of an inhibitor. The inhibiting effect of phenylanthranylates and its dependence on electron structure enchances in zinc-aluminium-iron series and decreases in case of transition from pure aluminium to its alloys

  11. Evaluation of bioactivity in vitro of endodontic calcium aluminate cement

    International Nuclear Information System (INIS)

    Oliveira, I.R.; Andrade, T.L.; Santos, G.L.; Pandolfelli, V.C.

    2011-01-01

    Bioactivity is referred to as the capacity of a material to develop a stable bond with living tissue via the deposition of hydroxyapatite. Materials which exhibit this property can be used to repair diseased or damaged bone tissue and can be designed to remain in situ indefinitely. An indication of bioactivity can be obtained by the formation of a hydroxyapatite layer on the surface of a substrate in simulated body fluids (SBF) in vitro. Therefore, set samples of calcium aluminate endodontic cement were maintained in contact with SBF solutions (Kokubo and Rigo) and their surfaces were later evaluated by means of SEM, EDX and DRX. Measurements of pH and ionic conductivity were also carried out for SBF solutions in contact with set samples of endodontic cement. The ideal conditions of precipitation were obtained in SBF Rigo been observed a surface layer with spherical morphology characteristic of stoichiometric hydroxyapatite.(author)

  12. Antimicrobial action of sodium hypochlorite and castor oil solutions for denture cleaning – in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Marcela Moreira SALLES

    2015-01-01

    Full Text Available The objective of this in vitro study was to evaluate the antimicrobial action of sodium hypochlorite (0.25% and 0.50% and 10% castor oil solutions against specific microorganisms, by counting Colony Forming Units (CFU of clinically important bacteria and Candida species. Acrylic resin specimens (n = 320; Lucitone 550 were obtained from square metal matrices (10 x 10 x 2 mm, sterilized by microwave (650W, for 6 minutes and contaminated by Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Bacillus subtilis, Escherichia coli, Streptococcus mutans, Enterococcus faecalisand Candida glabrata. The specimens were immersed for 20 minutes in one of the following hygiene solutions (n = 10/each: A – 0.25% Sodium hypochlorite; B – 0.5% Sodium hypochlorite; C – 10% Castor oil solution; and D (Control – saline. Adhered cells were suspended and inoculated into a selective solid medium (37ºC for 24 h. The Student’s t-test (α = 0.05 was performed to compare log10(CFU+1/mL between Groups C and D. The results showed that sodium hypochlorite (0.25% and 0.5% completely eliminated all detectable microorganisms. The castor oil solution eliminatedB. subtilisand reduced counts for other strains. Differences between C and D were significant (p E. faecalis. Both sodium hypochlorite solutions (0.25% and 0.5% were effective in eliminating all microorganisms evaluated, and may be useful as cleaning solutions for complete dentures. The castor oil solution provided moderate efficacy and performed differently on the tested species, with the strongest effect on B. subtilis and with non-significant action on E. faecalis.

  13. Thermodynamics of micelle formation in a water-alcohol solution of sodium tetradecyl sulfate

    Science.gov (United States)

    Shilova, S. V.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-01-01

    The effects of addition of ethanol and propan-1-ol on sodium tetradecyl sulfate micelle formation in an aqueous solution are studied via microprobe fluorescence microscopy and conductometry. The critical micelle concentration, quantitative characteristics of micelles, and thermodynamic parameters of micelle formation are determined. Addition of 5-15 vol % of ethanol or 5-10 vol % of propan-1-ol is shown to result in a lower critical micelle concentration than in the aqueous solution, and in the formation of mixed spherical micelles whose sizes and aggregation numbers are less than those for the systems without alcohol. The contribution from the enthalpy factor to the free energy of sodium tetradecyl sulfate micelle formation is found to dominate in mixed solvents, in contrast to aqueous solutions.

  14. Antimicrobial action of sodium hypochlorite and castor oil solutions for denture cleaning - in vitro evaluation.

    Science.gov (United States)

    Salles, Marcela Moreira; Oliveira, Viviane de Cássia; Souza, Raphael Freitas; Silva, Cláudia Helena Lovato; Paranhos, Helena de Freitas Oliveira

    2015-01-01

    The objective of this in vitro study was to evaluate the antimicrobial action of sodium hypochlorite (0.25% and 0.50%) and 10% castor oil solutions against specific microorganisms, by counting Colony Forming Units (CFU) of clinically important bacteria and Candida species. Acrylic resin specimens (n = 320; Lucitone 550) were obtained from square metal matrices (10 x 10 x 2 mm), sterilized by microwave (650W, for 6 minutes) and contaminated by Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Bacillus subtilis, Escherichia coli, Streptococcus mutans, Enterococcus faecalis and Candida glabrata. The specimens were immersed for 20 minutes in one of the following hygiene solutions (n = 10/each): A - 0.25% Sodium hypochlorite; B - 0.5% Sodium hypochlorite; C - 10% Castor oil solution; and D (Control) - saline. Adhered cells were suspended and inoculated into a selective solid medium (37ºC for 24 h). The Student's t-test (α = 0.05) was performed to compare log10(CFU+1)/mL between Groups C and D. The results showed that sodium hypochlorite (0.25% and 0.5%) completely eliminated all detectable microorganisms. The castor oil solution eliminated B. subtilis and reduced counts for other strains. Differences between C and D were significant (p castor oil solution provided moderate efficacy and performed differently on the tested species, with the strongest effect on B. subtilis and with non-significant action on E. faecalis.

  15. Production of zeolite A come from rio Capim Kaolin: Study on recycle of sodium hydroxide solution

    International Nuclear Information System (INIS)

    Moraes, C.G.; Rodrigues, E.C.; Rocha Junior, C.A.F.; Macedo, E.N.; Neves, R.F.

    2011-01-01

    The kaolin processing industry is an important economic sector in the State of Para, but produces huge amounts of wastes composed essentially of kaolinite. The production processes of zeolites typically use sodium hydroxide in excess, are discarded. So the objective is the development process for production of zeolite A which allows the reuse of the solution of sodium hydroxide used in excess through your recycling. Presents the results of XRD, SEM of the zeolites produced in five consecutive cycles performed at a temperature of 110°C/24h as a source of sodium hydroxide solution of sodium 5 M, using a molar ratio of Si/Al = 1 and Na/Al = 1,26. (author)

  16. Synthesis of calcium aluminates on the big solar furnace

    International Nuclear Information System (INIS)

    Abdurakhmanov, A. A.; Paizullakhanov, M. S.; Akhadov, Zh.

    2012-01-01

    The processes of synthesizing calcium aluminate in the flow of concentrated solar radiation on Large Solar Furnace are studied. It is shown that the synthesis of calcium aluminate takes place through a process of melting of a mixture of aluminum oxides and calcium (Al 2 O 3 + CaO). At values of power of the concentrated flow of 200 W/cm 2 , thermodynamic conditions for melting of the materials studied were implemented. Full fusion penetration is achieved at a power flow of 400 W/cm 2 . The resulting material exhibits high mechanical properties (the modulus of rupture upon bending is 40 MPa). (author)

  17. Inhibited Aluminization of an ODS FeCr Alloy

    International Nuclear Information System (INIS)

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A.

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small (∼ 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  18. Morphological and microstructural studies on aluminizing coating of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe–Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe{sub 2}Al{sub 5}) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is ‘thick’ and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  19. Microstructure and High-temperature Wear Behavior of Hot-dipped Aluminized Coating on Different Substrate Materials

    Directory of Open Access Journals (Sweden)

    ZHOU De-qin

    2018-02-01

    Full Text Available The aluminized 45 and H13 steel were prepared via hot-dipped aluminizing and subsequently high-temperature diffusion treatment. The phase, morphology and composition of aluminized coating were characterized by XRD,SEM and EDS methods. Comparative study was performed on unlubricated sliding wear behavior of plating under different substrates on a pin-on-disc wear tester, and the wear mechanism was explored. The results show that the coating is composed of ductile phases FeAl and Fe3Al. Kikendall porosity parallel to the surface exists around the interface of the two phases; because of the carbide particles agglomeration, the bond between the coating and H13 steel is apparently inferior to that in the case of 45 steel; the aluminized 45 steel possesses an excellent wear resistance under 50-200N at 400℃, whereas mild-to-severe wear transition occurs when the temperature increases to 600℃. The wear rate of the aluminized H13 steel reaches the lowest at 400℃, then slightly increases at 600℃. The wear mechanisms of Fe-Al coating are mainly predominated by oxidative mild wear, whereas the extrusion wear prevails in the process for aluminized 45 steel at 600℃.

  20. Efficacy of bromfenac sodium ophthalmic solution for treatment of dry eye disease.

    Science.gov (United States)

    Fujishima, Hiroshi; Fuseya, Miki; Ogata, Masarou; Murat, Dogru

    2015-01-01

    To evaluate the efficacy of bromfenac sodium ophthalmic solution (BF) in patients with dry eye disease (DED) inadequately controlled by monotherapy with artificial tears (ATs). An investigator-oriented trial with a single-arm, nonrandomized, open-label design. Twenty-six patients, who showed no symptomatic improvement of DED after 1 month of AT treatment, were enrolled. Bromfenac sodium ophthalmic solution was administered adjunctively with AT for 1 month. The BF treatment was then discontinued, and AT treatment alone was continued for 3 months. The signs and symptoms were evaluated at the beginning of BF treatment (Pre), at the end of the combined BF and AT treatment (BF1M), and at 1 and 3 months after discontinuation of BF treatment (Po1M and Po3M, respectively). The dryness scores at BF1M were significantly improved compared with Pre (P ophthalmic solution has improved the dryness of the eye and signs of DED through its anti-inflammatory effects. Nonsteroidal anti-inflammatory drugs were suitable as anti-inflammatory ophthalmic solutions for patients with DED.

  1. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  2. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2008-01-01

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate

  3. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2008-05-15

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate.

  4. Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions.

    Science.gov (United States)

    Granero, Gladys E; Ramachandran, Chandrasekharan; Amidon, Gordon L

    2005-10-01

    The solubility of fenofibrate in pH 6.8 McIlvaine buffers containing varying concentrations of sodium lauryl sulfate was determined. The dissolution behavior of fenofibrate was also examined in the same solutions with rotating disk experiments. It was observed that the enhancement in intrinsic dissolution rate was approximately 500-fold and the enhancement in solubility was approximately 2000-fold in a pH 6.8 buffer containing 2% (w/v) sodium lauryl sulfate compared to that in buffer alone. The micellar solubilization equilibrium coefficient (k*) was estimated from the solubility data and found to be 30884+/-213 L/mol. The diffusivity for the free solute, 7.15x10(-6) cm2/s, was calculated using Schroeder's additive molal volume estimates and Hayduk-Laurie correlation. The diffusivity of the drug-loaded micelle, estimated from the experimental solubility and dissolution data and the calculated value for free solute diffusivity, was 0.86x10(-6) cm2/s. Thus, the much lower enhancement in dissolution of fenofibrate compared to its enhancement in solubility in surfactant solutions appears to be consistent with the contribution to the total transport due to enhanced micellar solubilization as well as a large decrease (approximately 8-fold) in the diffusivity of the drug-loaded micelle.

  5. Acid-base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution.

    Science.gov (United States)

    Hashemi, Sayed Jalal; Heidari, Sayed Morteza; Yaraghi, Ahmad; Seirafi, Reza

    2016-01-01

    Intraoperative hemorrhage is one of the problems during surgery and, if it happens in a high volume without an immediate action to control, it can be fatal. Nowadays, various injectable solutions are used. The aim of this study was to compare the acid-base and hemodynamic status of the patient using two solutions, Ringer lactate and 1.3% sodium bicarbonate, in half saline solution. This clinical trial was performed at the Al-Zahra Hospital in 2013 on 66 patients who were randomly selected and put in two studied groups at the onset of hemorrhage. For the first group, crystalloid Ringer lactate solution and for the second group, 1.3% sodium bicarbonate in half-normal saline solution was used. Electrocardiogram, heart rate, O2 saturation non-invasive blood pressure and end-tidal CO2 were monitored. The arterial blood gas, blood electrolytes, glucose and blood urea nitrogen were measured before serum and blood injection. After the infusion of solutions and before blood transfusions, another sample was sent for measurement of blood parameters. Data were analyzed using SPSS software. The mean arterial pressure was significantly higher in the second group than in the first group at some times after the infusion of solutions. pHh levels, base excess, bicarbonate, sodium, strong ion differences and osmolarity were significantly greater and potassium and chloride were significantly lower in the second group than in the first group after the infusion of solutions. 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid-base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  6. Influence of Concentration and Agitation of Sodium Hypochlorite and Peracetic Acid Solutions on Tissue Dissolution.

    Science.gov (United States)

    Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria

    2015-11-01

    To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.

  7. Thermoluminescent response of calcium di aluminate intrinsic and doped with Cr3+

    International Nuclear Information System (INIS)

    Ceron R, P. V.; Vallejo H, M. A.; Sosa A, M. A.; Montes R, E.; Diaz G, J. A. I.; Diaz T, L. A.

    2017-10-01

    In numerous studies the thermoluminescent response (Tl) of aluminum oxide has been presented in which various dopants have been incorporated to increase the number of defects and thus modify their dosimetric properties. In related materials such as aluminates have been doped with trivalent ions and their optical characteristics have been determined. Due to this background, the motivation to study the aluminates as possible thermoluminescent dosimeters arises. In this work the synthesis of intrinsic calcium aluminate powders and doped with Cr 3+ is presented by the combustion method, to elaborate pellets and evaluate their Tl response with different radiation sources. The material obtained was characterized by XRD, X-ray fluorescence and UV-Vis; it was found to belong to the monoclinic phase of calcium di aluminate (CaAl 4 O 7 ) with a crystal size of 55 nm, the presence of Cr 3+ in the crystal lattice was also observed. The samples showed a good response Tl for UV radiation, X-rays from a 70 kV source and for Co-60 gammas. The results found show that CaAl 4 O 7 is a good candidate to study its dosimetric properties. (Author)

  8. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  9. Method of Black Liquor Combustion to Remove Silicon from Wheat Straw Pulping

    Directory of Open Access Journals (Sweden)

    Yongjian Xu

    2015-02-01

    Full Text Available The effects of aluminium sulphate and sodium aluminate on physical and chemical properties of wheat straw pulp black liquor were studied. Results showed that the expansion rate was enhanced by increasing the aluminum salt content; furthermore, the effect of sodium aluminate was better than that of aluminum sulfate. The maximum desilication rate of 92.31% was reached with the addition of 3% sodium aluminate. A rheometer showed that aluminum salt had little impact on the viscosity of thick black liquor, so even at a high temperature it could be conveyed by pumps in paper mill at 110 °C. The effect of aluminium salt on the silicon removal rate during black liquor combustion was also studied. The experimental results showed that both aluminium sulphate and sodium aluminate helped to remove silicon. The desilication rate of sodium aluminate reached 62.33%, higher than that of aluminum sulphate. SEM-EDX illustrated that the aluminum and silicon ions were formed into insoluble precipitates. It was optimal to use 3% sodium aluminate as desilication agent.

  10. THERMOCHEMISTRY OF INTERACTION REACTIONS FOR SODIUM AND ALUMINUM SULPHATES WITH COMPONENTS OF HYDRATING PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    P. I. Yukhnevskiy

    2018-01-01

    Full Text Available Chemical additives are widely used in the technology of concrete with the purpose to solve various problems and sulphate-containing additives-electrolytes are also used as accelerators for setting and hardening of cement. Action mechanism of additive accelerators for setting and hardening of cement is rather complicated and can not be considered as well-established. An influence of sulfate-containing additives such as sodium sulfate is reduced to acceleration of cement silicate phase hydration by increasing ionic strength of the solution. In addition to it, exchange reactions of anion additive with portlandite phase (Ca(OH2 and aluminate phases of hardening cement have a significant effect on hardening process that lead to formation of readily soluble hydroxides and hardly soluble calcium salts. The influence of sulfate-containing additives on properties of water cement paste and cement stone is quite diverse and depends on salt concentration and cation type. For example, the action of the aluminum sulphate additive becomes more complicated if the additive is subjected to hydrolysis in water, which is aggravated in an alkaline medium of the water cement paste. Formation of hydrolysis products and their reaction with aluminate phases and cement portlandite lead to a significant acceleration of setting. Thus, despite the similarity of additives ensuring participation of anions in the exchange reactions, the mechanism of their influence on cement setting and hardening varies rather significantly. The present paper considers peculiar features concerning the mechanism of interaction of sodium and aluminum sulfate additives in cement compositions from the viewpoint of thermochemistry. Thermochemical equations for reactions of sulfate-containing additives with phases of hydrated cement clinker have been given in the paper. The paper contains description how to calculate thermal effects of chemical reactions and determine an influence of the formed

  11. Enthalpies of Dissolution of Crystalline Naproxen Sodium in Water and Potassium Hydroxide Aqueous Solutions at 298 K

    Science.gov (United States)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Bychkova, S. A.; Volkov, A. V.; Skvortsov, I. A.

    2018-03-01

    The enthalpies of dissolution of crystalline naproxen sodium in water and aqueous solutions of KOH at 298.15 K are measured by direct calorimetric means in a wide range of concentrations. The acid-base properties of naproxen sodium at ionic strength I 0 and I = 0.1 (KNO3) and a temperature of 298.15 K are studied by spectrophotometric means. The concentration and thermodynamic dissociation constants are determined. The standard enthalpies of the formation of naproxen sodium and the products of its dissociation in aqueous solution are calculated.

  12. Extended stability of intravenous 0.9% sodium chloride solution after prolonged heating or cooling.

    Science.gov (United States)

    Puertos, Enrique

    2014-03-01

    The primary objective of this study was to evaluate the stability and sterility of an intravenous 0.9% sodium chloride solution that had been cooled or heated for an extended period of time. Fifteen sterile 1 L bags of 0.9% sodium chloride solution were randomly selected for this experiment. Five bags were refrigerated at an average temperature of 5.2°C, 5 bags were heated at an average temperature of 39.2°C, and 5 bags were stored at an average room temperature of 21.8°C to serve as controls. All samples were protected from light and stored for a period of 199 days prior to being assayed and analyzed for microbial and fungal growth. There was no clinically significant difference in the mean sodium values between the refrigerated samples, the heated samples, and the control group. There were no signs of microbial or fungal growth for the duration of the study. A sterile intravenous solution of 0.9% sodium chloride that was heated or cooled remained stable and showed no signs of microbial or fungal growth for a period of 199 days. This finding will allow hospitals and emergency medical technicians to significantly extend the expiration date assigned to these fluids and therefore obviate the need to change out these fluids every 28 days as recommended by the manufacturer.

  13. In-situ Raman spectroscopic study of aluminate speciation in H2O-KOH solutions at high pressures and temperatures

    Science.gov (United States)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2009-12-01

    The solubility of corundum in H2O is low even at high pressure and temperatures. Therefore, it is commonly assumed that alumina remains essentially immobile during fluid-rock interaction. However, field and experimental evidence suggests that alumina solubility is strongly enhanced in the presence of silica as well as in alkaline solutions. In order to understand what controls the alumina solubility and how it is enhanced as a function of fluid composition, we conducted Raman-spectroscopic study of Al speciation in aqueous fluids at high pressure and temperature. Experiments were carried out in an externally heated hydrothermal diamond-anvil cell equipped with low-fluorescence diamonds and iridium gaskets. Raman spectra were collected with a Horiba Jobin-Yvon Labram HR spectrometer using the 514 nm line of an argon laser for excitation. In a first series of experiments, the speciation of alumina was studied in a 1 M KOH solution in equilibrium with corundum up to 700 oC and ~1 GPa. The Raman spectra show a prominent band at 618 cm-1 interpreted to arise from Al-O stretching vibrations associated with the tetrahedral [Al(OH)4]1- species. At higher pressure and temperature, an additional vibrational mode appears in the spectra at 374 cm-1 (full width at half maximum ~ 20 cm-1). This feature is tentatively attributed to [(OH)3Al-O-Al(OH)3]2- (Moolenaar et al. 1970, Jour. Phys. Chem., 74, 3629-3636). No evidence for KAl(OH)4 was observed, consistent with piston cylinder experiments at 700 oC and 1 GPa (Wohlers & Manning, 2009, Chem. Geol., 262, 310). Upon cooling from high-pressure and high temperature, slow kinetics of corundum regrowth lead to oversaturation in the solutions, as evidenced by sharp peaks at 930 and 1066 cm-1 observed upon cooling. These features are probably due to colloidal aluminum hydroxide. The results provide the first evidence for aluminate polymerization at high pressure and temperature, and offer insights into the causes for enhancement of

  14. Phase transformations in lithium aluminates irradiated with neutrons

    International Nuclear Information System (INIS)

    Carrera, L.M.; Delfin L, A.; Urena N, F.; Basurto, R.; Bosch, P.

    2003-01-01

    The lithium aluminate like candidate to be used in the coverings producers of tritium in the fusion nuclear reactors, presents high resistance to the corrosion to the one to be stuck to structural materials as special steels. However, the crystallographic changes that take place in the cover that is continually subjected to irradiation with neutrons, can alter its resistance to the corrosion. In this work the changes of crystalline structure are shown that they present two types of nano structures of lithium aluminates, subjected to an average total dose 7.81 x 10 8 Gy in the fixed irradiation system of capsules of the one TRIGA Mark lll nuclear reactor of the Nuclear Center of Mexico. The studied nano structures presented only phase transformations without formation of amorphous material. (Author)

  15. The determination of hydroxide and carbonate in concentrated sodium chloride solutions

    NARCIS (Netherlands)

    Roolvink, W.B.; Bos, M.

    1980-01-01

    A computer method for the determination of carbonate and hydroxide in concentrated (2.89 M) sodium chloride solutions is described. The method is based on multiparametric curve-fitting and can also be applied to salts of dibasic acids with unknown equilibrium constants. The systematic error is not

  16. Volumetric and isentropic compressibility behaviour of aqueous solutions of (polyvinylpyrrolidone + sodium citrate) at T = (283.15 to 308.15) K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Ziamajidi, Fatemeh

    2007-01-01

    The apparent specific volumes and isentropic compressibilities have been determined for polyvinylpyrrolidone in aqueous solutions of sodium citrate by density and sound velocity measurements at T = (283.15 to 308.15) K at atmospheric pressure. The results show a positive transfer volume of PVP from an aqueous solution to an aqueous sodium citrate solution. For low concentrations of PVP, the apparent specific volumes of PVP in water increased along with an increase in the polymer mass fraction, while in aqueous sodium citrate solutions decreased along with an increase in the polymer mass fraction. For high concentrations of PVP, the apparent specific volumes of PVP in water and in aqueous sodium citrate solutions were independent of the polymer mass fraction. The apparent specific isentropic compressibility of PVP is negative at T = (283.15 and 288.15) K, which imply that the water molecules around the PVP molecules are less compressible than the water molecules in the bulk solutions. The positive values of apparent specific isentropic compressibility at T = (298.15, 303.15, and 308.15) K imply that the water molecules around the PVP molecules are more compressible than the water molecules in the bulk solutions. Finally, it was found that the apparent specific isentropic compressibility of PVP increases as the concentration of sodium citrate increases

  17. A drift chamber constructed of aluminized mylar tubes

    Science.gov (United States)

    Baringer, P.; Jung, C.; Ogren, H. O.; Rust, D. R.

    1987-03-01

    A thin reliable drift chamber has been constructed to be used near the interaction point of the PEP storage ring in the HRS detector. It is composed of individual drift tubes with aluminized mylar walls.

  18. Optimization of a Strontium Aluminate

    Energy Technology Data Exchange (ETDEWEB)

    Bone, Alexandria N. [Maryville College, TN (United States)

    2017-08-01

    Strontium aluminate with Eu2+ and Dy3+ has been at the forefront of emerging applications for storage phosphors since its discovery in 1996. In this study, the emission intensity and luminescence lifetime of SrAl2O4: Eu2+, Dy3+ were enhanced by partial substitution of Ca2+ into Sr2+ sites in the matrix.

  19. Re-examining the prospects of aluminous cements based on alkali-earth and rare-earth oxides

    International Nuclear Information System (INIS)

    Chatterjee, A.K.

    2009-01-01

    In the family of aluminous cements the potential of strontium aluminate, the strontium-barium aluminate and the barium aluminate cements have been sporadically and incoherently studied over several decades in various parts of the world and more particularly in the East European countries without much wide-spread commercial success. Attempts had also been made to extend the exploratory studies to the (Ca, Sr, Ba)O-Al 2 O 3 -ZrO 2 -HfO 2 system to synthesize super-refractory binders. In fact, the above compositions, prima facie, seem to have the potential of arriving at cementitious formulations that, apart from being super-refractory, may as well be highly resistant to seawater, X-rays and gamma radiation. Looking at these potentials, quite a few experimental studies have been carried out under the guidance and supervision of the present author. The present paper is an endeavour to collate the data on some of these systems both from the published literature as well as from the author's findings. The prime motive has been to review and re-assess the prospects of manufacturing a range of new aluminous binders with superior properties.

  20. Comparative tribological studies of duplex surface treated AISI 1045 steels fabricated by combinations of plasma nitriding and aluminizing

    International Nuclear Information System (INIS)

    Haftlang, Farahnaz; Habibolahzadeh, Ali; Sohi, Mahmoud Heydarzadeh

    2014-01-01

    Highlights: • AlN coating was applied on AISI 1045 steel via plasma nitriding and aluminizing. • Aluminizing of pre-nitrided specimen provides the highest surface hardness. • The lowest wear rate was obtained via aluminizing of pre-nitrided specimen. • Wear mechanism of the modified layer consists of oxidative and spallung wear. - Abstract: Duplex surface treatments via aluminizing and plasma nitriding were carried out on AISI 1045 steel. A number of work pieces were aluminized and subsequently plasma nitrided (Al–PN) and other work pieces were plasma nitrided and then aluminized (PN–Al). Aluminizing was carried out via pack process at 1123 K for 5 h and plasma nitriding was performed at 823 K for 5 h. The fabricated steels were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and microhardness testing. Tribological behaviors of the duplex treated AISI 1045 steels were examined against tungsten carbide pin using a pin-on-disc apparatus at room temperature. The PN–Al specimen showed higher surface hardness, lower wear rate and coefficient of friction than the Al–PN one. It was noticed from the worn surfaces that tribo-oxidation plays an important role in wear behavior of both specimens

  1. A drift chamber constructed of aluminized mylar tubes

    International Nuclear Information System (INIS)

    Baringer, P.; Jung, C.; Ogren, H.O.; Rust, D.R.

    1987-01-01

    A thin reliable drift chamber has been constructed to be used near the interaction point of the PEP storage ring in the HRS detector. It is composed of individual drift tubes with aluminized mylar walls. (orig.)

  2. Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration

    Directory of Open Access Journals (Sweden)

    Jefferson Luiz de Aguiar Paes

    2014-10-01

    Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

  3. Indium sulfide precipitation from hydrochloric acid solutions of calcium and sodium chlorides

    International Nuclear Information System (INIS)

    Kochetkova, N.V.; Bayandina, Yu.E.; Toptygina, G.M.; Shepot'ko, A.O.

    1988-01-01

    The effect of precipitation duration, acid concentration, indium complexing with chloride ions on the process of indium sulfide chemical precipitation in hydrochloric acid solutions, precipitate composition and dispersity are studied. It is established that indium sulfide solubility increases in solutions with acid concentration exceeding 0.40-0.45 mol/l. Calcium and indium chloride addition to diluted hydrochloric solutions greatly increases the solubility of indium sulfide. The effect of calcium chloride on In 2 S 3 solubility is higher than that of sodium chloride

  4. Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Bingqiao Yang

    2018-06-01

    Full Text Available In this work, the hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions has been investigated through the measurement of agglomeration degree and fractal dimension. The results showed that the agglomeration degree of apatite fines and agglomerates morphology was strongly depended on sodium oleate concentration, pH, stirring speed and time. Better agglomeration degree and more regular agglomerates were achieved at sodium oleate concentration of 5 × 10−5 mol/L under neutral condition. The critical stirring speed for agglomerates rupture was 1000 rev/min, above which, prolonged stirring time would cause breakage and restructure of the agglomerates after a certain stirring time, resulting in lower agglomeration degree and more regular agglomerates. The agglomeration degree of apatite fines could be greatly enhanced with the addition of emulsified kerosene, but only if the apatite surface was hydrophobic enough. Keywords: Hydrophobic agglomeration, Apatite fines, Agglomeration degree, Fractal dimension, Sodium oleate

  5. Lithium aluminates and tritium production

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Palacios G, O.; Bosch G, P.

    1997-01-01

    In this work it is studied the crystalline structure of lithium aluminates prepared by three different methods, namely: solid state reaction, humid reaction and sol-gel reaction. The analysis methods are the X-ray diffractometry and the scanning and transmission electron microscopy. This study is realized as in original materials as in irradiated materials at the TRIGA Mark reactor, to correlate the synthesis method with response of these materials to the mixed irradiation of nuclear reactor. (Author)

  6. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    Science.gov (United States)

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  7. Halting of the calcium aluminate cement hydration process

    International Nuclear Information System (INIS)

    Luz, A.P.; Borba, N.Z; Pandolfelli, V.C.

    2011-01-01

    The calcium aluminate cement reactions with water lead to the anhydrous phases dissolution resulting a saturated solution, followed by nucleation and crystal growth of the hydrate compounds. This is a dynamic process, therefore, it is necessary to use suitable methods to halt the hydration in order to study the phase transformations kinetics of such materials. In this work two methods are evaluated: use of acetone and microwave drying, aiming to withdraw the free water and inhibit further reactions. X ray diffraction and thermogravimetric tests were used to quantify the phases generated in the cement samples which were kept at 37 deg C for 1 to 15 days. The advantages and disadvantages of those procedures are presented and discussed. The use of microwave to halt the hydration process seems to be effective to withdraw the cement free water, and it can further be used in researches of the refractory castables area, endodontic cements, etc. (author)

  8. Sodium bicarbonate versus isotonic saline solution to prevent contrast-induced nephropathy : a systematic review and meta-analysis.

    Science.gov (United States)

    Zapata-Chica, Carlos Andres; Bello Marquez, Diana; Serna-Higuita, Lina Maria; Nieto-Ríos, John Fredy; Casas-Arroyave, Fabian David; Donado-Gómez, Jorge Hernando

    2015-09-30

    Contrast-induced nephropathy is one of the main causes of acute kidney injury and increased hospital-acquired morbidity and mortality. The use of sodium bicarbonate for nephroprotection has emerged as a preventative strategy; however, its efficacy is controversial compared to other strategies, such as hydration using 0.9% saline solution. To compare the effectiveness of sodium bicarbonate vs. hydration using 0.9% saline solution to prevent contrast-induced acute kidney injury. A systematic review of studies registered in the COCHRANE, PUBMED, MEDLINE, LILACS, SCIELO and EMBASE databases was conducted. Randomized controlled studies that evaluated the use of 0.9% saline solution vs. sodium bicarbonate to prevent contrast-induced nephropathy were included. A total of 22 studies (5,686 patients) were included. Sodium bicarbonate did not decrease the risk of contrast-induced nephropathy (RD= 0.00; 95% CI= -0.02 to 0.03; p= 0.83; I(2)= 0%). No significant differences were found in the demand for renal replacement therapy (RD= 0.00; 95% CI= -0.01 to 0-01; I(2)= 0%; p= 0.99) or in mortality (RD= -0.00; 95% CI= -0.001 to 0.001; I(2)= 0%; p= 0.51). Sodium bicarbonate administration is not superior to the use of 0.9% saline solution for preventing contrast-induced nephropathy in patients with risk factors, nor is it better at reducing mortality or the need for renal replacement therapy.

  9. Influence of lithium and boron ions on calcium sulfo-aluminate cement hydration: application for the conditioning of boron ion exchange resins

    International Nuclear Information System (INIS)

    Dhoury, Melanie

    2015-01-01

    In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one. In this PhD study, the potential of calcium sulfo-aluminate cements (CSAC) to solidify/stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye-elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study. Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye-elimite is strongly slowed

  10. Effect of aluminizing on hardenability of steel (S45C)

    Science.gov (United States)

    Prayitno, D.; Sugiarto, R.

    2018-01-01

    The objective of research is to know the effect of aluminizing on hardenability of steel (S45C). The research methodologies were as follows. The Steels (S45C) were machined into the Jominy test samples. Next the samples were preheating at 700 ° C for 30 minutes and then the samples were dipped into the molten of aluminium for 3 minutes as a hot dip aluminizng method. The aluminium molten was 700 ° C. Then the samples were cooled into room temperatures. Finally the samples were into the jominy tested. The results show that the aluminizing (include the preheating process) increases the hardenability of steel (S45C).

  11. Analysis of the Sodium Recirculation Theory of Solute Coupled Water Transport in Small Intestine

    DEFF Research Database (Denmark)

    Larsen, E. H.; Sørensen, Jens Nørkær; Sørensen, J. B.

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions....... The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward...

  12. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Liu Min; Wang Lili; Zhu Lanying; Li Hui; Sun Dezhi; Di Youying; Li Linwei

    2010-01-01

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h xy , h xxy , and h xyy ) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h xy between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  13. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liu Min, E-mail: panpanliumin@163.co [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Wang Lili [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Zhu Lanying [College of Life Science and Bioengineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Li Hui; Sun Dezhi; Di Youying; Li Linwei [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China)

    2010-07-15

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h{sub xy}, h{sub xxy}, and h{sub xyy}) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h{sub xy} between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  14. THE ROLE OF METAL ION ON PHYSIOCHEMICAL PROPERTIES OF METAL ALUMINATES PREPARED BY IMPREGNATION METHOD

    Directory of Open Access Journals (Sweden)

    S. Komeili

    2017-03-01

    Full Text Available A series of MAl2O4 (M=Ni, Zn, and Cu aluminates were prepared by using impregnation method; the metal content of the products was ranged between 5wt% to 25wt%. The samples were characterized by x-ray diffraction (XRD, Brunauer Emmett Teller (BET surface area, NH3 temperature-programmed desorption (NH3-TPD, and inductively coupled argon plasma (ICP. The specific surface areas of zinc, nickel and copper aluminates were in the ranges of 47-77m2/g, 63-87m2/g and 1.6-3m2/g, respectively. The surface acidity decreased in the order of CuAl2O4<< NiAl2O4< ZnAl2O4<< Al2O3. By increasing the amount of metals in the samples, the number of acidic sites decreased, but their strength did not significantly change. Ni-aluminates have fewer acidic sites than Zn-aluminates, particularly in strong acid sites

  15. Thermophysical properties of sodium nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Pruess, Karsten

    2001-01-01

    Understanding movement of saline sodium nitrate (NaNO 3 ) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO 3 solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of NaNO 3 solutions on both salt concentration and temperature, which were determined by fitting from published measured data. Because the previous studies of thermophysical behavior of sodium chloride (NaCl) solutions can provide a basis for those of NaNO 3 solutions, we also present a comparison of thermophysical properties of both salt solutions. We have implemented the functional thermophysical properties of NaNO 3 solutions into a new TOUGH2 equation-of-state module EWASG-NaNO 3 , which is modified from a previous TOUGH2 equation-of-state module EWASG for NaCl. Using the simulation tool, we have investigated effects of the thermophysical properties on fluid flow in unsaturated media. The effect of density and viscosity of saline solutions has been long recognized. Here we focus our attention on the effect of vapor pressure lowering due to salinity. We present simulations of a one-dimensional problem to study this salinity-driven fluid flow. A number of simulations were performed using different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline environment. Effects of permeability on water flow are also complicated by effects of capillary pressure and tortuosity. The

  16. Compatibility of electrolytically produced sodium hypochlorite solutions on long- term implanted dialysis catheters.

    Science.gov (United States)

    Mishkin, G J

    2007-01-01

    More than 20% of the world's population use a catheter for dialysis, despite guidelines limiting their use. Although the structure and design of the catheters differ by manufacturer, the material used in central venous catheters and peritoneal dialysis catheters are the same across manufacturers. Given the long-term use of these catheters in the dialysis population, the good compatibility of the antiseptics and disinfectants used on the catheters is imperative to prevent failure and cracking of the catheter material. Tensile strengths of commercially available catheters were measured after exposure to commonly used disinfectants. The tensile strength was then compared between the catheters by analyzing the displacement vs. force (N) curves produced during the evaluation. A total of 44 catheter lumens were evaluated. The electrolytically produced sodium hypochlorite solution, Alcavis 50/ExSept Plus, was the only solution shown to be compatible with all three catheter materials resulting in a deviation of less than 10% for each of the different catheter types. Electrolytically produced sodium hypochlorite solutions were the only solutions in this study that did not alter the physical properties of any of the catheters after long-term exposure.

  17. High toughness alumina/aluminate: The role of hetero-interfaces

    International Nuclear Information System (INIS)

    Brito, M.E.; Yasuoka, M.; Kanzaki, S.

    1996-01-01

    Silica doped alumina/aluminate materials present a combination of high strength and high toughness not achieved before in other alumina systems, except for transformation toughened alumina. The authors have associated the increase in toughness to crack bridging by anisotropically grown alumina grains with concurrent interfacial debonding of these grains. A HREM study of grain boundaries and hetero-interface structures in this material shows the absence of amorphous phases at grain boundaries. Local Auger electron analysis of fractured surfaces revealed the coexistence of Si and La at the grain facets exposed by the noticeable intergranular fracture mode of this material. It is concluded that a certain and important degree of boundaries weakness is related to both presence of Si at the interfaces and existence of alumina/aluminate hetero-interfaces

  18. On the influence of molecular structure on the conductivity of electrolyte solutions - sodium nitrate in water

    Directory of Open Access Journals (Sweden)

    H. Krienke

    2013-01-01

    Full Text Available Theoretical calculations of the conductivity of sodium nitrate in water are presented and compared with experimental measurements. The method of direct correlation force in the framework of the interionic theory is used for the calculation of transport properties in connection with the associative mean spherical approximation (AMSA. The effective interactions between ions in solutions are derived with the help of Monte Carlo and Molecular Dynamics calculations on the Born-Oppenheimer level. This work is based on earlier theoretical and experimental studies of the structure of concentrated aqueous sodium nitrate solutions.

  19. Interaction of sodium monoborate and boric acid with some mono- and disaccharides in aqueous solutions (from data on isomolar solutions method)

    International Nuclear Information System (INIS)

    Shvarts, E.M.; Ignash, R.T.; Belousova, R.G.

    2000-01-01

    Interaction of sodium monoborate Na[B(OH) 4 ] and boric acid with D-glucose, D-fructose, D-saccharose and D-lactose in aqueous solution depending on the solution total concentration is studied through the method of isomolar solutions with application of conductometry and polarimetry. It is shown by the D-glucose and D-fructose examples that the method of isomolar solutions leads to results compatible with the data obtained by other methods and it may be applied to other saccharides [ru

  20. Interaction of cadmium and indium nitrate mixture with sodium tungstate in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Belousova, E E; Krivobok, V I; Gruba, A I [Donetskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1982-01-01

    The interaction of the mixture of cadmium and indium nitrates with sodium tungstate in aqueous solution is studied using the methods of ''residual concentrations'', pH potentiometry and conductometry. Independent of the ratio of components in the initial solution a mixture of coprecipitated normal tungstates of cadmium and indium is formed in the system. Heat treatment of the precipitates at 800 deg C for 50 hrs with subsequent hardening results in the formation of solid solutions on the basis of normal cadmium and indium tungstates.

  1. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    Directory of Open Access Journals (Sweden)

    Bikić Farzet H.

    2010-01-01

    Full Text Available The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper, the influence of chemical bonding of chlorides with aluminates during the process of cement hydration on corrosion of steel bars in concrete was investigated. The process of chlorides bonding with aluminates yielding monochloride aluminate is monitored by XRD analyses. It was found that the amount of chlorides bonding with aluminates increases with an increase of temperature, and as a result, reduces the amount of 'free' chlorides in concrete. Potentiodynamic measurements have shown that increase in temperature of the heat treatment of working electrodes by chlorides leads to a reduction of steel bars corrosion as a result of either the increase of the monochloride-aluminate content or the decrease of free chlorides amount. Chlorides bound in chloroaluminate hydrates do not cause activation of steel bars corrosion in concrete. It was also proven that the increase of free chlorides concentration in the concrete leads to intensification of steel bars corrosion. This additionally approves that free chlorides are only the activators of process of steel bars corrosion in the concrete.

  2. Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior.

    Science.gov (United States)

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-09-01

    Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.

  3. Calcium aluminate cement hydration in a high alkalinity environment

    Directory of Open Access Journals (Sweden)

    Palomo, Á.

    2009-03-01

    Full Text Available The present paper forms part of a broader research project that aims primarily to devise new cementitious products via the alkali activation of silico-aluminous materials. This work addresses the possibility of using small percentages of calcium aluminate cement (CAC as a source of reactive aluminium. For this reason, a preliminary review was needed of the behaviour of CACs in highly alkaline media (2, 8 and 12M NaOH solutions. Two, 28- and 180-day mechanical strength was determined and the reaction products were characterized with XRD and FTIR. The water-hydrated CAC was used as the control.The results obtained showed that CAC hardening took place much more slowly in highly alkaline media than in water. Nonetheless, the 28-day compressive strength obtained, ≥80MPa. As main reaction products, to ambient temperature and from the two days of cured, cubic aluminate C3AH6, and AH3 polymorphs are formed, instead of the usual hexagonal aluminatos (CAH10 and C2AH8 that are formed in the normal hydrate with water.El presente trabajo forma parte de una amplia investigación cuyo objetivo principal es el de elaborar nuevos materiales con propiedades cementantes mediante la activación alcalina de materiales de naturaleza silito-aluminosa. En estos estudios se contempla la posibilidad de utilizar pequeños porcentajes de cemento de aluminato de calcio (CAC como fuente de aluminio reactivo. Por ello inicialmente se ha estudiado el comportamiento de los CAC en medios fuertemente alcalinos (disoluciones de NaOH 2M, 8M y 12M. Se determinaron las resistencias mecánicas a 2, 28 y 180 días y se realizó una caracterización de los productos de reacción formados por DRX, FTIR. Como sistema de referencia se consideró la hidratación del CAC con agua.Los resultados obtenidos muestran que en medios fuertemente alcalinos se retrasan los procesos de rápido endurecimiento de CAC con agua. No obstante a 28 días se obtienen valores de resistencia a compresión

  4. A MODERN INTERPRETATION OF THE BARNEY DIAGRAM FOR ALUMINUM SOLUBILITY IN TANK WASTE

    International Nuclear Information System (INIS)

    Reynolds, J.G.; Reynolds, D.A.

    2009-01-01

    Experimental and modeling studies of aluminum solubility in Hanford tank waste have been developed and refined for many years in efforts to resolve new issues or develop waste treatment flowsheets. The earliest of these studies was conducted by G. Scott Barney, who performed solubility studies in highly concentrated electrolyte solutions to support evaporator campaign flowsheets in the 1970's. The 'Barney Diagram', a term still widely used at Hanford today, suggested gibbsite (γ-Al(OH) 3 ) was much more soluble in tank waste than in simple sodium hydroxide solutions. These results, which were highly surprising at the time, continue to be applied to new situations where aluminum solubility in tank waste is of interest. Here, we review the history and provide a modern explanation for the large gibbsite solubility observed by Barney, an explanation based on basic research that has been performed and published in the last 30 years. This explanation has both thermodynamic and kinetic aspects. Thermodynamically, saturated salt solutions stabilize soluble aluminate species that are minor components in simple sodium hydroxide solutions. These species are the aluminate dimer and the sodium-aluminate ion-pair. Ion-pairs must be present in the Barney simulants because calculations showed that there was insufficient space between the highly concentrated ions for a water molecule. Thus, most of the ions in the simulants have to be ion-paired. Kinetics likely played a role as well. The simulants were incubated for four to seven days, and more recent data indicate that this was unlikely sufficient time to achieve equilibrium from supersaturation. These results allow us to evaluate applications of the Barney results to current and future tank waste issues or flowsheets.

  5. Effective extractants for the extraction of lithium from aqueous solutions containing sodium and potassium compounds

    International Nuclear Information System (INIS)

    Marinkina, G.A.; Zanina, A.S.; Shergina, S.I.; Sokolov, I.E.; Kotlyarevskii, I.L.

    1992-01-01

    The extraction power of newly obtained pure methoxy-1,3-diketones in diluents and in their mixtures with electron-donating additives during the extraction of lithium from aqueous solutions containing sodium and potassium was investigated. High separation factors were obtained; no appreciable amounts of sodium and potassium were found in the extract after total extraction of the lithium. 9 refs., 2 figs., 8 tabs

  6. Density, thermal expansion coefficient and viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions at high temperatures

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Measurements have been performed of the density, of the volumetric thermal expansion coefficient and of the viscosity of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. The viscosity measurements have been performed for the solution of sodium tetraborate with UO 2 and CeO 2 , and with CeO 2 only as well. These data are required for the design of core-catchers based on sodium borates. The density measurements have been performed with the buoyancy method in the temperature range from 825 0 C to 1300 0 C, the viscosity measurements in the temperature range 700-1250 0 C with a modified Haake viscosity balance. The balance was previously calibrated at ambient temperature with a standard calibration liquid and at high temperatures, with data for pure borax available from the literature. (orig.)

  7. Influence of aluminium source on the crystal structure and framework coordination of Al and Si in fly ash-based zeolite NaA

    CSIR Research Space (South Africa)

    Ameh, AE

    2017-01-01

    Full Text Available In this study zeolite NaA with different crystal sizes and % crystallinity was prepared from a clear solution extract of fused fly ash. Sodium aluminate or aluminium hydroxide was used to adjust the aluminium content in the fused fly ash extract...

  8. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route

    International Nuclear Information System (INIS)

    Saberi, Ali; Golestani-Fard, Farhad; Sarpoolaky, Hosein; Willert-Porada, Monika; Gerdes, Thorsten; Simon, Reinhard

    2008-01-01

    Nanocrystalline magnesium aluminate spinel (MgAl 2 O 4 ) was synthesized using metal nitrates, citric acid and ammonium solutions. The precursor and the calcined powders at different temperatures were characterized by X-ray diffraction (XRD), simultaneous thermal analysis (STA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The combustion mechanism was also studied by a quadrupole mass spectrometer (QMS) which coupled to STA. The generated heat through the combustion of the mixture of ammonium nitrate and citrate based complexes decreased the synthesis temperature of MgAl 2 O 4 spinel. The synthesized MgAl 2 O 4 spinel at 900 deg. C has faced shape with crystallite size in the range of 18-24 nm

  9. Clinical application of sodium hyaluronate,levarterenol and indicarmine solution in endoscopic submucosal dissection

    Directory of Open Access Journals (Sweden)

    Fei GAO

    2011-07-01

    Full Text Available Objective To assess the clinical value of sodium hyaluronate,levarterenol and indicarmine solution used in endoscopic submucosal dissection(ESD.Methods Sixteen patients were involved in present study who were diagnosed as precancerous lesion or submucosal tumor in digestive tract by chromoendoscopy and endoscopic ultrasonography from Nov,2010 to Feb,2011 at General Hospital of Shenyang Command.The injected solution was mixed with 0.2% indicarmine 10ml,levarterenol 10mg,sodium hyaluronate 20mg,and 0.9% normal saline 200ml.The liquid pad was formed under the submucosal layer by the injection of the mixture.Hybrid knife was employed to perform the injection,cutting and coagulation with no interruption during the procedure of ESD.Satisfactory degree was assessed,and the total solution volume,success rate,bleeding rate,perforation rate,operation duration,and length of stay in hospital were recorded.The recurrence and healing condition were observed at following-up.Results The length of lesion was 0.8~4.5cm with mean of 2.2cm.The operation duration was 45~240 min with an mean time of 95.4 min.The mean dosage of the mixed solution for submucosal injection was 102.4ml.Success rate of endoscopic submucosal dissection was 87.5%.The satisfactory degree was high.Intractable bleeding occurred in 2 cases with lateral spreading tumor(LST during the procedure,but it was controlled after high temperature coagulation without producing perforation.The dissection surface was covered by aluminum phosphate gel in all cases,and metal clips were applied in some cases for closure.The mean length of stay in hospital after ESD was 3.8 days.Conclusions The mixture of sodium hyaluronate,levarterenol,indicarmine and normal saline,when used for submucosal injection in ESD,is safe and satisfactory.

  10. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  11. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  12. The preparation of lithium aluminate by the hydrolysis of lithium and aluminum alkoxides

    International Nuclear Information System (INIS)

    Turner, C.W.; Clatworthy, B.C.; Gin, A.Y.H.

    1987-10-01

    Lithium aluminate was prepared by heating the hydrolysis products from various combinations of lithium and aluminum alkoxides under an atmosphere of nitrogen. The product was β-LiA1O 2 when aluminum iso-propoxide was a starting material, whereas γ-LiA1O 2 was the product for preparations starting with aluminum n-butoxide. The results were independent of the choice of lithium alkoxide. The hydrolysis of aluminum sec-butoxide with a solution of LiOH led to the γ phase as well. The temperature at which the γ phase developed depended upon the conditions of the hydrolysis reaction and was observed at a temperature as low as 550 degrees Celcius

  13. Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C–S–H(I)

    KAUST Repository

    Oh, Jae Eun

    2012-05-01

    This study explores the reaction products of alkali-activated Class C fly ash-based aluminosilicate samples by means of high-resolution synchrotron X-ray diffraction (HSXRD), scanning electron microscope (SEM), and compressive strength tests to investigate how the readily available aluminum affects the reaction. Class C fly ash-based aluminosilicate raw materials were prepared by incorporating Na-aluminate into the original fly ashes, then alkali-activated by 10 M NaOH solution. Incorporating Na-aluminate reduced the compressive strength of samples, with the reduction magnitude relatively constant regardless of length of curing period. The HSXRD provides evidence of the co-existence of C-S-H with geopolymeric gels and strongly suggests that the C-S-H formed in the current system is C-S-H(I). The back-scattered electron images suggest that the C-S-H(I) phase exists as small grains in a finely intermixed form with geopolymeric gels. Despite providing extra source of aluminum, adding Na-aluminate to the mixes did not decrease the Si/Al ratio of the geopolymeric gel. © 2012 Elsevier Ltd.

  14. Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C–S–H(I)

    KAUST Repository

    Oh, Jae Eun; Moon, Juhyuk; Oh, Sang-Gyun; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-01

    This study explores the reaction products of alkali-activated Class C fly ash-based aluminosilicate samples by means of high-resolution synchrotron X-ray diffraction (HSXRD), scanning electron microscope (SEM), and compressive strength tests to investigate how the readily available aluminum affects the reaction. Class C fly ash-based aluminosilicate raw materials were prepared by incorporating Na-aluminate into the original fly ashes, then alkali-activated by 10 M NaOH solution. Incorporating Na-aluminate reduced the compressive strength of samples, with the reduction magnitude relatively constant regardless of length of curing period. The HSXRD provides evidence of the co-existence of C-S-H with geopolymeric gels and strongly suggests that the C-S-H formed in the current system is C-S-H(I). The back-scattered electron images suggest that the C-S-H(I) phase exists as small grains in a finely intermixed form with geopolymeric gels. Despite providing extra source of aluminum, adding Na-aluminate to the mixes did not decrease the Si/Al ratio of the geopolymeric gel. © 2012 Elsevier Ltd.

  15. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gardas, Ramesh L; Tangeda, Savitha Jyostna

    2015-01-01

    Highlights: • Solvation behaviour of diclofenac drug studied in aqueous solutions. • Density and speed of sound of drug in aq. glycine and L-proline are measured. • Hydrophobic nature of diclofenac sodium salt is studied. • Effect of temperature on solvation of diclofenac sodium salt is analysed. - Abstract: Apparent molar volume (V 2,ϕ ) and apparent molar isentropic compressibility (K s,2,ϕ ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg −1 in (0.01, 0.03 and 0.05) mol · kg −1 aqueous glycine and L-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V 2,ϕ and K s,2,ϕ . These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/L-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions

  16. Calcium aluminates potential for endodontics and orthopedics applications

    International Nuclear Information System (INIS)

    Santos, G.L. dos; Andrade, T.L.; Oliveira, I.R.; Pandolfelli, V.C.

    2011-01-01

    The mostly used material in the areas of endodontics (MTA, mineral trioxide aggregate) and bone reconstruction (PMMA, polymethyl methacrylate) present some limiting properties requiring thus changes in their compositions as well as the development of alternative materials. In this context, a novel biomaterial-based calcium aluminate cement (CAC) has been studied in order to keep the positive properties and clinical applications of MTA and PMMA, overcoming some their disadvantages. Recent studies involving the use of CAC are based on commercial products consisting of a mixture of phases. Improvements can be attained by searching the synthesis routes of CAC aiming the proper balance between the phases and the control of impurities that may impair its performance in applications in the areas of health. By the optimization of the CAC phases production, this article aims to present their characterization based on hydration temperature; working time and setting time; pH, ions solubilization and dissolution in contact with water and different solutions of simulated body fluid. The results indicated the CA phase as the most suitable for application in the areas of health. (author)

  17. Inhibition of copper corrosion in sodium chloride solution by the self-assembled monolayer of sodium diethyldithiocarbamate

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Q.Q., E-mail: liaoqq1971@yahoo.com.c [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Yue, Z.W.; Yang, D. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Wang, Z.H. [Department of Chemistry, Tongji University, Shanghai 200092 (China); Li, Z.H. [Department of Chemistry, Fudan University, Shanghai 200433 (China); Ge, H.H. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Li, Y.J. [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2011-05-15

    Research highlights: DDTC is of low toxicity. DDTC SAM had good corrosion inhibition effects on copper in 3% NaCl solution. DDTC SAM was chemisorbed on copper surface by its S atoms. - Abstract: Sodium diethyldithiocarbamate (DDTC) self-assembled monolayer (SAM) on copper surface has been investigated by SERS and EDS and the results show that DDTC SAM is chemisorbed on copper surface by its S atoms with tilted orientation. Corrosion inhibition ability of DDTC SAM was measured in 3% NaCl solution using electrochemical methods. The impedance results indicate that the maximum inhibition efficiency of DDTC SAM can reach 99%. Quantum chemical calculations show that DDTC has relatively small {Delta}E between HOMO and LUMO and large negative charge in its two sulfur atoms, which facilitates the formation of a DDTC SAM on copper surface.

  18. The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2014-03-01

    Full Text Available The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reservedReceived: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014. The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 1-15. (doi:10.9767/bcrec.9.1.4899.1-15[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15

  19. On structural, optical and dielectric properties of zinc aluminate ...

    Indian Academy of Sciences (India)

    reports on the dielectric properties of this material is very rarely found in literature. ... C placed on a heating man- ... and dielectric loss of the material using the equation ε = ε tan δ, ..... ble mechanism of a.c. conduction in zinc aluminate particles.

  20. Visco-Elastic Properties of Sodium Hyaluronate Solutions

    Science.gov (United States)

    Kulicke, Werner-Michael; Meyer, Fabian; Bingöl, Ali Ö.; Lohmann, Derek

    2008-07-01

    Sodium Hyaluronate (NaHA) is a member of the glycosaminoglycans and is present in the human organism as part of the synovial fluid and the vitreous body. HA is mainly commercialized as sodium or potassium salt. It can be extracted from cockscombs or can be produced by bacterial fermentation ensuring a low protein content. Because of its natural origin and toxicological harmlessness, NaHA is used to a great extent for pharmaceutical and cosmetic products. In medical applications, NaHA is already being used as a component of flushing and stabilizing fluids in the treatment of eye cataract and as a surrogate for natural synovial fluid. Another growing domain in the commercial utilization of NaHA is the field of skin care products like dermal fillers or moisturizers. In this spectrum, NaHA is used in dilute over semidilute up to concentrated (0solutions. In order to optimize NaHA samples for their specific utilization and to find new applications, it is of great interest to understand its viscoelastic behavior. We therefore present in this contribution the results of a comprehensive investigation of the viscous and elastic material functions of different NaHA samples. This includes, besides shear flow and oscillatory experiments, the performance of rheo-optical measurements in order to determine the elastic component in the range of low shear rates and low concentrations.

  1. Irradiation and corrosion behaviour of cadmium aluminate, a burnable poison for light water reactors

    International Nuclear Information System (INIS)

    Hattenbach, K.; Ahlf, J.; Hilgendorff, W.; Zimmermann, H.U.

    1979-01-01

    In quest of a cadmium containing material for use as burnable poison cadmium aluminate seemed promising. Therefore irradiation and corrosion experiments on specimens of cadmium aluminate in a matrix of aluminia were performed. Irradiation at 575 K and fast fluences up to 10 25 m -2 showed the material to have good radiation resistance and low swelling rates. Cadmium pluminate was resistant to corrosion attack in demineralized water of 575K. (orig.) [de

  2. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    Science.gov (United States)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  3. Advanced intermediate temperature sodium copper chloride battery

    Science.gov (United States)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  4. Assessing the effectiveness of 30% sodium chloride aqueous solution for the preservation of fixed anatomical specimens: a 5-year follow-up study.

    Science.gov (United States)

    de Oliveira, Fabrício Singaretti

    2014-07-01

    Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. © 2014 Anatomical Society.

  5. Inactivation of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 on tomatoes using sodium dodecyl sulphate, levulinic acid and sodium hypochlorite solution

    Directory of Open Access Journals (Sweden)

    Oluwatosin Ademola Ijabadeniyi

    2017-04-01

    Full Text Available The effectiveness of sodium dodecyl sulphate (SDS, sodium hypochlorite solution and levulinic acid in reducing the survival of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 was evaluated. The results against heat adapted L. monocytognes revealed that sodium hypochlorite solution was the least effective, achieving log reduction of 2.75, 2.94 and 3.97 log colony forming unit (CFU/mL for 1, 3 and 5 minutes, respectively. SDS was able to achieve 8 log reduction for both heat adapted and chlorine adapted bacteria. When used against chlorine adapted L. monocytogenes sodium hypochlorite solution achieved log reduction of 2.76, 2.93 and 3.65 log CFU/mL for 1, 3 and 5 minutes, respectively. Using levulinic acid on heat adapted bacteria achieved log reduction of 3.07, 2.78 and 4.97 log CFU/mL for 1, 3, 5 minutes, respectively. On chlorine adapted bacteria levulinic acid achieved log reduction of 2.77, 3.07 and 5.21 log CFU/mL for 1, 3 and 5 minutes, respectively. Using a mixture of 0.05% SDS and 0.5% levulinic acid on heat adapted bacteria achieved log reduction of 3.13, 3.32 and 4.79 log CFU/mL for 1, 3 and 5 minutes while on chlorine adapted bacteria it achieved 3.20, 3.33 and 5.66 log CFU/mL, respectively. Increasing contact time also increased log reduction for both test pathogens. A storage period of up to 72 hours resulted in progressive log reduction for both test pathogens. Results also revealed that there was a significant difference (P≤0.05 among contact times, storage times and sanitizers. Findings from this study can be used to select suitable sanitizers and contact times for heat and chlorine adapted L. monocytogenes in the fresh produce industry.

  6. Function of magnesium aluminate hydrate and magnesium nitrate ...

    Indian Academy of Sciences (India)

    MgO was added both as spinel (MgAl2O4) forming precursor i.e. magnesium aluminate hydrate, and magnesium nitrate. Sintering investigations were conducted in the temperature range 1500–1600°C with 2 h soaking. Structural study of sintered pellets was carried out by extensive XRD analysis. Scanning electron mode ...

  7. Zinc-aluminates for an in situ sulfur reduction in cracked gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Quintana-Solorzano, R.; Valente, J.S.; Hernandez-Beltran, F.J.; Castillo-Araiza, C.O. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152 C.P., 07730 Mexico, D.F. (Mexico)

    2008-05-30

    Using additives remains as an attractive alternative for an in situ sulfur reduction in cracked gasoline since it is a practical, flexible and economical option. Zinc-aluminates prepared by the sol-gel method are used as additives for reducing sulfur in gasoline from the cracking of a high-sulfur feed in a fixed-bed bench reactor. Products distribution and feed conversion are not dramatically altered after incorporating the additive to the base catalyst with some effect on gasoline and its octane number and coke. A decrease in the gasoline sulfur content of up to 35 wt% including benzothiophene, and up to 50% excluding benzothiophene, is observed when blending the zinc-aluminates to the base catalyst, which is caused by lowering the C{sub 1} to C{sub 4} alkyl-thiophenes content. The zinc content of the zinc-aluminates has a positive effect on the gasoline sulfur reduction. It is suggested that together with the direct cracking of adsorbed thiophenic species on the additive, a further gasoline sulfur decrease is possible through cracking of saturated thiophenic species formed by hydrogenation of adsorbed thiophenic species with hydrogen produced in situ in the additive. The obtained results also demonstrate that solids with higher Lewis acidity are not unfailingly the most effective for gasoline sulfur reduction. (author)

  8. Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.

    Science.gov (United States)

    Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim

    2017-09-01

    The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.

  9. Electrical transport properties of calcium and barium aluminates

    NARCIS (Netherlands)

    Metselaar, R.; Hoefsloot, A.M.

    1987-01-01

    Electrical conductivity and ionic transport numbers have been measured of barium and calcium aluminates with composition CaO·nAl2O3 (n=7/12, 1, 2, 6) and 0.82 BaO·6Al2O3. At room temperatures these compounds are insulators, but at high temperatures mixed conductivity is observed. Ionic transport

  10. The radiation chemistry of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate

    International Nuclear Information System (INIS)

    Burchill, C.E.; Smith, D.M.; Charlton, J.L.

    1976-01-01

    The 60 Co γ-radiolysis of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate has been studied in acidic, unbuffered, and alkaline conditions and with addition of N 2 O and 2-propanol. Mechanisms are proposed to account for the yields of H 2 O 2 and hydroxylated anthraquinone sulfonates. In neutral solution, in the absence of O 2 , the OH and e - adducts undergo preferential cross termination. Reduction of the OH adduct leads to dehydration and regeneration of the quinone. (author)

  11. Study on the utilization of a sodium-sulfuric acid solution for the uranium minerals' leaching

    International Nuclear Information System (INIS)

    Echenique, Patricia; Fruchtenicht, Fernando; Gil, Daniel; Vigo, Daniel; Bouza, Angel; Vert, Gabriela; Becquart, Elena

    1988-01-01

    Argentine uranium minerals have been leached at bench scale with a different agent trying to reduce sulfuric acid consumption. The leaching agent was a sodium sulfate-sulfuric acid solution and the ore was from Sierra Pintada (San Rafael - Mendoza). The work was performed in stirred vessel at atmospheric pressure. The influence of different variables, pH, temperature, oxidant agent, sodium sulfate concentration and time, in the sulfuric acid consumption and the uranium yield was studied. (Author) [es

  12. Use of 8.4% Sodium Bicarbonate in Buffering Commonly Administered Vancomycin Hydrochloride Solutions for Use with Midline or Peripheral Line Catheters.

    Science.gov (United States)

    Puertos, Enrique; Spencer, Melissa

    2015-01-01

    The primary objective of this study was to evaluate the use of 8.4% sodium bicarbonate in the buffering of commonly administered vancomycin hydrochloride solutions for use with midline or peripheral line catheters. Nine admixtures of vancomycin hydrochloride were aseptically prepared for this study. Vancomycin hydrochloride solutions were prepared in triplicates in the following strengths, 1 gram, 2 grams, and 3 grams, which were added to 250-mL bags of sodium chloride 0.9% injection (with overfill). To each prepared solution of vancomycin hydrochloride, 0.5 mL of 8.4% sodium bicarbonate was added. The pH was measured to obtain a baseline level. At day 9, the pH of each sample was measured and compared to those at baseline. The osmolality of each sample was also measured. There was no statistical difference in the pH at baseline and at day 9 (α = 0.05, P = 0.347). A solution of vancomycin hydrochloride that is compounded in 250 mL of sodium chloride 0.9% injection (including overfill) and buffered with 0.5 mL of 8.4% sodium bicarbonate maintained a pH in the range of 5 to 9 and an osmolality in the range of 150 mOsm/kg to 500 mOsm/kg.

  13. The influence of low oxygen and contaminated sodium environments on the fatigue behavior of solution treated AISI 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P [CEGB, BNL, Berkeley (United Kingdom)

    1977-07-01

    The influence of air and sodium environments on the fatigue properties of solution treated AISI 316 steel was studied by predictive methods and by conducting tests in air, in high temperature sodium, or following pre-exposure to sodium. The sodium environments studied included contaminated sodium or the products of sodium/water flames possibly typical of fast reactor fault conditions, and low oxygen sodium more appropriate to normal plant operation. Generally, fatigue properties were reduced by contaminated sodium or the products of sodium/water flames and improved by low oxygen sodium when compared with similar tests conducted in air. However, complex effects were observed with respect to crack initiation. The experimental results are discussed and generally follow trends predicted by physically based fatigue models. (author)

  14. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-12-01

    Full Text Available The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5 were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel in hydrogen cyanide in the presence of sodium benzoate/sodium sulphite inhibitive mixtures range 0.322mmpy to 1.1269mmpy across the three volumetric ratios considered. The 15ml5ml sodium benzoatesodium sulphite mixture had the best average corrosion rate of 0.5123mmpy.The corrosion rate followed reducing pattern after the first 200 hours of immersion. The average corrosion rate in the sodium benzoate / sodium sulphite mixture is less than the rate in sodium sulphite and the mixture is only effective after long time exposure.It is concluded that adding sodium benzoate to sodium sulphite in the volumetric ratio 155ml improves the inhibitive strength of sodium sulphite on the corrosion of mild steel in hydrogen cyanide environment.

  15. Effect of radioactive chromate on the corrosion and polarisation of mild steel in sodium chloride solution

    International Nuclear Information System (INIS)

    Subramanyan, N.; Ramakrishnaiah, K.; Iyer, S.V.; Kapali, V.

    1980-01-01

    Corrosion tests of mild steel in 0.01% sodium chloride containing radioactive chromate and non-radioactive chromate have been carried out. It has been observed that the labelled sodium chromate has a deleterious effect on the inhibitive action of non-radioactive chromate. The effect of radioactive chromate on the potentiostatic polarization of m.s. in sodium chloride solution containing non-radioactive sodium chromate has also been studied. It is observed that both the cathodic and the anodic polarisation of the metal is diminished in the presence of radioactive chromate. The behaviour of the system in the presence of radioactive chromate is attributed both to the action of depolarisers produced by radiolysis of water and to the effect of gamma radiation on the metal. (author)

  16. Development of sodium disposal technology. Experiment of sodium compound solidification process

    International Nuclear Information System (INIS)

    Matsumoto, Toshiyuki; Ohura, Masato; Yatoh, Yasuo

    2007-07-01

    A large amount of sodium containing radioactive waste will come up at the time of final shutdown/decommission of FBR plant. The radioactive waste is managed as solid state material in a closed can in Japan. As for the sodium, there is no established method to convert the radioactive sodium to solid waste. Further, the sodium is highly reactive. Thus, it is recommended to convert the sodium to a stable substance before the solidification process. One of the stabilizing methods is conversion of sodium into sodium hydroxide solution. These stabilization and solidification processes should be safe, economical, and efficient. In order to develop such sodium disposal technology, nonradioactive sodium was used and a basic experiment was performed. Waste-fluid Slag Solidification method was employed as the solidification process of sodium hydroxide solution. Experimental parameters were mixing ratio of the sodium hydroxide and the slag solidification material, temperature and concentration of the sodium hydroxide. The best parameters were obtained to achieve the maximum filling ratio of the sodium hydroxide under a condition of enough high compressive strength of the solidified waste. In a beaker level test, the solidified waste was kept in a long term and it was shown that there was no change of appearance, density, and also the compressive strength was kept at a target value. In a real scale test, homogeneous profiles of the density and the compressive strength were obtained. The compressive strength was higher than the target value. It was shown that the Waste-fluid Slag Solidification method can be applied to the solidification process of the sodium hydroxide solution, which was produced by the stabilization process. (author)

  17. Bioavailability and biochemical effects of diclofenac sodium 0.1% ophthalmic solution in the domestic chicken (Gallus gallus domesticus).

    Science.gov (United States)

    Griggs, Angela N; Yaw, Taylor J; Haynes, Joseph S; Ben-Shlomo, Gil; Tofflemire, Kyle L; Allbaugh, Rachel A

    2017-03-01

    To determine if topical ophthalmic diclofenac sodium 0.1% solution alters renal parameters in the domestic chicken, and to determine if the drug is detectable in plasma after topical ophthalmic administration. Thirty healthy domestic chickens. Over 7 days, six birds were treated unilaterally with one drop of artificial tear solution (group 1), 12 birds were treated unilaterally (group 2) and 12 bilaterally (group 3) with diclofenac sodium 0.1% ophthalmic solution. Treatments were provided every 12 h in all groups. Pre- and post-treatment plasma samples from all birds were evaluated for changes in albumin, total protein, and uric acid. Post-treatment samples of all birds, collected 15 min post-administration, were analyzed by high-performance liquid chromatography with mass spectrometry for diclofenac sodium detection. A randomly selected renal sample from each group was submitted for histopathologic review. Changes in pre- and post-treatment plasma albumin were significant (P Ophthalmic diclofenac sodium 0.1% administered topically every 12 h in one or both eyes for 7 days is detectable in systemic circulation in the domestic chicken, but does not cause overt significant changes in plasma uric acid or total protein. © 2016 American College of Veterinary Ophthalmologists.

  18. Ion microprobe analyses of aluminous lunar glasses - A test of the 'rock type' hypothesis

    Science.gov (United States)

    Meyer, C., Jr.

    1978-01-01

    Previous soil survey investigations found that there are natural groupings of glass compositions in lunar soils and that the average major element composition of some of these groupings is the same at widely separated lunar landing sites. This led soil survey enthusiasts to promote the hypothesis that the average composition of glass groupings represents the composition of primary lunar 'rock types'. In this investigation the trace element composition of numerous aluminous glass particles was determined by the ion microprobe method as a test of the above mentioned 'rock type' hypothesis. It was found that within any grouping of aluminous lunar glasses by major element content, there is considerable scatter in the refractory trace element content. In addition, aluminous glasses grouped by major elements were found to have different average trace element contents at different sites (Apollo 15, 16 and Luna 20). This evidence argues that natural groupings in glass compositions are determined by regolith processes and may not represent the composition of primary lunar 'rock types'.

  19. Study of damages by neutron irradiation in lithium aluminates

    International Nuclear Information System (INIS)

    Palacios G, O.

    1999-01-01

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile (≅ 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of γ -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  20. Investigation of barium-calcium aluminate process to manufacture and characterize impregnated thermionic cathode for power microwave devices

    International Nuclear Information System (INIS)

    Higashi, Cristiane

    2006-01-01

    In the present work it is described the barium calcium aluminate manufacture processes employed to produce impregnated cathodes to be used in a traveling-wave tube (TWT). The cathodes were developed using a tungsten body impregnated with barium and calcium aluminate with a 5:3:2 proportion (molar). Three different processes were investigated to obtain this material: solid-state reaction, precipitation and crystallization. Thermal analysis, thermogravimetry specifically, supported to determine an adequate preparation procedure (taking into account temperature, time and pyrolysis atmosphere). It was verified that the crystallization showed a better result when compared to those investigated (solid-state reaction and precipitation techniques - formation temperature is about 1000 deg C in hydrogen atmosphere), whereas it presented the lower formation temperature (800 deg C) in oxidizing atmosphere (O 2 ). It was used the practical work function distribution theory (PWFD) of Miram to characterize thermionic impregnated cathode. The PWFD curves were used to characterize the barium-calcium aluminate cathode. PWFD curves shown that the aluminate cathode work function is about 2,00 eV. (author)

  1. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  2. Surface properties of aqueous amino acid solutions II. Leucine-leucine hydrochloride and leucine-sodium leucinate mixtures.

    Science.gov (United States)

    Matubayasi, Norihiro; Matsuyama, Shohei; Akizuki, Ryosuke

    2005-08-15

    To understand the distinction between the effects of zwitterionic, anionic, and cationic l-leucine upon adsorption and lateral interactions at air/water surface, the surface tensions of aqueous solutions of l-leucine-l-leucine hydrochloride and l-leucine-sodium l-leucinate mixtures were measured as a function of concentration and composition at 25 degrees C. The surface activity decreases in the order l-leucine >l-leucine hydrochloride > sodium l-leucinate. Both l-leucine hydrochloride and sodium l-leucinate form gaseous adsorbed films through the experimentally accessible concentration range, while the adsorbed film of zwitterionic l-leucine shows a transition between gaseous and expanded film.

  3. In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode

    OpenAIRE

    Yuhki Yui; Masahiko Hayashi; Jiro Nakamura

    2016-01-01

    Electrochemical sodium deposition/dissolution behaviors in propylene carbonate-based electrolyte solution were observed by means of in situ light microscopy. First, granular sodium was deposited at pits in a sodium electrode in the cathodic process. Then, the sodium particles grew linearly from the electrode surface, becoming needle-like in shape. In the subsequent anodic process, the sodium dissolved near the base of the needles on the sodium electrode and the so-called ?dead sodium? broke a...

  4. Process of transformation of radioactive waste of metal sodium into soda solution by reaction with an alcohol followed by hydrolysis

    International Nuclear Information System (INIS)

    Chevalier, Gerard; Mathurin, Rene.

    1981-09-01

    Reviews of the literature and of the laboratory tests are followed by a presentation of the results obtained during experiments carried out on a model with some ten grams of sodium contaminated by radioactive materials and on an industrial pre-pilot with several kilograms of non-contaminated sodium. Sodium is converted into alcoholate through the action of ethylcarbitol (CH 3 CH 2 OCH 2 CH 2 OCH 2 OH) on liquid sodium in suspension in xylene at 110 deg C. Once the reaction is complete, xylene is distillated and the alcoholate is in solution in an axcess of alcohol. Hydrolysis by water gives out the initial alcohol which is then extracted from the aqueous phase by toluene. All these operations are carried out in inert atmosphere (nitrogen). Sodium is thus converted into a sodium hydroxide aqueous solution with emission of hydrogen, the intermediate products (alcohol, xylene, toluene) being recyled. The process is reliable and recycling of organic products is favourable economically. The advantage of the method is to concentrate nearly all the radioactivity of the contaminated sodium in the aqueous phase, thus avoiding the dispersion of activity especially with the gaseous effluents. Finally, data are given allowing to consider the realization of a pilot with a weekly capacity of 100 kg of sodium, in semi-continuous operation [fr

  5. Effect of use of socially marketed faucet fitted earthen vessel/sodium hypochlorite solution on diarrhea prevention at household level in rural India

    Directory of Open Access Journals (Sweden)

    AR Dongre

    2008-07-01

    Full Text Available Objective: To evaluate the effect of socially marketed faucet fitted to earthen vessel / sodium hypochlorite solution on diarrhea prevention at rural household level as a social intervention for diarrhea prevention under ‘Community Led Initiatives for Child Survival (CLICS program. Methods: Unmatched case-control study was carried out in 10 villages of Primary Health Centre, Anji, located in rural central India. During the study period, 144 households used either faucet fitted earthen vessel to store drinking water or used sodium hypochlorite solution (SH for keeping drinking water safe. These served as case households for the present study. 213 neighborhood control households from same locality who used neither of the methods were also selected. Results: Odds ratio for households who used faucets fitted to earthen vessel was 0.49 (95% CI= 0.25 – 0.95. Odds ratio for households who used sodium hypochlorite solution was 0.55 (95% CI= 0.31 – 0.98. Use of these methods by the community, would prevent about 27 percent and 22 percent cases of the diarrhea (Population attributable risk proportion = 0.25 by faucets fitted to earthen vessels and 0.22 by use of sodium hypochlorite solution respectively. Conclusion: To ensure safe drinking water at household level, the effective and cheap methods like fitting faucet to traditionally used earthen vessel and/or use of sodium hypochlorite solution must be promoted through community participation at household level for cost and culture sensitive rural people in India.

  6. Gas sensing behaviour of cerium oxide and magnesium aluminate

    Indian Academy of Sciences (India)

    Gas sensing behaviour of cerium oxide and magnesium aluminate composites ... A lone pairof the electron state was identified from the electro paramagnetic ... carbon monoxide (CO) (at 0.5, 1.0 and 1.5 bar) and ethanol (at 50 and 100 ppm) was ... The magnitude of the temperature varied linearly regardless of the gas ...

  7. Antimicrobial activity of a sodium hypochlorite/etidronic acid irrigant solution.

    Science.gov (United States)

    Arias-Moliz, Maria Teresa; Ordinola-Zapata, Ronald; Baca, Pilar; Ruiz-Linares, Matilde; Ferrer-Luque, Carmen María

    2014-12-01

    The aim of this study was to evaluate the antimicrobial activity of a 2.5% sodium hypochlorite (NaOCl)/9% etidronic acid (HEBP) irrigant solution on Enterococcus faecalis growing in biofilms and a dentinal tubule infection model. The antimicrobial activity of the solutions 2.5% NaOCl and 9% HEBP alone and associated was evaluated on E. faecalis biofilms grown in the Calgary biofilm model (minimum biofilm eradication concentration high-throughput device). For the dentinal tubule infection test, the percentage of dead cells in E. faecalis-infected dentinal tubules treated with the solutions for 10 minutes was measured using confocal laser scanning microscopy and the live/dead technique. Available chlorine and pH of the solutions were also measured. Distilled water was used as the control. Nonparametric tests were used to determine statistical differences. The highest viability was found in the distilled water group and the lowest in the NaOCl-treated dentin (P antimicrobial activity inside dentinal tubules, without statistical differences between the 2 (P chlorine within 60 minutes. HEBP did not interfere with the ability of NaOCl to kill E. faecalis grown in biofilms and inside dentinal tubules. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Sodium fluxes in sweet pepper exposed to varying sodium concentrations

    NARCIS (Netherlands)

    Blom-Zandstra, M.; Vogelzang, S.A.; Veen, B.W.

    1998-01-01

    The sodium transport and distribution of sweet pepper (Capsicum annuum L.) under saline conditions were studied after transferring the plants to a sodium-free nutrient solution. Sodium stress up to 60 mM did not affect the growth of sweet pepper, as it appears able to counteract the unfavourable

  9. Solution-mediated phase transformation of haloperidol mesylate in the presence of sodium lauryl sulfate.

    Science.gov (United States)

    Greco, Kristyn; Bogner, Robin

    2011-09-01

    Forming a salt is a common way to increase the solubility of a poorly soluble compound. However, the solubility enhancement gained by salt formation may be lost due to solution-mediated phase transformation (SMPT) during dissolution. The SMPT of a salt can occur due to a supersaturated solution near the dissolving surface caused by pH or other solution conditions. In addition to changes in pH, surfactants are also known to affect SMPT. In this study, SMPT of a highly soluble salt, haloperidol mesylate, at pH 7 in the presence of a commonly used surfactant, sodium lauryl sulfate (SLS), was investigated. Dissolution experiments were performed using a flow-through dissolution apparatus with solutions containing various concentrations of SLS. Compacts of haloperidol mesylate were observed during dissolution in the flow-through apparatus using a stereomicroscope. Raman microscopy was used to characterize solids. The dissolution of haloperidol mesylate was significantly influenced by the addition of sodium lauryl sulfate. In conditions where SMPT was expected, the addition of SLS at low concentrations (0.1-0.2 mM) reduced the dissolution of haloperidol mesylate. In solutions containing concentrations of SLS above the critical micelle concentration (CMC) (10-15 mM), the dissolution of haloperidol mesylate increased compared to below the CMC. The solids recovered from solubility experiments of haloperidol mesylate indicated that haloperidol free base precipitated at all concentrations of SLS. Above 5 mM of SLS, Raman microscopy suggested a new form, perhaps the estolate salt. The addition of surfactant in solids that undergo solution-mediated phase transformation can add complexity to the dissolution profiles and conversion.

  10. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  11. One-step microwave synthesis of photoluminescent carbon nanoparticles from sodium dextran sulfate water solution

    Science.gov (United States)

    Kokorina, Alina A.; Goryacheva, Irina Y.; Sapelkin, Andrei V.; Sukhorukov, Gleb B.

    2018-04-01

    Photoluminescent (PL) carbon nanoparticles (CNPs) have been synthesized by one-step microwave irradiation from water solution of sodium dextran sulfate (DSS) as the sole carbon source. Microwave (MW) method is very simple and cheap and it provides fast synthesis of CNPs. We have varied synthesis time for obtaining high luminescent CNPs. The synthesized CNPs exhibit excitation-dependent photoluminescent. Final CNPs water solution has a blue- green luminescence. CNPs have low cytotoxicity, good photostability and can be potentially suitable candidates for bioimaging, analysis or analytical tests.

  12. Lithium aluminate/zirconium material useful in the production of tritium

    Science.gov (United States)

    Cawley, W.E.; Trapp, T.J.

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  13. Use of commercial sodium hypochlorite solutions in respect to the quality of the products

    OpenAIRE

    Gjorgjeska, Biljana; Kovacevska, Ivona; Dimova, Cena

    2012-01-01

    Sodium hypochlorite is the most popular solution for root canal irrigation in stomatology practice. NaOCl ionizes in water into hypochlorite ion OCl-, establishing an equilibrium with hypochlorous acid (HOCl). At acidic and neutral pH, chlorine exists predominantly as HOCl, whereas at high pH of 9 and above, OCl- predominates.

  14. Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Bon-Heun KOO; Chan-Gyu LEE; Young-Joo KIM; Sung-Hun LEE; Eungsun BYON

    2009-01-01

    Plasma electrolytic oxidation(PEO) processes were carried out to produce ceramic layers on 6061 aluminum substrates in four kinds of electrolytes such as silicate and aluminate solution with and without sodium fluorosilicate. The PEO processes were carried out under a hybrid voltage (260 V DC combined with 200 V, 60 Hz AC amplitude) at room temperature for 5 min. The composition, microstructure and element distribution analyses of the PEO-treated layers were carried out by XRD and SEM & EDS. The effect of the electrolyte contents on the growth mechanism, element distribution and properties of oxide layers were studied. It is obvious that the layers generated in aluminate solutions show smoother surfaces than those in silicate solutions. Moreover, an addition of fluorine ion can effectively control the layer porosity; therefore, it can enhance the properties of the layers.

  15. Solution interactions of diclofenac sodium and meclofenamic acid sodium with hydroxypropyl methylcellulose (HPMC).

    Science.gov (United States)

    Pygall, Samuel R; Griffiths, Peter C; Wolf, Bettina; Timmins, Peter; Melia, Colin D

    2011-02-28

    Many pharmaceutical agents require formulation in order to facilitate their efficacious delivery. However, the interaction between the active species and the formulation additives has the potential to significantly influence the pharmocokinetics of the active. In this study, the solution interactions between hydroxypropyl methylcellulose (HPMC) with two non-steroidal anti-inflammatories - the sodium salts of diclofenac and meclofenamate - were investigated using tensiometric, rheological, NMR, neutron scattering and turbidimetric techniques. The two drugs behaved very differently-meclofenamate addition to HPMC solutions led to substantial increases in viscosity, a depression of the gel point and a marked reduction in the self-diffusion coefficient of the drug, whereas diclofenac did not induce these changes. Collectively, these observations are evidence of meclofenamate forming self-assembled aggregates on the HPMC, a phenomenon not observed with diclofenac Na. Any process that leads to aggregation on a nonionic polymer will not be strongly favoured when the aggregating species is charged. Thus, it is hypothesised that the distinction between the two drugs arises as a consequence of the tautomerism present in meclofenamate that builds electron density on the carbonyl group that is further stabilised by hydrogen bonding to the HPMC. This mechanism is absent in the diclofenac case and thus no interaction is observed. These studies propose for the first time a molecular basis for the observed often-unexpected, concentration-dependant changes in HPMC solution properties when co-formulated with different NSAIDs, and underline the importance of characterising such fundamental interactions that have the potential to influence drug release in solid HPMC-based dosage forms. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Determination of chloride and sulphur in sodium by ion chromatography and its application to PFBR sodium samples

    International Nuclear Information System (INIS)

    Vijayalakshmi, S.; Ushalakshmi, K.

    2011-01-01

    Analytical method using ion chromatography was developed for the determination of chloride and sulphur in sodium. In this method, sodium was dissolved in water and various sulphur species present in the sample was oxidized to sulphate using hydrogen peroxide. Carbon dioxide gas was passed through the solution to convert sodium hydroxide to carbonate solution. The resulting sample solution was analysed using suppressed Ion chromatography employing carbonate eluent. This method was applied to the analysis of sodium samples procured for prototype fast breeder reactor. (author)

  17. Fracture of nickel-titanium superelastic alloy in sodium hypochlorite solution

    International Nuclear Information System (INIS)

    Yokoyama, Ken'ichi; Kaneko, Kazuyuki; Yabuta, Eiji; Asaoka, Kenzo; Sakai, Jun'ichi

    2004-01-01

    Fracture of the Ni-Ti superelastic alloy for endodontic instruments such as files was investigated with a sustained tensile-loading test in sodium hypochlorite (NaOCl) solution of various concentrations. It was found that the time to fracture was reduced when the applied stress exceeded the critical stress for martensite transformation. When the applied stress was higher than the critical stress, the 0.3 mm diameter wires of the Ni-Ti superelastic alloy sometimes fractured within 60 min. From the results of observations of the fracture surface using a scanning electron microscope, it was revealed that the fracture of the Ni-Ti superelastic alloy is significantly influenced by corrosion when the applied stress was higher than the critical stress for martensite transformation. The results of the present study suggest that one of the causes of the fracture of Ni-Ti files during clinical use is corrosion under the applied stress above the critical stress for martensite transformation in NaOCl solution

  18. Facile Fabrication of a Hierarchical Superhydrophobic Coating with Aluminate Coupling Agent Modified Kaolin

    Directory of Open Access Journals (Sweden)

    Hui Li

    2013-01-01

    Full Text Available A superhydrophobic coating was fabricated from the dispersion of unmodified kaolin particles and aluminate coupling agent in anhydrous ethanol. Through surface modification, water contact angle of the coating prepared by modified kaolin particles increased dramatically from 0° to 152°, and the sliding angle decreased from 90° to 3°. Scanning electron microscopy was used to examine the surface morphology. A structure composed of micro-nano hierarchical component, combined with the surface modification by aluminate coupling agent which reduced the surface energy greatly, was found to be responsible for the superhydrophobicity. The method adopted is relatively simple, facile, and cost-effective and can potentially be applied to large water-repellent surface coatings.

  19. Evaluation of sodium lignin sulfonate as draw solute in forward osmosis for desert restoration

    KAUST Repository

    Duan, Jintang

    2014-03-01

    Sodium lignin sulfonate (NaLS), an abundant waste product of paper manufacturing, can be used in desert restoration. Combined with water and applied on arid land, NaLS has been shown to stabilize sand and provide a medium for plant growth. Here, we demonstrate that NaLS is an efficient draw solute in forward osmosis (FO) to extract water from impaired sources. The osmotic pressure of a 600. g. NaLS/kg water solution is 78. bar (7.8 MPa) as measured by freezing point depression. The FO performance using NaLS draw solute was evaluated with commercial FO membranes under various test conditions. The effects of draw solute concentration, feed salinity and membrane orientation were systematically investigated. Potential ways to optimize the process, e.g. combining fertilizer draw solutes and NaLS, are proposed. © 2013 Elsevier B.V.

  20. Complex crystals formed in the aqueous solution of copper(I) iodide and sodium iodide

    International Nuclear Information System (INIS)

    Sugasaka, Kazuhiko; Fujii, Ayako

    1977-01-01

    Crystals of different crystal habits were separated from the copper(I) iodide and sodium iodide solution and the thermal changes of the composition of copper(I) iodide and sodium iodide complexes were studied by chemical analysis, thermal analysis and X-ray diffractometry. Granular and columnar crystals were determined to be copper(I) iodide and sodium iodide dihydrate by X-ray diffraction analysis, respectively. Needle crystal (A) which was separated from the solution at 25 0 C was assumed to be Na 2 CuI 3 .6H 2 O. (A) was stable in its appearance in the air, but the X-ray diffraction pattern of (A) changed. Needle crystal (B) which was recrystallized at 10 0 C from mother liquor after the separation of crystal (A) was assumed to be NaCuI 2 .4H 2 O. (B) was hygroscopic and decomposed to precipitate copper(I) iodide with moisture in the air. (A) and (B) were found to change by heating and or drying, respectively, as follows: Na 2 CuI 3 .6H 2 O → (-2H 2 O, 80 0 C) → 2NaI.2H 2 O + CuI → (-4H 2 O, 160 0 C) → 2NaI + CuI → (+1/2O 2 , 450 0 C) → 2NaI + CuO + 1/2I 2 , NaCuI 2 .4H 2 O → (-4H 2 O, Dried) → NaI + CuI. (auth.)

  1. Reduction of potassium permanganate solution by γ-irradiated sodium chloride [Paper No. RD-21

    International Nuclear Information System (INIS)

    Phansalkar, V.K.; Ravishankar, D.

    1982-01-01

    The dissolution of γ-irradiated sodium chloride in potassium permanganate solution results in the reduction of MnO 4 - ions. This has been inferred from spectrophotometric studies. This has been explained on the basis of interaction of colour centres with MnO 4 - ions. The extent to which MnO 4 - ions are reduced are found to vary with

  2. Improved water and sodium absorption from oral rehydration solutions based on rice syrup in a rat model of osmotic diarrhea.

    Science.gov (United States)

    Wapnir, R A; Litov, R E; Zdanowicz, M M; Lifshitz, F

    1991-04-01

    Rice syrup solids, rice protein, and casein hydrolysate were added to experimental oral rehydration solutions in various combinations and tested in a rat intestinal perfusion system. Chronic osmotic diarrhea was induced in juvenile rats by supplying the cathartic agents, magnesium citrate and phenolphthalein, in their drinking water for 1 week. The experimental oral rehydration solutions were compared with standard oral rehydration solutions containing 20 gm/L or 30 gm/L of glucose and with each other to determine if there were significant differences in net water, sodium, or potassium absorption. An oral rehydration solution containing 30 gm/L of rice syrup solids had a net water absorption rate significantly higher than that of the standard 20 gm/L glucose-based oral rehydration solution (2.1 +/- 0.62 versus 1.5 +/- 0.48 microliters/[min x cm], p less than 0.05). Casein hydrolysate did not significantly affect net water absorption. However, combinations of 30 gm/L rice syrup solids and 5 gm/L casein hydrolysate significantly increased (p less than 0.05) net sodium and potassium absorption compared with the 20 gm/L glucose-based oral rehydration solution but not versus rice syrup solids alone. Oral rehydration solutions containing 30 gm/L rice syrup solids plus 5 gm/L rice protein, and 30 gm/L rice syrup solids plus 5 gm/L casein hydrolysate, had net water absorption rates significantly higher than the rate of a 30 gm/L glucose-based oral rehydration solution (2.5 +/- 0.36 and 2.4 +/- 0.38, respectively, versus 0.87 +/- 0.40 microliters/[min x cm], p less than 0.05). Rice protein and casein hydrolysate, however, did not significantly affect net water, sodium, or potassium absorption when added to rice protein glucose-based oral rehydration solutions. An inverse correlation between osmolality and net water absorption was observed (r = -0.653, p less than 0.02). The data suggest that substitution of rice syrup solids for glucose in oral rehydration solutions will

  3. Physical Compatibility of Magnesium Sulfate and Sodium Bicarbonate in a Pharmacy-compounded Bicarbonate-buffered Hemofiltration Solution

    Science.gov (United States)

    Moriyama, Brad; Henning, Stacey A.; Jin, Haksong; Kolf, Mike; Rehak, Nadja N.; Danner, Robert L.; Walsh, Thomas J.; Grimes, George J.

    2011-01-01

    PURPOSE To assess the physical compatibility of magnesium sulfate and sodium bicarbonate in a pharmacy-compounded bicarbonate-buffered hemofiltration solution used at the National Institutes of Health Clinical Center (http://www.cc.nih.gov). METHODS Two hemofiltration fluid formulations with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L or 15 mEq/L were prepared in triplicate with an automated compounding device. The hemofiltration solution with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L contains the maximum concentration of additives that we use in clinical practice. The hemofiltration solution of 15 mEq/L of magnesium and 50 mEq/L of bicarbonate was used to study the physicochemical properties of this interaction. The solutions were stored without light protection at 22 to 25 °C for 48 hours. Physical compatibility was assessed by visual inspection and microscopy. The pH of the solutions was assayed at 3 to 4 hours and 52 to 53 hours after compounding. In addition, electrolyte and glucose concentrations in the solutions were assayed at two time points after preparation: 3 to 4 hours and 50 to 51 hours. RESULTS No particulate matter was observed by visual and microscopic inspection in the compounded hemofiltration solutions at 48 hours. Electrolyte and glucose concentrations and pH were similar at both time points after solution preparation. CONCLUSION Magnesium sulfate (1.5 mEq/L) and sodium bicarbonate (50 mEq/L) were physically compatible in a pharmacy-compounded bicarbonate-buffered hemofiltration solution at room temperature without light protection at 48 hours. PMID:20237384

  4. Tritium release from lithium silicate and lithium aluminate, in-reactor and out-of-reactor

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1976-09-01

    Studies were conducted to determine the generation and evolution of tritium and helium in lithium aluminate (LiAlO 2 ) and lithium silicate (Li 2 SiO 3 ) by the reaction: Li 6 + n → 4 He + T. Targets were irradiated 4.4 days in the K-West Reactor snout facility. (Silicate GVR* approximately 2.0 cc/cc; aluminate GVR approximately 1.4 cc/cc.) Gas release in-reactor was determined by post-irradiation drilling experiments on aluminum ampoules containing silicate and aluminate targets. In-reactor tritium release (at approximately 100 0 C) was found to decrease linearly with increasing target density. Tritium released in-reactor was primarily in the noncondensible form (HT and T 2 ), while in laboratory extractions (300-1300 0 C), the tritium appeared primarily in the condensible form (HTO and T 2 O). Concentrations of HT (and presumably HTO) were relatively high, indicating moisture pickup in canning operations or by inleakage of moisture after the capsule was welded. Impurities in extracted gases included H 2 O, CO 2 , CO, O 2 , H 2 , NO, SO 2 , SiF 4 and traces of hydrocarbons

  5. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    OpenAIRE

    Muhammed Olawale Hakeem AMUDA; Olusegun Olusoji SOREMEKUN; Olakunle Wasiu SUBAIR; Atinuke OLADOYE

    2008-01-01

    The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5) were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel i...

  6. Reduction of mercury from mackerel fillet using combined solution of cysteine, EDTA, and sodium chloride.

    Science.gov (United States)

    Hajeb, P; Jinap, S

    2012-06-13

    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.

  7. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    OpenAIRE

    Qingjie Jiao; Qiushi Wang; Jianxin Nie; Xueyong Guo; Wei Zhang; Wenqi Fan

    2018-01-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-...

  8. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  9. FURFURAL YIELD AND DECOMPOSITION IN SODIUM 2,4DIMETHYLBENZENESULFONATE--SULFURIC ACID--WATER SOLUTIONS.

    Science.gov (United States)

    Batch-type microreactors (about 1/40 milliliter of reactants) were used to measure furfural yields from acidified xylose solutions containing sodium...It was found that presence of the salt did not affect the quantity of furfural produced, but greatly increased the rate of formation. The regular...increase in rate of furfural formation was directly related to the increase in the rate xylose decomposition, and furfural yields for all salt and acid

  10. Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate

    International Nuclear Information System (INIS)

    Kurien, Siby; Mathew, Jose; Sebastian, Shajo; Potty, S.N.; George, K.C.

    2006-01-01

    Nanocrystalline nickel aluminate was prepared by chemical co-precipitation, and nanoparticles having different particle size were obtained by annealing the precursor at different temperatures. The TG/DTA measurements showed thermal decomposition was a three-step process with crystallisation of the spinel phase started at a temperature 420 deg. C. The X-ray diffraction analysis confirmed that the specimen began to crystallise on annealing above 420 deg. C and became almost crystalline at about 900 deg. C. The particle sizes were calculated from XRD. Dielectric properties of nickel aluminate were studied as a function of the frequency of the applied ac signal at different temperatures. It was seen the real dielectric constant ε', and dielectric loss tan δ decreased with frequency of applied field while the ac conductivity increased as the frequency of the applied field increased. The dielectric relaxation mechanism is explained by considering nanostructured NiAl 2 O 4 as a carrier-dominated dielectric with high density of hopping charge carriers. The variation of ε' with different particle size depends on several interfacial region parameters, which change with the average particle size

  11. Preparation and application of potassium and sodium titanate for removal of plutonium from basic solution

    International Nuclear Information System (INIS)

    Patil, Prashant; Pathak, Sachin S.; Pius, I.C.; Mukerjee, S.K.

    2014-01-01

    In PUREX process, after extraction and stripping of uranium and plutonium, the extractant, tributyl phosphate is usually washed with sodium carbonate solution before reuse for the removal of radiolytic/hydrolytic degradation products of TBP and small amounts of HNO 3 , uranium and plutonium goes into aqueous phase during carbonate washings. Partial neutralization of carbonate by the acid converts it to bicarbonate. Removal of plutonium from such sodium carbonate/bicarbonate streams facilitates their disposal. In the present work, studies were carried out to prepare inorganic ion-exchangers such as potassium and sodium titanates for their application as ion-exchange material. It is essential to prepare these materials in granular form to obtain good liquid flow property for ion exchange column operations, however, it is also important that the final product is having good surface area and porosity so that they may exhibit good ion exchange capacity

  12. Solubility of hydrogen in aqueous solutions of sodium and potassium bicarbonate from 293 to 333 K

    NARCIS (Netherlands)

    Engel, D.C.; Engel, D.C.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    An experimental study is presented of the hydrogen solubility in aqueous salt solutions containing sodium and potassium bicarbonate from 293 to 333 K. For this purpose, gas consumption measurements have been performed by determining the ultimate pressure decrease in an intensively stirred, high

  13. Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K

    NARCIS (Netherlands)

    Engel, Dico C.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1996-01-01

    An experimental study is presented of the hydrogen solubility in aqueous salt solutions containing sodium and potassium bicarbonate from 293 to 333 K. For this purpose, gas consumption measurements have been performed by determining the ultimate pressure decrease in an intensively stirred, high

  14. Quantitative analysis for the determination of aluminum percentage and detonation performance of aluminized plastic bonded explosives by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rezaei, A. H.; Keshavarz, M. H.; Kavosh Tehrani, M.; Darbani, S. M. R.

    2018-06-01

    The aluminized plastic-bonded explosive (PBX) is a composite material in which solid explosive particles are dispersed in a polymer matrix, which includes three major components, i.e. polymeric binder, metal fuel (aluminum) and nitramine explosive. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy (LIBS) technique in air and argon atmospheres to investigate the determination of aluminum content and detonation performance of aluminized PBXs. Plasma emissions of aluminized PBXs are recorded where atomic lines of Al, C and H as well as molecular bands of AlO and CN are identified. The experimental results demonstrate that a good discrimination and separation between the aluminized PBXs is possible using LIBS and principle component analysis, although they have similar atomic composition. Relative intensity of the AlO/Al is used to determine aluminum percentage of the aluminized PBXs. The obtained quantitative calibration curve using the relative intensity of the AlO/Al is better than the resulting calibration curve using only the intensity of Al. By using the LIBS method and the measured intensity ratio of CN/C, an Al content of 15% is found to be the optimum value in terms of velocity of detonation of the RDX/Al/HTPB standard samples.

  15. Efficient removal of Co(II) from aqueous solution by titanate sodium nanotubes

    Institute of Scientific and Technical Information of China (English)

    Dong-Mei Li; Ning Liu; Fei-Ze Li; Jia-Li Liao; Ji-Jun Yang; Bing Li; Yun-Ming Chen; Yuan-You Yang; Jin-Song Zhang; Jun Tang

    2016-01-01

    In this paper, a novel material for Co(II) adsorption, titanate sodium nanotubes (Na2Ti2O5-NTs) were synthesized and characterized, and then they were used to remove Co(II) from aqueous solution and compared with titanic acid nanotubes (H2Ti2O5-NTs) and potassium hexatitanate whiskers (K2Ti6O13). The results showed that the adsorption of Co(II) on the materials was dependent on pH values and was a spontaneous, endothermic process. Specifically, Na2Ti2O5-NTs exhibited much more efficient ability to adsorb Co(II) from aqueous solution, with the maximum adsorption capacity of 85.25 mg/g. Furthermore, Na2Ti2O5-NTs could selectively adsorb Co(II) from aque-ous solution containing coexisting ions (Na+, K+, Mg2+, and Ca2+). The results suggested that Na2Ti2O5-NTs were potential effective adsorbents for removal of Co(II) or cobalt-60 from wastewater.

  16. Reactivity of non-stoichiometric black alumina; Reactivite des alumines noires non stoechiometriques

    Energy Technology Data Exchange (ETDEWEB)

    Arghiropoulos, B; Elston, J; Hilaire, P; Juillet, F; Teichner, S J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; [Lyon-1 Univ., 69 (France)

    1960-07-01

    Oxides such as alumina, when divided or poorly crystallized, show enhanced physico-chemical properties with respect to those of non-divided crystals of the same solids. A stoichiometric difference may even be produced in the alumina, which brings about a new modification of its properties. However its characteristics of hydrogen chemisorption or of catalytic activity in ethylene hydrogenation do not appear to depend on the stoichiometric difference. (author) [French] Les oxydes, comme l'alumine, divises ou mal cristallises, presentent des proprietes physico-chimiques exaltees par rapport a celles des memes solides en cristaux non divises. Un ecart a la stoechiometrie peut meme etre produit dans l'alumine, ce qui entraine une nouvelle modification de ses proprietes. Toutefois ses caracteristiques de chimisorption d'hydrogene ou d'activite catalytique d'hydrogenation d'ethylene ne semblent pas dependre de l'ecart a la stoechiometrie. (auteur)

  17. Standard test method for evaluating stress-corrosion cracking of stainless alloys with different nickel content in boiling acidified sodium chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method describes a procedure for conducting stress-corrosion cracking tests in an acidified boiling sodium chloride solution. This test method is performed in 25% (by mass ) sodium chloride acidified to pH 1.5 with phosphoric acid. This test method is concerned primarily with the test solution and glassware, although a specific style of U-bend test specimen is suggested. 1.2 This test method is designed to provide better correlation with chemical process industry experience for stainless steels than the more severe boiling magnesium chloride test of Practice G36. Some stainless steels which have provided satisfactory service in many environments readily crack in Practice G36, but have not cracked during interlaboratory testing using this sodium chloride test method. 1.3 This boiling sodium chloride test method was used in an interlaboratory test program to evaluate wrought stainless steels, including duplex (ferrite-austenite) stainless and an alloy with up to about 33% nickel. It may also b...

  18. Study of interaction of bismuth, strontium, calcium copper, lead nitrates solutions with sodium oxalate solution with the aim of HTSC synthesis

    International Nuclear Information System (INIS)

    Danilov, V.P.; Krasnobaeva, O.N.; Nosova, T.A.

    1993-01-01

    With the aim of developing a new technique for HTSC oxides synthesis on the base of combined sedimentation of hydroxy salts and their heat treatment is studied interaction of bismuth, strontium, calcium, copper and lead nitrates with alkali solution of sodium oxalate. Conditions for total sedimentation of all five metals from the solution are found. The phase composition of interaction products is determined. It is established that they are high-dispersed homogeneous mixture of three phases of variable composition: twin hydroxalate of copper-bismuth, lead hydroxalate and twin oxalate of strontium-calcium. After heat treatment of the phases are obtained the HTSC oxides

  19. Fabrication and corrosion behavior of fresh porous silicon in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Lai, Chuan; Li, Xueming; Zhang, Daixiong; Xiang, Zhen; Yang, Wenjing; Guo, Xiaogang

    2014-01-01

    The corrosion behavior of fresh porous silicon (f-PS) in sodium hydroxide (NaOH) solution in the presence and absence of ethanol was studied by weight loss measurements and scanning electron microscope (SEM) technique. The phenomena and progress of f-PS corrosion in 1.0 M NaOH at 318 K was obtained and described. Weight loss measurements show that the corrosion rate increases with increasing temperature and concentration of NaOH solution. Meanwhile, the corrosion rate first increases with increasing volume ratio of ethanol in 1.0 M NaOH, and then decreases. Additionally, the thermodynamic and kinetic parameters (E a , A, ΔH a and ΔS a ) for f-PS corrosion were obtained and discussed. And the effect factors (T, c and v) of f-PS corrosion in NaOH solution were studied in this paper. - Highlights: • The corrosion behavior of f-PS in NaOH solution was studied for the first time. • Phenomena and progress of f-PS corrosion in NaOH solution was obtained and described. • The effect factors (T, c and v) of f-PS corrosion in NaOH solution were studied. • The kinetic and thermodynamic parameters were obtained and discussed. • The corrosion rate can be improved by adding ethanol into NaOH solution

  20. Synthesis and characterization of BaxMgyAl2O4: Eu,Dy nanophosphors prepared using solution-combustion method

    CSIR Research Space (South Africa)

    Kebede, MA

    2011-07-01

    Full Text Available Europium-doped barium magnesium aluminate (BaxMgyAl2O4:Eu) phosphors were obtained at low temperature using the solution-combustion of corresponding metal nitrate-urea solution mixtures. The particle sizes, morphology, structural and luminescent...

  1. Determination of technological parameters for activation of resistant raw materials in solution of alkali and sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Sestager Aknazarov

    2012-03-01

    Full Text Available In the process, studied the factors affecting the degree of opening of hard mineral. The optimal regimes of activation of arsenopyrite in alkaline solutions, salt with the addition of pyrolusite and sodium hypochlorite. The optimum concentration of the reactants in aqueous solution, providing maximum possible transferring the sulfur to soluble compounds and the binding of arsenic in the state of difficultly.

  2. Carbonation of calcium aluminate cement pastes

    Directory of Open Access Journals (Sweden)

    Fernández-Carrasco, L.

    2001-12-01

    Full Text Available This work discusses the results from accelerated tests intended to investigate the ways the different curing methods affect the carbonation of calcium aluminate cements pastes (CAC. The research was focused on the mineralogical composition of hydrated and carbonated samples. The compressive strengths and the porosity of the samples have been determined. Results point out that vaterite and aragonite are formed as a result of carbonation of both cubic and hexagonal calcium aluminate hydrates. The polymorph of calcium carbonate formed does not depend on the curing process. Carbonation rates is higher in hexagonal than in cubic hydrates. Results obtained through this study evidence that, as a consequence of the carbonation process of CAC pastes, in test conditions, an increase of the mechanical strengths occurs.

    En el presente trabajo se discuten los resultados obtenidos en los ensayos acelerados llevados a cabo para investigar los efectos de diferentes métodos de curado sobre la carbonatacion de pastas del cemento de aluminato de calcio (CAC. Se estudió la composición mineralógica de las muestras hidratadas y carbonatadas. Además, se determinaron las resistencias mecánicas a compresión y la porosidad de las probetas. Los resultados indican que la vaterita y el aragonito son las polimorfías del CaCO3 que se forman al carbonatar los aluminatos cálcicos hidratos, tanto los de naturaleza hexagonal como cúbica. El polimorfo del carbonato cálcico formado no depende del proceso de curado. La velocidad de carbonatación de los hidratos hexagonales es mayor que la de los cúbicos. Los resultados obtenidos en el presente trabajo han evidenciado que como consecuencia del proceso de carbonatación sobre pastas de CAC, en las condiciones realizadas, se produce un incremento en las resistencias mecánicas.

  3. Physical and Mechanical Properties of Composites Made with Aluminous Cement and Basalt Fibers Developed for High Temperature Application

    Directory of Open Access Journals (Sweden)

    Pavel Reiterman

    2015-01-01

    Full Text Available Present paper deals with the experimental study of the composition of refractory fiber-reinforced aluminous cement based composites and its response to gradual thermal loading. Basalt fibers were applied in doses of 0.25, 0.5, 1.0, 2.0, and 4.0% in volume. Simultaneously, binder system based on the aluminous cement was modified by fine ground ceramic powder originated from the accurate ceramic blocks production. Ceramic powder was dosed as partial replacement of used cement of 5, 10, 15, 20, and 25%. Influence of composition changes was evaluated by the results of physical and mechanical testing; compressive strength, flexural strength, bulk density, and fracture energy were determined on the different levels of temperature loading. Increased dose of basalt fibers allows reaching expected higher values of fracture energy, but with respect to results of compressive and flexural strength determination as an optimal rate of basalt fibers dose was considered 0.25% in volume. Fine ground ceramic powder application led to extensive increase of residual mechanical parameters just up to replacement of 10%. Higher replacement of aluminous cement reduced final values of bulk density but kept mechanical properties on the level of mixtures without aluminous cement replacement.

  4. The morphology of coating/substrate interface in hot-dip-aluminized steels

    International Nuclear Information System (INIS)

    Awan, Gul Hameed; Hasan, Faiz ul

    2008-01-01

    In hot-dip-aluminized (HAD) steels, the morphology and the profile of the interface between the aluminum coating and the substrate steel, are affected both by the composition of the molten aluminum as well as by the composition, and even the microstructure, of the substrate steel. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The reaction between the steel and the molten aluminum leads to the formation of Fe-Al inter-metallic compounds on the steel surface. The thickness of the inter-metallic compound layer as well as the morphology of the interface between the steel and the interlayer varies with the silicon content of the molten aluminum. In hot-dip-aluminizing with pure aluminum, the interlayer is 'thick' and exhibits a finger-like growth into the steel. With a gradually increasing addition of silicon into the aluminum melt, the thickness of the interlayer decreases while the interface between the interlayer and the substrate gradually becomes 'smoother'. With an increase in the carbon content of the substrate steel the growth of the interlayer into the steel is impeded by the pearlite phase, whereas the ferrite phase appears to dissolve more readily. X-ray diffraction and electron microscopic studies showed that the interlayer formed in samples aluminized in pure aluminum, essentially consisted of orthorhombic Fe 2 Al 5 . It was further observed that the finger-like grains of Fe 2 Al 5 phase exhibited a preferred lattice orientation. With a gradual addition of silicon into the aluminum melt, a cubic phase based on Fe 3 Al also started to form in the interlayer and replaced most of the Fe 2 Al 5

  5. Tritium release from lithium silicate and lithium aluminate, in-reactor and out-of-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.

    1976-09-01

    Studies were conducted to determine the generation and evolution of tritium and helium in lithium aluminate (LiAlO/sub 2/) and lithium silicate (Li/sub 2/SiO/sub 3/) by the reaction: Li/sup 6/ + n ..-->.. /sup 4/He + T. Targets were irradiated 4.4 days in the K-West Reactor snout facility. (Silicate GVR* approximately 2.0 cc/cc; aluminate GVR approximately 1.4 cc/cc.) Gas release in-reactor was determined by post-irradiation drilling experiments on aluminum ampoules containing silicate and aluminate targets. In-reactor tritium release (at approximately 100/sup 0/C) was found to decrease linearly with increasing target density. Tritium released in-reactor was primarily in the noncondensible form (HT and T/sub 2/), while in laboratory extractions (300-1300/sup 0/C), the tritium appeared primarily in the condensible form (HTO and T/sub 2/O). Concentrations of HT (and presumably HTO) were relatively high, indicating moisture pickup in canning operations or by inleakage of moisture after the capsule was welded. Impurities in extracted gases included H/sub 2/O, CO/sub 2/, CO, O/sub 2/, H/sub 2/, NO, SO/sub 2/, SiF/sub 4/ and traces of hydrocarbons.

  6. Data and properties of lithium aluminate γ LiAlO2

    International Nuclear Information System (INIS)

    Denuziere, C.; Roux, N.

    1988-01-01

    In this report are gathered and analysed the literature data until july 1st, 1984, concerning the properties of lithium aluminate γ LiAlO 2 relevant for the investigation of this compound as a tritum breeding material for a fusion reactor blanket. A french version of this report exists

  7. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate

    Science.gov (United States)

    Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi

    2017-07-01

    The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.

  8. Effect of Coating-thickness on the formability of hot dip aluminized steel

    International Nuclear Information System (INIS)

    Awan, G.H.; Ahmed, F.; Hasan, F.

    2008-01-01

    The influence of coating thickness on the formability and ductility of hot-dip-aluminized steel has been determined using a 3-point bend test and optical metallography. The ductility / formability was estimated from the 3-point bend test wherein the angle of bend at which the cracks start to appear on the surface of the aluminized sheet during bending, was taken as an index of the formability / ductility. It was observed that as the amount of silicon in the aluminising melt was gradually increased the measured ductility of the sheet sample also increased. Metallographic examination has shown that as the amount of silicon in the aluminising melt was increased the thickness of the intermediate compound layer, between the outer aluminum coat and the substrate steel, decreased. It was thus indicated from these experiments that the formability / ductility of the sheet was inversely related to the thickness of the interlayer. (author)

  9. Some magnetic resonance properties of solutions of sodium in liquid ammonia; Contribution a l'etude des solutions de sodium dans l'ammoniac liquide par resonance magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-02-01

    Dilute solutions of sodium in liquid ammonia are studied by the mean of dynamic polarization techniques, and with the aid of Becker Lindquist and Alder model. Paramagnetic shifts are computed as a function of the 'average spin density', for each of the nuclear spin system. The nuclear contributions to the Overhauser shift are computed in the same way. A theoretical study of the main relaxation processes is carried out for each of the nuclear spin system and for the electronic spin system. The dynamic polarization experiments consist in classical measurement of the Overhauser enhancement for nitrogen, and in direct measurements of nitrogen Knight shift and nuclear contributions to the Overhauser shift by the mean of double irradiation techniques. The results show that, in dilute solutions, the relaxation of nitrogen arises from quadrupole interaction and from hyperfine interaction with unpaired electrons. Both interactions are of the same order of magnitude. Overhauser shift measurements show that the spin density is negative at the proton site, in agreement with Hughes results. (author) [French] Les solutions diluees de sodium dans l'ammoniac sont etudiees au moyen des techniques de la polarisation dynamique, sur la base du modele de Becker Lindquist et Aider. Les deplacements paramagnetiques des raies de resonance nucleaire des differents noyaux sont analyses en faisant appel a la notion de ''densite moyenne de spin'' introduite par l'auteur; et les differentes contributions nucleaires au deplacement d'Overhauser sont calculees en fonction de cette meme grandeur. Une etude theorique de la relaxation de chaque systeme de spin permet d'evaluer l'importance relative des differents mecanismes mis en jeu. Les experiences de polarisation dynamique effectuees au cours de ce travail consistent en mesures classiques de l'effet Overhauser sur l'azote, d'une part, et en la mise en oeuvre de techniques originales pour mesurer le deplacement de Knight de l'azote et les

  10. Age and geochemistry of Alumine's Ignimbrites, Neuquen province, Argentina

    International Nuclear Information System (INIS)

    Lagorio, Silvia; Massaferro, Gabriela

    1998-01-01

    Geochemical and geochronological data from Alumine riolitic welded tuffs are analysed. Minor elements show enrichment in Rb, Th and K and depletion in Nb, Ti, P and Sr. La/Yb ratios are low. The geochemical features are consistent with a volcanic arc genesis. The radiometric data obtained by K/Ar method point out a Paleocene age for these rocks, allowing to correlate them with the Ventana Formation or the equivalent Auca Pan Formation. (author)

  11. Electrical properties and thermal expansion of strontium aluminates

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchuk, K.V. [Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Yaremchenko, A.A., E-mail: ayaremchenko@ua.pt [Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Fagg, D.P. [TEMA-NRD, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2014-11-15

    Highlights: • Sr{sub 3}Al{sub 2}O{sub 6}, SrAl{sub 2}O{sub 4} and Sr{sub 4}Al{sub 14}O{sub 25} ceramics are semiconductors. • Electrical conductivity is as low as 10{sup −6}−4×10{sup −5} S/cm at 1273 K in dry air. • SrAl{sub 2}O{sub 4} is a mixed conductor with predominant ionic conductivity. • Sr{sub 3}Al{sub 2}O{sub 6} shows significant contribution of protonic transport in wet atmospheres. • Average TECs vary in the range (8.5–11.1)×10{sup −6} K{sup −1} and are p(O{sub 2})-independent. - Abstract: Strontium aluminate ceramics, including Sr{sub 3}Al{sub 2}O{sub 6}, SrAl{sub 2}O{sub 4} and Sr{sub 4}Al{sub 14}O{sub 25}, synthesized by glycine–nitrate combustion and sintered at 1773 K in air, were characterized by thermal analysis, dilatometry and electrical measurements in controlled atmospheres. All studied strontium aluminates are semiconductors with electrical conductivities as low as 10{sup −6}−4×10{sup −5} S/cm at 1273 K in dry air. Electrical measurements in controlled atmospheres in combination with ion transference number determination demonstrated that SrAl{sub 2}O{sub 4} is a mixed conductor with predominant ionic conductivity and increasing n-type and p-type electronic contributions under highly reducing and oxidizing conditions, respectively. While the behavior of electrical conductivity of Sr{sub 3}Al{sub 2}O{sub 6} in dry atmospheres was qualitatively similar to that of SrAl{sub 2}O{sub 4}, a significant increase of conductivity in wet atmospheres was attributed to a protonic contribution to electrical conduction, in correlation with thermogravimetric data and the tendency of this material to form a hydrogarnet at low temperatures. The average thermal expansion coefficients of strontium aluminates, (8.5–11.1)×10{sup −6} K{sup −1} at 333–1373 K, increase with increasing strontium content in the sequence Sr{sub 4}Al{sub 14}O{sub 25} < SrAl{sub 2}O{sub 4} < Sr{sub 3}Al{sub 2}O{sub 6} and are essentially

  12. Modelling of niobium sorption on clay minerals in sodium and calcium perchlorate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ervanne, Heini; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Laboratory of Radiochemistry

    2014-11-01

    The sorption behaviour of niobium on kaolinite and illite minerals in sodium and calcium perchlorate solutions was evaluated with use of the mass distribution coefficient, Rd, obtained in batch sorption experiments. Very high distribution coefficient values, about 100 m{sup 3}/kg, were obtained for both minerals in the neutral pH range between 6 and 8. Values were somewhat lower at pH 5. In NaClO{sub 4} solution, the sorption of niobium starts to decrease at pH higher than 8. This is in agreement with the increase, with pH, in the proportion of anionic niobate species, which are presumed to be low or non-sorbing. A similar decrease was not observed in Ca(ClO{sub 4}){sub 2} solution, probably owing to the influence of Ca on niobium solution speciation and surface species. The surface complexation model was applied to model the Rd values. The model fitted well for the NaClO{sub 4} solution but only at pH below 9 for the Ca(ClO{sub 4}){sub 2} solution. The discrepancy between the strong sorption of niobium in calcium-bearing solution at high pH and the calculated speciation is due in part to the non-inclusion of calcium niobate solution species and Ca-Nb compounds in the present NEA and other similar thermodynamic databases.

  13. Influence of hydroxypropylmethyl cellulose-sodium laurylsulfate interaction on rheological properties of the solution

    Directory of Open Access Journals (Sweden)

    Šaletić Jelena V.

    2004-01-01

    Full Text Available Interactions between the polymers and surfactants in solution have widely been investigated because of their scientific and technological importance. These interactions can be utilized to modify the physicochemical properties of system in many food products, pharmaceutical formulations, personal care products, paints, pesticides, etc. Interaction between nonionic polymer - hydroxypropylmethyl cellulose (HPMC and anionic surfactant - sodium laurylsulfate (SDS in solution has been investigated in this paper by rheological measurements. Rheological measurements are performed by rotational viscometer at 20°C and changes of rheological characteristics of HPMC solutions (0.5-1.5% with increasing SDS concentrations (0-4.0% were determined. The results of these investigations showed that viscosity of the solution is dependant on HPMC-SDS interaction. At particular SDS concentration viscosity increases, reach maximum and after that decreases until reach constant value. From the viscosity changes the characteristic concentrations of SDS, critical aggregation concentration (cac and polymer saturation point (psp, were determined. These concentrations are in linear relationships with HPMC concentrations. Rheological properties of the solution are strong influenced by HPMC-SDS interaction and exhibits more or less pronounced pseudoplastic behavior, which changes to Newtonian one after the psp has been reached.

  14. Fluorimetric study of the mechanism of molecular association in aqueous solutions of polymethacrylic acid and sodium dodecylbenzenesulfonate

    Science.gov (United States)

    Sachko, A. V.; Zakordonskii, V. P.; Voloshinovskii, A. S.

    2013-03-01

    Fluorescent spectroscopy is used to investigate the processes of intermolecular association in mixed solutions of polymethacrylic acid (PMAA) and anionic sodium dodecylbenzenesulfonate (SDBS). We propose a model for describing the stage-by-stage mechanism of association processes and conclude that the nature of intermolecular associates depends on the PMAA-SDBS concentration ratio in the solution. Studying the kinetics of fluorescence decay reveals the simultaneous existence of two types of formations capable of pyrene solubilization.

  15. A randomised, double-masked comparison study of diquafosol versus sodium hyaluronate ophthalmic solutions in dry eye patients.

    Science.gov (United States)

    Takamura, Etsuko; Tsubota, Kazuo; Watanabe, Hitoshi; Ohashi, Yuichi

    2012-10-01

    To compare the efficacy and safety of 3% diquafosol ophthalmic solution with those of 0.1% sodium hyaluronate ophthalmic solution in dry eye patients, using mean changes in fluorescein and rose bengal staining scores as endpoints. TRIAL DESIGN AND METHODS: In this multicenter, randomised, double-masked, parallel study of 286 dry eye patients with fluorescein and rose bengal staining scores of ≥3 were randomised to the treatment groups in a 1 : 1 ratio. Efficacy and safety were evaluated after drop-wise instillation of the study drug, six times daily for 4 weeks. After 4 weeks, the intergroup difference in the mean change from baseline in fluorescein staining score was -0.03; this verified the non-inferiority of diquafosol. The mean change from baseline in rose bengal staining score was significantly lower in the diquafosol group (p=0.010), thus verifying its superiority. The incidence of adverse events was 26.4% and 18.9% in the diquafosol and sodium hyaluronate groups, respectively, with no significant difference. Diquafosol (3%) and sodium hyaluronate (0.1%) exhibit similar efficacy in improving fluorescein staining scores of dry eye patients, whereas, diquafosol exhibits superior efficacy in improving rose bengal staining scores. Diquafosol has high clinical efficacy and is well tolerated with a good safety profile.

  16. Criterion for selection the optimal physical and chemical properties of cobalt aluminate powder used in investment casting process

    OpenAIRE

    M. Zielińska; J. Sieniawski; B. Gajecka

    2009-01-01

    The aim of this work was to determine physical and chemical properties of cobalt aluminate (CoAl2O4) modifiers produced by different companies and the influence of different types of modifiers on the grain size of high temperature creep resisting superalloys: Inconel 713C, René 77 and MAR-M 509.The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three different companies: Remet, Mason Color and Permedia Lubl...

  17. The Modification of Sodium Polyacrylate Water Solution Cooling Properties by AL2O3

    Directory of Open Access Journals (Sweden)

    Wojciech Gęstwa

    2010-01-01

    Based on cooling curves, it can be concluded that for the water solution of sodium polyacrylate with AL2O3 nanoparticles in comparison to water and 10% polymer water solution lower cooling speed is obtained. The cooling medium containing nanoparticles provides lower cooling speed in the smallest surface austenite occurance (500–600 C in the charts of the CTP for most nonalloy structural steels and low-alloy steels. However lower cooling temperature at the beginning of martensitic transformation causes the formation of smaller internal stresses, leading to smaller dimensional changes and hardening deformation. For the quenching media the wetting angle was appointed by the drop-shape method. These studies showed the best wettability of polymer water solution (sodium polyacrylate with the addition of AL2O3 nanoparticles, whose wetting angle was about 65 degrees. Obtaining the smallest wetting angle for the medium containing nanoparticles suggests that the heat transfer to the cooling medium is larger. This allows slower cooling at the same time ensuring its homogeneity. The obtained values of wetting angle confirm the conclusions drawn on the basis of cooling curves and allowus to conclude that in the case of the heat transfer rate it will have a lower value than for water and 10% polymer water solution. In the research on hardened carburized steel samples C10 and 16MnCr5 surface hardness, impact strength and changes in the size of cracks in Navy C-ring sample are examined. On this basis of the obtained results it can be concluded that polymer water solution with nanoparticles allows to obtain a better impact strength at comparable hardness on the surface. Research on the dimensional changes on the basis of the sample of Navy C-ring also shows small dimensional changes for samples carburized and hardened in 10% polymer water solution with the addition of nanoparticles AL2O3. Smaller dimensional changes were obtained for samples of steel 16MnCr5 thanfar C10. The

  18. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    Science.gov (United States)

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  19. Effect of controlled deactivation on the thermochemical characteristics of hydrogen adsorption on skeletal nickel from sodium hydroxide-water solutions

    Science.gov (United States)

    Prozorov, D. A.; Lukin, M. V.; Ulitin, M. V.

    2013-04-01

    Differential heats of adsorption in a wide range of surface coverage and maximum amounts of adsorbed hydrogen are determined by adsorption calorimetry on partially deactivated skeletal nickel from aqueous solutions of sodium hydroxide. The effect of the composition of solutions on the values of limiting adsorption and adsorption equilibria of individual forms of hydrogen is shown.

  20. Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

    International Nuclear Information System (INIS)

    Chiba, Atsushi; Kusayanagi, Yukiharu

    2005-01-01

    Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing Na 2 S

  1. Sodium fires and its extinguishment

    International Nuclear Information System (INIS)

    Mikhedov, V.G.

    1979-01-01

    The fire safety problems of NPP with sodium coolants in USSR are presented. The design of sodium reactors is made with premises with sodium coolants being hermetic and filled with nitrogen. Some engineering solutions of fire safety including design, elaboration and choice of construction and protection materials are presented. Some theoretical aspects of sodium burning are presented as well as methods of sodium fire extinguishing methods including the use of powder

  2. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    Science.gov (United States)

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  4. Comparison of 2% chlorhexidine and 5.25% sodium hypochlorite irrigating solutions on postoperative pain: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Bashetty Kusum

    2010-01-01

    Full Text Available Aim: To compare the levels of postoperative pain after cleaning and shaping of root canals using two different root canal irrigants for debridement. Materials and Methods: Forty patients with irreversible pulpitis, pulp necrosis and non-vital teeth exhibiting acute apical periodontitis requiring root canal treatment were included. At random, canals were cleaned and shaped with the following protocols. 2% chlorhexidine solution in group I and 5.25% sodium hypochlorite solution in group II were used as an irrigants. Access cavities were closed with a sterile cotton pellet and cavit. The patients recorded degree of pain at various time intervals after cleaning and shaping on a visual analogue scale for 1 week. Results: The mean pain score for group I was between 0.65 and 3.35 and for group II was between 0.95 and 4.50. There was significant difference in the pain level between the two groups only at 6 th hour postoperatively (P<0.05 and the pain was more in sodium hypochlorite group. Conclusions: More pain was present in teeth irrigated using 5.25% sodium hypochlorite when compared to that in teeth irrigated using 2% chlorhexidine solution. Significant difference in pain level was present only at 6th hour postoperatively, and at all other periods (24 th hour, 4 th and 7 th days there was no significant difference in pain level between the two groups.

  5. Calibration of the A.E.E. Winfrith whole body monitor equipment with sodium-24 solution in a polythene man-phantom

    International Nuclear Information System (INIS)

    Peabody, C.O.; Speight, R.G.; Passant, F.H.

    1964-04-01

    Results are presented for the sensitivity of the existing Winfrith Whole Body Monitor equipment when used for measurement of sodium-24 activity in solution in a polythene man-phantom. The relationship is discussed between these results and those expected for the sodium-24 produced in a human body by accidental neutron irradiation. Estimates are made of the additional contribution of chlorine-38 activity at various times after whole body irradiation. (author)

  6. Role of Adsorption Phenomena in Cubic Tricalcium Aluminate Dissolution.

    Science.gov (United States)

    Myers, Rupert J; Geng, Guoqing; Li, Jiaqi; Rodríguez, Erich D; Ha, Juyoung; Kidkhunthod, Pinit; Sposito, Garrison; Lammers, Laura N; Kirchheim, Ana Paula; Monteiro, Paulo J M

    2017-01-10

    The workability of fresh Portland cement (PC) concrete critically depends on the reaction of the cubic tricalcium aluminate (C 3 A) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling mechanism is poorly understood. In this article, the role of adsorption phenomena in C 3 A dissolution in aqueous Ca-, S-, and polynaphthalene sulfonate (PNS)-containing solutions is analyzed. The zeta potential and pH results are consistent with the isoelectric point of C 3 A occurring at pH ∼12 and do not show an inversion of its electric double layer potential as a function of S or Ca concentration, and PNS adsorbs onto C 3 A, reducing its zeta potential to negative values at pH >12. The S and Ca K-edge X-ray absorption spectroscopy (XAS) data obtained do not indicate the structural incorporation or specific adsorption of SO 4 2- on the partially dissolved C 3 A solids analyzed. Together with supporting X-ray ptychography and scanning electron microscopy results, a model for C 3 A dissolution inhibition in hydrated PC systems is proposed whereby the formation of an Al-rich leached layer and the complexation of Ca-S ion pairs onto this leached layer provide the key inhibiting effect(s). This model reconciles the results obtained here with the existing literature, including the inhibiting action of macromolecules such as PNS and polyphosphonic acids upon C 3 A dissolution. Therefore, this article advances the understanding of the rate-controlling mechanism in hydrated C 3 A and thus PC systems, which is important to better controlling the workability of fresh PC concrete.

  7. In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2014-09-01

    Full Text Available Borate glasses with the basic composition 0.6B2O3·0.2Na2O·0.2CaO and SrO progressively substituting CaO were prepared and characterized for their bone-bonding ability. The obtained glasses were thermally treated and converted to their glass-ceramic derivatives. In this study, FTIR spectral analyses were done for the prepared glasses and glass-ceramics before and after immersion in a sodium phosphate solution for extended times. The appearance of two IR bands within the spectral range 550–680 cm-1 after immersion confirms the formation of hydroxyapatite. X-ray diffraction studies and scanning electron microscope analysis supported the obtained infrared spectroscopy results. The solubility test (measurements of the weight loss in aqueous sodium phosphate solution was conducted for measuring the dissolution of both glassy and crystalline derivatives to find out the role of SrO. The corrosion behaviour of the glasses and glass-ceramics indicate the increase of weight loss with the increase of SrO content. Different suggested proposals were introduced to explain this abnormal behaviour.

  8. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    Science.gov (United States)

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  9. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Mohsen

    2015-10-21

    Oct 21, 2015 ... suppressive effects of sodium silicate in the polymer form were confirmed against powdery mildew and ... crops (such as rice) controls diseases and could reduce ... negative charge and sodium ions with a positive charge.

  10. Hydration process for calcium-aluminate cement within EVA emulsion by SPring-8 synchrotron radiation x-ray diffraction method

    International Nuclear Information System (INIS)

    Kotera, Masaru; Matsuda, Ikuyo; Miyashita, Keiko; Adachi, Nobuyuki; Tamura, Hisayuki

    2005-01-01

    Polymer-modified mortars which consist of a polymer emulsion and cement materials have been widely developed in the construction materials fields. Forming process of the polymer-modified cement membrane simultaneously involves evaporation of water within the polymer emulsion and hydration of cement. It is important for the polymer-modified cement paste that the hydrate crystal of cement is generating by the hydration during the setting process under existence of the polymer emulsion. In this study, hydration process for calcium-aluminate cement under existence of poly (ethylene-vinyl acetate) (EVA) emulsion (polymer-cement ratio=100%) was investigated by X-ray diffraction method using synchrotron radiation (SPring-8). The diffraction peaks of calcium aluminate (CA) disappeared after the hardening, on the other hand, the peaks of hydrate crystals of calcium-aluminate cement (C 2 AH 8 and C 3 AH 6 ) could be observed. This polymer-modified cement paste hydrated using the water within the polymer emulsion. The hydration of C 2 AH 8 from CA started at around 300 min, and then C 3 AH 6 hydrate crystal increased after 700 min at ambient temperature. This implies that the conversion from C 2 AH 8 to C 3 AH 6 occurred to be more stable phase. The setting temperature affected the reaction rate. In case of hydration at 35degC, the start time of the hydration for calcium-aluminate cement was quicker than that in the ambient temperature four or more times. (author)

  11. Effect of sodium tetraborate (borax) on the thermal properties of frozen aqueous sugar and polyol solutions.

    Science.gov (United States)

    Izutsu, Ken-ichi; Rimando, Annie; Aoyagi, Nobuo; Kojima, Shigeo

    2003-06-01

    The effect of sodium tetraborate (Na(2)B(4)O(7), borax) on the thermal property of frozen aqueous sugar and polyol solutions was studied through thermal analysis. Addition of borax raised the thermal transition temperature (glass transition temperature of maximally freeze-concentrated solutes; T(g)') of frozen sucrose solutions depending on the borax/sucrose concentration ratios. Changes in the T(g)' of frozen mono- and disaccharide solutions suggested various forms of complexes, including those of a borate ion and two saccharide molecules. Borax exerted the maximum effect to raise the oligosaccharide and dextran T(g)'s at borax/saccharide molar ratios of approximately 1-2 (maltose and maltooligosaccharides), 2 (dextran 1060), 5 (dextran 4900), and 10 (dextran 10200). Further addition of borax lowered T(g)'s of the saccharide solutions. Borax also raised T(g) and T(g)' temperatures of frozen aqueous glycerol solutions. The decreased solute mobility in frozen solutions by the borate-polyol complexes suggested higher collapse temperature in the freeze-drying process and improved stability of biological systems in frozen solutions.

  12. 21 CFR 522.460 - Cloprostenol sodium.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric acid...

  13. High temperature aqueous potassium and sodium phosphate solutions: two-liquid-phase boundaries and critical phenomena, 275-4000C; potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1981-12-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases nor liquid-liquid immiscibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators. 16 refs

  14. Effect of temperature on the partial molar volume, isentropic compressibility and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Rodríguez, Diana M.; Ribeiro, Ana C.F.; Esteso, Miguel A.

    2017-01-01

    Highlights: • Apparent volumes, apparent compressibilities, viscosities of DL-2-aminobutyric acid. • Effect of temperature on the values for these properties. • Hydrophobic and hydrophilic interactions and the effect of sodium chloride. - Abstract: Density, sound velocity and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions have been measured at temperatures of (293.15, 298.15, 303.15, 308.15 and 313.15) K. The experimental results were used to determine the apparent molar volume and the apparent molar compressibility as a function of composition at these temperatures. The limiting values of both the partial molar volume and the partial molar adiabatic compressibility at infinite dilution of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions were determined at each temperature. The experimental viscosity values were adjusted by a least-squares method to a second order equation as proposed by Tsangaris-Martin to obtain the viscosity B coefficient which depends on the size, shape and charge of the solute molecule. The influence of the temperature on the behaviour of the selected properties is discussed in terms of both the solute hydration and the balance between hydrophobic and hydrophilic interactions between the acids and water, and the effect of the sodium chloride concentration.

  15. Mechanoluminescence of Dy doped strontium aluminate nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ravi, E-mail: rvsharma65@gmail.com [Department of Physics, Govt. Arts and Commerce Girls College, Raipur, C.G. 492001 (India); Bisen, D.P. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Chandra, B.P. [Department of Postgraduate Studies and Research in Physics and Electronics, Rani Durgavati University, Jabalpur 482001 (India)

    2015-12-15

    Nanosized strontium aluminate phosphors activated with Dy{sup 3+} were prepared by a combustion method. Nanophosphor was prepared by this method at reaction temperatures as low as 600 °C. Powder X-ray diffraction (XRD), scanning electron microscope analysis was used to characterize the prepared product. The monoclinic phase was observed in the XRD pattern. The particle size of the samples was calculated around 35 nm. The SEM images show irregular shape of the prepared nanophosphor. Two peaks were found in the mechanoluminescence (ML) response curve plotted between time and ML intensity. The H{sub 3}BO{sub 3} added strontium aluminate phosphors activated with Dy show more bright ML peak as compared to the powders of SrAl{sub 2}O{sub 4}:Dy{sup 3+} without H{sub 3}BO{sub 3.} It was found that the PL and ML intensity increases with increasing concentration of Dy, it becomes maximum for 3% of Dy. The photoluminescence emission shows two intense fluorescence transitions peaks at 498 nm and 583 nm, {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} in the blue and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} in the yellow-orange wavelength region. - Highlights: • Combustion synthesis route is used to prepare the SrAl{sub 2}O{sub 4}: Dy {sup 3+} nanophosphors. • The size of the synthesized sample was found to be in the nano-meter range. • The mechanoluminescence of SrAl{sub 2}O{sub 4}:Dy {sup 3+} nanophosphors is studied. • The photoluminescence of SrAl{sub 2}O{sub 4}: Dy {sup 3+} nanophosphors showed blue-shift as compared to bulk. • Effect of H{sub 3}BO{sub 3} on the mechanoluminescence of SrAl{sub 2}O{sub 4}:Dy{sup 3+} was studied.

  16. Isotopic exchange rate of sodium ions between hydrous metal oxides and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi

    1991-01-01

    To elucidate the kinetics of ion-exchange reaction on hydrous metal oxide, the isotopic exchange rates of sodium ions between hydrous metal oxides such as hydrous tin (IV), niobium (V), zirconium (IV) and titanium (IV) oxides, and aqueous solutions were measured radiochemically and compared with each other. The rate of reaction cannot be understood by an unified view since the rate controlling step differs with the kind of exchangers. The rate constants relevant to each exchanger such as diffusion constants and their activation energies were also determined. (author)

  17. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Shahabi, Somayyeh

    2011-01-01

    Graphical abstract: Apparent molar volume against molality: o, ·, and Δ, respectively in water, (1 and 4) wt% PEG solution at 293.15 K; x, Δ, and lozenge, respectively in water, (1 and 4) wt% PEG solution at 313.15 K. Research highlights: → C 12 H 25 SO 3 Na(SDSn) was seen to interact with PEG more weakly than C 12 H 25 SO 4 Na(SDS). → The constraints on molecular mobility of SDS micelles are larger than those of SDSn. → Entropy change on micellization for SDSn is larger than those for SDS. → Micelle formation of SDS is less endothermic and more spontaneous than that of SDSn. → Micelles of SDS have smaller aggregation number than that of SDSn. - Abstract: The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C 12 H 25 SO 4 Na) or sodium dodecyl sulfonate (C 12 H 25 SO 3 Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C 12 H 25 SO 4 Na and C 12 H 25 SO 3 Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C 12 H 25 SO 4 Na/C 12 H 25 SO 3 Na and PEG were studied and it was found that sodium alkyl sulfonates were seen to interact more weakly than their sulfate analogues.

  18. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  19. Semi-Batch Reactive Distillation of Consecutive Reaction : The Saponification Reaction of Diethyl Adipate with Sodium Hydroxide Solution

    Directory of Open Access Journals (Sweden)

    Raghad Fareed Kasim

    2016-03-01

    Full Text Available This research presents a new study in reactive distillation by using consecutive reaction: the saponification reaction of diethyl adipate (DA with sodium hydroxide solution . The effect of three parameters were studied through a design of experiments applying 23 factorial design . These parameters were : the mole ratio of DA to NaOH solution (0.1 and 1 , NaOH solution concentration (3 N and 8 N , and batch time (1.5 hr. and 3.5 hr. . The conversion of DA to sodium monoethyladipate(SMA(intermediate product was the effect of these parameters which was detected . Also , the percentage purity of the intermediate product was recorded . The results showed that increasing mole ratio of DA to NaOHsolution increases the conversion and percentage purity to a maximum value within the range of study . The effect of NaOH solution concentration decreases the conversion and percentage purity to specified value within the range of study . The effect of batch time on conversion and percentage purity , when NaOH solution concentration (3 N is as follows : the increasing in batch time decreases the conversion and percentage purity to specified value within the range of study . When NaOH solution concentration (8 N increasing batch time decreases the conversion , while percentage purity increases with increasing batch time to a maximum value within the range of study . The maximum attainable conversion within the studied range of parameters was eighteen fold of the base case , while the maximum percentage purity was (99.40 % . Empirical equation was obtained using statistical analysis of experimental results . The empirical results of relative conversion was drawn . The empirical graphs showed linear variation .

  20. System and process for aluminization of metal-containing substrates

    Science.gov (United States)

    Chou, Yeong-Shyung; Stevenson, Jeffry W

    2015-11-03

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.

  1. System and process for aluminization of metal-containing substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2017-12-12

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices that can degrade performance during operation at high temperature.

  2. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  3. Driving Ability of HMX based Aluminized Explosive Affected by the Reaction Degree of Aluminum Powder

    Science.gov (United States)

    Duan, Yingliang

    2017-06-01

    Due to the time scale of aluminum reaction, the detonation process of the aluminized explosive becomes very complex, and there is less agreement on the reaction mechanism of aluminum powder. If the reaction of aluminum occurs in the reaction zone, the energy released will further strengthen the work ability of detonation wave. So it is very important for characterizing the detonation parameters and detonation driving ability to accurately understand the role of aluminum powder in the reaction zone. In this paper, detonation driving process of HMX based aluminized explosive was studied by cylinder test, obtaining the expansion track of cylinder wall. In order to further research the reaction degree (λ) of aluminum in the reaction zone, the thermodynamic program VHL was used to calculate the detonation process at different reaction degrees, obtaining the parameters of detonation products thermodynamic state. Using the dynamic software LS-DYNA and the JWL equation of state by fitting the pressure and relative volume relationship, the cylinder test was simulated. Compared with the experimental results, when the reaction degree is 20%, the driving ability is found to be in agreement with measured ones. It is concluded that the driving ability of HMX based aluminized explosive can be more accurately characterized by considering the reaction degree of aluminum powder in the reaction zone.

  4. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders

    Energy Technology Data Exchange (ETDEWEB)

    Chavda, Mehul A.; Bernal, Susan A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-04-15

    The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {sup 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.

  5. Air oxidation of aqueous sodium sulfide solutions with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, D; Chaudhuri, S K [Southern Illinois University, Carbondale, IL (United States). Dept. of Mining Engineering

    1999-02-01

    The paper investigated the potential of coal fly ash as a catalyst in the air oxidation of aqueous sodium sulfide (Na{sub 2}S) solutions in the temperature range of 303-333 K. The rate of oxidation was found to be independent of the initial concentration of Na{sub 2}S in the range of 5.80 x 10{sup -2} - 28.45 x 10{sup -2} kmol/m{sup 3}. The effects of fly ash loading, source of fly ash, speed of agitation, air flow rate, fly ash particle size were also studied. Experimental results suggested a film-diffusion controlled reaction mechanism. The deactivation of the catalytic effect of fly ash was found to be less than 31% even after five repeated uses.

  6. Investigation into interaction of mixture of zinc and neodymium nitrates with sodium tungstates in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rozantsev, G M; Krivobok, V I [Donetskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1978-09-01

    The methods of residual concentrations, pH-potentiometry, and conductometry have been used for studying interaction between the mixture of zinc and neodymium nitrates with sodium tungstate in aqueous solutions. It has been established that independent of the ratio between the components the reaction product is a mixture of simultaneously precipitated zinc and neodymium orthotungstates. Thermal treatment of such mixtures at 650-700 deg C for 40 h and subsequent hardening yields solid solution of the structure ..cap alpha..-Eu/sub 2/(WO/sub 4/)/sub 3/ within the concentration range 85-100 mol % of Nd/sub 2/(WO/sub 4/)/sub 3/.

  7. Base catalysed isomerisation of aldoses of the arabino and lyxo series in the presence of aluminate.

    Science.gov (United States)

    Ekeberg, Dag; Morgenlie, Svein; Stenstrøm, Yngve

    2002-04-30

    Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.

  8. Charge division in a small proportional chamber constructed with aluminized mylar tubes

    International Nuclear Information System (INIS)

    Biino, C.; Mussa, R.; Palestini, S.; Pastrone, N.; Pesando, L.

    1988-01-01

    A tracking detector composed of aluminized mylar drift tubes is under development for the Fermilab experiment 760. A prototype chamber has been constructed. Results on the longitudinal coordinate determined by charge division are given. Spatial resolution values below 2 mm (rms) were found, corresponding to <1% of the chamber length. Results on chamber ageing are also discussed. (orig.)

  9. Charge division in a small proportional chamber constructed with aluminized mylar tubes

    Science.gov (United States)

    Biino, C.; Mussa, R.; Palestini, S.; Pastrone, N.; Pesando, L.

    1988-09-01

    A tracking detector composed of aluminized mylar drift tubes is under development for the Fermilab experiment 760. A prototype chamber has been constructed. Results on the longitudinal coordinate determined by charge division are given. Spatial resolution values below 2 mm (rms) were found, corresponding to <1% of the chamber length. Results on chamber ageing are also discussed.

  10. Boundary conditions for diffusion in the pack-aluminizing of nickel.

    Science.gov (United States)

    Sivakumar, R.; Seigle, L. L.; Menon, N. B.

    1973-01-01

    The surface compositions of nickel specimens coated for various lengths of time in aluminizing packs at 2000 F were studied, in order to obtain information about the kinetics of the pack-cementation process in the formation of aluminide coatings. The results obtained indicate that the surface compositions of the coated nickel specimens are independent of time, at least for time between 0.5 and 20 hrs. Another important observation is that the specimens gained weight during the coating process.

  11. Aluminized film, seam sealing tests and observations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The purpose of this work was to investigate various seam sealing techniques, reinforcing methods, fitting installations, seam tolerances and geometric configurations pertinent to an aluminized plastic laminate. The program seeks a successful fabricating method for producing low-diffusion, cylindrical, spar liners to contain pressurized GH{sub 2} and GO{sub 2}. The test plan included: (1) seaming techniques on metallized Mylar film; (2) ``double patches`` for end fittings; (3) stainless steel bulkhead fitting assembly with seals; (4) minimum run tolerance on linear shear seam; (5) peel seam vs. inverted seal seam fabrication.

  12. 21 CFR 178.1010 - Sanitizing solutions.

    Science.gov (United States)

    2010-04-01

    ... aqueous solution containing potassium iodide, sodium p-toluenesulfonchloroamide, and sodium lauryl sulfate...), trisodium phosphate (CAS Reg. No. 7601-54-9), sodium lauryl sulfate (CAS Reg. No. 151-21-3), and potassium...) An aqueous solution of citric acid, disodium ethylenediaminetetraacetate, sodium lauryl sulfate, and...

  13. Titration of Monoprotic Acids with Sodium Hydroxide Contaminated by Sodium Carbonate.

    Science.gov (United States)

    Michalowski, Tadeusz

    1988-01-01

    Discusses the effects of using carbon dioxide contaminated sodium hydroxide solution as a titrant for a solution of a weak monoprotic acid and the resulting distortion of the titration curve in comparison to one obtained when an uncontaminated titrant is used. (CW)

  14. Standard molar enthalpies of formation of sodium alkoxides

    International Nuclear Information System (INIS)

    Chandran, K.; Srinivasan, T.G.; Gopalan, A.; Ganesan, V.

    2007-01-01

    The molar enthalpies of solution of sodium in methanol, ethanol, and n-propanol and of sodium alkoxides in their corresponding alcohols were measured at T=298.15K using an isoperibol solution calorimeter. From these results and other auxiliary data, the standard molar enthalpies of formation, Δ f H m o (RONa,cr) of sodium methoxide, sodium ethoxide, and sodium n-propoxide were calculated and found to be {(-366.21+/-1.38) (-413.39+/-1.45), and (-441.57+/-1.18)}kJ.mol -1 , respectively. A linear correlation has been found between Δ f H m o (RONa)andΔ f H m o (ROH) for R=n-alkyl, enabling the prediction of data for other sodium alkoxides

  15. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  16. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  17. The distribution of n-caprylic acid between organic solvents and aqueous sodium sulfate solution

    International Nuclear Information System (INIS)

    Gloe, K.; Muehl, P.; Kholkin, A.I.; Gindin, L.M.

    1981-01-01

    The distribution of 14 C-labelled n-caprylic acid between n-decane, benzene, isoamyl acetate, diisopropyl ketone, isoamyl alcohol and an aqueous 0.6 molar sodium sulfate solution was studied. The distribution constants and the dimerisation constants were determined for the reactions HRsub((w)) reversible HRsub((org)) and 2 HRsub((org)) reversible (HR)sub(2(org)), respectively. Both the effect of the solvent on the acid distribution and the importance of such studies for the interpretation of liquid-liquid extraction equilibria are discussed. (author)

  18. Effect of Ultrasound on the Decomposition of Sodium Dodecylbenzene Sulfonate in Aqueous Solution

    International Nuclear Information System (INIS)

    Yim, Bong Been

    2004-01-01

    The influence of ultrasound frequency, dissolved gases, and initial concentration on the decomposition of sodium dodecylbenzene sulfonate(DBS) aqueous solution was investigated using ultrasound generator with 200 W ultrasound power. The decomposition rates at three frequencies(50, 200, and 600 kHz) examined under argon atmosphere were highest at 200 kHz. The highest observed decomposition rate at 200 kHz occurred in the presence of oxygen followed by air and argon, helium, and nitrogen. The effect of initial concentration of DBS on the ultrasonic decomposition was decreased with increasing initial concentration and would depend upon the formation of micelle in aqueous solution. It appears that the ultrasound frequency, dissolved gases, and initial concentration play an important role on the sonolysis of DBS. Sonolysis of DBS mainly take place at the interfacial region of cavitation bubbles by both OH radical attack and pyrolysis to alkyl chain, aromatic ring, and headgroup

  19. Corrosion performance of SiCsubp/6061 Al metal matrix composites in sodium chloride solution

    International Nuclear Information System (INIS)

    Mohmad Soib bin Selamat

    1995-01-01

    The corrosion performance of silicon carbide particle/aluminium metal matrix composites (SiCsubp/Al) were studied in sodium chloride solution by means of electrochemical, microscopic, gravimetric and analytical techniques. The materials under investigation were compocasting processed 6061 Al reinforced with increasing amounts of SiC particles. Potentiostatic polarization tests were done in 0.1M NaCl solutions that were aerated or deaerated to observe overall corrosion behaviour. It was seen that the corrosion potentials did not vary greatly in relation to the amounts of SiCsubp reinforcement. Corrosion tests showed that the degree of corrosion increased with increasing SiCsubp content. SEM analysis technique was used to study the corroded samples and the pitting morphology. By TEM, no intermetallic layer was found at SiC/Al interface. A model for pitting process was proposed

  20. The Use of Sodium Hypochlorite Solution for (n,γ99Mo/99mTc Generator Based on Zirconium-Based Material (ZBM

    Directory of Open Access Journals (Sweden)

    I. Saptiama

    2015-08-01

    Full Text Available The many problems in preparing fission product 99Mo led into this work to develop 99Mo/99mTc generator using neutron-irradiated natural MoO3 targets and, more specifically, to develop a zirconium-based material (ZBM for chromatography columns that have an adsorption capacity of more than 100 mg Mo/g ZBM. This paper reports our recent experiments in the use of sodium hypochlorite solution of various concentrations to improve the yield of 99mTc in performance of (n,γ99Mo/99mTc generators based on the ZBM. The synthesized ZBM was coated with tetraethyl orthosilicate for improving the hardness of the material. The adsorption of [99Mo]molybdate into ZBM was carried out by reacting ZBM into [99Mo]molybdate solution at 90°C to form ZBM-[99Mo] molybdate. ZBM-[99Mo]molybdate was then packed into generator column, then eluted with 10 × 1 mL of saline followed by 1 × 5 mL of NaOCl solution. The NaOCl solution concentrations used were 0.5%; 1%; 3%; and 5% for each column, respectively. This study resulted in a ZBM which has a 99Mo adsorption capacity of 167.5 ± 3.4 mgMo/g ZBM, as well as in a yield eluate of 99mTc of up to 70%, and the find that the optimum NaOCl concentration was 3%. The use of sodium hypochlorite solution affected 99Mo breakthrough. The higher sodium hypochlorite concentration used, the more 99Mo breaktrough exist on 99mTc eluate.

  1. Measuring the enthalpies of interaction between glycine, L-cysteine, glycylglycine, and sodium dodecyl sulfate in aqueous solutions

    Science.gov (United States)

    Badelin, V. G.; Mezhevoi, I. N.; Tyunina, E. Yu.

    2017-03-01

    Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg-1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.

  2. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    Science.gov (United States)

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  3. Effect of the synthesis temperature of sodium nona-titanate on batch kinetics of strontium-ion adsorption from aqueous solution

    International Nuclear Information System (INIS)

    Merceille, A.; Weinzaepfel, E.; Grandjean, A.; Merceille, A.; Weinzaepfel, E.; Barre, Y.

    2011-01-01

    Sodium titanate materials are promising inorganic ion exchangers for the adsorption of strontium from aqueous solutions. Sodium nona-titanate exhibits a layered structure consisting of titanate layers and exchangeable sodium ions between the layers. The materials used in this study include samples synthesized by a hydrothermal method at temperatures between 60 degrees C and 200 degrees C. Their structure, composition, and morphology were investigated with X-Ray diffraction measurements; thermogravimetric, compositional and surface area analyses, and scanning electron microscopy. The structure, composition, and morphology depended on the synthesis temperature. Batch kinetics experiments for the removal of strontium from aqueous solutions were performed, and the data were fitted by a pseudo-second-order reaction model and a diffusive model. The strontium extraction capacity also depended on the synthesis temperature and exhibited a maximum for samples synthesized at 100 degrees C. The sorption process occurs in one or two diffusion-controlled steps that also depend on the synthesis temperature. These diffusion-limited steps are the boundary-layer diffusion and intra-particle diffusion in the case of pure nona-titanate synthesized at temperatures lower than 170 degrees C, and only intra-particle diffusion in the case of nona-titanate synthesized at 200 degrees C. (authors)

  4. Behaviour of 29Si NMR and infrared spectra of aqueous sodium and potassium silica solutions as a function of (SiO2/M2+O) ratio

    International Nuclear Information System (INIS)

    Couty, R.; Fernandez, L.

    1996-01-01

    Sodium and potassium solutions of silica with silica concentration of 1,4 mo/kg and R ms = SiO 2 /M + 2 O ratios of 4.56 to 1.6 were obtained by depolymerization of amorphous silica gel in sodium and potassium hydroxide. Solutions have been characterized by 29 Si NMR and infrared spectroscopy. The results indicated that Na + and K + exhibit the same behaviour during the depolymerization of silica. (authors). 11 refs., 4 figs., 2 tabs

  5. Influence of pressure on acoustic and rheologic parameters in water solutions of laury sodium sulfate

    Science.gov (United States)

    Khamidov, B. T.; Lezhnev, N. B.

    1995-10-01

    Ultrasonic velocity and density in water solutions of lauril sodium sulphate at frequency 36 MHz, within the range of pressures from 0.1 to 105 MPa at temperature T equals 293 K were measured. According to data of ultrasonic velocity and density under high pressures there was calculated adiabatic compressibility in objects studied from pressure. It was found out that the region of critical concentration of micelle formation has been shifted to the zone of much more low concentrations.

  6. 21 CFR 173.310 - Boiler water additives.

    Science.gov (United States)

    2010-04-01

    ...-sodium acrylate resin Contains not more than 0.05 percent by weight of acrylamide monomer. Acrylic acid/2...-hydroxyethylidene-1,1-diphosphonic acid (CAS Reg. No. 2809-21-4) and its sodium and potassium salts Lignosulfonic.... Potassium carbonate Potassium tripolyphosphate Sodium acetate Sodium alginate Sodium aluminate Sodium...

  7. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Directory of Open Access Journals (Sweden)

    Qingjie Jiao

    2018-03-01

    Full Text Available To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20 based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm grows gradually; shock wave energy (Es continues increasing, bubble energy (Eb increases then decreases peaking at 15% for both formulas, and the total energy (E and energy release rate (η peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  8. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Science.gov (United States)

    Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi

    2018-03-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  9. Corrosion of gadolinium aluminate-aluminium oxide samples in fully desalinated water at 575 K

    International Nuclear Information System (INIS)

    Hattenbach, K.; Zimmermann, H.U.

    1978-07-01

    Corrosion tests have been carried out for 1 1/2 years on gadolinium aluminate/aluminium oxide samples (burnable poison for ship propulsion reactors) with and without cans at 575 K in fully desalinated water. It was found that this substance is highly corrosion-resistant. (orig./HP) [de

  10. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.ir [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shahabi, Somayyeh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-09-15

    Graphical abstract: Apparent molar volume against molality: o, {center_dot}, and {Delta}, respectively in water, (1 and 4) wt% PEG solution at 293.15 K; x, {Delta}, and lozenge, respectively in water, (1 and 4) wt% PEG solution at 313.15 K. Research Highlights: > C{sub 12}H{sub 25}SO{sub 3}Na(SDSn) was seen to interact with PEG more weakly than C{sub 12}H{sub 25}SO{sub 4}Na(SDS). > The constraints on molecular mobility of SDS micelles are larger than those of SDSn. > Entropy change on micellization for SDSn is larger than those for SDS. > Micelle formation of SDS is less endothermic and more spontaneous than that of SDSn. > Micelles of SDS have smaller aggregation number than that of SDSn. - Abstract: The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C{sub 12}H{sub 25}SO{sub 4}Na) or sodium dodecyl sulfonate (C{sub 12}H{sub 25}SO{sub 3}Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C{sub 12}H{sub 25}SO{sub 4}Na and C{sub 12}H{sub 25}SO{sub 3}Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C{sub 12}H{sub 25}SO{sub 4}Na/C{sub 12}H{sub 25}SO{sub 3}Na and PEG were studied and it was found that sodium alkyl sulfonates were seen

  11. Inhibitive effect of N,N'-Dimethylaminoethanol on carbon steel corrosion in neutral sodium chloride solution, at different temperatures

    Directory of Open Access Journals (Sweden)

    Hassoune Mohammed

    2018-01-01

    Full Text Available The inhibition of carbon steel corrosion in neutral sodium chloride solution by N,N'- Dimethylaminoethanol (DMEA, at different temperatures, was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS techniques. The results obtained confirm that DMEA is a good organic corrosion inhibitor for carbon steel in 0.5M of NaCl (concentration encountered in the Mediterranean seawater, over the whole range of temperatures studied. The inhibition efficiency (IE% increases with increasing DMEA concentration; it reaches highest value for a concentration around 0.125 mol.L-1. Potentiodynamic polarization data show that, the compound studied in this research predominantly act as anodic-type inhibitor. The EIS study reveals that the addition of DMEA decreases the corrosion rate of carbon steel in neutral sodium chloride solution, due to the fact that the inhibitor molecules are strongly adsorbed on the active sites following Langmuir isotherm, thus leading to the formation of a stable protective film on the steel surface which is able to keep the metal/solution interface in a passive state. Furthermore, the values of the activation parameters, i.e. ΔHa and Ea obtained in this study indicate that the adsorption process of DMEA is endothermic and could be mainly attributed to chemisorption, respectively.

  12. Validation of a stability-indicating hydrophilic interaction liquid chromatographic method for the quantitative determination of vitamin k3 (menadione sodium bisulfite) in injectable solution formulation.

    Science.gov (United States)

    Ghanem, Mashhour M; Abu-Lafi, Saleh A; Hallak, Hussein O

    2013-01-01

    A simple, specific, accurate, and stability-indicating method was developed and validated for the quantitative determination of menadione sodium bisulfite in the injectable solution formulation. The method is based on zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) coupled with a photodiode array detector. The desired separation was achieved on the ZIC-HILIC column (250 mm × 4.6 mm, 5 μm) at 25°C temperature. The optimized mobile phase consisted of an isocratic solvent mixture of 200mM ammonium acetate (NH4AC) solution and acetonitrile (ACN) (20:80; v/v) pH-adjusted to 5.7 by glacial acetic acid. The mobile phase was fixed at 0.5 ml/min and the analytes were monitored at 261 nm using a photodiode array detector. The effects of the chromatographic conditions on the peak retention, peak USP tailing factor, and column efficiency were systematically optimized. Forced degradation experiments were carried out by exposing menadione sodium bisulfite standard and the injectable solution formulation to thermal, photolytic, oxidative, and acid-base hydrolytic stress conditions. The degradation products were well-resolved from the main peak and the excipients, thus proving that the method is a reliable, stability-indicating tool. The method was validated as per ICH and USP guidelines (USP34/NF29) and found to be adequate for the routine quantitative estimation of menadione sodium bisulfite in commercially available menadione sodium bisulfite injectable solution dosage forms.

  13. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  14. Removal of metallic ions from aqueous solutions by fluidized bed fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Rio, S.; Delebarre, A.; Hequet, V. [Ecole des Mines de Nantes, 44 - Nantes (France); Blondin, J. [Cerchar 62 - Mazingarbe (France)

    2001-07-01

    One of the main constraints deriving from the generation of power by coal combustion is to find some use for the fly ashes instead of disposing of them. Fly ashes from two fluidized bed power plants were tested to remove Pb{sup 2+}, Cu{sup 2+}, Cr (III), Ni{sup 2+}, Zn{sup 2+} and Cr (VI) from aqueous solutions. Experimental design methodology was used to study the removal and the leaching as a function of (i) the water pollutant content, (ii) the metal concentration in water, (iii) the pH of the solution and (iv) the addition of lime to fly ashes. The results show that the percentage of adsorbed ions was more important when they were in contact with silico-aluminous fly ashes than sulfo-calcic fly ashes, except in the case of the ion Ni{sup 2+}. The removal of metallic ions increases with increasing pH. The metallic canons removal accounting for the leaching test was higher when lime was added to silico-aluminous fly ashes during the adsorption. (authors)

  15. Hot-Dip Aluminizing on AISI F55–UNS S32760 Super Duplex Stainless Steel Properties: Effect of Thermal Treatments

    Directory of Open Access Journals (Sweden)

    Andrea Francesco Ciuffini

    2017-11-01

    Full Text Available The behavior of super duplex stainless steels AISI F55-UNS S32760 in hot-dip aluminizing process has been studied, investigating the influence of cold working and of different initial microstructures obtained through a preliminary thermal treatment. The microstructural features examined are the secondary austenite precipitation, the static recovery of ferrite and the thermal dissolution of austenite within ferritic matrix. The hot-dip aluminizing temperature has been optimized through sessile drop tests. The treatment has been performed at 1100 °C for 300 s, 900 s and 2700 s. A strong chemical interaction occurs, generating intermetallic compounds at the interface. Molten aluminum interacts exclusively with the ferritic phase due to its much higher diffusivity in this phase coupled with its marked ferrite-stabilizer behavior. Thus, the influence of cold working is not remarkable, since the strains are mainly allocated by austenitic phase. The diffusivity of aluminum increases due to lattice defects thermally generated and, mainly, to influence given by grain boundaries, multiplied by secondary austenite precipitation, which act as short-circuit diffusion paths. Ni and Cr contents in the ferritic matrix have an influence but not highly relevant. Then, the best starting condition of the super duplex stainless steel substrates, to obtain a thick interfacial layer, are the thermal annealing at 1080 °C for 360 s/mm after a solution thermal treatment at 1300 °C for 60 s/mm.

  16. Effect of Hofmeister series salts on Absorptivity of aqueous solutions on Sodium polyacrylate

    Science.gov (United States)

    Korrapati, Swathi; Pullela, Phani Kumar; Vijayalakshmi, U.

    2017-11-01

    Sodium polyacrylate (SPA) is a popular super absorbent commonly used in children diapers, sanitary pads, adult diapers etc. The use of SPA is in force from past 30 years and the newer applications like as food preservant are evolving. SPA is recently discovered by our group for improvement of sensitivity of colorimetric agents. Though the discovery of improvement in sensitivity is phenomenal, the mechanism still remains a puzzle. A typical assay reagent contains colorimetric/fluorescent reagents, buffers, salts, stabilizers etc. These chemicals are known to influence the water absorptivity of SPA. If we were to perform chemical/biochemical assays on SPA absorbed reagents effect of salts and other excipients on colorimetric/fluorescence compounds absorbed on SPA is very important. The hofmeister series are standard for studying effect of salts on permeability, stability, aggregation, fluorescence quenching etc. We recently studied affect of urea, sodium chloride, ammonium sulfate, guanidine thiocayanate on fluorescence characteristics of fluorescence compounds and noted that except urea all other reagents have resulted in fluorescence quenching and urea had an opposite effect and increased the fluorescence intensity. This result was attributed to the different water structure around fluorescent in urea solution versus other chaotropic agents.

  17. 21 CFR 522.1145 - Hyaluronate sodium.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hyaluronate sodium. 522.1145 Section 522.1145 Food... Hyaluronate sodium. (a)(1) Specifications. Each milliliter of sterile aqueous solution contains 10 milligrams of hyaluronate sodium. (2) Sponsor. See 000009 in § 510.600(c). (3) Conditions of use—(i) Amount...

  18. Interactions of hydrazine, ferrous sulfamate, sodium nitrite, and nitric acid in nuclear fuel processing solutions

    International Nuclear Information System (INIS)

    Gray, L.W.

    1977-03-01

    Hydrazine and ferrous sulfamate are used as reductants in a variety of nuclear fuel processing solutions. An oxidant, normally sodium nitrite, must frequently be added to these nitric acid solutions before additional processing can proceed. The interactions of these four chemicals have been studied under a wide variety of conditions using a 2/sup p/ factorial experimental design to determine relative reaction rates for desired reactions and side reactions. Evidence for a hydrazine-stabilized, sulfamic acid--nitrous acid intermediate was obtained; this intermediate can hydrolyze to ammonia or decompose to nitrogen. The oxidation of Fe 2+ by NO 2 - was shown to proceed at about the same rate as the scavenging of NO 2 - by sulfamic acid. Various side reactions are discussed

  19. Chemical elimination of alumina in suspension in nuclear reactors heavy water; Elimination de l'alumine en suspension dans l'eau lourde des reacteurs nucleaires par voie chimique

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-02-01

    Corrosion of aluminium in contact with moderating water in nuclear reactor leads to the formation of an alumina hydrosol which can have an adverse effect on the operation of the reactor. Several physical methods have been used in an attempt to counteract this effect. The method proposed here consists in the elimination of the aluminium by dissolution and subsequent fixation in the ionic form on mixed-bed ion-exchange resin. In order to do this, the parameters and the values of these parameters most favorable to the dissolution process have been determined. If the moderator is heavy water, the deuterated acid can be prepared by converting a solution in heavy water to a salt of the acid using a deuterated cationic resin. (author) [French] La corrosion de l'aluminium au contact de l'eau moderatrice des reacteurs nucleaires, donne lieu a la formation d'un hydrosol d'alumine nuisible au bon fonctionnement des reacteurs. Plusieurs methodes physiques ont ete mises en oeuvre pour pallier ces inconvenients. On propose ici d'eliminer l'alumine par solubilisation pour la fixer ensuite sous forme ionique par des resines echangeuses d'ions, en lit melange. A cette fin on determine les parametres et leurs grandeurs favorables a cette solubilisation. Si le moderateur est de l'eau lourde la preparation d'acide deutere peut etre effectuee par passage d'une solution en eau lourde a un sel de l'acide sur resine cationique deuteree.

  20. On the refractive index of sodium iodide solutions for index matching in PIV

    Science.gov (United States)

    Bai, Kunlun; Katz, Joseph

    2014-04-01

    Refractive index matching has become a popular technique for facilitating applications of modern optical diagnostic techniques, such as particle image velocimetry, in complex systems. By matching the refractive index of solid boundaries with that of the liquid, unobstructed optical paths can be achieved for illumination and image acquisition. In this research note, we extend previously provided data for the refractive index of aqueous solutions of sodium iodide (NaI) for concentrations reaching the temperature-dependent solubility limit. Results are fitted onto a quadratic empirical expression relating the concentration to the refractive index. Temperature effects are also measured. The present range of indices, 1.333-1.51, covers that of typical transparent solids, from silicone elastomers to several recently introduced materials that could be manufactured using rapid prototyping. We also review briefly previous measurements of the refractive index, viscosity, and density of NaI solutions, as well as prior research that has utilized this fluid.

  1. Water-sensitive positron trapping modes in nanoporous magnesium aluminate ceramics

    International Nuclear Information System (INIS)

    Filipecki, J; Ingram, A; Klym, H; Shpotyuk, O; Vakiv, M

    2007-01-01

    The water-sensitive positron trapping modes in nanoporous MgAl 2 O 4 ceramics with a spinel structure are studied. It is shown that water-sorption processes in magnesium aluminate ceramics leads to corresponding increase in positron trapping rates of extended defects located near intergranual boundaries. This catalytic affect has reversible nature, being strongly dependent on sorption water fluxes in ceramics. The fixation of all water-dependent positron trapping inputs allow to refine the most significant changes in positron trapping rate of extended defects

  2. Water-sensitive positron trapping modes in nanoporous magnesium aluminate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Filipecki, J [Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42201 (Poland); Ingram, A [Opole University of Technology, 75, Ozimska str., Opole, PL 45370 (Poland); Klym, H [Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA 79031 (Ukraine); Shpotyuk, O [Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA 79031 (Ukraine); Vakiv, M [Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA 79031 (Ukraine)

    2007-08-15

    The water-sensitive positron trapping modes in nanoporous MgAl{sub 2}O{sub 4} ceramics with a spinel structure are studied. It is shown that water-sorption processes in magnesium aluminate ceramics leads to corresponding increase in positron trapping rates of extended defects located near intergranual boundaries. This catalytic affect has reversible nature, being strongly dependent on sorption water fluxes in ceramics. The fixation of all water-dependent positron trapping inputs allow to refine the most significant changes in positron trapping rate of extended defects.

  3. Effects of molecular interactions and the existence of different molecular forms of sodium fluoresceinate in solutions

    International Nuclear Information System (INIS)

    Golubeva, N.G.

    1989-01-01

    The results of measurement of fluorescence and absorption spectra of sodium fluoresceinate (FLNa) in different solutions and blood plasma are presented. The influence of solvent nature, its polarity, medium concentration and acidity on frequency, intensity and shape of fluorescence and absorption lines was analyzed. A general medium effect on fluorescence line spectral absorption was calculated from Lippert's equation. The influence of specific interactions has been analyzed on the example of acid-base interactions and hydrogen bonds in two- and multicomponent solutions. Computer processing of the spectra obtained allows to separate some forms of existing fluorophor molecules and to get data on the dynamics of their changes in different solutions. A special attention was given to the analysis of absorption and fluorescence bands of FLNa at its interaction with different proteins and lipids in solutions. From the analysis of data obtained a number of conclusions was drawn on the state of fluophor at its interactions with biological media. (author)

  4. Removal of Uranium and Associated Contaminants from Aqueous Solutions Using Functional Carbon Nanotubes-Sodium Alginate Conjugates

    Directory of Open Access Journals (Sweden)

    Hussein Allaboun

    2016-02-01

    Full Text Available Synthesis of hydrophilic/hydrophobic beads from functional carbon nanotubes (CNTs conjugated with sodium alginate was investigated. Glutaraldehyde was used as a coupling agent and Ca2+ as a crosslinking agent. The formed conjugate comprises two-dimensional sheets of sodium alginate bounded to long tufts of functional CNT tails of micro-size geometry. Detailed characterization of the conjugates was performed using thermogravimetric analysis (TGA and its first derivative (DTG, Fourier transform infrared (FTIR, and scanning electron microscope (SEM techniques. Different ratios of the conjugate were successfully prepared and used as biodegradable environmentally friendly sorbents. Removal of U6+, V3+, Cr3+, Mo3+, Pb2+, Mn2+, Cu2+, Ti4+ and Ni2+ from aqueous solutions using the synthesized biosorbent was experimentally demonstrated. Maximum metal uptake of 53 mg/g was achieved using the % Functional CNTs = 33 sample.

  5. Lactated Ringer's solution or 0.9% sodium chloride as fluid therapy in pigeons (Columba livia submitted to humerus osteosynthesis

    Directory of Open Access Journals (Sweden)

    Adriano B. Carregaro

    2015-01-01

    Full Text Available The study aimed to compare the effects of intraosseous infusion of lactated Ringer's and 0.9% sodium chloride solutions on the electrolytes and acid-base balance in pigeons submitted to humerus osteosynthesis. Eighteen pigeons were undergoing to isoflurane anesthesia by an avalvular circuit system. They were randomly assigned into two groups (n=9 receiving lactated Ringer's solution (LR or 0.9% sodium chloride (SC, in a continuous infusion rate of 20mL/kg/h, by using an intraosseous catheter into the tibiotarsus during 60-minute anesthetic procedure. Heart rate (HR, and respiratory rate (RR were measured every 10 min. Venous blood samples were collected at 0, 30 and 60 minutes to analyze blood pH, PvCO2, HCO3 -, Na+ and K+. Blood gases and electrolytes showed respiratory acidosis in both groups during induction, under physical restraint. This acidosis was evidenced by a decrease of pH since 0 min, associated with a compensatory response, observed by increasing of HCO3 - concentration, at 30 and 60 min. It was not observed any changes on Na+ and K+ serum concentrations. According to the results, there is no reason for choosing one of the two solutions, and it could be concluded that both fluid therapy solutions do not promote any impact on acid-base balance and electrolyte concentrations in pigeons submitted to humerus osteosynthesis.

  6. Study of micellar solutions of the 'sodium lauryl sulphate-heavy water' system by using pulsed NMR

    International Nuclear Information System (INIS)

    Fouchet, C.

    1972-01-01

    This research thesis reports the study of the nuclear magnetic resonance of protons contained by micellar solutions of sodium lauryl sulphate and heavy water. Relaxation times have been measured with respect to various parameters: concentration, temperature, frequency. The author presents the main properties of micellar solutions and indicate the various possible movements. Then, he addresses the implemented technique, and shows that NMR is sensitive to short range interactions, and allows micellar movements to be studied over an extended rate range. Experimental results are then presented and interpreted [fr

  7. Another look at the deterioration of calcium aluminate cement concrete

    Directory of Open Access Journals (Sweden)

    Jambor, Jaromir

    1996-03-01

    Full Text Available Potential degradation of concrete structures made of calcium aluminate cement (CAC is well known and is caused by transformation (conversion of the thermodynamically metastable into stable calcium aluminate hydrate phases. This recrystallization is influenced by temperature and humidity; the structural degradation of the concrete itself thus its loss of strength, is strongly related to the pore structure of the hydrated cement paste, the critical parameters being the total volume of pores below 15-20 nm and the median micropore radius. This constitutes a novel procedure for evaluation of existing CAC concrete structure.

    La degradación potencial de estructuras de hormigón elaboradas con cemento aluminoso (CA es bien conocida. Este deterioro está causado por la recristalización (conversión de las fases del aluminato cálcico que son termodinámicamente metastables, en fases estables. En esta recristalización influye la temperatura y la humedad. Tanto la degradación del propio hormigón, como su pérdida de resistencias están relacionadas estrechamente con la estructura porosa de la pasta del cemento hidratado, siendo parámetros críticos el volumen total de los poros inferiores a 15-20 nm y el tamaño medio de los radios de los microporos. Esto constituye un nuevo procedimiento para evaluar las estructuras existentes de hormigón de cemento aluminoso (CA.

  8. Effect of sodium carbonate solution on self-setting properties of tricalcium silicate bone cement.

    Science.gov (United States)

    Zhiguang Huan; Jiang Chang

    2008-11-01

    In this study, the effects of sodium carbonate (Na(2)CO(3) ) solution with different concentrations (10, 15, 20, and 25 wt%) as liquid phase on the setting time and compressive strength of tricalcium silicate bone cements are investigated. The in vitro bioactivity and degradability of the resultant Ca(3)SiO(5)-Na(2)CO(3) solution paste was also studied. The results indicate that as the concentration of Na(2)CO(3) solution varies from 0 to 25 wt%, the initial and final setting time of the cement decrease significantly from 90 to 20 min and from 180 to 45 min, respectively. After setting for 24 h, the compressive strength of Ca(3)SiO(5)-Na(2)CO(3) solution paste reaches 5.1 MPa, which is significantly higher than that of Ca( 3)SiO(5)-water cement system. The in vitro bioactivity of the cements is investigated by soaking in simulated body fluid (SBF) for 7 days. The results show that the Ca(3)SiO(5)-Na(2)CO( 3) solution bone cement has a good bioactivity and can degrade in Ringer's solution. The results indicate that Na(2)CO(3) solution as a liquid phase significantly improves the self-setting properties of Ca( 3)SiO(5) cement as compared to water. The Ca(3)SiO( 5) cement paste prepared using Na(2)CO(3) solution shows good bioactivity and moderate degradability, and the Ca(3)SiO( 5)-Na(2)CO(3) solution system may be used as degradable and bioactive bone defect filling materials.

  9. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Golabiazar, Roonak; Shekaari, Hemayat

    2010-01-01

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) and tri-sodium citrate (Na 3 Cit) are taken. The apparent molar volume of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have negative values. The effects of temperature and the addition of Na 3 Cit and [C 4 mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na 3 Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of entropy and enthalpy are the driving forces

  10. Comparison contemporary methods of regeneration sodium-cationic filters

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  11. The effect of nitrates on the alteration of the cementitious material

    International Nuclear Information System (INIS)

    Takei, Akihiko; Owada, Hitoshi; Fujita, Hideki; Negishi, Kumi

    2002-02-01

    material was accelerated in the leachate from both types of ROBE-waste in comparison with the case of deionized water. The calcium concentration in the case of the ROBE-waste leachate was generally lower than that of deionized water. The acceleration of dissolution of calcium in the case of the ROBE-waste leachate might be caused by the low calcium concentration in the leachate. The low calcium concentration in the solution was attributed to the precipitation of sodium calcium borate or hydroxy apatite. 3) Mineral composition of cement pastes which were cured at 80degC or 50degC for 1 year were obtained. There was no difference in minerals between the 50degC-cured specimen and 20degC-cured one except the decrease of aluminate hydrates such as monosulphate and ettringite. In the 80degC-cured specimen, aluminate hydrates observed under 50degC-cured were not detected and katoite was detected. (author)

  12. Tritium extraction from neutron-irradiated lithium aluminate.; Extraccion del tritio generado por irradiacion neutronica de aluminato de litio.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia H, F

    1995-10-01

    Lithium aluminate is being strongly considered as a breeder material because of its thermophysical, chemical and mechanical stability at high temperatures and its favorable irradiation behavior. Furthermore, it is compatible with other blanket and structural materials. In this work, the effects of calcination temperature during preparation, extraction temperature and sweep gas composition were observed. Lithium aluminate prepared by four different methods, was neutron irradiated for 30 minutes at a flux of 10{sup 12} -10{sup 13} n/cm{sup 2} s in the TRIGA Mark III reactor at Salazar, Mexico; and the tritium extraction rate was measured. Calcination temperature do not affect the tritium extraction rate. However, using high calcination temperature, gamma lithium aluminate was formed. The tritium extraction at 600 Centigrade degrees was lower than at 800 Centigrade degrees and the tritium amount extracted by distillation of the solid sample was higher. The sweep gas composition showed that tritium extraction was less with Ar plus 0.5 % H{sub 2} that with Ar plus 0.1 % H{sub 2}. This result was contrary to expected, where the tritium extraction rate could be higher when hydrogen is added to the sweep gas. Probably this effect could be attributed to the gas purity. (Author).

  13. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  14. 21 CFR 522.313c - Ceftiofur sodium.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ceftiofur sodium. 522.313c Section 522.313c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Ceftiofur sodium. (a) Specifications. Each milliliter of aqueous solution constituted from ceftiofur sodium...

  15. Stability of aqueous-alkaline sodium borohydride formulations

    International Nuclear Information System (INIS)

    Minkina, V.G.; Shabunya, S.I.; Kalinin, V.I.; Martynenko, V.V.

    2008-01-01

    Stability of sodium borohydride in the form of concentrated solutions and suspensions and solids corresponding to a crystal hydrate in composition was studied. The effects of temperature, concentrations of sodium borohydride and alkali, and nature of alkali metal cation on the rate of sodium borohydride hydrolysis were studied [ru

  16. Untitled

    Indian Academy of Sciences (India)

    . Sodium metasilicate (2g), sodium aluminate (0.5g) and sodium hydroxide (0.7g) were mixed together and distilled water (50 ml) was added to the mixture to form a composite sodium aluminosilicate gel. Most of the runs were carried out by ...

  17. Sodium silicate solutions from dissolution of glasswastes. Statistical analysis

    Directory of Open Access Journals (Sweden)

    Torres-Carrasco, M.

    2014-05-01

    Full Text Available It has studied the solubility process of four different waste glasses (with different particle sizes, 125 µm in alkaline solutions (NaOH and NaOH/Na₂CO₃ and water as a reference and under different conditions of solubility (at room temperature, at 80°C and a mechano-chemical process. Have established the optimal conditions of solubility and generation of sodium silicates solutions, and these were: the smaller particle size (Se ha estudiado el proceso de solubilidad de cuatro diferentes residuos vítreos (con distintas granulometrías, 125 µm en disoluciones alcalinas de NaOH y NaOH/Na₂CO₃ y agua como medio de referencia y bajo distintas condiciones de solubilidad (a temperatura ambiente, a 80°C y con un proceso mecano-químico. Se han establecido las condiciones óptimas de solubilidad y generación de disoluciones de silicato sódico, y estas son: menor tamaño de partícula del residuo vítreo (inferior a 45 µm, con la disolución de NaOH/Na₂CO₃ y tratamiento térmico a 80°C durante 6 horas de agitación. El análisis estadístico realizado a los resultados obtenidos da importancia a las variables estudiadas y a las interacciones de las mismas. A través de ²⁹Si RMN MAS se ha confirmado la formación, tras los procesos de disolución, de un silicato monomérico, apto para su utilización como activador en la preparación de cementos y hormigones alcalinos.

  18. Correction of Hemodynamics with Hypertonic Sodium Chloride Solution in Critical Conditions

    Directory of Open Access Journals (Sweden)

    P. S. Zhbannikov

    2007-01-01

    Full Text Available Objective: to assess the capabilities of small-volume hypertonic infusion in the context of early goal-directed therapy for critical conditions in surgical patients.Subjects and methods. Twenty-nine patients (SAPS II 47.5±6.81 scores operated on for generalized peritonitis (n=24 or severe concomitant injury with damages to chest and/or abdominal organs (n=5 who had the clinical and laboratory signs of a systemic inflammatory reaction were intravenously injected 4 ml/kg of 7.5% of hypertonic sodium chloride solution (HS and colloidal solution, followed by infusion and, if indicated, inotropic maintenance of hemodynamics for 6 hours in order to achieve the goal vales of mean blood pressure (BP, central venous pressure (CVP, central venous blood oxygen saturation (ScvO2, and diuresis. Plasma concentrations of sodium, chlorine, and lactate, acid-base balance, and osmotic blood pressure were monitored.Results. The patients were found to have infusion therapy-refractory critical arterial hypotension, low ScvO2, and oliguria before small-volume circulation maintenance. In all the patients, HS infusion originally caused a rapid rise in BP up to the goal value, with its further colloid infusion maintenance requiring additional dopamine infusion in 12 patients and red blood cell transfusion in 3. This could stabilize over 6 hours BP at the required level in 25 patients, in 9 of whom CVP only approximated the goal value. All the patients were found to have a significant increase in ScvO2 up to an average of 68% in response to HP infusion after 30—60 minutes; in 14 out of them ScvO2 exceeded 70%. By hour 6, ScvO2 stabilized at its goal level in 23 (79% examinees. Administration of HS caused a significantly increased diuresis. In patients with recovered renal function, the observed hypernatremia, hyperchloremia with hyperchloremic acidosis were transient.Conclusion. The results of the study show it possible to include small-volume hypertonic infusion at

  19. Sodium-calcium ion exchange on clay minerals at moderate to high ionic strengths

    International Nuclear Information System (INIS)

    Rogers, W.J.

    1979-12-01

    Sodium-calcium ion exchange on several clay minerals was studied at ionic strengths ranging from 0.01 to above 1.0. The minerals studied included attapulgite, illite, kaolin, and several montmorillonites. Distribution coefficients of calcium and sodium were obtained for the minerals over a wide range of solution conditions at pH five and equilibrium constants were calculated. The distribution coefficient of calcium, D/sub Ca/, was studied as a function of time, solution pH, loading, sodium concentration, and ionic strength fraction of sodium in constant ionic strength solutions. The distribution coefficient of sodium, D/sub Na/, was also studied as a function of time, loading, and sodium ionic strength fraction in constant total ionic strength solutions. Values of equilibrium constants calculated from distribution coefficients for solutions of constant ionic strength scattered bwteen 2 and 10 kg/kg for the montmorillonites and attapulgite while equilibrium constants for illite ranged from 5 to 10 kg/kg. No equilibrium constants for kaolin were calculated since distribution coefficients of sodium on this clay were too small to be measured. It was found that equilibrium constants at trace sodium loading were generally lower than those for higher sodium loadings by an order of magnitude or more due to the sensitivity of sodium distribution coefficients to the concentration of sodium in the clay at low loadings. Theoretical and experimental treatments of ion exclusion were included

  20. [Preparation of diclofenac sodium liposomes and its ocular pharmacokinetics].

    Science.gov (United States)

    Sun, Kao-xiang; Wang, Ai-ping; Huang, Li-jun; Liang, Rong-cai; Liu, Ke

    2006-11-01

    To prepare diclofenac sodium liposomes and observe its ocular pharmacokinetics in rabbits. The diclofenac sodium cationic liposomes were prepared by reverse-phase evaporation methods and the formula of liposome was optimized with uniform design. HPLC method was established and validated for the determination of diclofenac sodium in precornea, cornea and aqueous humor of rabbit eye. Liposome and eyedrop solution 50 microL with total 50 microg diclofenac sodium were instilled to eyes of rabbits, separately. Samples of tear, cornea and aqueous humor were collected at different time intervals after rabbits were sacrificed. The ocular pharmacokinetics was investigated by the concentration-time data of tear, cornea and aqueous humor. The mean particle size of the diclofenac sodium liposomes was 226.5 nm with zeta potential of + 18. 1 mV. The entrapment efficiency reached 63%. Compared with solution, liposome was characterized by slower clearance in precornea. The concentration of diclotenac in cornea and aqueous humor instilled with liposome were higher than that with eye-drop solution. Cmax of diclofenac sodium in aqueous humor instilled with liposome and eye-drop solution were (0.69 +/- 0.25) and (0.48 +/- 0.19) microg x mL(-1) and (36.68 +/- 11.7) and (21.82 +/- 8.6) microg x g(-1) in cornea, respectively. But no significant difference were found to Tmax in aqueous humor and cornea between liposome and eyedrop, T(1/2) of diclofenac in aqueous humor and cornea with liposoine were longer than that with eye-drop solution. The ocular bioavailability of liposome in aqueous humor was 211% compared with that of eyedrop. Diclofenac sodium cationic liposomes can increase the corneal contact time, enhance the corneal permeability of diclofenac sodium and improve its ocular bioavailability.

  1. Inhibitory effect of some carbazides on corrosion of aluminium in hydrochloric acid and sodium hydroxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, A.S. [El-Mansoura Univ. (Egypt). Dept. of Chemistry; Madkour, L.H. [Tanta Univ. (Egypt). Dept. of Chemistry; Elshafei, A.A. [El-Mansoura Univ. (Egypt). Dept. of Chemistry; Elasklany, A.H. [El-Mansoura Univ. (Egypt). Dept. of Chemistry

    1995-06-01

    The dissolution of aluminium in hydrochloric acid and sodium hydroxide solutions in the presence of semicarbazide, thiosemicarbazide and sym.diphenylcarbazide as corrosion inhibitors has been studied using thermometric, weight-loss and polarization methods. The three methods gave consistent results. The higher inhibition efficiency of these compounds in acidic than in alkaline madia may be due to the less negative potential of aluminium in hydrochloric acid solution, favouring adsorption of the additive. The adsorption of these compounds were found to obey Frumkin adsorption isotherm. Cathodic polarization measurements showed that these compounds are cathodic inhibitors and their adsorption in the double layer does not change the mechanism of the hydrogen evolution reaction. The results are analysed in terms of both molecular and cationic adsorption. (orig.)

  2. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  3. Ruthenium release from thermally overheated nitric acid solution containing ruthenium nitrosyl nitrate and sodium nitrate to solidify

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Kayo; Ueda, Yasuyuki; Enokida, Youichi [Nuclear Chemical Engineering Laboratory, Nagoya University, Nagoya 4648603 (Japan)

    2016-07-01

    Radioactive ruthenium (Ru) is one of the dominant elemental species released into the environment from a fuel reprocessing plant in a hypothetical design accident due to its relatively higher fission yield and longer half-life. After the hypothetical accident assuming the loss of all electric power and cooling functions, high-level liquid waste (HLLW) may be overheated by the energetic decays of many fission products in it, and Ru may be oxidized to the volatile tetroxide, RuO{sub 4}, which is released through the off-gas pathway. At a reprocessing plant in Japan, alkaline solution from the solvent scrubbing stream is sometimes mixed with the HLLW followed by vitrification, which can be influenced by the addition of sodium nitrate to a simulated HLLW containing ruthenium nitrosyl nitrate that was experimentally evaluated on a small scale using the overheated nitric acid solution of 2 mol/dm{sup 3}, which was kept at 180 Celsius degrees in a glass evaporator placed in a thermostatic bath. The release fraction of Ru increased by approximately 30% by the addition of sodium nitrate. This may be partially explained by the existence of relatively highly concentrated nitrate ions in the liquid phase that oxidize the ruthenium species to RuO{sub 4} during the drying process. (authors)

  4. Two-liquid-phase boundaries and critical phenomena at 275 to 4000C for high-temperature aqueous potassium phosphate and sodium phosphate solutions. Potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1982-01-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases or liquid-liquid immisibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators

  5. Evaluation tissue dissolution property of 2.5 % Sodium Hypochlorite Prepared by Hydrochloric Acid and Sodium Bicarbonate: An in vitro

    Directory of Open Access Journals (Sweden)

    Hamid Razavian

    2016-08-01

    Full Text Available Successful endodontic treatment requires chemical preparation in addition to mechanical preparation. The most common material for chemical preparations is sodium hypochlorite. One way to reduce the effects of pH adjustment is the use of sodium hypochlorite. The present paper was conducted to examine the effect of dilution with hydrochloric acid and sodium bicarbonate and reduce pH on ability of tissue solubility of sodium hypochlorite. The present study was conducted in vitro on bovine muscle tissue. Ability of tissue solubility was conducted in four groups respectively with active ingredient including 1 sodium hypochlorite diluted with distilled water 2 sodium hypochlorite diluted with sodium bicarbonate 3 sodium hypochlorite diluted with hydrochloric acid and finally 4 distilled water (control group. Each sample was firstly weighed and then placed in contact with 10 m/L solution for 60 minutes (five 12 -minute intervals. The sample was weighted every five minutes and solution was renewed. The results were analyzed using SPSS-21 Software based on variance analysis, Tukey and T-test (α=0.05. The findings showed that there was significant difference between first, second and third groups in terms of ability of tissue solubility. However, the tissue solubility in second and third groups was lower than first group and it was similar in second and third groups (P Value <0.001. Reduction of sodium bicarbonate PH using sodium hypochlorite and hydrochloric acid reduces ability of tissue solubility in sodium hypochlorite.

  6. Solubilities of gases in simulated Tank 241-SY-101 wastes

    International Nuclear Information System (INIS)

    Norton, J.D.; Pederson, L.R.

    1995-09-01

    Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks

  7. Iron Nanoparticles (Fe3O4 Used to Synthesize Magnetic Sodium Alginate Hydrogel Beads for the Removal of Basic Blue 159 from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Atiyeh Ghajarieh

    2017-11-01

    Full Text Available Dyes are a main source of pollutants in textile plant effluents. Due to their molecular structure, they are usually toxic, carcinogenous, and persistent in the environment. The aim of the present work was to explore the removal of basic blue159 (BB159 using magnetic sodium alginate hydrogel beads. Magnetic sodium alginate hydrogel beads were initially synthesized  accoriodng to Rocher method using CaCl2 as a crosslink agent. Fourier transform infrared spectroscopy (FTIR was then employed to examine the functional groups on the surface of the magnetic sodium alginate hydrogel beads. In a third stage, the magnetic properties of the beads were measured using a vibrating sample magnetometer (VSM and the magnetic parameters were calculated. Subsequently, the effects of such parameters as adsorbent dosage, pH, initial concentration of dye, and contact time were evaluated on the BB159 removal efficiency of the adsorbent used. Finally, the Langmuir, Freundlich, Temkin, and B.E.T models were exploited to study the adsorption isotherm of BB159 onto the magnetic sodium alginate hydrogel beads. It was found that the magnetic sodium alginate beads possess both –COO and –OH groups that play important roles in the adsorption of the positively charged BB159 dye. A saturation magnetization equal to 21/8(emu/g was obtained for the sodium alginate beads/nano Fe3O4. Results also revealed that the highest dye removal from aqueous solutions was achieved at pH=11 in 120 minutes for 9 grams of the adsorbent. The study indicated that BB159 removal using the magnetic sodium alginate hydrogel beads as the adsorbent obeys the Langmuir model. Moreover, it was shown that the efficiency of the process for BB159 removal from aqueous solutions was satisfactory (85%.

  8. Kidney injury after sodium phosphate solution beyond the acute renal failure.

    Science.gov (United States)

    Fernández-Juárez, Gema; Parejo, Leticia; Villacorta, Javier; Tato, Ana; Cazar, Ramiro; Guerrero, Carmen; Marin, Isabel Martinez; Ocaña, Javier; Mendez-Abreu, Angel; López, Katia; Gruss, Enrique; Gallego, Eduardo

    2016-01-01

    Screening colonoscopy with polipectomy reduces colonorectal cancer incidence and mortality. An adequate bowel cleansing is one of the keys to achieving best results with this technique. Oral sodium phosphate solution (OSP) had a widespread use in the 90s decade. Its efficacy was similar to polyethylene glycol (PEG) solution, but with less cost and convenient administration. Series of patients with acute renal failure due to OSP use have been reported. However, large cohorts of patients found no difference in the incidence of renal damage between these two solutions. From 2006 to 2009 we identified twelve cases of phosphate nephropathy after colonoscopy prepared with OSP. All patients were followed up to six months. All patients had received just a single dose. We analyzed 12 cases with phosphate nephropathy; three patients debuted with AKI and nine patients had chronic renal injury. Four cases were confirmed with renal biopsy. One patient with AKI needed hemodialysis at diagnosis without subsequent recovery. Two patients (both with chronic damage) fully recovered their previous renal function. The remaining patients (nine) had an average loss of estimated glomerular filtration rate of 24ml/min/1.73m(2). The use of OSP can lead to both acute and chronic renal damage. However, chronic injury was the most common pattern. Both forms of presentation imply a significant and irreversible loss of renal function. Further studies analyzing renal damage secondary to bowel cleaning should consider these two different patterns of injury. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Comparison of the antibacterial effect of sodium hypochlorite and aloe vera solutions as root canal irrigants in human extracted teeth contaminated with enterococcus faecalis.

    Science.gov (United States)

    Sahebi, S; Khosravifar, N; Sedighshamsi, M; Motamedifar, M

    2014-03-01

    The main purpose of a root canal treatment is to eliminate the bacteria and their products from the pulp space. Sodium hypochlorite has excellent antibacterial properties, but also some negative features. The aim of the present study is to compare the antimicrobial effect of Aloe Vera solution with sodium hypochlorite on E.faecalis in the root canals of human extracted teeth. Sixty human extracted single rooted teeth were selected for this in vitro study. The teeth recruited in this study had no cracks, internal resorption, external resorption and calcification. Enterococcus faecalis was injected in the root canals of all teeth. The teeth were then divided into three groups randomly. Each group consisted of 20 teeth that were all rinsed with one of the following solutions: sodium hypochlorite 2.5%, Aloe vera and normal saline. Subsequent to rinsing, root canals of all teeth were sampled. The samples were cultured and growth of the bacteria was assessed after 48 hours. The number of colonies of the bacteria was then counted. The difference between the inhibitory effect of Aloe vera and normal saline on E.faecalis was not significant according to independent t-test (p= 0.966). The inhibitory effect of sodium hypochlorite on E.faecalis was much greater than that of Aloe vera and normal saline (pvera solution is not recommended as a root canal irrigator, but future studies are suggested to investigate the antibacterial effect of Aloe vera with longer duration of exposure and as an intra canal medicament.

  10. Ab initio study of the structure and stability of carbonates, silicates, nitrates, phosphates, borates and aluminates L2AO3 and MAO3 (L=Li, Na; M=Be, Mg; A=C, Si, N+, P+, B-, Al-)

    International Nuclear Information System (INIS)

    Charkin, D.O.; Makku, M.L.; Charkin, O.P

    1998-01-01

    Nonempiric calculations of potential energy surfaces of molecules and ions of lithium and sodium oxosalts of the L 2 AO 3 type and beryllium and magnesium salts of the MAO 3 type with 24 valent electrons (L=Li, Na; M=Be, Mg; A=C, Si, N + , P + , B - , Al - ) are accomplished within the frames of the MP2/6-31G * +ZPE(HF/6-31G * ) and MP4SDTQ/6-31+G * //MP2/6-31G * +ZPE(MP2/6-31G * )approximations. Equilibriumgeometrical parameters and relative energy of isomers and energy of their decomposition, IR-frequencies and intensities of normal oscillations are determined; trends in their change in various series of molecules and ions are analyzed. Deformation and polarization of the AO 3 trigonal oxoanions under the effect of alkali and alkaline-earth cations, ortho-meta-isomerism in negative ions of the MBO 3 - borates and MACO 3 - aluminates, as well as effect of electron correlation on calculation results are determined. The results are compared with the data of previous calculations of isoelectron lithium and sodium salts LAO 3

  11. Lithium aluminates and tritium production; Aluminatos de litio y produccion de tritio

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Palacios G, O.; Bosch G, P. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this work it is studied the crystalline structure of lithium aluminates prepared by three different methods, namely: solid state reaction, humid reaction and sol-gel reaction. The analysis methods are the X-ray diffractometry and the scanning and transmission electron microscopy. This study is realized as in original materials as in irradiated materials at the TRIGA Mark reactor, to correlate the synthesis method with response of these materials to the mixed irradiation of nuclear reactor. (Author)

  12. Components inspection of Monju, a sodium bonded type control rod

    International Nuclear Information System (INIS)

    Harada, Kiyoshi; Matsushita, Yuichi; Lee, Chunchan; Abe, Hideaki; Watahiki, Naohisa

    2002-03-01

    This Report addresses a result of a sodium test conducted on components of a Double Poral Filter Sodium Bonded Type Control Rod that is expected to be a next generation, long life Control Rod. Upper and lower Poral Filter Sodium Bonded Type Control Rod components were mocked up to conduct a sodium test. During the test, sodium chargeability, formation of Gas Plenum at the upper part of the components, sodium drain-ability and NaOH clean-ability were recognized under actual plant condition. The following are results obtained: (1) Sodium Chargeability at Control Rod Insertion to EVST. Sodium was charged into the components when the mocked-up was inserted in sodium of 190degC, with insertion speed of 6 m/min which is an actual insertion speed to EVST. (2) Formation of Upper Gas Plenum by Helium Gas generated in Control Rod Components Gas Plenum formation within deviation of 9% was confirmed by releasing helium gas into the mocked-up which is immersed in sodium of 620degC and 190degC. Length of Gas Plenum is confirmed to be retained in certain length even if helium gas is further released into formed Gas Plenum. (3) Sodium Drain-ability of Control Rod Components when Drawing from EVST. Drain-ability was confirmed to be sufficient and no sodium residue was found in the mocked-up when the mocked-up was drawn out from sodium of 190degC, with drawing speed of 6 m/min which is an actual drawing speed from EVST. (4) Clean-ability of NaOH Solution against Sodium Residue in Control Rod Components. Sodium and NaOH solution reacted calmly, however, clean-ability was not sufficient. When Sodium fully remained in Control Rod Components, it made circulation of NaOH solution not enough. (author)

  13. Study on Bleaching Technology of Cotton Fabric with Sodium Percarbonate

    OpenAIRE

    Li Zhi; Wang Yanling; Wang Zhichao

    2016-01-01

    Bleach cotton fabric with sodium percarbonate solution. Analyse of the effect of the concentration of sodium percarbonate solution, bleaching time, bleaching temperature and the light radiation on the bleaching effect of fabric.The result shows that increasing concentrations of percarbonate,increasing the bleaching time , raising the bleaching temperature and the UV irradiation may whiten the cotton fabric.The most suitable conditions for the bleaching process is concentration of sodium perca...

  14. Evaluation of bioactivity in vitro of endodontic calcium aluminate cement; Avaliacao da bioatividade in vitro de cimento endodontico a base de aluminato de calcio

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, I.R.; Andrade, T.L.; Santos, G.L., E-mail: ivonero@univap.br [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil); Pandolfelli, V.C. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2011-07-01

    Bioactivity is referred to as the capacity of a material to develop a stable bond with living tissue via the deposition of hydroxyapatite. Materials which exhibit this property can be used to repair diseased or damaged bone tissue and can be designed to remain in situ indefinitely. An indication of bioactivity can be obtained by the formation of a hydroxyapatite layer on the surface of a substrate in simulated body fluids (SBF) in vitro. Therefore, set samples of calcium aluminate endodontic cement were maintained in contact with SBF solutions (Kokubo and Rigo) and their surfaces were later evaluated by means of SEM, EDX and DRX. Measurements of pH and ionic conductivity were also carried out for SBF solutions in contact with set samples of endodontic cement. The ideal conditions of precipitation were obtained in SBF Rigo been observed a surface layer with spherical morphology characteristic of stoichiometric hydroxyapatite.(author)

  15. Structural study of concentrated micelle-solutions of sodium octanoate by light scattering

    International Nuclear Information System (INIS)

    Hayoun, Marc

    1982-05-01

    Structural investigation of sodium octanoate (CH 3 -(CH 2 ) 6 -COONa) by light scattering has been made to study properties of concentrated aqueous micelle-solutions. From static light scattering data, the micellar weight and shape have been determined. The monomer aggregation number and the apparent micellar charge have been confirmed. Quasi-elastic light scattering, has been used to measure the effective diffusion coefficient as a function of the volume fraction. Extrapolation to the c.m.c. give the hydrodynamic radius of the micelles. At low micelle-concentration, strong exchange reaction between monomers and micelles affects the Brownian motion and resulting is an increase in the diffusion coefficient. The experimental data show a strong hydrodynamic contribution to S(q) (factor structure) and D(q) (effective diffusion coefficient) arising from hard spheres interactions with a large repulsive potential. (author) [fr

  16. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.i [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Golabiazar, Roonak [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2010-04-15

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) and tri-sodium citrate (Na{sub 3}Cit) are taken. The apparent molar volume of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have negative values. The effects of temperature and the addition of Na{sub 3}Cit and [C{sub 4}mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na{sub 3}Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of

  17. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    OpenAIRE

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria.

  18. Phase transformations in lithium aluminates irradiated with neutrons; Transformaciones de fase en aluminatos de litio irradiados con neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, L.M.; Delfin L, A.; Urena N, F.; Basurto, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Bosch, P. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    The lithium aluminate like candidate to be used in the coverings producers of tritium in the fusion nuclear reactors, presents high resistance to the corrosion to the one to be stuck to structural materials as special steels. However, the crystallographic changes that take place in the cover that is continually subjected to irradiation with neutrons, can alter its resistance to the corrosion. In this work the changes of crystalline structure are shown that they present two types of nano structures of lithium aluminates, subjected to an average total dose 7.81 x 10{sup 8} Gy in the fixed irradiation system of capsules of the one TRIGA Mark lll nuclear reactor of the Nuclear Center of Mexico. The studied nano structures presented only phase transformations without formation of amorphous material. (Author)

  19. The influence of alloying elements on the hot-dip aluminizing process and on the subsequent high-temperature oxidation

    International Nuclear Information System (INIS)

    Glasbrenner, H.; Nold, E.; Voss, Z.

    1997-01-01

    For hot dip aluminizing HDA an Al melt was doped with one of the elements Mo, W or Nb with a nominal composition of about 1 wt%. In case of W, the nominal composition was achieved, not so for Mo and Nb. The influence of these elements on the coating formed and on the following oxidation process was investigated. Hot dip aluminizing was carried out at 800 C for 5 min under dry Ar atmosphere. The oxidation experiments were performed at 950 C for 24 h in air. Compared to the HDA processes with pure Al, the addition of the alloying elements lead to thinner intermetallic layers. A change in the oxidation behavior was observed as well concerning the suppression of internal oxidation and the formation of dense and close oxide scales. (orig.)

  20. Preparation of Li4Ti5O12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance

    International Nuclear Information System (INIS)

    Zhang, Jingwei; Zhang, Fenli; Li, Jiuhe; Cai, Wei; Zhang, Jiwei; Yu, Laigui; Jin, Zhensheng; Zhang, Zhijun

    2013-01-01

    Nano-sized spinel lithium titanate (Li 4 Ti 5 O 12 ) was synthesized using sodium titanate nanotube as precursor via a facile solution ion-exchange method in association with subsequent calcination treatment at relatively low temperature. The influences of precursors, ion-exchange condition, and calcination temperature on the microstructure and electrochemical performance of the products were studied. Results indicate that pure-phase Li 4 Ti 5 O 12 can be harvested from sodium titanate nanotube precursor through an ion-exchanging at room temperature and calcination at 500 °C. The products exhibit a better performance as Li-ion battery anode material than the counterparts prepared from protonic titanate nanotube (H-titanate) precursor. The reason may lie in that sodium titanate nanotube is easier than protonic titanate nanotube to synthesize lithium titanate without TiO 2 impurity, resulting in reduced electron transfer ability and Li-ion transport ability. The capacity of Li 4 Ti 5 O 12 prepared from sodium titanate nanotube is 146 mAh/g at 10 C, and it has only 0.7 % decay after 200 charge/discharge cycles

  1. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    Science.gov (United States)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar

    A novel high-temperature alkaline earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO 4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor-phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor-phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in the failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in the formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  2. Mechanism of action of sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Estrela Carlos

    2002-01-01

    Full Text Available The choice of an irrigating solution for use in infected root canals requires previous knowledge of the microorganisms responsible for the infectious process as well as the properties of different irrigating solutions. Complex internal anatomy, host defenses and microorganism virulence are important factors in the treatment of teeth with asymptomatic apical periodontitis. Irrigating solutions must have expressive antimicrobial action and tissue dissolution capacity. Sodium hypochlorite is the most used irrigating solution in endodontics, because its mechanism of action causes biosynthetic alterations in cellular metabolism and phospholipid destruction, formation of chloramines that interfere in cellular metabolism, oxidative action with irreversible enzymatic inactivation in bacteria, and lipid and fatty acid degradation. The aim of this work is to discuss the mechanism of action of sodium hypochlorite based on its antimicrobial and physico-chemical properties.

  3. Irradiation damage in gamma lithium aluminate - LiAlO2

    International Nuclear Information System (INIS)

    Auvray-Gely, M.H.

    1989-01-01

    Single crystals of gamma lithium aluminate (of tetragonal structure) are irradiated) with various projectiles (electrons, He ions, protons, X and gamma photons) and we used (i) electronic paramagnetic resonance (EPR) and optical absorption to detect the defects produced, and (ii) transmission electron microscopy (TEM). The lithium aluminate single crystals irradiated with electrons or ions contain five different paramagnetic defects. Each of them has several anisotropic configurations whose EPR signals (i) have a Lande factor close to 2, (ii) exhibit a resolved hyperfine structure and (iii) are identical only when the static magnetic field is along /001/. In addition, four optical absorption bands appear in the range 1-6 eV in the same irradiation conditions. But only three among the five paramagnetic defects and one of the optical bands appear in X-and gamma-ray irradiated samples. Using these observations, we discuss the nature of the detected defects and we conclude about the type of their production mechanism. Particularly, we assign a six-line EPR signal and an optical band in the ultraviolet range to the F + -centre. We compare this hypothesis to a defect model based on the computation of approximate electronic wave functions using the variational method. Our TEM study shows that when gamma-LiAlO 2 single crystals are irradiated with 1 MeV electrons (fluence: 10 20 electrons/sqcm), tridimensional defects (of mean dimension 100 nm) appear. At lower energies, the defect production is hidden by a thermal effect that is sufficient to induce the evaporation of lithium oxyde and the formation of LiAl 5 0 8 [fr

  4. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    Science.gov (United States)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  5. Leaching of silicon from ferronickel (FeNi) smelting slag with sodium hydroxide solution at atmospheric pressure

    Science.gov (United States)

    Mufakhir, F. R.; Mubarok, M. Z.; Ichlas, Z. T.

    2018-01-01

    The present paper reports the leaching behavior of silicon from ferronickel slag under atmospheric pressure using sodium hydroxide solution. The effect of several experimental variables, namely concentration of leaching agent, operating temperature, stirring speed, and slurry density was investigated. The leaching kinetic was also investigated by using shrinking core model. It was determined that leaching of silicon from the slag was controlled by diffusion through product layer, although the activation energy was found to be 85.84 kJ/mol, which was unusually high for such a diffusion-controlled process.

  6. Inactivation of Listeria monocytogenes ATCC 7644 on tomatoes using sodium docecyl sulphate, levulinic acid and sodium hypochlorite solution

    Directory of Open Access Journals (Sweden)

    E. Mnyandu

    2015-06-01

    Full Text Available The human pathogen Listeria monocytogenes poses a serious threat to public health. A study was carried out to evaluate the effectiveness of four sanitizers, used individually or combined, against L. monocytogenes ATCC 7644. The contact times for bacteria and sanitizer were varied to 1, 3 and 5 minutes. Levulinic acid, sodium dodecyl sulphate (SDS, sodium hypochlorite solution (chlorine and a combination of SDS and levulinic acid (mixture were tested. Results revealed that 0.5% levulinic acid, when used individually, is capable of reducing the surviving colonies by 3.63 log CFU/mL, 4.05 log CFU/mL, 6.71 log CFU/mL after exposure for 1, 3 and 5 minutes respectively.SDS resulted in an 8 log CFU/mL reduction after 1, 3 and 5 minutes. A combination of 0.5% levulinic acid and 0.05% SDS caused a 3.69 log CFU /mL reduction, 4.4 log CFU/mL reduction, 7.97 log CFU/mL reduction for 1, 3 and 5 minutes respectively. Chlorine was the least effective with 2.93 log CFU/mL reduction, 3.16 log CFU/ mL reduction and 4.53 log CFU/ mL reduction respectively. When stored for up to 72 hours at 4°C, the surviving colonies remained viable and decreased in number significantly P < 0.05 = 0.001. The titratable acidity of samples treated with levulinic acid and samples treated with SDS/Lev mixture was lowered significantly compared to the control sample. No significant differences were noted in these same parameters for samples treated with chlorine or SDS. The application of SDS in the fresh produce industry as a sanitizing agent may be successful in eradicating or reducing the viability of L. monocytogenes on fresh produce, thereby replacing the routine chlorine washing.

  7. Thermodynamic analysis of unimer-micelle and sphere-to-rod micellar transitions of aqueous solutions of sodium dodecylbenzenesulfonate

    International Nuclear Information System (INIS)

    Valente, Artur J.M.; López Cascales, J.J.; Fernández Romero, Antonio J.

    2014-01-01

    Highlights: • Unimer-micelle and sphere-to-rod micellar transitions were observed to sodium dodecylbenzenesulfonate in aqueous solutions. • Two micellar transitions were seen by electrical conductivity and surface tension. • An anomalous ΔS 0 and ΔH 0 increase with T was found for the second critical transition. • More stable aggregates are evidenced for spherical micelles than for the other shapes. - Abstract: Temperature dependence of specific conductivity of sodium dodecylbenzenesulfonate (NaDBS) aqueous solutions was analyzed. Two breaks on the plot appeared for all temperature, which suggest two micellar transitions. This has been corroborated by surface tension measurements. The first transition concentration occurs at the critical micelle concentration (CMC), whilst the second critical concentration (so-called transition micellar concentration, TMC) is due to a sphere-to-rod micelles transition. The dependence of CMC and TMC on the temperature allows the computation of the corresponding thermodynamic functions: Gibbs free energy, enthalpy and entropy changes. For the CMC, enthalpy and entropy increments were found that decrease with the temperature values. However, an anomalous behavior was obtained for the TMC, where both ΔS 0 and ΔH 0 values raised with the temperature increase. However, for both transitions, an (enthalpy + entropy) compensation is observed. These results will be compared with similar systems reported in the literature

  8. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    Science.gov (United States)

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  9. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Romagnoli, Marcello [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Pollastri, Simone; Gualtieri, Alessandro F. [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, Via S. Eufemia 19I, I-41121 Modena (Italy)

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  10. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    International Nuclear Information System (INIS)

    Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" data-affiliation=" (Dipartimento di Ingegneria Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" >Lassinantti Gualtieri, Magdalena; Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" data-affiliation=" (Dipartimento di Ingegneria Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" >Romagnoli, Marcello; Pollastri, Simone; Gualtieri, Alessandro F.

    2015-01-01

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed

  11. Generation IV SFR Nuclear Reactors: Under-Sodium Repair for ASTRID

    International Nuclear Information System (INIS)

    Baque, F.; Chagnot, C.; Bruguiere, L.; Augem, J.M.; Delalande, V.; Sibilo, J.

    2013-06-01

    For non-removable components of the future ASTRID prototype, repair operations will be performed in a gas environment. If the faulty area is located under the sodium free level, the gas-tight system will have to contain the inspection and repair tools and to protect them from the surrounding liquid sodium. Concerning repair tools, the unique laser tool has been selected for future SFRs: the repair scenario for in-sodium structures will first involve removing the sodium (after bulk draining), then machining and finally welding. Concerning conventional tools (brush or gas blower for sodium removal, milling machine for machining and TIG for welding for which its feasibility was demonstrated in the 1990's) are still considered as a back-up solution. In-pile examination or repair requires robotic carriers. These carriers have to be compatible with the sodium environment: either in the cover-gas plenum or in gas after sodium draining, or even under liquid sodium. This R and D programme has been divided into nine parts in order to provide an overall design of the required robotic carriers and to develop technological solutions for their components: detailed definition for SFR carrier needs (access to internal structures, possible defects to be detected/repaired), definition and specifications of carrier architecture (depending on inspection and repair scenarios), in-sodium leak-tightness of carrier components, carrier material compatibility with sodium, temperature resistance (200 deg. C), irradiation resistance (depending on the location of the main vessel), gas-tight bell for operations under liquid sodium, carrier positioning control in liquid sodium, development, validation and qualification of technological solutions, for future SFRs, and worldwide benchmark regarding the previous areas of investigation. (authors)

  12. Facile Fabrication of a Hierarchical Superhydrophobic Coating with Aluminate Coupling Agent Modified Kaolin

    OpenAIRE

    Hui Li; Mengnan Qu; Zhe Sun; Jinmei He; Anning Zhou

    2013-01-01

    A superhydrophobic coating was fabricated from the dispersion of unmodified kaolin particles and aluminate coupling agent in anhydrous ethanol. Through surface modification, water contact angle of the coating prepared by modified kaolin particles increased dramatically from 0° to 152°, and the sliding angle decreased from 90° to 3°. Scanning electron microscopy was used to examine the surface morphology. A structure composed of micro-nano hierarchical component, combined with the surface modi...

  13. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  14. Adsorption of and acidic dye from aqueous solution by surfactant modified bentonite

    International Nuclear Information System (INIS)

    Bouberka, Z.; Khenifi, A.; Belkaid, N.; Ait Mahamed, H.; Haddou, B.; Derriche, Z.

    2009-01-01

    The aim of this paper is to study the adsorption of an acidic dye S. Y. 4 GL (i.e: Supranol yellow 4GL) from aqueous solution on inorgano-organo clay. Bentonite is a kind of natural clay with good exchanging ability. By exchanging its inter lamellar cations with Cetyltrimethylammonium bromide (CTAB) and hydroxy aluminic or chromium poly cations, the properties of natural bentonite can be greatly improved. (Author)

  15. Effect of sodium acetate on the volumetric behaviour of some mono-, di-, and tri-saccharides in aqueous solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K., E-mail: pkbanipal@yahoo.co [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Singh, Vickramjeet [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)

    2010-01-15

    The standard partial molar volumes, V{sub 2}{sup 0} at infinite dilution of eight monosaccharides [D(+)-xylose, D(-)-arabinose, D(-)-ribose, L(-)-sorbose, D(-)-fructose, D(+)-galactose, D(+)-glucose, and D(+)-mannose], six disaccharides [D(+)-cellobiose, sucrose, D(+)-melibiose, D(+)-lactose monohydrate, D(+)-trehalose dihydrate, and D(+)-maltose monohydrate] and two trisaccharides [D(+)-melizitose and D(+)-raffinose pentahydrate] (molalities of saccharides range from (0.03 to 0.12) mol . kg{sup -1}) have been determined in water and in (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} aqueous sodium acetate solutions at temperatures, T = (288.15, 298.15, 308.15, and 318.15) K from density measurements using a vibrating-tube digital densimeter. From these results, corresponding standard partial molar volumes of transfer, DELTA{sub t}V{sub 2}{sup 0} have been determined for the transfer of various saccharides from water to aqueous solutions of sodium acetate. Positive values of DELTA{sub t}V{sub 2}{sup 0} were obtained for most of the saccharides, whose magnitude increase with the concentration of sodium acetate as well as temperature. However, negative DELTA{sub t}V{sub 2}{sup 0} values were observed for L(-)-sorbose, D(-)-fructose and D(+)-xylose at lower concentrations of co-solute. The negative magnitude of DELTA{sub t}V{sub 2}{sup 0} values decrease with rise of temperature from (288.15 to 318.15) K. Pair and higher order volumetric interaction coefficients have been determined by using McMillan-Mayer theory. Partial molar expansion coefficients, (partial derivV{sub 2}{sup 0}/partial derivT){sub p} and the second derivatives (partial deriv{sup 2}V{sub 2}{sup 0}/partial derivT{sup 2}){sub p} have also been estimated. These parameters have been utilized to understand various mixing effects in aqueous solutions due to the interactions between solute (saccharide) and co-solute (sodium acetate).

  16. Small angle neutron scattering studies of mixed micelles of sodium

    Indian Academy of Sciences (India)

    The aqueous solutions of sodium cumene sulphonate (NaCS) and its mixtures with each of cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) are characterized by small angle neutron scattering (SANS). NaCS when added to CTAB solution leads to the formation of long rod-shaped micelles with ...

  17. Localized corrosion of alloys C-276 and 625 in aerated sodium chloride solutions at 25 to 200 degrees C

    International Nuclear Information System (INIS)

    Postlethwaite, J.

    1991-12-01

    Two molybdenum-bearing nickel alloys, Alloy C-276 and Alloy 625, were previously identified for consideration as candidate container materials for the Canadian Nuclear Fuel Waste Management Program. Because of the paucity of data for the localized corrosion behaviour of these passive alloys under conditions that may be experienced in a disposal vault, this project was undertaken to study the crevice and pitting corrosion of Alloys C-276 and 625 in chloride solutions at elevated temperatures. Electrochemical and immersion tests have been conducted in neutral sodium chloride solutions (0.1 wt% to saturated) at 25 to 200 degrees C, in an attempt to identify the conditions under which localized corrosion occurs and to relate the actual corrosion behaviour to that expected on the basis of electrochemical studies. Cyclic polarization studies showed that the passivation breakdown potentials move rapidly to more active values with increasing temperatures. Above 100 degrees C the resistance to localized corrosion is greatly reduced. The results of the immersion tests are presented in the form of T versus (C1-) diagrams. These susceptibility diagrams suggest that there is a limiting crevice-corrosion temperature for each alloy in aerated, neutral sodium chloride solutions. Below this temperature corrosion does not occur, regardless of the chloride concentration. The values of the limiting crevice-corrosion temperatures were in the range 100 to 125 degrees C for Alloy C-276 and 100 to 115 degrees C for Alloy 625. Such values suggest that saturation of the chloride solutions by surface boiling could occur without the initiation of localized corrosion. These electrochemical results indicate that a large safety margin for susceptibility to localized corrosion might be found below 100 degrees C

  18. Method of growing yttrium aluminate and/or lanthanide single crystals with perovskite structure

    International Nuclear Information System (INIS)

    Kvapil, Jiri; Perner, B.; Kvapil, Josef; Blazek, K.

    1989-01-01

    Single crystals of yttrium aluminate and/or lanthanide with perovskite structure are grown from melt in a vacuum at a pressure of gas residues of max. 0.01 Pa. The melt contains 1±0.05 gram-ions of aluminium per gram-ion of yttrium and/or lanthanides. The single crystals are then heated in a vacuum (0.01 Pa) at temperatures of 1,450 to 1,800 degC for 2 to 3 hours. (B.S.)

  19. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    Science.gov (United States)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  20. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers.

    Science.gov (United States)

    Zhang, Rui; Guo, Jing; Liu, Yuanfa; Chen, Shuang; Zhang, Sen; Yu, Yue

    2018-06-01

    Sodium alginate (SA) and antarctic krill protein (AKP) were blended to fabricate the SA/AKP composite fibers by the conventional wet spinning method using 5% CaCl 2 as coagulation solution. The sodium salt was added to the SA/AKP solution to adjust the ionization degree and intermolecular interaction of composite system. The main purpose of this study is to investigate the influences of sodium salt types (NaCl, CH 3 COONa, Na 2 SO 4 ) on the intermolecular interaction of SA/AKP composite fibers. The intermolecular interaction, morphology, crystallinity, thermal stability and mechanical properties of SA/AKP composite fibers were analyzed by fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), x-ray diffraction (XRD), thermogravimetric analysis (TGA). The results show that the types of sodium salt have obvious influences on the content of both β-sheet, intermolecular hydrogen bond, breaking strength and surface morphology in SA/AKP composite fibers, but have a negligible effect on the crystallinity and thermal stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A method for the manufacture of nuclear-purity sodium

    International Nuclear Information System (INIS)

    Besson, Paul; Graff, Willy.

    1973-01-01

    Description is given of a method for the manufacture of sodium from the amalgam provided by sodium chloride aqueous electrolysis cells, comprising the steps of treating the sodium amalgam by a sodium polysulfide or a mixture of sodium polysulfide in anhydrous alcohol solution, then causing the thus obtained sodium monosulfide to react with a polysulfide or a mixture of polysulfides so as to obtain a mixture of sodium polysulfides with a higher sodium content, and finally separating sodium through the electrolysis of the sodium-rich polysulfides, the electrolysis being carried out in an electrolytic cell with β-alumina solid electrolyte operating at a temperature between 250 and 300 deg C, in which the polysulfide forms the anode compartment and sodium the cathode compartment [fr

  2. Nanocomposite Materials for the Sodium-Ion Battery: A Review.

    Science.gov (United States)

    Liang, Yaru; Lai, Wei-Hong; Miao, Zongcheng; Chou, Shu-Lei

    2018-02-01

    Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na + ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cancrinite and sodalite formation in the presence of cesium, potassium, magnesium, calcium and strontium in Hanford tank waste simulants

    International Nuclear Information System (INIS)

    Deng Youjun; Flury, Markus; Harsh, James B.; Felmy, Andrew R.; Qafoku, Odeta

    2006-01-01

    High-level radioactive tank waste solutions that have leaked into the subsurface at the US Department of Energy Hanford Site, Washington, are chemically complex. Here, the effect of five cations, Cs + , K + , Sr 2+ , Ca 2+ and Mg 2+ , on mineral formation and transformation pathways under conditions mimicking Hanford tank leaks is investigated. Sodium silicate was used to represent the dissolved silicate from sediments. The silicate was added into a series of simulants that contained 0.5M aluminate, 1M or 16M NaOH, and the NO 3 - salts of the cations. The precipitates were monitored by X-ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectroscopy. In the 1M NaOH simulants, low concentration of Cs + ( + concentration was >=250mM. An unidentified feldspathoid or zeolite intermediate phase was observed in the presence of high concentrations of Cs + (500mM). The presence of K + did not alter, but slowed, the formation of cancrinite and sodalite. The presence of divalent cations led to the formation of metastable or stable silicates, aluminates, hydroxides, or aluminosilicates. The formation of these intermediate phases slowed the formation of cancrinite and sodalite by consuming OH - , silicate, or aluminate. Compared with the concentrations used in this study, the concentrations of radioactive Cs + and Sr 2+ in the tank solutions are much lower and divalent cations (Ca 2+ and Mg 2+ ) released from sediments likely precipitate out as hydroxides, silicates or aluminates; therefore, the authors do not expect that the presence of these monovalent and divalent cations significantly affect the formation of cancrinite and sodalite in the sediments underneath the leaking waste tanks

  4. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    DEFF Research Database (Denmark)

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao Jackie

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied......, indicating a significant improvement compared with the non-doped CuAlO2 sample...

  5. Synthesis and test of sorbents based on calcium aluminates for SE-SR

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Di Michele, A.; Gallorini, F.; Petrillo, C.; Sacchetti, F.

    2014-01-01

    Highlights: • Synthesis strategy of CaO incorporation into calcium aluminates was approached. • Three innovative sorbents (M1, M2, M3) were synthesized and characterized. • Sorption capacity of developed sorbents was evaluated in multi-cycle processes. • M3 sorbent showed best performance, much higher than conventional CaO ones. • M3 sorbent functionality in SE-SR process was verified. - Abstract: Greenhouse gases emission of power generation plants will be continuously tightened to achieve European targets in terms of CO 2 emissions. In particular, the switching to a sustainable power generation using fossil fuels will be strongly encouraged in the future. In this context, sorption-enhanced steam reforming (SE-SR) is a promising process because it can be implemented as a CCS pre-combustion methodology. The purpose of this study is to develop and test innovative materials in order to overcome main limitations of standard CaO sorbent, usually used in the SE-SR process. The investigated innovative sorbents are based on incorporation of CaO particles into inert materials which significantly reduce the performance degradation. In particular, sorbent materials based on calcium aluminates were considered, investigating different techniques of synthesis. All synthesized materials were packed, together with the catalyst, in a fixed bed reactor and tested in sorption/regeneration cycles. Significant improvements were obtained respect to standard CaO regarding sorption capacity stability exhibited by the sorbent

  6. Release of the Diclofenac Sodium by Nanofibers of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate Obtained from Electrospinning and Solution Blow Spinning

    Directory of Open Access Journals (Sweden)

    Michelle Andrade Souza

    2014-01-01

    Full Text Available Electrospun fibers are explored as a new system for controlled drug delivery. Novel techniques capable of obtaining polymer nanofibers have been reported in the literature. They include solution blow spinning (SBS, which is a technique to produce polymer nanofibers in the same range as electrospinning, using pressurized gas instead of high voltage. The present study investigates release characteristics of diclofenac sodium encapsulated at three concentrations (5, 10, and 20% w/v in poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV nanofibers made by electrospinning and SBS and determines the drug’s effect on fiber morphology and structural properties. PHBV nanofibers were characterized using scanning electronic microscopy, differential scanning calorimetry, and X-ray diffraction, and the release profile was examined via UV-Vis spectrophotometry. Both electrospinning and SBS encapsulated diclofenac sodium in PHBV membranes efficiently and effectively. The profile of the in vitro release of diclofenac sodium was dependent on drug concentration and temperature. The drug reduced crystallinity and increased flexibility.

  7. Intermediate Phase Study on YBCO Films Coated by Precursor Solutions With F/Ba Atomic Ratio of 2

    DEFF Research Database (Denmark)

    Wu, W.; Feng, F.; Zhao, Y.

    2016-01-01

    In the chemical solution deposition process of YBCO superconducting films, fluorine is widely regarded to be of significant importance in avoiding the formation of BaCO3, which hinders the growth of high-quality YBCO films. On the other hand, great efforts have been made to decrease the fluorine......) could be routinely obtained on lanthanum aluminate single-crystal substrates....

  8. Antiseptic solutions modulate the paracrine-like activity of bone chips: differential impact of chlorhexidine and sodium hypochlorite.

    Science.gov (United States)

    Sawada, Kosaku; Caballé-Serrano, Jordi; Bosshardt, Dieter D; Schaller, Benoit; Miron, Richard J; Buser, Daniel; Gruber, Reinhard

    2015-09-01

    Chemical decontamination increases the availability of bone grafts; however, it remains unclear whether antiseptic processing changes the biological activity of bone. Bone chips were incubated with four different antiseptic solutions including (1) povidone-iodine (0.5%), (2) chlorhexidine diguluconate (0.2%), (3) hydrogen peroxide (1%) and (4) sodium hypochlorite (0.25%). After 10 min. of incubation, changes in the capacity of the bone-conditioned medium (BCM) to modulate gene expression of gingival fibroblasts was investigated. Conditioned medium obtained from freshly prepared bone chips increased the expression of TGF-β target genes interleukin 11 (IL11), proteoglycan4 (PRG4), NADPH oxidase 4 (NOX4), and decreased the expression of adrenomedullin (ADM), and pentraxin 3 (PTX3) in gingival fibroblasts. Incubation of bone chips with 0.2% chlorhexidine, followed by vigorously washing resulted in a BCM with even higher expression of IL11, PRG4 and NOX4. These findings were also detected with a decrease in cell viability and an activation of apoptosis signalling. Chlorhexidine alone, at low concentrations, increased IL11, PRG4 and NOX4 expression, independent of the TGF-β receptor I kinase activity. In contrast, 0.25% sodium hypochlorite almost entirely abolished the activity of BCM, whereas the other two antiseptic solutions, 1% hydrogen peroxide and 0.5% povidone-iodine, had relatively no impact respectively. These in vitro findings demonstrate that incubation of bone chips with chlorhexidine differentially affects the activity of the respective BCM compared to the other antiseptic solutions. The data further suggest that the main effects are caused by chlorhexidine remaining in the BCM after repeated washing of the bone chips. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Contribution to the study of porous or very finely divided alumina; Contribution a l'etude des alumines poreuses ou tres finement divisees

    Energy Technology Data Exchange (ETDEWEB)

    Juillet, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-12-15

    An amorphous porous alumina having a large surface area can be made non-stoichiometric by a treatment at 500 - 700 deg C in a vacuum. The oxygen deficit after a treatment at 500 deg C, and the aluminium deficit after a treatment at 700 deg C, give rise to semiconductor properties successively of type n and of the type p. A crystallized {delta}-alumina in the form of non-porous spherical grains compressed at a pressure of 1 to 5 metric tons/cm{sup 2} is also non-stoichiometric with a deficit of oxygen or of aluminium. None of these phenomena could be observed with a sample which had not been compressed. The favorable influence of oxygen on the recrystallization process of amorphous alumina, and on the {delta}-{alpha}, transformation of crystallized alumina has been demonstrated. Furthermore, the strains produced by the compression of the {delta}-alumina make possible its transformation in air into a at a temperature lower than the temperature necessary to observe this phenomenon with non-compressed {delta}-alumina. Amorphous alumina undergoes an intergranular sintering at 500 deg C and an intergranular sintering at 1 000 deg C. Only the latter occurs in the case of spherical alumina grains. For these, the strains brought about by the compression cause a lowering of 100 deg C in the threshold sintering temperature, with respect to the temperature required to produce the phenomena in a non-compressed sample. The amount of sintering in a crystallized alumina pellet depends, as well, on the rate of rise of temperature. This study tends to show that new properties, or at least unusual solid-state properties, can be observed on disorganised solids or on solids which are crystallized but which have a large surface area and a certain amount of strain. (author) [French] Une alumine poreuse amorphe de grande surface specifique peut etre rendue non-stoechiometrique par traitement sous vide pousse a 500-700 deg C. Le deficit en oxygene apres chauffage a 500 deg C, puis le

  10. Monte Carlo transport correction of sodium reactivity worth spatial distribution in perspective Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Raskach, K.F.; Blyskavka, V; Kislitsyna, T.S.

    2011-01-01

    In this paper we apply Monte Carlo for calculating spatial distribution of sodium reactivity worth in the perspective Russian sodium-cooled fast reactor BN-1200. A special Monte Carlo technique applicable for calculating perturbations and derivatives of the effective multiplication factor is used. The numerical results obtained show that Monte Carlo has a good perspective to deal with such problems and to be used as a reference solution for engineering codes based on the diffusion approximation. They also allow to conclude that in the sodium blanket and in the neighboring region of the core the diffusion code used likely overestimates sodium reactivity worth. This conclusion has to be verified in future work. (author)

  11. A two-phase model for aluminized explosives on the ballistic and brisance performance

    Science.gov (United States)

    Kim, Wuhyun; Gwak, Min-cheol; Lee, Young-hun; Yoh, Jack J.

    2018-02-01

    The performance of aluminized high explosives is considered by varying the aluminum (Al) mass fraction in a heterogeneous mixture model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. For simulating the performance of aluminized explosives with varying Al mass fraction, HMX (1,3,5,7-tetrahexmine-1,3,5,7-tetrazocane) is considered as a base explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between the HMX product gases and Al particles. In the current study, a two-phase model is utilized in order to determine the effects of the Al mass fraction in a condensed phase explosive. First, two types of confined rate stick tests are considered to investigate the detonation velocity and the acceleration ability, which refers to the radial expansion velocity of the confinement shell. The simulation results of the confined rate stick test are compared with the experimental data for the Al mass fraction range of 0%-25%, and the optimal Al mass fraction is provided, which is consistent with the experimental observations. Additionally, a series of plate dent test simulations are conducted, the results of which show the same tendency as those of the experimental tests with varying Al mass fractions.

  12. Observation on the availability and tolerance of 0.1% bromfenac sodium hydrate ophthalmic solution in the partial substitution of glucocorticoid after LASEK

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Deng

    2015-12-01

    Full Text Available AIM:To observe the availability and tolerance of 0.1% bromfenac sodium hydrate ophthalmic solution in the partial substitution of glucocorticoid after laser subepithelial keratomileusis(LASEK. METHODS:Totally 180 patients(180 eyesreceived LASEK were selected and divided into study group and control group according to different medications. The study group adopted 0.1% bromfenac sodium hydrate ophthalmic solution combined with glucocorticoid; the control group adopted glucocorticoid. The changes of visual acuity and intraocular pressure(IOPof two groups were recorded before and after surgery and the occurrence of diffuse larnellar kerafitis(DLKafter surgery were observed. RESULTS:After 1mo of surgery, visual acuity of study group was 1.25±0.22 while that of control group was 0.97±0.23(PP>0.05. After 1 and 3mo of surgery, IOP of study group was 12.29±2.71 and 12.67±2.33mmHg while that of control group was 14.26±2.65 and 14.56±2.61mmHg, the difference was statistically significant(PP>0.05. In terms of tolerance, the control group had 4 cases(4 eyestaking the IOP-lowering medication. The study group had no uncomfortable cases. The DLK level of the study group at 0, 1, 2 was 93.33%, 6.67%, 0%, respectively and those in control group was 75.56%, 17.78% and 6.67%, respectively, and the differences were significant(PCONCLUSION:0.1% bromfenac sodium hydrate ophthalmic solution can efficiently stabilize the patient's IOP after LASEK. The patient has a better visual acuity, visual function and fewer complications. The tolerance is also favorable. It is worthy of promotion.

  13. Measurements of density and of thermal expansion coefficient of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.

    1980-12-01

    Measurements have been performed of the density and volumetric thermal expansion coefficient of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. These data are required for the design of core-catchers based on sodium borates. The measurements have been performed with the buoyancy method in the temperature range from 850 0 C to 1325 0 C. The data for the pure borax and for the sodium metaborate agree reasonably well with the data from the literature, giving confidence that the measurements are correct and the new data for the salts with UO 2 are reliable. (orig.) [de

  14. Efficacy and safety of diclofenac sodium 2% topical solution for osteoarthritis of the knee: a randomized, double-blind, vehicle-controlled, 4 week study.

    Science.gov (United States)

    Wadsworth, L Tyler; Kent, Jeffrey D; Holt, Robert J

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are standard therapy for osteoarthritis (OA). Topically applied NSAIDs reduce systemic exposure compared with oral NSAIDS, and European guidelines recommend their use. The NSAID diclofenac is available in a range of topical formulations. Diclofenac 1% gel and 1.5% four times daily and 2% twice daily (BID) solutions are approved to reduce pain from OA of the knee(s). The objective of this study was to investigate the efficacy and safety of diclofenac sodium 2% topical solution BID versus vehicle control solution for treating pain associated with OA of the knee. A phase II, 4 week, randomized, double-blind, parallel-group, two-arm, vehicle-controlled study compared pain relief with diclofenac sodium 2% topical solution versus control (vehicle only) in patients aged 40 to 85 years with radiographically confirmed primary OA of the knee. ClinicalTrials.gov identifier NCT01119898. The primary efficacy outcome was change from baseline to the final visit in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale. Secondary outcomes included additional WOMAC subscales and patient global assessment of OA. Treatment-emergent adverse events (TEAEs), skin irritation, and vital signs were assessed and collected throughout the study. Of 260 patients randomized, 259 received ≥1 dose of study drug. Significantly greater reductions in least-squares mean (standard error) WOMAC pain scores were observed for diclofenac-treated (-4.4 [0.4]) versus vehicle-treated patients (-3.4 [0.4]) at the final visit (p = 0.040). The most commonly reported TEAEs were administration site conditions. The vehicle-treated group experienced slightly more TEAEs than the active treatment group (38.8% vs. 31.5%). No serious adverse events were reported. Administration of diclofenac sodium 2% topical solution BID resulted in significantly greater improvement in pain reduction in patients with OA of the knee versus vehicle

  15. SrAl12O19 thin films by chemical solution deposition and their use as buffer layers for oriented growth of hexagonal ferrites

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Uhrecký, Róbert; Kaščáková, Dorota; Kužel, R.; Holý, V.; Dopita, M.

    2016-01-01

    Roč. 616, OCT (2016), s. 228-237 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:61388980 Keywords : Chemical solution deposition * Hexagonal aluminates * Hexagonal ferrites Subject RIV: CA - Inorganic Chemistry Impact factor: 1.879, year: 2016

  16. Compatibility of ondansetron hydrochloride and methylprednisolone sodium succinate in multilayer polyolefin containers.

    Science.gov (United States)

    Bougouin, Christelle; Thelcide, Chloë; Crespin-Maillard, Fabienne; Maillard, Christian; Kinowski, Jean Marie; Favier, Mireille

    2005-10-01

    The compatibility of ondansetron hydrochloride and methylprednisolone sodium succinate in 5% dextrose injection and 0.9% sodium chloride injection was studied. Test solutions of ondansetron hydrochloride 0.16 mg/mL and methylprednisolone sodium succinate 2.4 mg/mL were prepared in triplicate and tested in duplicate. Total volumes of 4 and 2 mL of ondansetron hydrochloride solution and methylprednisolone sodium succinate solution, respectively, were added to 50-mL multilayer polyolefin bags containing 5% dextrose injection or 0.9% sodium chloride injection. Bags were stored for 24 hours at 20-25 degrees C and for 48 hours at 4-8 degrees C. Chemical compatibility was measured with high-performance liquid chromatography, and physical compatibility was determined visually. Ondansetron hydrochloride was stable for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C. Methylprednisolone sodium succinate was stable for up to 48 hours at 4-8 degrees C. When stored at 20-25 degrees C, methylprednisolone sodium succinate was stable for up to 7 hours in 5% dextrose injection and up to 24 hours in 0.9% sodium chloride injection. Compatibility data for solutions containing ondansetron hydrochloride plus methylprednisolone sodium succinate revealed that each drug was stable for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C. Ondansetron 0.16 mg/mL (as the hydrochloride) and methylprednisolone 2.4 mg/mL (as the sodium succinate) mixed in 50-mL multilayer polyolefin bags were stable in both 5% dextrose injection and 0.9% sodium chloride injection for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C.

  17. Dynamic Mechanical Properties and Constitutive Relation of an Aluminized Polymer Bonded Explosive at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Yuliang Lin

    2014-01-01

    Full Text Available Polymer bonded explosives (PBXs are widely used as energetic fillings in various warheads, which maybe are utilized under extreme environments, such as low or high temperatures. In this paper, the dynamic response of an aluminized polymer bonded explosive was tested at a range of temperatures from −55°C to −2°C and a fixed loading strain rate (~700 s−1 with the split Hopkinson pressure bar (SHPB. The PBX tested is aluminized, which contains 76 wt% RDX, 20 wt% aluminum powder, and 4 wt% polymer binder, respectively. The results show that the effect of temperature on the strength of the PBX is obvious at the tested strain rates. Based on the experimental results and prophase studies, a constitutive model was obtained, in which the effect of temperature and strain rate were considered. The modeling curves fit well with the experimental results, not only at low temperature under 0°C, but also at room temperature (20°C. The model may be used to predict the dynamic performances of the PBXs in various environments.

  18. The method of obtaining of sodium orthoiodohippurate labelled with iodine-131

    International Nuclear Information System (INIS)

    Aripov, D.; Abdukayumov, M.; Shukurov, A.Sh.

    1994-01-01

    The method of labelling of sodium orthoiodohippurate was elaborated with the purpose of increasing the preparation quality. Method includes the reaction of isotopic exchange between orthoiodhippur acid and sodium iodide solution labelled with iodine-131 with volume activity 150-200 mCu/mL and pH=6,5-7,0. Reaction occurs at temperature 120-130 C during 1,1-1,3 hours and the compound obtained is dissolved in 1% sodium bicarbonate solution. (author)

  19. Filtration of Sludge and Sodium Nonatitanate Solutions

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2000-01-01

    The proposed facility designs for the ion exchange and solvent extraction flowsheets under development to treat high level waste at the Savannah River Site use crossflow filtration to remove entrained sludge and monosodium titanate (MST). Bench-scale and pilot-scale testing performed with simulated feed streams showed much lower filtration rates than desired for the process. This report documents an investigation of the impact on filtration of using Honeywell sodium nonatitanate (ST), rather than MST, for strontium and actinide removal

  20. Effect of Soaking Time in Sodium Metabisulfite Solution on the Physicochemical and Functional Properties of Durian Seed Flour

    Directory of Open Access Journals (Sweden)

    Kumoro Andri

    2018-01-01

    Full Text Available With regard to its high carbohydrate and gum contents, durian seed flour has been used as a substitute to wheat flour in butter cake and cookies manufactures. Unfortunately, processing of fruit seeds into flour may be hampered by discoloration, which may affect the nutrition and sensory quality of the food products. The objective of this study is to investigate the effect of soaking time on the physicochemical and functional properties of durian seed flour. Durian seed chips were soaked in 0.6% w/v sodium metabisulfite solution as anti-browning agent at 30°C for desired periods (40, 60, 80, 100, 120 minutes, followed by drying at 50°C for 17 hours, milling and sieving to obtain flour. The flour was analyzed for its moisture, ash, protein, fat and carbohydrate contents, sulfite residue, yield, gelatinization temperature, and water and oil absorption capacities (WAC and OAC. The results showed that longer soaking time reduced the moisture and ash content of durian seed flour, but increased most of the other studied parameters. The WAC, OAC and fat content were less affected by soaking time. It can be concluded that soaking of durian seed chips in sodium metabisulfite solution can improve the nutrition and functional properties of flour. Based on the residual sulfite content, durian seed flour obtained in this work is safe for consumption.

  1. SODIUM DI-N-DODECYL PHOSPHATE VESICLES IN AQUEOUS-SOLUTION - EFFECTS OF ETHANOL, PROPANOL, AND TETRAHYDROFURAN ON THE GEL TO LIQUID-PHASE TRANSITION

    NARCIS (Netherlands)

    BLANDAMER, MJ; BRIGGS, B; BUTT, MD; WATERS, M; CULLIS, PM; ENGBERTS, JBFN; HOEKSTRA, D; MOHANTY, RK

    1994-01-01

    For aqueous solutions containing vesicles formed by sodium di-n-dodecyl phosphate, the gel to liquid-crystal transition occurs near 35 degrees C, the temperature T-m. When ethanol is added, T-m decreases, but the scan shows evidence of several transitions as more alcohol is added. The effect of

  2. Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials

    International Nuclear Information System (INIS)

    Reddy Channu, V.S.; Holze, Rudolf; Yeo, In-Hyeong; Mho, Sun-il; Kalluru, Rajamohan R.

    2011-01-01

    Sodium vanadate nanomaterials were synthesized at different pH-values of a sodium hydroxide solution of vanadium pentoxide. Polyaniline-modified sodium vanadate nanomaterials were prepared at room temperature and at 3 C by a chemical polymerization method. The crystal structure and phase purity of the samples have been examined by powder XRD. The samples were identified as HNaV 6 O 16 .4H 2 O and Na 1.1 V 3 O 7.9 . The electrochemical measurements show that polyaniline-modified sodium vanadate hydrated nanomaterials provide higher current density than the sodium vanadate nanomaterials. (orig.)

  3. Theoretical and practical aspects of aqueous solution sodium silicate modifying

    Directory of Open Access Journals (Sweden)

    Mizuryaev Sergey

    2016-01-01

    Full Text Available This research deals with the use of liquid glass in industry particularly for porous filler production. The aim of this paper is to show the necessity liquid glass modification for the purpose of its rheological characteristics change for raw granules formation and providing given structure after porization. Data on chemical liquid glass modification are provided by adding sodium chloride. Moreover, inert mineral additives influence on porous filler properties are shown in this paper. The basic principles of light concrete composition selection are specified. Test results of light concrete on the developed porous sodium silicate filler are given.

  4. Sodium transport and distribution in sweet pepper during and after salt stress

    NARCIS (Netherlands)

    Blom-Zandstra, M.

    2000-01-01

    In hydroponic systems often saline water is used in nutrient solutions. Transpiration leads to a steady increase of the salt concentration. To avoid unfavourable salt conditions, solutions are renewed, regularly. So, plants are exposed to varying sodium concentrations. In this paper, the sodium

  5. Indigenous technology development and standardization of the process for obtaining ready to use sterile sodium pertechnetate-Tc-99m solution from Geltech generator

    International Nuclear Information System (INIS)

    Sarkar, Sishir Kumar; Kothalkar, Chetan; Naskar, Prabhakar; Joshi, Sangeeta; Saraswathy, Padmanabhan; Dey, Arun Chandra; Vispute, Gunvant Leeladhar; Murhekar, Vishwas Vinayak; Pilkhwal, Neelam

    2013-01-01

    The indigenous design and technology development for processing large scale zirconium molybdate-Mo-99 (ZrMo-99) Geltech generator was successfully commissioned in Board of Radiation and Isotope Technology (BRIT), India, in 2006. The generator production facility comprises of four shielded plant facilities equipped with tongs and special process gadgets amenable for remote operations for radiochemical processing of ZrMo-99 gel. Over 2800 Geltech generators have been processed and supplied to user hospitals during the period 2006-2013. Geltech generator supplied by BRIT was initially not sterile. Simple elution of 99m Tc is performed by a sterile evacuated vial with sterile and pyrogen free 0.9% NaCl solution to obtain sodium ( 99m Tc) pertechnetate solution. A special type online 0.22 μm membrane filter has been identified and adapted in Geltech generator. The online filtration of 99m Tc from Geltech generator; thus, provided sterile 99m Tc sodium pertechnetate solution. Generators assembled with modified filter assembly were supplied to local hospital in Mumbai (Radiation Medicine Centre (RMC) and S.G.S. Medical College and KEM Hospital) and excellent performances were reported by users. (author)

  6. Indigenous technology development and standardization of the process for obtaining ready to use sterile sodium pertechnetate-Tc-99m solution from Geltech generator.

    Science.gov (United States)

    Sarkar, Sishir Kumar; Kothalkar, Chetan; Naskar, Prabhakar; Joshi, Sangeeta; Saraswathy, Padmanabhan; Dey, Arun Chandra; Vispute, Gunvant Leeladhar; Murhekar, Vishwas Vinayak; Pilkhwal, Neelam

    2013-04-01

    The indigenous design and technology development for processing large scale zirconium molybdate-Mo-99 (ZrMo-99) Geltech generator was successfully commissioned in Board of Radiation and Isotope Technology (BRIT), India, in 2006. The generator production facility comprises of four shielded plant facilities equipped with tongs and special process gadgets amenable for remote operations for radiochemical processing of ZrMo-99 gel. Over 2800 Geltech generators have been processed and supplied to user hospitals during the period 2006-2013. Geltech generator supplied by BRIT was initially not sterile. Simple elution of Tc-99m is performed by a sterile evacuated vial with sterile and pyrogen free 0.9% NaCl solution to obtain sodium (Tc-99m) pertechnetate solution. A special type online 0.22 μm membrane filter has been identified and adapted in Geltech generator. The online filtration of Tc-99m from Geltech generator; thus, provided sterile Tc-99m sodium pertechnetate solution. Generators assembled with modified filter assembly were supplied to local hospital in Mumbai Radiation Medicine Centre (RMC) and S.G.S. Medical College and KEM Hospital) and excellent performances were reported by users.

  7. The Corrosion Behavior of Nickel and Inconel 600 in Sodium Hydroxide and Hydrochloric Acid Solution at 280 .deg. C

    International Nuclear Information System (INIS)

    Lee, Ihh Chong; Suk, Tae Won

    1980-01-01

    The corrosion behavior of nickel and Inconel 600 has been investigated by the weight change measurement method at pH ranges 3∼13 of the solution. The specimens were exposed to aqueous solutions in a static autoclave at 280 .deg. C for 210 hours. The pH of the solutions was adjusted by hydrochloric acid and sodium hydroxide and the dissolved oxygen concentration was fixed as 10 ppb by using pure nitrogen gas. Weight loss of Inconel 600 was much less than that of nickel over the tested pH ranges. At pH 9.5, nickel and Inconel 600 showed the minimum weight loss phenomenon and the values of weight loss were 1.5mg/dm 2 and 0.9mg/dm 2 , respectively. Microscopic examination showed that nickel surface was attacked uniformly, whereas Inconel 600 surface was not greatly

  8. Dissolution enthalpy of sodium sulfacetamide in water: comparison between solution isoperibolic calorimetry and the van't Hoff method

    OpenAIRE

    Torres, Daniel R.; Sosnik, Alejandro; Chiappetta, Diego; Vargas, Edgar F.; Martínez, Fleming

    2008-01-01

    The dissolution enthalpy (ΔH0soln) of sodium sulfacetamide in water was determined by means of isoperibolic solution calorimetry. It was found that ΔH0soln diminishes as the drug concentration increases. Otherwise, the calorimetric values obtained as a function of the drug concentration were significantly different than those predicted by the van't Hoff method. It was demonstrated that the later is not a fully reliable method for the determination of ΔH0soln values in the speci...

  9. The Removal of Cu (II) from Aqueous Solution using Sodium Borohydride as a Reducing Agent

    Science.gov (United States)

    Sithole, N. T.; Ntuli, F.; Mashifana, T.

    2018-03-01

    The removal and recovery of metals from wastewater has been a subject of significant importance due the negative impact these toxic metals have on human health and the environment as a result of water and soil pollution. Increased use of the metals and chemicals in the process industries has resulted in generation of large quantity of effluents that contains high level of toxic metals and other pollutants. The objective of this work was to recover of Cu in its elemental form as metallic powder from aqueous solution using NaBH4 as a reducing agent. Reductive precipitation was achieved in a batch reactor at 65°C using Cu powder as a seeding material. This study also investigated the effect of concentration of sodium borohydride (NaBH4) as a reducing agent. The amount of NaBH4 was varied based on mole ratios which are 1:1, 1:0.25 and 1:0.1 to recover Cu from synthetic wastewater. The results obtained showed that sodium borohydride is an effective reducing agent to recover Cu from wastewater. The optimum concentration of NaBH4 that gives the best results the 1:1 molar ratio with over 99% Cu removal.

  10. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH 3 , hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH 4 NO 3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO 3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  11. Stability-Indicating HPLC Method for Simultaneous Determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in Ophthalmic Solution.

    Science.gov (United States)

    AlAani, Hashem; Alnukkary, Yasmin

    2016-03-01

    A simple stability-indicating RP-HPLC assay method was developed and validated for quantitative determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in ophthalmic solution in the presence of 2-amino-1-(4-nitrophenyl)propane-1,3-diol, a degradation product of Chloramphenicol, and Dexamethasone, a degradation product of Dexamethasone Sodium Phosphate. Effective chromatographic separation was achieved using C18 column (250 mm, 4.6 mm i.d., 5 μm) with isocratic mobile phase consisting of acetonitrile - phosphate buffer (pH 4.0; 0.05 M) (30:70, v/v) at a flow rate of 1 mL/minute. The column temperature was maintained at 40°C and the detection wavelength was 230 nm. The proposed HPLC procedure was statistically validated according to the ICH guideline, and was proved to be stability-indicating by resolution of the APIs from their forced degradation products. The developed method is suitable for the routine analysis as well as stability studies.

  12. Reactive extraction of carboxylic acids from apolar hydrocarbons using aqueous solutions of sodium hydrogen carbonate with back-recovery using carbon dioxide under pressure

    NARCIS (Netherlands)

    Kuzmanovic, B.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2005-01-01

    A combination of using an aqueous solution of sodium hydrogen carbonate for forward-extraction of carboxylic acids from a dilute apolar organic solvent, and carbon dioxide under pressure for its back-recovery, is studied. Used in combination, these two steps might provide a technique for the

  13. Volumetric determination of hydroxide, aluminate, and carbonate in alkaline solutions of nuclear waste

    International Nuclear Information System (INIS)

    Baumann, E.W.

    1975-06-01

    An integrated procedure was developed for determining OH - , Al(OH) 4 - , and CO 3 2- in alkaline nuclear waste. The free alkali, the hydroxide released when Al(OH) 3 is complexed with oxalate, and the precipitated BaCO 3 were determined by acidimetric titration. With a 50-μl sample, the relative standard deviations were 1 to 2 percent for nonradioactive test solutions and 2 to 5 percent for radioactive process solutions. (U.S.)

  14. Preparation and characterization of perovskite structure lanthanum gallate and lanthanum aluminate based oxides

    OpenAIRE

    Li, Shuai

    2009-01-01

    The present work was initiated to study the synthesis and properties of lanthanum gallate based oxides as intermediate temperature electrolyte for solid oxide fuel cells. The wet chemical method, polymer complexing route, was used to prepare the precursor powders. To further investigate the polymer complexing method, it was also applied to the preparation of lanthanum aluminate based oxides.   Single perovskite phase La0.8Sr0.2Ga0.83Mg0.17O2.815 can be prepared by the polymer complexing meth...

  15. Improvement of aqueous solubility and rectal absorption of 6-mercaptopurine by addition of sodium benzoate.

    Science.gov (United States)

    Takeichi, Y; Kimura, T

    1994-10-01

    The solubility of 6-mercaptopurine (6-MP) in water increased as the concentration of sodium benzoate or sodium hippurate in the solution increased. The solubility of 6-MP in 20% (w/v) sodium benzoate or sodium hippurate solution was about 6-fold larger than that of 6-MP alone. The stability constant of the soluble complex of 6-MP with sodium benzoate was estimated to be 2-8 M-1 from (1) phase-solubility study and (2) analysis of chemical shifts observed in 1H-NMR. Partition of 6-MP from the saturated solution to n-octanol was also greatly increased by the addition of sodium benzoate or sodium hippurate, the degree being less in the latter. Administration of 6-MP with 20% (w/v) sodium benzoate to rat rectum resulted in enhanced absorption and the area under the plasma concentration-time curve was comparable to that obtained by intravenous administration (bioavailability = 100%), while the bioavailability after intrarectal administration of 6-MP with 20% (w/v) sodium hippurate was only 9%. The reason for the difference was discussed.

  16. Sodium fires and its extinguishment; Gorenie, sredstva i sposoby tusheniya natriya

    Energy Technology Data Exchange (ETDEWEB)

    Mikhedov, V G

    1979-03-01

    The fire safety problems of NPP with sodium coolants in USSR are presented. The design of sodium reactors is made with premises with sodium coolants being hermetic and filled with nitrogen. Some engineering solutions of fire safety including design, elaboration and choice of construction and protection materials are presented. Some theoretical aspects of sodium burning are presented as well as methods of sodium fire extinguishing methods including the use of powder.

  17. Creep-rupture Behaviors of a Diffusionally Aluminized Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Sung Hwan; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    In light of the surface reaction, a sufficient Cr content in the matrix leads to an external chromia (Cr{sub 2}O{sub 3}) layer on the surface with the occurrence of internal oxides (Al{sub 2}O{sub 3}) into the matrix. It is well known that the internal oxides will reduce the effective cross-sectional area and/or be a notch under the loading condition. Thus, there have been extensive efforts to improve the oxidation resistance by imposing an aluminized layer (βNiAl or γ-Ni{sub 3}Al) for Ni-Cr alloys. In particular, the extensively formed carbide free zone below the affected substrate will reduce the creep-rupture strengths because the inter-granular carbides present along the grain boundaries effectively impede the grain boundary sliding under high-temperature tensile loading conditions.

  18. Temperature and sodium chloride effects on the solubility of anthracene in water

    International Nuclear Information System (INIS)

    Arias-Gonzalez, Israel; Reza, Joel; Trejo, Arturo

    2010-01-01

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg -1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10 -8 to 143 . 10 -8 ) mol . kg -1 . Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol -1 . The standard molar Gibbs free energies, Δ tr G o , enthalpies, Δ tr H o , and entropies, Δ tr S o , for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated Δ tr G o values were positive [(20 to 1230) J . mol -1 ]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  19. Propriedades e bioatividade de um cimento endodôntico à base de aluminato de cálcio Properties and bioactivity of endodontic calcium aluminate cement

    Directory of Open Access Journals (Sweden)

    I. R. Oliveira

    2011-09-01

    Full Text Available Desde sua introdução na endodontia como um material retro-obturador e selador de defeitos da raiz dental, o agregado de trióxido mineral (MTA tem sido considerado como um material endodôntico revolucionário. Apesar disso, este material apresenta algumas propriedades limitantes, necessitando alterações em sua composição bem como desenvolvimento de novos materiais. Assim, o objetivo desse trabalho foi mostrar a influência de aditivos no desenvolvimento de um cimento endodôntico à base de cimento de aluminato de cálcio (ECAC. Além disso, foram avaliadas as propriedades do ECAC em comparação com o MTA, quando em contato com solução de fluido corporal simulado (SBF. Testes de manipulação e medidas de resistência à compressão, porosidade aparente, tempo de endurecimento, pH e condutividade iônica, foram realizados para os materiais MTA puro e ECAC contendo aditivos. Considerando as propriedades apresentadas pelo ECAC, este material alternativo pode ser indicado para múltiplas aplicações em endodontia.The mineral trioxide aggregate (MTA, a material primarily developed as a root-end filling has been extensively investigated as an innovative product for endodontic applications. However, changes in its formulation/composition involving its mineral aggregates and the development of alternatives of materials have been proposed in an attempt to overcome its negative physical-chemical characteristics. In this work, the influence of additives addition on the development of a novel endodontic cement based on calcium aluminate, has been evaluated. In addition, the properties of endodontic calcium aluminate cement (ECAC were compared with the gold standard mineral-trioxide-aggregate in contact with simulated body fluid (SBF. Manipulation tests and measurements of compressive strength, apparent porosity, setting time, pH and ionic conductivity were carried out on plain MTA and calcium aluminate cement with and without various additives

  20. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing

    International Nuclear Information System (INIS)

    Chen Zhitong; Li Guang; Wu Zhenqiang; Xia Yuan

    2011-01-01

    Research highlights: → Composite coatings on the aluminized steel were prepared by the plasma electrolytic oxidation (PEO) technique, which comprised of Fe-Al layer, Al layer and Al 2 O 3 layer. → The evaluation method of the crack critical opening displacement δ c was introduced to describe quantitatively the resistance of Al layer to the propagation behavior of cracks and evaluate the fracture behavior of composite coatings. → The crack propagating model was established. - Abstract: This paper investigates the in situ tensile cracks propagating behavior of composite coatings on the aluminized steel generated using the plasma electrolytic oxidation (PEO) technique. Cross-sectional micrographs and elemental compositions were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The composite coatings were shown to consist of Fe-Al, Al and Al 2 O 3 layers. The cracks propagating behavior was observed in real-time in situ SEM tensile test. In tensile process, the cracks were temporarily stopped when cracks propagated from Fe-Al layer to Al layer. The critical crack opening displacement δ c was introduced to quantitatively describe the resistance of the Al layer. There was a functional relation among the thickness ratio t Al /t Al 2 O 3 , the δ c of composite coatings and tensile cracks' spacing. The δ c increased with the increasing of the thickness ratio (t Al /t Al 2 O 3 ). The high δ c value means high fracture resistance. Therefore, a control of the thickness ratio t Al /t Al 2 O 3 was concerned as a key to improve the toughness and strength of the aluminized steel.

  1. Interaction of theobromine with sodium benzoate

    Energy Technology Data Exchange (ETDEWEB)

    Nishijo, J.; Yonetani, I.

    1982-03-01

    The interaction of theobromine with sodium benzoate was investigated by PMR spectroscopy. The interaction of theobromine with pentadeuterated benzoic acid (benzoic acid-d5) was examined in the same manner but to a lesser degree. Chemical shifts of theobromine protons were determined as a function of sodium benzoate concentration in deuterium oxide at 30 and 15 degrees. Signals of both methyl groups of theobromine underwent significant upfield shifts when sodium benzoate was added to a theobromine solution. This fact suggests that a complex is formed by vertical stacking or plane-to-plane stacking. The same results were obtained for benzoic acid-d5.

  2. Electrochemical evaluation of sodium metabisulfite as environmentally friendly inhibitor for corrosion of aluminum alloy 6061 in a chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Zaid, B., E-mail: zaidbachir@yahoo.com [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Maddache, N.; Saidi, D. [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Souami, N. [Centre de Recherche Nucléaire d’Alger CRNA, 2 Bd. Frantz Fanon, Alger (Algeria); Bacha, N. [Département de Mécanique, Université SAAD Dahleb, Blida (Algeria); Si Ahmed, A. [Im2np, UMR 7334 CNRS, Aix-Marseille Université, 13397 Marseille Cedex 20 (France)

    2015-04-25

    Highlights: • Sodium metabisulfite acts as cathodic-type inhibitor. • The polarization resistance increases with the inhibitor concentration. • The pit nucleation rate decreases with increasing inhibitor concentration. • The current rise linked to pit propagation drops as inhibitor content increases. • The reactions involved in the inhibition actions are pointed out. - Abstract: Inhibition properties of sodium metabisulfite (Na{sub 2}S{sub 2}O{sub 5}) on pitting corrosion of 6061 aluminum alloy, in 5 × 10{sup −2} M NaCl solution of pH near 7.2 at 298 K, are characterized using open circuit potential, polarization resistance, cyclic and chrono-amperometric polarization measurements. In addition, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray photoelectrons are employed. Sodium metabisulfite, which is well compatible with environmental requirements, seems to act as a cathodic-type corrosion inhibitor. The passivation range and the polarization resistance increase with Na{sub 2}S{sub 2}O{sub 5} concentration. The inhibition effects are also reflected through the substantial reduction of both the rate of pit nucleation and the current rise characterizing the pit propagation progress. The SEM–EDS and XPS analyses reveal the formation of a passive film, which contains sulfur atoms.

  3. Structural and luminescence effects of Ga co-doping on Ce-doped yttrium aluminate based phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Ayvacikli, M. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Canimoglu, A. [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Muresan, L.E., E-mail: laura_muresan2003@yahoo.com [Babes Bolyai University, Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania); Barbu Tudoran, L. [Babes Bolyai University, Electronic Microscopy Centre, Clinicilor 37, 400006 Cluj Napoca (Romania); Garcia Guinea, J. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karabulut, Y. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jorge, A. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karali, T. [Ege University, Institute of Nuclear Sciences, 35100 Bornova, İzmir (Turkey); Can, N., E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jazan University, Physics Department, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-05-05

    Herein, we primarily focus on luminescence spectrum measurements of various types of green emitting yttrium aluminate phosphors modified with gallium (Y{sub 3}Al{sub 5-x}Ga{sub x}O{sub 12}) synthesised by solid state reaction. The luminescent emission of samples depends on sample temperature and excitation radiation such as incident X-ray, electron and laser beam. Here, we measured radioluminescence (RL), cathodoluminescence (CL), photoluminescence (PL) along with XRD in order to clarify relationship between lattice defects and the spectral luminescence emissions. The RL and CL spectra of YAG:Ce exhibit an emission band ranging from 300 to 450 nm related to Y{sub Al} antisite defects. The broad emission band of garnet phosphors is shifted from 526 nm to 498 nm with increasing of Ga{sup 3+} content, while full width at half maximum (FWHM) of the band tends to be greater than the width of unmodified YAG:Ce garnet. Deconvolution of the spectrum reveals that three emission bands centred at 139, 234 and 294 °C occur in aluminate host garnets. - Highlights: • We present preparation of YAG:Ce{sup 3+}, Ga{sup 3+} phosphors by a solid state reaction method. • The shape and size of phosphor particles were investigated. • The luminescence properties were studied by different excitation sources.

  4. Model investigations for trace analysis of iodine, uranium, and technetium in saturated sodium chloride leaching solutions of stored radioactive waste

    International Nuclear Information System (INIS)

    Jegle, U.

    1989-02-01

    This paper describes the development of a time and cost saving chromatographic technique, which allows the matrix to be separated and the most important species to be analyzed in a leaching solution of vitrified radioactive waste. Uranium, iodine, and technetium were chosen for the model technique to be elaborated. In a first step, iodide and pertechnetate were separated from the matrix by the strongly basic AG 1X 8 anion exchange resin and then separated from each other by selective elution. The uranyl ions eluted with the sodium chloride matrix were separated from the excess of sodium chloride in a second step, again by adsorption to the strongly basic resin. The ion-selective electrode was found to be a suitable tool for iodide analysis. Pertechnetate was analysed by means of liquid scintillation. Uranium was determined by ICP-AES. (orig./RB) [de

  5. Evaluation of disinfecting effect of 5% sodium hypochlorite solution diluted to 2:100 along with the use of disposable covers on HBV contaminated dental office surfaces and equipments

    Directory of Open Access Journals (Sweden)

    Arami S.

    2008-04-01

    Full Text Available Background and Aim: The efficiency of disinfecting materials and procedures in removal of contamination from dental surfaces and equipments is essential. In authors' previous study, daily use of 2:100 dilution of 5% sodium hypochlorite in water and disposable covers were recommended since HBV contamination was found on semi-critical parts of the operative dentistry department. The aim of this study was to evaluate the HBV contamination following application of the recommended procedures.Materials and Methods: The study was conducted in two parts. In the first cross-sectional part, samples were collected from 17 sites of dental surfaces. In the second interventional part samples were collected from 10 sites of 9 dental and 3 sites of 2 light cure units, before and after disinfection with 5% sodium hypochlorite solution diluted to 2:100. Sterile cotton swabs moistened with sterile BSAS (Bovine Serum Albumin in Sodium Chloride solution were used for sampling. Samples were tested by PCR technique in Pasteur Institute, Iran.Results: None of the samples collected in the first part of the study showed contamination. In the second part of the study, from 96 samples taken from various parts of dental and light cure units, before and after disinfection, there was only one HBV contaminated site before disinfection which showed no contamination after disinfection.Conclusion: Based on the results of this study, disinfecting procedure with 5% sodium hypochlorite solution diluted to 2:100 along with using disposable covers is effective in preventing HBV contamination.

  6. Enhanced Hydrophilicity and Protein Adsorption of Titanium Surface by Sodium Bicarbonate Solution

    Directory of Open Access Journals (Sweden)

    Shengnan Jia

    2015-01-01

    Full Text Available The aim of this study was to investigate a novel and convenient method of chemical treatment to modify the hydrophilicity of titanium surfaces. Sand-blasted and acid-etched (SLA titanium surfaces and machined titanium surfaces were treated with sodium bicarbonate (NaHCO3 solution. The wetting behavior of both kinds of surfaces was measured by water contact angle (WCA test. The surface microstructure was assessed with scanning electron microscopy (SEM and three-dimensional (3D optical microscopy. The elemental compositions of the surfaces were analyzed by X-ray photoelectron spectroscopy (XPS. The protein adsorption analysis was performed with fibronectin. Results showed that, after 1 M NaHCO3 treatment, the hydrophilicity of both SLA and machined surfaces was enhanced. No significant microstructural change presented on titanium surfaces after NaHCO3 treatment. The deprotonation and ion exchange activities might cause the enhanced hydrophilicity of titanium surfaces. The increased protein adsorption of NaHCO3-treated SLA surfaces might indicate their improved tissue-integration in clinical use.

  7. The effect of sodium hypochlorite solutions on in vitro seedling growth and shoot regeneration of flax (Linum usitatissimum)

    Science.gov (United States)

    Yildiz, Mustafa; Er, Celâl

    2002-04-01

    The aim of this study was to determine the effect of concentration (40, 60, and 80%) and temperature (0, 10, 20, and 30°C) of sodium hypochlorite (NaOCl) solutions on seed germination, in vitro viability and growth of flax seedlings and regeneration capacity of hypocotyl explants. Results showed that seed germination, seedling growth and shoot regeneration were negatively affected by increasing concentration and temperature of disinfectant. The best results in seedling growth and shoot regeneration were obtained when 40% disinfectant concentration at 10°C was used.

  8. SIMULTANEOUS ESTIMATION OF MOXIFLOXACIN HYDROCHLORIDE AND DEXAMETHASONE SODIUM PHOSPHATE IN BULK AND IN OPHTHALMIC SOLUTION BY RP- HPLC

    OpenAIRE

    DHUMAL, D. M; SHIRKHEDKAR, A. A; NERKAR, P. P; SURANA, S. J

    2012-01-01

    A new simple, precise, accurate and selective RP-HPLC method has been developed and validated for simultaneous estimation of Moxifloxacin Hydrochloride (MOX) and Dexamethasone Sodium Phosphate (DSP) in Ophthalmic Solution. The method was carried out on a Qualisil RP C-8 (250 mm x 4.6 mm, 5 µm) column with a mobile phase consisting of Methanol: Water (75:25 v/v) pH adjusted to 3.0 with ortho-phosphoric acid of aqueous phase and flow rate of 1.0 mL min¹. Detection was carried out at 240 nm. The...

  9. Synthesis, thermal properties and growing of strontium and lanthanum aluminates and gallates and the phases on their basis

    International Nuclear Information System (INIS)

    Zimina, G.V.; Novoselov, A.V.; Filaretov, A.A.; Payachkovskaya, A.; Drobot, D.V.

    2000-01-01

    With the aim of manufacturing single crystal substrates for HTSC films a study is made into various ways of synthesis of strontium-lanthanum aluminate and gallate, as well as phases on their base. It is shown that the codeposition of difficulty soluble compounds with their subsequent heat treatment is an optimal method of synthesis for SrLaAlO 4 . For preparation of SrLaGaO 4 and SrLaAl x Ga 1-x O 4 a cryochemical method is shown to be best suited. High quality SrLaGaO 4 and SrLaAlO 4 single crystals are grown in [100] direction at oxygen pressure of 5 Pa. The formation of continuous series of solid solutions is revealed in the system of SrLaAlO 4 -SrLaGaO 4 . The compositions of SrLaAl 0.2 Ga 0.8 O 4 and SrLaAl 0.4 Ga 0.6 O 4 in the crystallochemical properties are marked to meet the requirements to the substrates [ru

  10. Dosage of trace carbon in sodium (1963); Dosage de traces de carbone dans le sodium (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Sannier, J; Vasseur, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    A wet method for dosing carbon in sodium has been developed. The carbon is oxidised in a vacuum using Van SLYKE'S solution. The carbonic acid formed is measured volumetrically; its purity can be controlled by chromatographic analysis. The results obtained show that this method makes it possible to measure carbon in concentrations of about 10 ppm. (authors) [French] Une methode de dosage par voie humide du carbone dans le sodium a ete mise au point. L'oxydation du carbone par la solution de Van SLYKE est realisee sous vide. Le gaz carbonique forme est dose volumetriquement; sa purete peut etre controlee par analyse chromatographique. Les resultats obtenus montrent que cette methode permet de doser des teneurs en carbone de l'ordre de 10 ppm. (auteurs)

  11. Transperitoneal transport of sodium during hypertonic peritoneal dialysis

    DEFF Research Database (Denmark)

    Graff, J; Fugleberg, S; Brahm, J

    1996-01-01

    The mechanisms of transperitoneal sodium transport during hypertonic peritoneal dialysis were evaluated by kinetic modelling. A total of six nested mathematical models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective and lymphatic convective solute transport....... Experimental results were obtained from 26 non-diabetic patients undergoing peritoneal dialysis. The model validation procedure demonstrated that only diffusive and non-lymphatic convective transport mechanisms were identifiable in the transperitoneal transport of sodium. Non-lymphatic convective sodium...

  12. Copper(II) oxide solubility behavior in aqueous sodium phosphate solutions at elevated temperatures

    International Nuclear Information System (INIS)

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    1990-02-01

    A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of copper(II) oxide (CuO) in aqueous sodium phosphate solutions at temperatures between 292 and 535 K. Copper solubilities are observed to increase continuously with temperature and phosphate concentration. The measured solubility is examined via a Cu(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reactions are obtained from a least- squares analysis of the data. Altogether, thermochemical properties are established for five anionic complexes: Cu(OH) 3 - , Cu(OH) 4 = , Cu(OH) 2 (HPO 4 ) = , Cu(OH) 3 (H 2 PO 4 ) = , and Cu(OH) 2 (PO 4 ) ≡ . Precise thermochemical parameters are also derived for the Cu(OH) + hydroxocomplex based on CuO solubility behavior previously observed in pure water (*) at elevated temperatures. The relative ease of Cu(II) ion hydrolysis is such that Cu(OH) 3 - species become the preferred hydroxocomplex for pH ≥ 9.4. 20 refs., 8 figs., 6 tabs

  13. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    International Nuclear Information System (INIS)

    Asakai, Toshiaki; Hioki, Akiharu

    2011-01-01

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  14. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Asakai, Toshiaki, E-mail: t-asakai@aist.go.jp [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan); Hioki, Akiharu [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan)

    2011-03-09

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  15. Influence of de-aluminating techniques of Y zeolite on its physico-chemical properties and on its catalytic performances in N-decane hydro-cracking; Influence des techniques de desalumination de la zeolithe Y sur ses proprietes physico-chimiques et sur ses performances catalytiques en hydrocraquage du N-decane

    Energy Technology Data Exchange (ETDEWEB)

    Gola, A.

    1996-12-16

    De-aluminated HY samples with constant amounts of framework aluminium and varying amounts of extra framework aluminium have been prepared and characterized. The influence of extra framework aluminium (EFAL) species in hydrocracking of n-decane at a hydrogen pressure of 60 bars has been evaluated. The methods used to de-aluminate the Y zeolite involved high temperature steaming followed by treatments with aqueous solutions of nitric acid, (NH{sub 4}){sub 2}SIF{sub 6}(AHFS) or Na{sub 2}EDTA to control the elimination of the EFAI. The chemical composition of the resulting samples indicates that only AHFS and Na{sub 2}EDTA are able to eliminate controlled amounts of EFAI without de-aluminating the framework. Several types of EFAI are detected, their localisation is proposed and their ease of extraction by the different reagents is investigated. Treatment with nitric acid or Na{sub 2}EDTA leads to increase of the meso-porous volume whereas AHFS leads to a silicon deposit and very low meso-porous volumes. The number and strength of acid sites in all treated samples is higher than in the steamed zeolite. Hydrocracking of n-decane under high hydrogen pressure (60 bars) at 260 deg C was chosen as a test reaction. The catalysts were prepared by two methods: mechanical mixing of the zeolite with alumina supported platinum and incipient wetness impregnation of platinum on the zeolite. It is shown that the proximity of acid and metallic sites in the latter leads to high yields of isomerization products. The amount and nature of the EFAI, and the meso-porous texture of the samples studied, have little influence on the catalytic properties (in terms of selectivity or acidity) of de-aluminated zeolite Y. Only the steamed zeolite shows in some conditions a lower activity and selectivity towards isomerized products. (author) 145 refs.

  16. Antimicrobial activity of Chlorhexidine, Peracetic acid and Sodium hypochlorite/etidronate irrigant solutions against Enterococcus faecalis biofilms.

    Science.gov (United States)

    Arias-Moliz, M T; Ordinola-Zapata, R; Baca, P; Ruiz-Linares, M; García García, E; Hungaro Duarte, M A; Monteiro Bramante, C; Ferrer-Luque, C M

    2015-12-01

    To evaluate the antimicrobial effect of 2.5% sodium hypochlorite alone (NaOCl) and associated with 9% HEBP (NaOCl/HEBP), 2% peracetic acid (PAA) and 2% chlorhexidine (CHX), on the viability of Enterococcus faecalis biofilms attached to dentine. Biofilms of E. faecalis were grown on the surface of dentine blocks for 5 days and then exposed to the irrigating solutions for 3 min. Distilled water was used as the control. The total biovolume and the percentage of dead cells of the infected dentine were measured by means of confocal microscopy and the live/dead technique. Nonparametric tests were used to determine statistical differences (P < 0.05). NaOCl and the NaOCl/HEBP mixture were associated with a significantly greater percentage of dead cells, followed by PAA (P < 0.05). No significant antimicrobial effect of CHX was observed in comparison with the control group. Total biovolume decreased significantly in NaOCl, NaOCl/HEBP and PAA solutions in comparison with the CHX and control groups. NaOCl alone or associated with HEBP were the most effective irrigant solutions in dissolving and killing E. faecalis biofilms. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. Intratesticular hypertonic sodium chloride solution treatment as a method of chemical castration in cattle.

    Science.gov (United States)

    Neto, Olmiro Andrade; Gasperin, Bernardo G; Rovani, Monique T; Ilha, Gustavo F; Nóbrega, Janduí E; Mondadori, Rafael G; Gonçalves, Paulo B D; Antoniazzi, Alfredo Q

    2014-10-15

    Castration of male calves is necessary for trading to facilitate handling and prevent reproduction. However, some methods of castration are traumatic and lead to economic losses because of infection and myiasis. The objective of the present study was to evaluate the efficiency of intratesticular injection (ITI) of hypertonic sodium chloride (NaCl; 20%) solution in male calf castration during the first weeks of life. Forty male calves were allocated to one of the following experimental groups: negative control-surgically castrated immediately after birth; positive control -intact males; G1-ITI from 1- to 5-day old; G2-ITI from 15- to 20-day old; and G3-ITI from 25- to 30-day old. Intratesticular injection induced coagulative necrosis of Leydig cells and seminiferous tubules leading to extensive fibrosis. Testosterone secretion and testicular development were severely impaired in 12-month-old animals from G1 and G2 groups (P<0.05), in which no testicular structure and sperm cells were observed during breeding soundness evaluation. Rectal and scrotal temperatures were not affected by different procedures. In conclusion, ITI of hypertonic NaCl solution induces sterility and completely suppresses testosterone secretion when performed during the first 20 days of life. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The hydrolysis of C12 primary alkyl sulfates in concentrated aqueous solutions. Part 2. Influence of alkyl structure on hydrolytic reactivity in concentrated aqueous mixtures of sodium primary alkyl sulfates : 1-benzoyl-3-phenyl-1,2,4-triazole as a probe o

    NARCIS (Netherlands)

    Bethell, Donald; Fessey, Roger E.; Engberts, Jan B.F.N.; Roberts, David W.

    2001-01-01

    The kinetics of the hydrolysis of aqueous solutions of three sodium C12-alkyl sulfates (SXS), sodium 2-methylundecyl sulfate (SMS), sodium cycloundecylmethyl sulfate (SCS) and sodium 2-pentylheptyl sulfate (SPS), has been investigated at concentrations up to 70% and compared with the behaviour of

  19. Minimising reversion, using seawater and magnesium chloride, caused by the dissolution of tricalcium aluminate hexahydrate.

    Science.gov (United States)

    Palmer, Sara J; Frost, Ray L; Smith, Matthew K

    2011-01-15

    The increase in pH and aluminium concentration after the neutralisation of bauxite refinery residues is commonly known as reversion. This investigation reports the extent of reversion in synthetic supernatant liquor and possible methods to reduce reversion. This work is based on bauxite refinery residues produced from alumina refineries, where reversion is a real life situation in neutralised refinery residues. Tricalcium aluminate hexahydrate, a common phase in bauxite refinery residues, has been found to cause reversion. It has been established that reductions in both pH and aluminium from the seawater neutralisation process are due to the formation of 'Bayer' hydrotalcite Mg(7)Al(2)(OH)(18)(CO(3)(2-),SO(4)(2-))·xH(2)O. This is the primary mechanism involved in the removal of aluminium from solution. Increasing the volume of seawater used for the neutralisation process minimises the extent of reversion for both synthetic supernatant liquor and red mud slurry. The addition of MgCl(2)·6H(2)O also showed a reduction in reversion and confirmed that the decrease in aluminium and hydroxyl ions is due to the formation of Bayer hydrotalcite and not simply a dilution effect. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Lowest neonatal serum sodium predicts sodium intake in low birth weight children.

    Science.gov (United States)

    Shirazki, Adi; Weintraub, Zalman; Reich, Dan; Gershon, Edith; Leshem, Micah

    2007-04-01

    Forty-one children aged 10.5 +/- 0.2 years (range, 8.0-15.0 yr), born with low birth weight of 1,218.2 +/- 36.6 g (range, 765-1,580 g) were selected from hospital archives on the basis of whether they had received neonatal diuretic treatment or as healthy matched controls. The children were tested for salt appetite and sweet preference, including rating of preferred concentration of salt in tomato soup (and sugar in tea), ratings of oral spray (NaCl and sucrose solutions), intake of salt or sweet snack items, and a food-seasoning, liking, and dietary questionnaire. Results showed that sodium appetite was not related to neonatal diuretic treatment, birth weight, or gestational age. However, there was a robust inverse correlation (r = -0.445, P clear that perinatal sodium loss, from a variety of causes, is a consistent and significant contributor to long-term sodium intake.

  1. Temperature and sodium chloride effects on the solubility of anthracene in water

    Energy Technology Data Exchange (ETDEWEB)

    Arias-Gonzalez, Israel [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Reza, Joel, E-mail: jreza@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico)

    2010-11-15

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg{sup -1} = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10{sup -8} to 143 . 10{sup -8}) mol . kg{sup -1}. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol{sup -1}. The standard molar Gibbs free energies, {Delta}{sub tr}G{sup o}, enthalpies, {Delta}{sub tr}H{sup o}, and entropies, {Delta}{sub tr}S{sup o}, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated {Delta}{sub tr}G{sup o} values were positive [(20 to 1230) J . mol{sup -1}]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  2. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    Energy Technology Data Exchange (ETDEWEB)

    Cura D’Ars de Figueiredo, João, E-mail: joaoc@ufmg.br; Asevedo, Samara Santos, E-mail: samaranix@hotmail.com; Barbosa, João Henrique Ribeiro, E-mail: joaohrb@yahoo.com.br

    2014-10-30

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  3. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    International Nuclear Information System (INIS)

    Cura D’Ars de Figueiredo, João; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-01-01

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  4. Effects of sodium carbonate and sodium bicarbonate on yield and characteristics of Pacific white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Chantarasuwan, C; Benjakul, S; Visessanguan, W

    2011-08-01

    Effects of sodium carbonate (Na2CO3) and sodium bicarbonate (NaHCO3) on yield and characteristics of Pacific white shrimp (Litopenaeus vannamei) were studied. Shrimp soaked in 2.5% NaCl containing both compounds at different levels of pH (5.5, 7, 8.5, 10 and 11.5) showed an increase in the weight gain and cooking yield and a reduced cooking loss as pH of solutions increased (p<0.05). Increases in pH and salt content in soaked shrimp muscle were obtained with increasing pH (p<0.05). Higher pH of soaking solution partially solubilized proteins in the muscle as well as carotenoproteins. pH of solutions above 8.5 led to the pronounced leaching of pigments, associated with the lowered redness of cooked shrimp. Shear force of raw and cooked shrimp continuously decreased as pH of solution increased (p<0.05). Solution containing 2.5% NaCl and 2.0% NaHCO3 (pH 8.5) was recommended for treatment of white shrimp as a promising alternative for phosphates to increase the yield and to lower cooking loss without any negative effect on sensory properties.

  5. Thermodynamics of aqueous carbonate solutions including mixtures of sodium carbonate, bicarbonate, and chloride

    Energy Technology Data Exchange (ETDEWEB)

    Peiper, J.C.; Pitzer, K.S.

    1982-01-01

    Recently the authors examined electrochemical-cell data leading to values of the activity coefficient for aqueous sodium bicarbonate. Since that preliminary analysis, new experimental measurements have been published which contribute significantly to the overall thermodynamic understanding of (sodium carbonate + sodium bicarbonate + carbonic acid). In this more extensive examination we consider a wide variety of measurements leading to activity coefficients of Na/sub 2/CO/sub 3/ and NaHCO/sub 3/ from 273 to 323 K and to relative molar enthalpies and heat capacities at 298.15 K. Tables of thermodynamic quantities at selected temperatures are included. 47 references, 2 figures, 6 tables.

  6. Penetration of protective gloves as a route of intake for tritiated water and 125I-labelled sodium iodine solution

    International Nuclear Information System (INIS)

    Harris, S.J.; Gilmore, A.

    1980-01-01

    Measurements have been made of the rate at which tritiated water and 125 I-labelled sodium iodide solution penetrate various types of protective gloves, both isotopes being in common use in this form in universities and similar establishments. Diffusion coefficients relating to the glove materials are also determined. The health physics aspects are discussed and it is concluded that intakes by workers through intact gloves are not likely to be of major significance and can easily be minimised by the correct use and choice of glove. (author)

  7. The kinetics of hydrogen removal from liquid sodium

    International Nuclear Information System (INIS)

    Gwyther, J.R.; Whittingham, A.C.

    1981-01-01

    The rates of hydrogen removal from liquid sodium-sodium hydride mixtures have been measured as a function of sodium stirring rate at temperatures up to 420 0 C. Two techniques have been employed - removal under continuous evacuation in which hydrogen flow rates were measured using a capillary flow technique and by argon purging in which hydrogen concentrations in the argon carrier gas were measured by gas chromatography. The results have been used to assess the feasibility of thermal decomposition of sodium hydride for the regeneration of hydride-laden LMFBR cold traps. Studies on the kinetics of desorption of hydrogen from solution in liquid sodium at temperatures up to 400 0 C are also presented and possible kinetic mechanisms discussed. (orig.)

  8. Sodium-concrete reactions experiments and code development

    International Nuclear Information System (INIS)

    Casselman, C.; Malet, J.C.; Dufresne, J.; Bolvin, M.

    1988-01-01

    Hypothesis of hot sodium leak in a fast breeder reactor implies, for the safety organism to consider spillage of sodium on concrete. This safety analysis involves the understanding of sodium-concrete reactions, the knowledge of their consequences and to test the choiced preventive solutions. In association with EDF, the nuclear safety department had carried out an extensive experimental program, the different parts of which are connected with each aspect of this problem: - firstly, interaction between sodium and bare surface of usual concrete; - secondly, the case of a sodium spillage on a concrete surface covered with a defected liner; - thirdly, special concrete tests for a comparison with usual concrete behavior, in direct contact with hot sodium; - at last, a test which concerns a new design with a layer of the selected concrete protected with a defected liner. On the same time, theoretical work leads to elaborate a physical model to describe temporal evolution of thermal and chemical decomposition of a concrete slab under hot sodium action. SORBET-REBUS system will use quoted above test results to its validation

  9. Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids.

    Science.gov (United States)

    Czarniak, Petra; Boddy, Michael; Sunderland, Bruce; Hughes, Jeff D

    2016-01-01

    The purpose of this study was to evaluate the chemical stability of Lincocin(®) (lincomycin hydrochloride) in commonly used intravenous fluids at room temperature (25°C), at accelerated-degradation temperatures and in selected buffer solutions. The stability of Lincocin(®) injection (containing lincomycin 600 mg/2 mL as the hydrochloride) stored at 25°C±0.1°C in sodium lactate (Hartmann's), 0.9% sodium chloride, 5% glucose, and 10% glucose solutions was investigated over 31 days. Forced degradation of Lincocin(®) in hydrochloric acid, sodium hydroxide, and hydrogen peroxide was performed at 60°C. The effect of pH on the degradation rate of lincomycin hydrochloride stored at 80°C was determined. Lincomycin hydrochloride w as found to maintain its shelf life at 25°C in sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution, with less than 5% lincomycin degradation occurring in all intravenous solutions over a 31-day period. Lincomycin hydrochloride showed less rapid degradation at 60°C in acid than in basic solution, but degraded rapidly in hydrogen peroxide. At all pH values tested, lincomycin followed first-order kinetics. It had the greatest stability near pH 4 when stored at 80°C (calculated shelf life of 4.59 days), and was least stable at pH 2 (calculated shelf life of 0.38 days). Lincocin(®) injection was chemically found to have a shelf life of at least 31 days at 25°C when added to sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution. Solutions prepared at approximately pH 4 are likely to have optimum stability.

  10. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Wang, Dapeng; Gao, Lixin; Zhang, Daquan, E-mail: zhdq@sh163.net

    2016-12-15

    Highlights: • Effectively prevent corrosion of AA5052 alloy by using the mixture of cerium nitrate and sodium dodecylbenzenesulfonate. • Synergistic mechanism of the combination of cerium nitrate and sodium dodecylbenzenesulfonate. • Structure of the complex formed between cerium ions and dodecylbenzenesulfonate. • The optimal adsorption model of dodecylbenzenesulfonate on the Al{sub 2}O{sub 3} and CeO{sub 2} surface. - Abstract: The synergistic inhibition effect of rare earth cerium nitrate and sodium dodecylbenzenesulfonate (DBS) on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results show that the single cerium nitrate or DBS has a limited inhibition effect against corrosion of AA5052 alloy. The combination cerium ions with DBS produced strong synergistic effect on corrosion inhibition for AA5052 alloy and rendered a negaitve shift of the corrosion potential. The formation of the complex of Al(DBS){sub 3} and Ce(DBS){sub 3} stabilized the passive film of Al{sub 2}O{sub 3} and CeO{sub 2}, retarding both the cathodic and anodic processes of AA5052 alloy corrosion reaction significantly.

  11. Effects of radiation on lithium aluminate samples properties

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F.; Lefevre, F.; Rasneur, B.; Trotabas, M.; Roth, E.

    The irradiation behaviour of lithium aluminate, a candidate material for a fusion reactor blanket, has been investigated. About 130 samples of 7.5% WLi content el-LiAlO2 have been loaded in a 6 level device, and were irradiated for 25.7 FPD in the core of the Osiris reactor at Saclay at the end of 1984, within an experiment named ALICE 1. The properties of several textural groups have been examined before and after irradiation and the correlation of the results observed as a funcion of the irradiation conditions is given. No significant variation of the properties, as a whole, was shown at 400C under fluences of 4.7x10S n cm S fast neutrons (>1 MeV) and 1.48x10S n cm S thermal neutrons. At 600C, under the highest flux, weight losses less than 1%, and decreases of 2 to 8% of the sound velocity were measured. Generally, neither swelling nor breakage, except those due to combined mechanical and thermal shocks, were observed.

  12. Mutable Lewis and Bronsted Acidity of Aluminated SBA-15 as Revealed by NMR of Adsorbed Pyridine-(15)N

    Czech Academy of Sciences Publication Activity Database

    Gurinov, A. A.; Rozhkova, Yu. A.; Zukal, Arnošt; Čejka, Jiří; Shenderovich, I, G.

    2011-01-01

    Roč. 27, č. 19 (2011), s. 12115-12123 ISSN 0743-7463 R&D Projects: GA AV ČR KAN100400701; GA ČR GA203/08/0604 Institutional research plan: CEZ:AV0Z40400503 Keywords : 15N NMR * post-synthesis alumination * phase Beckmann rearrangement Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.186, year: 2011

  13. Influence of silicon on hot-dip aluminizing process and subsequent oxidation for preparing hydrogen/tritium permeation barrier

    Energy Technology Data Exchange (ETDEWEB)

    Han, Shilei; Li, Hualing; Wang, Shumao; Jiang, Lijun; Liu, Xiaopeng [Energy Materials and Technology Research Institute, General Research Institute for Nonferrous Metals, Beijing 100088 (China)

    2010-04-15

    The development of the International Thermonuclear Experimental Reactor (ITER) requires the production of a material capable of acting as a hydrogen/tritium permeation barrier on low activation steel. It is well known that thin alumina layer can reduce the hydrogen permeation rate by several orders of magnitude. A technology is introduced here to form a ductile Fe/Al intermetallic layer on the steel with an alumina over-layer. This technology, consisting of two main steps, hot-dip aluminizing (HDA) and subsequent oxidation behavior, seems to be a promising coating method to fulfill the required goals. According to the experiments that have been done in pure Al, the coatings were inhomogeneous and too thick. Additionally, a large number of cracks and porous band could be observed. In order to solve these problems, the element silicon was added to the aluminum melt with a nominal composition. The influence of silicon on the aluminizing and following oxidation process was investigated. With the addition of silicon into the aluminum melt, the coating became thinner and more homogeneous. The effort of the silicon on the oxidation behavior was observed as well concerning the suppression of porous band and cracks. (author)

  14. Characterization and quantitative determination of calcium aluminate clinker phases through reflected light microscopy

    International Nuclear Information System (INIS)

    Marciano Junior, E.; Cunha Munhoz, F.A. da; Splettstoser Junior, J.; Placido, W.F.

    1989-01-01

    The identification and quantitative determination of phases in calcium aluminate clinker is of great importance to the producer, as it enables a better understanding of the cement and concrete properties, specially those concerning setting time and compressive strenght. Polished sections of three electrofused clinkers, one experimental and two industrial, were used to select the most suitable etchings in order to identify by microscopy the main phases (Ca, CA 2 , C 2 AS, C 12 A 7 , α-Al 2 O 3 ). Quantitative phases determinations by reflected light microscopy showed good results when compared to X-ray diffractometry measurements [pt

  15. Sodium Solute Symporter and Cadherin Proteins Act as Bacillus thuringiensis Cry3Ba Toxin Functional Receptors in Tribolium castaneum*

    Science.gov (United States)

    Contreras, Estefanía; Schoppmeier, Michael; Real, M. Dolores; Rausell, Carolina

    2013-01-01

    Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders. PMID:23645668

  16. EFFECT OF SODIUM SILICATE TO SODIUM HYDROXIDE RATIOS ON DURABILITY OF GEOPOLYMER MORTARS CONTAINING NATURAL AND ARTIFICIAL POZZOLANS

    Directory of Open Access Journals (Sweden)

    F. Nurhayat Degirmenci

    2017-09-01

    Full Text Available This study aims to provide the experimental data on the sulphate and acid performance of geopolymer mortar containing pozzolanic materials such as fly ash (FA, ground granulated blast furnace slag (GGBS and natural zeolite (NZ. The alkaline solution was the combination of sodium silicate and sodium hydroxide solution with the ratio (Na ₂SiO₃/NaOH of 1.0, 2.0 and 3.0. The molarity of sodium hydroxide was fixed as 10. The performances of geopolymer mortar were measured in terms of sodium and magnesium sulphate resistance and sulphuric and hydrochlorich acid resistance with 5% and 10 % concentration after 24 weeks. The evaluations were measured as visual observation, measurement of weight change and residual compressive strength. It has been observed that Na ₂SiO₃/NaOH ratio is effective on residual compressive strength of geopolymer mortar in both sulphate and acid exposure. The higher ratio of Na ₂SiO₃/NaOH results in a higher residual compressive strength. The GGBS based geopolymer mortar has a very good resistance in acid media in terms of weight loss and residual compressive strength. The inclusion of FA in the GGBS based geopolymer mixture was found to be a suitable base of geopolymer mortar under ambient curing conditions.

  17. Encapsulation of strontium aluminate phosphors to enhance water resistance and luminescence

    International Nuclear Information System (INIS)

    Zhu Yong; Zeng Jianghua; Li Wenyu; Xu Li; Guan Qiu; Liu Yingliang

    2009-01-01

    Strontium aluminate SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors are chemically unstable against water or even moisture. To enhance the water resistance of the phosphors, an encapsulation was performed by direct surface reactions with phosphoric acid (H 3 PO 4 ). The morphology, surface structure, surface element composition, water resistance, luminescence, and photoacoustic spectrum of the phosphors before and after encapsulation were discussed. Experimental results showed that phosphors were perfectly encapsulated by amorphous layers in nanoscale and crystalline layers in microscale under different conditions. The water resistance of phosphors was greatly enhanced by the two types of layer. More importantly, the amorphous layers enhanced the luminescence of phosphors markedly. The possible mechanism for the enhancements was also proposed.

  18. Study on the bound water of several high specific surface-area oxides (beryllia, alumina, silica-alumina); Etude de l'eau de constitution de plusieurs oxydes a grande surface specifique (glucine, alumine, silice-alumine)

    Energy Technology Data Exchange (ETDEWEB)

    Rouquerol, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-11-01

    This study is concerned with the bound water of several oxides (beryllia, alumina, silica-alumina) at different steps of their dehydration (heating temperatures between 150 and 1100 deg. C). The following techniques have been used simultaneously: Thermal analysis (a new method has been developed), nitrogen adsorption (study of the texture), Diborane hydrolysis (qualitative and quantitative analysis of surface water), Infra-red spectrography (in the absorption range of water), Nuclear magnetic resonance (in the resonance range of protons). Thanks to these different techniques, five kinds of bound water have been observed. Attention is called on the great influence of the thermal treatment conditions on the evolution of the products resulting from the decomposition of alumina {alpha}-trihydrate Al(OH){sub 3} and beryllium {alpha}-hydroxide, in the course of the dehydration. Moreover, the author emphasizes the peculiar properties of the two kinds of oxides (alumina and beryllia) prepared through a new method of treatment under low pressure and constant speed of decomposition. Such particular features concern mainly texture, bound water, and consequently, also catalytic activity. (author) [French] Ce travail porte sur l'eau de constitution de plusieurs oxydes (glucine, alumine, silice-alumine) aux differents degres de leur deshydratation (temperatures de traitement comprises entre 150 et 1100 deg. C). Cette etude met simultanement en oeuvre: l'analyse thermique (proposition d'une nouvelle methode), l'adsorption d'azote (etude de texture), l'hydrolyse du diborane (analyse qualitative et quantitative de l'eau de surface), la spectrographie infra-rouge (dans le domaine d'absorption de l'eau), la resonance magnetique nucleaire (dans le domaine de resonance des protons). A l'aide de ces differentes techniques, cinq formes d'eau de constitution ont ete observees. L'attention est attiree sur la tres grande influence des conditions de traitement thermique sur l'evolution des

  19. Synthesis and luminescent properties of Sm3+ doped zinc aluminate phosphor

    Science.gov (United States)

    Mahajan, Rubby; Kumar, Sandeep; Prakash, Ram; Kumar, Vinay

    2018-05-01

    Zinc Aluminate (ZnAl2O4) is a well-known wide band gap oxide that belongs to a class of mixed-metal oxides knows as spinels (AB2O4) where A and B are divalent and trivalent cations. Herein, the structural and photoluminescence properties of Sm3+ ion doped with ZnAl2O4 phosphors are reported. The nanophosphors were synthesized via solution combustion synthesis route at temperature 570 °C. The synthesized samples were characterized by X-ray powder diffraction (XRD), Photoluminescence (PL) spectroscopy, and Ultraviolet-visible spectroscopy. The XRD pattern confirms the cubic phase of phosphor. The calculated lattice parameter were found as a = b = c = 8.0517Å and V = 521.85Å3. The crystallite size of the phosphor was calculated using the Debye-Scherrer formula and found to be ˜19 nm. The emission spectrum at excitation wavelength of 401 nm gave the emission peaks at 563 nm, 601 nm, 648 nm, 697 nm corresponding to the transitions 4G5/2→ 6H5/2, 4G5/2→6H7/2, 4G5/2→6H9/2, 4G5/2 → 6H11/2 of Sm3+ ions, respectively. The diffuse reflectance spectrum was used to calculate the band gap of material and found to be 5.12 eV. The CIE coordinates were found to be (x = 0.56, y = 0.40) that falls in the orange red region of the color gamut. The present phosphor may have potential applications as phosphor for near UV WLED for solid state lighting.

  20. Influence of organic solvent treatment on elasticoluminescent property of europium-doped strontium aluminates

    International Nuclear Information System (INIS)

    Fujio, Yuki; Xu, Chao-Nan; Terasaki, Nao; Ueno, Naohiro

    2014-01-01

    The influence of an organic solvent treatment on elasticoluminescent (ELS) characteristics of mechanoluminescent (ML) sensor using the composite film consisting of an ELS material and epoxy resin was investigated. We used strontium aluminate doped with a small amount of europium (SrAl 2 O 4 :Eu, SAOE) as an ELS material in this study. After evaluating the ELS characteristics of the fabricated ML sensors using SAOE treated with/without various organic solvents, SAOE treated with methanol and ethanol showed lower ELS intensities than that of untreated SAOE. In contrast, the ELS response curves against strain for the ML sensors using SAOE treated with acetone and toluene, overlapped with that of untreated SAOE. From the characterization of SAOE treated with alcohols, such as methanol and ethanol, we can hypothesize that poor ELS characteristics is due to the degradation of the SAOE grain surfaces by the hydrolyze reaction of SAOE with hydroxyl group of alcohol. Thus, on the basis of the obtained results, we can conclude that the selection of organic solvent used in the preparation of SAOE film is of considerable importance in the development of ML sensor with a highly-reliable ELS characteristic. -- Highlights: • Influence of organic solution treatment on the sensing characteristics of a mechanoluminescent (ML) sensor using SrAl 2 O 4 :Eu has been investigated. • An alcohol treatment of SAOE powder has considerable effect on its ML characteristic. • There is almost no influence of acetone and toluene treatments on ML characteristics

  1. Micro-stress dominant displacive reconstructive transition in lithium aluminate

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiwei; Yan, Xiaozhi; Zhang, Leilei; Peng, Fang [Institute of Atomic and Molecular Physics, Sichuan University, 610065 Chengdu (China); Lei, Li, E-mail: lei@scu.edu.cn; He, Duanwei [Institute of Atomic and Molecular Physics, Sichuan University, 610065 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, 610065 Chengdu (China); Li, Xiaodong [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-08-15

    It is supposed that diffusive reconstructive transitions usually take place under hydrostatic pressure or low stresses, and displacive reconstructive phase transitions easily occur at nonhydrostatic pressure. Here, by in-situ high pressure synchrotron X-ray diffraction and single-crystal Raman scattering studies on lithium aluminate at room temperature, we show that the reconstructive transition mechanism is dependent on the internal microscopic stresses rather than the macroscopic stresses. In this case, even hydrostatic pressure can favor the displacive transition if the compressibility of crystal is anisotropic. During hydrostatic compression, γ-LiAlO{sub 2} transforms to δ-LiAlO{sub 2} at about 4 GPa, which is much lower than that in previous nonhydrostatic experiments (above 9 GPa). In the region where both phases coexist, there are enormous microscopic stresses stemming from the lattice mismatch, suggesting that this transition is displacive. Furthermore, the atomic picture is drawn with the help of the shear Raman modes.

  2. Sodium Hypochlorite and Sodium Bromide Individualized and Stabilized Carbon Nanotubes in Water

    KAUST Repository

    Xu, Xuezhu

    2017-09-20

    Aggregation is a major problem for hydrophobic carbon nanomaterials such as carbon nanotubes (CNTs) in water because it reduces the effective particle concentration, prevents particles from entering the medium, and leads to unstable electronic device performances when a colloidal solution is used. Molecular ligands such as surfactants can help the particles to disperse, but they tend to degrade the electrical properties of CNTs. Therefore, self-dispersed particles without the need for surfactant are highly desirable. We report here, for the first time to our knowledge, that CNT particles with negatively charged hydrophobic/water interfaces can easily self-disperse themselves in water via pretreating the nanotubes with a salt solution with a low concentration of sodium hypochlorite (NaClO) and sodium bromide (NaBr). The obtained aqueous CNT suspensions exhibit stable and superior colloidal performances. A series of pH titration experiments confirmed the presence and role of the electrical double layers on the surface of the salted carbon nanotubes and of functional groups and provided an in-depth understanding of the phenomenon.

  3. Sodium Hypochlorite and Sodium Bromide Individualized and Stabilized Carbon Nanotubes in Water

    KAUST Repository

    Xu, Xuezhu; Zhou, Jian; Colombo, Veronica; Xin, Yangyang; Tao, Ran; Lubineau, Gilles

    2017-01-01

    Aggregation is a major problem for hydrophobic carbon nanomaterials such as carbon nanotubes (CNTs) in water because it reduces the effective particle concentration, prevents particles from entering the medium, and leads to unstable electronic device performances when a colloidal solution is used. Molecular ligands such as surfactants can help the particles to disperse, but they tend to degrade the electrical properties of CNTs. Therefore, self-dispersed particles without the need for surfactant are highly desirable. We report here, for the first time to our knowledge, that CNT particles with negatively charged hydrophobic/water interfaces can easily self-disperse themselves in water via pretreating the nanotubes with a salt solution with a low concentration of sodium hypochlorite (NaClO) and sodium bromide (NaBr). The obtained aqueous CNT suspensions exhibit stable and superior colloidal performances. A series of pH titration experiments confirmed the presence and role of the electrical double layers on the surface of the salted carbon nanotubes and of functional groups and provided an in-depth understanding of the phenomenon.

  4. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Karkeh-abadi, Fatemeh [Department of Chemistry, University of Kashan, Kashan (Iran, Islamic Republic of); Saber-Samandari, Samaneh, E-mail: samaneh.saber@gmail.com [Department of Chemistry, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin 10 (Turkey); Saber-Samandari, Saeed, E-mail: saeedss@aut.ac.ir [New Technologies Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-07-15

    Highlights: • The sodium alginate-hydroxyapatite-CNT nanocomposite beads were prepared. • Amide functionalized CNT imprinted in the network of sodium alginate containing HAp. • The prepared beads were used as adsorbents of cobalt ions from an aqueous solution. • The adsorption was fit with the Freundlich isotherm and second-order kinetic models. • The endothermic adsorption process is spontaneous and thermodynamically favorable. - Abstract: Significant efforts have been made to develop highly efficient adsorbents to remove radioactive Co(II) ion pollutants from medical and industrial wastewaters. In this study, amide group functionalized multi-walled carbon nanotube (CNT-CONH{sub 2}) imprinted in the network of sodium alginate containing hydroxyapatite, and new nanocomposite beads were synthesized. Then, they were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The prepared nanocomposite beads were used as an adsorbent of Co(II) ions from an aqueous solution. The presence and distribution of Co(II) ions in the surface of the nanocomposite beads was confirmed using FESEM, EDS and metal mapping analysis. The effect of various experimental conditions such as time, pH, and initial concentration of the adsorbate solution and temperature on the adsorption capacity of the nanocomposite beads were explored. The maximum Co(II) ions adsorption capacity of the prepared nanocomposite beads with the largest surface area of 163.4 m{sup 2} g{sup −1} was 347.8 mg g{sup −1} in the optimized condition. The adsorption mechanism followed a pseudo-second-order kinetic model. Furthermore, the Freundlich appears to produce better fit than the Langmuir adsorption isotherm. Finally, thermodynamic studies suggest that endothermic adsorption process of Co(II) ions is spontaneous and

  5. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  6. Bleaching of Wool with Sodium Borohydride

    OpenAIRE

    Duygu Yilmazer, MSc.; Mehmet Kanik, Ph.D.

    2009-01-01

    An untreated wool fabric was bleached both with sodium borohydride (SBH) in the presence of sodium bisulphite (SBS) solution and with a commercial H2O2 bleaching method. The concentration effects of SBH and SBS, bleaching time, pH and temperature on SBH bleaching process were investigated. Whiteness, yellowness and alkali solubility results were assessed for both bleaching methods. The results showed that whiteness degrees obtained with SBH bleaching was comparable with that of H2O2 bleaching...

  7. Determination of microamounts of potassium in sodium iodide by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ogasawara, Ken; Ohta, Masatoshi; Abe, Kenzo

    1980-01-01

    Microdetermination of potassium in sodium iodide was developed by the standard addition method. Twenty grams of sample were dissolved in 50 ml of water in a quartz beaker. To the solution, 30 ml of concentrated hydrochloric acid and 30 ml of 30% hydrogen peroxide were added, and evaporated to dryness. By this process sodium iodide was converted into sodium chloride. The cake thus obtained was dissolved in water and diluted to exactly 200 ml. To 25 ml aliquots of the solution, the standard potassium and cesium chloride solutions were added and diluted to 50 ml with water; the concentration of potassium was 0 -- 1 mg/l and that of cesium 4 mM. These solutions were introduced into an air-propane flame and the absorbances were measured at 769.9 nm. During the conversion reaction, hydrochloric acid was completely decomposed, and remained hydrogen peroxide had no influence for absorbance, and other backgrounds were negligible. The linear calibration curve was obtained in the range 0 -- 2 mg of potassium per liter. Potassium in sodium iodide was determined by this method within the coefficient of variation of +-(20 -- 3)% in the range (1.7 -- 32.5) ppm. (author)

  8. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The invention deals with a liquid scintillation solution which contains 1) a scintillation solvent (toluol), 2) a primary scintillation solute (PPO), 3) a secondary scintillation solute (dimethyl POPOP), 4) several surfactants (iso-octyl-phenol polyethoxy-ethanol and sodium di-hexyl sulfosuccinate) essentially different from one another and 5) a filter resolution and/or transparent-making agent (cyclic ether, especially tetrahydrofuran). (HP) [de

  9. A blend of Sodium Humate/SLES/Herbal Oils

    Directory of Open Access Journals (Sweden)

    Yeliz Akyiğit

    2013-08-01

    Full Text Available A blend of sodium humate (SH with anionic surfactants such as sodium lauryl ether sulfate (SLES was prepared by solution mixing at medium of herbal oils at 25, 50 and 75°C. Its miscibility studies were carried out by using physical techniques over an extended range of concentration and composition in buffer solution. In addition, to ascertain the state of miscibility of the blends, they were investigated by using UV-visible spectrophotometer and Fourier transform infrared (FTIR. These values revealed that the blend is miscible when the sodium humate content is more than %60 in the blend at all temperatures. There were no important differences in the characteristics of the blends at different temperatures.It was thought that the mechanism ofthe complex formation is realized by making strong intermolecular interaction like hydrogen bonds between the carbonyl groups in humic acid and hydroxyl groups in fatty acids.

  10. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters.

    Science.gov (United States)

    Severi, Emmanuele; Hosie, Arthur H F; Hawkhead, Judith A; Thomas, Gavin H

    2010-03-01

    The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.

  11. Corrosion Study of Super Ferritic Stainless Steel UNS S44660 (26Cr-3Ni-3Mo) and Several Other Stainless Steel Grades (UNS S31603, S32101, and S32205) in Caustic Solution Containing Sodium Sulfide

    Science.gov (United States)

    Chasse, Kevin R.; Singh, Preet M.

    2013-11-01

    Electrochemical techniques, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used in this study to show how the corrosion mechanism of several commercial grades of stainless steel in hot caustic solution is strongly influenced by the presence of sodium sulfide. Experimental results from super ferritic stainless steel UNS S44660 (26Cr-3Ni-3Mo) were compared to austenitic stainless steel UNS S31603, lean duplex stainless steel (DSS) UNS S32101, and standard DSS UNS S32205 in caustic solution, with and without sodium sulfide, at 443 K (170 °C). Weight loss measurements indicated that corrosion rates of UNS44660 were much lower than the other grades of stainless steel in the presence of the sodium sulfide. Potentiodynamic polarization and linear polarization resistance measurements showed that the electrochemical behavior was altered by the adhesion of sulfur species, which reduced the polarization resistances and increased the anodic current densities. SEM and XPS results imply that the surface films that formed in caustic solution containing sodium sulfide were defective due to the adsorption of sulfide, which destabilized the passive film and led to the formation of insoluble metal sulfide compounds.

  12. Study of damages by neutron irradiation in lithium aluminates; Estudio de danos por irradiacion neutronica en aluminatos de litio

    Energy Technology Data Exchange (ETDEWEB)

    Palacios G, O

    1999-06-01

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile ({approx_equal} 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of {gamma} -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  13. Uptake of ozone to mixed sodium bromide/ citric acid solutions

    Science.gov (United States)

    Lee, Ming-Tao; Steimle, Emilie; Bartels-Rausch, Thorsten; Kato, Shunsuke; Lampimäki, Markus; Brown, Matthew; van Bokhoven, Jeroen; Nolting, Frithjof; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2013-04-01

    Sea-salt solution - air interfaces play an important role in the chemistry of the marine boundary layer. The reaction of ozone (O3) with bromide is of interest in the context of formation of photolabile halogens (Br2, BrCl) in the marine boundary layer. Recent experiments have suggested that the bromide oxidation rate is related to the surface concentration of bromide [1] and inversely related to the gas phase concentration of O3, an indication for a precursor mediated reaction at the surface [2]. So far, the effect of organics (such as those occurring at the ocean surface or in marine aerosols) on the reaction of O3 with bromide aerosols has not been studied yet. In our study we investigate the uptake kinetics of O3 to a mixed solution of sodium bromide (NaBr) and citric acid (CA), which represents highly oxidized organic compounds present in the environment, with a well-established coated wall flow tube technique, which leads to exposure of the film to O3 allowing the heterogeneous reactions to take place and the loss of O3 being measured. The results indicate that the uptake of O3 to the films with the higher bromide concentrations (0.34M and 4M) is independent of the gas phase concentration and roughly consistent with uptake limited by reaction in the bulk. For the lower bromide concentration (84mM), however, we observe a trend of the uptake coefficient to decrease with increasing O3 concentration, indicating an increasing importance of a surface reaction. In an attempt to constrain the kinetic data, we employed X-ray photoelectron spectroscopy (XPS) to get insight into the surface composition of the aqueous solution - air interface. Previous XPS studies have shown that halide ion concentrations are enhanced at the aqueous solution air interface [3-4], which likely promotes the surface reactions of bromide or iodide with O3. A first XPS study of ternary solutions of KI with butanol indicated the importance of specific interactions of the cation with the alcohol

  14. Study on the bound water of several high specific surface-area oxides (beryllia, alumina, silica-alumina); Etude de l'eau de constitution de plusieurs oxydes a grande surface specifique (glucine, alumine, silice-alumine)

    Energy Technology Data Exchange (ETDEWEB)

    Rouquerol, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-11-01

    This study is concerned with the bound water of several oxides (beryllia, alumina, silica-alumina) at different steps of their dehydration (heating temperatures between 150 and 1100 deg. C). The following techniques have been used simultaneously: Thermal analysis (a new method has been developed), nitrogen adsorption (study of the texture), Diborane hydrolysis (qualitative and quantitative analysis of surface water), Infra-red spectrography (in the absorption range of water), Nuclear magnetic resonance (in the resonance range of protons). Thanks to these different techniques, five kinds of bound water have been observed. Attention is called on the great influence of the thermal treatment conditions on the evolution of the products resulting from the decomposition of alumina {alpha}-trihydrate Al(OH){sub 3} and beryllium {alpha}-hydroxide, in the course of the dehydration. Moreover, the author emphasizes the peculiar properties of the two kinds of oxides (alumina and beryllia) prepared through a new method of treatment under low pressure and constant speed of decomposition. Such particular features concern mainly texture, bound water, and consequently, also catalytic activity. (author) [French] Ce travail porte sur l'eau de constitution de plusieurs oxydes (glucine, alumine, silice-alumine) aux differents degres de leur deshydratation (temperatures de traitement comprises entre 150 et 1100 deg. C). Cette etude met simultanement en oeuvre: l'analyse thermique (proposition d'une nouvelle methode), l'adsorption d'azote (etude de texture), l'hydrolyse du diborane (analyse qualitative et quantitative de l'eau de surface), la spectrographie infra-rouge (dans le domaine d'absorption de l'eau), la resonance magnetique nucleaire (dans le domaine de resonance des protons). A l'aide de ces differentes techniques, cinq formes d'eau de constitution ont ete observees. L'attention est attiree sur la tres grande influence

  15. Determination of hydroxide in the presence of aluminate using a modified potentiometric titration

    International Nuclear Information System (INIS)

    Hanson, T.J.

    1975-11-01

    A procedure for the determination of hydroxide concentration in the presence of aluminate and other interfering ions was developed using the method of standard additions (or more specifically in this case, standard subtractions). The procedure called for titration with a strong acid which was added in equal increments at regular time intervals. The potential was recorded after each addition of acid. The data was plotted on Gran's Plot Paper, which is based on work done originally by Gran, or it was entered into a computer to determine the equivalence volume of the titrant. When used on many different samples in different matrices, the method gave results that were approximately 100 +- 1 percent of the calculated value. This was shown to be true even in systems containing aluminate [Al(OH) 4 - ], phosphate (PO 4 3- ), sulfate (SO 4 2- ), nitrate (NO 3 - ), nitrite (NO 2 - ), carbonate (CO 3 2- ), and other ions. The effect of these ions was shown to be negligible if the initial OH - concentration was at least 10 -3 M and barium chloride (BaCl 2 ) was added to complex the PO 4 3- and CO 3 2- ions. These ions were checked at levels of up to 3 M for Al(OH) 4 - and NO 3 - , 2 M for NO 2 - , and 1 M for SO 4 2- , PO 4 3- , and CO 3 2- . The method is applicable to radioactive as well as nonradioactive samples and any heat involved with a radioactive sample is insufficient to cause an error in the determination. On the basis of the work performed it was shown that the method was general enough to be run on a routine basis

  16. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Kulik, Dmitrii A; Hummel, Wolfgang; Schlumberger, Stefan; Klink, Waldemar; Fisch, Martin; Mäder, Urs K

    2018-03-17

    Fly ash from municipal solid waste incineration contains a large potential for recyclable metals such as Zn, Pb, Cu and Cd. The Swiss Waste Ordinance prescribes the treatment of fly ash and recovery of metals to be implemented by 2021. More than 60% of the fly ash in Switzerland is acid leached according to the FLUWA process, which provides the basis for metal recovery. The investigation and optimization of the FLUWA process is of increasing interest and an industrial solution for direct metal recovery within Switzerland is in development. With this work, a detailed laboratory study on different filter cakes from fly ash leaching using HCl 5% (represents the FLUWA process) and concentrated sodium chloride solution (300 g/L) is described. This two-step leaching of fly ash is an efficient combination for the mobilization of a high percentage of heavy metals from fly ash (Pb, Cd ≥ 90% and Cu, Zn 70-80%). The depletion of these metals is mainly due to a combination of redox reaction and metal-chloride-complex formation. The results indicate a way forward for an improved metal depletion and recovery from fly ash that has potential for application at industrial scale. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids

    Directory of Open Access Journals (Sweden)

    Czarniak P

    2016-03-01

    Full Text Available Petra Czarniak, Michael Boddy, Bruce Sunderland, Jeff D Hughes School of Pharmacy, Curtin University, Perth, WA, Australia Purpose: The purpose of this study was to evaluate the chemical stability of Lincocin® (lincomycin hydrochloride in commonly used intravenous fluids at room temperature (25°C, at accelerated-degradation temperatures and in selected buffer solutions.Materials and methods: The stability of Lincocin® injection (containing lincomycin 600 mg/2 mL as the hydrochloride stored at 25°C±0.1°C in sodium lactate (Hartmann’s, 0.9% sodium chloride, 5% glucose, and 10% glucose solutions was investigated over 31 days. Forced degradation of Lincocin® in hydrochloric acid, sodium hydroxide, and hydrogen peroxide was performed at 60°C. The effect of pH on the degradation rate of lincomycin hydrochloride stored at 80°C was determined.Results: Lincomycin hydrochloride was found to maintain its shelf life at 25°C in sodium lactate (Hartmann’s solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution, with less than 5% lincomycin degradation occurring in all intravenous solutions over a 31-day period. Lincomycin hydrochloride showed less rapid degradation at 60°C in acid than in basic solution, but degraded rapidly in hydrogen peroxide. At all pH values tested, lincomycin followed first-order kinetics. It had the greatest stability near pH 4 when stored at 80°C (calculated shelf life of 4.59 days, and was least stable at pH 2 (calculated shelf life of 0.38 days.Conclusion: Lincocin® injection was chemically found to have a shelf life of at least 31 days at 25°C when added to sodium lactate (Hartmann’s solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution. Solutions prepared at approximately pH 4 are likely to have optimum stability. Keywords: lincomycin, stability, pH, intravenous fluids, IV additives

  18. Standard practice for exposure of metals and alloys by alternate immersion in neutral 3.5% Sodium Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for making alternate immersion stress corrosion tests in 3.5 % sodium chloride (NaCl) (). It is primarily for tests of aluminum alloys (Test Method G 47) and ferrous alloys, but may be used for other metals exhibiting susceptibility to chloride ions. It sets forth the environmental conditions of the test and the means for controlling them. Note 1 Alternate immersion stress corrosion exposures are sometimes made in substitute ocean water (without heavy metals) prepared in accordance with Specification D 1141. The general requirements of this present practice are also applicable to such exposures except that the reagents used, the solution concentration, and the solution pH should be as specified in Specification D 1141. 1.2 This practice can be used for both stressed and unstressed corrosion specimens. Historically, it has been used for stress-corrosion cracking testing, but is often used for other forms of corrosion, such as uniform, pitting, intergranular, and galvanic. ...

  19. Foam capacity and stability of Sodium Dodecyl Sulfate (SDS) on the presence of contaminant coffee and Cd ions in solution

    Science.gov (United States)

    Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.

    2018-02-01

    In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.

  20. Compatibility and stability of aloxi (palonosetron hydrochloride) admixed with dexamethasone sodium phosphate.

    Science.gov (United States)

    Trissel, Lawrence A; Zhang, Yanping

    2004-01-01

    The purpose of this study was to evaluate the physical and chemical stability of palonosetron hydrochloride 0.25 mg admixed with dexamethasone (as sodium phophate) 10 mg or 20 mg in 5% dextrose injection or 0.9% sodium chloride injection in polyvinylchloride minibags, and also admixed with dexamethasone (as sodium phosphate) 3.3 mg in 5% dextrose injection or 0.9% sodium chloride injection in polypropylene syringes, at 4 deg C stored in the dark for 14 days, and at 23 deg C exposed to normal laboratory fluorescent light over 48 hours. Test samples of palonosetron hydrochloride 5 micrograms/mL with dexamethasone (as sodium phosphate) 0.2 mg/mL and also 0.4 mg/mL were prepared in polyvinylchloride minibags of each infusion solution. Additionally, palonosetron hydrochloride 25 micrograms/mL with dexamethasone (as sodium phosphate) 0.33 mg/mL in each infusion solution were prepared as 10 mL of test solution in 20-mL polypropylene syringes. Evaluations for physical and chemical stability were performed on samples taken initially and after 1, 3, 7 and 14 days of storage at 4 deg C and after 1, 4, 24 and 48 hours at 23 deg C. Physical stability was assessed using visual observation in normal room light and using a high-intensity monodirectional light beam. In addition, turbidity and particle content were measured electronically. Chemical stability of the drug was evaluated by using a stability-indicating high-performance liquid chromatographic analytical technique. All samples were physically compatible throughout the study. The solutions remained clear and showed little or no change in particulate burden and haze level. Additionally, little or no loss of palonosetron hydrochloride and dexamethasone occurred in any of the samples at either temperature throughout the entire study period. Admixtures of palonosetron hydrochloride with dexamethasone sodium phosphate in 5% dextrose injection or in 0.9% sodium chloride injection packaged in polyvinylchloride minibags or in

  1. Tritium extraction mechanisms from lithium aluminates during in pile irradiation experiments

    International Nuclear Information System (INIS)

    Briec, M.; Roth, E.

    1987-04-01

    The principal aim was to determine ranges of parameters governing tritium release from γ lithium aluminates within which acceptable rates for their contemplated usage as tritium breeder material in a fusion reactor blanket could be obtained. in the first place values of every quantity involved should be known as well as possible. Reproducible results should be a criterium of validity of the selected parameters. It is shown from a description of a series of experiments that processes limiting tritium release rates are not the same in different temperature ranges. By varying the composition of purge gases used for tritium extraction, the level of irradiation fluxes, and by studying simultaneously samples of different textures, results were obtained and an assignment of the respective role of defect formation, texture, surface effect is attempted to interpret them

  2. Creep of Polycrystalline Magnesium Aluminate Spinel Studied by an SPS Apparatus.

    Science.gov (United States)

    Ratzker, Barak; Sokol, Maxim; Kalabukhov, Sergey; Frage, Nachum

    2016-06-20

    A spark plasma sintering (SPS) apparatus was used for the first time as an analytical testing tool for studying creep in ceramics at elevated temperatures. Compression creep experiments on a fine-grained (250 nm) polycrystalline magnesium aluminate spinel were successfully performed in the 1100-1200 °C temperature range, under an applied stress of 120-200 MPa. It was found that the stress exponent and activation energy depended on temperature and applied stress, respectively. The deformed samples were characterized by high resolution scanning electron microscope (HRSEM) and high resolution transmission electron microscope (HRTEM). The results indicate that the creep mechanism was related to grain boundary sliding, accommodated by dislocation slip and climb. The experimental results, extrapolated to higher temperatures and lower stresses, were in good agreement with data reported in the literature.

  3. Calcium aluminates potential for endodontics and orthopedics applications; Aluminatos de calcio e seu potencial para aplicacao em endodontia e ortopedia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.L. dos; Andrade, T.L.; Oliveira, I.R., E-mail: ivonero@univap.br [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil); Pandolfelli, V.C. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil)

    2011-07-01

    The mostly used material in the areas of endodontics (MTA, mineral trioxide aggregate) and bone reconstruction (PMMA, polymethyl methacrylate) present some limiting properties requiring thus changes in their compositions as well as the development of alternative materials. In this context, a novel biomaterial-based calcium aluminate cement (CAC) has been studied in order to keep the positive properties and clinical applications of MTA and PMMA, overcoming some their disadvantages. Recent studies involving the use of CAC are based on commercial products consisting of a mixture of phases. Improvements can be attained by searching the synthesis routes of CAC aiming the proper balance between the phases and the control of impurities that may impair its performance in applications in the areas of health. By the optimization of the CAC phases production, this article aims to present their characterization based on hydration temperature; working time and setting time; pH, ions solubilization and dissolution in contact with water and different solutions of simulated body fluid. The results indicated the CA phase as the most suitable for application in the areas of health. (author)

  4. Stakeholder discussion to reduce population-wide sodium intake and decrease sodium in the food supply: a conference report from the American Heart Association Sodium Conference 2013 Planning Group.

    Science.gov (United States)

    Antman, Elliott M; Appel, Lawrence J; Balentine, Douglas; Johnson, Rachel K; Steffen, Lyn M; Miller, Emily Ann; Pappas, Antigoni; Stitzel, Kimberly F; Vafiadis, Dorothea K; Whitsel, Laurie

    2014-06-24

    A 2-day interactive forum was convened to discuss the current status and future implications of reducing sodium in the food supply and to identify opportunities for stakeholder collaboration. Participants included 128 stakeholders engaged in food research and development, food manufacturing and retail, restaurant and food service operations, regulatory and legislative activities, public health initiatives, healthcare, academia and scientific research, and data monitoring and surveillance. Presentation topics included scientific evidence for sodium reduction and public health policy recommendations; consumer sodium intakes, attitudes, and behaviors; food technologies and solutions for sodium reduction and sensory implications; experiences of the food and dining industries; and translation and implementation of sodium intake recommendations. Facilitated breakout sessions were conducted to allow for sharing of current practices, insights, and expertise. A well-established body of scientific research shows that there is a strong relationship between excess sodium intake and high blood pressure and other adverse health outcomes. With Americans getting >75% of their sodium from processed and restaurant food, this evidence creates mounting pressure for less sodium in the food supply. The reduction of sodium in the food supply is a complex issue that involves multiple stakeholders. The success of new technological approaches for reducing sodium will depend on product availability, health effects (both intended and unintended), research and development investments, quality and taste of reformulated foods, supply chain management, operational modifications, consumer acceptance, and cost. The conference facilitated an exchange of ideas and set the stage for potential collaboration opportunities among stakeholders with mutual interest in reducing sodium in the food supply and in Americans' diets. Population-wide sodium reduction remains a critically important component of

  5. Alkaline Sodium Hypochlorite Irrigant and Its Chemical Interactions

    Directory of Open Access Journals (Sweden)

    Patricia P. Wright

    2017-09-01

    Full Text Available Endodontic irrigating solutions may interact chemically with one another. This is important, because even when solutions are not admixed, they will come into contact with one another during an alternating irrigation technique, forming unwanted by-products, which may be toxic or irritant. Mixing or alternating irrigants can also reduce their ability to clean and disinfect the root canal system of teeth by changing their chemical structure with subsequent loss of the active agent, or by inducing precipitate formation in the root canal system. Precipitates occlude dental tubules, resulting in less penetration of antimicrobials and a loss of disinfection efficacy. Sodium hypochlorite is not only a very reactive oxidizing agent, but is also the most commonly used endodontic irrigant. As such, many interactions occurring between it and other irrigants, chelators and other antimicrobials, may occur. Of particular interest is the interaction between sodium hypochlorite and the chelators EDTA, citric acid and etidronate and between sodium hypochlorite and the antimicrobials chlorhexidine, alexidine, MTAD and octenisept.

  6. Sodium Aluminosilicate Formation in Tank 43H Simulants

    International Nuclear Information System (INIS)

    Wilmarth, W.R.; Walker, D.D.; Fink, S.D.

    1997-11-01

    This work studied the formation of a sodium aluminosilicate, Na 8 Al 6 Si 6 O 24 (NO 3 ) 2?4 H 2 O, at 40 degree 110 degree C in simulated waste solutions with varied amounts of silicon and aluminum. The data agree well with literature solubility data for sodalite, the analogous chloride salt. The following conclusions result from this work: (1) The study shows, by calculation and experiments, that evaporation of the September 1997 Tank 43H inventory will only form minor quantities of the aluminosilicate. (2) The data indicate that the rate of formation of the nitrate enclathrated sodalite solid at these temperatures falls within the residence time (<; 4 h) of liquid in the evaporator. (3) The silicon in entrained Frit 200 transferred to the evaporator with the Tank 43H salt solution will quantitatively convert to the sodium aluminosilicate. One kilogram of Frit 200 produces 2.1 kg of the sodium aluminosilicate

  7. Anomalous concentration gradient in NaI solutions inadvertently frozen in transit

    International Nuclear Information System (INIS)

    Billinghurst, M.W.; Abrams, D.N.; Coutts, A.D.

    1990-01-01

    Therapeutic doses of iodine-131 ( 131 I) are frequently dispensed volumetrically from a stock vial containing a solution of sodium iodide. During the winter months the authors have observed that initial aliquots do not always have the same radioactive concentration as that calculated for the bulk solution. In order to evaluate the cause and extent of this problem, they prepared a stock solution of low radioactive concentration sodium iodide with the same concentration of sodium thiosulfate and pH as that in the stock therapeutic iodine vial. Aliquots of this solution were transferred to plastic tubes and were stored at various temperatures. These results clearly show that when there is a risk of freezing during transportation of therapeutic solutions of sodium iodide it is essential to physically mix the liquid once thawing is complete if therapeutic doses are to be dispensed accurately on a volume basis

  8. Estimated inventory of chemicals added to underground waste tanks, 1944--1975

    International Nuclear Information System (INIS)

    Allen, G.K.

    1976-03-01

    The five major chemical processes, the Bismuth Phosphate process, the Uranium Recovery process, the Redox process, the Purex process, and the Waste Fractionization process have each contributed to give the total Hanford waste chemicals. Each of these processes is studied to determine the total estimated chemicals stored in underground waste tanks. The chemical contents are derived mainly from flowsheet compositions and recorded waste volumes sent to underground storage. The major components and amounts of Hanford waste are sodium hydroxide, 230 million gram-moles (20 million pounds), sodium nitrate, 1400 million gram-moles (270 million pounds), sodium nitrite, 220 million gram-moles (34 million pounds), sodium aluminate, 400 million gram-moles (72 million pounds), and sodium phosphate, 87 million gram-moles (31 million pounds). Chemical analyses of the sludge and salt cake samples are tabulated to determine the chemical characteristics of the solids. A relative chemical toxicity of the Hanford underground waste tank chemicals is developed from maximum permissible chemical concentrations in air and water. The most toxic chemicals are assumed to be sodium phosphate--35%, sodium aluminate--28%, and chromium hydroxide--19%. If air standards set toxicity limits, the most toxic chemicals are bismuth--41%, chromium hydroxide--23%, and fluoride--10%

  9. Efficacy of Plantago major, chlorhexidine 0.12% and sodium bicarbonate 5% solution in the treatment of oral mucositis in cancer patients with solid tumour: A feasibility randomised triple-blind phase III clinical trial.

    Science.gov (United States)

    Cabrera-Jaime, Sandra; Martínez, Cristina; Ferro-García, Tarsila; Giner-Boya, Pilar; Icart-Isern, Teresa; Estrada-Masllorens, Joan M; Fernández-Ortega, Paz

    2018-02-01

    Oral mucositis is one of the most common adverse effects of chemotherapy and radiotherapy. The aim of this study was to compare the efficacy of Plantago major extract versus chlorhexidine 0.12% versus sodium bicarbonate 5% in the symptomatic treatment of chemotherapy-induced oral mucositis in solid tumour cancer patients. Multicentre randomised controlled trial estimated sample of 45 solid tumour patients with grade II-III mucositis. The participants were randomised to one of three treatments, consisting of sodium bicarbonate 5% aqueous solution together with: an additional dose of sodium bicarbonate 5% aqueous solution, Plantago major extract, or chlorhexidine 0.12%. The primary outcomes were severity of mucositis, pain intensity, oral intake capacity and quality of life. The independent variable was treatment group, and confounders included sociodemographic data, neutrophil count, chemotherapy drug and dose received. Of the 50 patients enrolled, 68% (n = 34) achieved grade 0 mucositis (none), with those using the double sodium bicarbonate rinse healing in five days on average (95% CI 3.9, 6.5) versus seven days (95% CI 5.3, 9,0) for the chlorhexidine group and seven days (95% CI 5.3, 8.5) for the Plantago major group. The pain experienced by the participants lessened over the 14 days of treatment, but differences in pain intensity between the three groups did not show statistical significance (p = 0.762). Healing time was shorter with the double sodium bicarbonate solution compared to the other two rinses, but the differences were not significant. Our results suggest it may be time to reconsider the use of Plantago major extract in the management of oral mucositis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives

    DEFF Research Database (Denmark)

    Daroonparvar, Mohammadreza; Yajid, M. A. M.; Yusof, N. M.

    2016-01-01

    Titania nanoparticles were utilized as suspension in alkaline aluminate electrolyte to form nanocomposite coatings on magnesium alloy containing 1 wt% calcium by plasma electrolytic oxidation process. Microhardness, wettability, potentiodynamic polarization, wettability, electrochemical impedance...

  11. Space Environmental Effects Testing and Characterization of the Candidate Solar Sail Material Aluminized Mylar

    Science.gov (United States)

    Edwards, D. L.; Hubbs, W. S.; Wertz, G. E.; Alstatt, R.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The usage of solar sails as a propellantless propulsion system has been proposed for many years. The technical challenges associated with solar sails are fabrication of ultralightweight films, deploying the sails and controlling the spacecraft. Integral to all these challenges is the mechanical property integrity of the sail while exposed to the harsh environment of space. This paper describes testing and characterization of a candidate solar sail material, Aluminized Mylar. This material was exposed to a simulated Geosynchronous Transfer Orbit (GTO) and evaluated by measuring thermooptical and mechanical property changes. Testing procedures and results are presented.

  12. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  13. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-01-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations

  14. Microstructural properties of high level waste concentrates and gels with raman and infrared spectroscopies. 1997 annual progress report

    International Nuclear Information System (INIS)

    Agnew, S.F.; Coarbin, R.A.; Johnston, C.T.

    1997-01-01

    'Monosodium aluminate, the phase of aluminate found in waste tanks, is only stable over a fairly narrow range of water vapor pressure (22% relative humidity at 22 C). As a result, aluminate solids are stable at Hanford (seasonal average RH ∼20%) but are not be stable at Savannah River (seasonal average RH ∼40%). Monosodium aluminate (MSA) releases water upon precipitation from solution. In contrast, trisodium aluminate (TSA) consumes water upon precipitation. As a result, MSA precipitates gradually over time while TSA undergoes rapid accelerated precipitation, often gelling its solution. Raman spectra reported for first time for monosodium and trisodium aluminate solids. Ternary phase diagrams can be useful for showing effects of water removal, even with concentrated waste. Kinetics of monosodium aluminate precipitation are extremely slow (several months) at room temperature but quite fast (several hours) at 60 C. As a result, all waste simulants that contain aluminate need several days of cooking at 60 C in order to truly represent the equilibrium state of aluminate. The high level waste (HLW) slurries that have been created at the Hanford and Savannah River Sites over that last fifty years constitute a large fraction of the remaining HLW volumes at both sites. In spite of the preponderance of these wastes, very little quantitative information is available about their physical and chemical properties other than elemental analyses.'

  15. Phenomenological Studies on Sodium for CSP Applications: A Safety Review

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Andraka, Charles E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Sodium as a heat transfer fluid (HTF) can achieve temperatures above 700°C to improve power cycle performance for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF’s (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transport starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable latent operating conditions that match proposed high temperature, isothermal input power cycles. This advantage could increase the receiver and system efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium systems, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Operation and maintenance experience from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.

  16. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.

    Science.gov (United States)

    Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Hong, Soyoung; Lee, Jung Joo; Ahn, Chi Bum; Choi, Hyuk; Sun, Kyung

    2011-11-01

    Bioprinting is a technology for constructing bioartificial tissue or organs of complex three-dimensional (3-D) structure with high-precision spatial shape forming ability in larger scale than conventional tissue engineering methods and simultaneous multiple components composition ability. It utilizes computer-controlled 3-D printer mechanism or solid free-form fabrication technologies. In this study, sodium alginate hydrogel that can be utilized for large-dimension tissue fabrication with its fast gelation property was studied regarding material-specific printing technique and printing parameters using a multinozzle bioprinting system developed by the authors. A sodium alginate solution was prepared with a concentration of 1% (wt/vol), and 1% CaCl(2) solution was used as cross-linker for the gelation. The two materials were loaded in each of two nozzles in the multinozzle bioprinting system that has a total of four nozzles of which the injection speed can be independently controlled. A 3-D alginate structure was fabricated through layer-by-layer printing. Each layer was formed through two phases of printing, the first phase with the sodium alginate solution and the second phase with the calcium chloride solution, in identical printing pattern and speed condition. The target patterns were lattice shaped with 2-mm spacing and two different line widths. The nozzle moving speed was 6.67 mm/s, and the injection head speed was 10 µm/s. For the two different line widths, two injection needles with inner diameters of 260 and 410 µm were used. The number of layers accumulated was five in this experiment. By varying the nozzle moving speed and the injection speed, various pattern widths could be achieved. The feasibility of sodium alginate hydrogel free-form formation by alternate printing of alginate solution and sodium chloride solution was confirmed in the developed multinozzle bioprinting system. © 2011, Copyright the Authors. Artificial Organs © 2011, International

  17. Prevention of contrast induced nephropathy with sodium bicarbonate (the PROMEC study

    Directory of Open Access Journals (Sweden)

    John Fredy Nieto-Ríos

    2014-09-01

    Full Text Available Introduction: Contrast-induced nephropathy is a common complication of radiographic procedures. Different measures have been used to avoid this damage, but the evidence is controversial. New investigations are required to clarify it. We investigated the efficacy and safety of sodium bicarbonate solution compared with sodium chloride solution to prevent contrast induced nephropathy in patients with or at risk of renal dysfunction. Methods: A prospective, single-center, randomized clinical trial conducted from May 1, 2007 to February 8, 2008. Inpatients in a tertiary center, scheduled to undergo a procedure with the nonionic radiographic contrast agent iohexol. There were 220 patients with serum creatinine levels of at least 1.2 mg/dL (106.1 µmol/L and/or type 2 diabetics, who were randomized to receive an infusion of sodium chloride (n = 113 or sodium bicarbonate (n = 107 before and after contrast dye administration. The intervention were "A" group received 1 ml/kg/hour of normal saline solution, starting 12 hours before and continuing 12 hours after iohexol contrast. "B" group received 3 ml/kg of sodium bicarbonate solution (150 mEq/L one hour prior to procedure and then drip rate was decreased to 1 ml/kg/hour until 6 hours post procedure. Our main outcome measure was change in serum creatinine. Results: The mean creatinine value after the procedure was 1.26 mg/dL in the saline group and 1.22 mg/dL in the bicarbonate group (mean difference: 0.036; CI 95%: -0.16 to 0.23, p = 0.865. The diagnosis of contrast-induced nephropathy, defined by increase in serum creatinine on 25% or more within 2 days after administration of radiographic contrast, was done in twelve patients (12% in the bicarbonate group and eighth patients (7.1% in the saline group (RR: 1.68, CI 95%: 0.72 to 3.94. Conclusion: Our investigation showed that there were no differences between normal saline solution (extended infusion vs. bicarbonate solution for nephroprotection.

  18. Dietary sodium in chronic kidney disease: a comprehensive approach.

    Science.gov (United States)

    Wright, Julie A; Cavanaugh, Kerri L

    2010-01-01

    Despite existing guidelines, dietary sodium intake among people worldwide often exceeds recommended limits. Research evidence is growing in both animal and human studies showing indirect and direct adverse consequences of high dietary sodium on the kidney. In patients with kidney disease, dietary sodium may have important effects on proteinuria, efficacy of antiproteinuric pharmacologic therapy, hypertension control, maintaining an optimal volume status, and immunosuppressant therapy. Dietary sodium intake is an important consideration in patients with all stages of chronic kidney disease, including those receiving dialysis therapy or those who have received a kidney transplant. We review in detail the dietary sodium recommendations suggested by various organizations for patients with kidney disease. Potential barriers to successfully translating current sodium intake guidelines into practice include poor knowledge about the sodium content of food among both patients and providers, complex labeling information, patient preferences related to taste, and limited support for modifications in public policy. Finally, we offer existing and potential solutions that may assist providers in educating and empowering patients to effectively manage their dietary sodium intake.

  19. Photocatalytic NO{sub x} abatement by calcium aluminate cements modified with TiO{sub 2}: Improved NO{sub 2} conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Nicolás, M. [MIMED Research Group, Department of Chemistry and Soil Sciences, School of Sciences, University of Navarra, c/Irunlarrea, 1, 31008 Pamplona (Spain); Balbuena, J.; Cruz-Yusta, M.; Sánchez, L. [Department of Inorganic Chemistry, School of Sciences, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, 14071 Córdoba (Spain); Navarro-Blasco, I.; Fernández, J.M. [MIMED Research Group, Department of Chemistry and Soil Sciences, School of Sciences, University of Navarra, c/Irunlarrea, 1, 31008 Pamplona (Spain); Alvarez, J.I., E-mail: jalvarez@unav.es [MIMED Research Group, Department of Chemistry and Soil Sciences, School of Sciences, University of Navarra, c/Irunlarrea, 1, 31008 Pamplona (Spain)

    2015-04-15

    Photocatalytic activity of TiO{sub 2} was studied in two types of calcium aluminate cement (CAC) under two different curing regimes. The effect of the TiO{sub 2} addition on the setting time, consistency and mechanical properties of the CACs was evaluated. The abatement of gaseous pollutants (NO{sub x}) under UV irradiation was also assessed. These cementitious matrices were found to successfully retain NO{sub 2}: more abundant presence of aluminates in white cement (w-CAC, iron-lean) helped to better adsorb NO{sub 2}, thus improving the conversion performance of the catalyst resulting in a larger NO{sub x} removal under UV irradiation. As evidenced by XRD, SEM, EDAX and zeta potential analyses, the presence of ferrite in dark cement (d-CAC, iron-reach) induced a certain chemical interaction with TiO{sub 2}. The experimental findings suggest the formation of new iron titanate phases, namely pseudobrookite. The reduced band-gap energy of these compounds compared with that of TiO{sub 2} accounts for the photocatalytic activity of these samples.

  20. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations

    Science.gov (United States)

    Svoboda, Martin; Lísal, Martin

    2018-06-01

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  1. Interfacial properties of chitosan/sodium dodecyl sulfate complexes

    Directory of Open Access Journals (Sweden)

    Milinković Jelena R.

    2017-01-01

    Full Text Available Contemporary formulations of cosmetic and pharmaceutical emulsions may be achieved by using combined polymer/surfactant system, which can form complexes with different structure and physicochemical properties. Such complexation can lead to additional stabilization of the emulsion products. For these reasons, the main goal of this study was to investigate the interfacial properties of chitosan/sodium dodecyl sulfate complexes. In order to understand the stabilization mechanism, the interface of the oil/water systems that contained mixtures of chitosan and sodium dodecyl sulfate, was studied by measuring the interfacial tension. Considering the fact that the properties of the oil phase has influence on the adsorption process, three different types of oil were investigated: medium-chain triglycerides (semi-synthetic oil, paraffin oil (mineral oil and natural oil obtained from the grape seed. The surface tension measurements at the oil/water interface, for chitosan water solutions, indicate a poor surface activity of this biopolymer. Addition of sodium dodecyl sulfate to chitosan solution causes a significant decrease in the interfacial tension for all investigated oils. The results of this study are important for understanding the influence of polymer-surfactant interactions on the properties of the solution and stability of dispersed systems. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III46010

  2. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    Science.gov (United States)

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  3. AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution

    International Nuclear Information System (INIS)

    Sanchez, Javier; Fullea, Jose; Andrade, Carmen; Gaitero, Juan J.; Porro, Antonio

    2008-01-01

    The high strength steels employed as reinforcement in pre-stressed concrete structures are drawn wire steels of eutectoid composition with a pearlitic microstructure. This work is focused on the study, by atomic force microscopy, of the early stages of the corrosion of such steels as a consequence of their exposition to a sodium chloride solution. The obtained images show the pearlitic microstructure of the steel, with a preferential attack of the ferrite phase and the cementite acting as a cathode. The corrosion rate was determined by calculating the amount of material lost from a roughness analysis. The obtained results are in good agreement with the predictions of Galvelel's theory, according to which the corrosion rate slows down as the pit depth increases

  4. Synthesis and optical property of zinc aluminate spinel cryogels

    Directory of Open Access Journals (Sweden)

    Lifen Su

    2016-06-01

    Full Text Available Zinc aluminate spinel cryogels with various molar ratio of Al/Zn are synthesized by sol–gel technology followed by vacuum freeze drying. The structures and optical properties are both found to be affected by the molar ratios of Al/Zn and annealed temperatures. The peaks of zinc oxide (ZnO and zinc dialuminum oxide (ZnAl2O4 are both obtained for the samples with more Zn content annealed at 750 °C or upward. The composites have a large surface area (137 m2/g with mesoporous structure after annealing at 750 °C. The SEM images reveal that the ZnAl2O4 crystals formed a multilayer structure with redundant ZnO particles which deposited on it. Furthermore, the maximum infrared reflectance is about 80% with an improvement of 35% in the infrared region after annealing at 950 °C compared with that of 450 °C, which indicates that these porous cryogels have a potential application as thermal insulating materials at a high temperature.

  5. Molecular studies on di-sodium tartrate molecule

    Science.gov (United States)

    Divya, P.; Jayakumar, S.; George, Preethamary; Shubashree, N. S.; Ahmed. M, Anees

    2015-06-01

    Structural characterization is important for the development of new material. The acoustical parameters such as Free Length, Internal Pressure have been measured from ultrasonic velocity, density for di sodium tartrate an optically active molecule at different temperatures using ultrasonic interferometer of frequency (2MHZ). The ultrasonic velocity increases with increase in concentration there is an increase in solute-solvent interaction. The stability constant had been calculated. SEM with EDAX studies has been done for Di-sodium tartrate an optically active molecule.

  6. Pet food safety: sodium in pet foods.

    Science.gov (United States)

    Chandler, Marjorie L

    2008-08-01

    Healthy dogs and cats appear to be able to adjust to differing amounts of sodium in their diet via the rennin-angiotensin-aldosterone mechanisms. There is no strong evidence that increased dietary sodium increases the risk of hypertension in dogs and cats, and the current recommendation for hypertensive animals is to avoid high dietary salt intake without making a specific effort to restrict it. The prevalence of salt sensitivity and its effect on blood pressure has not been determined for cats or dogs. The ideal amount of sodium in the diet of dogs and cats with cardiac deficiency has not been determined, as increasing may detrimentally increase the extracellular fluid volume, but decreasing it may detrimentally increase the activation of the rennin-angiotensin-aldosterone system. Increased dietary sodium increases urine output and may decrease the risk of forming calcium oxalate uroliths due to the decrease in relative supersaturation of solutes. However, caution should be used in increasing the sodium intake of patients with renal disease as increased dietary sodium may have a negative effect on the kidneys independent of any effect on blood pressure.

  7. Evaluating Effects from Contacting Superlig(R) 644 Resin with Sodium Permanganate

    International Nuclear Information System (INIS)

    Crooks, W.J. III

    2002-01-01

    This work simulates the inadvertent transfer of 1M sodium permanganate solution into the lead cesium ion exchange column containing SuperLig(R) 644 resin. The effects of contacting 1 molar sodium permanganate with SuperLig(R) 644 are characterized using the Advanced Reactive System Screening Tool

  8. Clinch River breeder reactor sodium fire protection system design and development

    International Nuclear Information System (INIS)

    Foster, K.W.; Boasso, C.J.; Kaushal, N.N.

    1984-01-01

    To assure the protection of the public and plant equipment, improbable accidents were hypothesized to form the basis for the design of safety systems. One such accident is the postulated failure of the Intermediate Heat Transfer System (IHTS) piping within the Steam Generator Building (SGB), resulting in a large-scale sodium fire. This paper discusses the design and development of plant features to reduce the consequences of the accident to acceptable levels. Additional design solutions were made to mitigate the sodium spray contribution to the accident scenario. Sodium spill tests demonstrated that large sodium leaks can be safely controlled in a sodium-cooled nuclear power plant

  9. Solubility of ammonium metavanadate in ammonium carbonate and sodium bicarbonate solutions at 25 deg C

    International Nuclear Information System (INIS)

    Fedorov, P.I.; Andreev, V.K.; Slotvinskij-Sidak, N.P.

    1978-01-01

    Solubility at 25 deg C has been studied in the system ammonium metavanadate - sodium bicarbonate - water which is a stable section of the corresponding quaternary mutual system. In the eutonic point the content of ammonium metavanadate is 4.95% and of sodium bicarbonate 12.1%. The crystallization branch of ammonium metavanadate has been studied in the system ammonium metavanadate - ammonium carbonate - water at 25 deg C. Metavanadate solubility attains minimum (0.14%) at ammonium carbonate concentration 2.6%. Three sections have been studied of the quaternary system ammonium - metavanadate - ammonium carbonate - sodium bicarbonate-water at 25 deg C in the crystallization region of ammonium metavanadate at a ratio of sodium bicarbonate to ammonium carbonate 3:1, 1:1, and 1:3. A region of minimum solubility of ammonium metavanadate has been detected (0.1%)

  10. Moessbauer study on the crystallization of IR-transmitting aluminate glasses

    International Nuclear Information System (INIS)

    Kubuki, S.; Nishida, T.

    1999-01-01

    Heat treatment of 60CaO x 10BaO x 17Al 2 O 3 x 13Fe 2 O 3 glass causes a precipitation of the nanoparticles of antiferromagnetic Ca 2 Fe 2 O 5 and ferromagnetic BaFe 2 O 4 . Moessbauer spectra of these glass-ceramics show a magnetic relaxation spectra superimposed on doublets. A Kissinger plot in the DTA Method reveals that simultaneous cleavage of Ca-O and Fe-O bonds and that of Ba-O and Fe-O bonds cause the precipitation of Ca 2 Fe 2 O 5 and BaFe 2 O 4 , respectively. Introduction of Fe(III) promotes the crystallization of aluminate glass. In the case of iron-free 60CaO x 10BaO x 30Al 2 O 3 glass, Ca 2 Al 2 O 5 and BaAl 2 O 4 particles precipitate instead of Ca 2 Fe 2 O 5 and BaFe 2 O 4 particles, respectively. (author)

  11. Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite

    Science.gov (United States)

    Raval, Hiren D.; Samnani, Mohit D.; Gauswami, Maulik V.

    2018-01-01

    Need for improvement in water flux of thin film composite (TFC) RO membrane has been appreciated by researchers world over and surface modification approach is found promising to achieve higher water flux and solute rejection. Thin film composite RO membrane was exposed to 2000 mg/l sodium hypochlorite solution with varying concentrations of glycerol ranging from 1 to 10%. It was found that there was a drop in concentration of sodium hypochlorite after the addition of glycerol because of a new compound resulted from the oxidation of glycerol with sodium hypochlorite. The water flux of the membrane treated with 1% glycerol with 2000 mg/l sodium hypochlorite for 1 h was about 22% more and salt rejection was 1.36% greater than that of only sodium hypochlorite treated membrane for the same concentration and time. There was an increase in salt rejection of membrane with increase in concentration of glycerol from 1% to 5%, however, increasing glycerol concentration further up to 10%, the salt rejection declined. The water flux was found declining from 1% glycerol solution to 10% glycerol solution. The membrane samples were characterized to understand the change in chemical structure and morphology of the membrane.

  12. The sodium process facility at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1997-01-01

    Argonne National Laboratory - West (ANL-W) has approximately 680,000 liters (180,000 gallons) of raw sodium stored in facilities on site. As mandated by the State of Idaho and the United States Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The SPF was designed to react elemental sodium to sodium carbonate through two-stages involving caustic process and carbonate process steps. The sodium is first reacted to sodium hydroxide in the caustic process step. The caustic process step involves the injection of sodium into a nickel reaction vessel filled with a 50 wt% solution of sodium hydroxide. Water is also injected, controlling the boiling point of the solution. In the carbonate process, the sodium hydroxide is reacted with carbon dioxide to form sodium carbonate. This dry powder, similar in consistency to baking soda, is a waste form acceptable for burial in the State of Idaho as a non-hazardous, radioactive waste. The caustic process was originally designed and built in the 1980s for reacting the 290,000 liters (77,000 gallons) of primary sodium from the Fermi-1 Reactor to sodium hydroxide. The hydroxide was slated to be used to neutralize acid products from the PUREX process at the Hanford site. However, changes in the DOE mission precluded the need for hydroxide and the caustic process was never operated. With the shutdown of the Experimental Breeder Reactor-II (EBR-II), the necessity for a facility to react sodium was identified. In order to comply with Resource Conservation and Recovery Act (RCRA) requirements, the sodium had to be converted into a waste form acceptable for disposal in a Sub-Title D low-level radioactive waste disposal facility. Sodium hydroxide is a RCRA

  13. Chemical characterization of SRP waste tank sludges and supernates

    International Nuclear Information System (INIS)

    Gray, L.W.; Donnan, M.Y.; Okamoto, B.Y.

    1979-08-01

    Most high-level liquid wastes at the Savannah River Plant (SRP) are byproducts from plutonium and enriched uranium recovery processes. The high-level liquid wastes generated by these separations processes are stored in large, underground, carbon-steel tanks. The liquid wastes consist of: supernate (an aqueous solution containing sodium, nitrate, nitrite, hydroxyl, and aluminate ions), sludge (a gelatinous material containing insoluble components of the waste, such as ferric and aluminum hydroxides, and mercuric and manganese oxides), and salt cake (crystals, such as sodium nitrate, formed by evaporation of water from supernate). Analyses of SRP wastes by laser-Raman spectrometry, atomic absorption spectrometry, spark-source mass spectrometry, neutron activation analysis, colorimetry, ion chromatography, and various other wet-chemical and radiochemical methods are discussed. These analyses are useful in studies of waste tank corrosion and of forms for long-term waste storage

  14. Kinetics and mechanism of sphalerite leaching by sodium nitrate in sulphuric acid solution

    Directory of Open Access Journals (Sweden)

    Sokić M.

    2012-01-01

    Full Text Available Interest for application of hydrometallurgical processes in a processing of complex sulphide ores and concentrates has increased in recent years. Their application provides better metal recoveries and reduced emission of gaseous and toxic ageneses in the environment. The kinetics and mechanism of sphalerite leaching from complex sulphide concentrate with sulphuric acid and sodium nitrate solution at standard conditions was presented in this paper. The influences of temperature and time on the leaching degree of zinc were investigated and kinetic analysis of the process was accomplished. With temperature increasing from 60 to 90°C, the zinc leaching increased from 25.23% to 71.66% after 2 hours, i.e. from 59.40% to 99.83% after 4 hours. The selected kinetic model indicated that the diffusion through the product layer was the rate-controlling step during the sphalerite leaching. The activation energy was determined to be 55 kJ/mol in the temperature range 60-90°C. XRD, light microscopy and SEM/EDX analyses of the complex concentrate and leach residue confirmed formation of elemental sulphur and diffusion-controlled leaching mechanism.

  15. Use of Sodium Hypochlorite for the Control of Bakanae Disease in Rice

    Directory of Open Access Journals (Sweden)

    Dong Bum Shin

    2014-12-01

    Full Text Available For application of sodium hypochlorite as a seed disinfectant to the control of bakanae disease caused by Gibberella fujikuroi in rice, we investigated the effects of sodium hypochlorite for antifungal activity, eliminating fungus from seeds and reducing disease occurrence in vitro and greenhouse. The viability of the pathogen was significantly reduced at 80 ml/l concentration of sodium hypochlorite, and the pathogens did not grow at over 100 ml/l concentration of sodium hypochlorite. The effect of eliminating fungus was 90% at treatment of 0.3% sodium hypochlorite solution to infected rice seeds for eight hours. When the rice seeds were soaked into 0.5% and 0.3% sodium hypochlorite solutions for twelve hours, the disease incidences of rice seedling were remarkably reduced to 4.3% and 4.7%, respectively, compared to 97.3% of non-treatment control. The rates of seedling stand were 29.1% and 26.9% higher with the sodium hypochlorite treatment than that of non-treatment control. When prochloraz and sodium hypochlorite was treated to naturally severely infested rice seeds with bakanae disease, the disinfection effect was higher than that of prochloraz alone treatment. When the seeds were soaked in sodium hypochlorite before or after prochloraz, the rate of seed contamination was low as 4.0% or 6.3%, respectively, compared to prochloraz alone as 13.7%. The disease incidence was low as 3.7% or 8.3%, respectively, compared to prochloraz alone as 14.3%. The disinfection effect of treatment with prochloraz after sodium hypochlorite was higher than that of treatment with prochloraz before sodium hypochlorite.

  16. Evaluation of analytical techniques to determine matals in Sodium

    International Nuclear Information System (INIS)

    Biancifiori, M.A.; Zappa, G.; Amico, A.

    1985-01-01

    The influence of some instrumental parameters on the analysis of CA, Co, Cr, Cu, Fe, K, Mg, Mn, and Ni in Sodium solutions, by means of Flame Atomic Absorption Spectroscopy (FAAS), is evaluated. The best operating parameters are established and the possibility of application of this analytical technique to the detection of the metallic impurities in Sodium is evaluated, considering the concentration values of nuclear interest

  17. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst

    International Nuclear Information System (INIS)

    Ozkar, S.; Zahmakiran, M.

    2005-01-01

    Sodium borohydride is stable in aqueous alkaline solution, however, it hydrolyses in water to hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. Generating H 2 catalytically from NaBH 4 solutions has many advantages: NaBH 4 solutions are nonflammable, reaction products are environmentally benign, rate of H 2 generation is easily controlled, the reaction product NaBO 2 can be recycled, H 2 can be generated even at low temperatures. All of the catalysts that has been used in hydrolysis of sodium borohydride are bulk metals and they act as heterogeneous catalysts. The limited surface area of the heterogeneous catalysts causes lower catalytic activity as the activity of catalyst is directly related to its surface area. Thus, the use of metal nanoparticles with large surface area provides potential route to increase the catalytic activity. Here, we report, for the first time, the use of ruthenium(0) nanoclusters as catalyst in the hydrolysis of sodium borohydride liberating hydrogen gas. The ruthenium nanoparticles are generated from the reduction of ruthenium(III) chloride by sodium borohydride in water and stabilized by specific ligand. The ruthenium(0) nanoclusters are found to be highly active catalyst for the hydrolysis of sodium borohydride

  18. Interactions of glutamine dipeptides with sodium dodecyl sulfate in aqueous solution measured by volume, conductivity, and fluorescence spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenning, E-mail: yanzzn@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 (China); Sun Ximeng; Li Weiwei; Li Yu [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 (China); Wang Jianji [Department of Chemistry, Henan Normal University, Xinxiang, Henan 453007 (China)

    2011-10-15

    Highlights: > Ion-ion and ion-polar group interactions are dominant interactions. > The SDS addition and temperature increase cause a dehydration effect on dipeptides. > The addition of dipeptide in water decreases the c{sub cmc} of SDS. > Enthalpy-entropy compensation takes place during micellization. > Micelle aggregation number was decreased by addition of glutamine dipeptides. - Abstract: Densities, conductivities, and fluorescence spectra of {l_brace}sodium dodecyl sulfate (SDS) + glutamine dipeptide + water{r_brace} mixtures were measured as a function of temperature. The density data have been utilized to calculate apparent molar volumes, standard partial molar volumes (V{sub 2,{phi}}{sup o}), standard partial molar volumes of transfer from water to aqueous SDS solutions ({Delta}{sub t}V{sup o}), the hydration number, partial molar expansibility (E{sub {phi}}{sup o}), and Hepler's constant of glutamine dipeptides. The critical micellar concentration (c{sub cmc}) and the degree of counterion dissociation of SDS micelles obtained from electrical conductivity data have been estimated at various concentrations of glutamine dipeptide. Thermodynamic parameters of micellization of SDS in aqueous dipeptide solutions have been determined from c{sub cmc} values and an enthalpy-entropy compensation effect was observed for the ternary systems. The pyrene fluorescence spectra were used to study the change of micropolarity produced by the interaction of SDS with glutamine dipeptide, and the aggregation behavior of SDS. The results have been interpreted in terms of solute-solvent interactions and structural changes in the mixed solutions.

  19. Ionic conductivity of ternary electrolyte containing sodium salt and ionic liquid

    International Nuclear Information System (INIS)

    Egashira, Minato; Asai, Takahito; Yoshimoto, Nobuko; Morita, Masayuki

    2011-01-01

    Highlights: ► Ternary electrolyte containing NaBF 4 , polyether and ionic liquid has been prepared. ► The conductivity of the electrolytes has been evaluated toward content of ionic liquid. ► The conductivity shows maximum 1.2 mS cm −1 and is varied in relation to solution structure. - Abstract: For the development of novel non-aqueous sodium ion conductor with safety of sodium secondary cell, non-flammable ionic liquid is attractive as electrolyte component. A preliminary study has been carried out for the purpose of constructing sodium ion conducting electrolyte based on ionic liquid. The solubility of sodium salt such as NaBF 4 in ionic liquid is poor, thus the ternary electrolyte has been prepared where NaBF 4 with poly(ethylene glycol) dimethyl ether (PEGDME) as coordination former is dissolved with ionic liquid diethyl methoxyethyl ammonium tetrafluoroborate (DEMEBF 4 ). The maximum conductivity among the prepared solutions, ca. 1.2 mS cm −1 at 25 °C, was obtained when the molar ratio (ethylene oxide unit in PEGDME):NaBF 4 :DEMEBF 4 was 8:1:2. The relationship between the conductivity of the ternary electrolyte and its solution structure has been discussed.

  20. Study of new complexes of uranium and comba radical. I.- Complexes defective in sodium carbonate

    International Nuclear Information System (INIS)

    Vera Palomino, J.; Galiano Sedano, J. A.; Parellada Bellod, R.; Bellido Gonzalez, A.

    1975-01-01

    Some complexes formed in presence of defect of sodium carbonate with respect to the stoichiometric ratio (U): (C0 3 ) = 1:3 are studied. This ratio corresponds to the main complex which is responsible for the uranium extraction with CDMBAC organic solutions and from U(VI) aqueous solutions with an excess of sodium carbonate. (Author) 10 refs