WorldWideScience

Sample records for sodium adduct ion

  1. Activation of Reactive MALDI Adduct Ions Enables Differentiation of Dihydroxylated Vitamin D Isomers

    Science.gov (United States)

    Qi, Yulin; Müller, Miriam J.; Volmer, Dietrich A.

    2017-12-01

    Vitamin D compounds are secosteroids, which are best known for their role in bone health. More recent studies have shown that vitamin D metabolites and catabolites such as dihydroxylated species (e.g., 1,25- and 24,25-dihydroxyvitamin D3) play key roles in the pathologies of various diseases. Identification of these isomers by mass spectrometry is challenging and currently relies on liquid chromatography, as the isomers exhibit virtually identical product ion spectra under collision induced dissociation conditions. Here, we developed a simple MALDI-CID method that utilizes ion activation of reactive analyte/matrix adducts to distinguish isomeric dihydroxyvitamin D3 species, without the need for chromatography separation or chemical derivatization techniques. Specifically, reactive 1,5-diaminonaphthalene adducts of dihydroxyvitamin D3 compounds formed during MADI were activated and specific cleavages in the secosteroid's backbone structure were achieved that produced isomer-diagnostic fragment ions. [Figure not available: see fulltext.

  2. Distribution of Rhodium in Mice Submitted to Treatment With the Adduct of Rhodium Propionate and Sodium Isonicotinate

    OpenAIRE

    de Souza, Aparecido Ribeiro; Najjar, Renato; de Oliveira, Elizabeth; Zyngier, Szulim Ber

    1997-01-01

    The distribution of rhodium in Balb/c mice following intraperitoneal (ip) administration of a solution of adduct of rhodium propionate and sodium isonicotinate has been investigated. The metal concentration was determined in blood and in the following organ tissues: brain, heart, lung, liver, spleen, kidney, testes, and uterus/ovary, and the rhodium concentration was obtained by Inductively Coupled Argon Atomic Emission Spectroscopy (ICP-AES). The metal was detected in all organ tissues exami...

  3. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    Science.gov (United States)

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  4. Fast sodium ion conductivity in supertetrahedral phosphidosilicates.

    Science.gov (United States)

    Johrendt, Dirk; Haffner, Arthur; Hatz, Anna Katharina; Moudrakovski, Igor; Lotsch, Bettina Valeska

    2018-04-03

    Fast sodium ion conductors are key components of sodium-based all-solid-state batteries which hold promise as safe systems for large-scale storage of electrical power. Here, we report the synthesis, crystal structure determination and Na+ ion conductivities of six new sodium ion conductors, the phosphidosilicates Na19Si13P25, Na23Si19P33, Na23Si28P45, Na23Si37P57, LT-NaSi2P3 and HT-NaSi2P3, which are entirely based on earth-abundant elements. The new structures exhibit SiP4 tetrahedra assembling interpenetrating networks of T3 to T5 supertetrahedral clusters which can be hierarchically assigned to sphalerite- or diamond-type structures. 23Na solid-state NMR spectra and geometrical pathway analysis indicate Na+ ion mobility between the supertetrahedral cluster networks. Electrochemical impedance spectroscopy revealed Na+ ion conductivities up to σ (Na+) = 4 ∙ 10-4 Scm-1 with an activation energy of Ea = 0.25 eV in HT-NaSi2P3 at 25 °C. The conductivities increase with the size of the supertetrahedral clusters due to the dilution of Na+ ions as the charge density of the anionic supertetrahedral networks decreases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  6. Influence of weakly bound adduct ions on breath trace gas analysis by selected ion flow tube mass spectrometry (SIFT-MS)

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Smith, D.

    2009-01-01

    Roč. 280, 1-3 (2009), s. 128-135 ISSN 1387-3806 R&D Projects: GA AV ČR IAA400400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : ion-molecule association * adduct ion * SIFT-MS * breath analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.117, year: 2009

  7. Unusual analyte-matrix adduct ions and mechanism of their formation in MALDI TOF MS of benzene-1,3,5-tricarboxamide and urea compounds

    NARCIS (Netherlands)

    Lou, X.; Fransen, M.; Stals, P.J.M.; Mes, T.; Bovee, R.; Dongen, van J.L.J.; Meijer, E.W.

    2013-01-01

    Analyte-matrix adducts are normally absent under typical matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) conditions. Interestingly, though, in the analysis of several types of organic compounds synthesized in our laboratory, analyte-matrix adduct ion peaks

  8. Positive/negative liquid secondary ion mass spectrometry of Ln-EDTA (1:1) complexes. Formation of molecular ion adducts with neutral species of the matrix or Ln-EDTA

    International Nuclear Information System (INIS)

    Plaziak, A.S.; Lis, S.; Elbanowski, M.

    1992-01-01

    The mass spectra of 1:1 complexes of EDTA with lanthanide cations (Ln=Sm, Eu, Gd, Tb or Dy) upon positive/negative LSIMS are presented. In glycerol used as a matrix, adduct-ions such as [M+H] + , [M+H+nGly] + , [2M+H] + , [2M+H+Gly] + (positive LSIMS) or [M-H] - , [M-H+nGly] - , [2M-H] - , [2M-H+Gly] - (negative LSIMS), where n=1-3, are formed. Reactions leading to the formation of adduct-ions are suggested. (authors)

  9. DETERMINATION OF STRONTIUM IONS IN WATERS WITH A HIGH CONTENT OF SODIUM IONS

    Directory of Open Access Journals (Sweden)

    Tatiana Mitina

    2015-06-01

    Full Text Available This paper reports on the influence of sodium ions on experimental determination of strontium ions concentration in waters with a high content of sodium ions by using emission flame photometry and atomic absorption spectroscopy. For the method of emission flame photometry it was shown that at a wavelength of 460.7 nm (spectral emission line of strontium the emission is linearly dependent on the concentration of sodium ions. The greatest impact of high concentrations of sodium ions on the result of determination the strontium ions concentration has been registered at low levels of strontium. The influence of nitric acid on the results is also discussed. In the case of using atomic absorption spectroscopy method no influence of sodium ions and nitric acid on the results of determination the strontium ions concentration was revealed. The metrological characteristics of both methods are evaluated.

  10. Theoretical and experimental investigation of carnosine and its oxygenated adducts. The reaction with the nickel ion

    Energy Technology Data Exchange (ETDEWEB)

    Pavlos, Dimitrios; Petropouleas, Panayiotis; Hatzipanayioti, Despina, E-mail: stambaki@chem.uoa.gr

    2015-11-05

    Highlights: • Study on models of neutral cations and anions of carnosine at the B3LYP/TZVP level. • The {sup 1}O{sub 2}-adducts of these models resulted in oxygenated carnosine. • Theoretical parameters correlated to experimental results for carn and carn-H{sub 2}O{sub 2}. • Theoretical models of Nickel-carn complexes have been investigated. • Isolation and characterization of the solid [Ni(carn){sub 2}(H{sub 2}O){sub 5}] have been performed. - Abstract: DFT theoretical calculations at B3LYP/TZVP or LANL2DZ level of theory, for neutral, zwitterions, protonated and anionic carnosine, were performed. Energies, the structural and spectroscopic parameters were calculated in the gas phase and aqueous medium. Additional H-bonds stabilize the ionized forms of carnosine, creating “nests” into which metal ions or bio-molecules may be sheltered. Based on Fukui functions, the reactivity of the abovementioned forms of carnosine, with {sup 1}O{sub 2}, may lead to oxygenated species. The theoretical spectroscopic parameters have been correlated to our experimental results. The effect of H{sub 2}O{sub 2} and the electrochemistry of aqueous carnosine solutions were examined. Theoretical models containing Ni(II), carnosine and water were constructed. In the isolated mauve solid, formulated [Ni(carn){sub 2}(H{sub 2}O){sub 5}], the COO−, N{sub π} and/or NH{sub 2} were bonded. When H{sub 2}O{sub 2} was added, the imidazole NMR signals disappeared. A redox couple clearly indicates one electron process, the electron coming from either the oxidation of imidazole ring or the nickel(II)/Ni(III) couple.

  11. Electrode Materials for Lithium/Sodium-Ion Batteries

    DEFF Research Database (Denmark)

    Shen, Yanbin

    2014-01-01

    The synthesis of electrode materials for lithium/sodium ion batteries and their structural stability during lithium/sodium insertion/extraction are the two essential issues that have limited battery application in the fields requiring long cycle life and high safety. During her PhD studies, Yanbin...... Shen systematically investigated the controlled synthesis of electrode materials for lithium/sodium ion batteries. She also investigated their formation mechanisms and structural evolution during the operation of batteries using in situ/operando X-ray diffraction techniques. The research findings...... provide insights into formation mechanisms of Li4Ti5O12 anode material from both hydrothermal and solid-state reaction. The results also contribute to a thorough understanding of the intercalation and decay mechanisms of O3/P2 layered sodium cathode materials in sodium ion batteries....

  12. Nanocomposite anode materials for sodium-ion batteries

    Science.gov (United States)

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  13. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    Science.gov (United States)

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-04-26

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  14. Respective effects of sodium and chloride ion on physiological ...

    African Journals Online (AJOL)

    Respective effects of sodium and chloride ion on growth, cell morphological changes, membrane disorganization, ion homeostasis, exoenzyme activities and fermentation performance in Zymomonas mobilis232B cultures were presented. In batch cultures containing 0.15 M NaCl, Z. mobilis232B developed filaments, and ...

  15. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  16. Radiation stability of sodium titanate ion exchange materials

    International Nuclear Information System (INIS)

    Kenna, B.T.

    1980-02-01

    Sodium titanate and sodium titanate loaded macroreticular resin are being considered as ion exchangers to remove 90 Sr and actinides from the large volume of defense waste stored at Hanford Site in Washington. Preliminary studies to determine the radiation effect on Sr +2 and I - capacity of these ion-exchange materials were conducted. Samples of sodium titanate powder, sodium titanate loaded macroreticular resin, as well as the nitrate form of macroreticular anion resin were irradiated with up to 2 x 10 9 Rads of 60 Co gamma rays. Sodium titanate cation capacity decreased about 50% while the sodium titanate loaded macroeticular resin displayed a dramatic decrease in cation capacity when irradiated with 10 8 -10 9 Rad. The latter decrease is tentatively ascribed to radiation damage to the organic portion which subsequently inhibits interaction with the contained sodium titanate. The anion capacity of both macroreticular resin and sodium titanate loaded macroreticular resin exhibited significant decreases with increasing radiation exposure. These results suggest that consideration should be given to the potential effects of radiation degradation if column regeneration is to be used. 5 figures, 2 tables

  17. Self diffusion of sodium ion in sodium chloride

    International Nuclear Information System (INIS)

    Haridasan, T.M.; Lawrence, N.

    1985-09-01

    The problem of cation self diffusion in NaCl for a single vacancy mechanism is attempted using a reaction coordinate approach employing the phonons in the system. The vacancy is given an active role by estimating the displacements of its nearest neighbour Cl - ions in the environment of the vacancy through the lattice Green's functions and the t matrix formalism. The jump frequency, the isotope effect and diffusion coefficients estimated by this approach agree well with the experimentally deduced values. These results support the experimental conclusion of about 30% of vacancy pairs in the cation diffusion in NaCl. (author)

  18. An effective method to screen sodium-based layered materials for sodium ion batteries

    Science.gov (United States)

    Zhang, Xu; Zhang, Zihe; Yao, Sai; Chen, An; Zhao, Xudong; Zhou, Zhen

    2018-03-01

    Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.

  19. Desalting Protein Ions in Native Mass Spectrometry Using Supercharging Reagents

    Science.gov (United States)

    Cassou, Catherine A.; Williams, Evan R.

    2014-01-01

    Effects of the supercharging reagents m-NBA and sulfolane on sodium ion adduction to protein ions formed using native mass spectrometry were investigated. There is extensive sodium adduction on protein ions formed by electrospray ionization from aqueous solutions containing millimolar concentrations of NaCl, which can lower sensitivity by distributing the signal of a given charge state over multiple adducted ions and can reduce mass measuring accuracy for large proteins and non-covalent complexes for which individual adducts cannot be resolved. The average number of sodium ions adducted to the most abundant ion formed from ten small (8.6–29 kDa) proteins for which adducts can be resolved is reduced by 58% or 80% on average, respectively, when 1.5% m-NBA or 2.5% sulfolane are added to aqueous solutions containing sodium compared to without the supercharging reagent. Sulfolane is more effective than m-NBA at reducing sodium ion adduction and at preserving non-covalent protein-ligand and protein-protein interactions. Desalting with 2.5% sulfolane enables detection of several glycosylated forms of 79.7 kDa holo-transferrin and NADH bound to the 146 kDa homotetramer LDH, which are otherwise unresolved due to peak broadening from extensive sodium adduction. Although sulfolane is more effective than m-NBA at protein ion desalting, m-NBA reduces salt clusters at high m/z and can increase the signal-to-noise ratios of protein ions by reducing chemical noise. Desalting is likely a result of these supercharging reagents binding sodium ions in solution, thereby reducing the sodium available to adduct to protein ions. PMID:25133273

  20. Nanocomposite Materials for the Sodium-Ion Battery: A Review.

    Science.gov (United States)

    Liang, Yaru; Lai, Wei-Hong; Miao, Zongcheng; Chou, Shu-Lei

    2018-02-01

    Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na + ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Separation of uranium from sodium carbonate - sodium bicarbonate eluate by ion exchange method

    International Nuclear Information System (INIS)

    Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1982-01-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na 2 CO 3 -0.5 N NaHCO 3 ) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/1 uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluant (5 % NaCl-0.5 % Na 2 CO 3 ). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased. (author)

  2. Separation of uranium from sodium carbonate-sodium bicarbonate eluate by ion exchange method

    International Nuclear Information System (INIS)

    Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1982-01-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na 2 CO 3 -0.5 N NaHCO 3 ) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/l uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluent (5% NaCl-0.5% Na 2 CO 3 ). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased. (author)

  3. Phosphate Framework Electrode Materials for Sodium Ion Batteries.

    Science.gov (United States)

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2017-05-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.

  4. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  5. Energy decomposition analysis of the interactions in adduct ions of acetophenone and Na+, NH4+ and H+ in the gas phase

    Science.gov (United States)

    Sugimura, Natsuhiko; Igarashi, Yoko; Aoyama, Reiko; Shibue, Toshimichi

    2017-09-01

    The physical origins of the interactions in the acetophenone cation adducts [M+Na]+, [M+NH4]+, and [M+H]+ were explored by localized molecular orbital-energy decomposition analysis and density functional theory. The analyses highlighted the differences in the interactions in the three adduct ions. Electrostatic energy was important in [M+Na]+ and there was little change in the acetophenone orbital shape. Both electrostatic and polarization energy were important in [M+NH4]+, and a considerable change in the orbital shape occurred to maximize the strength of the hydrogen bond. Polarization energy was the major attractive force in [M+H]+.

  6. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Ni, Qiao; Bai, Ying; Wu, Feng; Wu, Chuan

    2017-03-01

    Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are among the most promising electrode materials for Na-ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion-type electrode materials are Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 for Na-based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na-ion batteries. Carbonophosphate Na 3 MnCO 3 PO 4 and amorphous FePO 4 have also recently emerged and are contributing to further developing the research scope of polyanion-type Na-ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion-type electrode materials for Na-ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems.

  7. Separation of uranium from sodium carbonate - sodium bicarbonate eluate by ion exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Katoh, Shunsaku; Sugasaka, Kazuhiko (Government Industrial Research Inst., Shikoku, Takamatsu (Japan))

    1982-09-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na/sub 2/CO/sub 3/-0.5 N NaHCO/sub 3/) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/1 uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluant (5 % NaCl-0.5 % Na/sub 2/CO/sub 3/). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased.

  8. Separation of uranium from sodium carbonate-sodium bicarbonate eluate by ion exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, K.; Hirotsu, T.; Fujii, A.; Katoh, S.; Sugasaka, K. (Government Industrial Research. Inst., Shikoku, Takamatsu (Japan))

    1982-01-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na/sub 2/CO/sub 3/-0.5 N NaHCO/sub 3/) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/l uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluent (5% NaCl-0.5% Na/sub 2/CO/sub 3/). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased.

  9. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.

    Science.gov (United States)

    Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp

    2018-01-02

    Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Equilibrium and ab initio computational studies on the adduct formation of 1,3-diketonato-lithium(I), -sodium(I) and -potassium(I) with 1,10-phenanthroline and its 2,9-dimethyl derivatives.

    Science.gov (United States)

    Ishimori, Ken-ichiro; Mori, Seiji; Ito, Yuji; Ohashi, Kousaburo; Imura, Hisanori

    2009-06-15

    Highly effective and selective synergistic extraction of Li+ has been found using 2-naphthoyltrifluoroacetone (Hnta) as an acidic chelating agent and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (dmdpp) as a neutral ligand (denoted as L) in toluene. The synergism was ascribed to the adduct formation in the organic phase, and the composition and the formation constants of the adducts for alkali metal ions (M+) were determined by the extraction equilibrium analysis. The adducts found were M(nta)L for Li+ and Na+, while M(nta)L and M(nta)L2 for K+. To understand thermodynamics of the adduct formation with the bidentate amines, quantum chemical calculations of the 1:1 and 1:2 adduct formations with dmp and 1,10-phenanthroline (phen) were performed. The electronic and steric effects of the methyl groups at 2,9-positions of phen on the thermodynamic functions of adduct formation as well as the high lithium selectivity were quantitatively elucidated.

  11. Determination of chloride and sulphur in sodium by ion chromatography and its application to PFBR sodium samples

    International Nuclear Information System (INIS)

    Vijayalakshmi, S.; Ushalakshmi, K.

    2011-01-01

    Analytical method using ion chromatography was developed for the determination of chloride and sulphur in sodium. In this method, sodium was dissolved in water and various sulphur species present in the sample was oxidized to sulphate using hydrogen peroxide. Carbon dioxide gas was passed through the solution to convert sodium hydroxide to carbonate solution. The resulting sample solution was analysed using suppressed Ion chromatography employing carbonate eluent. This method was applied to the analysis of sodium samples procured for prototype fast breeder reactor. (author)

  12. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization – A mass spectrometry, ion mobility and molecular modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Tintaru, Aura [Aix-Marseille Université – CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille (France); Chendo, Christophe [Aix-Marseille Université – CNRS, FR 1739, Fédération des Sciences Chimiques de Marseille, Spectropole, Marseille (France); Wang, Qi [Aix-Marseille Université – CNRS, UMR 6114, Centre Interdisciplinaire de Nanosciences de Marseille, Marseille (France); Viel, Stéphane [Aix-Marseille Université – CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille (France); Quéléver, Gilles; Peng, Ling [Aix-Marseille Université – CNRS, UMR 6114, Centre Interdisciplinaire de Nanosciences de Marseille, Marseille (France); Posocco, Paola [University of Trieste, Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), Trieste (Italy); National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste (Italy); Pricl, Sabrina, E-mail: sabrina.pricl@di3.units.it [University of Trieste, Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), Trieste (Italy); National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste (Italy); Charles, Laurence, E-mail: laurence.charles@univ-amu.fr [Aix-Marseille Université – CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille (France)

    2014-01-15

    Graphical abstract: -- Highlights: •ESI-MS/MS, IMS and molecular modeling were combined to study PEO-PAMAM conformation. •Protonated and lithiated molecules were studied, with charge states from 2 to 4. •Protonation mostly occurred on PAMAM, with PEO units enclosing the protonated group. •Lithium adduction on PEO units lead to more expanded conformations. •Charge location strongly influenced PEO-PAMAM dissociation behavior. -- Abstract: Tandem mass spectrometry and ion mobility spectrometry experiments were performed on multiply charged molecules formed upon conjugation of a poly(amidoamine) (PAMAM) dendrimer with a poly(ethylene oxide) (PEO) linear polymer to evidence any conformational modification as a function of their charge state (2+ to 4+) and of the adducted cation (H{sup +}vs Li{sup +}). Experimental findings were rationalized by molecular dynamics simulations. The G0 PAMAM head-group could accommodate up to three protons, with protonated terminal amine group enclosed in a pseudo 18-crown-6 ring formed by the PEO segment. This particular conformation enabled a hydrogen bond network which allowed long-range proton transfer to occur during collisionally activated dissociation. In contrast, lithium adduction was found to mainly occur onto oxygen atoms of the polyether, each Li{sup +} cation being coordinated by a 12-crown-4 pseudo structure. As a result, for the studied polymeric segment (M{sub n} = 1500 g mol{sup −1}), PEO-PAMAM hybrid molecules exhibited a more expanded shape when adducted to lithium as compared to proton.

  13. SnSe2 Two Dimensional Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-01-01

    Sodium-ion batteries (SIBs) are considered as a promising alternative to lithium-ion batteries (LIBs) for large-scale renewable energy storage units due to the abundance of sodium resource and its low cost. However, the development of anode

  14. Microwave-assisted convenient syntheses of 2-indolizine derivatives from Morita-Baylis-Hillman adducts: new in silico potential ion channel modulators

    International Nuclear Information System (INIS)

    Cunha, Saraghina M.D.; Oliveira, Ramon G. de; Vasconcellos, Mario L.A.A.

    2013-01-01

    In this work, a microwave-assisted synthesis study by microwave irradiation to produce indolizine-2-carbonitrile and indolizine-2-carboxylate in good to high yields (70 and 81%, respectively) in one step from Morita-Baylis-Hillman adducts (MBHA) is presented. These compounds were subsequently transformed to high yields (94 to 100%, respectively) in three 2-indolizine derivatives. The five synthesized compounds were designed in silico aiming to present potential selective activities as ion channel modulators. These activities were suggested by the score values using Molinspiration Cheminformatics program. (author)

  15. Microwave-assisted convenient syntheses of 2-indolizine derivatives from Morita-Baylis-Hillman adducts: new in silico potential ion channel modulators

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Saraghina M.D.; Oliveira, Ramon G. de; Vasconcellos, Mario L.A.A., E-mail: mlaav@quimica.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Quimica

    2013-03-15

    In this work, a microwave-assisted synthesis study by microwave irradiation to produce indolizine-2-carbonitrile and indolizine-2-carboxylate in good to high yields (70 and 81%, respectively) in one step from Morita-Baylis-Hillman adducts (MBHA) is presented. These compounds were subsequently transformed to high yields (94 to 100%, respectively) in three 2-indolizine derivatives. The five synthesized compounds were designed in silico aiming to present potential selective activities as ion channel modulators. These activities were suggested by the score values using Molinspiration Cheminformatics program. (author)

  16. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries

    Directory of Open Access Journals (Sweden)

    Jianmin Feng

    2018-04-01

    Full Text Available The poor cycling stability of antimony during a repeated sodium ion insertion and desertion process is the key issue, which leads to an unsatisfactory application as an anode material in a sodium-ion battery. Addressed at this, we report a facile two-step method to coat antimony nanoparticles with an ultrathin carbon layer of few nanometers (denoted Sb@C NPs for sodium-ion battery anode application. This carbon layer could buffer the volume change of antimony in the charge-discharge process and improve the battery cycle performance. Meanwhile, this carbon coating could also enhance the interfacial stability by firmly connecting the sodium alginate binders through its oxygen-rich surface. Benefitted from these advantages, an improved initial discharge capacity (788.5 mA h g−1 and cycling stability capacity (553 mA h g−1 after 50 times cycle have been obtained in a battery using Sb@C NPs as anode materials at 50 mA g−1. Keywords: Sodium-ion battery, Antimony, Sodium alginate, Liquid-phase reduction, Carbon coating

  17. Ion-exchange properties of cesium and strontium into zeolites from sodium salt solutions

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki; Ohtani, Tozo.

    1978-01-01

    The ion-exchange properties of cesium and strontium into zeolite from sodium salt solution has been studied in zeolite A, zeolite X, zeolite Y, mordenite and clinoptilolite. The distribution of cesium into mordenite from about 1 -- 2 M sodium chloride and sodium hydroxide solutions is considerably larger than that into zeolite A. The distribution coefficient for 2 M solution of sodium salts was about 300. Therefore, the separation of cesium from sodium salt solution is possible by using mordenite. The distribution of strontium into zeolites form 1 -- 2 M solutions of sodium chloride and sodium nitrate were in the order of zeolite A>zeolite X>zeolite Y asymptoticaly equals mordenite. The distribution coefficient of 230 was obtained for 1 M solutions of sodium salts. The anion in solutions had no effect on the distribution of cesium and strontium into zeolite from sodium salt solution. (author)

  18. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  19. Excessive sodium ions delivered into cells by nanodiamonds: implications for tumor therapy.

    Science.gov (United States)

    Zhu, Ying; Li, Wenxin; Zhang, Yu; Li, Jing; Liang, Le; Zhang, Xiangzhi; Chen, Nan; Sun, Yanhong; Chen, Wen; Tai, Renzhong; Fan, Chunhai; Huang, Qing

    2012-06-11

    Nanodiamonds (NDs) possess many excellent physical and chemical properties that make them attractive materials for applications in biomedicine. In this paper, the adsorption and delivery of a large amount of sodium ions into the cell interior by NDs in serum-free medium is demonstrated. The excess sodium ions inside the cells induce osmotic stresses followed by cell swelling and an increase in the intracellular levels of calcium and reactive oxygen species (ROS), which leads to severe cellular damage. In complete culture medium, however, serum proteins wrapped around the NDs effectively prevent the sodium ions from adsorbing onto the NDs, and thus the NDs show no cytotoxicity. This work is the first to elaborate on the correlation between the sodium ions adsorbed on the nanomaterials and their bio-effects. Excessive ions delivered into cells by NDs might have potential applications in tumor therapy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.

    Science.gov (United States)

    Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen

    2014-08-01

    A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [The relationship between PMI and concentration of potassium ion and sodium ion in swine aqueous humor after death].

    Science.gov (United States)

    Han, Ju; Yu, Guang-biao; Dong, Ye-qiang; Fang, Chao; Jing, Hua-lan; Luo, Si-min

    2010-04-01

    To explored the relationship between the concentration of potassium ion as well as sodium ion in the aqueous humor and post-mortem interval (PMI). The concentrations of potassium ion and sodium ion in the aqueous humor of swine within 48 h after death at 4 degrees C and 28 degrees C were detected using Z-500 atomic absorption spectrophotometer. The concentrations of potassium ion and sodium ion in aqueous humor of isolated swine eyeballs within 48 h after death when the environmental temperature was 4 degrees C were significantly related to PMI. The relationship between PMI and the concentration of potassium ion was PMI = -0.178[K+]2 + 49.978 (R2 = 0.995). The relationship between PMI and the rate of sodium ion and potassium ion was PMI = 120.987/[Na+/K+]-28.834 (R2 = 0.905). The concentration of potassium in aqueous humor of isolated swine eyeballs may be one of the reference indicators to estimate PMI of the corpses at lower temperatures.

  2. Peculiarities of the diffusion of silver and sodium ions in phosphate glasses with a high content of sodium oxide

    International Nuclear Information System (INIS)

    Syutkin, V.M.; Tolkatchev, V.A.

    1996-01-01

    The phosphate glasses with a high content of alkali metal ions are good ionic conductors. Despite active studies, the mechanism of ion diffusion is not so far clear. The present work discusses the characteristics of ion diffusion in phosphate glasses with a high content of sodium oxide. An effective method to study ion transport is the investigation of relaxation processes the kinetics of which depends on ion diffusion. We use the data for two types of relaxation processes the kinetics of which is determined by ion diffusion. This is the conductivity relaxation due to sodium (host) ions and the decay of radiation-induced centers controlled by silver (guest) ion diffusion. Both of the processes being actually the first-order processes display a nonexponential kinetic behavior. The relaxation law can be interpreted either as the inherently nonexponential function or as the weighted sum of exponential decay functions with a distribution of relaxation times. It has been demonstrated that on the molecular level the relaxation function should be interpreted in the frame of the scheme of parallel first-order processes. This fact allows one to formulate a number of features of ion diffusion: (i) the mean square displacement of ions does not exceed several angstrom when transport becomes non-dispersive; (ii) the diffusion coefficient of ions is the function of coordinates. In this case, a characteristic distance at which D(r) noticeably varies is no less than a hundred of angstrom; (iii) the instantaneous concentration of mobile ions is well below the overall concentration ions

  3. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  4. Sodium-calcium ion exchange on clay minerals at moderate to high ionic strengths

    International Nuclear Information System (INIS)

    Rogers, W.J.

    1979-12-01

    Sodium-calcium ion exchange on several clay minerals was studied at ionic strengths ranging from 0.01 to above 1.0. The minerals studied included attapulgite, illite, kaolin, and several montmorillonites. Distribution coefficients of calcium and sodium were obtained for the minerals over a wide range of solution conditions at pH five and equilibrium constants were calculated. The distribution coefficient of calcium, D/sub Ca/, was studied as a function of time, solution pH, loading, sodium concentration, and ionic strength fraction of sodium in constant ionic strength solutions. The distribution coefficient of sodium, D/sub Na/, was also studied as a function of time, loading, and sodium ionic strength fraction in constant total ionic strength solutions. Values of equilibrium constants calculated from distribution coefficients for solutions of constant ionic strength scattered bwteen 2 and 10 kg/kg for the montmorillonites and attapulgite while equilibrium constants for illite ranged from 5 to 10 kg/kg. No equilibrium constants for kaolin were calculated since distribution coefficients of sodium on this clay were too small to be measured. It was found that equilibrium constants at trace sodium loading were generally lower than those for higher sodium loadings by an order of magnitude or more due to the sensitivity of sodium distribution coefficients to the concentration of sodium in the clay at low loadings. Theoretical and experimental treatments of ion exclusion were included

  5. Method for ion exchange purification of sodium iodide solution from heavy metals and potassium microimpurities

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Kachur, N.Ya.; Kostromina, O.N.; Ogorodnikova, A.A.; Khajnakov, S.A.

    1990-01-01

    A method of deep ion exchange purification of sodium iodide solution from heavy metals (iron, nickel, copper, lead) and potassium microimpurities is developed. The method includes multiple sorption of microimpurities on titanium phosphate with their subsequent desorption by sorbent processing with a solution with a solution of 3-6 N nitric acid, first, and then with a neutral solution of 2 % sodium thiosulfate. The given method permits to increase the purification degree of sodium iodide solution by 25-30 %. 2 tabs

  6. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.; Cui, Yi

    2011-01-01

    needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five

  7. Sodium Pick-Up Ion Observations in the Solar Wind Upstream of Mercury

    Science.gov (United States)

    Jasinski, J. M.; Raines, J. M.; Slavin, J. A.; Regoli, L. R.; Murphy, N.

    2018-05-01

    We present the first observations of sodium pick-up ions upstream of Mercury’s magnetosphere. From these observations we infer properties of Mercury’s sodium exosphere and implications for the solar wind interaction with Mercury’s magnetosphere.

  8. Mass and energy deposition effects of implanted ions on solid sodium formate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiangqin E-mail: clshao@mail.ipp.ac.cn; Shao Chunlin; Yao Jianming; Yu Zengliang

    2000-07-01

    Solid sodium formate was implanted by low energy N{sup +}, H{sup +}, and Ar{sup +} ions. Measured with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FT-IR), it was observed that new -CH{sub 2}-, -CH{sub 3}- groups and COO{sup -} radical ion were produced in the implanted sodium formate. Analyzing with the highly sensitive ninhydrin reaction, it was found that a new -NH{sub 2} functional group was formed upon N{sup +} ion implantation, and its yield increased along with implantation dose but decreased with the ion's energy.

  9. A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density.

    Science.gov (United States)

    Wang, Faxing; Wang, Xiaowei; Chang, Zheng; Wu, Xiongwei; Liu, Xiang; Fu, Lijun; Zhu, Yusong; Wu, Yuping; Huang, Wei

    2015-11-18

    A quasi-solid-state sodium-ion capacitor is demonstrated with nanoporous disordered carbon and macroporous graphene as the negative and positive electrodes, respectively, using a sodium-ion-conducting gel polymer electrolyte. It can operate at a cell voltage as high as 4.2 V with an energy density of record high 168 W h kg(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sodium ions as substitutes for protons in the gastric H,K-ATPase

    International Nuclear Information System (INIS)

    Polvani, C.; Sachs, G.; Blostein, R.

    1989-01-01

    In view of the striking homology among various ion-translocating ATPases including Na,K-ATPase, Ca-ATPase, and H,K-ATPase, and the recent evidence that protons can replace cytoplasmic sodium as well as potassium in the reaction mechanism of the Na,K-ATPase (Polvani, C., and Blostein, R. (1988) J. Biol. Chem. 263, 16757-16763), we studied the role of sodium as a substitute for protons in the H,K-ATPase reaction. Using hog gastric H,K-ATPase-rich inside-out membrane vesicles we observed 22Na+ influx which was stimulated by intravesicular potassium ions (K+i) at pH 8.5 but not at pH 7.1. This sodium influx was observed in medium containing ATP and was inhibited by vanadate and SCH28080, a selective inhibitor of the gastric H,K-ATPase. At least 2-fold accumulation of sodium was observed at pH 8.5. Experiments aimed to determine the sidedness of the alkaline pH requirement for K+i-dependent sodium influx showed that K+i-activated sodium influx depends on pHout and is unaffected by changes in pHin. These results support the conclusion that sodium ions substitute for protons in the H,K-ATPase reaction mechanism and provide evidence for a similarity in ion selectivity and/or binding domains of the Na,K-ATPase and the gastric H,K-ATPase enzymes

  11. ANALYSIS OF SULFONATES IN AQUEOUS SAMPLES BY ION-PAIR LC/ESI-MS/MS WITH IN-SOURCE CID FOR ADDUCT PEAK ELIMINATION

    Energy Technology Data Exchange (ETDEWEB)

    OUYANG,S.; VAIRAVAMURTHY,M.A.

    1999-06-13

    Determination of low-molecular-weight organic sulfonates (e.g. taurine and cysteic acid) in aqueous solutions is important in many applications of biological, environmental and pharmaceutical sciences. These compounds are difficult to be determined by commonly used reversed-phase liquid chromatographic separation combined with UV-Visible detection because of their high solubility and the lack chromophoric moieties. Here the authors report a method combining ion-pair liquid chromatography and electrospray ionization tandem mass spectrometry (IPLC/ESI-MS/MS)for determining sulfonates. The ability of low-molecular-weight sulfonates to form ion-pairs with quaternary ammonium cations in aqueous solutions allowed LC separation with a C{sub 18} column. Detection of the sulfonates was accomplished with ESI-MS that lends a universal mode of mass detection for polar, water soluble compounds. An in-source collision induced dissociation (CID) was applied to eliminate the adduct peaks in mass spectra. Characteristic marker ions showed in the second stage mass spectra lent a method for identifying sulfonates.

  12. Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries

    Science.gov (United States)

    Eguia-Barrio, A.; Castillo-Martínez, E.; Klein, F.; Pinedo, R.; Lezama, L.; Janek, J.; Adelhelm, P.; Rojo, T.

    2017-11-01

    Transition metal carbodiimides (TMNCN) undergo conversion reactions during electrochemical cycling in lithium and sodium ion batteries. Micron sized copper and zinc carbodiimide powders have been prepared as single phase as confirmed by PXRD and IR and their thermal stability has been studied in air and nitrogen atmosphere. CuNCN decomposes at ∼250 °C into CuO or Cu while ZnNCN can be stable until 400 °C and 800 °C in air and nitrogen respectively. Both carbodiimides were electrochemically analysed for sodium and lithium ion batteries. The electrochemical Na+ insertion in CuNCN exhibits a relatively high reversible capacity (300 mAh·g-1) which still indicates an incomplete conversion reaction. This incomplete reaction confirmed by ex-situ EPR analysis, is partly due to kinetic limitations as evidenced in the rate capability experiments and in the constant potential measurements. On the other hand, ZnNCN shows incomplete conversion reaction but with good capacity retention and lower hysteresis as negative electrode for sodium ion batteries. The electrochemical performance of these materials is comparable to that of other materials which operate through displacement reactions and is surprisingly better in sodium ion batteries in comparison with lithium ion batteries.

  13. Manganese oxide electrode with excellent electrochemical performance for sodium ion batteries by pre-intercalation of K and Na ions.

    Science.gov (United States)

    Feng, Mengya; Du, Qinghua; Su, Li; Zhang, Guowei; Wang, Guiling; Ma, Zhipeng; Gao, Weimin; Qin, Xiujuan; Shao, Guangjie

    2017-05-22

    Materials with a layered structure have attracted tremendous attention because of their unique properties. The ultrathin nanosheet structure can result in extremely rapid intercalation/de-intercalation of Na ions in the charge-discharge progress. Herein, we report a manganese oxide with pre-intercalated K and Na ions and having flower-like ultrathin layered structure, which was synthesized by a facile but efficient hydrothermal method under mild condition. The pre-intercalation of Na and K ions facilitates the access of electrolyte ions and shortens the ion diffusion pathways. The layered manganese oxide shows ultrahigh specific capacity when it is used as cathode material for sodium-ion batteries. It also exhibits excellent stability and reversibility. It was found that the amount of intercalated Na ions is approximately 71% of the total charge. The prominent electrochemical performance of the manganese oxide demonstrates the importance of design and synthesis of pre-intercalated ultrathin layered materials.

  14. Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine.

    Science.gov (United States)

    Hong, Seok-Min; Etacheri, Vinodkumar; Hong, Chulgi Nathan; Choi, Seung Wan; Lee, Ki Bong; Pol, Vilas G

    2017-06-07

    Fluorocarbon (C x F y ) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g -1 and 269 mAh g -1 in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g -1 ) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.

  15. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.

    Science.gov (United States)

    Cresce, Arthur V; Russell, Selena M; Borodin, Oleg; Allen, Joshua A; Schroeder, Marshall A; Dai, Michael; Peng, Jing; Gobet, Mallory P; Greenbaum, Steven G; Rogers, Reginald E; Xu, Kang

    2016-12-21

    Sodium ion batteries are on the cusp of being a commercially available technology. Compared to lithium ion batteries, sodium ion batteries can potentially offer an attractive dollar-per-kilowatt-hour value, though at the penalty of reduced energy density. As a materials system, sodium ion batteries present a unique opportunity to apply lessons learned in the study of electrolytes for lithium ion batteries; specifically, the behavior of the sodium ion in an organic carbonate solution and the relationship of ion solvation with electrode surface passivation. In this work the Li + and Na + -based solvates were characterized using electrospray mass spectrometry, infrared and Raman spectroscopy, 17 O, 23 Na and pulse field gradient double-stimulated-echo pulse sequence nuclear magnetic resonance (NMR), and conductivity measurements. Spectroscopic evidence demonstrate that the Li + and Na + cations share a number of similar ion-solvent interaction trends, such as a preference in the gas and liquid phase for a solvation shell rich in cyclic carbonates over linear carbonates and fluorinated carbonates. However, quite different IR spectra due to the PF 6 - anion interactions with the Na + and Li + cations were observed and were rationalized with the help of density functional theory (DFT) calculations that were also used to examine the relative free energies of solvates using cluster - continuum models. Ion-solvent distances for Na + were longer than Li + , and Na + had a greater tendency towards forming contact pairs compared to Li + in linear carbonate solvents. In tests of hard carbon Na-ion batteries, performance was not well correlated to Na + solvent preference, leading to the possibility that Na + solvent preference may play a reduced role in the passivation of anode surfaces and overall Na-ion battery performance.

  16. Study of the permeability of the various parts of the tubules to sodium and potassium ions

    International Nuclear Information System (INIS)

    Morel, F.; Falbriard, A.

    1959-01-01

    The method of stop flow analysis has been used in rabbits together with radioactive sodium and potassium injected in the middle of a six minutes period of arrest of urine flow during an osmotic diuresis. Urine was subsequently collected in 60 ta 80 mg samples. The specific activities of sodium and potassium suggest that both ions pass directly from the renal interstitial tissue into the urine at different and distinct areas in the tubules. The whole distal segment, including the area of active reabsorption of this ion, is impermeable to sodium in the direction interstitial tissue to lumen. The adjacent, more proximal tubule is, however, extremely permeable. The distal tubular impermeability to potassium is more limited. The specific activity already having reached a maximum at the level of active sodium reabsorption. Reprint of a paper published in 'Revue Francaise d'Etudes Cliniques et Biologiques', n. 5, vol IV, p. 471-474 [fr

  17. The re-emergence of sodium ion batteries: testing, processing, and manufacturability

    Science.gov (United States)

    Roberts, Samuel; Kendrick, Emma

    2018-01-01

    With the re-emergence of sodium ion batteries (NIBs), we discuss the reasons for the recent interests in this technology and discuss the synergies between lithium ion battery (LIB) and NIB technologies and the potential for NIB as a “drop-in” technology for LIB manufacturing. The electrochemical testing of sodium materials in sodium metal anode arrangements is reviewed. The performance, stability, and polarization of the sodium in these test cells lead to alternative testing in three-electrode and alternative anode cell configurations. NIB manufacturability is also discussed, together with the impact that the material stability has upon the electrodes and coating. Finally, full-cell NIB technologies are reviewed, and literature proof-of-concept cells give an idea of some of the key differences in the testing protocols of these batteries. For more commercially relevant formats, safety, passive voltage control through cell balancing and cell formation aspects are discussed. PMID:29910609

  18. 23Na-NMR-studies on the detection of the interaction of phospholipids with sodium ions

    International Nuclear Information System (INIS)

    Arnold, K.; Pausch, R.; Frenzel, J.; Winkler, E.

    1975-01-01

    The 23 Na-NMR-relaxation times have been measured in different sonicated phospholipid dispersions in dependence on the NaCl concentration. In an egg lecithin dispersion and a DPPC dispersion the relaxation rates are independent of the sodium concentration. In both systems there is no interaction between sodium ions and phospholipids. However, in a phosphatidylethanolamine dispersion a concentration dependence may be observed. Its interpretation is only possible for a stoichiometric ratio of 3:1 of the lecithin-ion-complex. The association constant is found to be k=65,0 l/Mol. For the case of an equimolar egg lecithin/phosphatidylethanolamine dispersion a stronger interaction is measured. The addition of CaCl 2 results in a complete inhibition of the binding of sodium ions at phosphatidylethanolamine

  19. Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications.

    Science.gov (United States)

    Yue, Yanfeng; Binder, Andrew J; Guo, Bingkun; Zhang, Zhiyong; Qiao, Zhen-An; Tian, Chengcheng; Dai, Sheng

    2014-03-17

    The synthesis of mesoporous Prussian blue analogues through a template-free methodology and the application of these mesoporous materials as high-performance cathode materials in sodium-ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium-ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g-1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low-cost alternative to hard or soft templating for the fabrication of mesoporous materials.

  20. Facile Determination of Sodium Ion and Osmolarity in Artificial Tears by Sequential DNAzymes.

    Science.gov (United States)

    Kim, Eun Hye; Lee, Eun-Song; Lee, Dong Yun; Kim, Young-Pil

    2017-12-07

    Despite high relevance of tear osmolarity and eye abnormality, numerous methods for detecting tear osmolarity rely upon expensive osmometers. We report a reliable method for simply determining sodium ion-based osmolarity in artificial tears using sequential DNAzymes. When sodium ion-specific DNAzyme and peroxidase-like DNAzyme were used as a sensing and detecting probe, respectively, the concentration of Na⁺ in artificial tears could be measured by absorbance or fluorescence intensity, which was highly correlated with osmolarity over the diagnostic range ( R ² > 0.98). Our approach is useful for studying eye diseases in relation to osmolarity.

  1. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries.

    Science.gov (United States)

    He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang

    2017-10-27

    Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.

  2. Sodium-ion transfer at the interface between ceramic and organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Sagane, Fumihiro; Abe, Takeshi; Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2010-11-01

    Sodium-ion transfer through the interface between ceramic and organic electrolytes was studied by AC impedance spectroscopy. Na{sub 3}Zr{sub 1.88}Y{sub 0.12}Si{sub 2}PO{sub 12} (NASICON) and Na-{beta}''-alumina were used as ceramic electrolytes, and propylene carbonate (PC) and dimethyl sulfoxide (DMSO) containing 0.05 mol dm{sup -3} NaCF{sub 3}SO{sub 3} were used as organic electrolytes. The semi-circle ascribed to interfacial charge transfer resistance (R{sub ct}) was observed. The activation energies for sodium-ion transfer at the interface between ceramic and organic electrolytes were evaluated by the temperature dependency of R{sub ct}. As a result, the activation energies depended on the ceramic electrolytes but not on the solvents. These results suggest that sodium-ion transfer from ceramic to organic electrolytes should be responsible for the activation energies, which is contrary to the case in a lithium-ion transfer system. Based on these results, the mechanism of interfacial sodium-ion transfer was discussed. (author)

  3. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  4. Layered SnS sodium ion battery anodes synthesized near room temperature

    KAUST Repository

    Xia, Chuan; Zhang, Fan; Liang, Hanfeng; Alshareef, Husam N.

    2017-01-01

    excellent performance as sodium ion battery anodes. Specifically, the SnS/C anodes delivered a reversible capacity as high as 792 mAh·g−1 after 100 cycles at a current density of 100 mA·g−1. They also had superior rate capability (431 mAh·g−1 at 3,000 mA·g−1

  5. Preparation by ion exchange and structural simulation of a new hydrogen phosphate of sodium zirconium

    International Nuclear Information System (INIS)

    Contreras R, A.; Fernandez V, S. M.; Ordonez R, E.; Perez A, M.

    2008-01-01

    It is described the method of synthesis of the τ-Zr P and the obtaining of its sodium form by ion exchange, the simulation of crystalline model and their patterns of X-ray diffraction and comparison of these with other compounds reported in the literature. (Author)

  6. NAA of ion exchanged sodium polyacrylate for monitoring air quality in the workplace

    International Nuclear Information System (INIS)

    Rigot, W.L.; Cutie, S.S.

    2000-01-01

    Sodium polyacrylate is a superabsorbent polymer (SAP) which is widely used in the manufacturing of disposable diapers. Workplace exposure to respirable dust produced from the handling of these polymers is becoming more of a concern as more data relating occupational exposures to health effects are becoming available. An approach that utilizes the fundamental ion exchange properties of the polymer combined with the sensitivity of instrumental neutron activation analysis has been developed which eliminates interferences from sodium species that are ubiquitous to manufacturing facilities. The technique involves exchanging the sodium that is associated with the polymer with europium and analyzing the exchanged polymer by neutron activation analysis. The technique is simple to run, provides excellent sensitivity and is specific to sodium polyacrylate. (author)

  7. Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury

    Science.gov (United States)

    Aizawa, S.; Delcourt, D.; Terada, N.

    2018-05-01

    We examine the particle transport via the Kelvin-Helmholtz instability by using simulation. The heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they ExB drift across large-scale rolled up vortices.

  8. Colorimetric detection and removal of radioactive Co ions using sodium alginate-based composite beads

    International Nuclear Information System (INIS)

    Kim, Daigeun; Jo, Ara; Yang, Hee-Man; Seo, Bum-Kyoung; Lee, Kune-Woo; Lee, Taek Seung

    2017-01-01

    Highlights: • Organic/inorganic hybridized alginate beads were newly synthesized via sol-gel chemistry. • Interaction between the azopyridine and metal ion is the main cause of Co ion detection. • The beads showed improved stability and least leakage of azopyridine during use. • Removal of Co ion was assessed by the ion-exchange of carboxylate groups in alginate. • The beads with dual functions of detection and removal of Co ion were successfully accomplished. - Abstract: We demonstrate a simple method for the visual determination and removal of Co ions using a bead-shaped, capturing probe based on hybridized sodium alginate. For Co ions, the designed protocol consisted of three main constituents: an azopyridine-based Co ion-probe for visual detection; sodium alginate as an adsorbent for the Co ion and a bead construct for removal and structure; silica as a linker for the probe and the alginate, leading to a robust structure. When the composite beads were exposed to Co ions, the yellow color of the beads turned to intensive violet and the color intensity was associated with the Co ion concentration. The color variation was quantified using red-green-blue (RGB) color values that were obtained with a scanner and evaluated with Photoshop. The technique achieved both visual recognition with obvious color change of the beads and efficient removal of the radioactive 60 Co ion. The sensing and removal of any radioactive isotope could be achieved with an appropriate sensing probe, to provide a simple and universal platform for remediation.

  9. Colorimetric detection and removal of radioactive Co ions using sodium alginate-based composite beads

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daigeun; Jo, Ara [Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung; Lee, Kune-Woo [Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Lee, Taek Seung, E-mail: tslee@cnu.ac.kr [Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-03-15

    Highlights: • Organic/inorganic hybridized alginate beads were newly synthesized via sol-gel chemistry. • Interaction between the azopyridine and metal ion is the main cause of Co ion detection. • The beads showed improved stability and least leakage of azopyridine during use. • Removal of Co ion was assessed by the ion-exchange of carboxylate groups in alginate. • The beads with dual functions of detection and removal of Co ion were successfully accomplished. - Abstract: We demonstrate a simple method for the visual determination and removal of Co ions using a bead-shaped, capturing probe based on hybridized sodium alginate. For Co ions, the designed protocol consisted of three main constituents: an azopyridine-based Co ion-probe for visual detection; sodium alginate as an adsorbent for the Co ion and a bead construct for removal and structure; silica as a linker for the probe and the alginate, leading to a robust structure. When the composite beads were exposed to Co ions, the yellow color of the beads turned to intensive violet and the color intensity was associated with the Co ion concentration. The color variation was quantified using red-green-blue (RGB) color values that were obtained with a scanner and evaluated with Photoshop. The technique achieved both visual recognition with obvious color change of the beads and efficient removal of the radioactive {sup 60}Co ion. The sensing and removal of any radioactive isotope could be achieved with an appropriate sensing probe, to provide a simple and universal platform for remediation.

  10. Potassium/sodium ion exchange of sodium aluminosilicate and soda-lime glasses with potassium nitrate melts

    International Nuclear Information System (INIS)

    Richter, E.

    1983-08-01

    The alkali self-diffusion coefficients, the concentration-dependent interdiffusion coefficients, and the actual equilibrium constants of the ion exchange process were determinated for model glasses of the Na 2 O-Al 2 O 3 -SiO 2 type and the Na 2 O-CaO-SiO 2 type by nuclear techniques. The measured self-diffusion data and interdiffusion coefficients were used to estimate the stress profiles initiated by the K/Na exchange below the transformation temperature in the surface region. The activation volume of the sodium and potassium ions for diffusion through the surface zone stressed by ion exchange was determined. The disturbing influence of small concentrations of determined divalent cations in KNO 3 (especially Ca 2+ ) was investigated and thermodynamically described. Possibilities were demonstrated to remove these disturbances by anionic admixtures to the KNO 3 melt. Conclusions were drawn for the technical process of the chemical strengthening of glass by K/Na ion exchange at lower temperatures. (author)

  11. Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury

    Science.gov (United States)

    Aizawa, Sae; Delcourt, Dominique; Terada, Naoki

    2018-01-01

    We investigate the transport of planetary ions in the magnetospheric flanks of Mercury. In situ measurements from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft show evidences of Kelvin-Helmholtz instability development in this region of space, due to the velocity shear between the downtail streaming flow of solar wind originating protons in the magnetosheath and the magnetospheric populations. Ions that originate from the planet exosphere and that gain access to this region of space may be transported across the magnetopause along meandering orbits. We examine this transport using single-particle trajectory calculations in model Magnetohydrodynamics simulations of the Kelvin-Helmholtz instability. We show that heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they E × B drift across large-scale rolled up vortices. This energization is controlled by the characteristics of the electric field burst encountered along the particle path, the net energy change realized corresponding to the maximum E × B drift energy. This nonadiabatic energization also is responsible for prominent scattering of the particles toward the direction perpendicular to the magnetic field.

  12. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    Science.gov (United States)

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-09

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    Science.gov (United States)

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.

  15. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  16. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.

    Science.gov (United States)

    Shen, Wei; Wang, Cong; Liu, Haimei; Yang, Wensheng

    2013-10-18

    A porous Na3 V2 (PO4 )3 cathode material coated uniformly with a layer of approximately 6 nm carbon has been synthesized by the sol-gel method combined with a freeze-drying process. The special porous morphology and structure significantly increases the specific surface area of the material, which greatly enlarges the contact area between the electrode and electrolyte, and consequently supplies more active sites for sodium ions. When employed as a cathode material of sodium-ion batteries, this porous Na3 V2 (PO4 )3 /C exhibits excellent rate performance and cycling stability; for instance, it shows quite a flat potential plateau at 3.4 V in the potential window of 2.7-4.0 V versus Na(+) /Na and delivers an initial capacity as high as 118.9 and 98.0 mA h g(-1) at current rates of 0.05 and 0.5 C, respectively, and after 50 cycles, a good capacity retention of 92.7 and 93.6 % are maintained. Moreover, even when the discharge current density is increased to 5 C (590 mA g(-1) ), an initial capacity of 97.6 mA h g(-1) can still be achieved, and an exciting capacity retention of 88.6 % is obtained after 100 cycles. The good cycle performance, excellent rate capability, and moreover, the low cost of Na3 V2 (PO4 )3 /C suggest that this material is a promising cathode for large-scale sodium-ion rechargeable batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lithium adduct as precursor ion for sensitive and rapid quantification of 20 (S)-protopanaxadiol in rat plasma by liquid chromatography/quadrupole linear ion trap mass spectrometry and application to rat pharmacokinetic study.

    Science.gov (United States)

    Bao, Yuanwu; Wang, Quanying; Tang, Pingming

    2013-03-01

    A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC-ESI-(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP-C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN-water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple-reaction-monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5-100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    Science.gov (United States)

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  19. Differential Fragmentation of Mobility-Selected Glycans via Ultraviolet Photodissociation and Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Morrison, Kelsey A.; Clowers, Brian H.

    2017-06-01

    The alternative dissociation pathways initiated by ultraviolet photodissociation (UVPD) compared with collision-induced dissociation (CID) may provide useful diagnostic fragments for biomolecule identification, including glycans. However, underivatized glycans do not commonly demonstrate strong UV absorbance, resulting in low fragmentation yields for UVPD spectra. In contrast to UVPD experiments that leverage covalent modification of glycans, we detail the capacity of metal adduction to yield comparatively rich UVPD fragmentation patterns and enhance separation factors for an isomeric glycan set in a drift tube ion mobility system. Ion mobility and UVPD-MS spectra for two N-acetyl glycan isomers were examined, each adducted with sodium or cobalt cations, with the latter providing fragment yield gains of an order of magnitude versus sodium adducts. Furthermore, our glycan analysis incorporated front-end ion mobility separation such that the structural glycan isomers could still be identified even as a mixture and not simply composite spectra of isomeric standards. Cobalt adduction proved influential in the glycan separation by yielding an isomer resolution of 0.78 when analyzed simultaneously versus no discernable separation obtained with the sodium adducts. It is the combined enhancement of both isomeric drift time separation and isomer distinction with improved UVPD fragment ion yields that further bolster multivalent metal adduction for advancing glycan IM-MS experiments. [Figure not available: see fulltext.

  20. Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System

    Directory of Open Access Journals (Sweden)

    Tuhina Tiwari

    2013-01-01

    Full Text Available The effect of different anions, namely, SCN−, I−, and ClO4−, on the electrical properties of starch-based polymer electrolytes has been studied. Anion size and conductivity are having an inverse trend indicating systems to be predominantly anionic conductor. Impact of anion size and multiplet forming tendency is reflected in number of charge carriers and mobility, respectively. Ion dynamics study reveals the presence of different mechanisms in different frequency ranges. Interestingly, superlinear power law (SLPL is found to be present at <5 MHz frequency, which is further confirmed by dielectric data.

  1. Synthesis, Structure, and Sodium Mobility of Sodium Vanadium Nitridophosphate: A Zero-Strain and Safe High Voltage Cathode Material for Sodium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Huang Zhang

    2017-06-01

    Full Text Available Herein, the nitridophosphate Na3V(PO33N is synthesized by solid state method. X-ray diffraction (XRD and Rietveld refinement confirm the cubic symmetry with P213 space group. The material exhibits very good thermal stability and high operating voltage of 4.0 V vs. Na/Na+ due to V3+/V4+ redox couple. In situ X-ray diffraction studies confirm the two-phase (de-sodiation process to occur with very low volume changes. The refinement of the sodium occupancies reveal the low accessibility of sodium cations in the Na2 and Na3 sites as the main origin for the lower experimental capacity (0.38 eq. Na+, 28 mAh g−1 versus the theoretical one (1.0 eq. Na+, 74 mAh g−1. These observations provide valuable information for the further optimization of this materials class in order to access their theoretical electrochemical performance as a potentially interesting zero-strain and safe high-voltage cathode material for sodium-ion batteries.

  2. Synthesis of layered sodium lanthanum selenide through ion exchange reactions

    International Nuclear Information System (INIS)

    Butts, Laura J.; Strickland, Nicholas; Martin, Benjamin R.

    2009-01-01

    Layered hexagonal KLaSe2 (α-NaFeO 2 -type) was synthesized using the reactive flux method and analyzed by powder XRD to determine its lattice constants (space group R-3m, a = 4.40508(5) A, c = 22.7838(5) A). NaLaSe 2 , which normally crystallizes as a disordered rock salt structure with mixed Na+/La + 3 sites, was synthesized through a solid state ion exchange reaction at 585 deg. C from a 1:3 molar ratio mixture of KLaSe 2 :NaI. The product of this reaction was hexagonally layered NaLaSe 2 (space group R-3m, a = 4.3497(3) A, c = 20.808(2) A) isostructural to KLaSe 2 . This product was analyzed by comparison with members of the set of solid solutions Na (1-x) K (x) LaSe 2 to confirm that the extent ion exchange in this reaction was complete. Cubic (disordered) NaLaSe 2 was also reacted with KI to yield the poorly crystalline hexagonally layered product with the approximate formula Na 0.79 K 0.21 LaSe 2

  3. Using quasi-elastic neutron diffraction to study positive electrode for lithium and sodium-ion batteries

    International Nuclear Information System (INIS)

    Pramudita, James C.; Sharma, Neeraj

    2015-01-01

    Sodium-ion batteries has recently been proposed as the alternative for lithium-ion batteries to be the low cost energy storage system. However, challenges still remains for the development of sodium-ion batteries. Optimization of electrode materials and electrolyte capable of insertion/extraction of sodium-ion in a safe and economic way under high current density is needed in order to produce commercially viable sodium-ion batteries. While possible positive electrode material is more prevalent than negative electrode material, many of these material still need further understanding. Quasi-elastic Neutron Scatteringis a technique that utilize the inelastic Neutron Scatteringthat can be used to study solid-state diffusion in materials. This technique can be used to study the diffusion of sodium-ion under electric field through the electrolyte and positive electrode materials in order to further understand the mechanism of sodium insertion/extraction in a working battery. This technique can also be used to study available positive electrode material for lithium-ion batteries to further understand the mechanism of lithium-ion diffusion in current working lithiumion batteries.

  4. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes.

    Science.gov (United States)

    Lacey, Steven D; Wan, Jiayu; von Wald Cresce, Arthur; Russell, Selena M; Dai, Jiaqi; Bao, Wenzhong; Xu, Kang; Hu, Liangbing

    2015-02-11

    A microscale battery comprised of mechanically exfoliated molybdenum disulfide (MoS2) flakes with copper connections and a sodium metal reference was created and investigated as an intercalation model using in situ atomic force microscopy in a dry room environment. While an ethylene carbonate-based electrolyte with a low vapor pressure allowed topographical observations in an open cell configuration, the planar microbattery was used to conduct in situ measurements to understand the structural changes and the concomitant solid electrolyte interphase (SEI) formation at the nanoscale. Topographical observations demonstrated permanent wrinkling behavior of MoS2 electrodes upon sodiation at 0.4 V. SEI formation occurred quickly on both flake edges and planes at voltages before sodium intercalation. Force spectroscopy measurements provided quantitative data on the SEI thickness for MoS2 electrodes in sodium-ion batteries for the first time.

  5. Cubic KTi2(PO4)3 as electrode materials for sodium-ion batteries.

    Science.gov (United States)

    Han, Jin; Xu, Maowen; Niu, Yubin; Jia, Min; Liu, Ting; Li, Chang Ming

    2016-12-01

    A novel cubic KTi2(PO4)3 is successfully synthesized via a facile hydrothermal method combined with a subsequent annealing treatment and further used as electrode material for sodium-ion batteries for the first time. For comparison, carbon-coated KTi2(PO4)3 obtained by a normal cane sugar-assisted method reveals superior electrochemical performances in sodium-ion battery. Besides of the high coulombic efficiency of nearly 100% after 100 cycles, a stable capacity of 112mAhg(-1) can be achieved at 0.5C after 100 cycles, and still maintains to 105mAhg(-1) after 500 cycles with capacity retention of approximately 90%. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.

    Science.gov (United States)

    Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng

    2018-04-03

    The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.

  7. Isotopic exchange rate of sodium ions between hydrous metal oxides and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi

    1991-01-01

    To elucidate the kinetics of ion-exchange reaction on hydrous metal oxide, the isotopic exchange rates of sodium ions between hydrous metal oxides such as hydrous tin (IV), niobium (V), zirconium (IV) and titanium (IV) oxides, and aqueous solutions were measured radiochemically and compared with each other. The rate of reaction cannot be understood by an unified view since the rate controlling step differs with the kind of exchangers. The rate constants relevant to each exchanger such as diffusion constants and their activation energies were also determined. (author)

  8. Regulation of the sodium-potassium pump in cultured rat skeletal myotubes by intracellular sodium ions

    International Nuclear Information System (INIS)

    Brodie, C.; Sampson, S.R.

    1989-01-01

    The properties of the Na-K pump and some of the factors controlling its amount and function were studied in rat myotubes in culture. The number of Na-K pump sites was quantified by measuring the amount of [ 3 H]ouabain bound to whole-cell preparations. Activity of the pump was determined by measurement of ouabain-sensitive 86 Rb-uptake and component of membrane potential. Chronic treatment of myotubes with tetrodotoxin (TTX), which lowers [Na]i, decreased the number of Na-K pumps, the ouabain-sensitive 86Rb uptake, and the size of the electrogenic pump component of Em. In contrast, chronic treatment with either ouabain or veratridine, which increases [Na+]i, resulted in an elevated level of Na-K pump sites. This effect was blocked by inhibitors of protein synthesis. Neither rates of degradation nor affinity of pump sites in cells treated with TTX, veratridine, or ouabain differred from those in control cells. The number and activity of Na-K pump sites were unaffected by chronic elevation in [Ca]i or chronic depolarization. We conclude that alterations in the level in intracellular Na ions play the major role in regulation of Na-K pump synthesis in cultured mammalian skeletal muscle

  9. Stabilized sulfur as cathodes for room temperature sodium-ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yunhua [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Zhu, Yujie [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Zheng, Shiyou [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yihang [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Luo, Chao [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Gaskell, Karen [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Eichhorn, Bryan [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wang, Chunsheng [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering

    2013-05-01

    Sodium-sulfur batteries, offering high capacity and low cost, are promising alternative to lithium-ion batteries for large-scale energy storage applications. The conventional sodium-sulfur batteries, operating at a high temperature of 300–350°C in a molten state, could lead to severe safety problems. However, the room temperature sodium-sulfur batteries using common organic liuid electrolytes still face a significant challenge due to the dissolution of intermediate sodium polysulfides. For this study, we developed room temperatue sodium-sulfur batteries using a unique porous carbon/sulfur (C/S) composite cathode, which was synthesized by infusing sulfur vapor into porous carbon sphere particles at a high temperatrure of 600°C. The porous C/S composites delivered a reversible capacity of ~860 mAh/g and retained 83% after 300 cycles. The Coulombic efficiency of as high as 97% was observed over 300 cycles. The superior electrochemical performance is attrbuted to the super sulfur stability as evidenced by its lower sensitivity to probe beam irradiation in TEM, XPS and Raman charaterization and high evaperation temperature in TGA. The results make it promising for large-scale grid energy storage and electric vehicles.

  10. Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Joanna Górka

    2016-12-01

    Full Text Available Sodium ion batteries (SIBs have attracted lots of attention over last few years due to the abundance and wide availability of sodium resources, making SIBs the most cost-effective alternative to the currently used lithium ion batteries (LIBs. Many efforts are underway to find effective anodes for SIBs since the commercial anode for LIBs, graphite, has shown very limited capacity for SIBs. Among many different types of carbons, hard carbons—especially these derived from biomass—hold a great deal of promise for SIB technology thanks to their constantly improving performance and low cost. The main scope of this mini-review is to present current progress in preparation of negative electrodes from biomass including aspects related to precursor types used and their impact on the final carbon characteristics (structure, texture and composition. Another aspect discussed is how certain macro- and microstructure characteristics of the materials translate to their performance as anode for Na-ion batteries. In the last part, current understanding of factors governing sodium insertion into hard carbons is summarized, specifically those that could help solve existing performance bottlenecks such as irreversible capacity, initial low Coulombic efficiency and poor rate performance.

  11. A model system using confocal fluorescence microscopy for examining real-time intracellular sodium ion regulation.

    Science.gov (United States)

    Lee, Jacqueline A; Collings, David A; Glover, Chris N

    2016-08-15

    The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid-base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na(+)]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na(+)]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye-ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na(+)]i, whereas no significant differences in branchial [Na(+)]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na(+)]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Determination of lutetium (III) hydrolysis constants in the middle of ion force 1M sodium chloride at 303 K

    International Nuclear Information System (INIS)

    Jimenez R, M.; Solache R, M.J.; Ramirez G, J.J.; Rojas H, A.

    1997-01-01

    With the purpose to complete information about the lutetium (III) hydrolysis constants here is used the potentiometric method to determine those in the middle of ion force 1M sodium chloride at 303 K. (Author)

  13. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  14. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    Science.gov (United States)

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  15. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

    Science.gov (United States)

    Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang

    2017-02-16

    Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g -1 , which is about three times of 372 mA h g -1 , the value expected for the LiC 6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

  16. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  17. SnSe2 Two Dimensional Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-05-30

    Sodium-ion batteries (SIBs) are considered as a promising alternative to lithium-ion batteries (LIBs) for large-scale renewable energy storage units due to the abundance of sodium resource and its low cost. However, the development of anode materials for SIBs to date has been mainly limited to some traditional anodes for LIBs, such as carbonaceous materials. SnSe2 is a member of two dimensional layered transition metal dichalcogenide (TMD) family, which has been predicted to have high theoretical capacity as anode material for sodium ion batteries (756 mAh g-1), thanks to its layered crystal structure. Yet, there have been no studies on using SnSe2 as Na ion battery anode. In this thesis, we developed a simple synthesis method to prepare pure SnSe2 nanosheets, employing N2 saturated NaHSe solution as a new selenium source. The SnSe2 2D sheets achieve theoretical capacity during the first cycle, and a stable and reversible specific capacity of 515 mAh g-1 at 0.1 A g-1 after 100 cycles, with excellent rate performance. Among all of the reported transition metal selenides, our SnSe2 sample has the highest reversible capacity and the best rate performances. A combination of ex-situ high resolution transmission electron microscopy (HRTEM) and X-ray diffraction was used to study the mechanism of sodiation and desodiation process in this SnSe2, and to understand the reason for the excellent results that we have obtained. The analysis indicate that a combination of conversion and alloying reactions take place with SnSe2 anodes during battery operation, which helps to explain the high capacity of SnSe2 anodes for SIBs compared to other binary selenides. Density functional theory was used to elucidate the volume changes taking place in this important 2D material.

  18. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    Science.gov (United States)

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-06-01

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. sodium

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les initiatives de réduction de la consommation de sel qui visent l'ensemble de la population et qui ciblent la teneur en sodium des aliments et sensibilisent les consommateurs sont susceptibles de réduire la consommation de sel dans toutes les couches de la population et d'améliorer la santé cardiovasculaire. Ce projet a ...

  20. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.

    Science.gov (United States)

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao; Hou, Singyuk; Chen, Long; Wang, Fei; Jiang, Jianjun; Chen, Zonghai; Ren, Yang; Amine, Khalil; Wang, Chunsheng

    2018-03-05

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAh g -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAh g -1 can be retained for 2000 cycles, demonstrating excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na + . The reversible redox chemistry between azo compound and Na ions offer opportunities for developing long-cycle-life and high-rate SSIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage

    Directory of Open Access Journals (Sweden)

    Wangjia Tang

    2018-01-01

    Full Text Available Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres arrays via chemical bath plus hydrothermal process. Impressively, carbon spheres with diameters of 150–250 nm are randomly interconnected with each other forming highly porous arrays. Positive advantages including large porosity, high surface and strong mechanical stability are combined in the carbon nanospheres arrays. The obtained carbon nanospheres arrays are tested as anode material for sodium ion batteries (SIBs and deliver a high reversible capacity of 102 mAh g−1 and keep a capacity retention of 95% after 100 cycles at a current density of 0.25 A g−1 and good rate performance (65 mAh g−1 at a high current density of 2 A g−1. The good electrochemical performance is attributed to the stable porous nanosphere structure with fast ion/electron transfer characteristics.

  2. Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions

    Science.gov (United States)

    Kołodyńska, D.; Gęca, M.; Skwarek, E.; Goncharuk, O.

    2018-04-01

    The novel organic-inorganic biohybrid composite adsorbent was synthesized based on nanosized silica-titania modified with alginate within the development of effective adsorbent for heavy metal ions. Effects of metal species Cu(II), Zn(II), Cd(II), and Pb(II); concentrations; pH; temperature; and adsorption onto titania-coated silica (ST20) initial or modified by sodium alginate (ST20-ALG) were studied. The equilibrium and kinetic data of metal ions adsorption were analyzed using Langmuir and Freundlich adsorption models and kinetic models: pseudo first order, pseudo second order, intraparticle kinetic model, and Elovich. The maximum sorption capacities observed were higher for the ST20-ALG composite compared to the initial ST20 oxide for all studied metal ions, namely their values for ST20-ALG were 22.44 mg g- 1 for Cu(II) adsorption, 19.95 mg g- 1 for Zn(II), 18.85 mg g- 1 for Cd(II), and 32.49 mg g- 1 for Pb(II). Structure and properties of initial silica-titania ST20 and modified by sodium alginate ST20-ALG adsorbents were analyzed using nitrogen adsorption/desorption isotherms, ATR-FTIR, SEM-EDS, and pHpzc techniques.

  3. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shen [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Xiao, Lifen [College of Chemistry, Central China Normal University, Wuhan 430079 China; Pacific Northwest National Laboratory, Richland WA 99352 USA; Sushko, Maria L. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Han, Kee Sung [Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Pacific Northwest National Laboratory, Richland WA 99352 USA; Yan, Mengyu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Liang, Xinmiao [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Mai, Liqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Feng, Jiwen [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Cao, Yuliang [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Ai, Xinping [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Yang, Hanxi [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Liu, Jun [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-12

    Hard carbon is one of the most promising anode materials for sodium-ion batteries, but the low coulombic efficiency is still a key barrier. In this paper we synthesized a series of nanostructured hard carbon materials with controlled architectures. Using a combination of in-situ XRD mapping, ex-situ NMR, EPR, electrochemical techniques and simulations, an “adsorption-intercalation” (A-I) mechanism is established for Na ion storage. During the initial stages of Na insertion, Na ions adsorb on the defect sites of hard carbon with a wide adsorption energy distribution, producing a sloping voltage profile. In the second stage, Na ions intercalate into graphitic layers with suitable spacing to form NaCx compounds similar to the Li ion intercalation process in graphite, producing a flat low voltage plateau. The cation intercalation with a flat voltage plateau should be enhanced and the sloping region should be avoided. Guided by this knowledge, non-porous hard carbon material has been developed which has achieved high reversible capacity and coulombic efficiency to fulfill practical application.

  4. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  5. In operando PXRD study P2-NaxTMO2 cycled in a sodium ion battery

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Shen, Yanbin; Christiansen, Troels Lindahl

    Sodium ion batteries (SIB) are being considered as a cheaper and more environmentally friendly alternative to lithium ion batteries (LIB). Application of SIB is especially important in large scale electricity storage from renewable energy sources [1]. A mayor hindrance of the development of SIB...... for practical applications is that so far there are no known electrode materials with sufficiently good rate and cycling capability. Studying structural changes of electrode materials while the battery is being charged and discharged is important to gain a deeper understanding of processes affecting...... the electrode materials. This understanding can be used to optimize battery performance and understand decay mechanisms, which in turn will facilitate the development of electrode materials fit for practical application in SIB. Our research group has developed an in operando battery cell capable of following...

  6. Lithium-sodium separation by ion-exchange. Particular study of a pulsed column

    International Nuclear Information System (INIS)

    Auvert, H.

    1966-02-01

    A study is made of the operational conditions and constraints in the case of a moving-bed ion-exchange column subjected to pulses. The example chosen to illustrate its application concerns the lithium-sodium separation in a hydroxide medium (LiOH, NaOH). In the first part, the physico-chemical characteristics of the exchange and the kinetic characteristics of the exchange-reaction are considered. In the second part, the operation of the pulsed column is studied. Using the results obtained in the first part, the conditions required for study state operation are determined. When this is obtained, it is possible to calculate the height equivalent of the theoretical plate (HETP) of the installation. A study is also made of 'sliding', a phenomenon peculiar to pulsed columns. The results obtained show that it is possible, using laboratory tests, to determine the characteristics and the operational condition of a moving-bed ion-exchange column. (author) [fr

  7. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame.

    Science.gov (United States)

    Mahnam, Karim; Raisi, Fatame

    2017-03-01

    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe 2+ , Ca 2+ , Cd 2+ , and Zn 2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  8. Structure and further fragmentation of significant [a3 + Na - H]+ ions from sodium-cationized peptides.

    Science.gov (United States)

    Wang, Huixin; Wang, Bing; Wei, Zhonglin; Zhang, Hao; Guo, Xinhua

    2015-01-01

    A good understanding of gas-phase fragmentation chemistry of peptides is important for accurate protein identification. Additional product ions obtained by sodiated peptides can provide useful sequence information supplementary to protonated peptides and improve protein identification. In this work, we first demonstrate that the sodiated a3 ions are abundant in the tandem mass spectra of sodium-cationized peptides although observations of a3 ions have rarely been reported in protonated peptides. Quantum chemical calculations combined with tandem mass spectrometry are used to investigate this phenomenon by using a model tetrapeptide GGAG. Our results reveal that the most stable [a3 + Na - H](+) ion is present as a bidentate linear structure in which the sodium cation coordinates to the two backbone carbonyl oxygen atoms. Due to structural inflexibility, further fragmentation of the [a3 + Na - H](+) ion needs to overcome several relatively high energetic barriers to form [b2 + Na - H](+) ion with a diketopiperazine structure. As a result, low abundance of [b2 + Na - H](+) ion is detected at relatively high collision energy. In addition, our computational data also indicate that the common oxazolone pathway to generate [b2 + Na - H](+) from the [a3 + Na - H](+) ion is unlikely. The present work provides a mechanistic insight into how a sodium ion affects the fragmentation behaviors of peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  9. EPR and optical absorption studies of Cr3+ ions in potassium sodium dl-tartrate tetrahydrate

    International Nuclear Information System (INIS)

    Kripal, Ram; Singh, Pragya; Shukla, Santwana

    2011-01-01

    EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: g x =1.9257±0.0002, g y =1.9720±0.0002, g z =2.0102±0.0002, |D|=313±2 (x10 -4 ) cm -1 and |E|=101±2 (x10 -4 ) cm -1 . From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (D q ) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. -- Research Highlights: → EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are done at 77 K. → The spin Hamiltonian and zero field parameters g, |D| and |E| are measured. From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. → The optical absorption at room temperature is also studied and the crystal field splitting parameter (D q ) as well as the Racah inter-electronic repulsion parameters (B and C) is evaluated. → The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.

  10. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries.

    Science.gov (United States)

    Liu, Yihang; Zhang, Anyi; Shen, Chenfei; Liu, Qingzhou; Cao, Xuan; Ma, Yuqiang; Chen, Liang; Lau, Christian; Chen, Tian-Chi; Wei, Fei; Zhou, Chongwu

    2017-06-27

    Sodium-ion batteries offer an attractive option for potential low cost and large scale energy storage due to the earth abundance of sodium. Red phosphorus is considered as a high capacity anode for sodium-ion batteries with a theoretical capacity of 2596 mAh/g. However, similar to silicon in lithium-ion batteries, several limitations, such as large volume expansion upon sodiation/desodiation and low electronic conductance, have severely limited the performance of red phosphorus anodes. In order to address the above challenges, we have developed a method to deposit red phosphorus nanodots densely and uniformly onto reduced graphene oxide sheets (P@RGO) to minimize the sodium ion diffusion length and the sodiation/desodiation stresses, and the RGO network also serves as electron pathway and creates free space to accommodate the volume variation of phosphorus particles. The resulted P@RGO flexible anode achieved 1165.4, 510.6, and 135.3 mAh/g specific charge capacity at 159.4, 31878.9, and 47818.3 mA/g charge/discharge current density in rate capability test, and a 914 mAh/g capacity after 300 deep cycles in cycling stability test at 1593.9 mA/g current density, which marks a significant performance improvement for red phosphorus anodes for sodium-ion chemistry and flexible power sources for wearable electronics.

  11. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, A.L.C.S. do; Caires, F.J., E-mail: caires.flavio@yahoo.com.br; Gomes, D.J.C.; Gigante, A.C.; Ionashiro, M.

    2014-01-10

    Graphical abstract: - Highlights: • The transition metal ion nicotinates were synthesized. • The TG–DTA curves provided previously unreported information about thermal behaviour. • The gaseous products released were detected by TG–DSC coupled to FTIR. - Abstract: Solid-state M(L){sub 2}·nH{sub 2}O compounds, where M stands for bivalent transition metals (Mn, Fe, Co, Ni, Cu and Zn), L is nicotinate and n = 0–4.5, have been synthesized. Characterization and thermal behaviour of these compounds were investigated employing elemental analysis based on the mass losses observed in the TG–DTA curves, complexometry, X-ray diffractometry, infrared spectroscopy (FTIR), simultaneous thermogravimetric and differential thermal analysis (TG–DTA) and TG–DSC coupled to FTIR. The thermal behaviour of nicotinic acid and its sodium salt was also investigated. For the hydrated transition metal compounds, the dehydration and thermal decomposition of the anhydrous compounds occur in a single step. For the sodium nicotinate, the final residue up to 765 °C is sodium carbonate and for the transition metal nicotinates, the final residues are Mn{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, NiO, CuO and ZnO. The results also provided information concerning the thermal stability, thermal decomposition and identification of the gaseous products evolved during the thermal decomposition of the compounds.

  12. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions

    International Nuclear Information System (INIS)

    Nascimento, A.L.C.S. do; Caires, F.J.; Gomes, D.J.C.; Gigante, A.C.; Ionashiro, M.

    2014-01-01

    Graphical abstract: - Highlights: • The transition metal ion nicotinates were synthesized. • The TG–DTA curves provided previously unreported information about thermal behaviour. • The gaseous products released were detected by TG–DSC coupled to FTIR. - Abstract: Solid-state M(L) 2 ·nH 2 O compounds, where M stands for bivalent transition metals (Mn, Fe, Co, Ni, Cu and Zn), L is nicotinate and n = 0–4.5, have been synthesized. Characterization and thermal behaviour of these compounds were investigated employing elemental analysis based on the mass losses observed in the TG–DTA curves, complexometry, X-ray diffractometry, infrared spectroscopy (FTIR), simultaneous thermogravimetric and differential thermal analysis (TG–DTA) and TG–DSC coupled to FTIR. The thermal behaviour of nicotinic acid and its sodium salt was also investigated. For the hydrated transition metal compounds, the dehydration and thermal decomposition of the anhydrous compounds occur in a single step. For the sodium nicotinate, the final residue up to 765 °C is sodium carbonate and for the transition metal nicotinates, the final residues are Mn 3 O 4 , Fe 2 O 3 , Co 3 O 4 , NiO, CuO and ZnO. The results also provided information concerning the thermal stability, thermal decomposition and identification of the gaseous products evolved during the thermal decomposition of the compounds

  13. Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms

    Science.gov (United States)

    Cho, Se Youn; Yoon, Hyeon Ji; Kim, Na Rae; Yun, Young Soo; Jin, Hyoung-Joon

    2016-10-01

    Nanostructured carbon-based materials fabricated via simple methods from renewable bio-resources have great potential in rechargeable energy storage systems. In this study, nanoporous pyroproteins containing a large amount of redox-active heteroatoms (H-NPs) were fabricated from silk fibroin by an in situ carbonization/activation method. The H-NPs have a large surface area of ∼3050 m2 g-1, which is mainly comprised of nanometer-scale pores. Also, these H-NPs have oxygen and nitrogen heteroatoms of 17.4 wt% and 2.9 wt%, respectively. Synergistic sodium ion storage behaviors originate from electrochemical double layer capacitance and pseudocapacitance, leading to very high electrochemical performances of H-NPs in aqueous and non-aqueous electrolyte systems. Sodium-ion supercapacitors (NISs) based on commercial graphite//H-NPs show a high specific power of ∼1900 W kg-1 at ∼77 Wh kg-1. Also, NISs based on commercial hard carbon//H-NPs exhibit a high specific energy of ∼217 Wh kg-1 at ∼42 W kg-1. In addition, outstanding cycling performances over 30,000 cycles are achieved for symmetric NISs.

  14. Electrochemical Performance of a V2O5 Cathode for a Sodium Ion Battery

    Science.gov (United States)

    Van Nghia, Nguyen; Long, Pham Duy; Tan, Ta Anh; Jafian, Samuel; Hung, I.-Ming

    2017-06-01

    In this paper, layered vanadium pentoxide (V2O5) is employed as a cathode material for a sodium ion battery. The V2O5 particle sizes range from 200 nm to 500 nm and the shapes of the aggregated V2O5 particles are non-homogeneous and irregular. The material exhibits a first discharge capacity of approximately 208.1 mAh g-1. The structure of V2O5 changes to a NaxV2O5 structure after Na+ insertion at the first discharge; the structure of NaxV2O5 remains stable␣during cycling. After 40 cycles, the discharge capacity retains 61.2% of the capacity of the second cycle. The capacity of V2O5 at a high charge/discharge current rate of 1.0 C is 49.1% of capacity at 0.1 C. Furthermore, the capacity returns to the initial value as the discharge rate returns to 0.1 C. The results of electrochemical performance tests indicate that V2O5 is a potential cathode material for sodium ion batteries.

  15. Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery

    Science.gov (United States)

    Law, Markas; Ramar, Vishwanathan; Balaya, Palani

    2017-08-01

    Here we report a polyanion-based cathode material for sodium-ion batteries, Na2MnSiO4, registering impressive sodium storage performances with discharge capacity of 210 mAh g-1 at an average voltage of 3 V at 0.1 C, along with excellent long-term cycling stability (500 cycles at 1 C). Insertion/extraction of ∼1.5 mol of sodium ion per formula unit of the silicate-based compound is reported and the utilisation of Mn2+ ⇋ Mn4+ redox couple is also demonstrated by ex-situ XPS. Besides, this study involves a systematic investigation of influence of the electrolyte additive (with different content) on the sodium storage performance of Na2MnSiO4. The electrolyte additive forms an optimum protective passivation film on the electrode surface, successfully reducing manganese dissolution.

  16. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.

    Science.gov (United States)

    Doeff, Marca M; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C; Conry, Thomas

    2013-11-11

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.

  17. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    Science.gov (United States)

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  18. Synthesis and investigation of novel cathode materials for sodium ion batteries

    Science.gov (United States)

    Sawicki, Monica

    Environmental pollution and eventual depletion of fossil fuels and lithium has increased the need for research towards alternative electrical energy storage systems. In this context, research in sodium ion batteries (NIBs) has become more prevalent since the price in lithium has increased due to its demand and reserve location. Sodium is an abundant resource that is low cost, and safe; plus its chemical properties are similar to that of Li which makes the transition into using Na chemistry for ion battery systems feasible. In this study, we report the effects of processing conditions on the electrochemical properties of Na-ion batteries made of the NaCrO2 cathode. NaCrO2 is synthesized via solid state reactions. The as-synthesized powder is then subjected to high-energy ball milling under different conditions which reduces particle size drastically and causes significant degradation of the specific capacity for NaCrO2. X-ray diffraction reveals that lattice distortion has taken place during high-energy ball milling and in turn affects the electrochemical performance of the cathode material. This study shows that a balance between reducing particle size and maintaining the layered structure is essential to obtain high specific capacity for the NaCrO2 cathode. In light of the requirements for grid scale energy storage: ultra-long cycle life (> 20,000 cycles and calendar life of 15 to 20 years), high round trip efficiency (> 90%), low cost, sufficient power capability, and safety; the need for a suitable cathode materials with excellent capacity retention such as Na2MnFe(CN)6 and K2MnFe(CN)6 will be investigated. Prussian blue (A[FeIIIFeII (CN)6]•xH2O, A=Na+ or K+ ) and its analogues have been investigated as an alkali ion host for use as a cathode material. Their structure (FCC) provides large ionic channels along the direction enabling facile insertion and extraction of alkali ions. This material is also capable of more than one Na ion insertion per unit formula

  19. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    International Nuclear Information System (INIS)

    Moyer, Bruce A.; Marchand, Alan P.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Haverlock, Tamara J.

    2004-01-01

    This research was intended to provide the scientific foundation upon which the feasibility of liquid-liquid extraction chemistry for bulk reduction of the volume of high-activity tank waste can be evaluated. Primary focus has been on sodium hydroxide separation, with potential Hanford application. Value in sodium hydroxide separation can potentially be found in alternative flowsheets for treatment and disposal of low-activity salt waste. Additional value can be expected in recycle of sodium hydroxide for use in waste retrieval and sludge washing, whereupon additions of fresh sodium hydroxide to the waste can be avoided. Potential savings are large both because of the huge cost of vitrification of the low-activity waste stream and because volume reduction of high-activity wastes could obviate construction of costly new tanks. Toward these ends, the conceptual development begun in the original proposal was extended with the formulation of eight fundamental approaches that could be undertaken for extraction of sodium hydroxide

  20. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    Science.gov (United States)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  1. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon

    International Nuclear Information System (INIS)

    Kuratani, Kentaro; Yao, Masaru; Senoh, Hiroshi; Takeichi, Nobuhiko; Sakai, Tetsuo; Kiyobayashi, Tetsu

    2012-01-01

    We assembled a sodium-ion capacitor (Na-IC) by combining sodium pre-doped hard carbon (HC) as the negative- and activated carbon (AC) as the positive-electrode. The electrochemical properties were compared with two lithium-ion capacitors (Li-ICs) in which the negative electrodes were prepared with Li pre-doped HC and mesocarbon microbeads (MCMB). The positive and negative electrodes were prepared using the established doctor blade method. The negative electrodes were galvanostatically pre-doped with Na or Li to 80% of the full capacity of carbons. The potential of the negative electrodes after pre-doping was around 0.0 V vs. Na/Na + or Li/Li + , which resulted in the higher output potential difference of the Na-IC and Li-ICs than that of the conventional electrochemical double-layer capacitors (EDLCs) because AC positive electrode works in the same principle both in the ion capacitors and in the EDLC. The state-of-charge of the negative electrode varied 80 ± 10% during the electrochemical charging and discharging. The capacity of the cell was evaluated using galvanostatic charge–discharge measurement. At the discharge current density of 10 mA cm −2 , the Na-IC maintained 70% of the capacity that obtained at the current density of 0.5 mA cm −2 , which was comparable to the Li-ICs. At 50 mA cm −2 , the capacities of the Li-IC(MCMB) and the Na-IC dropped to 20% whereas the Li-IC(HC) retained 30% of the capacity observed at 0.5 mA cm −2 . The capacities of the Na-IC and Li-ICs decreased by 9% and 3%, respectively, after 1000 cycles of charging and discharging.

  2. Synthesis and characterizaton of inorganic materials for sodium-ion batteries

    Science.gov (United States)

    Shanmugam, Rengarajan

    Development of low-cost energy storage devices is critical for wide-scale implementation of intermittent renewable energy technologies and improving the electricity grid. Commercial devices remain prohibitively expensive or lack the performance specifications for a wider market reach. Na-ion batteries would perfectly suited for these large-scale applications as the raw materials (such as soda ash, salt, etc.) are plentiful, inexpensive and geographically unconstrained. However, extensive materials research on insertion electrodes is required for better understanding of the electrochemical and structural properties and engineering high performance Na-ion batteries. This thesis research involves exploratory study on new insertion materials with various crystallographic structure-types and extensive characterization of promising new inorganic compositions. Tunnel-type materials, sodium nickel phosphate-Na4Ni7(PO4)6, and sodium cobalt titanate- Na0.8Co0.4Ti1.6O4, were investigated to capitalize on the intrinsic structural stability offered by framework materials. Sol-gel and solid-state reaction synthetic techniques were employed for inorganic powder synthesis. Galvanostatic and potentiostatic testing confirm reversible sodium insertion/de-insertion reactions albeit with inadequate electrochemical characteristics (high voltage hysteresis> 1V). Subsequent efforts involved investigating layer-structured materials supporting fast ionic transport for better electrochemical performance. P2-sodium nickel titanate, Na2/3[Ni1/3Ti2/3]O2 (P2NT), with prismatic sodium co-ordination, was synthesized by solid-state technique. The 'bifunctional' oxide contains Ni2+/4+ and Ti4+/3+ redox couples with redox potentials of 3.6 V, 0.7 V vs. Na/Na+, respectively. This bifunctional approach would simplify electrode processing and provide cost reduction opportunities in battery manufacturing. The structural changes monitored using ex-situ XRD demonstrate a favorably broad solid

  3. Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Jin, Juan; Shi, Zhi-qiang; Wang, Cheng-yang

    2014-01-01

    Highlights: • Electrospun carbon nanofiber webs were prepared by pyrolysis of polyacrylonitrile. • The webs as binder-free and current collector-free electrodes for SIBs and LIBs. • Different layer spacing and pore size for Li and Na lead different electrochemical behavior. • Electrochemical performances of the electrodes were high. - Abstract: A series of hard carbon nanofiber-based electrodes derived from electrospun polyacrylonitrile (PAN) nanofibers (PAN-CNFs) have been fabricated by stabilization in air at about 280 °C and then carbonization in N 2 at heat treatment temperatures (HTT) between 800 and 1500 °C. The electrochemical performances of the binder-free, current collector-free carbon nanofiber-based anodes in lithium-ion batteries and sodium-ion batteries are systematically investigated and compared. We demonstrate the presence of similar alkali metal insertion mechanisms in both cases, but just the differences of the layer spacing and pore size available for lithium and sodium ion lead the discharge capacity delivered at sloping region and plateau region to vary from the kinds of alkali elements. Although the anodes in sodium-ion batteries show poorer rate capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 275 mAh g −1 and similar cycling stability due to the conductive 3-D network, weakly ordered turbostratic structure and a large interlayer spacing between graphene sheets. The feature of high capacity and stable cycling performance makes PAN-CNFs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries

  4. Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO2-Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors.

    Science.gov (United States)

    Le, Zaiyuan; Liu, Fang; Nie, Ping; Li, Xinru; Liu, Xiaoyan; Bian, Zhenfeng; Chen, Gen; Wu, Hao Bin; Lu, Yunfeng

    2017-03-28

    Sodium-ion capacitors can potentially combine the virtues of high power capability of conventional electrochemical capacitors and high energy density of batteries. However, the lack of high-performance electrode materials has been the major challenge of sodium-based energy storage devices. In this work, we report a microwave-assisted synthesis of single-crystal-like anatase TiO 2 mesocages anchored on graphene as a sodium storage material. The architecture of the nanocomposite results in pseudocapacitive charge storage behavior with fast kinetics, high reversibility, and negligible degradation to the micro/nanostructure. The nanocomposite delivers a high capacity of 268 mAh g -1 at 0.2 C, which remains 126 mAh g -1 at 10 C for over 18 000 cycles. Coupling with a carbon-based cathode, a full cell of sodium-ion capacitor successfully demonstrates a high energy density of 64.2 Wh kg -1 at 56.3 W kg -1 and 25.8 Wh kg -1 at 1357 W kg -1 , as well as an ultralong lifespan of 10 000 cycles with over 90% of capacity retention.

  5. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    Science.gov (United States)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  6. Fragmentation patterns involving ammonium adduct fragment ions: A comparison of the determination of metaldehyde in human blood by HPLC-QqQ-MS/MS and UHPLC-Q-TOF-MS.

    Science.gov (United States)

    Szpot, Paweł; Buszewicz, Grzegorz; Jurek, Tomasz; Teresiński, Grzegorz

    2018-05-15

    This paper presents a rapid, sensitive and precise method for the determination of metaldehyde in human blood, using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Separation was performed with a Poroshell 120 EC-C18 column; 2.7 μm atrazine‑d5 (IS) and 200 mg NaCl were added to the blood sample. Proteins in human blood were precipitated using acetonitrile; the supernatant was then analyzed with the UHPLC-Q-TOF-MS or HPLC-QqQ-MS/MS system. The results of selectivity, linearity, accuracy, precision, limits of quantification, recovery, and matrix effects were sufficient to enable the measurement of metaldehyde in human blood samples. In addition, we proposed a fragmentation pathway involving ammonium adduct fragment ions for metaldehyde. Copyright © 2018. Published by Elsevier B.V.

  7. NITRO MUSK ADDUCTS OF RAINBOW TROUT ...

    Science.gov (United States)

    Rainbow trout and other fish species can serve as 'sentinel' species for the assessment of ecological status and the presence of certain environmental contaminants. As such they act as bioindicators of exposure. Here we present seminal data regarding dose-response and toxicokinetics of trout hemoglobin adduct formation from exposure to nitro musks that are frequently used as fragrance ingredients in formulations of personal care products. Hemoglobin adducts serve as biomarkers of exposure of the sentinel species as we have shown in previous studies of hemoglobin adducts formed in trout and environmental carp exposed to musk xylene (MX) and musk ketone (MK). Gas chromatography-electron capture negative ion chemical ionization-mass spectrometry (GC-NICI-MS) employing selected ion monitoring is used to measure 4-amino-MX (4-AMX), 2-amino-MX (2-AMX), and 2-amino-MK (2-AMK) released by alkaline hydrolysis from the sulfinamide adducts of hemoglobin. Dose-response and toxicokinetics were investigated using this sensitive method for analysis of these metabolites. In the dose-response investigation, the concentrations of 4-AMX and 2-2AMX are observed to pass through a maximum at 0.10 mg/g. In the case of 2-AMK, the adduct concentration is almost the same at dosages in the range of 0.030 to 0.10 mg/g. For toxicokinetics, the concentration of the metabolites in the Hb reaches a maximum in the 3-day sample after administration of MX or MK. Further elimination of the metabo

  8. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries

    Science.gov (United States)

    Xu, Shu-Yin; Wu, Xiao-Yan; Li, Yun-Ming; Hu, Yong-Sheng; Chen, Li-Quan

    2014-11-01

    Layered oxides of P2-type Na0.68Cu0.34Mn0.66O2, P2-type Na0.68Cu0.34Mn0.50Ti0.16O2, and O'3-type NaCu0.67Sb0.33O2 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The first two materials can deliver a capacity of around 70 mAh/g. The Cu2+ is oxidized to Cu3+ during charging, and the Cu3+ goes back to Cu2+ upon discharging. This is the first demonstration of the highly reversible change of the redox couple of Cu2+/Cu3+ with high storage potential in secondary batteries.

  9. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    Science.gov (United States)

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  10. Modeling strontium-cesium-calcium-magnesium-sodium ion exchange equilibria on chabazite with the Wilson equation

    International Nuclear Information System (INIS)

    Perona, J.J.

    1992-01-01

    Chabazite zeolites are used at ORNL for decontamination of wastewaters containing 90 Sr and 137 Cs. Treatability studies have shown that chabazite can remove trace amounts of these nuclides from wastewaters containing much higher concentrations of calcium and magnesium. The design of ion exchange columns for multicomponent systems requires a method for predicting multicomponent equilibria from binary or ternary experiments, since the number of experiments required for an empirical equilibrium model is generally not feasible. Binary interaction parameters for the Wilson equation were used to predict solid-phase activity coefficients for the five-component system, and the sum of squares of deviations between experimental and predicted solution concentrations for the data points available was calculated. The average deviation per data point for the five-component system was about the same as for the calcium-magnesium-sodium ternary system

  11. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries

    Science.gov (United States)

    Colò, Francesca; Bella, Federico; Nair, Jijeesh R.; Gerbaldi, Claudio

    2017-10-01

    In this work we present a very simple preparation procedure of a poly(ethylene oxide) (PEO)-based crosslinked polymer electrolyte (XPE) for application in sodium-ion batteries (NIBs). The polymer electrolyte, containing NaClO4 as Na+ source, is prepared by rapid, energy saving, solvent-free photopolymerization technique, in a single step. Thermal, mechanical, morphological and electrochemical properties of the resulting XPE are thoroughly investigated. The highly ionic conducting (>1 mS cm-1 at 25 °C) polymer electrolyte is used in a lab-scale sodium cell with nanostructured TiO2 working electrode. The obtained results in terms of ambient temperature cycling behaviour (stable specific capacity of about 250 mAh g-1 at 0.1 mA cm-2 and overall remarkable stability, for a quasi-solid state Na polymer cell, upon very long term cycling exceeding 1000 reversible cycles at 0.5 mA cm-2 corresponding to > 5000 h of continuous operation) demonstrate the promising prospects of this novel XPE to be implemented in the next-generation NIBs conceived for large-scale energy storage systems, such as those connected to photovoltaic and wind factories.

  12. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  13. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite.

    Science.gov (United States)

    Vieceli, Nathália; Nogueira, Carlos A; Guimarães, Carlos; Pereira, Manuel F C; Durão, Fernando O; Margarido, Fernanda

    2018-01-01

    The hydrometallurgical extraction of metals from spent lithium-ion batteries (LIBs) was investigated. LIBs were first dismantled and a fraction rich in the active material was obtained by physical separation, containing 95% of the initial electrode, 2% of the initial steel and 22% of plastic materials. Several reducers were tested to improve metals dissolution in the leaching step using sulphuric acid. Sodium metabisulphite led to the best results and was studied in more detail. The best concentration of Na 2 S 2 O 5 was 0.1 M. The metals dissolution increased with acid concentration, however, concentrations higher than 1.25 M are unnecessary. Best results were reached using a stirring speed of 400 min -1 . The metals leaching efficiency from the active material (Li, Mn, Ni, Co) increased with the temperature and was above 80% for temperatures higher than 60 °C. The dissolution of metals also rose with the increase in the liquid/solid ratio (L/S), however, extractions above 85% can be reached at L/S as lower as 4.5 L/kg, which is favourable for further purification and recovery operations. About 90% of metals extraction can be achieved after only 0.5 h of leaching. Sodium metabisulphite can be an alternative reducer to increase the leaching of Li, Mn, Co, and Ni from spent LIBs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DNA adducts of 2,3-epoxy-4-hydroxynonanal: detection of 7-(1', 2'-dihydroxyheptyl)-3H-imidazo[2,1-i]purine and 1,N6-ethenoadenine by gas chromatography/negative ion chemical ionization/mass spectrometry.

    Science.gov (United States)

    Chen, H J; Zhang, L; Cox, J; Cunningham, J A; Chung, F L

    1998-12-01

    2,3-Epoxy-4-hydroxynonanal (EH) is a bifunctional aldehyde formed by epoxidation of trans-4-hydroxy-2-nonenal, a peroxidation product of omega-6 polyunsaturated fatty acids. EH is mutagenic and tumorigenic and capable of modifying DNA bases forming etheno adducts in vitro. Recent studies showed that etheno adducts are present in tissue DNA of humans and untreated rodents, suggesting a potential endogenous role of EH in their formation. A sensitive assay is needed so we can determine whether EH is involved in etheno adduct formation in vivo and study the biological significance of the etheno adducts in DNA. In this study, we developed a gas chromatography/negative ion chemical ionization/mass spectrometry assay for the analysis of 1, N6-ethenoadenine (epsilonAde) and 7-(1', 2'-dihydroxyheptyl)-3H-imidazo[2,1-i]purine (DHH-epsilonAde) in DNA; both are products from the reaction of adenine with EH. The assay entails the following sequence of steps: (1) addition of [15N5]epsilonAde and [15N5]DHH-epsilonAde to DNA as internal standards, (2) acid hydrolysis of DNA, (3) adduct enrichment by C18 solid phase extraction (SPE), (4) derivatization by pentafluorobenzylation (PFB), (5) separation of PFB-epsilonAde and PFB-DHH-epsilonAde on a Si SPE column, (6) acetonide (ACT) formation of PFB-DHH-epsilonAde, and (7) GC/MS analysis with selective ion monitoring (SIM). The limit of detection by on-column injection for PFB-epsilonAde monitoring of the (M - PFB)- ion at m/z 158 was 30 amol and for ACT-PFB-DHH-epsilonAde monitoring of the (M - PFB)- ion at m/z 328 was 0.4 fmol; the detection limits for the entire assay were 6.3 fmol for epsilonAde and 36 fmol for DHH-epsilonAde. In calf thymus DNA modified with EH at 37 degreesC for 50 h, both epsilonAde and DHH-epsilonAde were detected at high levels by this method, 4.5 +/- 0.7 and 90.8 +/- 8.7 adducts/10(3) adenine, respectively. These levels were also verified by HPLC fluorescence analysis, indicating that EH extensively reacts

  15. An Empirical Model for Build-Up of Sodium and Calcium Ions in Small Scale Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Subriyer Nasir

    2011-05-01

    Full Text Available A simple models for predicting build-up of solute on membrane surface were formulated in this paper. The experiments were conducted with secondary effluent, groundwater and simulated feed water in small-scale of RO with capacity of 2000 L/d. Feed water used in the experiments contained varying concentrations of sodium, calcium, combined sodium and calcium. In order to study the effect of sodium and calcium ions on membrane performance, experiments with ground water and secondary effluent wastewater were also performed. Build-up of salts on the membrane surface was calculated by measuring concentrations of sodium and calcium ions in feed water permeate and reject streams using Atomic Absorption Spectrophotometer (AAS. Multiple linear regression of natural logarithmic transformation was used to develop the model based on four main parameters that affect the build-up of solute in a small scale of RO namely applied pressure, permeate flux, membrane resistance, and feed concentration. Experimental data obtained in a small scale RO unit were used to develop the empirical model. The predicted values of theoretical build-up of sodium and calcium on membrane surface were found in agreement with experimental data. The deviation in the prediction of build-up of sodium and calcium were found to be 1.4 to 10.47 % and 1.12 to 4.46%, respectively.

  16. Cr{sub 2}O{sub 5} as new cathode for rechargeable sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu-Yong; Chien, Po-Hsiu; Rose, Alyssa M.; Zheng, Jin [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Hung, Ivan; Gan, Zhehong [Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States); Hu, Yan-Yan, E-mail: hu@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States)

    2016-10-15

    Chromium oxide, Cr{sub 2}O{sub 5}, was synthesized by pyrolyzing CrO{sub 3} at 350 °C and employed as a new cathode in rechargeable sodium ion batteries. Cr{sub 2}O{sub 5}/Na rechargeable batteries delivered high specific capacities up to 310 mAh/g at a current density of C/16 (or 20 mA/g). High-resolution solid-state {sup 23}Na NMR both qualitatively and quantitatively revealed the reversible intercalation of Na ions into the bulk electrode and participation of Na ions in the formation of the solid-electrolyte interphase largely at low potentials. Amorphization of the electrode structure occurred during the first discharge revealed by both NMR and X-ray diffraction data. CrO{sub 3}-catalyzed electrolyte degradation and loss in electronic conductivity led to gradual capacity fading. The specific capacity stabilized at >120 mAh/g after 50 charge-discharge cycles. Further improvement in electrochemical performance is possible via electrode surface modification, polymer binder incorporation, or designs of new morphologies. - Graphical abstract: Electrochemical profile of a Cr{sub 2}O{sub 5}/Na battery cell and high-resolution solid-state {sup 23}Na MAS NMR spectrum of a Cr{sub 2}O{sub 5} electrode discharged to 2 V. - Highlights: • Cr{sub 2}O{sub 5} was synthesized and used as a new cathode in rechargeable Na ion batteries. • A high capacity of 310 mAh/g and an energy density of 564 Wh/kg were achieved. • High-resolution solid-state {sup 23}Na NMR was employed to follow the reaction mechanisms.

  17. DNA adducts as molecular dosimeters

    International Nuclear Information System (INIS)

    Lucier, G.W.

    1990-01-01

    There is compelling evidence that DNA adducts play an important role in the actions of many pulmonary carcinogens. During the last ten years sensitive methods (antibodies and 32 P-postlabeling) have been developed that permit detection of DNA adducts in tissues of animals or humans exposed to low levels of some genotoxic carcinogens. This capability has led to approaches designed to more reliably estimate the shape of the dose-response curve in the low dose region for a few carcinogens. Moreover, dosimetry comparisions can, in some cases, be made between animals and humans which help in judging the adequacy of animal models for human risk assessments. There are several points that need to be considered in the evaluation of DNA adducts as a molecular dosimeter. For example, DNA adduct formation is only one of many events that are needed for tumor development and some potent carcinogens do not form DNA adducts; i.e., TCDD. Other issues that need to be considered are DNA adduct heterogeneity, DNA repair, relationship of DNA adducts to somatic mutation and cell specificity in DNA adduct formation and persistence. Molecular epidemiology studies often require quantitation of adducts in cells such as lymphocytes which may or may not be reliable surrogates for adduct concentrations in target issues. In summary, accurate quantitation of low levels of DNA adducts may provide data useful in species to species extrapolation of risk including the development of more meaningful human monitoring programs

  18. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming; Gong, Zhengliang; McDonald, Matthew J.; Zheng, Shiyao; Fu, Riqiang; Chen, Zonghai; Amine, Khalil; Yang, Yong

    2016-08-31

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ Xray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SSNMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni4+/Ni3+/ Ni2+ redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.

  19. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Qiang; Zhang, Zhenghao; Yin, Shengyu; Guo, Zaiping; Wang, Shiquan; Feng, Chuanqi

    2016-01-01

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg −1 after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li + ) window at current density of 100 mAg −1 , respectively, which are much higher than that of graphite (375 mAhg −1 ) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg −1 with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  20. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qiang; Zhang, Zhenghao [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Yin, Shengyu [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Guo, Zaiping [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522 (Australia); Wang, Shiquan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2016-08-30

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg{sup −1} after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li{sup +}) window at current density of 100 mAg{sup −1}, respectively, which are much higher than that of graphite (375 mAhg{sup −1}) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg{sup −1} with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  1. Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage

    DEFF Research Database (Denmark)

    Huang, Wei; Sun, Hongyu; Shangguan, Huihui

    2018-01-01

    Three-dimensional (3D) carbon-wrapped iron sulfide interlocked graphene (Fe7S8@C-G) composites for high-performance sodium-ion storage are designed and produced through electrostatic interactions and subsequent sulfurization. The iron-based metal–organic frameworks (MOFs, MIL-88-Fe) interact with...

  2. Associative Ionization of Excited Sodium Species with Various Ligands: Assessing Relative Bonding Strengths of Ion-ligand Interactions

    Czech Academy of Sciences Publication Activity Database

    Gilligan, J. J.; McCunn, L. R.; Leskiw, B. D.; Herman, Zdeněk; Castleman Jr., A. W.

    2001-01-01

    Roč. 204, 1/3 (2001), s. 247-253 ISSN 1387-3806 Institutional research plan: CEZ:AV0Z4040901 Keywords : associative ionization * cluster ions * sodium bonding energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.176, year: 2001

  3. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan; Zhu, Jiajie; Zhang, Daliang; Schwingenschlö gl, Udo; Alshareef, Husam N.

    2017-01-01

    We have systematically changed the number of atomic layers stacked in 2D SnO nanosheet anodes and studied their sodium ion battery (SIB) performance. The results indicate that as the number of atomic SnO layers in a sheet decreases, both

  4. Charge–discharge properties of tin dioxide for sodium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsoo [Department of Materials and Energy Engineering, Kyungwoon University, 730 Gangdong-ro, Sandong-meon, Gumi-si, Gyeongbuk 730-739 (Korea, Republic of); Park, Jin-Woo; Han, Jeong-Hui [School of Materials Science and Engineering, RIGET, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Lee, Sang-Won [R and D 2 Team, COSMO AM and T CO., LTD., 315 Mokhaeng-dong, Chungju (Korea, Republic of); Lee, Ki-Young [Jeonyoung ECP, 637-1, Sunggok-dong, Danwon-gu, Ansan cilt, Kyunggi-do (Korea, Republic of); Ryu, Ho-Suk; Kim, Ki-Won [School of Materials Science and Engineering, RIGET, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, RIGET, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Highlights: • The electrochemical reaction of SnO2 as an anode for Na-ion batteries was studied. • The SnO2 electrode delivered the initial discharge capacity of 747 mAh/g. • Alarge irreversible capacity (597 mAh/g)was observedin the first cycle. • The in-plain crack in the electrode caused the incompletereduction of SnO{sub 2}. - Abstract: Tin dioxide was investigated as an anode material for sodium-ion batteries. The Na/SnO{sub 2} cell delivered a first discharge capacity of 747 mAh/g, but the first charge capacity was 150 mAh/g. The irreversible capacity in the first cycle was examined through characterization by X-ray diffraction and scanning electron microscopy. X-ray diffraction analysis revealed that the SnO{sub 2} active material was not reduced fully to metallic Sn. Furrows and wrinkles were formed on the electrode surface owing to the volumetric expansion upon first discharge, which led to a deterioration of the electrode structure and a loss of electrical contact between the active materials. The analysis is summarized in the schematic drawing.

  5. Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries

    Science.gov (United States)

    Zhu, Xiaobo; Lin, Tongen; Manning, Eric; Zhang, Yuancheng; Yu, Mengmeng; Zuo, Bin; Wang, Lianzhou

    2018-06-01

    The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth's abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.

  6. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Chenglong; Lu, Yaxiang; Hu, Yong-Sheng; Chen, Liquan; Wang, Qidi; Li, Baohua

    2017-01-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A 2 MO 3 -family layered compounds (A  =  Li, Na; M  =  Mn 4+ , Ru 4+ , etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible. (topical review)

  7. GeO2 decorated reduced graphene oxide as anode material of sodium ion battery

    International Nuclear Information System (INIS)

    Qin, Wei; Chen, Taiqiang; Hu, Bingwen; Sun, Zhuo; Pan, Likun

    2015-01-01

    Graphical abstract: Display Omitted -- Abstract: GeO 2 -reduced graphene oxide (RGO) composites were prepared by a simple freeze-drying method. After thermal annealing in N 2 atmosphere at 450 °C for 2 hours, the composites were examined as anode materials of sodium ion batteries for the first time. Their morphology, structure and electrochemical performance were characterized by field-emission scanning electron microscopy, X-ray diffraction, N 2 adsorption-desorption isotherm, cyclic voltammetry and electrochemical impedance spectroscopy, respectively. A maximum specific capacity of 330 mAh g −1 can be achieved after 50 galvanostatic charge-discharge cycles at a current density of 100 mA g −1 by tuning the RGO content in the composites. Even after 650 cycles at a high current density of 1 A g −1 , the specific capacity can still maintain at 153.7 mAh g −1 , demonstrating the excellent Na ion storage properties of the GeO 2 -RGO composites

  8. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  9. Distinct interactions of Na+ and Ca2+ ions with the selectivity filter of the bacterial sodium channel NaVAb

    International Nuclear Information System (INIS)

    Ke, Song; Zangerl, Eva-Maria; Stary-Weinzinger, Anna

    2013-01-01

    Highlights: ► Ca 2+ translocates slowly in the filter, due to lack of “loose” knock-on mechanism. ► Identification of a high affinity binding site in Na V Ab selectivity filter. ► Changes of EEEE locus triggered by electrostatic interactions with Ca 2+ ions. -- Abstract: Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. In this study, we use molecular dynamics simulations and free energy calculations to investigate how the bacterial sodium channel Na V Ab (Arcobacter butzleri) differentiates between Na + and Ca 2+ ions. Multiple nanosecond molecular dynamics simulations revealed distinct binding patterns for these two cations in the selectivity filter and suggested a high affinity calcium binding site formed by backbone atoms of residues Leu-176 and Thr-175 (S CEN ) in the sodium channel selectivity filter

  10. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions

    International Nuclear Information System (INIS)

    Broeer, A.; Broeer, S.; Setiawan, I.; Lang, F.

    2001-01-01

    Full text: SN1 has recently been identified as one of the major glutamine transporters in hepatocytes and brain astrocytes. It appears to be the molecular correlate of the system N amino acid transporter. Two different transport mechanisms have been proposed for this transporter. Either an electroneutral mechanism, in which glutamine uptake is coupled to an exchange of 1Na + and 1H + , or an electrogenic mechanism coupled to the exchange of 2Na + against 1H + . This study was performed to solve the discrepancies and to investigate the reversibility of the transporter. When expressed in Xenopus laevis oocytes glutamine uptake activity increased strongly with increasing pH. In agreement with the pH-dependence we found that uptake of glutamine was accompanied by an alkalization of the cytosol, indicating that SN1 mediates Glutamine/H + -Antiport. Uptake of glutamine into oocytes was Na + -dependent. Analysis of the Na + -dependence of glutamine transport and Flux studies using 22 Na + indicated that two or more sodium ions were cotransported together with glutamine. However, at the same time intracellular Na + was exchanged against extracellular Na + . Taken together with the results of the pH-dependence it is proposed that SN1 mediates a Na + /Na + -exchange and a Na + /H + -exchange, both being coupled to the transport of glutamine. In agreement with this mechanism we found that acidic pH caused a reversal of the transporter. To investigate the source of the glutamine-induced inward currents, we compared inward currents generated by the 1Na + /glutamine cotransporter ATA1 with those generated by SN1. Currents induced by glutamine uptake in SN1 expressing oocytes were only a fraction of the currents induced by glutamine in ATA1 expressing oocytes, indicating that they were not generated by a stoichiometric uptake of ions. It is concluded that SN1 is tightly regulated by pH and intracellular Na + -ions and is capable of mediating glutamine uptake and release

  11. Guanidinium Toxins and Their Interactions with Voltage-Gated Sodium Ion Channels

    Directory of Open Access Journals (Sweden)

    Lorena M. Durán-Riveroll

    2017-10-01

    Full Text Available Guanidinium toxins, such as saxitoxin (STX, tetrodotoxin (TTX and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (NaV. Members of the STX group, known collectively as paralytic shellfish toxins (PSTs, are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria. In contrast, toxins of the TTX group occur mainly in macrozoa, particularly among puffer fish, several species of marine invertebrates and a few terrestrial amphibians. In the case of TTX and analogs, most evidence suggests that symbiotic bacteria are the origin of the toxins, although endogenous biosynthesis independent from bacteria has not been excluded. The evolutionary origin of the biosynthetic genes for STX and analogs in dinoflagellates and cyanobacteria remains elusive. These highly potent molecules have been the subject of intensive research since the latter half of the past century; first to study the mode of action of their toxigenicity, and later as tools to characterize the role and structure of NaV channels, and finally as therapeutics. Their pharmacological activities have provided encouragement for their use as therapeutants for ion channel-related pathologies, such as pain control. The functional role in aquatic and terrestrial ecosystems for both groups of toxins is unproven, although plausible mechanisms of ion channel regulation and chemical defense are often invoked. Molecular approaches and the development of improved detection methods will yield deeper understanding of their physiological and ecological roles. This knowledge will facilitate their further biotechnological exploitation and point the way towards

  12. Electrochemical investigation of MoTe2/rGO composite materials for sodium-ion battery application

    Science.gov (United States)

    Panda, Manas Ranjan; Anish Raj, K.; Sarkar, Ananta; Bao, Qiaoliang; Mitra, Sagar

    2018-05-01

    2D layered materials are found to be promising anode materials for renewable energy storage devices like sodium and Li-ion batteries and have become attractive options due to their high specific capacity, abundance and low cost. In this work, we synthesized 2D MoTe2 layers embedded in reduced graphene oxide (rGO) anode material for sodium-ion battery applications. 2D MoTe2 was prepared by a solid-state reaction in vacuum at a temperature of 800 °C. The prepared composite material MoTe2/rGO showed excellent electrochemical performance against the sodium metal. The discharge capacity of MoTe2/rGO was observed to be 280 mAh g-1 at a current rate of 1.0 A g-1 for 100 cycles. rGO plays an important role in embedding the MoTe2 structure, thus improving the electrical and mechanical properties, leading to a superior cycling stability and excellent electrochemical performances of MoTe2 for sodium-ion battery applications.

  13. Optical properties of 3d transition metal ion-doped sodium borosilicate glass

    International Nuclear Information System (INIS)

    Wen, Hongli; Tanner, Peter A.

    2015-01-01

    Graphical abstract: Photographs of undoped (SiO 2 ) 50 (Na 2 O) 25 (B 2 O 3 ) 25 (SiNaB) glass and transition metal ion-doped (TM) 0.5 (SiO 2 ) 49.5 (Na 2 O) 25 (B 2 O 3 ) 25 glass samples. - Highlights: • 3d transition metal ion (from Ti to Zn) doped SiO 2 -Na 2 O-B 2 O 3 glasses. • Optical properties of doped glasses investigated. • V(IV,V); Cr(III, VI); Mn(II,III); Fe(II,III); Co(II); Ni(II); Cu(II) by XANES, DRS. • Strong visible absorption but only vanadium ion gives strong emission in glass. - Abstract: SiO 2 -Na 2 O-B 2 O 3 glasses doped with 3d-transition metal species from Ti to Zn were prepared by the melting-quenching technique and their optical properties were investigated. The X-ray absorption near edge spectra of V, Cr, and Mn-doped glasses indicate that the oxidation states of V(IV, V), Cr(III, VI) and Mn(II, III) exist in the studied glasses. The oxidation states revealed from the diffuse reflectance spectra of the glasses are V(IV, V), Cr(III, VI), Mn(III), Fe(II, III), Co(II), Ni(II), and Cu(II). Most of the 3d transition element ions exhibit strong absorption in the visible spectral region in the glass. Under ultraviolet excitation, the undoped sodium borosilicate glass produces weak and broad emission, while doping of vanadium introduces strong and broad emission due to the V(V) charge transfer transition. Only weak emission is observed from Ti(IV), Mn(II), Fe(III) and Cu(II), partly resulting from the strong electron–phonon coupling of the 3d-electrons and the relatively high phonon energy of the studied glass host, with the former leading to dominant nonradiative relaxation based on multiphonon processes for most of the 3d excited states

  14. Alcohol, Aldehydes, Adducts and Airways

    Directory of Open Access Journals (Sweden)

    Muna Sapkota

    2015-11-01

    Full Text Available Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA adduct and hybrid malondialdehyde-acetaldehyde (MAA protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  15. Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries.

    Science.gov (United States)

    Qi, Xingguo; Liu, Lilu; Song, Ningning; Gao, Fei; Yang, Kai; Lu, Yaxiang; Yang, Haitao; Hu, Yong-Sheng; Cheng, Zhao-Hua; Chen, Liquan

    2017-11-22

    Rechargeable sodium-ion batteries have drawn increasing attention as candidates for the post lithium-ion batteries in large-scale energy storage systems. Layered oxides are the most promising cathode materials and their pure phases (e.g., P2, O3) have been widely investigated. Here we report a series of cathode materials with O3/P2 hybrid phase for sodium-ion batteries, which possesses advantages of both P2 and O3 structures. The designed material, Na 0.78 Ni 0.2 Fe 0.38 Mn 0.42 O 2 , can deliver a capacity of 86 mAh g -1 with great rate capability and cycling performance. 66% capacity is still maintained when the current rate reaches as high as 10C, and the capacity retention is 90% after 1500 cycles. Moreover, in situ XRD was performed to examine the structure change during electrochemical testing in different voltage ranges, and the results demonstrate 4 V as the optimized upper voltage limit, with which smaller polarization, better structural stability, and better cycling performance are achieved. The results obtained here provide new insights in designing cathode materials with optimal structure and improved performance for sodium-ion batteries.

  16. Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide

    Science.gov (United States)

    Dang, Liem X.; Schenter, Gregory K.

    2018-06-01

    Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.

  17. PIGMENT CONTENT OF Chlorella vulgaris BEIJ. UNDER INFLUENCE OF THE SODIUM SELENITE AND METALS IONS

    Directory of Open Access Journals (Sweden)

    O. I.

    2016-02-01

    Full Text Available The aim of the research was to determine the conditions obtaining in the aquaculture of Chlorella vulgaris Beij. algosubstantion enriched with selenium and bioactive metals. For this purpose, the content of seaweed pigments studied by the action of sodium selenite in a concentration based on Se4+: 0.5, 5.0, 10.0 and 20.0 mg / dm3 for 1, 3 and 7 days and while exposed 10.0 mg Se4 +/dm3 and Zn2+, Mn2 +, Co2 +, Cu2 +, Fe3 + in concentrations of 5.0 mg/dm 3, 0.25, 0.002, 0.008 and 0.05 mg/dm3, respectively, within 7 days of culturing. The content of pigments was determined spectrophotometrically, the cellular walls were given off in the percoll gradient and investigated microscopically. The pigments content in Ch. vulgaris increase by 1,5–2,5 times in comparison with control sample under the influence of 10 mg Se(IV/dm3 with and without metal ions. In the same condition a ratio of chlorophylls a/b increased, that accompanied by the formation in cells of the second cell wall as the sign of successful adaptation process in the Chlorella cells under the influence of these factors. Thus, the cultivation of chlorella, enriched with selenium and bioactive metals, is possible within 7 days under the influence of 10 mg Se (IV/dm3 and mentioned concentration of these metal ions.

  18. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhian; Zhao, Xingxing; Li, Jie

    2015-01-01

    Graphical abstract: A homogeneous nanocomposite of SnSe and carbon black was synthesised by high energy ball milling and empolyed as an anode material for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). The nanocomposite anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Highlights: • A homogeneous nanocomposite of SnSe and carbon black was fabricated by high energy ball milling. • SnSe and carbon black are homogeneously mixed at the nanoscale level. • The SnSe/C anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Abstract: A homogeneous nanocomposite of SnSe and carbon black, denoted as SnSe/C nanocomposite, was fabricated by high energy ball milling and empolyed as a high performance anode material for both sodium-ion batteries and lithium-ion batteries. The X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations confirmed that SnSe in SnSe/C nanocomposite was homogeneously distributed within carbon black. The nanocomposite anode exhibited enhanced electrochemical performances including a high capacity, long cycling behavior and good rate performance in both sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). In SIBs, an initial capacitiy of 748.5 mAh g −1 was obtained and was maintained well on cycling (324.9 mAh g −1 at a high current density of 500 mA g −1 in the 200 th cycle) with 72.5% retention of second cycle capacity (447.7 mAh g −1 ). In LIBs, high initial capacities of approximately 1097.6 mAh g −1 was obtained, and this reduced to 633.1 mAh g −1 after 100 cycles at 500 mA g −1

  19. Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor.

    Science.gov (United States)

    Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao

    2018-06-11

    Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Dealloying Synthetic Strategy for Nanoporous Bismuth-Antimony Anodes for Sodium Ion Batteries.

    Science.gov (United States)

    Gao, Hui; Niu, Jiazheng; Zhang, Chi; Peng, Zhangquan; Zhang, Zhonghua

    2018-04-24

    Metal-based anodes have recently aroused much attention in sodium ion batteries (SIBs) owing to their high theoretical capacities and low sodiation potentials. However, their progresses are prevented by the inferior cycling performance caused by severe volumetric change and pulverization during the (de)sodiation process. To address this issue, herein an alloying strategy was proposed and nanoporous bismuth (Bi)-antimony (Sb) alloys were fabricated by dealloying of ternary Mg-based precursors. As an anode for SIBs, the nanoporous Bi 2 Sb 6 alloy exhibits an ultralong cycling performance (10 000 cycles) at 1 A/g corresponding to a capacity decay of merely 0.0072% per cycle, due to the porous structure, alloying effect and proper Bi/Sb atomic ratio. More importantly, a (de)sodiation mechanism ((Bi,Sb) ↔ Na(Bi,Sb) ↔ Na 3 (Bi,Sb)) is identified for the discharge/charge processes of Bi-Sb alloys by using operando X-ray diffraction and density functional theory calculations.

  1. Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, Ted [Aquion Energy, Inc., Pittsburgh, PA (United States); Whitacre, Jay [Aquion Energy, Inc., Pittsburgh, PA (United States); Weber, Eric [Aquion Energy, Inc., Pittsburgh, PA (United States); Eshoo, Michael [Aquion Energy, Inc., Pittsburgh, PA (United States); Noland, James [Aquion Energy, Inc., Pittsburgh, PA (United States); Blackwood, David [Aquion Energy, Inc., Pittsburgh, PA (United States); Campbell, Williams [Aquion Energy, Inc., Pittsburgh, PA (United States); Sheen, Eric [Aquion Energy, Inc., Pittsburgh, PA (United States); Spears, Christopher [Aquion Energy, Inc., Pittsburgh, PA (United States); Smith, Christopher [Aquion Energy, Inc., Pittsburgh, PA (United States)

    2012-08-31

    Aquion Energy received a $5.179 million cooperative research agreement under the Department of Energy's Smart Grid Demonstration Program Demonstration of Promising Energy Storage Technologies (Program Area 2.5) of FOA DE-FOE-0000036. The main objective of this project was to demonstrate Aquion's low cost, grid-scale, ambient temperature sodium ion energy storage device. The centerpiece of the technology is a novel hybrid energy storage chemistry that has been proven in a laboratory environment. The objective was to translate these groundbreaking results from the small-batch, small-cell test environment to the pilot scale to enable significant numbers of multiple ampere-hour cells to be manufactured and assembled into test batteries. Aquion developed a proof of concept demonstration unit that showed similar performance and major cost improvement over existing technologies. Beyond minimizing cell and system cost, Aquion built a technology that is safe, environmentally benign and durable over many thousands of cycles as used in a variety of grid support roles.

  2. Layered SnS sodium ion battery anodes synthesized near room temperature

    KAUST Repository

    Xia, Chuan

    2017-08-10

    In this report, we demonstrate a simple chemical bath deposition approach for the synthesis of layered SnS nanosheets (typically 6 nm or ~10 layers thick) at very low temperature (40 °C). We successfully synthesized SnS/C hybrid electrodes using a solution-based carbon precursor coating with subsequent carbonization strategy. Our data showed that the ultrathin carbon shell was critical to the cycling stability of the SnS electrodes. As a result, the as-prepared binder-free SnS/C electrodes showed excellent performance as sodium ion battery anodes. Specifically, the SnS/C anodes delivered a reversible capacity as high as 792 mAh·g−1 after 100 cycles at a current density of 100 mA·g−1. They also had superior rate capability (431 mAh·g−1 at 3,000 mA·g−1) and stable long-term cycling performance under a high current density (345 mAh·g−1 after 500 cycles at 3 A·g−1). Our approach opens up a new route to synthesize SnS-based hybrid materials at low temperatures for energy storage and other applications. Our process will be particularly useful for chalcogenide matrix materials that are sensitive to high temperatures during solution synthesis.

  3. Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.

    Science.gov (United States)

    Soniat, Marielle; Rogers, David M; Rempe, Susan B

    2015-07-14

    A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.

  4. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.

    2011-12-14

    The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five thousand deep cycles at high current densities in inexpensive aqueous electrolytes. Its open-framework structure allows retention of 66% of the initial capacity even at a very high (41.7C) rate. At low current densities, its round trip energy efficiency reaches 99%. This low-cost material is readily synthesized in bulk quantities. The long cycle life, high power, good energy efficiency, safety, and inexpensive production method make nickel hexacyanoferrate an attractive candidate for use in large-scale batteries to support the electrical grid. © 2011 American Chemical Society.

  5. Synthesis of calcium silicates by Pechini method and exchanging ions of sodium alginate-calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Garay, K.A.; Martinez-Luevanos, A.; Cruz-Ortiz, B.R.; Garcia-Cerda, L.A.; Lopez-Badillo, C.M.

    2016-07-01

    Calcium silicates samples were synthesized using tetraethyl orthosilicate (TEOS) and by Pechini methodology assisted with ion-exchange of sodium alginate, followed by a heat treatment of 800°C by two hours. A, B and C samples were obtained using 1.7×10−3M, 3.4×10−3M and 5.1×10−3M of TEOS, respectively, and without heat treatment; these samples were characterized by thermogravimetric analysis (TGA) and infrared spectroscopy with attenuated total reflectance (FTIR-ATR). Furthermore, samples A800, B800 and C800 obtained using a heat treatment of 800° by two hours were characterized by FTIR-ATR, absorption technique (BET), X-ray diffraction (XRD) and by scanning electron microscopy. The XRD patterns indicate that sample A800 contains olivine (Ca2SiO4) in orthorhombic phase and wollastonite-2M (CaSiO3); sample B800 showed the earlier phases and quartz (SiO2), whereas sample C800 contains wollastonite phases and larnite-2M (Ca2SiO4). (Author)

  6. Multiple analyte adduct formation in liquid chromatography-tandem mass spectrometry - Advantages and limitations in the analysis of biologically-related samples.

    Science.gov (United States)

    Dziadosz, Marek

    2018-05-01

    Multiple analyte adduct formation was examined and discussed in the context of reproducible signal detection in liquid chromatography-tandem mass spectrometry applied in the analysis of biologically-related samples. Appropriate infusion solutions were prepared in H 2 O/methanol (3/97, v/v) with 1 mM sodium acetate and 10 mM acetic acid. An API 4000 QTrap tandem mass spectrometer was used for experiments performed in the negative scan mode (-Q1 MS) and the negative enhanced product ion mode (-EPI). γ‑Hydroxybutyrate and its deuterated form were used as model compounds to highlight both the complexity of adduct formation in popular mobile phases used and the effective signal compensation by the application of isotope-labelled analytes as internal standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Accumulation and localization of sodium and potassium ions in maize plants on saline soil

    Directory of Open Access Journals (Sweden)

    S. N. Kabuzenko

    2013-02-01

    Full Text Available The goal of this work is studying the accumulation and distribution of Na+ and K+ in maize hybrids of different salt tolerance under conditions of the chloride salinity. The new corn hybrid Veselka MV (salt-tolerant and Odessa 375 MB (not salt-tolerant were studied. The plants grown in salt-free chernozem soil are control. In the experiment, sodium chloride was dissolved in the irrigation water to form the salinity of test soils up to concentrations of 0.25, 0.5, 0.75, and 1.0% of ovendry weight. Soil moisture in the pots was maintained at 60% of the full field water capacity, the air temperature was +25…+27 °C, and the light – 10 klux. Plant samples were dried in the oven under 70 °C. Then, the average sample of 10 specimens was thoroughly levigated in the porcelain pounder  and dispersed in distilled water at 100 °C. The ions were extracted, and the extracts were centrifuged for 20 min at 3000 rpm. The ions content in the cell sap was analysed. Plant samples (1 g were incubated 10 min in chloroform, dried carefully with filter paper, and then the cell sap was squeezed. 1 ml of clear top layer of the cell sap was dissolved in 10 ml of distilled water. Ions content was determined by the atomic absorption spectrophotometer ("Karl Zeiss", Germany. Salt-tolerant maize hybrid Veselka MW (14 days age is characterized by an increased content of Na+ in the root tissues in comparison with the above-ground parts. In Odessa 375 MB hybrid this regularity is less pronounced. With the increase of sodium chloride concentration in the soil the content of Na+ in the aerial parts of plants rises. That may be connected with the reduced role of a root barrier. The salt-tolerant hybrid has a higher content of Na+ in the roots as compared to the above-ground parts. The content of K+ was higher in the above-ground parts, which is more pronounced in the salt-tolerant hybrid Veselka MB. The decrease of K+ in cell sap of the root under saline conditions was

  8. Handheld Device Adapted to Smartphone Cameras for the Measurement of Sodium Ion Concentrations at Saliva-Relevant Levels via Fluorescence

    OpenAIRE

    Lipowicz, Michelle; Garcia, Antonio

    2015-01-01

    The use of saliva sampling as a minimally-invasive means for drug testing and monitoring physiology is a subject of great interest to researchers and clinicians. This study describes a new optical method based on non-axially symmetric focusing of light using an oblate spheroid sample chamber. The device is simple, lightweight, low cost and is easily attached to several different brands/models of smartphones (Apple, Samsung, HTC and Nokia) for the measurement of sodium ion levels at physiologi...

  9. Acid-sensing ion and epithelial sodium channels do not contribute to the mechanoreceptor component of the exercise pressor reflex

    OpenAIRE

    McCord, Jennifer L.; Hayes, Shawn G.; Kaufman, Marc P.

    2008-01-01

    Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because...

  10. A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay; Wang, Chong M.; Manthiram, Arumugam

    2016-01-14

    Sodium-ion batteries (SIB) are being intensively investigated, owing to the natural abundance and low cost of Na resources. However, the SIBs still suffer from poor rate capability due to the large ionic radius of Na+ ion and the significant kinetic barrier to Na+-ion transport. Here, we present an Fd-3m spinel-integrated P2-type layered composite (P2 + Fd-3m) material as a high-rate cathode for SIBs. The P2 + Fd-3m composite material Na0.50Ni1/6Co1/6Mn2/3O2 shows significantly enhanced discharge capacity, energy density, and rate capability as compared to the pure P2-type counterpart. The composite delivers a high capacity of 85 mA h g-1 when discharging at a very high current density of 1500 mA g-1 (10C rate) between 2.0 and 4.5 V, validating it as a promising cathode candidate for high-power SIBs. The superior performance is ascribed to the improved kinetics in the presence of the integrated-spinel phase, which facilitates fast electron transport to coordinate with the timely Na+-ion insertion/extraction. The findings of this work also shed light on the importance of developing lattice doping, surface coating, and electrolyte additives to further improve the structural and interfacial stability of P2-type cathode materials and fully realize their practical applications in sodium-ion batteries.

  11. Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes

    Directory of Open Access Journals (Sweden)

    Linqin Mu

    2018-01-01

    Full Text Available Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synthesis from bio-mass. Herein, we report a novel anthraquinone derivative, C14H6O4Na2 composited with carbon nanotube (C14H6O4Na2-CNT, used as an anode material for sodium-ion batteries in ether-based electrolyte. The C14H6O4Na2-CNT electrode delivers a reversible capacity of 173 mAh g−1 and an ultra-high initial Coulombic efficiency of 98% at the rate of 0.1 C. The capacity retention is 82% after 50 cycles at 0.2 C and a good rate capability is displayed at 2 C. Furthermore, the average Na insertion voltage of 1.27 V vs. Na+/Na makes it a unique and safety battery material, which would avoid Na plating and formation of solid electrolyte interface. Our contribution provides new insights for designing developed organic anode materials with high initial Coulombic efficiency and improved safety capability for sodium-ion batteries.

  12. Structural Stability and Electronic Properties of Na2C6O6 for a Rechargeable Sodium-ion Battery

    Science.gov (United States)

    Yamashita, Tomoki; Fujii, Akihiro; Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    Sodium-ion batteries have been explored as a promising alternative to lithium-ion batteries owing to a significant advantage of a natural abundance of sodium. Recently, it has been reported that disodium rhodizonate, Na2C6O6, exhibit good electrochemical properties and cycle performance as a minor-metal free organic cathode for sodium-ion batteries. However, its crystal structures during discharge/charge cycle still remain unclear. In this work, we theoretically propose feasible crystal structures of Na2+xC6O6 using first principles calculations. A structural phase transition has been found: Na4C6O6 has a different C6O6 packing arrangement from Na2C6O6. Electronic structures of Na2+xC6O6 during discharge/charge cycle are also discussed. Our predictions could be the key to understanding the discharge/charge process of Na2C6O6. Supported by MEXT program ``Elements Strategy Initiative to Form Core Rersearch Center'' (since 2012), MEXT; Ministry of Education Culture, Sports, Science and Technology, Japan.

  13. Handheld Device Adapted to Smartphone Cameras for the Measurement of Sodium Ion Concentrations at Saliva-Relevant Levels via Fluorescence

    Directory of Open Access Journals (Sweden)

    Michelle Lipowicz

    2015-06-01

    Full Text Available The use of saliva sampling as a minimally-invasive means for drug testing and monitoring physiology is a subject of great interest to researchers and clinicians. This study describes a new optical method based on non-axially symmetric focusing of light using an oblate spheroid sample chamber. The device is simple, lightweight, low cost and is easily attached to several different brands/models of smartphones (Apple, Samsung, HTC and Nokia for the measurement of sodium ion levels at physiologically-relevant saliva concentrations. The sample and fluorescent reagent solutions are placed in a specially-designed, lightweight device that excludes ambient light and concentrates 470-nm excitation light, from a low-power photodiode, within the sample through non-axially-symmetric refraction. The study found that smartphone cameras and post-image processing quantitated sodium ion concentration in water over the range of 0.5–10 mM, yielding best-fit regressions of the data that agree well with a data regression of microplate luminometer results. The data suggest that fluorescence can be used for the measurement of salivary sodium ion concentrations in low-resource or point-of-care settings. With further fluorescent assay testing, the device may find application in a variety of enzymatic or chemical assays.

  14. Mass-spectrometric study of volatile uranyl β-diketonates and their adducts

    International Nuclear Information System (INIS)

    Adamov, V.M.; Belyaev, B.N.; Berezinskij, S.O.; Sidorenko, G.V.; Suglobov, D.N.

    1985-01-01

    The mass spectra of a number of uranyl β-diketonates containing methyl, trifluoromethyl and tert-butyl substituents in β-diketonate anion, and their adducts are measured. The form of the unsolvated β-diketonates and their adducts in gas phase is studied. The ways of fragmentation of uranyl β-diketonates and their adducts are investigated. The data concerning the thermal and chemical side reactions proceeding with uranyl β-diketonates and their addicts in an ion source are obtained. The mass spectra of the samples of neptunyl and plutonyl β-diketonate adducts synthesized for the first time are measured

  15. Decay kinetics of nicotine/NNK-DNA adducts in vivo studied by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Sun, H.F.; He, L.; Liu, Y.F.; Liu, K.X.; Lu, X.Y.; Wang, J.J.; Ma, H.J.; Li, K.

    2000-01-01

    The decay kinetics of nicotine-DNA adducts and NNK-DNA adducts in mice liver after single dosing was studied by accelerator mass spectrometry (AMS). The decay is characterized by a two-stage process. The half-lives of nicotine-DNA adducts are 1.3 d (4-24 h) and 7.0 d (1-21 d), while for NNK-DNA adducts are 0.7 d (4-24 h) and 18.0 d (1-21 d). The relatively faster decay of nicotine-DNA adducts suggests that the genotoxicity of nicotine is weaker than that of NNK. The in vitro study shows that the metabolization of nicotine is necessary for the final formation of nicotine-DNA adducts, and nicotine Δ1'(5') iminium ion is a probable metabolite species that binds to DNA molecule covalently

  16. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.

    Science.gov (United States)

    Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Luo, Chao; Wang, Chunsheng

    2013-01-21

    Carbon-coated olivine NaFePO(4) (C-NaFePO(4)) spherical particles with a uniform diameter of ∼80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO(4) (C-LiFePO(4)), which is synthesized by a solvothermal method. The C-NaFePO(4) electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO(4) except that Li ions in C-LiFePO(4) are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO(4) cathode in sodium-ion (Na-ion) batteries and C-LiFePO(4) in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO(4) are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO(4) cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO(4) cathodes, the rate performance of C-NaFePO(4) in Na-ion batteries is much worse than that of C-LiFePO(4) in Li-ion batteries. However, the cycling stability of C-NaFePO(4) is almost comparable to C-LiFePO(4) by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.

  17. A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode

    Science.gov (United States)

    Li, Dongdong; Ye, Chao; Chen, Xinzhi; Wang, Suqing; Wang, Haihui

    2018-04-01

    The sodium ion hybrid capacitor (SHC) has been attracting much attention. However, the SHC's power density is significantly confined to a low level due to the sluggish ion diffusion in the anode. Herein, we propose to use an electrode with a high double layer capacitance as the anode in the SHC instead of insertion anodes. To this aim, nitrogen doped hollow carbon nanowires (N-HCNWs) with a high specific surface area are prepared, and the high capacitive contribution during the sodium ion storage process is confirmed by a series of electrochemical measurements. A new SHC consisting of a N-HCNW anode and a commercial active carbon (AC) cathode is fabricated for the first time. Due to the hybrid charge storage mechanism combining ion insertion and capacitive process, the as-fabricated SHC strikes a balance between the energy density and power density, a energy density of 108 Wh kg-1 and a power density of 9 kW kg-1 can be achieved, which overwhelms the electrochemical performances of most reported AC-based SHCs.

  18. DNA adducts in senescent cells

    International Nuclear Information System (INIS)

    Gaubatz, J.W.

    1987-01-01

    Perturbations in DNA repair and other metabolic processes during development and aging might affect the steady-state level of genomic damage. The persistence or accumulation of DNA lesions in postmitotic cells could have a significant impact on proper cellular function, interfering with gene regulation for example. To test the notion that DNA damage increases as a function of age in non-dividing cells, DNA was purified from heart tissue of C57BL/6Nia mice at different ages and analyzed by post labeling techniques to detect DNA adducts. In the present experiments, four-dimensional, thin-layer chromatography was used to isolate aromatic adducts that were labeled with carrier-free (γ- 32 P) ATP under DNA-P excess conditions. The complexity and frequency of aromatic adducts varied between DNA samples. Several adducts were present in all preparations and were clearly more abundant in nucleotide maps of mature and old heart DNA. However, a direct correlation with age was not observed. In contrast, experiments in which aromatic adducts were first isolated by phase-transfer to 1-butanol, then labeled with excess (γ- 32 P)ATP indicated that there was an age-related increase in these adducts. The results are consistent with their earlier studies that showed alkyl adducts increased during aging of mouse myocardium and suggest that a common repair pathway might be involved

  19. Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients.

    Science.gov (United States)

    Zayas, Beatriz; Stillwell, Sara W; Wishnok, John S; Trudel, Laura J; Skipper, Paul; Yu, Mimi C; Tannenbaum, Steven R; Wogan, Gerald N

    2007-02-01

    We analyzed bladder DNA from 27 cancer patients for dG-C8-4-aminobiphenyl (dG-C8-ABP) adducts using the liquid chromatography tandem mass spectrometry method with a 700 attomol (1 adduct in 10(9) bases) detection limit. Hemoglobin (Hb) 4-aminobiphenyl (4-ABP) adduct levels were measured by gas chromatography-mass spectrometry. After isolation of dG-C8-ABP by immunoaffinity chromatography and further purification, deuterated (d9) dG-C8-ABP (MW=443 Da) was added to each sample. Structural evidence and adduct quantification were determined by selected reaction monitoring, based on the expected adduct ion [M+H+]+1, at m/z 435 with fragmentation to the product ion at m/z 319, and monitoring of the transition for the internal standard, m/z 444-->328. The method was validated by analysis of DNA (100 microg each) from calf thymus; livers from ABP-treated and untreated rats; human placentas; and TK6 lymphoblastoid cells. Adduct was detected at femtomol levels in DNA from livers of ABP-treated rats and calf thymus, but not in other controls. The method was applied to 41 DNA samples (200 microg each) from 27 human bladders; 28 from tumor and 14 from surrounding non-tumor tissue. Of 27 tissues analyzed, 44% (12) contained 5-80 dG-C8-ABP adducts per 10(9) bases; only 1 out of 27 (4%) contained adduct in both tumor and surrounding tissues. The Hb adduct was detected in samples from all patients, at levels of 12-1960 pg per gram Hb. There was no correlation between levels of DNA and Hb adducts. The presence of DNA adducts in 44% of the subjects and high levels of Hb adducts in these non-smokers indicate environmental sources of exposure to 4-ABP.

  20. Foam capacity and stability of Sodium Dodecyl Sulfate (SDS) on the presence of contaminant coffee and Cd ions in solution

    Science.gov (United States)

    Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.

    2018-02-01

    In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.

  1. L-lactic acid and sodium p-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery

    Science.gov (United States)

    Liao, Qishu; Hou, Hongying; Liu, Xianxi; Yao, Yuan; Dai, Zhipeng; Yu, Chengyi; Li, Dongdong

    2018-04-01

    In this work, polypyrrole (PPy) was co-doped with L-lactic acid (LA) and sodium p-toluenesulfonate (TsONa) for high performance cathode in sodium ion battery (SIB) via facile one-step electropolymerization on Fe foil. The as-synthesized LA/TsONa co-doped PPy cathode was investigated in terms of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), galvanostatic charge/discharge and cyclic voltammetry (CV). The results suggested that some oval-bud-like LA/TsONa co-doped PPy particles did form and tightly combine with the surface of Fe foil; furthermore, LA/TsONa co-doped PPy cathode also delivered higher electrochemical performances than TsONa mono-doped PPy cathode. For example, the initial specific discharge capacity was as high as about 124 mAh/g, and the reversible specific capacity still maintained at about 110 mAh/g even after 50 cycles, higher than those of TsONa mono-doped PPy cathode. The synergy effect of multi components of LA/TsONa co-doped PPy cathode should be responsible for high electrochemical performances.

  2. Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yanli Zhou

    2018-02-01

    Full Text Available The three-dimensional (3D SnS decorated carbon nano-networks (SnS@C were synthesized via a facile two-step method of freeze-drying combined with post-heat treatment. The lithium and sodium storage performances of above composites acting as anode materials were investigated. As anode materials for lithium ion batteries, a high reversible capacity of 780 mAh·g−1 for SnS@C composites can be obtained at 100 mA·g−1 after 100 cycles. Even cycled at a high current density of 2 A·g−1, the reversible capacity of this composite can be maintained at 610 mAh·g−1 after 1000 cycles. The initial charge capacity for sodium ion batteries can reach 333 mAh·g−1, and it retains a reversible capacity of 186 mAh·g−1 at 100 mA·g−1 after 100 cycles. The good lithium or sodium storage performances are likely attributed to the synergistic effects of the conductive carbon nano-networks and small SnS nanoparticles.

  3. Scalable and sustainable synthesis of carbon microspheres via a purification-free strategy for sodium-ion capacitors

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Jin, Dongdong; Zhang, Li

    2018-03-01

    Sodium-based energy storage receives a great deal of interest due to the virtually inexhaustible sodium reserve, while the scalable and sustainable strategies to synthesize carbon-based materials with suitable interlayer spaces and large sodium storage capacities are yet to be fully investigated. Carbon microspheres, with regular geometry, non-graphitic characteristic, and stable nature are promising candidates, yet the synthetic methods are usually complex and energy consuming. In this regard, we report a scalable purification-free strategy to synthesize carbon microspheres directly from 5 species of fresh juice. As-synthesized carbon microspheres exhibit dilated interlayer distance of 0.375 nm and facilitate Na+ uptake and release. For example, such carbon microsphere anodes have a specific capacity of 183.9 mAh g-1 at 50 mA g-1 and exhibit ultra-stability (99.0% capacity retention) after 10000 cycles. Moreover, via facile activation, highly porous carbon microsphere cathodes are fabricated and show much higher energy density at high rate than commercial activated carbon. Coupling the compelling anodes and cathodes above, novel sodium-ion capacitors show the high working potential up to 4.0 V, deliver a maximum energy density of 52.2 Wh kg-1, and exhibit an acceptable capacity retention of 85.7% after 2000 cycles.

  4. An Integrated Glucose Sensor with an All-Solid-State Sodium Ion-Selective Electrode for a Minimally Invasive Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Junko Kojima

    2015-06-01

    Full Text Available We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE integrated into its design. The glucose sensor immobilized glucose oxidase showed a good correlation between the glucose levels in the hydrogels and the reference glucose levels (r > 0.99, and exhibited a good precision (coefficient of variation = 2.9%, 0.6 mg/dL. In the design of the sodium ISEs, we used the insertion material Na0.33MnO2 as the inner contact layer and DD16C5 exhibiting high Na+/K+ selectivity as the ionophore. The developed sodium ISE exhibited high selectivity (\\( \\log \\,k^{pot}_{Na,K} = -2.8\\ and good potential stability. The sodium ISE could measure 0.4 mM (10−3.4 M sodium ion levels in the hydrogels containing 268 mM (10−0.57 M KCl. The small integrated sensor (ϕ < 10 mm detected glucose and sodium ions in hydrogels simultaneously within 1 min, and it exhibited sufficient performance for use as a minimally invasive glucose monitoring system.

  5. Charge changing and excitation cross sections for 1-25 KeV hydrogen ions and atoms incident on sodium

    International Nuclear Information System (INIS)

    Howald, A.M.

    1983-01-01

    Measurements of charge changing and excitation cross sections for 1-25 keV beams of hydrogen atoms and ions incident on a sodium vapor target are reported. The charge changing cross sections are for reactions in which the incident H ion or atom gains or loses an electron during a collision with a Na atoms to form a hydrogen ion or atom in a different charge state. The six cross sections measured are sigma/sub +0/ and sigma/sub +-/ for incident protons, sigma/sub -0/ and sigma/sub -+/ for incident H - ions, and sigma/sub g-/ and sigma/sub g+/ for incident H(1s) atoms. Measurements are also reported for the negative, neutral, and positve equilibrium fractions for H beams in thick Na targets. The excitation cross sections are for reactions in which the Na target atom is excited to the 3p level by a collision with a H atom or ion. The five cross sections measured are for incident H + , H 2 + , H 3 + , and H - ions, and for H(1s) atoms. These cross sections are measured using a new technique that compares them directly to the known cross section for excitation by electron impact

  6. Effect of lithium and sodium ion adsorption on the electronic transport properties of Ti3C2 MXene

    International Nuclear Information System (INIS)

    Berdiyorov, G.R.

    2015-01-01

    Highlights: • Effect of Li and Na ion adsorption on the electronic transport in Ti 3 C 2 MXene is studied. • Fluorinated, oxidized and hydroxylated surfaces are considered. • Enhanced charge transport is obtained for fluorinated and hydroxylated samples. • Electronic transmission is reduced in the oxidized sample. • The pristine and oxidized MXene samples are found to be sensitive to the ions adsorption. - Abstract: MXenes are found to be promising electrode materials for energy storage applications. Recent theoretical and experimental studies indicate the possibility of using these novel low dimensional materials for metal-ion batteries. Herein, we use density-functional theory in combination with the nonequilibrium Green's function formalism to study the effect of lithium and sodium ion adsorption on the electronic transport properties of the MXene, Ti 3 C 2 . Oxygen, hydroxyl and fluorine terminated species are considered and the obtained results are compared with the ones for the pristine MXene. We found that the ion adsorption results in reduced electronic transport in the pristine MXene: depending on the type of the ions and the bias voltage, the current in the system can be reduced by more than 30%. On the other hand, transport properties of the oxygen terminated sample can be improved by the ion adsorption: for both types of ions the current in the system can be increased by more than a factor of 4. However, the electronic transport is less affected by the ions in fluorinated and hydroxylated samples. These two samples show enhanced electronic transport as compared to the pristine MXene. The obtained results are explained in terms of electron localization in the system.

  7. VS4 Nanoparticles Anchored on Graphene Sheets as a High-Rate and Stable Electrode Material for Sodium Ion Batteries.

    Science.gov (United States)

    Pang, Qiang; Zhao, Yingying; Yu, Yanhao; Bian, Xiaofei; Wang, Xudong; Wei, Yingjin; Gao, Yu; Chen, Gang

    2018-02-22

    The size and conductivity of the electrode materials play a significant role in the kinetics of sodium-ion batteries. Various characterizations reveal that size-controllable VS 4 nanoparticles can be successfully anchored on the surface of graphene sheets (GSs) by a simple cationic-surfactant-assisted hydrothermal method. When used as an electrode material for sodium-ion batteries, these VS 4 @GS nanocomposites show large specific capacity (349.1 mAh g -1 after 100 cycles), excellent long-term stability (84 % capacity retention after 1200 cycles), and high rate capability (188.1 mAh g -1 at 4000 mA g -1 ). A large proportion of the capacity was contributed by capacitive processes. This remarkable electrochemical performance was attributed to synergistic interactions between nanosized VS 4 particles and a highly conductive graphene network, which provided short diffusion pathways for Na + ions and large contact areas between the electrolyte and electrode, resulting in considerably improved electrochemical kinetic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    Science.gov (United States)

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.

  9. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.

    Science.gov (United States)

    Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik

    2018-05-04

    A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum.

    Science.gov (United States)

    Abd El Halim, Hesham M; Alshukri, Baida M H; Ahmad, Munawar S; Nakasu, Erich Y T; Awwad, Mohammed H; Salama, Elham M; Gatehouse, Angharad M R; Edwards, Martin G

    2016-07-14

    The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30-60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control.

  11. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries

    Science.gov (United States)

    Suharto, Yustian; Lee, Yongho; Yu, Ji-Sang; Choi, Wonchang; Kim, Ki Jae

    2018-02-01

    Finding an alternative to glass fiber (GF) separators is a crucial factor for the fast commercialization of sodium-ion batteries (SIBs), because GF separators are too thick for use in SIBs, thereby decreasing the volumetric and gravimetric energy density. Here we propose a microporous composite separator prepared by introducing a polymeric coating layer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP co-polymer) with ZrO2 nanoparticles to a polyethylene (PE) separator. The coated separator efficiently enhances the cell performance of SIBs. The ZrO2 nanoparticles, finely dispersed on the polymeric coating layer, induce the formation of many micropores on the polymeric coating layer, suggesting that micropore formation on the coating layer renders the composite separator more open in structure. An ethylene carbonate/propylene carbonate liquid electrolyte for SIBs is not absorbed by PE separators even after 1 h of electrolyte droplet testing, while the proposed separator with many micropores is completely wetted by the electrolyte. Sodium ion migration across the composite separator is therefore effectively enhanced by the formation of ion transfer pathways, which improve ionic conductivity. As a result, the microporous composite separator affords stable cycle performances and excellent specific capacity retention (95.8%) after 50 cycles, comparable to those offered by a SIB with a GF separator.

  12. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF

  13. Triplicate Sodium Iodide Gamma Ray Monitors For The Small Column Ion Exchange Program

    International Nuclear Information System (INIS)

    Couture, A.

    2011-01-01

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ( 137 Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241( 241 Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the 137 Cs full-energy γ-ray peak and the 241 Am alpha peak. The count rate in the gamma peak region will be proportional to the 137 Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical 137 Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing 137 Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF) to be incorporated into grout.

  14. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery.

    Science.gov (United States)

    Adelli, Goutham R; Balguri, Sai Prachetan; Bhagav, Prakash; Raman, Vijayasankar; Majumdar, Soumyajit

    2017-11-01

    The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFS free ) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFS free , or a combination of DFS free  +   DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFS free  +   DFS:IR (1:1) (1 + 1) was twice that of only DFS:IR (1:1) film. In vivo, DFS solution and DFS:IR (1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFS free and DFS free  +   DFS:IR (1:1) (3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFS free formulation. DFS free  +   DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics.

  15. Amino acid-based dithiazines: synthesis and photofragmentation of their benzaldehyde adducts.

    Science.gov (United States)

    Kurchan, Alexei N; Kutateladze, Andrei G

    2002-11-14

    Alpha-amino acids and GABA are functionalized with dithiazine rings via reaction with sodium hydrosulfide in aqueous formaldehyde. The resulting dithiazines are lithiated at -78 degrees C and reacted with benzaldehyde furnishing amino acid-based 2,5-bis-substituted dithiazines. These adducts undergo externally sensitized photofragmentation with quantum efficiency comparable to that of the parent dithiane adducts, thus offering a novel approach to amino acid-based photolabile tethers. [reaction: see text

  16. Interpretation of the measurement of ions fluxes through a biological membrane with a cellular compartment: example of the movements of sodium through the skin of frogs

    International Nuclear Information System (INIS)

    Morel, F.

    1959-01-01

    Two-way ion fluxes which can be measured in vitro through a living epithelial membrane (such as frog skin) by the indicator method take place across the cells which behave like an intermediate ionic 'compartment'. Two membranes and four fluxes have thus to be considered. Measurements in vitro of the total sodium fluxes as a function of the sodium concentration in the medium in contact with the external face of the skin have been interpreted in this spirit. Making use of certain hypotheses, the permeability coefficients for sodium of the two cellular membranes, the four sodium fluxes, the intracellular sodium concentration and the membrane potentials have been calculated for each value of the sodium concentration in the external medium. (author) [fr

  17. [Laryngeal adduction reflex].

    Science.gov (United States)

    Ptok, M; Bonenberger, S; Miller, S; Kühn, D; Jungheim, M

    2014-07-01

    Laryngeal Adductor Reflex Background: A rapid closure of the vocal folds is necessary, whenever foreign materials or food particles penetrate into the larynx. Otherwise a passage of these particles into the trachea or the lower respiratory tract would be imminent. An aspiration could mechanically block the respiratory tract and cause severe dyspnoea or cause aspiration pneumonia. For this systematic review a selective literature research in PubMed and Scopus using the keywords "laryngeal adductor reflex" and "vocal fold closure" has been carried out. Apart from the oesophago-glottal and pharyngo-glottal closure reflexes, the laryngeal adductor reflex (LAR) has been investigated in particular. The LAR qualifies as a reflectory laryngeal adductor mechanism and involves early, presumably di- or oligosynaptic ipsilateral LAR1 as well as late polysynaptic ipsi- and contralateral LAR2 components. In clinical routine diagnostic settings of dysphagia, LAR is only assessed qualitatively and usually triggered by air pulses or tactile stimulation. Dysphagiologists often find that not only the laryngeal sensibility in general is impaired, but especially the protective laryngeal adduction mechanism, which results in a higher risk of aspiration. Thus, it appears mandatory to test the LAR not only qualitatively but also quantitatively. Unfortunately a valid and reliable method that can be employed in clinical practice has not yet been put forward. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Microbial Growth in the Magnesium- Chloride - Sodium- Sulphate Ion System: Implications for Habitability in Terrestrial and Extraterrestrial Salts

    Science.gov (United States)

    Loudon, C. M.; Aka, S.; Cockell, C. S.

    2017-12-01

    Icy moons in the outer solar system are key targets in the search for extra-terrestrial life as there is evidence that they harbour subsurface oceans. Observational evidence of icy moons such as Europa suggest that these likely brine oceans should be composed of chloride and sulphate salts. The effects of the ions that compose these salts on biology and how the interactions between them can create geochemical and geophysical barriers to life are poorly understood. Here we present an in depth study of four microorganisms grown in solutions with varying combinations of the magnesium- chloride- sodium- sulphate ions. We find that the ion composition of the brine solution can have a large effect on growth. Whilst the water activity must be permissible for growth we found that this alone could not predict the effects of the ions on growth, chaotropic effects and ion specific effects influenced by the specific physiology of organisms are also evident. For this reason we conclude that simply knowing which salts are present on icy moons is not sufficient information to determine their potential habitibility. A full sample of any brine ocean would need to be studied to fully determine the potential for biology on these outer solar system satellites.

  19. Decorating Waste Cloth via Industrial Wastewater for Tube-Type Flexible and Wearable Sodium-Ion Batteries.

    Science.gov (United States)

    Zhu, Yun-Hai; Yuan, Shuang; Bao, Di; Yin, Yan-Bin; Zhong, Hai-Xia; Zhang, Xin-Bo; Yan, Jun-Min; Jiang, Qing

    2017-04-01

    To turn waste into treasure, a facile and cost-effective strategy is developed to revive electroless nickel plating wastewater and cotton-textile waste toward a novel electrode substrate. Based on the substrate, a binder-free PB@GO@NTC electrode is obtained, which exhibits superior electrochemical performance. Moreover, for the first time, a novel tube-type flexible and wearable sodium-ion battery is successfully fabricated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Na+,K+-ATPase amino acids involved in transport of the 3rd sodium ion

    DEFF Research Database (Denmark)

    Holm, Rikke; Einholm, Anja P.; Toustrup-Jensen, Mads Schak

    Available evidence indicates that two of the three Na+ ions bound in the E1 form occupy approximately the same positions as the K+ ions in E2, but the location of the third Na+ ion is unsolved. We have previously found a marked decrease in Na+ affinity for activation of phosphorylation in the hum...

  1. Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks.

    Science.gov (United States)

    Wan, Jiayu; Gu, Feng; Bao, Wenzhong; Dai, Jiaqi; Shen, Fei; Luo, Wei; Han, Xiaogang; Urban, Daniel; Hu, Liangbing

    2015-06-10

    In this work, we report for the first time that Na-ion intercalation of reduced graphene oxide (RGO) can significantly improve its printed network's performance as a transparent conductor. Unlike pristine graphene that inhibits Na-ion intercalation, the larger layer-layer distance of RGO allows Na-ion intercalation, leading to simultaneously much higher DC conductivity and higher optical transmittance. The typical increase of transmittance from 36% to 79% and decrease of sheet resistance from 83k to 311 Ohms/sq in the printed network was observed after Na-ion intercalation. Compared with Li-intercalated graphene, Na-ion intercalated RGO shows much better environmental stability, which is likely due to the self-terminating oxidation of Na ions on the RGO edges. This study demonstrated the great potential of metal-ion intercalation to improve the performance of printed RGO network for transparent conductor applications.

  2. "Electron/Ion Sponge"-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries.

    Science.gov (United States)

    Liu, Jilei; Chen, Zhen; Chen, Shi; Zhang, Bowei; Wang, Jin; Wang, Huanhuan; Tian, Bingbing; Chen, Minghua; Fan, Xiaofeng; Huang, Yizhong; Sum, Tze Chien; Lin, Jianyi; Shen, Ze Xiang

    2017-07-25

    One key challenge facing room temperature Na-ion batteries lies in identifying earth-abundant, environmentally friendly and safe materials that can provide efficient Na + storage sites in Na-ion batteries. Herein, we report such a material, polyoxometalate Na 2 H 8 [MnV 13 O 38 ] (NMV), with entirely different composition and structure from those cathode compounds reported before. Ex-situ XPS and FTIR analyses reveal that NMV cathode behaves like an "electron/Na-ion sponge", with 11 electrons/Na + acceptability per mole, which has a decisive contribution to the high capacity. The extraordinary structural features, evidenced by X-ray crystallographic analysis, of Na 2 H 8 [MnV 13 O 38 ] with a flexible 2D lamellar network and 1D open channels provide diverse Na ion migration pathways, yielding good rate capability. First-principle calculations demonstrate that a super-reduced state, [MnV 13 O 38 ] 20- , is formed with slightly expanded size (ca. 7.5%) upon Na + insertion compared to the original [MnV 13 O 38 ] 9- . This "ion sponge" feature ensures the good cycling stability. Consequently, benefiting from the combinations of "electron/ion sponge" with diverse Na + diffusion channels, when revealed as the cathode materials for Na-ion batteries, Na 2 H 8 [MnV 13 O 38 ]/G exhibits a high specific capacity (ca. 190 mA h/g at 0.1 C), associates with a good rate capability (130 mA h/g at 1 C), and a good capacity retention (81% at 0.2 C). Our results promote better understanding of the storage mechanism in polyoxometalate host, enrich the existing rechargeable SIBs cathode chemistry, and enlighten an exciting direction for exploring promising cathode materials for Na-ion batteries.

  3. The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries

    International Nuclear Information System (INIS)

    Tan, Jinli; Liu, Li; Guo, Shengping; Hu, Hai; Yan, Zichao; Zhou, Qian; Huang, Zhifeng; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2015-01-01

    Highlights: •The as-prepared CoF 2 shows excellent electrochemical performance as anode material for lithium ion batteries. •The Li insertion/extraction mechanism of CoF 2 below 1.2 V was firstly proposed. •The electrochemical performance of CoF 2 as anode material in sodium ion batteries was firstly studied. -- Abstract: Cobalt (II) fluoride begins to enter into the horizons of people along with the research upsurge of metal fluorides. It is very significative and theoretically influential to make certain its electrochemical reaction mechanism. In this work, we discover a new and unrevealed reversible interfacial intercalation mechanism reacting below 1.2 V for cobalt (II) fluoride electrode material, which contributes a combined discharge capacity of about 400 mA h g −1 with the formation of SEI film at the initial discharge process. A highly reversible storage capacity of 120 mA h g −1 is observed when the cell is cycled over the voltage of 0.01-1.2 V at 0.2 C, and the low-potential voltage reaction process has a significant impact for the whole electrochemical process. Electrochemical analyses suggest that pure cobalt (II) fluoride shows better electrochemical performance when it is cycled at 3.2-0.01 V compared to the high range (1.0-4.5 V). So, we hold that cobalt (II) fluoride is more suitable to serve as anode material for lithium ion batteries. In addition, we also try to reveal the relevant performance and reaction mechanism, and realize the possibility of cobalt (II) fluoride as anode material for sodium ion batteries

  4. Template-Free Synthesis of Sb2S3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries

    Science.gov (United States)

    Xie, Jianjun; Liu, Li; Xia, Jing; Zhang, Yue; Li, Min; Ouyang, Yan; Nie, Su; Wang, Xianyou

    2018-03-01

    Hierarchical Sb2S3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb2S3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. Even at a high current density of 5000 mA g-1, a discharge capacity of 541 mAh g-1 is achieved. Sb2S3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space, which can buffer the volume expansion. [Figure not available: see fulltext.

  5. Controllable Electrochemical Synthesis of Copper Sulfides as Sodium-Ion Battery Anodes with Superior Rate Capability and Ultralong Cycle Life.

    Science.gov (United States)

    Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai

    2018-03-07

    Sodium-ion batteries (SIBs) are prospective alternative to lithium-ion batteries for large-scale energy-storage applications, owing to the abundant resources of sodium. Metal sulfides are deemed to be promising anode materials for SIBs due to their low-cost and eco-friendliness. Herein, for the first time, series of copper sulfides (Cu 2 S, Cu 7 S 4 , and Cu 7 KS 4 ) are controllably synthesized via a facile electrochemical route in KCl-NaCl-Na 2 S molten salts. The as-prepared Cu 2 S with micron-sized flakes structure is first investigated as anode of SIBs, which delivers a capacity of 430 mAh g -1 with a high initial Coulombic efficiency of 84.9% at a current density of 100 mA g -1 . Moreover, the Cu 2 S anode demonstrates superior capability (337 mAh g -1 at 20 A g -1 , corresponding to 50 C) and ultralong cycle performance (88.2% of capacity retention after 5000 cycles at 5 A g -1 , corresponding to 0.0024% of fade rate per cycle). Meanwhile, the pseudocapacitance contribution and robust porous structure in situ formed during cycling endow the Cu 2 S anodes with outstanding rate capability and enhanced cyclic performance, which are revealed by kinetics analysis and ex situ characterization.

  6. Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.

    Science.gov (United States)

    Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua

    2016-09-14

    Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.

  7. Unravelling the origin of irreversible capacity loss in NaNiO 2 for high voltage sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liguang; Wang, Jiajun; Zhang, Xiaoyi; Ren, Yang; Zuo, Pengjian; Yin, Geping; Wang, Jun

    2017-04-01

    Layered transition metal compounds have attracted much attention due to their high theoretical capacity and energy density for sodium ion batteries. However, this kind of material suffers from serious irreversible capacity decay during the charge and discharge process. Here, using synchrotron-based operando transmission X-ray microscopy and high-energy X-ray diffraction combined with electrochemical measurements, the visualization of the dissymmetric phase transformation and structure evolution mechanism of layered NaNiO2 material during initial charge and discharge cycles are clarified. Phase transformation and deformation of NaNiO2 during the voltage range of below 3.0 V and over 4.0 V are responsible for the irreversible capacity loss during the first cycling, which is also confirmed by the evolution of reaction kinetics behavior obtained by the galvanostatic intermittent titration technique. These findings reveal the origin of the irreversibility of NaNiO2 and offer valuable insight into the phase transformation mechanism, which will provide underlying guidance for further development of high-performance sodium ion batteries.

  8. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Fan, Jing-Min; Chen, Jia-Jia; Zhang, Qian; Chen, Bin-Bin; Zang, Jun; Zheng, Ming-Sen; Dong, Quan-Feng

    2015-06-08

    An composite comprising amorphous carbon nitride (ACN) and zinc oxide is derived from ZIF-8 by pyrolysis. The composite is a promising anode material for sodium-ion batteries. The nitrogen content of the ACN composite is as high as 20.4 %, and the bonding state of nitrogen is mostly pyridinic, as determined by X-ray photoelectron spectroscopy (XPS). The composite exhibits an excellent Na(+) storage performance with a reversible capacity of 430 mA h g(-1) and 146 mA h g(-1) at current densities of 83 mA g(-1) and 8.33 A g(-1) , respectively. A specific capacity of 175 mA h g(-1) was maintained after 2000 cycles at 1.67 A g(-1) , with only 0.016 % capacity degradation per cycle. Moreover, an accelerating rate calorimetry (ARC) test demonstrates the excellent thermal stability of the composite, with a low self heating rate and high onset temperature (210 °C). These results shows its promise as a candidate material for high-capacity, high-rate anodes for sodium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    Science.gov (United States)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  10. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir.

    Science.gov (United States)

    Zhu, Hongli; Jia, Zheng; Chen, Yuchen; Weadock, Nicholas; Wan, Jiayu; Vaaland, Oeyvind; Han, Xiaogang; Li, Teng; Hu, Liangbing

    2013-07-10

    Sodium (Na)-ion batteries offer an attractive option for low cost grid scale storage due to the abundance of Na. Tin (Sn) is touted as a high capacity anode for Na-ion batteries with a high theoretical capacity of 847 mAh/g, but it has several limitations such as large volume expansion with cycling, slow kinetics, and unstable solid electrolyte interphase (SEI) formation. In this article, we demonstrate that an anode consisting of a Sn thin film deposited on a hierarchical wood fiber substrate simultaneously addresses all the challenges associated with Sn anodes. The soft nature of wood fibers effectively releases the mechanical stresses associated with the sodiation process, and the mesoporous structure functions as an electrolyte reservoir that allows for ion transport through the outer and inner surface of the fiber. These properties are confirmed experimentally and computationally. A stable cycling performance of 400 cycles with an initial capacity of 339 mAh/g is demonstrated; a significant improvement over other reported Sn nanostructures. The soft and mesoporous wood fiber substrate can be utilized as a new platform for low cost Na-ion batteries.

  11. Rational design of Sn/SnO{sub 2}/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojia [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Center for Advanced Energy Materials and Devices, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China); Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Adair, Keegan R. [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Sun, Xueliang, E-mail: xsun9@uwo.ca [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2017-08-01

    Highlights: • Sn/SnO{sub 2}/porous carbon nanocomposites are rationally designed via a facile strategy. • The porous carbon mitigates the volume change and poor conductivity of Sn/SnO{sub 2}. • The nanocomposites exhibit the enhanced sodium storage performance. - Abstract: Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g{sup −1}. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO{sub 2} and Sn (Sn/SnO{sub 2}/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO{sub 2}/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g{sup −1}, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g{sup −1} after 50 cycles, which is much higher than those of SnO{sub 2}/PC (138.5 mAh g{sup −1}) and PC (92.2 mAh g{sup −1}). Furthermore, the Sn/SnO{sub 2}/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO{sub 2}/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO{sub 2}/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  12. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis.

    Science.gov (United States)

    Doorn, J; Storteboom, T T R; Mulder, A M; de Jong, W H A; Rottier, B L; Kema, I P

    2015-07-01

    Measurement of chloride in sweat is an essential part of the diagnostic algorithm for cystic fibrosis. The lack in sensitivity and reproducibility of current methods led us to develop an ion chromatography/high-performance liquid chromatography (IC/HPLC) method, suitable for the analysis of both chloride and sodium in small volumes of sweat. Precision, linearity and limit of detection of an in-house developed IC/HPLC method were established. Method comparison between the newly developed IC/HPLC method and the traditional Chlorocounter was performed, and trueness was determined using Passing Bablok method comparison with external quality assurance material (Royal College of Pathologists of Australasia). Precision and linearity fulfill criteria as established by UK guidelines are comparable with inductively coupled plasma-mass spectrometry methods. Passing Bablok analysis demonstrated excellent correlation between IC/HPLC measurements and external quality assessment target values, for both chloride and sodium. With a limit of quantitation of 0.95 mmol/L, our method is suitable for the analysis of small amounts of sweat and can thus be used in combination with the Macroduct collection system. Although a chromatographic application results in a somewhat more expensive test compared to a Chlorocounter test, more accurate measurements are achieved. In addition, simultaneous measurements of sodium concentrations will result in better detection of false positives, less test repeating and thus faster and more accurate and effective diagnosis. The described IC/HPLC method, therefore, provides a precise, relatively cheap and easy-to-handle application for the analysis of both chloride and sodium in sweat. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Determination of soluble bromine in an extra-high-pressure mercury discharge lamp by sodium hydroxide decomposition-suppressed ion chromatography.

    Science.gov (United States)

    Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu

    2006-02-01

    We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.

  14. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.

    Science.gov (United States)

    Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng

    2014-02-01

    A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  15. DETERMINATION OF SURFACTANT SODIUM LAURYL ETHER SULFATE BY ION PAIRING CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY DETECTION

    Science.gov (United States)

    A method for the determination of the anionic Steol CS-330 surfactant is described. CS-330 is a complex mixture of oligomers due to the various sizes of fatty alcohols and the number of moles of the ethoxylation. The main component of CS-330 is sodium lauryl ether sulfate (SLES)....

  16. Transition metal ion FRET uncovers K(+) regulation of a neurotransmitter/sodium symporter

    DEFF Research Database (Denmark)

    Billesbølle, Christian B; Mortensen, Jonas S; Sohail, Azmat

    2016-01-01

    Neurotransmitter/sodium symporters (NSSs) are responsible for Na(+)-dependent reuptake of neurotransmitters and represent key targets for antidepressants and psychostimulants. LeuT, a prokaryotic NSS protein, constitutes a primary structural model for these transporters. Here we show that K...

  17. A 23Na Multiple-Quantum-Filtered NMR Study of the Effect of the Cytoskeleton Conformation on the Anisotropic Motion of Sodium Ions in Red Blood Cells

    Science.gov (United States)

    Knubovets, Tatyana; Shinar, Hadassah; Eliav, Uzi; Navon, Gil

    1996-01-01

    Recently, it has been shown that23Na double-quantum-filtered NMR spectroscopy can be used to detect anisotropic motion of bound sodium ions in biological systems. The technique is based on the formation of the second-rank tensor when the quadrupolar interaction is not averaged to zero. Using this method, anisotropic motion of bound sodium in human and dog red blood cells was detected, and the effect was shown to depend on the integrity of the membrane cytoskeleton. In the present study, multiple-quantum-filtered techniques were applied in combination with a quadrupolar echo to measure the transverse-relaxation times,T2fandT2s. Line fitting was performed to obtain the values of the residual quadrupolar interaction, which was measured for sodium in a variety of mammalian erythrocytes of different size, shape, rheological properties, and sodium concentrations. Human unsealed white ghosts were used to study sodium bound at the anisotropic sites on the inner side of the RBC membrane. Modulations of the conformation of the cytoskeleton by the variation of either the ionic strength or pH of the suspending medium caused drastic changes in both the residual quadrupolar interaction andT2fdue to changes in the fraction of bound sodium ions as well as changes in the structure of the binding sites. By combining the two spectroscopic parameters, structural change can be followed. The changes in the structure of the sodium anisotropic binding sites deduced by this method were found to correlate with known conformational changes of the membrane cytoskeleton. Variations of the medium pH affected both the fraction of bound sodium ions and the structure of the anisotropic binding sites. Sodium and potassium were shown to bind to the anisotropic binding sites with the same affinity.

  18. On the concept of resting potential--pumping ratio of the Na⁺/K⁺ pump and concentration ratios of potassium ions outside and inside the cell to sodium ions inside and outside the cell.

    Science.gov (United States)

    Xu, Ning

    2013-01-01

    In animal cells, the resting potential is established by the concentration gradients of sodium and potassium ions and the different permeabilities of the cell membrane to them. The large concentration gradients of sodium and potassium ions are maintained by the Na⁺/K⁺ pump. Under physiological conditions, the pump transports three sodium ions out of and two potassium ions into the cell per ATP hydrolyzed. However, unlike other primary or secondary active transporters, the Na⁺/K⁺ pump does not work at the equilibrium state, so the pumping ratio is not a thermodynamic property of the pump. In this article, I propose a dipole-charging model of the Na⁺/K⁺ pump to prove that the three Na⁺ to two K⁺ pumping ratio of the Na⁺/K⁺ pump is determined by the ratio of the ionic mobilities of potassium to sodium ions, which is to ensure the time constant τ and the τ-dependent processes, such as the normal working state of the Na⁺/K⁺ pump and the propagation of an action potential. Further, the concentration ratios of potassium ions outside and inside the cell to sodium ions inside and outside the cell are 0.3027 and 0.9788, respectively, and the sum of the potassium and sodium equilibrium potentials is -30.3 mV. A comparative study on these constants is made for some marine, freshwater and terrestrial animals. These findings suggest that the pumping ratio of the Na⁺/K⁺ pump and the ion concentration ratios play a role in the evolution of animal cells.

  19. Preparation of a Si/SiO2 -Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Zeng, Lingxing; Liu, Renpin; Han, Lei; Luo, Fenqiang; Chen, Xi; Wang, Jianbiao; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2018-04-03

    In this work, an Si/SiO 2 -ordered-mesoporous carbon (Si/SiO 2 -OMC) nanocomposite was initially fabricated through a magnesiothermic reduction strategy by using a two-dimensional bicontinuous mesochannel of SiO 2 -OMC as a precursor, combined with an NaOH etching process, in which crystal Si/amorphous SiO 2 nanoparticles were encapsulated into the OMC matrix. Not only can such unique porous crystal Si/amorphous SiO 2 nanoparticles uniformly dispersed in the OMC matrix mitigate the volume change of active materials during the cycling process, but they can also improve electrical conductivity of Si/SiO 2 and facilitate the Li + /Na + diffusion. When applied as an anode for lithium-ion batteries (LIBs), the Si/SiO 2 -OMC composite displayed superior reversible capacity (958 mA h g -1 at 0.2 A g -1 after 100 cycles) and good cycling life (retaining a capacity of 459 mA h g -1 at 2 A g -1 after 1000 cycles). For sodium-ion batteries (SIBs), the composite maintained a high capacity of 423 mA h g -1 after 100 cycles at 0.05 A g -1 and an extremely stable reversible capacity of 190 mA h g -1 was retained even after 500 cycles at 1 A g -1 . This performance is one of the best long-term cycling properties of Si-based SIB anode materials. The Si/SiO 2 -OMC composites exhibited great potential as an alternative material for both lithium- and sodium-ion battery anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Theoretical investigations on the formation of nitrobenzanthrone-DNA adducts.

    Science.gov (United States)

    Arlt, Volker M; Phillips, David H; Reynisson, Jóhannes

    2011-09-07

    3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The thermochemical formation cascades were calculated for six 3-NBA-derived DNA adducts employing its arylnitrenium ion as precursor using density functional theory (DFT). Clear exothermic pathways were found for four adducts, i.e., 2-(2'-deoxyadenosin-N(6)-yl)-3-aminobenzanthrone, 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone, N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone and 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone. All four have been observed to be formed in cell-free experimental systems. The formation of N-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone is predicted to be not thermochemically viable explaining its absence in either in vitro or in vivo model systems. However, 2-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone, can be formed, albeit not as a major product, and is a viable candidate for an unknown adenine adduct observed experimentally. 2-nitrobenzanthrone (2-NBA), an isomer of 3-NBA, was also included in the calculations; it has a higher abundance in ambient air than 3-NBA, but a much lower genotoxic potency. Similar thermochemical profiles were obtained for the calculated 2-NBA-derived DNA adducts. This leads to the conclusion that enzymatic activation as well as the stability of its arylnitrenium ion are important determinants of 2-NBA genotoxicity.

  1. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-01-18

    We have systematically changed the number of atomic layers stacked in 2D SnO nanosheet anodes and studied their sodium ion battery (SIB) performance. The results indicate that as the number of atomic SnO layers in a sheet decreases, both the capacity and cycling stability of the Na ion battery improve. The thinnest SnO nanosheet anodes (two to six SnO monolayers) exhibited the best performance. Specifically, an initial discharge and charge capacity of 1072 and 848 mAh g-1 were observed, respectively, at 0.1 A g-1. In addition, an impressive reversible capacity of 665 mAh g-1 after 100 cycles at 0.1 A g-1 and 452 mAh g-1 after 1000 cycles at a high current density of 1.0 A g-1 was observed, with excellent rate performance. As the average number of atomic layers in the anode sheets increased, the battery performance degraded significantly. For example, for the anode sheets with 10-20 atomic layers, only a reversible capacity of 389 mAh g-1 could be obtained after 100 cycles at 0.1 A g-1. Density functional theory calculations coupled with experimental results were used to elucidate the sodiation mechanism of the SnO nanosheets. This systematic study of monolayer-dependent physical and electrochemical properties of 2D anodes shows a promising pathway to engineering and mitigating volume changes in 2D anode materials for sodium ion batteries. It also demonstrates that ultrathin SnO nanosheets are promising SIB anode materials with high specific capacity, stable cyclability, and excellent rate performance.

  2. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    Science.gov (United States)

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  3. Influence of excess sodium ions on the specific surface area formation in a NiO-Al2O3 catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Lazić M.M.

    2008-01-01

    Full Text Available The influence of sodium ions on the specific surface area of a NiO-Al2O3 catalyst in dependence of nickel loading (5, 10, and 20 wt% Ni, temperature of heat treatment (400, 700 and 1100oC and the method of sample preparation was investigated. Low temperature nitrogen adsorption (LTNA, X-ray diffraction (XRD and scanning electron microscopy (SEM were applied for sample characterization. Dramatic differences in the specific surface area were registered between non-rinsed and rinsed Al2O3 and NiO-Al2O3 samples. The lagged sodium ions promote sintering of non-rinsed catalyst samples.

  4. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.

    Science.gov (United States)

    Dong, Caifu; Xu, Liqiang

    2017-03-01

    Two multifunctional metal-organic frameworks (MOFs) with the same coordination mode, [Co(L)(H 2 O)] n ·2nH 2 O [defined as "Co(L) MOF"] and [Cd(L)(H 2 O)] n ·2nH 2 O [defined as "Cd(L) MOF"] (L = 5-aminoisophthalic acid) have been fabricated via a simple and versatile scalable solvothermal approach at 85 °C for 24 h. The relationship between the structure of the electrode materials (especially the coordination water and different metal ions) and the electrochemical properties of MOFs have been investigated for the first time. And then the possible electrochemical mechanisms of the electrodes have been studied and proposed. In addition, MOFs/RGO hybrid materials were prepared via ball milling, which demonstrated better electrochemical performances than those of individual Co(L) MOF and Cd(L) MOF. For example, when Co(L) MOF/RGO was applied as anode for sodium ion batteries (SIBs), it retained 206 mA h g -1 after 330 cycles at 500 mA g -1 and 1185 mA h g -1 could be obtained after 50 cycles at 100 mA g -1 for lithium-ion batteries (LIBs). The high-discharge capacity, excellent cyclic stability combined with the facile synthesis procedure enable Co(L) MOF- and Cd(L) MOF-based materials to be prospective anode materials for SIBs and LIBs.

  5. Ion pair recognition by Zn-porphyrin/crown ether conjugates: visible sensing of sodium cyanide.

    Science.gov (United States)

    Kim, Yeon-Hwan; Hong, Jong-In

    2002-03-07

    Synthesis and complexation behavior of ditopic neutral receptors composed of both a Lewis-acidic binding site (zinc porphyrin moiety) and a Lewis-basic binding site (crown ether moiety) are reported; the receptors bound only NaCN in a ditopic fashion with a color change, and in contrast other sodium salts bound to the receptors in a monotopic fashion without a color change.

  6. Molten salt synthesis of sodium lithium titanium oxide anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yin, S.Y., E-mail: yshy2004@hotmail.com [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Feng, C.Q. [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Wu, S.J.; Liu, H.L.; Ke, B.Q. [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Zhang, K.L. [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Chen, D.H. [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Hubei Key Laboratory for Catalysis and Material Science, College of Chemistry and Material Science, South Central University for Nationalities, Wuhan 430074, Hubei (China)

    2015-09-05

    Highlights: • Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 12} has been successfully synthesized via a molten salt route. • Calcination temperature is an important effect on the component and microstructure of the product. • Pure phase Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 12} could be obtained at 700 °C for 2 h. - Abstract: The sodium lithium titanium oxide with composition Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 14} has been synthesized by a molten salt synthesis method using sodium chloride and potassium chloride mixture as a flux medium. Synthetic variables on the synthesis, such as sintering temperature, sintering time and the amount of lithium carbonate, were intensively investigated. Powder X-ray diffraction and scanning electron microscopy images of the reaction products indicates that pure phase sodium lithium titanium oxide has been obtained at 700 °C, and impure phase sodium hexatitanate with whiskers produced at higher temperature due to lithium evaporative losses. The results of cyclic voltammetry and discharge–charge tests demonstrate that the synthesized products prepared at various temperatures exhibited electrochemical diversities due to the difference of the components. And the sample obtained at 700 °C revealed highly reversible insertion and extraction of Li{sup +} and displayed a single potential plateau at around 1.3 V. The product obtained at 700 °C for 2 h exhibits good cycling properties and retains the specific capacity of 62 mAh g{sup −1} after 500 cycles.

  7. Preparation of Li4Ti5O12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance

    International Nuclear Information System (INIS)

    Zhang, Jingwei; Zhang, Fenli; Li, Jiuhe; Cai, Wei; Zhang, Jiwei; Yu, Laigui; Jin, Zhensheng; Zhang, Zhijun

    2013-01-01

    Nano-sized spinel lithium titanate (Li 4 Ti 5 O 12 ) was synthesized using sodium titanate nanotube as precursor via a facile solution ion-exchange method in association with subsequent calcination treatment at relatively low temperature. The influences of precursors, ion-exchange condition, and calcination temperature on the microstructure and electrochemical performance of the products were studied. Results indicate that pure-phase Li 4 Ti 5 O 12 can be harvested from sodium titanate nanotube precursor through an ion-exchanging at room temperature and calcination at 500 °C. The products exhibit a better performance as Li-ion battery anode material than the counterparts prepared from protonic titanate nanotube (H-titanate) precursor. The reason may lie in that sodium titanate nanotube is easier than protonic titanate nanotube to synthesize lithium titanate without TiO 2 impurity, resulting in reduced electron transfer ability and Li-ion transport ability. The capacity of Li 4 Ti 5 O 12 prepared from sodium titanate nanotube is 146 mAh/g at 10 C, and it has only 0.7 % decay after 200 charge/discharge cycles

  8. High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries

    International Nuclear Information System (INIS)

    Ge, Yeqian; Jiang, Han; Zhu, Jiadeng; Lu, Yao; Chen, Chen; Hu, Yi; Qiu, Yiping; Zhang, Xiangwu

    2015-01-01

    Highlights: • Titanium oxide nanopaticles were modified by carbon coating from pyrolyzing of PVP. • Carbon coating gave rise to excellent cycling ability of TiO 2 for sodium-ion batteries. • The reversible capacity of carbon-coated TiO 2 reached 242.3 mAh g −1 at 30 mA g −1 . • Good rate performance of carbon-coated TiO 2 was presented up to 800 mA g −1 . - Abstract: Owing to the merits of good chemical stability, elemental abundance and nontoxicity, titanium dioxide (TiO 2 ) has drawn increasing attraction for use as anode material in sodium-ion batteries. Nanostructured TiO 2 was able to achieve high energy density. However, nanosized TiO 2 is typically electrochemical instable, which leads to poor cycling performance. In order to improve the cycling stability, carbon from thermolysis of poly(vinyl pyrrolidone) was coated onto TiO 2 nanoparticles. Electronic conductivity and electrochemical stability were enhanced by coating carbon onto TiO 2 nanoparticles. The resultant carbon-coated TiO 2 nanoparticles exhibited high reversible capacity (242.3 mAh g −1 ), high coulombic efficiency (97.8%), and good capacity retention (87.0%) at 30 mA g −1 over 100 cycles. By comparison, untreated TiO 2 nanoparticles showed comparable reversible capacity (237.3 mAh g −1 ) and coulombic efficiency (96.2%), but poor capacity retention (53.2%) under the same condition. The rate performance of carbon-coated TiO 2 nanoparticles was also displayed as high as 127.6 mAh g −1 at a current density of 800 mA g −1 . The improved cycling performance and rate capability were mostly attributed to protective carbon layer helping stablize solid electrolyte interface formation of TiO 2 nanoparticles and improving the electronic conductivity. Therefore, it is demonstrated that carbon-coated TiO 2 nanoparticles are promising anode candidate for sodium-ion batteries

  9. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  10. One-dimensional coaxial Sb and carbon fibers with enhanced electrochemical performance for sodium-ion batteries

    Science.gov (United States)

    Zhu, Mengnan; Kong, Xiangzhong; Yang, Hulin; Zhu, Ting; Liang, Shuquan; Pan, Anqiang

    2018-01-01

    Antimony (Sb) has been intensively investigated as a promising anode material for sodium ion batteries (SIBs) in recent years. However, bulk Sb particles usually suffer from excessive volume expansion thus leading to dramatic capacity decay after cycling. To address this issue, Sb has been uniformly decorated on Polyacrylonitrile (PAN) derived carbon nanofibers (PCFs) via a simple chemical deposition strategy to form a one-dimensional (1D) core-shell nanostructure of Sb@PCFs. PCFs were first derived from electrospun PAN fibers and treated with subsequent calcination. The PCFs constructed an interwoven carbon network were later employed for Sb deposition, which can effectively alleviate aggregation or further cracking of Sb nanoparticles occurred in electrochemical kinetic process. The as-obtained Sb@PCFs nanocomposites demonstrated excellent cycling stability with good rate performances. This carefully designed core-shell nanostructure of antimony nanoparticles wrapped PCFs are responsible for good electrochemical Na-ion storage. Moreover, the 1D nanostructure manage to pave pathways for fast ions transfer during charge-discharge, which could extra contribute to the enhanced SIBs performances.

  11. Sodium dodecyl sulfate coated alumina modified with a new Schiff's base as a uranyl ion selective adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Science, Shiraz University, 71454 Shiraz (Iran, Islamic Republic of); Moradi Abdoluosofi, L.; Pakniat, M. [Department of Chemistry, Faculty of Science, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Montazerozohori, M. [Department of Chemistry, Faculty of Science, Yasouj University, Yasouj (Iran, Islamic Republic of)

    2011-03-15

    A simple and selective method was used for the preconcentration and determination of uranium(VI) by solid-phase extraction (SPE). In this method, a column of alumina modified with sodium dodecyl sulfate (SDS) and a new Schiff's base ligand was prepared for the preconcentration of trace uranyl(VI) from water samples. The uranium(VI) was completely eluted with HCl 2 M and determined by a spectrophotometeric method with Arsenazo(III). The preconcentration steps were studied with regard to experimental parameters such as amount of extractant, type, volume and concentration of eluent, pH, flow rate of sample source and tolerance limit of diverse ions on the recovery of uranyl ion. A preconcentration factor more than 200 was achieved and the average recovery of uranyl(VI) was 99.5%. The relative standard deviation was 1.1% for 10 replicate determinations of uranyl(VI) ion in a solution with a concentration of 5 {mu}g mL{sup -1}. This method was successfully used for the determination of spiked uranium in natural water samples.

  12. EPR and optical absorption studies of paramagnetic molecular ion (VO2+) in Lithium Sodium Acid Phthalate single crystal

    Science.gov (United States)

    Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2017-12-01

    Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.

  13. 18-Membered cyclic esters derived from glycolide and lactide: preparations, structures and coordination to sodium ions

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Malcolm H.; Gallucci, Judith C.; Yin, Hongfeng (OSU)

    2008-06-30

    From reactions between glycolide or lactide (4 equiv.) with 4-dimethylaminopyridine, DMAP (1 equiv.) and NaBPh4 (1 equiv.) in benzene at 70 C the cyclic ester adducts (CH{sub 2}C(O)O){sub 6}NaBPh{sub 4} and (CHMeC(O)O){sub 6}NaBPh{sub 4} are formed respectively. The structures of the salts Na[(S,R,S,R,S,R)-(CH{sub 3}CHC(O)O){sub 6}]{sub 2}BPh{sub 4} {center_dot} CH{sub 3}CN and (CH{sub 2}C(O)O){sub 6}NaBPh{sub 4} {center_dot} (CH{sub 3}CN){sub 2} are reported. The cyclic esters were separated by chromatography and the structures of (CH{sub 2}C(O)O){sub 6}, (S,R,R,R,R,R)-(CHMeC(O)O){sub 6} and (S,S,R,R,R,R)-(CHMeC(O)O){sub 6} were determined. The {sup 1}H and {sup 13}C NMR data are reported for one of each of the six enantiomers of (CHMeC(O)O){sub 6} and the two meso isomers. The mechanism for the formation of these 18-membered rings is discussed in terms of an initial reaction between DMAP and NaBPh{sub 4} in hot benzene that produces NaPh and DMAP:BPh{sub 3} in the presence of the monomer lactide. The cyclic esters (CHMeC(O)O){sub 6} can also be obtained from the reaction between polylactide, PLA, in the presence of DMAP and NaBPh{sub 4}. The cyclic esters 3-methyl-1,4-dioxane-2,5-dione and 3,6,6-trimethyl-1,4-dioxane-2,5-dione undergo similar ring enlarging reactions to give cyclic 18-membered ring esters as determined by ESI-MS.

  14. Mesoporous Tin-Based Oxide Nanospheres/Reduced Graphene Composites as Advanced Anodes for Lithium-Ion Half/Full Cells and Sodium-Ion Batteries.

    Science.gov (United States)

    He, Yanyan; Li, Aihua; Dong, Caifu; Li, Chuanchuan; Xu, Liqiang

    2017-10-04

    The large volume variations of tin-based oxides hinder their extensive application in the field of lithium-ion batteries (LIBs). In this study, structure design, hybrid fabrication, and carbon-coating approaches have been simultaneously adopted to address these shortcomings. To this end, uniform mesoporous NiO/SnO 2 @rGO, Ni-Sn oxide@rGO, and SnO 2 @rGO nanosphere composites have been selectively fabricated. Among them, the obtained NiO/SnO 2 @rGO composite exhibited a high capacity of 800 mAh g -1 at 1000 mA g -1 after 400 cycles. The electrochemical mechanism of NiO/SnO 2 as an anode for LIBs has been preliminarily investigated by ex situ XRD pattern analysis. Furthermore, an NiO/SnO 2 @rGO-LiCoO 2 lithium-ion full cell showed a high capacity of 467.8 mAh g -1 at 500 mA g -1 after 100 cycles. Notably, the NiO/SnO 2 @rGO composite also showed good performance when investigated as an anode for sodium-ion batteries (SIBs). It is believed that the unique mesoporous nanospherical framework, synergistic effects between the various components, and uniform rGO wrapping of NiO/SnO 2 shorten the Li + ion diffusion pathways, maintain sufficient contact between the active material and the electrolyte, mitigate volume changes, and finally improve the electrical conductivity of the electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. EXAFS studies on the reaction of gold (III) chloride complex ions with sodium hydroxide and glucose.

    Science.gov (United States)

    Pacławski, K; Zajac, D A; Borowiec, M; Kapusta, Cz; Fitzner, K

    2010-11-11

    EXAFS and QEXAFS experiments were carried out at Hasylab laboratory in DESY center (X1 beamline, Hamburg, Germany) to monitor the course of the hydrolysis reactions of [AuCl(4)](-) complex ions as well as their reduction using glucose. As a result, changes in the spectra of [AuCl(4)](-) ions and disappearance of absorption Au-L(3) edge were registered. From the results of the experiments we have carried out, the changes in bond lengths between Au(3+) central ion and Cl(-) ligands as well as the reduction of Au(3+) to metallic form (colloidal gold was formed in the system) are evident. Good quality spectra obtained before and after the reactions gave a chance to determine the bond length characteristic of Au-Cl, Au-OH and Au-Au pairs. Additionally, the obtained results were compared with the simulated spectra of different gold (III) complex ions, possibly present in the solution. Finally, the mechanism of these reactions was suggested. Unfortunately, it was not possible to detect the changes in the structure of gold (III) complex ions within the time of reaction, because of too high rates of both processes (hydrolysis and reduction) as compared with the detection time.

  16. Effect of ascorbate ions in DTPA treatment after contamination by mixed plutonium dioxide-sodium burning products

    International Nuclear Information System (INIS)

    Metivier, H.; Masse, R.; Nolibe, D.; Nenot, J.C.; Lafuma, J.

    1977-01-01

    Plutonium toxicity problems arising from the use of molten sodium cooled fast breeder reactors involving the accidental mixing and ignition of sodium contaminated by plutonium dioxide have been investigated. The possibility of using the strong reducing agent, ascorbate ion, in order to reduce Pu VI to a chemical form more complexable by DTPA, has been tested using male and female rats. Urine, feces, liver and skeletal measurements of 239 Pu daughter products were carried out. It was shown that the transportable fraction was not significantly modified by the associate ascorbate-DTPA treatment. However the skeletal burden which represents 2.2% with DTPA, reached only 1.6% with ascorbate association and 0.3% with preventive ascorbate injections. Whatever the DTPA ascorbate treatment, the liver burden was not modified significantly. Difference observable only with preventive ascorbate treatment cancels out ascorbate association in order to greatly increase DTPA therapy efficiency, but seems to indicate that the Pu-proteins associations in blood is reduced more easily by ascorbate than association of Pu with local proteins. Ascorbate reduction can also be observed in urinary elimination in that preventive ascorbate, followed by DTPA-ascorbate, leads to a quicker urinary elimination than DTPA or DTPA plus ascorbate post treatment. (U.K.)

  17. MoS{sub 2}/cotton-derived carbon fibers with enhanced cyclic performance for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang [School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 (China); Yang, Yan [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Liu, Jiangwen; Ouyang, Liuzhang; Liu, Jun; Hu, Renzong [School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 (China); Yang, Lichun, E-mail: mslcyang@scut.edu.cn [School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 (China); Zhu, Min [School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 (China)

    2017-08-15

    Highlights: • MoS{sub 2} nanosheets vertically grow on cotton-derived carbon microfibers. • The carbon fibers facilitate charge transfer and structure stabilization. • The MoS{sub 2}/CDCFs exhibit enhanced cyclic performance for reversible Na{sup +} storage. - Abstract: Carbon fibers derived from bio-template are low cost and environmental benign, therefore have attracted much attention in energy storage materials. In this work, we successfully fabricated MoS{sub 2}/cotton-derived carbon fibers (MoS{sub 2}/CDCFs) via hydrothermal route followed by carbonization process. In the composite of MoS{sub 2}/CDCFs, MoS{sub 2} nanosheets vertically grow on the carbon fibers which offer fast ways for electron transfer and at the same time act as robust support to buffer the volume changes of MoS{sub 2} nanosheets during discharge/charge cycles. As anode materials for sodium-ion batteries, MoS{sub 2}/CDCFs exhibit good rate performance and markedly enhanced cyclic stability due to the conductive support of CDCFs. At a current density of 0.1 A g{sup −1}, the MoS{sub 2}/CDCFs-1 shows an initial reversible capacity of 504.9 mAh g{sup −1}, and maintains 444.5 mAh g{sup −1} after 50 cycles. Even when the current density increases to 0.5 A g{sup −1}, it maintains 323.1 mAh g{sup −1} after 150 cycles, which is much higher than the capacity retention of 149.6 mAh g{sup −1} for the bare MoS{sub 2} nanosheets. The improved electrochemical performance verifies the effective strategy of using cotton as carbon source to construct hierarchical composites for sodium-ion batteries.

  18. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters.

    Science.gov (United States)

    Hanukoglu, Israel

    2017-02-01

    The acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) are members of a superfamily of channels that play critical roles in mechanosensation, chemosensation, nociception, and regulation of blood volume and pressure. These channels look and function like a tripartite funnel that directs the flow of Na + ions into the cytoplasm via the channel pore in the membrane. The subunits that form these channels share a common structure with two transmembrane segments (TM1 and TM2) and a large extracellular part. In most vertebrates, there are five paralogous genes that code for ASICs (ASIC1-ASIC5), and four for ENaC subunits alpha, beta, gamma, and delta (α, β, γ, and δ). While ASICs can form functional channels as a homo- or heterotrimer, ENaC functions as an obligate heterotrimer composed of α-β-γ or β-γ-δ subunits. The structure of ASIC has been determined in several conformations, including desensitized and open states. This review presents a comparison of the structures of these states using easy-to-understand molecular models of the full complex, the central tunnel that includes an outer vestibule, the channel pore, and ion selectivity filter. The differences in the secondary, tertiary, and quaternary structures of the states are summarized to pinpoint the conformational changes responsible for channel opening. Results of site-directed mutagenesis studies of ENaC subunits are examined in light of ASIC1 models. Based on these comparisons, a molecular model for the selectivity filter of ENaC is built by in silico mutagenesis of an ASIC1 structure. These models suggest that Na + ions pass through the filter in a hydrated state. © 2016 Federation of European Biochemical Societies.

  19. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    Science.gov (United States)

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn 4+ into Mn 2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH 4 ) 2 Mn(SO 3 ) 2 ·H 2 O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries.

    Science.gov (United States)

    Xie, Xiuqiang; Chen, Shuangqiang; Sun, Bing; Wang, Chengyin; Wang, Guoxiu

    2015-09-07

    Low-cost and sustainable sodium-ion batteries are regarded as a promising technology for large-scale energy storage and conversion. The development of high-rate anode materials is highly desirable for sodium-ion batteries. The optimization of mass transport and electron transfer is crucial in the discovery of electrode materials with good high-rate performances. Herein, we report the synthesis of 3 D interconnected SnO2 /graphene aerogels with a hierarchically porous structure as anode materials for sodium-ion batteries. The unique 3 D architecture was prepared by a facile in situ process, during which cross-linked 3 D conductive graphene networks with macro-/meso-sized hierarchical pores were formed and SnO2 nanoparticles were dispersed uniformly on the graphene surface simultaneously. Such a 3 D functional architecture not only facilitates the electrode-electrolyte interaction but also provides an efficient electron pathway within the graphene networks. When applied as anode materials in sodium-ion batteries, the as-prepared SnO2 /graphene aerogel exhibited high reversible capacity, improved cycling performance compared to SnO2 , and promising high-rate capability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Environmentally Sustainable Aluminum-Coordinated Poly(tetrahydroxybenzoquinone) as a Promising Cathode for Sodium Ion Batteries.

    Science.gov (United States)

    Kim, Hee Joong; Kim, Youngjin; Shim, Jimin; Jung, Kyung Hwa; Jung, Min Soo; Kim, Hanseul; Lee, Jong-Chan; Lee, Kyu Tae

    2018-01-31

    Na-ion batteries are attractive as an alternative to Li-ion batteries because of their lower cost. Organic compounds have been considered as promising electrode materials due to their environmental friendliness and molecular diversity. Herein, aluminum-coordinated poly(tetrahydroxybenzoquinone) (P(THBQ-Al)), one of the coordination polymers, is introduced for the first time as a promising cathode for Na-ion batteries. P(THBQ-Al) is synthesized through a facile coordination reaction between benzoquinonedihydroxydiolate (C 6 O 6 H 2 2- ) and Al 3+ as ligands and complex metal ions, respectively. Tetrahydroxybenzoquinone is environmentally sustainable, because it can be obtained from natural resources such as orange peels. Benzoquinonedihydroxydiolate also contributes to delivering high reversible capacity, because each benzoquinonedihydroxydiolate unit is capable of two electron reactions through the sodiation of its conjugated carbonyl groups. Electrochemically inactive Al 3+ improves the structural stability of P(THBQ-Al) during cycling because of a lack of a change in its oxidation state. Moreover, P(THBQ-Al) is thermally stable and insoluble in nonaqueous electrolytes. These result in excellent electrochemical performance including a high reversible capacity of 113 mA h g -1 and stable cycle performance with negligible capacity fading over 100 cycles. Moreover, the reaction mechanism of P(THBQ-Al) is clarified through ex situ XPS and IR analyses, in which the reversible sodiation of C═O into C-O-Na is observed.

  2. SnSe2 2D Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan; Xia, Chuan; Zhu, Jiajie; Ahmed, Bilal; Liang, Hanfeng; Velusamy, Dhinesh Babu; Schwingenschlö gl, Udo; Alshareef, Husam N.

    2016-01-01

    A simple synthesis method to prepare pure SnSe2 nanosheet anodes for Na ion batteries is reported. The SnSe2 2D sheets achieve a stable and reversible specific capacity of 515 mA h g-1 after 100 cycles, with excellent rate performance. The sodiation

  3. Pyrolytic Carbon Nanosheets for Ultrafast and Ultrastable Sodium-Ion Storage.

    Science.gov (United States)

    Cho, Se Youn; Kang, Minjee; Choi, Jaewon; Lee, Min Eui; Yoon, Hyeon Ji; Kim, Hae Jin; Leal, Cecilia; Lee, Sungho; Jin, Hyoung-Joon; Yun, Young Soo

    2018-04-01

    Na-ion cointercalation in the graphite host structure in a glyme-based electrolyte represents a new possibility for using carbon-based materials (CMs) as anodes for Na-ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na-ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating. In particular, PCN-2800 prepared by heating at 2800 °C has a distinctive sp 2 carbon bonding nature, crystalline domain size of ≈44.2 Å, and high electrical conductivity of ≈320 S cm -1 , presenting significantly high rate capability at 600 C (60 A g -1 ) and stable cycling behaviors over 40 000 cycles as an anode for Na-ion storage. The results of this study show the unusual graphitization behaviors of a char-type carbon precursor and exceptionally high rate and cycling performances of the resulting graphitic material, PCN-2800, even surpassing those of supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1986-05-06

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-(/sup 3/H)ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate.

  5. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1986-01-01

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-[ 3 H]ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate

  6. Ion Dynamics in a Mixed-Cation Alkoxy-Ammonium Ionic Liquid Electrolyte for Sodium Device Applications.

    Science.gov (United States)

    Pope, Cameron R; Kar, Mega; MacFarlane, Douglas R; Armand, Michel; Forsyth, Maria; O'Dell, Luke A

    2016-10-18

    The ion dynamics in a novel sodium-containing room-temperature ionic liquid (IL) consisting of an ether-functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf 2 ] anion with various concentrations of Na[NTf 2 ] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf 2 ] salt (over 2 mol kg -1 ) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether-functionalised ammonium and Na cations, possibly with the latter species acting as cross-links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na-based device. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries.

    Science.gov (United States)

    Li, Biao; Gao, Zhan; Wang, Dake; Hao, Qiaoyan; Wang, Yan; Wang, Yongkun; Tang, Kaibin

    2015-12-01

    Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g(-1) at 25 mA g(-1) up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g(-1) at 250 mA g(-1) up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g(-1) was maintained at 25 mA g(-1) after 115 cycles in the potential range of 2.9-0.5 V.

  8. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining

    International Nuclear Information System (INIS)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R.

    2009-01-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO 3 formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  9. Optical and physical properties of sodium lead barium borate glasses doped with praseodymium ion

    Science.gov (United States)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    Praseodymium doped sodium lead barium borate glasses have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses using PekinElemer Lambda-35 Uv-Vis spectrometer in the range of 200 -1100 nm. The optical direct band gap energies were found to be in the range of 3.62 eV to 3.69 eV and indirect band gap energies were found to be in the range of 3.57 eV to 3.62eV. The refractive indices were measured by using Abbe refractometer the values are in the range of 1.620 to 1.625.

  10. Nanosensors for label-free measurement of sodium ion fluxes of neuronal cells

    Energy Technology Data Exchange (ETDEWEB)

    Gebinoga, Michael, E-mail: michael.gebinoga@tu-ilmenau.de [ZIK MacroNano Microfluidics and Biosensors, Technical University Ilmenau, P.O. Box 100565, D-98684 Ilmenau (Germany); Silveira, Liele; Cimalla, Irina [ZIK MacroNano Microfluidics and Biosensors, Technical University Ilmenau, P.O. Box 100565, D-98684 Ilmenau (Germany); Dumitrescu, Andreea [University of Pennsylvania - School of Engineering and Applied Science, Philadelphia, PA 19104-6391 (United States); Kittler, Mario; Luebbers, Benedikt; Becker, Annette [ZIK MacroNano Microfluidics and Biosensors, Technical University Ilmenau, P.O. Box 100565, D-98684 Ilmenau (Germany); Lebedev, Vadim [Fraunhofer Institute for Solid State Physics, Tullastr. 7, D-79108 Freiburg (Germany); Schober, Andreas [ZIK MacroNano Microfluidics and Biosensors, Technical University Ilmenau, P.O. Box 100565, D-98684 Ilmenau (Germany)

    2010-05-25

    Novel nanosensors based on aluminium gallium nitrides (AlGaN/GaN) high electron mobility transistors have been of high interest during the last years, especially for their electrical characteristics as open gate field effect transistors. These nanosensors provide a valuable tool for high content screening in drug discovery, cell monitoring and liquid analyses focusing on applications of electrochemical detection technology. Our own measurements with these sensors confirm their pH sensitivity and in addition the possibility of detection of other ions in aqueous media. These measurements deal with the reactions of NG 108-15 (mouse neuroblastoma x rat glioma hybrid) neuronal cells in response to different acetylcholinesterase inhibitors. Our experimental approach shows some advantages. The first advantage is the label-free measurement of ion fluxes, and another advantage is the possibility non-destructively to estimate cell signals.

  11. Nanosensors for label-free measurement of sodium ion fluxes of neuronal cells

    International Nuclear Information System (INIS)

    Gebinoga, Michael; Silveira, Liele; Cimalla, Irina; Dumitrescu, Andreea; Kittler, Mario; Luebbers, Benedikt; Becker, Annette; Lebedev, Vadim; Schober, Andreas

    2010-01-01

    Novel nanosensors based on aluminium gallium nitrides (AlGaN/GaN) high electron mobility transistors have been of high interest during the last years, especially for their electrical characteristics as open gate field effect transistors. These nanosensors provide a valuable tool for high content screening in drug discovery, cell monitoring and liquid analyses focusing on applications of electrochemical detection technology. Our own measurements with these sensors confirm their pH sensitivity and in addition the possibility of detection of other ions in aqueous media. These measurements deal with the reactions of NG 108-15 (mouse neuroblastoma x rat glioma hybrid) neuronal cells in response to different acetylcholinesterase inhibitors. Our experimental approach shows some advantages. The first advantage is the label-free measurement of ion fluxes, and another advantage is the possibility non-destructively to estimate cell signals.

  12. DNA adducts-chemical addons

    Directory of Open Access Journals (Sweden)

    T R Rajalakshmi

    2015-01-01

    Full Text Available DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde. This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers.

  13. SnSe2 2D Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2016-08-22

    A simple synthesis method to prepare pure SnSe2 nanosheet anodes for Na ion batteries is reported. The SnSe2 2D sheets achieve a stable and reversible specific capacity of 515 mA h g-1 after 100 cycles, with excellent rate performance. The sodiation and desodiation process in this anode material is shown to occur via a combination of conversion and alloying reactions.

  14. Phase selection controlled by sodium ions in the synthesis of FAU/LTA composite zeolite

    Directory of Open Access Journals (Sweden)

    Linyan Hu, Sujuan Xie, Qingxia Wang, Shenglin Liu and Longya Xu

    2009-01-01

    Full Text Available Zeolite faujasite (FAU, Linde type A (LTA and FAU/LTA composite have been synthesized using tetramethylammonium cation (TMA + as template, by adjusting only the concentration of Na + ions in the initial solution (1.00 Al2 O3 4.36 SiO2 : 2.39 (TMA2 O : β Na2 O : 249.00H2 O. Na + ions alter the phase composition of the product more than TMA+ or OH− ions. When Na2 O concentration [Na2 O] increases from 0.024 to 0.168, the product gradually changes from pure FAU to pure LTA via the formation of FAU/LTA composite with increasing LTA fraction. Interestingly, the induction periods of FAU and LTA in the FAU/LTA composite zeolite ([Na2 O] is 0.072 are both 13 h, quite different from the induction periods of their individual pure phases—45 h for FAU and 4 h for LTA. During the crystallization, the LTA/(FAU + LTA fraction in the composite zeolite decreases in a nearly linear fashion. Scanning electron microscopy, thermogravimetry and differential thermal analysis indicate some difference between the properties of the FAU/LTA composite zeolite and of the mechanical mixture.

  15. Boundary layer separation method for recycling of sodium ions from industrial wastewater.

    Science.gov (United States)

    Petho, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-12-01

    The most effective technological solution for waste treatment is recycling. We have developed a new method for the treatment of industrial wastewaters and have called it the boundary layer separation method (BLSM). We have used the phenomenon that, on the surface of an electrically charged electrode, ions can be enriched in the boundary layer, as compared with the inside of the phase. The essence of the method is that, with an appropriately chosen velocity, the boundary layer can be removed from the wastewater, and the boundary layer, which is rich in ions, can be recycled. The BLSM can be executed as a cyclic procedure. The capacitance of the boundary layer was examined. The best mass transport can be achieved with the use of 1000 and 1200 mV polarization potentials in the examined system, with its value being 1200 mg/m2 per cycle. The necessary operation times were determined by the examination of the velocity of the electrochemical processes. When using 1000 mV polarization potential, the necessary adsorption time is at least 25 seconds, and the desorption time at least 300 seconds. The advantage of the procedure is that it does not use dangerous chemicals, only inert electrodes. The drawback is that it is not selective to ions, the achievable separation in one step is low, and the hydrogen that emerges during the electrolysis might be dangerous.

  16. Pigments content in Сhlorella vulgaris under the influence of the sodium selenite and the ions of metals

    Directory of Open Access Journals (Sweden)

    O. I. Bodnar

    2016-01-01

    Full Text Available We investigated the content of pigments in Chlorella vulgaris Beij. (Chlorophyta under the influence of sodium selenite in concentrations based on Se4+ 0.5, 5.0, 10.0 and 20.0 mg/dm3 during one, three and seven days and under the influence of the simultaneous action of selenite in concentrations 10 mg Se4+/dm3 and ions of Zn2+, Mn2+, Co2+,Cu2+, Fe3+ in concentrations 5.00, 0.25, 0.05, 0.008 and 0.002 mg/dm3over seven days. This research was carried out to establish the conditions for obtaining algal lipidis substance enriched with selenium and biogenic metals in the aquaculture. The content of pigments was determined spectrophotometrically, the cellular walls were separatedby centrifuge in the percoll gradient and investigated microscopically. The pigments content in the Ch. vulgaris increased by 1.5–2.5 times in comparison with the control sample under the influence of 10 mg Se4+/dm3 with and without metal ions, in all variants of experimental influence due to binding of SeО32– with proteins and lipids. We found that selenium was included in all lipid fractions (triacylglycerols, dyacylglycerols, phospholipids, nonetherified fatty acids; the maximum amount of selenium-containing lipids wasrecorded in chloroplasts. The increase in the contents of carotenoids caused by the actions of experimental factors played an exceptional role in the mechanism of antioxidant protection that prevents destruction of chlorophyll and, accordingly, increases its amount in cells. Changes in the functioning of the photosynthetic apparatus of Ch. vulgaris affect the whole complex of metabolic transformation. Thus, the successful cultivation of chlorella, enriched with selenium and biogenic metals, is possible within seven days under the influence of 10 mg Se4+/dm3 and the above-mentioned concentration of metal ions.

  17. Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yandong; Xie, Jian; Zhang, Shichao; Zhu, Peiyi; Cao, Gaoshao; Zhao, Xinbing

    2015-01-01

    Highlights: • A nanohybrid based on ultrafine SnO 2 and few-layered rGO has been prepared. • The nanohybrid exhibits excellent electrochemical Na-storage properties. • The rGO supplies combined conducting, buffering and dispersing effects. - Abstract: Na-ion Battery is attractive alternative to Li-ion battery due to the natural abundance of sodium resource. Searching for suitable anode materials is one of the critical issues for Na-ion battery due to the low Na-storage activity of carbon materials. In this work, we synthesized a nanohybrid anode consisting of ultrafine SnO 2 anchored on few-layered reduced graphene oxide (rGO) by a facile hydrothermal route. The SnO 2 /rGO hybrid exhibits a high capacity, long cycle life and good rate capability. The hybrid can deliver a high charge capacity of 324 mAh g SnO2 −1 at 50 mA g −1 . At 1600 mA g −1 (2.4C), it can still yield a charge capacity of 200 mAh g SnO2 −1 . After 100 cycles at 100 mA g −1 , the hybrid can retain a high charge capacity of 369 mAh g SnO2 −1 . X-ray photoelectron spectroscopy, ex situ transmission electron microscopy and electrochemical impedance spectroscopy were used to investigate the origin of the excellent electrochemical Na-storage properties of SnO 2 /rGO

  18. Facile and efficient room temperature solid state reaction enabled synthesis of antimony nanoparticles embedded within reduced graphene oxide for enhanced sodium-ion storage

    Science.gov (United States)

    Zhang, Xiukui; Wu, Ping; Jiang, Li; Zhang, Xiaofang; Shi, Hongxia; Zhu, Xiaoshu; Wei, Shaohua; Zhou, Yiming

    2018-06-01

    Herein, a very simple and cost-effective solid state reaction method is employed to obtain, for the first time, the antimony nanoparticles embedded within reduced graphene oxide matrices (designated as Sb/rGO). By directly grinding antimony chloride and sodium hydroxide together at room temperature in the presence of graphene oxide (GO), Sb4O5Cl2 precursor was quickly obtained, which is evenly incorporated in the graphene oxide matrices. After subsequent chemical reduction by NaBH4, the Sb/rGO composite was successfully synthesized. The as-prepared Sb/rGO composite consists of uniform Sb nanoparticles of sub-20 nm, all of which have been wrapped in and protected by the rGO matrices. The Sb nanoparticles serve as a sufficient sodium ion reservoir while the rGO matrices provide highly efficient pathways for transport of sodium ions and electrons. Moreover, the volume expansion of Sb during sodiation can be buffered in the rGO matrices. As a result, the Sb/rGO composite exhibits excellent electrochemical performance in sodium-ion batteries (SIBs), including an enhanced cycling stability with a highly reversible charge capacity of 455 mA h g-1 after 45 cycles at 100 mA g-1, and a coulombic efficiency exceeding 98% during cycling. The findings in the present work pave the way to not only synthesize the designated promising electrode materials for high performance SIBs, but also thoroughly understand the solid-state reaction.

  19. Structural properties of alkaline sodium lead fluoride borate glasses incorporated with Praseodymium ion

    Science.gov (United States)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    The effect of different alkaline and Pr ions on the density and structure of Na2O-PbO-MO-B2O3 (M represents Ba/Ca/Sr) has been investigated using X-ray diffraction (XRD), infrared spectrophotometer (FTIR). The amorphous phase has been identified based on X-ray diffraction analysis. The Praseodymium oxide plays the role as a glass-modifier and influences on BO3↔BO4 conversion. The same effect is also observed in density and molar volume variation due to non bridging oxygen's (NBO) created when BO3 units are converted.

  20. Glucose-Treated Manganese Hexacyanoferrate for Sodium-Ion Secondary Battery

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2015-09-01

    Full Text Available Manganese hexacyanoferrate (Mn-PBA is a promising cathode material forsodium-ion secondary battery (SIB with high average voltage (=3.4 V against Na. Here,we find that the thermal decomposition of glucose modifies the surface state of Mn-PBA,without affecting the bulk crystal structure. The glucose treatment significantly improves therate properties of Mn-PBA in SIB. The critical discharge rate increases from 1 C (as-grownto 15 C (glucose-treated. Our observation suggests that thermal treatment is quite effectivefor insulating coordination polymers.

  1. Glucose-Treated Manganese Hexacyanoferrate for Sodium-Ion Secondary Battery

    OpenAIRE

    Moritomo, Yutaka; Goto, Kensuke; Shibata, Takayuki

    2015-01-01

    Manganese hexacyanoferrate (Mn-PBA) is a promising cathode material forsodium-ion secondary battery (SIB) with high average voltage (=3.4 V) against Na. Here,we find that the thermal decomposition of glucose modifies the surface state of Mn-PBA,without affecting the bulk crystal structure. The glucose treatment significantly improves therate properties of Mn-PBA in SIB. The critical discharge rate increases from 1 C (as-grown)to 15 C (glucose-treated). Our observation suggests that thermal tr...

  2. Moessbauer study of FePO4 cathode for lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Tetsuaki Nishida; Masahiro Tokunaga; Toshiharu Nishizumi; Takafumi Yamamoto; Tomoyuki Shiratsuchi; Shigeto Okada; Jun-ichi Yamaki

    2005-01-01

    LiFePO 4 of olivine type has attracted much interest as a rare-metal free cathode for lithium-ion battery. The present authors' group has found a low-cost preparation method for new cathode material FePO 4 (P 321 ) from an aqueous solution of metallic iron and P 2 O 5 . A cathode pellet was prepared by mixing FePO 4 , acetylene black (AB) and polytetrafluoroethylene (PTFE) binder at a mass ratio of 70:25:5. Electrochemical cathode performance was investigated under a constant current density of 0.1 mA/cm 2 with a coin-type cell with an anode of metallic Li and Na for Li- and Na-ion batteries, respectively. Moessbauer spectra were measured by a constant accele- ration method with a Moessbauer source of 57 Co(Pd) and an α-Fe foil as a reference of the isomer shift. Moessbauer spectra of the original cathode pellet top left and right) composed of amorphous FePO 4 indicate that all the Fe III atoms have a tetrahedral symmetry. After discharging the Li-(second left) and Na-batteries (second right), all the Fe III were reduced to octahedral Fe II . The reduction of Fe III to Fe II indicates penetration of Li + and Na + into the FePO 4 cathode which accompanies an electron capture; Li + (or Na + ) + Fe III PO 4 + e - = LiFe II PO 4 (or NaFe II PO 4 ) After charging the Li-cell (bottom left), all the Fen atoms were oxidized to tetrahedral Fe III , while 69 % of Fe II was oxidized to Fe III in the Na-ion cell (bottom right) due to a lower cell voltage: 4.0 V. Oxidation of Fe II to Fe III reflects a release of Li + or Na + ions from the FePO 4 cathode to the electrolyte, i.e., an inverse reaction of eq.

  3. Interpretation of the measurement of ions fluxes through a biological membrane with a cellular compartment: example of the movements of sodium through the skin of frogs; Interpretation de la mesure des flux d'ions a travers une membrane biologique comportant un ''compartiment'' cellulaire; exemple des mouvements de sodium a travers la peau de grenouille

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Two-way ion fluxes which can be measured in vitro through a living epithelial membrane (such as frog skin) by the indicator method take place across the cells which behave like an intermediate ionic 'compartment'. Two membranes and four fluxes have thus to be considered. Measurements in vitro of the total sodium fluxes as a function of the sodium concentration in the medium in contact with the external face of the skin have been interpreted in this spirit. Making use of certain hypotheses, the permeability coefficients for sodium of the two cellular membranes, the four sodium fluxes, the intracellular sodium concentration and the membrane potentials have been calculated for each value of the sodium concentration in the external medium. (author) [French] Les flux ioniques bidirectionnels que l'on peut mesurer in vitro a travers une membrane epitheliale vivante (comme la peau de grenouille) a l'aide de la methode des indicateurs, s'effectuent a travers les cellules qui se comportent comme un 'compartiment' ionique intermediaire. On doit donc considerer deux membranes et quatre flux. Des mesures in vitro des flux totaux de sodium en fonction de la concentration du sodium dans le milieu baignant la face externe de la peau ont ete interpretees dans cette perspective. Moyennant certaines hypotheses, les coefficients de permeabilite pour le sodium des deux membranes cellulaires, les quatre flux de sodium ainsi que la concentration du sodium intracellulaire et les potentiels de membrane ont pu etre calcules pour chaque valeur de la concentration du sodium dans le milieu externe. (auteur)

  4. Transition metal ions in silicate melts. I. Manganese in sodium silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; White, W B

    1980-01-01

    Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.

  5. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.

    Science.gov (United States)

    Li, Qiang-Gen; Xu, Ke; Ren, Yi

    2015-04-30

    In a kinetic experiment on the SN2 reaction of sodium p-nitrophenoxide with iodomethane in acetone-water mixed solvent, Humeres et al. (J. Org. Chem. 2001, 66, 1163) found that the reaction depends strongly on the medium, and the fastest rate constant was observed in pure acetone. The present work tries to explore why acetone can enhance the reactivity of the title reactions. Accordingly, we make a mechanistic study on the reactions of sodium p-nitrophenoxide with halomethanes (CH3X, X = Cl, Br, I) in acetone by using a supramolecular/continuum model at the PCM-MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level, in which the ion pair nucleophile is microsolvated by one to three acetone molecules. We compared the reactivity of the microsolvated ion pair nucleophiles with solvent-free ion pair and anionic ones. Our results clearly reveal that the microsolvated ion pair nucleophile is favorable for the SN2 reactions; meanwhile, the origin of the enhanced reactivity induced by microsolvation of the nucleophile is discussed in terms of the geometries of transition state (TS) structures and activation strain model, suggesting that lower deformation energies and stronger interaction energies between the deformed reactants in the TS lead to the lower overall reaction barriers for the SN2 reaction of microsolvated sodium p-nitrophenoxide toward halomethanes in acetone.

  6. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts.

    Science.gov (United States)

    Diaz-Parga, Pedro; Goto, Joy J; Krishnan, V V

    2018-01-01

    Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms.

  7. Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Jian-Wu; Zhang, Da-Wei; Zang, Yong; Sun, Xin; Cheng, Bin; Ding, Chu-Xiong; Yu, Yan; Chen, Chun-Hua

    2014-01-01

    Highlights: • A unique bowl-like hollow spherical Co 3 O 4 structure is prepared through a simple, low-cost and mass-yield method. • Such a bowl-like hollow Co 3 O 4 microsphere demonstrates extraordinary rate and cycling performance for Li-storage. • The sodium-storage behavior of Co 3 O 4 is investigated for the first time. - Abstract: Bowl-like hollow Co 3 O 4 microspheres are prepared via a simple and low-cost route by thermally treating Co-containing resorcinol-formaldehyde composites gel in air. Scanning electron microscopy, transmission electron microscope and N 2 adsorption-desorption measurements demonstrate that these bowl-like hollow Co 3 O 4 microspheres are composed of hollow inner cavities and outer shell walls (70 nm thickness), on which a considerable amount of mesopores centered around 5-17 nm size are distributed. When employed as the anode material for lithium-ion batteries, these bowl-like hollow Co 3 O 4 microspheres exhibit extraordinary cycling performance (111% retention after 50 cycles owing to capacity rise), fairly high rate capacity (650 mAh g −1 at 5 C) and enhanced lithium storage capacity. Meanwhile, the Na-storage behavior of Co 3 O 4 as an anode material of Na-ion batteries is initially investigated based on such a hollow structure and it exhibits similar feature of discharge/charge profiles and a high initial discharge capacity but relatively moderate capacity retention compared with the Li-storage performance

  8. Investigation of the electrical conductivity of γ-irradiated sodium silicate glasses containing multivalence Cu ions

    International Nuclear Information System (INIS)

    Tawansi, A.; Basha, A.F.; El-Konsol, S.

    1981-07-01

    The present investigation deals with a study of the γ-radiation effects on the d.c. electrical resistivity (rho) of SiO 2 -Na 2 O-CaO glasses containing Cu 0 , Cu + , Cu 2+ and mixture of Cu + and Cu 2+ ions over the temperature (T) range from 300 to 630 0 K. The applicability of the polaron hopping conduction mechanism has been established from the reciprocal temperature dependence of 1n rho/T for the samples under investigation. The electrical resistivity is found to decrease by increasing the TM valancy which enhances the hoping process. The post-irradiation effect due to ionizing gamma-radiation is investigated within the frame work of the electron (and hole) trapping theory, and an average value of 0.45 is obtained for the parameter Δ, characterizing traps with an exponentially decreasing numbers below the conduction band. (author)

  9. Formation of adduct of cerium (4) thenoyltrifluoroacetonate

    International Nuclear Information System (INIS)

    Anyfrieva, S.I.; Polyakova, G.V.; Snezhko, N.I.; Pechurova, N.I.; Martynenko, L.I.; Spitsyn, V.I.

    1981-01-01

    Adduct formation of thenoyltrifluoroacetonate of Ce(4) [Ce(TTFA) 4 ] with seven nitrogen- and oxygen-containing donor additional ligands is studied using the methods of IR-spectroscopy, derivatography, X-ray phase analysis. The presence of formation of Ce(TTFA) 4 adducts with phosphorus-containing additional ligands tributyl phosphate (TBP), trioctylphosphine oxide (TOPO), triphenylphosphine oxide (TPPO); α, α'-dipyridyl (Dipy) and o-phenanthroline (Phen) is established. The adduct Ce(TTFA) 4 stable to reduction is formed with Dipy, and in the case of Phen, TBP, TOPO, TPPO in the process of adduct formation the reduction of Ce(4) to Ce(3) takes place [ru

  10. Adducts of rare earth tris-acetylacetonates with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Dzyubenko, N.G.; Kalenichenko, Yu.V.; Martynenko, L.I.

    1988-01-01

    Adducts of rare earth and yttrium (r.e.e., M) acetylacetonates with dimethyl sulfoxide (DMSO), MA 3 xnDMSO are synthesized. The acetylacetonates of light r.e.e. (M=La-Tb) are shown by different physico-chemical methods to form diadducts of the MA 3 x2DMSOxH 2 O composition, where A - -acetylacetonate-ion, and the acetyl-acetonates of heavy r.e.e. (M=Dy-Lu, Y)-monoadducts MA 3 xDMSO. The estimation of adduct thermal stability is carried out using the values of seeming activation energy of their thermal degradation. Monoadducts are shown to give volatile forms of rare earth acetylacetonates during heating in vacuum, and diadducts do not form volatile forms of acetylacetonates

  11. Studies of the hydrous titanium oxide ion exchanger. 4. Rate of the isotopic exchange of sodium ions between the exchanger in the Na+ form and aqueous solution

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi; Kasuga, Fuminori

    1995-01-01

    The isotopic exchange rate of Na + between hydrous titanium(IV) oxides, precipitated at pH 6 and 13, in the Na + form and aqueous solution of sodium salt was determined radiochemically. The rate in the exchanger precipitated at pH 6 is controlled by the diffusion of Na + in the exchanger particles (particle diffusion). The diffusion coefficient and its activation energy are 1.9 x 10 -11 m 2 s -1 (pH 12, 5.0degC) and 29 kJ mol -1 (pH 12), respectively. The rate in the exchanger precipitated at pH 13 is also controlled by the particle diffusion. The rate is much slower than that in the other; this can be explained by assuming the existence of two kinds of independently diffusing ions (fast and slow species) in the exchanger. The diffusion coefficients are of the order of 10 -12 and 10 -13 m 2 s -1 for the fast and the slow species, respectively. Their activation energies are 48-60 kJ mol -1 at pH 12. The marked difference in kinetics between two exchanges was interpreted in terms of the difference in the acid-base property and in the microstructure of the matrix. (author)

  12. Caging Nb2 O5 Nanowires in PECVD-Derived Graphene Capsules toward Bendable Sodium-Ion Hybrid Supercapacitors.

    Science.gov (United States)

    Wang, Xiangguo; Li, Qiucheng; Zhang, Li; Hu, Zhongli; Yu, Lianghao; Jiang, Tao; Lu, Chen; Yan, Chenglin; Sun, Jingyu; Liu, Zhongfan

    2018-05-14

    Sodium-ion hybrid supercapacitors (Na-HSCs) by virtue of synergizing the merits of batteries and supercapacitors have attracted considerable attention for high-energy and high-power energy-storage applications. Orthorhombic Nb 2 O 5 (T-Nb 2 O 5 ) has recently been recognized as a promising anode material for Na-HSCs due to its typical pseudocapacitive feature, but it suffers from intrinsically low electrical conductivity. Reasonably high electrochemical performance of T-Nb 2 O 5 -based electrodes could merely be gained to date when sufficient carbon content was introduced. In addition, flexible Na-HSC devices have scarcely been demonstrated by far. Herein, an in situ encapsulation strategy is devised to directly grow ultrathin graphene shells over T-Nb 2 O 5 nanowires (denoted as Gr-Nb 2 O 5 composites) by plasma-enhanced chemical vapor deposition, targeting a highly conductive anode material for Na-HSCs. The few-layered graphene capsules with ample topological defects would enable facile electron and Na + ion transport, guaranteeing rapid pseudocapacitive processes at the Nb 2 O 5 /electrolyte interface. The Na-HSC full-cell comprising a Gr-Nb 2 O 5 anode and an activated carbon cathode delivers high energy/power densities (112.9 Wh kg -1 /80.1 W kg -1 and 62.2 Wh kg -1 /5330 W kg -1 ), outperforming those of recently reported Na-HSC counterparts. Proof-of-concept Na-HSC devices with favorable mechanical robustness manifest stable electrochemical performances under different bending conditions and after various bending-release cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Removal of Fluoride Ion from Aqueous Solution by Nanocomposite Hydrogel Based on Starch/Sodium Acrylate/Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Aboulfazl Barati

    2014-01-01

    Full Text Available Determination of fluoride in drinking water has received increasing interest, due to its beneficial and detrimental effects on health. Contamination of drinking water by fluoride can cause potential hazards to human health. In recent years, considerable attention has been given to different methods for the removal of fluoride from drinking and waste waters. The aim of this research was to investigate the effect of nano composite hydrogel based on starch/sodium acrylate/aluminum oxide in reduction of fluoride concentration in drinking water and industrial waste water. In a batch system, the dynamic and equilibrium adsorption of fluoride ions were studied with respect to changes in determining parameters such as pH, contact time, initial fluoride concentration, starch/acrylic acid weight ratio and weight percent of nano aluminum oxide. The obtained equilibrium adsorption data were fitted with Langmuir and Freundlich models, as well as the kinetic data with pseudo-first order and pseudo- second order models. The results showed that optimum pH was found to be in the range of 5 to 7. Removal efficiency of fluoride was increased with decreases in initial concentration of fluoride. Sixty percent of initial value of fluoride solution was removed by nano composite hydrogel (4 wt% of nano aluminum oxide at 240 min (initial fluoride concentration = 5 ppm, pH 6.8 and temperature = 25ºC. Under the same condition, the equilibrium adsorption of fluoride ions was 85% and 68% for initial solution concentration of 5 and 10 ppm, respectively. Adsorption isotherm data showed that the fluoride sorption followed the Langmuir model. Kinetics of sorption of fluoride onto nano composite hydrogel was described by pseudo-first order model.

  14. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes.

    Science.gov (United States)

    Shao, Zi-Jian; Huang, Xue-Lian; Yang, Fan; Zhao, Wei-Feng; Zhou, Xin-Zhi; Zhao, Chang-Sheng

    2018-05-01

    Sodium alginate (SA) beads with ultrahigh adsorption capacity were prepared via hydrogen bonds between SA and 2-acrylamido-2-methylpropa-1-propanesulfonic acid (AMPS), and the AMPS was then post-cross-linked to manufacture SA/PAMPS beads. The equilibrium adsorption capacities of methylene blue (MB) and Pb 2+ for the SA/PAMPS10 beads were 2977 and 2042 mg/g, respectively. Although the SA beads exhibited higher equilibrium adsorption capacities of MB and Pb 2+ than those of the SA/PAMPS10 beads, the SA/PAMPS10 beads had better mechanical property and higher stability. The pseudo-second-order kinetic model and the Langmuir isotherm described the adsorption processes of the SA/PAMPS10 beads for MB well. In addition, the SA/PAMPS10 beads could be reused with stable adsorption capacity for at least three cycles. The beads also had excellent performances on absorbing methylene violet and other heavy metal ions (Cu 2+ , Cd 2+ and Ni 2+ ). Therefore, the SA-based beads with high adsorption capacity might be good candidates for industrial pollutant treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Preparation and physicochemical properties of surfactant-free emulsions using electrolytic-reduction ion water containing lithium magnesium sodium silicate.

    Science.gov (United States)

    Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2013-04-01

    Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.

  16. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus.

    Science.gov (United States)

    Kajimoto, Kousuke; Kikukawa, Takashi; Nakashima, Hiroki; Yamaryo, Haruki; Saito, Yuta; Fujisawa, Tomotsumi; Demura, Makoto; Unno, Masashi

    2017-05-04

    Sodium-ion-pump rhodopsin (NaR) is a microbial rhodopsin that transports Na + during its photocycle. Here we explore the photocycle mechanism of NaR from Indibacter alkaliphilus with transient absorption and transient resonance Raman spectroscopy. The transient absorption data indicate that the photocycle of NaR is K (545 nm) → L (490 nm)/M (420 nm) → O 1 (590 nm) → O 2 (560 nm) → NaR, where the L and M are formed as equilibrium states. The presence of K, L, M, and O intermediates was confirmed by the resonance Raman spectra with 442 and 532 nm excitation. The main component of the transient resonance Raman spectra was due to L which contains a 13-cis retinal protonated Schiff base. The presence of an enhanced hydrogen out-of-plane band as well as its sensitivity to the H/D exchange indicate that the retinal chromophore is distorted near the Schiff base region in L. Moreover, the retinal Schiff base of the L state forms a hydrogen bond that is stronger than that of the dark state. These observations are consistent with a Na + pumping mechanism that involves a proton transfer from the retinal Schiff base to a key aspartate residue (Asp116 in Krokinobacter eikastus rhodopsin 2) in the L/M states.

  17. Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries

    Science.gov (United States)

    Wang, Qinghong; Guo, Can; Zhu, Yuxuan; He, Jiapeng; Wang, Hongqiang

    2018-06-01

    Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability. Herein, reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity, BET surface area, and structural stability of the FeS2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS2/rGO composite had a high initial discharge capacity of 1263.2 mAh g-1 at 100 mA g-1 and a high discharge capacity of 344 mAh g-1 at 10 A g-1, demonstrating superior rate performance. After 100 cycles at 100 mA g-1, the discharge capacity remained at 609.5 mAh g-1, indicating the excellent cycling stability of the FeS2/rGO electrode.

  18. Interaction of Cefpiramide sodium with bovine hemoglobin and effect of the coexistent metal ion on the protein-drug association

    International Nuclear Information System (INIS)

    Yan, Xiaona; Liu, Baosheng; Chong, Baohong; Cao, Shina

    2013-01-01

    The interaction between bovine hemoglobin (BHb) and cefpiramide sodium (CPMS) was investigated at different temperatures by fluorescence, UV absorption, and CD spectroscopy, as well as the effect of common metal ions (Mg 2+ , Zn 2+ , Cu 2+ , Co 2+ , Fe 3+ , Ni 2+ ) on the BHb–CPMS system. Results showed that CPMS could quench the intrinsic fluorescence of BHb strongly, and the quenching mechanism was a static quenching process. The electrostatic force played an important role on the conjugation reaction between BHb and CPMS. The order of magnitude of binding constants (K a ) was 10 4 , the number of binding site (n) in the binary system was approximately equal to 1 and the binding distance (r) was about 3.08 nm. Besides, the values of Hill's coefficients were approximately equal to 1, which indicated there was almost no cooperativity in CPMS's binding with BHb. Synchronous spectra and CD spectra revealed that the microenvironment and the conformation of BHb were changed during the binding reaction. Studies on the interaction between BHb and drug will facilitate interpretation of the drug's metabolism and transporting process in the blood, and will help to explain the relationship between structures and functions of BHb. -- Highlights: • CPMS could quench the intrinsic fluorescence of BHb strongly through a static quenching process. • Electrostatic force played an important role on the conjugation reaction between BHb and CPMS. • The microenvironment and conformation of BHb were changed during the binding reaction

  19. Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes.

    Science.gov (United States)

    Yu, Litao; Liu, Jun; Xu, Xijun; Zhang, Liguo; Hu, Renzong; Liu, Jiangwen; Ouyang, Liuzhang; Yang, Lichun; Zhu, Min

    2017-05-23

    To solve the problem of large volume change and low electronic conductivity of earth-abundant ilmenite used in rechargeable Na-ion batteries (SIBs), an anode of tiny ilmenite FeTiO 3 nanoparticle embedded carbon nanotubes (FTO⊂CNTs) has been successfully proposed. By introducing a TiO 2 shell on metal-organic framework (Fe-MOF) nanorods by sol-gel deposition and subsequent solid-state annealing treatment of these core-shell Fe-MOF@TiO 2 , such well-defined FTO⊂CNTs are obtained. The achieved FTO⊂CNT electrode has several distinct advantages including a hollow interior in the hybrid nanostructure, fully encapsulated ultrasmall electroactive units, flexible conductive carbon matrix, and stable solid electrolyte interface (SEI) of FTO in cycles. FTO⊂CNT electrodes present an excellent cycle stability (358.8 mA h g -1 after 200 cycles at 100 mA g -1 ) and remarkable rate capability (201.8 mA h g -1 at 5000 mA g -1 ) with a high Coulombic efficiency of approximately 99%. In addition, combined with the typical Na 3 V 2 (PO 4 ) 3 cathode to constitute full SIBs, the assembled FTO⊂CNT//Na 3 V 2 (PO 4 ) 3 batteries are also demonstrated with superior rate capability and a long cycle life.

  20. Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES.

    Science.gov (United States)

    Doubaji, Siham; Philippe, Bertrand; Saadoune, Ismael; Gorgoi, Mihaela; Gustafsson, Torbjorn; Solhy, Abderrahim; Valvo, Mario; Rensmo, Håkan; Edström, Kristina

    2016-01-08

    The cathode material P2-Nax Co2/3 Mn2/9 Ni1/9 O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions. Cobalt, nickel, and manganese are all electrochemically active upon cycling between 4.5 and 2.0 V; all are in the 4+ state at the end of charging. Reduction to Co(3+), Ni(3+), and Mn(3+) occurs upon discharging and, at low potential, there is partial reversible reduction to Co(2+) and Ni(2+). A thin layer of Na2 CO3 and NaF covers the pristine electrode and reversible dissolution/reformation of these compounds is observed during the first cycle. The salt degradation products in the SPI show a dependence on potential. Phosphates mainly form at the end of the charging cycle (4.5 V), whereas fluorophosphates are produced at the end of discharging (2.0 V). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation

    Directory of Open Access Journals (Sweden)

    Jesus Emanuel eBojorquez Quintal

    2014-11-01

    Full Text Available Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant and Chichen-Itza (sensitive. Under salt stress (150 mM NaCl over 7 days roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na+ is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na+ compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na+ in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na+ extrusion. Rex variety was found to retain more K+ in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE. Vanadate-sensitive H+ efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H+-ATPase, which fuels the extrusion of Na+, and, possibly, also the re-uptake of K+. Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na+ extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  2. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    Science.gov (United States)

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  3. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Karkeh-abadi, Fatemeh [Department of Chemistry, University of Kashan, Kashan (Iran, Islamic Republic of); Saber-Samandari, Samaneh, E-mail: samaneh.saber@gmail.com [Department of Chemistry, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin 10 (Turkey); Saber-Samandari, Saeed, E-mail: saeedss@aut.ac.ir [New Technologies Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-07-15

    Highlights: • The sodium alginate-hydroxyapatite-CNT nanocomposite beads were prepared. • Amide functionalized CNT imprinted in the network of sodium alginate containing HAp. • The prepared beads were used as adsorbents of cobalt ions from an aqueous solution. • The adsorption was fit with the Freundlich isotherm and second-order kinetic models. • The endothermic adsorption process is spontaneous and thermodynamically favorable. - Abstract: Significant efforts have been made to develop highly efficient adsorbents to remove radioactive Co(II) ion pollutants from medical and industrial wastewaters. In this study, amide group functionalized multi-walled carbon nanotube (CNT-CONH{sub 2}) imprinted in the network of sodium alginate containing hydroxyapatite, and new nanocomposite beads were synthesized. Then, they were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The prepared nanocomposite beads were used as an adsorbent of Co(II) ions from an aqueous solution. The presence and distribution of Co(II) ions in the surface of the nanocomposite beads was confirmed using FESEM, EDS and metal mapping analysis. The effect of various experimental conditions such as time, pH, and initial concentration of the adsorbate solution and temperature on the adsorption capacity of the nanocomposite beads were explored. The maximum Co(II) ions adsorption capacity of the prepared nanocomposite beads with the largest surface area of 163.4 m{sup 2} g{sup −1} was 347.8 mg g{sup −1} in the optimized condition. The adsorption mechanism followed a pseudo-second-order kinetic model. Furthermore, the Freundlich appears to produce better fit than the Langmuir adsorption isotherm. Finally, thermodynamic studies suggest that endothermic adsorption process of Co(II) ions is spontaneous and

  4. Radiative properties and luminescence spectra of Sm{sup 3+} ion in zinc–aluminum–sodium-phosphate (ZANP) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Brahmachary, K.; Rajesh, D.; Ratnakaram, Y.C., E-mail: ratnakaramsvu@gmail.com

    2015-05-15

    The fluorescence properties of different concentrations of Sm{sup 3+} doped zinc–aluminum–sodium-phosphate (ZANP) glasses were studied by the XRD, SEM, FTIR, TG–DTA, optical absorption, photoluminescence and decay cure analysis. X-ray diffraction profiles and SEM images confirmed the amorphous nature of the glass samples. Structural information of these glass matrices was provided by FTIR spectrum. Judd–Ofelt (J–O) theory was applied to the experimental oscillator strengths to evaluate three phenomenological J–O intensity parameters, Ω{sub λ} (λ=2, 4 and 6). Using J–O intensity parameters and emission spectra, various radiative parameters such as radiative transition probabilities (A{sub R}), radiative lifetimes (τ{sub R}), calculated and measured branching ratios (β{sub R} and β{sub m}), effective bandwidths (Δλ{sub eff}) and stimulated emission cross-sections (σ{sub P}) were calculated for observed emission transitions. The intensity of emission transitions with the variation of Sm{sup 3+} ion concentration was studied. The nature of decay curves of {sup 4}G{sub 5/2} level for different Sm{sup 3+} ion concentrations in ZANP glass was analyzed and obtained measured lifetimes (τ{sub exp}). Quantum efficiency of {sup 4}G{sub 5/2} level was calculated based on experimental and measured radiative lifetimes (τ{sub exp} and τ{sub R}). - Highlights: • The amorphous nature of glasses was confirmed due to lack of sharp peaks in the XRD profiles. • Higher covalency and rigidity were obtained in ZANPSm05 and ZANPSm15 glass matrices respectively. • The symmetric nature present in ZANP glass matrix is confirmed from MD transition, {sup 4}G{sub 5/2}→{sup 6}H{sub 7/2} of Sm{sup 3+} ion. • The decrease of intensity of emission transitions beyond 0.5 mol% is attributed to dipole–dipole interactions. • Among all the glass matrices studied, all the spectroscopic parameters are higher in ZANPSm05 glass matrix.

  5. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    International Nuclear Information System (INIS)

    Frederick, B.deB.

    1994-12-01

    Nuclear magnetic resonance (NMR) spectroscopic imaging of 23 Na holds promise as a non-invasive method of mapping Na + distributions, and for differentiating pools of Na + ions in biological tissues. However, due to NMR relaxation properties of 23 Na in vivo, a large fraction of Na + is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T 2 . Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo 23 Na T 2 values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic 1 H and 23 Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25μs, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form

  6. Kinetics, mechanism and thermodynamics of bisulfite-aldehyde adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Olson, T.M.; Boyce, S.D.; Hoffmann, M.R.

    1986-04-01

    The kinetics and mechanism of bisulfite addition to benzaldehyde were studied at low pH in order to assess the importance of this reaction in stabilizing S(IV) in fog-, cloud-, and rainwater. Previously, the authors established that appreciable concentrations of the formaldehyde-bisulfite adduct (HMSA) are often present in fogwater. Measured HMSA concentrations in fogwater often do not fully account for observed excess S(IV) concentrations, however, so that other S(IV)-aldehyde adducts may be present. Reaction rates were determined by monitoring the disappearance of benzaldehyde by U.V. spectrophotometry under pseudo-first order conditions, (S(IV))/sub T/ >>(phi-CHO)/sub T/, in the pH range 0 - 4.4 at 25/sup 0/C. The equilibrium constant was determined by dissolving the sodium salt of the addition compound in a solution adjusted to pH 3.9, and measuring the absorbance of the equilibrated solution at 250 nm. A literature value of the extinction coefficient for benzaldehyde was used to calculate the concentration of free benzaldehyde. All solutions were prepared under an N/sub 2/ atmosphere using deoxygenated, deionized water and ionic strength was maintained at 1.0 M with sodium chloride.

  7. Adduction of acrylamide with biomacromolecules at environmental dose level measured by accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Xie, Q.Y.; Sun, H.F.; Liu, Y.F.; Ding, X.F.; Fu, D.P.; Liu, K.X.

    2005-01-01

    Acrylamide (AA) is a well-known neurotoxin, which also has developmental, reproductive as well as genetic toxicity. AA has been classified as a probable human carcinogen by IARC in 1994 since its carcinogenic effects in animals were reported after repetitive high level dosing. Over the last 10 years, there have been a large number of studies investigating the effects of AA on rodent reproductive performance. In 2002, the Swedish Food Administration reported the presence of AA in the heat-treated food products. which again elicited great concern on the toxicity of AA. However most of these studies were investigated at a dose level of mg/kg b.w and above, which is much higher than the actual human relevant dose. In this study we investigate the adduction of environmental level AA with biomacromolecules by the ultra-sensitive AMS technique. This may provide some information on the reproductive toxicity of AA under extremely low level exposure. A series doses of [2, 3- 14 C] AA (0, 0.1, 1, 10, 100, 250, 1000 μg/kg bw) were administrated with a single intraperitoneal injection (i.p.) to ICR adult male mice. The blood and spermatozoon were collected 24 h post dosing. Hemoglobin (Hb), serum albumin (SA), protamine, spermatozoon DNA, spermatozoon head and tail were isolated respectively, and then transformed into graphite following our previous procedure, The adduct levels were determined by a 0.6 MV compact AMS facility at the Institute of Heavy Ion Physics of Peking University. The results indicate that: (1) AA adduct number increases with the doses within 0.1-1000 μg/kg b.w. range in a log/log linear mode, except for DNA within 10-1000 μg/kg b.w. range. (2) Comparing protamine, Hb, and SA adducts with that of spermatozoon DNA (see Fig. 1), AA mainly adducts to proteins. For instance, at 1000 μg/kg b.w. dose level, spermatozoon DNA adducts only account for about 0.71%, 1.36% and 0.82% of protamine, Hb and SA adducts, respectively. (3) AA-protamine adducts, AA

  8. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Park, Gi Dae; Kang, Yun Chan

    2016-03-14

    A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Beneficial effect of boron in layered sodium-ion cathode materials - The example of Na2/3B0.11Mn0.89O2

    Science.gov (United States)

    Vaalma, Christoph; Buchholz, Daniel; Passerini, Stefano

    2017-10-01

    Sodium-ion batteries are regarded as a complementary drop-in technology to lithium-ion batteries because they promise lower cost and a higher degree of environmental friendliness. Among other reasons, these benefits come from the use of manganese-based materials, whose stabilization via cation substitution is intensively studied to improve the electrochemical performance. Although multiple elements have been considered as substituent, surprisingly, boron has not been reported for layered sodium-ion cathode materials up to date. Our investigation of layered Na2/3B0.11Mn0.89O2 reveals an unexpectedly good electrochemical performance, with charge and discharge capacities of more than 175 mAh g-1 at 10 mA g-1 and 135 mAh g-1 at 500 mA g-1. The measured capacities are among the highest ever reported for sodium-based layered oxides in the potential range of 4.0-2.0 V vs. Na/Na+.

  10. Separation and characterization of unknown impurities and isomers in flomoxef sodium by LC-IT-TOF MS and study of their negative-ion fragmentation regularities.

    Science.gov (United States)

    Yu, Xu; Wang, Fan; Li, Jiani; Shan, Weiguang; Zhu, Bingqi; Wang, Jian

    2017-06-05

    Thirteen unknown impurities in flomoxef sodium were separated and characterized by liquid chromatography coupled with high resolution ion trap/time-of-flight mass spectrometry (LC-IT-TOF MS)with positive and negative modes of electrospray ionization method for further improvement of official monographs in pharmacopoeias. The fragmentation patterns of impurities in flomoxef in the negative ion mode were studied in detail, and new negative-ion fragmentation regularities were discovered. Chromatographic separation was performed on a Kromasil C18 column (250mm×4.6mm, 5μm). The mobile phase consisted of (A) ammonium formate aqueous solution (10mM)-methanol (84:16, v/v) and (B) ammonium formate aqueous solution (10mM)-methanol (47:53, v/v). In order to determine the m/z values of the molecular ions and formulas of all detected impurities, full scan LC-MS in both positive and negative ion modes was firstly executed to obtain the m/z value of the molecules. Then LC-MS 2 and LC-MS 3 were carried out on target compounds to obtain as much structural information as possible. Complete fragmentation patterns of impurities were studied and used to obtain information about the structures of these impurities. Structures of thirteen unknown degradation products in flomoxef sodium were deduced based on the high resolution MS n data with both positive and negative modes. The forming mechanisms of degradation products in flomoxef sodium were also studied. Copyright © 2017. Published by Elsevier B.V.

  11. Interaction of Cefpiramide sodium with bovine hemoglobin and effect of the coexistent metal ion on the protein-drug association

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xiaona; Liu, Baosheng, E-mail: lbs@hbu.edu.cn; Chong, Baohong; Cao, Shina

    2013-10-15

    The interaction between bovine hemoglobin (BHb) and cefpiramide sodium (CPMS) was investigated at different temperatures by fluorescence, UV absorption, and CD spectroscopy, as well as the effect of common metal ions (Mg{sup 2+}, Zn{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Fe{sup 3+}, Ni{sup 2+}) on the BHb–CPMS system. Results showed that CPMS could quench the intrinsic fluorescence of BHb strongly, and the quenching mechanism was a static quenching process. The electrostatic force played an important role on the conjugation reaction between BHb and CPMS. The order of magnitude of binding constants (K{sub a}) was 10{sup 4}, the number of binding site (n) in the binary system was approximately equal to 1 and the binding distance (r) was about 3.08 nm. Besides, the values of Hill's coefficients were approximately equal to 1, which indicated there was almost no cooperativity in CPMS's binding with BHb. Synchronous spectra and CD spectra revealed that the microenvironment and the conformation of BHb were changed during the binding reaction. Studies on the interaction between BHb and drug will facilitate interpretation of the drug's metabolism and transporting process in the blood, and will help to explain the relationship between structures and functions of BHb. -- Highlights: • CPMS could quench the intrinsic fluorescence of BHb strongly through a static quenching process. • Electrostatic force played an important role on the conjugation reaction between BHb and CPMS. • The microenvironment and conformation of BHb were changed during the binding reaction.

  12. Interactions between poly(acrylic acid) and sodium dodecyl sulfate: isothermal titration calorimetric and surfactant ion-selective electrode studies.

    Science.gov (United States)

    Wang, C; Tam, K C

    2005-03-24

    Interaction between a monodispersed poly(acrylic acid) (PAA) (M(W) = 5670 g/mol, M(w)/M(n) = 1.02) with sodium dodecyl sulfate (SDS) was investigated using isothermal titration calorimetry (ITC), ion-selective electrode (ISE), and dynamic light scattering measurements. Contrary to previous studies, we report for the first time evidence of interaction between SDS and PAA when the degree of neutralization (alpha) of PAA is lower than 0.2. Hydrocarbon chains of SDS cooperatively bind to apolar segments of PAA driven by hydrophobic interaction. The interaction is both enthalpy and entropy favored (deltaH is negative but deltaS is positive). In 0.05 wt % PAA solution, the SDS concentration corresponding to the onset of binding (i.e., CAC) is approximately 2.4 mM and the saturation concentration (i.e., C(S)) is approximately 13.3 mM when alpha = 0. When PAA was neutralized and ionized, the binding was hindered by the enhanced electrostatic repulsion between negatively charged SDS and PAA chains and improved solubility of the polymer. With increasing alpha to 0.2, CAC increases to approximately 6.2 mM, C(S) drops to 8.6 mM, and the interaction is significantly weakened where the amount of bound SDS on PAA is reduced considerably. The values of CAC and C(S) derived from different techniques are in good agreement. The binding results in the formation of mixed micelles on apolar PAA coils, which then expands and dissociates into single PAA chains. The majority of unneutralized PAA molecules exist as single polymer chains stabilized by bound SDS micelles in solution after the saturation concentration.

  13. DNA-adducts in fish exposed to alkylating carcinogens

    International Nuclear Information System (INIS)

    Giam, C.S.; Holliday, T.L.; Williams, J.L.; Bahnson, A.; Weller, R.; Hinton, D.E.

    1988-01-01

    There are limited studies on DNA-adduct formation following exposure of fish or fish cells to carcinogens. It will be essential to determine if procarcinogens and carcinogens form the same DNA-adducts in different liver cells and how these compare to those reported in mammalian livers. They are also interested in the influence of different alkylating agents on the type and quantity of DNA-adduct formation and repair in fish. While eggs or small fish are ideal for routine screening, large fish such as trout (Salmo gairdneri) is needed initially for the development of analytical procedures for the isolation, quantitation and identification of various adducts. Trout (Salmo gairdneri) weighing approximately 250 grams were acclimatized at 13 degree C before being given i.p. injection of diethylnitrosoamine (DEN). The exposure period varied, though most animals were sacrificed after 24 hours. Their livers were excised and DNA was isolated mainly according the procedure of Croy et al. The neutral thermal hydrolysate and the acid hydrolysate were analyzed by HPLC-Fluorescent detector for 7-ethylguanine and O 6 -ethylguanine, respectively. O 6 -ethylguanine was detected, 7-ethylguanine was not detected. Attempts are being made to improve the detection of the latter compound. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to establish nanogram quantities of the ethylated bases. Laser desorption FT-IC-MS is particularly useful for characterizing thermally-labile and involatile nucleosides or nucleotides. Excretion of DEN was rapid and high. Exposure of trout (and other fish) to various ethylating agents will be discussed

  14. Imidazolidinone adducts of peptides and hemoglobin

    International Nuclear Information System (INIS)

    San George, R.C.; Hoberman, H.D.

    1986-01-01

    Acetaldehyde reacts selectively with the terminal amino groups of the α and β chains of hemoglobin to form stable adducts, the structures of which, based on 13 C NMR studies, are proposed to be diastereomeric 2-methyl imidazolidin-4-ones. In this scheme, acetaldelhyde forms a reversible Schiff base with the α-amino groups of the polypeptide chains which cyclize with the amide nitrogen of the first peptide bond to form the stable imidazolidinone adducts. In support of this mechanism, the authors found that in following the reaction of the peptide val-gly-gly with [1,2- 13 C] acetaldehyde, 13 C NMR resonances attributed to a Schiff base (δ = 170 ppm) were observed which slowly disappeared prior to appearance of resonances from a pair of stable adducts (δ = 70 and 71 ppm) believed to be the diastereomeric imidazolidinones. Schiff base formation appeared to limit the overall rate. Tetraglycine reacted in a similar manner but with a resonance from a single stable adduct observed representing the enantiomeric imidazolidinone adducts of this peptide. Peptides with proline in position 2 should be incapable of forming imidazolidinones, and the authors found that ala-pro-gly did in fact fail to form a stable adduct with acetaldehyde. The 2-methyl imidazolidin-4-one adducts of hemoglobin may be useful in determining the contribution of the amino terminal groups to the structure and functional properties of hemoglobins

  15. Hydrogen abstraction reactions by amide electron adducts

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Sevilla, C.L.; Swarts, S.

    1982-01-01

    Electron reactions with a number of peptide model compounds (amides and N-acetylamino acids) in aqueous glasses at low temperature have been investigated using ESR spectroscopy. The radicals produced by electron attachment to amides, RC(OD)NDR', are found to act as hydrogen abstracting agents. For example, the propionamide electron adduct is found to abstract from its parent propionamide. Electron adducts of other amides investigated show similar behavior except for acetamide electron adduct which does not abstract from its parent compound, but does abstract from other amides. The tendency toward abstraction for amide electron adducts are compared to electron adducts of several carboxylic acids, ketones, aldehydes and esters. The comparison suggests the hydrogen abstraction tendency of the various deuterated electron adducts (DEAs) to be in the following order: aldehyde DEA > acid DEA = approximately ester DEA > ketone DEA > amide DEA. In basic glasses the hydrogen abstraction ability of the amide electron adducts is maintained until the concentration of base is increased sufficiently to convert the DEA to its anionic form, RC(O - )ND 2 . In this form the hydrogen abstracting ability of the radical is greatly diminished. Similar results were found for the ester and carboxylic acid DEA's tested. (author)

  16. Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO2 Slabs.

    Science.gov (United States)

    Li, Zheng-Yao; Wang, Huibo; Yang, Wenyun; Yang, Jinbo; Zheng, Lirong; Chen, Dongfeng; Sun, Kai; Han, Songbai; Liu, Xiangfeng

    2018-01-17

    Exploiting advanced layered transition metal oxide cathode materials is of great importance to rechargeable sodium batteries. Layered oxides are composed of negatively charged TMO 2 slabs (TM = transition metal) separated by Na + diffusion layers. Herein, we propose a novel insight, for the first time, to control the electrochemical properties by tuning Coulombic repulsion between negatively charged TMO 2 slabs. Coulombic repulsion can finely tailor the d-spacing of Na ion layers and material structural stability, which can be achieved by employing Na + cations to serve as effective shielding layers between TMO 2 layers. A series of O3-type Na x Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 (x = 1.0, 0.9, 0.8, and 0.7) have been prepared, and Na 0.7 Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 shows the largest Coulombic repulsion between TMO 2 layers, the largest space for Na ion diffusion, the best structural stability, and also the longest Na-O chemical bond with weaker Coulombic attraction, thus leading to the best electrochemical performance. Meanwhile, the thermal stability depends on the Na concentration in pristine materials. Ex situ X-ray absorption (XAS) analysis indicates that Mn, Fe, and Cu ions are all electrochemically active components during insertion and extraction of sodium ion. This study enables some new insights to promote the development of advanced layered Na x TMO 2 materials for rechargeable sodium batteries in the future.

  17. Tunnel-Structured KxTiO2 Nanorods by in Situ Carbothermal Reduction as a Long Cycle and High Rate Anode for Sodium-Ion Batteries.

    Science.gov (United States)

    Zhang, Qing; Wei, Yaqing; Yang, Haotian; Su, Dong; Ma, Ying; Li, Huiqiao; Zhai, Tianyou

    2017-03-01

    The low electronic conductivity and the sluggish sodium-ion diffusion in the compact crystal structure of Ti-based anodes seriously restrict their development in sodium-ion batteries. In this study, a new hollandite K x TiO 2 with large (2 × 2) tunnels is synthesized by a facile carbothermal reduction method, and its sodium storage performance is investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses illustrate the formation mechanism of the hollandite K x TiO 2 upon the carbothermal reduction process. Compared to the traditional layered or small (1 × 1) tunnel-type Ti-based materials, the hollandite K x TiO 2 with large (2 × 2) tunnels may accommodate more sodium ions and facilitate the Na + diffusion in the structure; thus, it is expected to get a large capacity and realize high rate capability. The synthesized K x TiO 2 with large (2 × 2) tunnels shows a stable reversible capacity of 131 mAh g -1 (nearly 3 times of (1 × 1) tunnel-structured Na 2 Ti 6 O 13 ) and superior cycling stability with no obvious capacity decay even after 1000 cycles, which is significantly better than the traditional layered Na 2 Ti 3 O 7 (only 40% of capacity retention in 20 cycles). Moreover, the carbothermal process can naturally introduce oxygen vacancy and low-valent titanium as well as the surface carbon coating layer to the structure, which would greatly enhance the electronic conductivity of K x TiO 2 and thus endow this material high rate capability. With a good rate capability and long cyclability, this hollandite K x TiO 2 can serve as a new promising anode material for room-temperature long-life sodium-ion batteries for large-scale energy storage systems, and the carbothermal reduction method is believed to be an effective and facile way to develop novel Ti-based anodes with simultaneous carbon coating and Ti(III) self-doping.

  18. Effect of the synthesis temperature of sodium nona-titanate on batch kinetics of strontium-ion adsorption from aqueous solution

    International Nuclear Information System (INIS)

    Merceille, A.; Weinzaepfel, E.; Grandjean, A.; Merceille, A.; Weinzaepfel, E.; Barre, Y.

    2011-01-01

    Sodium titanate materials are promising inorganic ion exchangers for the adsorption of strontium from aqueous solutions. Sodium nona-titanate exhibits a layered structure consisting of titanate layers and exchangeable sodium ions between the layers. The materials used in this study include samples synthesized by a hydrothermal method at temperatures between 60 degrees C and 200 degrees C. Their structure, composition, and morphology were investigated with X-Ray diffraction measurements; thermogravimetric, compositional and surface area analyses, and scanning electron microscopy. The structure, composition, and morphology depended on the synthesis temperature. Batch kinetics experiments for the removal of strontium from aqueous solutions were performed, and the data were fitted by a pseudo-second-order reaction model and a diffusive model. The strontium extraction capacity also depended on the synthesis temperature and exhibited a maximum for samples synthesized at 100 degrees C. The sorption process occurs in one or two diffusion-controlled steps that also depend on the synthesis temperature. These diffusion-limited steps are the boundary-layer diffusion and intra-particle diffusion in the case of pure nona-titanate synthesized at temperatures lower than 170 degrees C, and only intra-particle diffusion in the case of nona-titanate synthesized at 200 degrees C. (authors)

  19. Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    Science.gov (United States)

    Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama

    2018-03-01

    The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.

  20. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    Science.gov (United States)

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  1. Hip adduction and abduction strength profiles in elite soccer players

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Serner, Andreas; Petersen, Jesper

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side-......-to-side symmetry in isometric hip adduction and abduction strength can be assumed in soccer players remains uncertain.......An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side...

  2. Determination of phospholipid regiochemistry by Ag(I) adduction and tandem mass spectrometry.

    Science.gov (United States)

    Yoo, Hyun Ju; Håkansson, Kristina

    2011-02-15

    Collision-activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of Ag-adducted phospholipids were investigated as structural tools. Previously, determination of the acyl chains at the two phospholipid esterification sites has been performed based on the R(1)COO(-)/R(2)COO(-) ratio in negative ion mode CAD tandem mass spectrometry. However, the observed product ion ratio is dependent on the extent of unsaturation of the fatty acyl group at sn-2 as well as on the total chain length. Similarly, in positive ion mode CAD with/without alkaline or alkaline earth metal adduction, the ratio of product ions resulting from either R(1)COOH or R(2)COOH neutral losses is dependent on the nature of the phospholipid polar headgroup. Ag(+) ion chromatography, in which silver ions are part of the stationary phase, can provide information on double bond number/distribution as well as double bond configuration (cis/trans) because of interaction between Ag(+) ions and olefinic π electrons of fatty acids and lipids. We hypothesized that interactions between double bonds and Ag(+) may be utilized to also reveal phospholipid esterification site information in tandem mass spectrometry. CAD and IRMPD of Ag-adducted phospholipids with unsaturated fatty acids (R(x)COOH, x = 1 or 2) provided characteristic product ions, [R(x)COOH + Ag](+), and their neutral losses. The characteristic product ions and their abundances do not depend on the type of polar headgroup or the number of double bonds of unsaturated acyl chains. Tandem mass spectrometry of Cu-adducted phospholipids was also performed for comparison based on the Lewis acid and base properties of Cu(+) and phospholipid double bonds, respectively.

  3. Physico-Chemical and Electrochemical Properties of Nanoparticulate NiO/C Composites for High Performance Lithium and Sodium Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Amaia Iturrondobeitia

    2017-12-01

    Full Text Available Nanoparticulate NiO and NiO/C composites with different carbon proportions have been prepared for anode application in lithium and sodium ion batteries. Structural characterization demonstrated the presence of metallic Ni in the composites. Morphological study revealed that the NiO and Ni nanoparticles were well dispersed in the matrix of amorphous carbon. The electrochemical study showed that the lithium ion batteries (LIBs, containing composites with carbon, have promising electrochemical performances, delivering specific discharge capacities of 550 mAh/g after operating for 100 cycles at 1C. These excellent results could be explained by the homogeneity of particle size and structure, as well as the uniform distribution of NiO/Ni nanoparticles in the in situ generated amorphous carbon matrix. On the other hand, the sodium ion battery (NIB with the NiO/C composite revealed a poor cycling stability. Post-mortem analyses revealed that this fact could be ascribed to the absence of a stable Solid Electrolyte Interface (SEI or passivation layer upon cycling.

  4. N/S Co-Doped 3 D Porous Carbon Nanosheet Networks Enhancing Anode Performance of Sodium-Ion Batteries.

    Science.gov (United States)

    Zou, Lei; Lai, Yanqing; Hu, Hongxing; Wang, Mengran; Zhang, Kai; Zhang, Peng; Fang, Jing; Li, Jie

    2017-10-12

    A facile and scalable method is realized for the in situ synthesis of N/S co-doped 3 D porous carbon nanosheet networks (NSPCNNs) as anode materials for sodium-ion batteries. During the synthesis, NaCl is used as a template to prepare porous carbon nanosheet networks. In the resultant architecture, the unique 3 D porous architecture ensures a large specific surface area and fast diffusion paths of both electrons and ions. In addition, the import of N/S produces abundant defects, increased interlayer spacings, more active sites, and high electronic conductivity. The obtained products deliver a high specific capacity and excellent long-term cycling performance, specifically, a capacity of 336.2 mA h g -1 at 0.05 A g -1 , remaining as large as 214.9 mA h g -1 after 2000 charge/discharge cycles at 0.5 A g -1 . This material has great prospects for future applications of scalable, low-cost, and environmentally friendly sodium-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mass spectrometry study of sublimation of rare earth acetylacetonate adducts with hexamethylphosphorustriamide

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Semyannikov, P.P.; Martynenko, L.I.; Ch'eu Tkhi Nguet; AN SSSR, Novosibirsk

    1991-01-01

    Process of vacuum sublimation of MA 3 ·Q adducts (M=Nd,Ho,Er; A - -acetylacetonate-ion; Q-hexamethylphosphorustriamide) was studied by mass-spectrometry method. Composinion of gaseous phase, formed in 20-140 deg C range at 10 -5 mm Hg, was determined. Scheme of MA 3 ·Q sublimation, including Q splitting and transition of MA 3 ·Q adducts and MA 3 and Q products of their thermodestruction to gaseous phase, was suggested. ΔH values of MA 3 ·Q thermodestruction and MA 3 sublimation were calculated

  6. Sodium dodecyl sulfate coated γ-alumina support modified by a new Schiff base for solid phase extraction and flame-AAS determination of lead and copper ions

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2013-01-01

    Full Text Available A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS-coated γ-alumina modified with bis(2-hydroxy acetophenone-1,6-hexanediimine (BHAH ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS. The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.

  7. Mass-spectrometric investigation of rare earth acetylacetonates dipivaloylmethanates and their adducts

    International Nuclear Information System (INIS)

    Gavrishzhuk, E.M.; Dzyubenko, N.G.; Martynenko, L.I.

    1985-01-01

    Peculiarities of fragmentation of molecular ions of rare earth acetylacetonates and dipivaloylmethanates under mass-spectrometric investigation of these compounds as well as their adducts with o-phenanthroline, α,α'-dipyridyl, triphenylphosphine oxide are considered in the given review. Similar data for identical derivants of some transitions metals are presented. Data on potentials of appearance and dissociation energy of basic ions in mass-spectra of the studied β-diketonates are analyzed

  8. Effects of intravenous hyperosmotic sodium bicarbonate on arterial and cerebrospinal fluid acid-base status and cardiovascular function in calves with experimentally induced respiratory and strong ion acidosis.

    Science.gov (United States)

    Berchtold, Joachim F; Constable, Peter D; Smith, Geoffrey W; Mathur, Sheerin M; Morin, Dawn E; Tranquilli, William J

    2005-01-01

    The objectives of this study were to determine the effects of hyperosmotic sodium bicarbonate (HSB) administration on arterial and cerebrospinal fluid (CSF) acid-base balance and cardiovascular function in calves with experimentally induced respiratory and strong ion (metabolic) acidosis. Ten healthy male Holstein calves (30-47 kg body weight) were instrumented under halothane anesthesia to permit cardiovascular monitoring and collection of blood samples and CSE Respiratory acidosis was induced by allowing the calves to spontaneously ventilate, and strong ion acidosis was subsequently induced by i.v. administration of L-lactic acid. Calves were then randomly assigned to receive either HSB (8.4% NaHCO3; 5 ml/kg over 5 minutes, i.v.; n=5) or no treatment (controls, n=5) and monitored for 1 hour. Mixed respiratory and strong ion acidosis was accompanied by increased heart rate, cardiac index, mean arterial pressure, cardiac contractility (maximal rate of change of left ventricular pressure), and mean pulmonary artery pressure. Rapid administration of HSB immediately corrected the strong ion acidosis, transiently increased arterial partial pressure of carbon dioxide (P(CO2)), and expanded the plasma volume. The transient increase in arterial P(CO2) did not alter CSF P(CO2) or induce paradoxical CSF acidosis. Compared to untreated control calves, HSB-treated calves had higher cardiac index and contractility and a faster rate of left ventricular relaxation for 1 hour after treatment, indicating that HSB administration improved myocardial systolic function. We conclude that rapid i.v. administration of HSB provided an effective and safe method for treating strong ion acidosis in normovolemic halothane-anesthetized calves with experimentally induced respiratory and strong ion acidosis. Fear of inducing paradoxical CSF acidosis is not a valid reason for withholding HSB administration in calves with mixed respiratory and strong ion acidosis.

  9. Activation of dihaloalkanes by glutathione conjugation and formation of DNA adducts

    International Nuclear Information System (INIS)

    Guengerich, F.P.; Peterson, L.A.; Cmarik, J.L.; Koga, N.; Inskeep, P.B.

    1987-01-01

    Ethylene dibromide (1,2-dibromoethane, EDB) can be activated to electrophilic species by either oxidative metabolism or conjugation with glutathione. Although conjugation is generally a route of detoxication, in this case it leads to genetic damage. The major DNA adduct has been identified as S-[2-(N 7 -guanyl)ethyl]glutathione, which is believed to arise via half-mustard and episulfonium ion intermediates. The adduct has a half-life of about 70 to 100 hr and does not appear to migrate to other DNA sites. Glutathione-dependent DNA damage by EDB was also demonstrated in human hepatocyte preparations. The possible relevance of this DNA adduct to genetic damage is discussed

  10. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Lu, Mingjie; Yu, Wenhua; Shi, Jing; Liu, Wei; Chen, Shougang; Wang, Xin; Wang, Huanlei

    2017-01-01

    Highlights: •Self-doped carbon architectures with nitrogen, oxygen, and sulfur are derived from Carrageen. •The obtained carbon materials exhibit excellent electrochemical property. •The strategy provides a one-step synthesis route to design advanced anodes for batteries. -- Abstract: Nitrogen, oxygen and sulfur tridoped porous carbons have been successfully synthesized from natural biomass algae-Carrageen by using a simultaneous carbonization and activation procedure. The doped carbons with sponge-like interconnected architecture, partially ordered graphitic structure, and abundant heteroatom doping perform outstanding features for electrochemical energy storage. When tested as lithium-ion battery anodes, a high reversible capacity of 839 mAh g −1 can be obtained at the current density of 0.1 A g −1 after 100 cycles, while a high capacity of 228 mAh g −1 can be maintained at 10 A g −1 . Tested against sodium, a high specific capacity of 227 can be delivered at 0.1 A g −1 after 100 cycles, while a high capacity of 109 mAh g −1 can be achieved at 10 A g −1 . These results turn out that the doped carbons would be potential anode materials for lithium- and sodium-ion batteries, which can be achieved by a one-step and large-scale synthesis route. Our observation indicates that heteroatom doping (especially sulfur) can significantly promote ion storage and reduce irreversible ion trapping to some extent. This work gives a general route for designing carbon nanostructures with heteroatom doping for efficient energy storage.

  11. Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light

    International Nuclear Information System (INIS)

    Strniste, G.F.; Rall, S.C.

    1976-01-01

    Ultraviolet (uv)-light-mediated formation of protein-DNA adducts in Chinese hamster cell chromatin was investigated in an attempt to compare chromatin alterations induced in vitro with those observed in vivo. Three independent methods of analysis indicated stable protein-DNA associations: a membrane filter assay which retained DNA on the filter in the presence of high salt-detergent; a Sepharose 4B column assay in which protein eluted coincident with DNA; and a CsCl density gradient equilibrium assay which showed both protein and DNA banding at densities other than their respective native densities. Treatment of the irradiated chromatin with DNase provided further evidence that protein--DNA and not protein-protein adducts were being observed in the column assay. There is a fluence-dependent response of protein-DNA adduct formation when the chromatin is irradiated at low ionic strength and is linear for protein over the range studied. When the chromatin is exposed to differing conditions of pH, ionic strength, or divalent metal ion concentration, the quantity of adduct formed upon uv irradiation varies. Susceptibility to adduct formation can be partially explained in terms of the condensation state of the chromatin and other factors such as rearrangement, denaturation, and dissociation of the chromatin components. Besides providing information on the biological significance of these types of uv-induced lesions, this technique may be useful as a probe of chromatin structure

  12. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  13. Reverse microemulsion synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide nanocomposites for high-performance supercapacitors and sodium ion batteries

    Science.gov (United States)

    Qiu, Xiaoming; Liu, Yongchang; Wang, Luning; Fan, Li-Zhen

    2018-03-01

    Prussian blue analogues with tunable open channels are of fundamental and technological importance for energy storage systems. Herein, a novel facile synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide (denoted as Ni-CoHCF/rGO) nanocomposite is realized by a reverse microemulsion method. The very fine Ni-CoHCF nanoparticles (10-20 nm) are homogeneously anchored on the surface of reduced graphene oxide by electrostatic adsorption and reduced graphene oxide is well-separated by Ni-CoHCF particles. Benefiting from the combined advantages of this structure, the Ni-. It CoHCF/rGO nanocomposite can be used as electrodes for both supercapacitors and sodium ion batteries exhibits excellent pseudocapacitve performance in terms of high specific capacitance of 466 F g-1 at 0.2 A g-1 and 350 F g-1 at 10 A g-1, along with high cycling stabilities. As a cathode material for sodium ion batteries, it also demonstrates a high reversible capacity of 118 mAh g-1 at 0.1 A g-1, good rate capability, and superior cycling stability. These results suggest its potential as an efficient electrode for high-performance energy storage and renewable delivery devices.

  14. Cauliflower-like MnO@C/N composites with multiscale, expanded hierarchical ordered structures as electrode materials for Lithium- and Sodium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Ting; Wu, Zhenguo; Xiang, Wei; Wang, Enhui; Chen, Tingru; Guo, Xiaodong; Chen, Yanxiao; Zhong, Benhe

    2017-01-01

    MnO@C/N composite with expanded cauliflower-like morphology was prepared via one-pot L-tryptophan assisted hydrothermal method following by annealing in Ar atmosphere. The cauliflower structure was assembled by porous nanowires that composed of MnO nanoparticles wrapped by continuous N-doped amorphous carbon matrix. Superior electrochemical performances were obtained in both lithium/sodium ion batteries. And the reaction kinetics of MnO@C/N in lithium/sodium ion batteries were analyzed and compared. More than 837 mAh g −1 could be retained after 300 cycles at 500 mA g −1 . And a high reversible capacity of 336 mAh g −1 at 5000 mA g −1 also demonstrate the excellent rate performance of MnO@C/N for LIBs. As to SIBs, 123 mAh g −1 could be maintained after 200 cycles at 100 mA g −1 . The superior performances could be attributed to the peculiar porous micro-nano structure and N-doped amorphous carbon coating. The reaction kinetics results revealed that the capacitive-controlled capacity would dominate of the electrochemical performance in SIBs and the diffusion-controlled capacity could play a more important role in LIBs, due to the atom weight and size of Na + is larger than Li + .

  15. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

    Science.gov (United States)

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L

    2014-01-23

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.

  16. A Green Route to a Na2FePO4F-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life.

    Science.gov (United States)

    Deng, Xiang; Shi, Wenxiang; Sunarso, Jaka; Liu, Meilin; Shao, Zongping

    2017-05-17

    Sodium ion batteries (SIBs) are considered one of the most promising alternatives for large-scale energy storage due largely to the abundance and low cost of sodium. However, the lack of high-performance cathode materials at low cost represents a major obstacle toward broad commercialization of SIB technology. In this work, we report a green route strategy that allows cost-effective fabrication of carbon-coated Na 2 FePO 4 F cathode for SIBs. By using vitamin C as a green organic carbon source and environmentally friendly water-based polyacrylic latex as the binder, we have demonstrated that the Na 2 FePO 4 F phase in the as-derived Na 2 FePO 4 F/C electrode shows a high reversible capacity of 117 mAh g -1 at a cycling rate of 0.1 C. More attractively, excellent rate capability is achieved while retaining outstanding cycling stability (∼85% capacity retention after 1000 charge-discharge cycles at a rate of 4 C). Further, in operando X-ray diffraction has been used to probe the evolution of phase structures during the charge-discharge process, confirming the structural robustness of the Na 2 FePO 4 F/C cathode (even when charged to 4.5 V). Accordingly, the poor initial Coulombic efficiency of some anode materials may be compensated by extracting more sodium ions from Na 2 FePO 4 F/C cathode at higher potentials (up to 4.5 V).

  17. Sodium and potassium ions and accumulation of labelled D-aspartate and GABA in crude synaptosomal fraction from rat cerebral cortex

    International Nuclear Information System (INIS)

    Takagaki, G.

    1978-01-01

    The accumulation of labelled D-aspartate into crude synaptosomal fraction (P 2 ) prepared from the rat cerebral cortex proceeded by a 'high affinity' system (Ksub(m) = 15.1 μM). The maximal velocity of D-aspartate uptake was higher than that of the 'high affinity' component of L-aspartate uptake and almost equal to that of L-glutamate under the same incubation conditions. Negligible metabolism of labelled D-aspartate was observed in the P 2 fraction. These findings are in accord with those which have been reported for rat cerebral cortical slices. The following observations were made on D-aspartate uptake into rat cerebral P 2 fraction. The requirement of sodium were almost absolute and obligatory. The affinity of the carrier for the substrate was increased by increasing sodium concentration in the medium, but the maximal velocity was not altered. It is suggested that sodium ion is co-transported mole for mole with the substrate molecule. Omission of potassium from the medium inhibited the uptake competitively. Ouabain was a competitive inhibitor on the uptake. Whereas thallium, rubidium and ammonium were efficient substitutes for potassium in exhibiting Na-K ATPase activity of the P 2 fraction, the uptake was activated only by rubidium in the absence of potassium. These observations were in common with the uptake of L-aspartate as well as of L- and D-glutamate, but not with GABA uptake. The requirement of sodium for the uptake of D-glutamate was indicated to be higher than that in the uptake of the other amino acids. Mutual inhibitions of the uptake among L- and D-isomers of glutamate and aspartate suggested that a common carrier is involved in the transport. Mechanisms of the transport of these amino acids in the crude synaptosomal fraction were discussed. (author)

  18. Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass

    International Nuclear Information System (INIS)

    Qin, T.; Mountjoy, G.; Afify, N. D.; Reid, M. F.; Yeung, Y. Y.; Speghini, A.; Bettinelli, M.

    2011-01-01

    Rare-earth-doped glasses are key materials for optical technology due to the luminescent properties of 4f n ions. The crystal-field model describes the effect of local environment on transitions between 4f electrons. We present a detailed modeling study of the optical spectra of sodium disilicate glass, 33Na 2 O·67SiO 2 , doped with 0.2% and 1.0 mol%Eu 2 O 3 . This study uses very large molecular dynamics models with up to 100 Eu 3+ ions, the superposition model for covalent and overlap effects on crystal-field parameters, and realistic values for homogeneous linewidth broadening. The simulated spectra are in reasonable agreement with experiment. The trends in 7 F J energy levels across different Eu 3+ ion sites have been examined and a very detailed analysis is presented that looks at how features of the spectra are related to features of the local environment of Eu 3+ ions. Increasing the crystal-field strength S total causes the 7 F 0 energy level to decrease and causes the splitting of 7 F J manifolds to increase, and this is due to increasing mixing of 4f wave functions. To a reasonable approximation the crystal-field strength components S k depend on angular positions of ligands independently of distances to ligands. The former are seen to be more significant in determining S k , which are closely related to the rotationally invariant bond-orientational order parameters Q k . The values of S 2 are approximately linear in Q 2 , and the values of Q 2 are higher for fivefold than sixfold coordinated rare-earth ions. These results can be of importance for efforts to enhance the local environment of rare-earth ions in oxide glasses for optical applications.

  19. Amorphous MoS3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium-Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hualin [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Wang, Lu [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Deng, Shuo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zeng, Xiaoqiao [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Nie, Kaiqi [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Duchesne, Paul N. [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Wang, Bo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Liu, Simon [Department of Chemical Engineering, University of Waterloo, Ontario N2L 3G1 Canada; Zhou, Junhua [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhao, Feipeng [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Han, Na [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhang, Peng [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Zhong, Jun [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Sun, Xuhui [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Youyong [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Yanguang [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Lu, Jun [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA

    2016-11-17

    The search for earth-abundant and high-performance electrode materials for sodium-ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain-like MoS3—can be a better choice as the anode material of sodium-ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g-1), rate capability (235 mA h g-1 at 20 A g-1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm-3 and an areal capacity of >6.0 mA h cm-2 at very high areal loadings of active materials (up to 12 mg cm-2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.

  20. Repair of furocoumarin adducts in mammalian cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-01-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly

  1. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    International Nuclear Information System (INIS)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-01-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag + and the reaction partners (X) including [Ag n X m − (n + 1)H] − (n = 1–4, m = 1–3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver–GSH interactions, even doubly charged oligomers occur generating [Ag (a+1) GSH a − (a + 3)H] 2− (a = 5–7) and [Ag b GSH b − (b + 2)H] 2− (b = 4–8) ions. 1 H NMR data of free GSH compared to that after treatment with Ag + confirm sulfur–metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver–GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation

  2. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Science.gov (United States)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-09-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m - ( n + 1)H]- ( n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag( a + 1)GSH a - ( a + 3)H]2- ( a = 5-7) and [Ag b GSH b - ( b + 2)H]2- ( b = 4-8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  3. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe, E-mail: uk@uni-muenster.de [University of Muenster, Institute of Inorganic and Analytical Chemistry (Germany)

    2013-09-15

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag{sup +} and the reaction partners (X) including [Ag{sub n}X{sub m} - (n + 1)H]{sup -} (n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag{sub (a+1)}GSH{sub a} - (a + 3)H]{sup 2-} (a = 5-7) and [Ag{sub b}GSH{sub b} - (b + 2)H]{sup 2-} (b = 4-8) ions. {sup 1}H NMR data of free GSH compared to that after treatment with Ag{sup +} confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  4. A P2-Type Layered Superionic Conductor Ga-Doped Na2 Zn2 TeO6 for All-Solid-State Sodium-Ion Batteries.

    Science.gov (United States)

    Li, Yuyu; Deng, Zhi; Peng, Jian; Chen, Enyi; Yu, Yao; Li, Xiang; Luo, Jiahuan; Huang, Yangyang; Zhu, Jinlong; Fang, Chun; Li, Qing; Han, Jiantao; Huang, Yunhui

    2018-01-24

    Here, a P2-type layered Na 2 Zn 2 TeO 6 (NZTO) is reported with a high Na + ion conductivity ≈0.6×10 -3  S cm -1 at room temperature (RT), which is comparable to the currently best Na 1+n Zr 2 Si n P 3-n O 12 NASICON structure. As small amounts of Ga 3+ substitutes for Zn 2+ , more Na + vacancies are introduced in the interlayer gaps, which greatly reduces strong Na + -Na + coulomb interactions. Ga-substituted NZTO exhibits a superionic conductivity of ≈1.1×10 -3  S cm -1 at RT, and excellent phase and electrochemical stability. All solid-state batteries have been successfully assembled with a capacity of ≈70 mAh g -1 over 10 cycles with a rate of 0.2 C at 80 °C. 23 Na nuclear magnetic resonance (NMR) studies on powder samples show intra-grain (bulk) diffusion coefficients D NMR on the order of 12.35×10 -12  m 2  s -1 at 65 °C that corresponds to a conductivity σ NMR of 8.16×10 -3  S cm -1 , assuming the Nernst-Einstein equation, which thus suggests a new perspective of fast Na + ion conductor for advanced sodium ion batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Investigation of Thermal Stability of P2-NaxCoO2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy.

    Science.gov (United States)

    Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi; Chung, Kyung Yoon; Choi, Wonchang; Kim, Seung Min; Chang, Wonyoung

    2017-06-07

    Here, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na x CoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3 O 4 , CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction of Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na x CoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na x CoO 2 . The observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.

  6. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    International Nuclear Information System (INIS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-01-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  7. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, Bartlomiej [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Liskova, Aurelia; Kuricova, Miroslava [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Banski, Mateusz; Misiewicz, Jan [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Dusinska, Maria [Norwegian Institute for Air Research, Health Effects Laboratory, Department of Environmental Chemistry (Norway); Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Rollerova, Eva [Slovak Medical University, Faculty of Public Health, Department of Toxicology (Slovakia); Podhorodecki, Artur, E-mail: artur.p.podhorodecki@pwr.edu.pl [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Tulinska, Jana, E-mail: jana.tulinska@szu.sk [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia)

    2017-02-15

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  8. [Unification of methods for determining the trace quantities of lead, zinc, sodium and potassium ions in the assessment of drinking water adn transfusion fluid quality].

    Science.gov (United States)

    Popkov, V A; Golovina, N V; Evgrafov, A A

    2001-01-01

    The results of long-term studies made by the Department of General Chemistry, I. M. Sechenov Moscow Medical Academy, that deals with unification of methods for determining some ions of metals (lead, zinc, sodium, and potassium) in the assessment of the quality of drinking water and transfusion fluids are summarized. A procedure was developed to determine the trace impurities of zinc, lead, and silver by atomic absorption spectrometry (AAS) by using sorption concentration. C-80-2-aminothiazole, a new sorbent synthesized at the Research Institute of Polymers, was used to detect these ions in the drinking water. With regards to the chosen optimal conditions, drinking water samples were analyzed via their direct spraying in the air-acetylene flame. The prior sorption concentration determined drinking water zinc and lead ions in the concentrations equal to or less than their permissible dose concentrations. The studies indicated that the used methods to determine the trace quantities of metals in the drinking water and aqueous solutions show a high sensitivity, rapidity, simplicity of sample preparation.

  9. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Shokrollahi, Ardeshir; Niknam, Ebrahim; Rajabi, Hamid Reza [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-06-30

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L{sup -1} nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples.

  10. Precipitation and ion floatation of molybdenum, tungsten, copper, and cobalt compounds by cetyltrimethylammonium bromide and sodium diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Strizhko, V.S.; Shekhirev, D.V.; Ignatkina, V.A.; Alimova, R.Eh.

    1996-01-01

    Experimental data are presented on application of ion-flotation in purification of low-concentration (less than 10 -3 M) acid solutions from molybdenum, tungsten, copper and cobalt ions. Two collectors, i.e. DEDC and CTMAB have been tested, their optimal consumption is determined. It is shown that CTMAB provides for selective purification from Mo and W ions and allows foam product with little water on flotation in a column to be obtained. But the achieved residual W and Mo concentration of 20 to 10 mg/l require deeper finishing purification in order to meet a sanitary permissible limiting concentration value employing other methods. DEDC provides for sufficient purification from nonferrous metal ions but does not possess selectivity with respect to some metals. The obtained results have shown the possibility to apply ion-flotation in concentration of metal ions in foam product in the process of waste water purification with further finishing purification up to a sanitary permissible limiting concentration value. 14 refs.; 3 figs.; 1 tab

  11. Hip adduction and abduction strength profiles in elite soccer players

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Serner, Andreas; Petersen, Jesper

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side-......-to-side symmetry in isometric hip adduction and abduction strength can be assumed in soccer players remains uncertain....

  12. DNA Adducts aand Human Atherosclerotis Lesions

    Czech Academy of Sciences Publication Activity Database

    Strejc, Přemysl; Boubelík, O.; Stávková, Zdena; Chvátalová, Irena; Šrám, Radim

    2001-01-01

    Roč. 42, - (2001), s. 662 ISSN 0008-5472. [Annual Meeting of Proceedings /92./. 24.03.2001-28.03.2001, New Orleans] R&D Projects: GA MZd NM10 Keywords : DNA adducts * LDL cholesterol Subject RIV: DN - Health Impact of the Environment Quality

  13. Based on Cu as framework constructed nanoporous CuO/Cu composites by a dealloy method for sodium-ion battery anode

    Science.gov (United States)

    Zheng, Tian; Li, Guangda; Li, Deming; Meng, Xiangeng

    2018-05-01

    Nanoporous CuO/Cu composites with a continuous channel structure were fabricated through a corroding Cu-Al alloy process. The width of the continuous channels was about 20 50 nm. Nanoporous structure could effectively sustain the volume expansion during the Na+ insertion/extraction process and shorten the Na+ diffusion length as well, which thus helps improve the Na+ storage performance. Moreover, the nanoporous structure can improve the contact area between the electrolyte and the electrode, leading to an increment in the number of Na+ insertion/extraction sites. When used as the anode for sodium-ion batteries, the CuO/Cu exhibited an initial capacity of 580 mAh g-1, and the capacity is maintained at 200 mAh g-1 after 200 cycles at a current density of 500 mA g-1.

  14. Co9 S8 /Co as a High-Performance Anode for Sodium-Ion Batteries with an Ether-Based Electrolyte.

    Science.gov (United States)

    Zhao, Yingying; Pang, Qiang; Wei, Yingjin; Wei, Luyao; Ju, Yanming; Zou, Bo; Gao, Yu; Chen, Gang

    2017-12-08

    Co 9 S 8 has been regarded as a desirable anode material for sodium-ion batteries because of its high theoretical capacity. In this study, a Co 9 S 8 anode material containing 5.5 wt % Co (Co 9 S 8 /Co) was prepared by a solid-state reaction. The electrochemical properties of the material were studied in carbonate and ether-based electrolytes (EBE). The results showed that the material had a longer cycle life and better rate capability in EBE. This excellent electrochemical performance was attributed to a low apparent activation energy and a low overpotential for Na deposition in EBE, which improved the electrode kinetic properties. Furthermore, EBE suppressed side reactions of the electrode and electrolyte, which avoided the formation of a solid electrolyte interphase film. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Extraction of lanthanides ions (III) from aqueous solution by sodium salt of the N(4-amino-benzoate)-propyl-silica gel

    International Nuclear Information System (INIS)

    Retamero, R.C.

    1991-01-01

    The silica gel 60 of specific superficial area 486 m 2 .g -1 was modified chemically with the ligand 4-amino benzoate of sodium in water-ethanol environment (l:L). The adsorptions of metallic ions were from water solutions at approximately 2 x 10 -3 M of chloride of Pr(III), Nd(III), Eu(III) and Ho(III). In these experiments we could see that the system gets the equilibrium of adsorption rapidly and that the pH of the environment has a great influence on the process of adsorption, being that the number of metal mols adsorpted in the matrix varied between 10,00 and 17,00 x 10 -5 mols. g -1 with a pH of approximately 5 for all the lanthanides, where the adsorption curves reach equilibrium. (author)

  16. Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries.

    Science.gov (United States)

    Liu, Xin; Li, Zhiwei; Fei, Hailong; Wei, Mingdeng

    2015-11-21

    A layer structured K-doped (NH4)2V3O8/graphene (K-NVG) was prepared via a hydrothermal route and then used as an anode material for sodium-ion batteries for the first time. The K-NVG nanosheets have a diameter in the range of 200-500 nm. The K-NVG electrode exhibited stable cycling and a good rate performance with a reversible capacity of 235.4 mA h g(-1), which is much higher than the 90.5 mA h g(-1) value of the (NH4)2V3O8/graphene electrode after 100 cycles at a current density of 100 mA g(-1). Simultaneously, the retention rate was maintained at 82% even after 250 cycles at the current density of 300 mA g(-1). Such good electrochemical properties may be attributed to the K-NVG's stable layered structure.

  17. Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries

    Science.gov (United States)

    Zhang, Zhian; Yang, Xing; Fu, Yun; Du, Ke

    2015-11-01

    Ultrathin molybdenum diselenide nanosheets are decorated on the surface of multi-walled carbon nanotubes (MWCNT) via a one-step hydrothermal method. Uniform MoSe2 nanosheets are firmly anchored on MWCNT according to the characterizations of scanning electron microscope (SEM), transmission electron microscope (TEM). When evaluated as anodes for sodium storage, the MoSe2@MWCNT composites deliver a reversible specific capacity of 459 mAh g-1 at a current of 200 mA g-1 over 90 cycles, and a specific capacity of 385 mAh g-1 even at a current rate of 2000 mAh g-1, which is better than the MoSe2 nanosheets. The enhanced electrochemical performance of the MoSe2@MWCNT composites can be ascribed to the synergic effects of MoSe2 nanosheets and MWCNT. The high capacity and good rate performance reveal that the MoSe2@MWCNT composites are very promising for applications in sodium-ion batteries.

  18. A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries.

    Science.gov (United States)

    Xie, Xiuqiang; Su, Dawei; Zhang, Jinqiang; Chen, Shuangqiang; Mondal, Anjon Kumar; Wang, Guoxiu

    2015-02-21

    SnO2/nitrogen-doped graphene nanohybrids have been synthesized by an in situ hydrothermal method, during which the formation of SnO2 nanocrystals and nitrogen doping of graphene occur simultaneously. The as-prepared SnO2/nitrogen-doped graphene nanohybrids exhibit enhanced electrochemical performance for sodium-ion batteries compared to SnO2/graphene nanocomposites. A systematic comparison between SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart as anode materials for sodium-ion batteries has been conducted. The comparison is in a reasonable framework, where SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart have the same SnO2 ratio, similar SnO2 crystallinity and particle size, close surface area and pore size. The results clearly manifest that the improved electron transfer efficiency of SnO2/nitrogen-doped graphene due to nitrogen-doping plays a more important role than the increased electro-active sites within graphene network in enhancing the electro-activity of SnO2/nitrogen-doped graphene nanohybrids compared to the SnO2/graphene counterpart. In contrast to the previous reports which often ascribe the enhanced electro-activity of nitrogen-doped graphene based composites to two nitrogen-doping effects (improving the electron transfer efficiency and increasing electro-active sites within graphene networks) in one single declaration, this work is expected to provide more specific information for understanding the effects of nitrogen-doping into graphene on improving the electrochemical performance of graphene based composites.

  19. Experimental investigation of aluminum complexing with sodium ion and of gallium and iron (III) speciation in natural solutions

    International Nuclear Information System (INIS)

    Diakonov, Igor

    1995-01-01

    The aim of this work is to acquire thermodynamic data on the aqueous complexes forming between sodium and aluminum, gallium and hydroxide, and iron (III) and hydroxide. These data will provide for a better understanding of the transport and distribution of these elements in surface and hydrothermal fluids. Stability constants of the sodium-aluminate complex (Na Al(OH) 4 deg.) were obtained from boehmite solubility measurements at temperatures from 125 to 350 deg. C in alkaline solutions containing from 0.1 to 1 mol/L sodium. Complementary potentiometric measurements were performed with a sodium selective electrode, between 75 and 200 deg C (the potentiometric study was carried out by Gleb Pokrovski). Analyses of these data within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model allowed determination of the HKF parameters for Na Al(OH) 4 deg. and calculation of its thermodynamic properties to 800 deg. C and 5 kb. The results of this work show that Na Al(OH) 4 deg. complex formation increases significantly the solubility of aluminum-bearing minerals and consequently aluminum mobility in hydrothermal fluids. Gallium speciation in surface and hydrothermal fluids is dominated by the negatively charged species, Ga(OH) 4 - . The thermodynamic properties of this species were determined from of OEGaOOH solubility measurements as a function of pH and temperature from 25 to 250 deg. C. In general, the variation of gallium aqueous speciation with pH is similar to that of aluminum other than at temperatures less than 200 deg. C over the pH range 3 - 6. This difference can account for the independent behavior of gallium versus aluminum in numerous low temperature natural systems. The thermodynamic properties of Fe(OH) 3 deg. which dominates the speciation of Fe(III) in surface waters and Fe(OH) 4 - were determined from hematite solubility measurements as a function of pH, oxygen pressure and temperature from 110 to 300 deg. C. The available thermodynamic data on

  20. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C - A potentiometric and spectrophotometric study

    Science.gov (United States)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2013-11-01

    Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.

  1. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    Science.gov (United States)

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Determination of moisture content in steams and variation in moisture content with operating boiler level by analyzing sodium content in steam generator water and steam condensate of a nuclear power plant using ion chromatographic technique

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    Dry steam with moisture content less than <1% is the stringent requirements in a steam generator for good health of the turbine. In order to confirm the same, determination of sodium is done in steam generator water and steam condensate using Flame photometer in ppm level and ion chromatograph in ppb level. Depending on the carry over of sodium in steam along with the water droplet (moisture), the moisture content in steam was calculated and was found to be < 1% which is requirements of the system. The paper described the salient features of a PHWR, principle of Ion Chromatography, chemistry parameters of Steam Generators and calculation of moisture content in steam on the basis of sodium analysis. (author)

  3. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis

    NARCIS (Netherlands)

    Doorn, J.; Storteboom, T. T. R.; Mulder, A. M.; de Jong, W. H. A.; Rottier, B. L.; Kema, I. P.

    BACKGROUND: Measurement of chloride in sweat is an essential part of the diagnostic algorithm for cystic fibrosis. The lack in sensitivity and reproducibility of current methods led us to develop an ion chromatography/high-performance liquid chromatography (IC/HPLC) method, suitable for the analysis

  4. Identification of Bound Nitro Musk-Protein Adduct in Fish Liver By Gas Chromatography-Mass Sectrometry: Biotransformation, Dose-Response and Toxicokinetics of Nitro Musk Metabolites Protein Adducts in Trout Liver as Biomarker of Exposure

    Science.gov (United States)

    Ubiquitous occurrences of synthetic nitro musks are evident in the literature. The In vivo analysis of musk xylene (MX) and musk ketone (MK) - protein adducts in trout liver have been performed by gas chromatography-mass spectrometry using selected ion monitoring (GC-SIM-MS). Bio...

  5. Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery

    Science.gov (United States)

    Ao, Xiang; Jiang, Jianjun; Ruan, Yunjun; Li, Zhishan; Zhang, Yi; Sun, Jianwu; Wang, Chundong

    2017-08-01

    Tin oxide (SnO2) has been considered as one of the most promising anodes for advanced rechargeable batteries due to its advantages such as high energy density, earth abundance and environmental friendly. However, its large volume change during the Li-Sn/Na-Sn alloying and de-alloying processes will result in a fast capacity degradation over a long term cycling. To solve this issue, in this work we design and synthesize a novel honeycomb-like composite composing of carbon encapsulated SnO2 nanospheres embedded in carbon film by using dual templates of SiO2 and NaCl. Using these composites as anodes both in lithium ion batteries and sodium-ion batteries, no discernable capacity degradation is observed over hundreds of long term cycles at both low current density (100 mA g-1) and high current density (500 mA g-1). Such a good cyclic stability and high delivered capacity have been attributed to the high conductivity of the supported carbon film and hollow encapsulated carbon shells, which not only provide enough space to accommodate the volume expansion but also prevent further aggregation of SnO2 nanoparticles upon cycling. By engineering electrodes of accommodating high volume expansion, we demonstrate a prototype to achieve high performance batteries, especially high-power batteries.

  6. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    Science.gov (United States)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  7. Carbon with Expanded and Well-Developed Graphene Planes Derived Directly from Condensed Lignin as a High-Performance Anode for Sodium-Ion Batteries.

    Science.gov (United States)

    Yoon, Dohyeon; Hwang, Jieun; Chang, Wonyoung; Kim, Jaehoon

    2018-01-10

    In this study, we demonstrate that lignin, which constitutes 30-40 wt % of the terrestrial lignocellulosic biomass and is produced from second generation biofuel plants as a cheap byproduct, is an excellent precursor material for sodium-ion battery (NIB) anodes. Because it is rich in aromatic monomers that are highly cross-linked by ether and condensed bonds, the lignin material carbonized at 1300 °C (C-1300) in this study has small graphitic domains with well-developed graphene layers, a large interlayer spacing (0.403 nm), and a high micropore surface area (207.5 m 2 g -1 ). When tested as an anode in an NIB, C-1300 exhibited an initial Coulombic efficiency of 68% and a high reversible capacity of 297 mA h g -1 at 50 mA g -1 after 50 cycles. The high capacity of 199 mA h g -1 at less than 0.1 V with a flat voltage profile and an extremely low charge-discharge voltage hysteresis (sugar-derived carbons and a low-temperature carbonized sample (900 °C), the reasons for the excellent performance of C-1300 were determined to result from facilitated Na + -ion transport to the graphitic layer and the microporous regions that penetrate through the less defective and enlarged interlayer spacings.

  8. X-radiation effect on the hyperpolarization of cells, the adeninenucleotide content and the distribution of sodium and potassium ions

    Energy Technology Data Exchange (ETDEWEB)

    Frol' kis, V V [Akademiya Meditsinskikh Nauk Ukrainskoj SSR, Kiev. Inst. Gerontologii

    1975-03-01

    X-radiation prevents the progress of hyperpolarization of muscle and liver cells caused by hormones (estradioldipropyonate, deoxycorticosteron-acetate and insulin) and by the loss of blood. X-radiation offsets the redistribution of K/sup +/ and Na/sup +/ ions caused by hyperpolarization and does not change the level of ATP, ADP, CP and Pi. X-radiation is suggested to affect the hyperpolarization and the ionic shifts via the system of protein biosynthesis.

  9. Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries

    Science.gov (United States)

    Manikandan, Palanisamy; Heo, Seongwoo; Kim, Hyun Woo; Jeong, Hu Young; Lee, Eungje; Kim, Youngsik

    2017-09-01

    Layered Na0.5Co0.5Mn0.5O2 material is synthesized through a facile mixed hydroxy-carbonate route using (Co0.5Mn0.5)2(OH)2CO3 precursor and well characterized as a hexagonal layered structure under P63/mmc space group. The lattice parameters and unit cell volume (a = 2.8363 Å, c = 11.3152 Å and V = 78.83 Å3) are calculated by Rietveld refinement analysis. A flaky-bundle morphology is obtained to the layered Na0.5Co0.5Mn0.5O2 material with the hexagonal flake size ∼30 nm. Advanced transmission electron microscopic images are revealed the local structure of the layered Na0.5Co0.5Mn0.5O2 material with contrasting bright dots and faint dark dots corresponding to the Co/Mn and Na atoms. Two oxidation and reduction peaks are occurred in a cyclic voltammetric analysis corresponding to Co3+/Co4+ and Mn3+/Mn4+ redox processes. These reversible processes are attributed to the intercalation/de-intercalation of Na+ ions into the host structure of layered Na0.5Co0.5Mn0.5O2 material. Accordingly, the sodium cell is delivered the initial charge-discharge capacity 53/144 mAh g-1 at 0.5 C, which cycling studies are extended to rate capability test at 1 C, 3 C and 5C. Eventually, the Na-ion full-cell is yielded cathode charge-discharge capacity 55/52 mAh g-1 at 0.212 mA and exhibited as a high voltage cathode for Na-ion batteries.

  10. Acetaldehyde Adducts in Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    Mashiko Setshedi

    2010-01-01

    Full Text Available Chronic alcohol abuse causes liver disease that progresses from simple steatosis through stages of steatohepatitis, fibrosis, cirrhosis, and eventually hepatic failure. In addition, chronic alcoholic liver disease (ALD, with or without cirrhosis, increases risk for hepatocellular carcinoma (HCC. Acetaldehyde, a major toxic metabolite, is one of the principal culprits mediating fibrogenic and mutagenic effects of alcohol in the liver. Mechanistically, acetaldehyde promotes adduct formation, leading to functional impairments of key proteins, including enzymes, as well as DNA damage, which promotes mutagenesis. Why certain individuals who heavily abuse alcohol, develop HCC (7.2–15% versus cirrhosis (15–20% is not known, but genetics and co-existing viral infection are considered pathogenic factors. Moreover, adverse effects of acetaldehyde on the cardiovascular and hematologic systems leading to ischemia, heart failure, and coagulation disorders, can exacerbate hepatic injury and increase risk for liver failure. Herein, we review the role of acetaldehyde adducts in the pathogenesis of chronic ALD and HCC.

  11. Insights into the Dual-Electrode Characteristics of Layered Na0.5Ni0.25Mn0.75O2 Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Palanisamy, Manikandan; Kim, Hyun Woo; Heo, Seongwoo; Lee, Eungje; Kim, Youngsik

    2017-03-29

    Sodium-ion batteries are now close to replacing lithium-ion batteries because they provide superior alternative energy storage solutions that are in great demand, particularly for large-scale applications. To that end, the present study is focused on the properties of a new type of dual-electrode material, Na 0.5 Ni 0.25 Mn 0.75 O 2 , synthesized using a mixed hydroxy-carbonate route. Cyclic voltammetry confirms that redox couples, at high and low voltage ranges, are facilitated by the unique features and properties of this dual-electrode, through sodium ion deintercalation/intercalation into the layered Na 0.5 Ni 0.25 Mn 0.75 O 2 material. This material provides superior performance for Na-ion batteries, as evidenced by the fabricated sodium cell that yielded initial charge-discharge capacities of 125/218 mAh g -1 in the voltage range of 1.5-4.4 V at 0.5 C. At a low voltage range (1.5-2.6 V), the anode cell delivered discharge-charge capacities of 100/99 mAh g -1 with 99% capacity retention, which corresponds to highly reversible redox reaction of the Mn 4+/3+ reduction and the Mn 3+/4+ oxidation observed at 1.85 and 2.06 V, respectively. The symmetric Na-ion cell, fabricated using Na 0.5 Ni 0.25 Mn 0.75 O 2 , yielded initial charge-discharge capacities of 196/187 μAh at 107 μA. These results encourage the further development of new types of futuristic sodium-ion-battery-based energy storage systems.

  12. Adduct formation in Ce(IV) thenolytrifluoroacetonate

    International Nuclear Information System (INIS)

    Anufrieva, S.I.; Polyakova, G.V.; Snezhko, N.I.; Pechurova, N.I.; Martynenko, L.I.; Spitsyn, V.I.

    1982-01-01

    The literature contains no information on adduct formation in Ce(IV) β-diketonates with additional ligands. Since tetrakis-β-diketonates of Ce(IV) have four six-membered chelate rings, we can suppose that the introduction of an additional monodentate or bidentate ligand into the coordination sphere of Ce(IV) β-diketonates would lead to an increase in the coordination number (CN) of the Ce(IV) to nine or ten. The possibility of realization of such a high CN for Ce(IV) has not been proved; a study of adduct formation by Ce(IV) tetrakis-β-diketonates is thus of theoretical interest. Such an investigation might also be of practical interest, because the introduction of an additional ligand into the coordination sphere of a rare-earth β-diketonate usually increases the solubility of the β-diketonate in nonpolar solvents and increases the volatility of the compound; such a modification of the properties is important for various practical purposes. The aim of our work was to study the possibility of separating solid adducts of Ce(IV) tetrakis-thenoyltrifluoroacetonate with certain oxygen-containing and nitrogen-containing donor monodentate and bidentate ligands, and also to investigate their properties. As the β-diketone we used thenoyltrifluoroacetone (HTTFA), since in a parallel investigation it was found that Ce(TTFA) 4 has a high oxidation-reduction stability

  13. Investigations of spherical Cu NPs in sodium lauryl sulphate with Tb"3"+ ions dispersed in PVA films

    International Nuclear Information System (INIS)

    Kumar, Brijesh; Kaur, Gagandeep; Rai, S.B.

    2016-01-01

    Highlights: • Cu NPs were prepared in SDS using 1064 nm laser radiation at fluence 37, 64 and 88 J/cm"2. • Spherical Cu NPs with average diameter varying between 10 and 50 nm atdifferent fluence. • PL of Tb3+ ions in PVA polymer film is maximum with Cu NPS at fluence 37 J/cm"2. • PVA films of Cu NPs displayed a highly temperature-dependent electrical conductivity. • These copper NPs embedded PVA films can be used as novel, low-cost sensor materials. - Abstract: Cu nanoparticles (NPs) have been prepared in SDS solution using 1064 nm laser radiation at different fluence 37 J/cm"2, 64 J/cm"2 and 88 J/cm"2 and structurally characterized. The TEM measurements reveal the presence of nanoparticles of spherical shape with different size. The size of the nanoparticles and their concentration increases with the increase of fluence.The effect of these Cu nanoparticles on the emissive properties of Tb"3"+ ion in polymer films has been studied. It is found that emission intensity of Tb"3"+ first increases and then deceases both with concentration of Cu NPs as well as with sizes. The PL intensity of Tb"3"+ ions is minimum for Cu NPs prepared with highest fluence. It has been explained in term of local field effect. This was also verified by life time measurements. These thin PVA films of copper nanoparticles displayed a highly temperature-dependent electrical conductivity with sensitivity at least comparable to commercial materials which suggest the use of these copper NPs embedded PVA films as novel, low-cost sensor materials.

  14. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  15. A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries

    Science.gov (United States)

    Lv, Xingshuai; Wei, Wei; Sun, Qilong; Huang, Baibiao; Dai, Ying

    2017-06-01

    There is a great desire to search for suitable anodes with good performance for rechargeable metal-ion batteries, which require not only large capacity but excellent rate performance and cycling stability. In this work, the electronic properties of NbSe2 monolayer were explored based on first-principles calculations. We performed a full geometry optimization for Li/Na-adsorbed structures and obtained favorable adsorption sites. The metallic character for both pristine NbSe2 monolayer and the Li/Na-adsorbed NbSe2 ensures good electrical conduction. In addition, we find that NbSe2 monolayer is more inclined to adsorb Li and Na atoms with smaller adsorption energy under Li/Na-rich condition, indicating the superiority of NbSe2 monolayer as an electrode. Then, we obtained a relatively low diffusion barrier of approximately 0.205 eV for Li and, in particular, a significantly small diffusion barrier of about 0.086 eV for Na, which ensures excellent cycling performance of NbSe2 monolayer as a battery electrode. Most importantly, the Li and Na adsorption density in NbSe2 monolayer can be as high as Li2NbSe2 and Na4NbSe2, corresponding to theoretical specific capacities of 203 and 312 mAh·g-1, respectively. And the average electrode potentials were predicted to be 0.51 V for the chemical stoichiometry of Li2NbSe2 and 0.22 V for Na4NbSe2. In view of these excellent properties, our work predicts that NbSe2 monolayer can be a promising anode material for the development of low-cost high-performance Li- and Na-ion batteries.

  16. A mixed iron-manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries.

    Science.gov (United States)

    Shakoor, Rana A; Park, Chan Sun; Raja, Arsalan A; Shin, Jaeho; Kahraman, Ramazan

    2016-02-07

    The development of secondary batteries based on abundant and cheap elements is vital. Among various alternatives to conventional lithium-ion batteries, sodium-ion batteries (SIBs) are promising due to the abundant resources and low cost of sodium. While there are many challenges associated with the SIB system, cathode is an important factor in determining the electrochemical performance of this battery system. Accordingly, ongoing research in the field of SIBs is inclined towards the development of safe, cost effective cathode materials having improved performance. In particular, pyrophosphate cathodes have recently demonstrated decent electrochemical performance and thermal stability. Herein, we report the synthesis, electrochemical properties, and thermal behavior of a novel Na2Fe0.5Mn0.5P2O7 cathode for SIBs. The material was synthesized through a solid state process. The structural analysis reveals that the mixed substitution of manganese and iron has resulted in a triclinic crystal structure (P1[combining macron] space group). Galvanostatic charge/discharge measurements indicate that Na2Fe0.5Mn0.5P2O7 is electrochemically active with a reversible capacity of ∼80 mA h g(-1) at a C/20 rate with an average redox potential of 3.2 V. (vs. Na/Na(+)). It is noticed that 84% of initial capacity is preserved over 90 cycles showing promising cyclability. It is also noticed that the rate capability of Na2Fe0.5Mn0.5P2O7 is better than Na2MnP2O7. Ex situ and CV analyses indicate that Na2Fe0.5Mn0.5P2O7 undergoes a single phase reaction rather than a biphasic reaction due to different Na coordination environment and different Na site occupancy when compared to other pyrophosphate materials (Na2FeP2O7 and Na2MnP2O7). Thermogravimetric analysis (25-550 °C) confirms good thermal stability of Na2Fe0.5Mn0.5P2O7 with only 2% weight loss. Owing to promising electrochemical properties and decent thermal stability, Na2Fe0.5Mn0.5P2O7, can be an attractive cathode for SIBs.

  17. Electron transfer from nucleobase electron adducts to 5-bromouracil. Is guanine an ultimate sink for the electron in irradiated DNA?

    International Nuclear Information System (INIS)

    Nese, C.; Yuan, Z.; Schuchmann, M.N.; Sonntag, C. von

    1992-01-01

    Electron transfer to 5-bromouracil (5-BrU) from nucleobase (N) electron adducts (and their protonated forms) has been studied by product analysis and pulse radiolysis. When an electron is transferred to 5-BrU, the ensuing 5-BrU radical anion rapidly loses a bromide ion; the uracilyl radical thus formed reacts with added t-butanol, yielding uracil. From the uracil yields measured as the function of [N]/[5-BrU] after γ-radiolysis of Ar-saturated solutions it is concluded that thymine and adenine electron adducts and their heteroatom-protonated forms transfer electrons quantitatively to 5-BrU. The data raise the question whether in DNA the guanine moiety may act as the ultimate sink of the electron in competition with other processes such as protonation at C(6) of the thymine electron adduct. (Author)

  18. Role of valence state of vanadium ions on structural and spectroscopic properties of sodium lead bismuth silicate glass ceramics

    Science.gov (United States)

    Rao, M. V. Sambasiva; Tirupataiah, Ch.; Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, D. Krishna

    2018-04-01

    Glass ceramics with composition 10Na2O- 30PbO-10Bi2O3-(50-x)SiO2: xV2O5 (0 ≤ x ≤ 5) were synthesized by melt quenching and heat treatment method. XRD and SEM studies have indicated that the samples contain well defined and randomly distributed grains of different crystalline phases. Optical absorption spectra of these samples exhibited two absorption bands at 629 and 835 nm which are the characteristics of V4+ ions. The EPR spectra of these samples have exhibited well resolved hyperfine structure consisting of sixteen-eight parallel and eight perpendicular lines with a raise in their intensity with an increase in the content of V2O5 up to 3 mol% indicates the increase of redox ratio V4+/V5+ in the glass ceramic matrix.

  19. Biphase Cobalt-Manganese Oxide with High Capacity and Rate Performance for Aqueous Sodium-Ion Electrochemical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Xiaoqiang [Univ. of New Hampshire, Durham, NH (United States). Dept. of Chemical Engineering; Charles, Daniel S. [Univ. of New Hampshire, Durham, NH (United States). Dept. of Chemical Engineering; Xu, Wenqian [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS). X-ray Science Division; Feygenson, Mikhail [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division and Spallation Neutron Source (SNS) outstation Juelich Centre for Neutron Science (JCNS), Forschungszentrum Juelich GmbH; Su, Dong [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Teng, Xiaowei [Univ. of New Hampshire, Durham, NH (United States). Dept. of Chemical Engineering

    2017-11-22

    Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost and environmental-friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. In this paper, we report the development of a bi-phase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material, comprised of a layered MnO2.H2O birnessite phase and a (Co0.83Mn0.13Va0.04)tetra(Co0.38Mn1.62)octaO3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The bi-phase Co-Mn-O material demonstrates an excellent storage capacity towards Na-ions in an aqueous electrolyte (121 mA h g-1 at a scan rate of 1 mV s-1 in the half-cell and 81 mA h g-1 at a current density of 2 A g-1 after 5000 cycles in full-cells), as well as high rate performance (57 mA h g-1 a rate of 360 C). Electro-kinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.

  20. Synthesis and physicochemical investigation of adducts of rare earth thenoyltrifluoroacetonates

    International Nuclear Information System (INIS)

    Anufrieva, S.I.; Snezhko, N.I.; Martynenko, L.I.; Pechurova, N.I.

    1982-01-01

    Adducts of rare earth thenoyltrifluoroacetonates (3) have been synthesized with tributylphosphate (TBP), trioctylphosphenoxide (TOPO), triphenylphosphenoxide (TPO) of 1:1 and 1:2 composition as well as with α, α'-dipyridine (Dipy), o-phenanthroline (Phen) of 1:1 composition. The separated adducts have been studied by methods of element analysis, X-ray phase and derivatographic analyses and IR spectroscopy. It is shown that the adducts are more thermostable compared to the corresponding rare earth thenoyltrifluoroacetonate hydrates

  1. Mechanistic Insight into the Stability of HfO2-Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries

    KAUST Repository

    Ahmed, Bilal

    2015-06-01

    It is demonstrated for the first time that surface passivation of 2D nanosheets of MoS2 by an ultrathin and uniform layer of HfO2 can significantly improve the cyclic performance of sodium ion batteries. After 50 charge/discharge cycles, bare MoS2 and HfO2 coated MoS2 electrodes deliver the specific capacity of 435 and 636 mAh g-1, respectively, at current density of 100 mA g-1. These results imply that batteries using HfO2 coated MoS2 anodes retain 91% of the initial capacity; in contrast, bare MoS2 anodes retain only 63%. Also, HfO2 coated MoS2 anodes show one of the highest reported capacity values for MoS2. Cyclic voltammetry and X-ray photoelectron spectroscopy results suggest that HfO2 does not take part in electrochemical reaction. The mechanism of capacity retention with HfO2 coating is explained by ex situ transmission electron microscope imaging and electrical impedance spectroscopy. It is illustrated that HfO2 acts as a passivation layer at the anode/electrolyte interface and prevents structural degradation during charge/discharge process. Moreover, the amorphous nature of HfO2 allows facile diffusion of Na ions. These results clearly show the potential of HfO2 coated MoS2 anodes, which performance is significantly higher than previous reports where bulk MoS2 or composites of MoS2 with carbonaceous materials are used. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mechanistic Insight into the Stability of HfO2-Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries

    KAUST Repository

    Ahmed, Bilal; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    It is demonstrated for the first time that surface passivation of 2D nanosheets of MoS2 by an ultrathin and uniform layer of HfO2 can significantly improve the cyclic performance of sodium ion batteries. After 50 charge/discharge cycles, bare MoS2 and HfO2 coated MoS2 electrodes deliver the specific capacity of 435 and 636 mAh g-1, respectively, at current density of 100 mA g-1. These results imply that batteries using HfO2 coated MoS2 anodes retain 91% of the initial capacity; in contrast, bare MoS2 anodes retain only 63%. Also, HfO2 coated MoS2 anodes show one of the highest reported capacity values for MoS2. Cyclic voltammetry and X-ray photoelectron spectroscopy results suggest that HfO2 does not take part in electrochemical reaction. The mechanism of capacity retention with HfO2 coating is explained by ex situ transmission electron microscope imaging and electrical impedance spectroscopy. It is illustrated that HfO2 acts as a passivation layer at the anode/electrolyte interface and prevents structural degradation during charge/discharge process. Moreover, the amorphous nature of HfO2 allows facile diffusion of Na ions. These results clearly show the potential of HfO2 coated MoS2 anodes, which performance is significantly higher than previous reports where bulk MoS2 or composites of MoS2 with carbonaceous materials are used. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles for adsorption of Hg(II ions from an aqueous solution

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2016-09-01

    Full Text Available Background: The rapid increase in agricultural and industrial development has made heavy metal pollution a serious environmental problem and public health threat; therefore, removal of heavy metals from water is important. The current study prepared DNPH@SDS@Fe3O4 nanoparticles as a novel and effective adsorbent for removal of Hg(II ions from an aqueous solution. Methods: A selective adsorbent for Hg(II was synthesized by coating Fe3O4 nanoparticles with sodium dodecyl sulfate which was further functionalized with 2,4-dinitrophenylhydrazine (2,4-DNPH. The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR, x-ray diffraction (XRD, scanning electron microscopy (SEM and SEM–EDXSt. The effects of pH, dose of adsorbent and shaking time on adsorption capacity were investigated. The kinetics and equilibrium of adsorption of the metal ions were thoroughly studied. Results: SEM showed that the size of the nanoparticles was 20 to 35 nm. The maximum adsorption capacity for Hg(II was 164.0 mg g-1 for an adsorbent dose of 0.04 g at pH 7.0, 25°C and the initial metal concentration was 25 mg L-1,which was greater than for most adsorbents previously examined for Hg(II adsorption. Adsorption experimental data showed good correlation with the pseudo-secondorder model and Langmuir isotherm model. Conclusion: The results indicated that the DNPH@SDS@Fe3O4 nanoparticles are an efficient adsorbent for removal of heavy metal from wastewater.

  4. Properties and adduct structure of rare earth tris-acetylacetonates with o-phenanthroline

    International Nuclear Information System (INIS)

    Dzyubenko, N.G.; Martynenko, L.I.

    1986-01-01

    Adducts of acetylacetonates of rare earths (M, REE) with O-phenanthroline (Phen) of the composition MA 3 xPhen (M=La-Lu, Y) are synthesized by different methods and studied. Phen coordination by M 3+ ion is proved using infrared spectroscopy, individual character of obtained preparations and their isostructure in a series of REE derivatives is confirmed by X-ray radiography. MA 3 xPhen thermal stability is much higher than that of corresponding hydrates of rare-earth acetylacetonates MA 3 xnH 2 O. In high vacuum under conditions of mass-spectrometric measurements MA 3 xPhen adducts degradate forming volatile rare earth acetylacetonates of MA 3 composition. When heating in vacuum (∼ 10 2 mm Hg) MA 3 xPhen are qualitatively sublimated not changing the composition. MA 3 xPhen volatility determined for the whole REE series may be of interest in practical problem solving

  5. Iso-Oriented NaTi2(PO4)3 Mesocrystals as Anode Material for High-Energy and Long-Durability Sodium-Ion Capacitor.

    Science.gov (United States)

    Wei, Tongye; Yang, Gongzheng; Wang, Chengxin

    2017-09-20

    Sodium-ion capacitors (SIC) combine the merits of both high-energy batteries and high-power electrochemical capacitors as well as the low cost and high safety. However, they are also known to suffer from the severe deficiency of suitable electrode materials with high initial Coulombic efficiency (ICE) and kinetic balance between both electrodes. Herein, we report a facile solvothermal synthesis of NaTi 2 (PO 4 ) 3 nanocages constructed by iso-oriented tiny nanocrystals with a mesoporous architecture. It is notable that the NaTi 2 (PO 4 ) 3 mesocrystals exhibit a large ICE of 94%, outstanding rate capability (98 mA h g -1 at 10 C), and long cycling life (over 77% capacity retention after 10 000 cycles) in half cells, all of which are in favor to be utilized into a full cell. When assembled with commercial activated carbon to an SIC, the system delivers an energy density of 56 Wh kg -1 at a power density of 39 W kg -1 . Even at a high current rate of 5 A g -1 (corresponds to finish a full charge/discharge process in 2 min), the SIC still works well after 20 000 cycles without obvious capacity degradation. With the merits of impressive energy/power densities and longevity, the obtained hybrid capacitor should be a promising device for highly efficient energy storage systems.

  6. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    Science.gov (United States)

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-01-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834

  7. Purification of the labeled cyanogen bromide peptides of the α polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the α-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate

  8. Symmetric Sodium-Ion Capacitor Based on Na0.44MnO2 Nanorods for Low-Cost and High-Performance Energy Storage.

    Science.gov (United States)

    Chen, Zhongxue; Yuan, Tianci; Pu, Xiangjun; Yang, Hanxi; Ai, Xinping; Xia, Yongyao; Cao, Yuliang

    2018-04-11

    Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na 0.44 MnO 2 nanorods. The Na 0.44 MnO 2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na + transport and reduces the stress associated with Na + insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg -1 , an improved energy density of 27.9 Wh kg -1 , and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na 0.44 MnO 2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.

  9. Enhanced cyclic stability of SnS microplates with conformal carbon coating derived from ethanol vapor deposition for sodium-ion batteries

    Science.gov (United States)

    Li, Xiang; Liu, Jiangwen; Ouyang, Liuzhang; Yuan, Bin; Yang, Lichun; Zhu, Min

    2018-04-01

    Carbon coated SnS microplates (SnS@C MPs) were prepared via a facile chemical vapor deposition method using SnS2 nanoflakes as precursor and ethanol vapor as carbon source. The carbon coating restrains the growth of SnS during the heat treatment. Furthermore, it improves the electronic conductivity as well as accommodates volume variations of SnS during the sodiation and desodiation processes. Therefore, the rate capability and cycle performance of the SnS@C MPs as anode materials for sodium-ion batteries are remarkably enhanced compared with the bare SnS and the SnS2 precursor. At current densities of 0.1, 0.2, 0.5, 1 and 2 A g-1, the optimized SnS@C MPs exhibit stable capacities of 602.9, 532.1, 512.2, 465.9 and 427.2 mAh g-1, respectively. At 1 A g-1, they show a reversible capacity of 528.8 mAh g-1 in the first cycle, and maintain 444.7 mAh g-1 after 50 cycles, with capacity retention of 84.1%. The carbon coating through chemical vapor deposition using ethanol vapor as carbon sources is green, simple and cost-effective, which shows great promise to improve the reversible Na+ storage of electrode materials.

  10. Surface and interface engineering of anatase TiO2 anode for sodium-ion batteries through Al2O3 surface modification and wise electrolyte selection

    Science.gov (United States)

    Li, Tao; Gulzar, Umair; Bai, Xue; Monaco, Simone; Longoni, Gianluca; Prato, Mirko; Marras, Sergio; Dang, Zhiya; Capiglia, Claudio; Proietti Zaccaria, Remo

    2018-04-01

    In the present study, Al2O3 is utilized for the first time as coating agent on nanostructured anatase TiO2 in order to investigate its effect on sodium-ion batteries performance. Our results show that the Al2O3 coating, introduced by a facile two-step approach, provides beneficial effects to the TiO2-based anodes. However, the coated TiO2 still suffers of capacity fading upon cycling when using 1.0 M of NaClO4 in propylene carbonate (PC) as electrolyte. To address this issue, the influence of different electrolytes (NaClO4 salt in various solvents) is further studied. It is found that the modified TiO2 exhibits significant improvements in cycling performance using binary ethylene carbonate (EC) and PC solvent mixture without the need of the commonly used fluoroethylene carbonate (FEC) additive. Under the best configuration, our battery could deliver a high reversible capacity of 188.1 mAh g-1 at 0.1C after 50 cycles, good rate capability up to 5C, and remarkable long-term cycling stability at 1C rate for 650 cycles. This excellent performance can be ascribed to the synergistic effects of surface and interface engineering enabling the formation of a stable and highly ionic conductive interface layer in EC:PC based electrolyte which combines the native SEI film and an 'artificial' SEI layer of irreversibly formed Na-Al-O.

  11. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    Science.gov (United States)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  12. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  13. Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?

    Science.gov (United States)

    de la Torre-Gamarra, Carmen; Appetecchi, Giovanni Battista; Ulissi, Ulderico; Varzi, Alberto; Varez, Alejandro; Passerini, Stefano

    2018-04-01

    Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.

  14. Studies on the rates of exchange of Hg(II), Cd(II), La(III) and Ce(III) ions in sodium nitrite-aqueous acetone media using an anion-exchanger Dowex-1x8(NO3-)

    International Nuclear Information System (INIS)

    Bhatnagar, R.P.; Bhardwaj, Archana; Bhardwaj, S.D.

    1998-01-01

    Rate of exchange has been studied on Hg(II), Cd(II), La(III) and Ce(III) ions in sodium nitrite-aqueous acetone media using an anion exchanger Dowex-1 x 8(NO 3 - ). Acetone was used to provide solvent media of 10%, 30% and 50% and temperature was used in rate studies, carried out at 30 deg, 40 deg, 50 degC. Always 1 g. of Dowex-1x8 in nitrate form was used for distribution studies to get rate data. After suitable time intervals aliquots (1 ml) were withdrawn and metal ion concentration was found out. (author)

  15. The medical sodium chloride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    In the institute was investigated the chemical composition of rock salt of some deposits of Tajikistan and was show the presence in it admixture of ions of Ca 2 + , Mg 2 + a nd SO 2 - a nd absence of heavy metals, ammonium salts, iron, potassium and arsenic. Was elaborated the fundamental instrument-technologic scheme of sodium chloride receiving

  16. Determination of Double Bond Positions and Geometry of Methyl Linoleate Isomers with Dimethyl Disulfide Adducts by GC/MS.

    Science.gov (United States)

    Shibamoto, Shigeaki; Murata, Tasuku; Yamamoto, Kouhei

    2016-09-01

    The dimethyl disulfide (DMDS) adduct method is one of the convenient and effective methods for determining double bond positions of unsaturated fatty acid methyl esters (FAME) except conjugated FAME. When analyzed using gas chromatography/electron ionization-mass spectrometry (GC/EI-MS), unsaturated FAME with DMDS added to the double bonds yields high intensity MS spectra of characteristic ions. The MS spectra of characteristic ions can then be used to easily confirm double bond positions. Here we explore the GC/EI-MS analysis of the DMDS adducts of methyl linoleate geometrical isomers isolated by high performance liquid chromatography (HPLC) with a silver nitrate column. For C18:2-c9, c12 and C18:2-t9, t12, DMDS randomly formed adducts with double bonds at either carbon 9-10 or carbon 12-13, but not both at the same time due to steric hindrance. For C18:2-c9, t12 and C18:2-t9, c12, however, DMDS only formed adducts with the double bond in the cis configuration. Consequently, when analyzing fatty acids with methylene interrupted double bonds, with one double bond in the cis and one in the trans configuration, double bond positions cannot be completely confirmed.

  17. Infrared spectra of volatile adduct of uranyl pivaloyltrifluoroacetonate with hexamethylphosphorotriamide

    International Nuclear Information System (INIS)

    Bukhmarina, V.N.; Dushin, R.B.; Sidorenko, G.V.; Suglobov, D.N.

    1983-01-01

    Adduct of uranyl pivaloyltrifluoroacetonate with hexamethylphosphortriamide (1), sublimated without decomposition and characterized by a high thermal stability, has been synthesized, as well as adducts of uranyl dipivaloylmethanate with hexamethylphosphortriamide (2) and dimethyl sulfoxide (3), sublimated with partial dissociation. IR spectra of crystalline adducts 1-3, their solutions in benzene; gaseous and matrix-isolated adduct 1 have been measured. It is shown that in gaseous phase 1 exists practically completely in non-dissociated form. It is detected that uranyl group in crystalline 1 and 2 and in matrix-isolated 1 in contrast to crystalline 3 and previously studied adducts of uranyl β-diketonates has an asymmetric structure. Strength constants of uranyl group in crystalline 1-3 and matrix-isolated 1 are determined

  18. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...

  19. Electrochemical characterization of LiFePO{sub 4}/poly (sodium 4-styrenesulfonate)-multi walled carbon nanotube composite cathode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van Hiep; Wang, Wan Lin; Jin, En Mei; Gu, Hal-Bon, E-mail: hbgu@chonnam.ac.kr

    2013-08-25

    Highlights: •LiFePO{sub 4}/PSS–MWCNT successfully prepared by a hydrothermal method. •LiFePO{sub 4}/PSS(2.5%)–MWCNT(2.5%) shows the best electrochemical performances. •PSS stacks and forms a layer about 3–6 nm around the surface of LiFePO{sub 4} particles. •The electronic conductivity of LiFePO{sub 4}/PSS(2.5%)–MWCNT(2.5%) is 6.3 × 10{sup −3} S cm{sup −1}. -- Abstract: LiFePO{sub 4} is a promising cathode material for lithium ion batteries and is prepared by a hydrothermal method. However, its practical application is limited due to its poor conductivity. In order to improve the electronic conductivity, we added poly (sodium 4-styrenesulfonate) (PSS) and multi walled carbon nanotube (MWCNT) in LiFePO{sub 4}. In the results, PSS stacks and forms a layer about 3–6 nm around the surface of LiFePO{sub 4} particles. MWCNT provides pathways for electron transport. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic discharge testing results indicate that LiFePO{sub 4}/PSS–MWCNT composite exhibits higher discharge capacity than pure LiFePO{sub 4}. LiFePO{sub 4}/PSS(2.5%)–MWCNT(2.5%) shows the best discharge capacity of 144 mAh g{sup −1} at 2nd cycle, and high electronic conductivity of 6.3 × 10{sup −3} S cm{sup −1}.

  20. Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries

    Science.gov (United States)

    Li, Guangqiang; Jiang, Danlu; Wang, Hui; Lan, Xinzheng; Zhong, Honghai; Jiang, Yang

    2014-11-01

    A novel electrode material for sodium-ion batteries (NIBs), Na3V2(PO4)3 with a rhombohedral, Na+ superionic conductor (NASICON)-type structure, was synthesised via a solid-state carbon-thermal reduction reaction assisted by mechanochemical activation. Electron microscopy analysis showed that the synthesised Na3V2(PO4)3 particles had an average size of 300 nm, being coated with a uniform layer of carbon 3 nm in thickness. As a cathode material, Na3V2(PO4)3/C exhibited an initial specific discharge capacity of 98.17 mAh g-1 at 0.1C for potentials ranging from 2.5 to 3.8 V. This was owing to the V3+/V4+ redox couple, which corresponded to the two-phase transition between Na3V2(PO4)3 and NaV2(PO4)3. The cathode lost 4.92% of its discharge specific capacity after 50 cycles. As an anode material, Na3V2(PO4)3/C exhibited an initial specific discharge capacity of 63.2 mAh g-1 at 0.1C for potentials ranging from 1.0 to 2.5 V. This was owing to the V2+/V3+ redox couple, which corresponded to the two-phase transition between Na3V2(PO4)3 and Na4V2(PO4)3. The anode lost approximately 5.41% of its discharge specific capacity after 50 cycles. The three-dimensional channel structure of NaV2(PO4)3 and the changes induced in its lattice parameters during the charge/discharge processes were simulated on the basis of density functional theory.

  1. Reduced graphene oxide and Fe{sub 2}(MoO{sub 4}){sub 3} composite for sodium-ion batteries cathode with improved performance

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Yubin [Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715 (China); Xu, Maowen, E-mail: xumaowen@swu.edu.cn [Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715 (China)

    2016-07-25

    Fe{sub 2}(MoO{sub 4}){sub 3}@reduced graphene oxide (FMO@rGO) composite have been synthesized by precipitation-hydrothermal method. Herein, the graphene oxide in the present synthesis acts not only as baffles between particle and particle that helps to prevent the increase of particle size, but also as conductive networks after hydrothermal treatment, providing high electronic conductivity between particle and particle. The special surface area of the as-prepared materials significantly increases from 19.738 m{sup 2} g{sup −1} (FMO) to 51.401 m{sup 2} g{sup −1} (FMO@rGO), which undoubtedly provide more interface area between the active materials and the electrolyte. As a cathode material for sodium-ion batteries, the FMO@rGO composite delivers high discharge capacity at 0.5 C, which is comparable to theoretical capacity and literatures, and impressive rate performance. As the current density is at 5 C, for the first time, the initial specific capacity of FMO@rGO composite is about 68.2 mAh g{sup −1}, and it remains 56.5 mAh g{sup −1} after 100 cycles, of which the excellent electrochemical performance is mainly attributed to good conductivity, high specific surface area and significantly enhanced diffusion coefficient. - Highlights: • Fe{sub 2}(MoO{sub 4}){sub 3}@reduced graphene oxide composite have been synthesized by hydrothermal method. • The obtained materials reveal large discharge capacity, outstanding rate performance and good stability. • The enhancement mechanism was explored.

  2. Nucleophilic behavior of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase consistent with a role in binding adenosine triphosphate

    International Nuclear Information System (INIS)

    Xu, K.Y.; Kyte, J.

    1989-01-01

    An immunoadsorbent specific for the carboxy-terminal sequence -GAPER, which comprises residues 502-506 of the alpha-polypeptide of ovine sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase], was used to isolate the products of the reaction between the lysine immediately preceding this sequence in the intact protein and either [3H]acetic anhydride or fluorescein 5'-isothiocyanate. Changes in the apparent nucleophilicity of this lysine, Lys501, were observed with both reagents when ATP was bound by the intact, native enzyme poised in the E1 conformation or when the structure of the enzyme was changed from the E1 conformation into the E2-P conformation. With both reagents, a decrease of more than 4-fold in the yield of incorporation occurred during the former change, but a decrease of only 2-fold occurred during the latter. Because a much larger decrease occurred when ATP was bound in the absence of a conformational change than occurred when a major conformational change took place in the absence of the occupation of the active site, these changes in the incorporation of [3H]acetyl suggest that Lys501 from the alpha polypeptide is directly involved in binding ATP within the active site of (Na+ + K+)-ATPase. The immunochemical reactions between the specific polyclonal antibodies raised against the sequence-GAPER and denatured or enzymically active (Na+ + K+)-ATPase were also investigated. Western blots and the inhibition of enzymic activity caused by the antibody have shown that it can bind to both the denatured and the native form of the alpha-polypeptide, respectively

  3. Reduced graphene oxide and Fe_2(MoO_4)_3 composite for sodium-ion batteries cathode with improved performance

    International Nuclear Information System (INIS)

    Niu, Yubin; Xu, Maowen

    2016-01-01

    Fe_2(MoO_4)_3@reduced graphene oxide (FMO@rGO) composite have been synthesized by precipitation-hydrothermal method. Herein, the graphene oxide in the present synthesis acts not only as baffles between particle and particle that helps to prevent the increase of particle size, but also as conductive networks after hydrothermal treatment, providing high electronic conductivity between particle and particle. The special surface area of the as-prepared materials significantly increases from 19.738 m"2 g"−"1 (FMO) to 51.401 m"2 g"−"1 (FMO@rGO), which undoubtedly provide more interface area between the active materials and the electrolyte. As a cathode material for sodium-ion batteries, the FMO@rGO composite delivers high discharge capacity at 0.5 C, which is comparable to theoretical capacity and literatures, and impressive rate performance. As the current density is at 5 C, for the first time, the initial specific capacity of FMO@rGO composite is about 68.2 mAh g"−"1, and it remains 56.5 mAh g"−"1 after 100 cycles, of which the excellent electrochemical performance is mainly attributed to good conductivity, high specific surface area and significantly enhanced diffusion coefficient. - Highlights: • Fe_2(MoO_4)_3@reduced graphene oxide composite have been synthesized by hydrothermal method. • The obtained materials reveal large discharge capacity, outstanding rate performance and good stability. • The enhancement mechanism was explored.

  4. Micellar and analytical implications of a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate.

    Science.gov (United States)

    Sanan, Reshu; Mahajan, Rakesh Kumar

    2013-03-15

    With an aim to characterize the micellar aggregates of imidazolium based ionic liquids, a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate (C12MeIm(+)DS(-)) has been developed. The electrode exhibited a linear response for the concentration range of 7.9×10(-5)-9.8×10(-3) M with a super-Nernstian slope of 92.94 mV/decade, a response time of 5 s and critical micellar concentration (cmc) of 10.09 mM for C12MeImBr. The performance of the electrode in investigating the cmc of C12MeImBr in the presence of two drugs [promazine hydrochloride (PMZ) and promethazine hydrochloride (PMT)] and three triblock copolymers (P123, L64 and F68) has been found to be satisfactory on comparison with conductivity measurements. Various micellar parameters have been evaluated for the binary mixtures of C12MeImBr with drugs and triblock copolymers using Clint's, Rubingh's, and Motomura's approach. Thus the electrode offers a simple, straightforward and relatively fast technique for the characterization of micellar aggregates of C12MeImBr, complementing existing conventional techniques. Further, the analytical importance of proposed C12MeIm(+)-ISE as end point indicator in potentiometric titrations and for direct determination of cationic surfactants [cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), benzalkonium chloride (BC)] in some commercial products was judged by comparing statistically with classical two-phase titration methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule.

    Science.gov (United States)

    Campbell, Matthew T; Chen, Dazhe; Wallbillich, Nicholas J; Glish, Gary L

    2017-10-03

    A method to distinguish the four most common biologically relevant underivatized hexoses, d-glucose, d-galactose, d-mannose, and d-fructose, using only mass spectrometry with no prior separation/derivatization step has been developed. Electrospray of a solution containing hexose and a lithium salt generates [Hexose+Li] + . The lithium-cationized hexoses adduct water in a quadrupole ion trap. The rate of this water adduction reaction can be used to distinguish the four hexoses. Additionally, for each hexose, multiple lithiation sites are possible, allowing for multiple structures of [Hexose+Li] + . Electrospray produces at least one structure that reacts with water and at least one that does not. The ratio of unreactive lithium-cationized hexose to total lithium-cationized hexose is unique for the four hexoses studied, providing a second method for distinguishing the isomers. Use of the water adduction reaction rate or the unreactive ratio provides two separate methods for confidently (p ≤ 0.02) distinguishing the most common biologically relevant hexoses using only femtomoles of hexose. Additionally, binary mixtures of glucose and fructose were studied. A calibration curve was created by measuring the reaction rate of various samples with different ratios of fructose and glucose. The calibration curve was used to accurately measure the percentage of fructose in three samples of high fructose corn syrup (<4% error).

  6. Thermochemistry of adducts of some bivalent transition metal bromides with aniline

    International Nuclear Information System (INIS)

    Dunstan, Pedro Oliver

    2006-01-01

    The compounds [MBr 2 (an) 2 ] (where M is Mn(II), Fe(II), Co(II), Ni(II), Cu(II) or Zn(II); an=aniline) were synthesized and characterized by melting points, elemental analysis, thermal studies, and electronic and IR spectroscopy. The enthalpies of dissolution of the adducts, metal(II) bromides and aniline in methanol, aqueous 1.2M HCl or 25% (v/v) aqueous 1.2M HCl in methanol were measured. The following thermochemical parameters for the adducts have been determined by thermochemical cycles: the standard enthalpies for the Lewis acid/base reactions (Δ r H o ), the standard enthalpies of formation (Δ f H o ), the standard enthalpies of decomposition (Δ D H o ), the lattice standard enthalpies (Δ M H o ) and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase (Δ r H o (g)). The mean bond dissociation enthalpies of the M(II)-nitrogen bonds (D-bar (M?N) ) and the enthalpies of formation of the adducts from the ions in the gaseous phase: M 2+ (g) +Br - (g) +an (g) ->[MBr 2 (an) 2 ] (g) (Δ fi H o ) have been estimated

  7. Spectrophotometric study of the formation of adducts between U(TTA)4 and neutral organosulfoxide donors

    International Nuclear Information System (INIS)

    Ramanujam, A.; Gudi, N.M.; Nadkarni, M.N.; Ramakrishna, V.V.; Patil, S.K.

    1981-01-01

    Synergistic extraction of several tetravalent actinides by mixtures of a β diketone and a neutral donor has been fairly well studied except for U(IV). Presumably, this is due to the instability of U(IV) at tracer level which does not permit the use of usual distribution methods for the study of its synergistic extraction. However, it is known that the formation of adduct between metal β diketonate and the neutral donor occurs in the organic phase and its formation is mainly responsible for the synergistic enhancement in the extraction of the metal ion. U(TTA) 4 dissolved in benzene is stable in presence of excess HTTA and addition of a neutral donor to the same results in considerable spectral changes and this has been exploited in earlier studies on the adduct formation reaction between U(TTA) 4 and several organo phosphorous neutral donors. In the present study, the adduct formation between U(TTA) 4 and few neutral sulfoxide donors: dibenzyl sulfoxide (DBSO), dimethyl sulfoxide (DMSO), dihexyl sulfoxide (DHSO) and dioctyl sulfoxide (DOSO) has been investigated in benzene medium. All the donors (S) used in the present work form 1:1 adduct with U(TTA) 4 and the equilibrium constants βsub(AB) for the reaction viz., U(TTA) 4 +S U(TTA) 4 .S have been calculated. The βsub(AB) values follow the order DBSO< DMSO< DHSP approx. DOSO. An attempt has been made to compare the values with those obtained using neutral organo phosphorous compounds and to explain the observed trends on the basis of the basicity of the neutral donors. (author)

  8. Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; Xiao, Na; Hong, Fan; Fu, Zheng-Wen; Wu, Xiao-Jing; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning

    2017-11-01

    Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na + and vacancy ordering. An interesting structure change of Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 , effectively suppressing the Mn 3+ -induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 during charge/discharge is contributed by Co 2.2+ /Co 3+ and Mn 3.3+ /Mn 4+ redox couples. This is the first time that the highly reversible Co 2+ /Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.

  9. Free-standing Hierarchical Porous Assemblies of Commercial TiO_2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xiong; Xu, Guobao; Xiao, Huaping; Wei, Xiaolin; Yang, Liwen

    2017-01-01

    Highlights: • Utilization of commercial nanomaterials to freestanding sodium electrode is demonstrated. • Free-standing electrodes composed of TiO_2 and MWCNTs are hierarchically porous. • Hierarchical porous architecture benefits charge transport and interfacial Na"+ adsorption. • Free-standing hierarchical porous electrodes exhibit superior Na storage performance. - Abstract: Freestanding hierarchical porous assemblies of commercial TiO_2 nanocrystals and multi-wall carbon nanotubes (MWCNTs) as electrode materials for sodium ion batteries (SIBs) are prepared via modified vacuum filtration, free-drying and annealing. Microstructure characterizations reveal that TiO_2 nanocrystals are confined in hierarchically porous, highly electrically conductive and mechanically robust MWCNTs networks with cross-linking of thermally-treated bovine serum albumin. The hierarchical porous architecture not only enables rapid charge transportation and sufficient interaction between electrode and electrolyte, but also guarantees abundant interfacial sites for Na"+ adsorption, which benefits substantial contribution from pseudocapacitive Na storage. When it is used directly as an anode for sodium-ion batteries, the prepared electrode delivers high specific capacity of 100 mA h g"−"1 at a current density of 3000 mA g"−"1, and 150 mA h g"−"1 after 500 cycles at a current density of 500 mA g"−"1. The low-cost TiO_2-based freestanding anode has large potential application in high-performance SIBs for portable, flexible and wearable electronics.

  10. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    Science.gov (United States)

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  11. Determination of adducts of polycyclic aromatic hydrocarbons to DNA

    International Nuclear Information System (INIS)

    Bean, R.M.; Chess, E.K.; Thomas, B.L.; Mann, D.B.; Dankovic, D.A.; Franz, J.A.; Springer, D.L.

    1987-01-01

    Adducts to deoxyribonucleic acid (DNA), formed from metabolites of polynuclear aromatic compounds, are relatively persistent and correlate with bioresponse (carcinogenicity). Therefore, qualitative and quantitative analysis of adducts in the DNA of individuals may provide valuable information as to recent exposure to carcinogenic hydrocarbons. Further, the ability to detect adducts in a large segment of a population may have significant epidemiological significance. The current thrust of the analytical development at PNL is to isolate the DNA, liberate the adducted hydrocarbon residue from the DNA with acid hydrolysis, and prepare derivatives of the hydrolyzed species that will enhance its detection, quantitation, and characterization using gas chromatography/mass spectrometry (GC/MS). They have initiated the development of the necessary techniques using benzo[a]pyrene (B[a]P). Samples of DNA adducts of radiolabeled B[a]P have been prepared for study by reacting DNA isolated from calf thymus with benzo[a]pyrene-7,8-diol-9,10-epoxide (the ultimate carcinogenic form of B[a]P). Other DNA/B[a]P samples have been prepared by painting the skin of mice with radiolabeled B[a]P. The ability to prepare research quantities of adducts using the hepatocyte preparation method reported by Dankovic et al is a significant development to their DNA adduct analysis program

  12. Linking the generation of DNA adducts to lung cancer.

    Science.gov (United States)

    Ceppi, Marcello; Munnia, Armelle; Cellai, Filippo; Bruzzone, Marco; Peluso, Marco E M

    2017-09-01

    Worldwide, lung cancer is the leading cause of cancer death. DNA adducts are considered a reliable biomarker that reflects carcinogen exposure to tobacco smoke, but the central question is what is the relationship of DNA adducts and cancer? Therefore, we investigated this relationship by a meta-analysis of twenty-two studies with bronchial adducts for a total of 1091 subjects, 887 lung cancer cases and 204 apparently healthy individuals with no evidence of lung cancer. Our study shows that these adducts are significantly associated to increase lung cancer risk. The value of Mean Ratio lung-cancer (MR) of bronchial adducts resulting from the random effects model was 2.64, 95% C.I. 2.00-3.50, in overall lung cancer cases as compared to controls. The significant difference, with lung cancer patients having significant higher levels of bronchial adducts than controls, persisted after stratification for smoking habits. The MR lung-cancer value between lung cancer patients and controls for smokers was 2.03, 95% C.I. 1.42-2.91, for ex-smokers 3.27, 95% C.I. 1.49-7.18, and for non-smokers was 3.81, 95% C.I. 1.85-7.85. Next, we found that the generation of bronchial adducts is significantly related to inhalation exposure to tobacco smoke carcinogens confirming its association with volatile carcinogens. The MR smoking estimate of bronchial adducts resulting from meta-regression was 2.28, 95% Confidence Interval (C.I.) 1.10-4.73, in overall smokers in respect to non-smokers. The present work provides strengthening of the hypothesis that bronchial adducts are not simply relate to exposure, but are a cause of chemical-induced lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Investigation of adducts of tris-(acetylacetonato)lanthanides with o-phenanthroline and α,α'-dipyridyl by mass spectroscopy

    International Nuclear Information System (INIS)

    Gavrishchuk, E.M.; Dzyubenko, N.G.; Martynenko, L.I.

    1984-01-01

    Mass spectra of adducts of tris-acetylacetonates of REE (REE, Ln, M) with O-phenanthroline (Phen) and α, α 1 -dipyridyl (Dipy) are obtained. A scheme of fragmentation is suggested. Peculiarities of dissociative ionization processes for samarium-, europium-thulium-, and ytterbium compounds are shown to be determined by a possibility of changing the oxidation state of a central ion. Energy characteristics of separation of the first and second ligands of compleXes in the entire REE series are compared

  14. Synthesis and physicochemical properties of 7,8-dicarba-nido-undecarborane(11) adducts with pyridine bases

    International Nuclear Information System (INIS)

    Volkov, O.V.; Il'inchik, E.A.; Volkov, V.V.; Voronina, G.S.; Yur'eva, O.P.; Polyanskaya, T.M.

    1993-01-01

    Synthesis of some 7,8-C 2 B 9 H 11 adducts in conducted via 7.8-C 2 B 9 H 12 ion interaction with iron (3) chloride at presence of pyridine derivatives and their study is carried out using IR, NMR 12 B, PMR, X-ray phase, UV spectroscopy techniques. Character of bond between heterocycle and carborane holyhedron is discussed. Luminescent properties of the prepared compounds under UV radiation are detected

  15. Synthesis and physicochemical investigation of adducts of rare earth thenoyltrifluoroacetonates

    Energy Technology Data Exchange (ETDEWEB)

    Anufrieva, S.I.; Snezhko, N.I.; Martynenko, L.I.; Pechurova, N.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1982-11-01

    Adducts of rare earth thenoyltrifluoroacetonates (3) have been synthesized with tributylphosphate (TBP), trioctylphosphenoxide (TOPO), triphenylphosphenoxide (TPO) of 1:1 and 1:2 composition as well as with ..cap alpha.., ..cap alpha..'-dipyridine (Dipy), o-phenanthroline (Phen) of 1:1 composition. The separated adducts have been studied by methods of element analysis, X-ray phase and derivatographic analyses and IR spectroscopy. It is shown that the adducts are more thermostable compared to the corresponding rare earth thenoyltrifluoroacetonate hydrates.

  16. DNA adduct measurements in zebra mussels, Dreissena polymorpha, Pallas

    International Nuclear Information System (INIS)

    Le Goff, J.; Gallois, J.; Pelhuet, L.; Devier, M.H.; Budzinski, H.; Pottier, D.; Andre, V.; Cachot, J.

    2006-01-01

    The purpose of this study was to examine PAH accumulation and bulky DNA adduct formation in the digestive gland of zebra mussels exposed in their habitat or in controlled laboratory conditions to complex mixture of PAH. DNA adducts were measured using a 32 P-postlabelling protocol with nuclease P1 enrichment adapted from Reddy and Randerath [Reddy, M.V., Randerath, K., 1986. Nuclease P1-mediated enhancement of sensitivity of 32 P-postlabelling test for structurally diverse DNA adducts. Carcinogenesis 7, 1543-1551]. Specimens collected in the upper part of the Seine estuary were shown to accumulate higher levels of PAH (up to 1.6 μg g -1 dry weight) in comparison to individuals from the reference site (0.053 μg g -1 dry weight). The former exhibited elevated levels of DNA adducts (up to 4.0/10 8 nucleotides) and higher diversity of individual adducts with five distinct spots being specifically detected in individuals originating from the Seine estuary. Zebra mussels exposed for 5 days to 0.01% (v/v) of organic extract of sediment from the Seine estuary were shown to accumulate high amounts of PAH (up to 138 μg g -1 dry weight) but exhibited relatively low levels of DNA adducts. Exposure to benzo[a]pyrene led to a dose-dependent accumulation of B[a]P (up to 7063 μg g -1 dry weight) and a clear induction of DNA adduct formation in the digestive gland of mussels (up to 1.13/10 8 nucleotides). Comparisons with other bivalves exposed to the same model PAH, revealed similar levels of adducts and comparable adduct profiles with a main adduct spot and a second faint one. This study clearly demonstrated that zebra mussels are able to biotransform B[a]P and probably other PAH into reactive metabolites with DNA-binding activity. This work also demonstrated the applicability of the nuclease P1 enhanced 32 P-postlabelling method for bulky adduct detection in the digestive gland of zebra mussels. DNA adduct measurement in zebra mussels could be a suitable biomarker to monitor

  17. DNA adduct measurements in zebra mussels, Dreissena polymorpha, Pallas

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, J. [GRECAN, UPRES EA-1772, University of Caen, Caen (France); Gallois, J. [Laboratory F. Duncombe, Conseil General du Calvados, Caen (France); Pelhuet, L. [LPTC, UMR-5472 CNRS, University Bordeaux I, Bordeaux (France); Devier, M.H. [LPTC, UMR-5472 CNRS, University Bordeaux I, Bordeaux (France); Budzinski, H. [LPTC, UMR-5472 CNRS, University Bordeaux I, Bordeaux (France); Pottier, D. [GRECAN, UPRES EA-1772, University of Caen, Caen (France); Andre, V. [GRECAN, UPRES EA-1772, University of Caen, Caen (France); Cachot, J. [LEMA, UPRES EA-3222, IFRMP 23, University of Le Havre, 25 rue Philippe Lebon, B.P. 540, 76058 Le Havre Cedex (France)]. E-mail: jerome.cachot@univ-lehavre.fr

    2006-08-12

    The purpose of this study was to examine PAH accumulation and bulky DNA adduct formation in the digestive gland of zebra mussels exposed in their habitat or in controlled laboratory conditions to complex mixture of PAH. DNA adducts were measured using a {sup 32}P-postlabelling protocol with nuclease P1 enrichment adapted from Reddy and Randerath [Reddy, M.V., Randerath, K., 1986. Nuclease P1-mediated enhancement of sensitivity of {sup 32}P-postlabelling test for structurally diverse DNA adducts. Carcinogenesis 7, 1543-1551]. Specimens collected in the upper part of the Seine estuary were shown to accumulate higher levels of PAH (up to 1.6 {mu}g g{sup -1} dry weight) in comparison to individuals from the reference site (0.053 {mu}g g{sup -1} dry weight). The former exhibited elevated levels of DNA adducts (up to 4.0/10{sup 8} nucleotides) and higher diversity of individual adducts with five distinct spots being specifically detected in individuals originating from the Seine estuary. Zebra mussels exposed for 5 days to 0.01% (v/v) of organic extract of sediment from the Seine estuary were shown to accumulate high amounts of PAH (up to 138 {mu}g g{sup -1} dry weight) but exhibited relatively low levels of DNA adducts. Exposure to benzo[a]pyrene led to a dose-dependent accumulation of B[a]P (up to 7063 {mu}g g{sup -1} dry weight) and a clear induction of DNA adduct formation in the digestive gland of mussels (up to 1.13/10{sup 8} nucleotides). Comparisons with other bivalves exposed to the same model PAH, revealed similar levels of adducts and comparable adduct profiles with a main adduct spot and a second faint one. This study clearly demonstrated that zebra mussels are able to biotransform B[a]P and probably other PAH into reactive metabolites with DNA-binding activity. This work also demonstrated the applicability of the nuclease P1 enhanced {sup 32}P-postlabelling method for bulky adduct detection in the digestive gland of zebra mussels. DNA adduct measurement in

  18. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    Remme, Carol Ann; Bezzina, Connie R.

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation

  19. Low sodium diet (image)

    Science.gov (United States)

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ...

  20. Role of Transient Receptor Potential Ankyrin 1 Ion Channel and Somatostatin sst4 Receptor in the Antinociceptive and Anti-inflammatory Effects of Sodium Polysulfide and Dimethyl Trisulfide

    Directory of Open Access Journals (Sweden)

    István Z. Bátai

    2018-02-01

    Full Text Available Transient receptor potential ankyrin 1 (TRPA1 non-selective ligand-gated cation channels are mostly expressed in primary sensory neurons. Polysulfides (POLYs are Janus-faced substances interacting with numerous target proteins and associated with both protective and detrimental processes. Activation of TRPA1 in sensory neurons, consequent somatostatin (SOM liberation and action on sst4 receptors have recently emerged as mediators of the antinociceptive effect of organic trisulfide dimethyl trisulfide (DMTS. In the frame of the present study, we set out to compare the participation of this mechanism in antinociceptive and anti-inflammatory effects of inorganic sodium POLY and DMTS in carrageenan-evoked hind-paw inflammation. Inflammation of murine hind paws was induced by intraplantar injection of carrageenan (3% in 30 µL saline. Animals were treated intraperitoneally with POLY (17 µmol/kg or DMTS (250 µmol/kg or their respective vehicles 30 min prior paw challenge and six times afterward every 60 min. Mechanical pain threshold and swelling of the paws were measured by dynamic plantar aesthesiometry and plethysmometry at 2, 4, and 6 h after initiation of inflammation. Myeloperoxidase (MPO activity in the hind paws were detected 6 h after challenge by luminescent imaging. Mice genetically lacking TRPA1 ion channels, sst4 receptors and their wild-type counterparts were used to examine the participation of these proteins in POLY and DMTS effects. POLY counteracted carrageenan-evoked mechanical hyperalgesia in a TRPA1 and sst4 receptor-dependent manner. POLY did not influence paw swelling and MPO activity. DMTS ameliorated all examined inflammatory parameters. Mitigation of mechanical hyperalgesia and paw swelling by DMTS were mediated through sst4 receptors. These effects were present in TRPA1 knockout animals, too. DMTS inhibited MPO activity with no participation of the sensory neuron–SOM axis. While antinociceptive effects of

  1. Electrochemical properties of a new nanocrystalline NaMn{sub 2}O{sub 4} cathode for rechargeable sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Moni Kanchan, E-mail: mkd16@pitt.edu [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Kuruba, Ramalinga [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Jampani, Prashanth H. [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chung, Sung Jae [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Saha, Partha [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Epur, Rigved [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Kadakia, Karan; Patel, Prasad [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Gattu, Bharat [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); School of Dental Medicine, University of Pittsburgh, PA 15261 (United States)

    2014-10-15

    Highlights: • Nanocrystalline NaMn{sub 2}O{sub 4} exhibiting a new crystalline form has been synthesized by high energy mechanical milling. • Mechanical milling for 20 h directly results in nanocrystalline NaMn{sub 2}O{sub 4}. • Thermally treated oxide shows ∼95 mAh/g capacity in the 2–4.5 V window. • Capacities from ∼75 to 95 mAh/g obtained with varying voltage windows. • Oxide exhibits 0.3%/cycle fade in capacity when cycled in the 2–4 V window. - Abstract: Nanocrystalline NaMn{sub 2}O{sub 4} with a crystallite size of ∼8–10 nm exhibiting a new close packed hexagonal crystalline form, different from the known stable orthorhombic (Pbam or Pmnm symmetry) or monoclinic structures common to the Na–Mn–O system, has been synthesized by a high energy mechano-chemical milling process (HEMM) using Na{sub 2}O{sub 2} and Mn{sub 2}O{sub 3} as starting materials. The newly synthesized structure of NaMn{sub 2}O{sub 4} has been studied as a cathode for sodium ion rechargeable batteries. The HEMM derived NaMn{sub 2}O{sub 4} shows a 1st cycle discharge capacity ∼75 mAh/g, ∼86 mAh/g and ∼95 mAh/g when cycled at a rate of ∼40 mA/g in the potential window ∼2.0–4.0 V, ∼2–4.2 V and ∼2–4.5 V, respectively. The nanostructured NaMn{sub 2}O{sub 4} shows a fade in capacity of 0.3% per cycle and a moderate rate capability when cycled in the potential window 2–4 V. However, electrolyte decomposition occurring during charging of the electrode above ∼3.8 V needs to be resolved in order utilize the full capacity of NaMn{sub 2}O{sub 4} as well as improve the stability of the electrode.

  2. Use of sodium salt electrolysis in the process of continuous ...

    Indian Academy of Sciences (India)

    This paper presents test results concerning the selection of sodium salt for the technology of continuous modification of the EN AC-AlSi12 alloy, which is based on electrolysis of sodium salts, occurring directly in a crucible with liquid alloy. Sodium ions formed as a result of the sodium salt dissociation and the electrolysis are ...

  3. Evolutionary primacy of sodium bioenergetics

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2008-04-01

    Full Text Available Abstract Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts and V-type (found in archaea, some bacteria, and eukaryotic vacuoles ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section.

  4. Layered P2-Na 2/3 Co 1/2 Ti 1/2 O 2 as a high-performance cathode material for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sabi, Noha; Doubaji, Siham; Hashimoto, Kazuki; Komaba, Shinichi; Amine, Khalil; Solhy, Abderrahim; Manoun, Bouchaib; Bilal, Essaid; Saadoune, Ismael

    2017-02-01

    Layered oxides are regarded as promising cathode materials for sodium-ion batteries. We present Na2/3Co1/2Ti1/2O2 as a potential new cathode material for sodium-ion batteries. The crystal features and morphology of the pristine powder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cathode material is evaluated in galvanostatic charge-discharge and galvanostatic intermittent titration tests, as well as ex-situ X-ray diffraction analysis. Synthesized by a high-temperature solid state reaction, Na2/3Co1/2Ti1/2O2 crystallizes in P2-type structure with P6(3)/mmc space group. The material presents reversible electrochemical behavior and delivers a specific discharge capacity of 100 mAh g(-1) when tested in Na half cells between 2.0 and 4.2 V (vs. Na+/Na), with capacity retention of 98% after 50 cycles. Furthermore, the electrochemical cycling of this titanium-containing material evidenced a reduction of the potential jumps recorded in the NaxCoO2 parent phase, revealing a positive impact of Ti substitution for Co. The ex-situ XRD measurements confirmed the reversibility and stability of the material. No structural changes were observed in the XRD patterns, and the P2-type structure was stable during the charge/discharge process between 2.0 and 4.2 V vs. Na+/Na. These outcomes will contribute to the progress of developing low cost electrode materials for sodium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.

  5. Structural change of NaO1/2-WO3-NbO5/2-LaO3/2-PO5/2 glass induced by electrochemical substitution of sodium ions with protons.

    Science.gov (United States)

    Ishiyama, Tomohiro; Yamaguchi, Takuya; Nishii, Junji; Yamashita, Toshiharu; Kawazoe, Hiroshi; Kuwata, Naoaki; Kawamura, Junichi; Omata, Takahisa

    2015-05-28

    Structural changes of 35NaO1/2-1WO3-8NbO5/2-5LaO3/2-51PO5/2 glass (1W-glass) before and after the electrochemical substitution of sodium ions with protons by alkali-proton substitution (APS) are studied by Raman and (31)P magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopies. The glass before APS consists of (PO3(-))8.6(P2O7(4-)) chains on average and the terminal Q(1) units (-O-PO3(3-)) are bound to MO6 octahedra (M denotes niobium or tungsten) through P-O-M bonds. Some non-bridging oxygens (NBOs) in the MO6 octahedra are present in addition to the bridging oxygens (BOs) in P-O-M bonds. APS induces fragmentation of the phosphate chains because the average chain length decreases to (PO3(-))3.7(P2O7(4-)) after APS, despite the total number of modifier cations of sodium and lanthanum ions and protons being unaffected by APS. This fragmentation is induced by some of the NBOs in the MO6 octahedra before APS, changing to BOs of the newly formed M-O-P bonds after APS, because of the preferential formation of P-OH bonds over M-OH ones in the present glass. We show that APS under the conditions used here is not a simple substitution of sodium ions with protons, but it is accompanied by the structural relaxation of the glass to stabilize the injected protons.

  6. Hidden Sodium

    Centers for Disease Control (CDC) Podcasts

    2013-03-04

    In this podcast, learn about reducing sodium intake by knowing what to eat and the main sources of sodium in the diet. It's important for a healthy lifestyle.  Created: 3/4/2013 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/4/2013.

  7. Dietary sodium

    DEFF Research Database (Denmark)

    Graudal, Niels

    2015-01-01

    The 2013 Institute of Medicine (IOM) report "Sodium Intake in Populations: Assessment of Evidence" did not support the current recommendations of the IOM and the American Heart Association (AHA) to reduce daily dietary sodium intake to below 2,300 mg. The report concluded that the population...

  8. High-Rate, Durable Sodium-Ion Battery Cathode Enabled by Carbon-Coated Micro-Sized Na 3 V 2 (PO 4 ) 3 Particles with Interconnected Vertical Nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Bi, Xuanxuan [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South, Cass Avenue Lemont IL 60439 USA; Bai, Ying [Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Yuan, Yifei [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South, Cass Avenue Lemont IL 60439 USA; Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA; Shahbazian-Yassar, Reza [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA; Wu, Chuan [Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081 China; Wu, Feng [Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081 China; Lu, Jun [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South, Cass Avenue Lemont IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South, Cass Avenue Lemont IL 60439 USA

    2016-02-08

    Na-ion batteries have been regarded as promising alternatives for Li-ion batteries due to the extensive sodium reserves in the world. Na3V2(PO4)3 has been proved to be a good candidate of the cathode materials in Na-ion batteries but the intrinsic low electrical conductivity and sluggish kinetics handicapped its application. Here, 3D hierarchical Na3V2(PO4)3 particles are synthesized by a facile hydrothermal method, constructed by carbon-coated 2D Na3V2(PO4)3 nanowalls. Superior cell performance of high rate capability and cycle stability are observed in the well-defined structure. As the cathode in Na-ion batteries, it delivers a high capacity almost reaching the theoretical one and exhibits high capacity retention. The enhanced rate capability and cycle performance can be attributed to the improved electrical conductivity from the interconnected carbon layer and the shortened ion diffusion length and high specific surface area from the nanowalls.

  9. Adducts of uranium tetrachloride with neutral Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Doretti, L; Madalosso, F; Sitran, S; Faleschini, S; Vigato, P A [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1977-01-01

    Studies are reported of adducts of UCl/sub 4/ with various Schiff base ligands: N-(phenyl)benzalaldimine, N-(propyl) salicylaldimine, N-(phenyl) salicylaldimine, N-(2-hydroxyphenyl)benzalaldimine, N-(4-chlorophenyl)salcylaldimine, N-(4-nitrophenyl)salicylaldimine, N,N'-o-phenylenebis(salycylideneimine). The synthesis and characterization of these ligands is reported, and the preparation and characterization of the relative adducts of UCl/sub 4/: their IR spectra are reported and discussed.

  10. Adducts of uranium tetrachloride with neutral Schiff bases

    International Nuclear Information System (INIS)

    Doretti, L.; Madalosso, F.; Sitran, S.; Faleschini, S.; Vigato, P.A.

    1977-01-01

    Studies are reported of adducts of UCl 4 with various Schiff base ligands: N-(phenyl)benzalaldimine, N-(propyl) salicylaldimine, N-(phenyl) salicylaldimine, N-(2-hydroxyphenyl)benzalaldimine, N-(4-chlorophenyl)salcylaldimine, N-(4-nitrophenyl)salicylaldimine, N,N'-o-phenylenebis (salycylideneimine). The synthesis and characterization of these ligands is reported, and the preparation and characterization of the relative adducts of UCl 4 : their IR spectra are reported and discussed. (author)

  11. Detection of Dichlorvos Adducts in a Hepatocyte Cell Line

    Science.gov (United States)

    2014-06-30

    5453543 aldo -keto reductase family 1 member C1 aldo -keto reductase TRUE 3 156523970 alpha-2-HS-glycoprotein preproprotein 5 4503571 alpha-enolase...enolase, (YISPDQLADLYK), three variants were identified with adducts on the first, second, or both tyrosines (Figure 2), and for one peptide in aldo -keto...suggesting the possibility that DDVP adducts could alter biological activities. The modifications of aldo -keto reductase family 1 members at three

  12. Detection of carcinogen-DNA adducts by radioimmunoassay

    International Nuclear Information System (INIS)

    Poirier, M.C.; Yuspa, S.H.; Weinstein, I.B.; Blobstein, S.

    1977-01-01

    Covalent binding of carcinogen to nucleic acids is believed to be an essential component of the carcinogenic process, so it is desirable to have highly sensitive and specific methods for detecting such adducts in cells and tissues exposed to known and suspected carcinogens. A radioimmunoassay is here described capable of detecting nanogram amounts of DNA adducts resulting from the covalent binding of the carcinogen N-2-acetylaminofluorene and its activated N-acetoxy derivative. (author)

  13. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory.

    Science.gov (United States)

    Schulthess, Cristian P; Ndu, Udonna

    2017-01-01

    Simultaneous adsorption modeling of four ions was predicted with a strict net charge-neutral ion-exchange theory and its corresponding equilibrium and mass balance equations. An important key to the success of this approach was the proper collection of all the data, particularly the proton adsorption data, and the inclusion of variable concentrations of conjugate ions from the experimental pH adjustments. Using IExFit software, the ion-exchange model used here predicted the competitive retention of several ions on goethite by assuming that the co-adsorption or desorption of all ions occurred in the correct stoichiometries needed to maintain electroneutrality. This approach also revealed that the retention strength of Cl- ions on goethite increases in the presence of phthalate ions. That is, an anion-anion enhancement effect was observed. The retention of Cl- ions was much weaker than phthalate ions, and this also resulted in a higher sensitivity of the Cl- ions toward minor variations in the surface reactivity. The proposed model uses four goethite surface sites. The drop in retention of phthalate ions at low pH was fully described here as resulting from competitive Cl- reactions, which were introduced in increasing concentrations into the matrix as the conjugate base to the acid added to lower the pH.

  14. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    Science.gov (United States)

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  15. Extraction of silver by gels of sodium poly-acrylic-polyacrylate acid. Application: elimination of chloride anions; Extraction de l'argent par des gels d'acide polyacrylique-polyacrylate de sodium. Application a l'elimination des ions chlorures

    Energy Technology Data Exchange (ETDEWEB)

    Rifi, E.H. [Universite Ibn-Tofail, Lab. de Synthese Organique et Pocedes d' Extraction, Faculte des Sciences, Kenitra (Morocco); Lakkis, D.; Leroy, J.F.M. [Universite Louis Pasteur, Lab. de Chimie Analytique et Minerale, Ecole Europeenne de Chimie, Polymeres et Materiaux, 67 - Strasbourg (France)

    2005-05-01

    The extraction of silver from diluted aqueous solutions by gels of sodium poly-acrylic-polyacrylate acid was studied. The study of pH variations shows that the extraction is done by cation-cation exchange process. The highest loading of the gel by silver is obtained at R(moles of Ag{sup +} fixed by the gel/moles of -COO(H, Na))=0.75. The silver gel loaded allows the recovery of ions chlorides from the aqueous solutions. (authors)

  16. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Mohsen

    2015-10-21

    Oct 21, 2015 ... suppressive effects of sodium silicate in the polymer form were confirmed against powdery mildew and ... crops (such as rice) controls diseases and could reduce ... negative charge and sodium ions with a positive charge.

  17. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    Science.gov (United States)

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  18. Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: A study on P2-Nax(LiyMn1-y)O2 compounds

    Science.gov (United States)

    Yang, Lufeng; Li, Xiang; Ma, Xuetian; Xiong, Shan; Liu, Pan; Tang, Yuanzhi; Cheng, Shuang; Hu, Yan-Yan; Liu, Meilin; Chen, Hailong

    2018-03-01

    Sodium-ion batteries (SIBs) are an emerging electrochemical energy storage technology that has high promise for electrical grid level energy storage. High capacity, long cycle life, and low cost cathode materials are very much desired for the development of high performance SIB systems. Sodium manganese oxides with different compositions and crystal structures have attracted much attention because of their high capacity and low cost. Here we report our investigations into a group of promising lithium doped sodium manganese oxide cathode materials with exceptionally high initial capacity of ∼223 mAh g-1 and excellent capacity retentions, attributed primarily to the absence of phase transformation in a wide potential range of electrochemical cycling, as confirmed by in-operando X-ray diffraction (XRD), Rietveld refinement, and high-resolution 7Li solid-state NMR characterizations. The systematic study of structural evolution and the correlation with the electrochemical behavior of the doped cathode materials provides new insights into rational design of high-performance intercalation compounds by tailoring the composition and the crystal structure evolution in electrochemical cycling.

  19. 3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na4V2(PO4)3∥Na3V2(PO4)3.

    Science.gov (United States)

    Yao, Xuhui; Zhu, Zixuan; Li, Qi; Wang, Xuanpeng; Xu, Xiaoming; Meng, Jiashen; Ren, Wenhao; Zhang, Xinhe; Huang, Yunhui; Mai, Liqiang

    2018-03-28

    Symmetric sodium-ion batteries (SIBs) are considered as promising candidates for large-scale energy storage owing to the simplified manufacture and wide abundance of sodium resources. However, most symmetric SIBs suffer from suppressed energy density. Here, a superior congeneric Na 4 V 2 (PO 4 ) 3 anode is synthesized via electrochemical preintercalation, and a high energy density symmetric SIB (Na 3 V 2 (PO 4 ) 3 as a cathode and Na 4 V 2 (PO 4 ) 3 as an anode) based on the deepened redox couple of V 4+ /V 2+ is built for the first time. When measured in half cell, both electrodes show stabilized electrochemical performance (over 3000 cycles). The symmetric SIBs exhibit an output voltage of 3.0 V and a cell-level energy density of 138 W h kg -1 . Furthermore, the sodium storage mechanism under the expanded measurement range of 0.01-3.9 V is disclosed through an in situ X-ray diffraction technique.

  20. An ionic-liquid-assisted approach to synthesize a reduced graphene oxide loading iron-based fluoride as a cathode material for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Miaoling; Wang, Xianyou, E-mail: wxianyou@yahoo.com; Wei, Shuangying; Shen, Yongqiang; Hu, Hai

    2016-06-15

    A reduced graphene oxide loading iron-based fluoride (abbreviated as Fe{sub 2}F{sub 5}·H{sub 2}O/rGO) as a cathode material for sodium ion batteries (SIBs) has been successfully prepared by an ionic-liquid-assisted route. The morphology, structure, physicochemical properties and electrochemical performance are characterized by X-ray powder diffraction (XRD), Rietveld refinement of XRD pattern, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The XRD result shows that the crystal structure of the as-prepared sample can be indexed to the cubic Fd-3m space group and the lattice parameter is as follow: a = 1.04029 nm and V = 1.12581 nm{sup 3}. Moreover, the SEM and TEM images reveal that the as-prepared rGO has a rough wavy structure and flexural paper-like morphology, and numerous Fe{sub 2}F{sub 5}·H{sub 2}O particles are firmly adhered on the surface of the rGO to form an uniform Fe{sub 2}F{sub 5}·H{sub 2}O/rGO composite. Electrochemical tests show that the initial discharge capacity of Fe{sub 2}F{sub 5}·H{sub 2}O/rGO sample is 248.7 mAh g{sup −1} and the corresponding charging capacity up to 229.7 mAh g{sup −1} at a rate of 20 mA g{sup −1}. Especially, the Fe{sub 2}F{sub 5}·H{sub 2}O/rGO possesses good cycling stability, and it can deliver a discharge capacity of 164.2 mAh g{sup −1} at the 100th cycle. Besides, the rate capability tests show that a stable high capacity of 186.0 mAh g{sup −1} can be resumed when the current rate returns to 20 mA g{sup −1} after 20 cycles. - - Highlights: • The Fe{sub 2}F{sub 5}·H{sub 2}O/rGO has been successfully prepared by an ionic-liquid-assisted method. • The paper-like rGO could be obtained by a green hydrothermal method. • Numerous Fe{sub 2}F{sub 5}·H{sub 2}O particles are adhered firmly on the surface of the paper-like rGO. • The Fe{sub 2}F{sub 5}·H{sub 2}O/rGO shows excellent cycling stability and rate capability.

  1. Sodium Oxybate

    Science.gov (United States)

    ... or give your sodium oxybate to anyone else; selling or sharing it is against the law. Store ... dehydrogenase deficiency (an inherited condition in which certain substances build up in the body and cause retardation ...

  2. Sodium Azide

    Science.gov (United States)

    ... Exposure to a large amount of sodium azide by any route may cause these other health effects as well: Convulsions Low blood pressure Loss of consciousness Lung injury Respiratory failure leading to death Slow heart rate ...

  3. Nitric acid adduct formation during crystallization of barium and strontium nitrates and their co-precipitation from nitric acid media

    International Nuclear Information System (INIS)

    Mishina, N.E.; Zilberman, B.Ya.; Lumpov, A.A.; Koltsova, T.I.; Puzikov, E.A.; Ryabkov, D.V.

    2015-01-01

    The molar solubilities of Ba, Sr and Pb nitrates in nitric acid as a function of total nitrate concentration is presented and described by the mass action law, indicating on formation of the adducts with nitric acid. Precipitates of Ba(NO 3 ) 2 and Sr(NO 3 ) 2 crystallized from nitric acid were studied by ISP OES and IR spectroscopy. The data obtained confirmed formation of metastable adducts with nitric acid. IR and X-ray diffraction studies of the mixed salt systems indicated conversion of the mixed salts into (Ba,Sr)(NO 3 ) 2 solid solution of discrete structure in range of total nitrate ion concentration ∼6 mol/L. (author)

  4. Characterization of hemoglobin-benzo[a]pyrene adducts

    International Nuclear Information System (INIS)

    Haugen, D.A.; Myers, S.R.

    1987-01-01

    Cultures of Syrian hamster embryo (SHE) cells were supplemented with human Hb (0.2 mM heme) and [ 3 H]BP (1 μM). After a 24-h incubation, the medium was removed and subjected to cation-exchange liquid chromatography (CM-Sepharose) to resolve hemoglobins from serum proteins in the medium. The BP-treated Hb was subjected to analysis in each of three column chromatographic systems established for isolation and characterization of human hemoglobin and its genetic and post-translationally modified variants. Results demonstrate that hemoglobin-carcinogen adducts can be resolved from native hemoglobin by established conventional and high-performance liquid chromatographic procedures, suggesting the basis for development of general approaches for isolating and characterizing hemoglobin-carcinogen adducts. The results also suggest the basis for a model system in which adducts between carcinogens and human hemoglobin are formed in cultures of mammalian cells or tissues

  5. DNA adducts: Mass spectrometry methods and future prospects

    International Nuclear Information System (INIS)

    Farmer, P.B.; Brown, K.; Tompkins, E.; Emms, V.L.; Jones, D.J.L.; Singh, R.; Phillips, D.H.

    2005-01-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of this technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10 12 nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [ 14 C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [ 14 C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing 32 P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens

  6. Elaboration and test of the method of separation of alkaline metals ions with tin phosphate

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Chernyak, A.S.; Kostromina, O.N.; Kachur, N.Ya.; Shpeyzer, B.G.

    1986-01-01

    Present work is devoted to elaboration and test of the method of separation of alkaline metals ions with tin phosphate. Thus, the isotherms of sorption of lithium, sodium, potassium, rubidium and cesium ions with amorphous tin phosphate depending on their concentration, ph of solution, sorbent quantity are obtained. The parameters of extraction of potassium microquantities from sodium salts are defined. Ultra pure sodium chloride, sodium iodide, sodium sulphate, sodium nitrate, sodium nitrite, sodium phosphate are synthesized.

  7. Trans-Channel Interactions in Batrachotoxin-Modified Skeletal Muscle Sodium Channels: Voltage-Dependent Block by Cytoplasmic Amines, and the Influence of μ-Conotoxin GIIIA Derivatives and Permeant Ions

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R.; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W.; French, Robert J.

    2008-01-01

    External μ-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two μ-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the μ-conotoxin and the DEA-binding site of ∼15 Å. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by ∼4-fold; and 2), increasing external [Na+] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions. PMID:18658222

  8. Trans-channel interactions in batrachotoxin-modified skeletal muscle sodium channels: voltage-dependent block by cytoplasmic amines, and the influence of mu-conotoxin GIIIA derivatives and permeant ions.

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W; French, Robert J

    2008-11-01

    External mu-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two mu-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the mu-conotoxin and the DEA-binding site of approximately 15 A. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by approximately 4-fold; and 2), increasing external [Na(+)] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions.

  9. Simultaneous determination of copper, cobalt, and mercury ions in water samples by solid-phase extraction using carbon nanotube sponges as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography.

    Science.gov (United States)

    Wang, Lei; Zhou, Jia-Bin; Wang, Xia; Wang, Zhen-Hua; Zhao, Ru-Song

    2016-06-01

    Recently, a sponge-like material called carbon nanotube sponges (CNT sponges) has drawn considerable attention because it can remove large-area oil, nanoparticles, and organic dyes from water. In this paper, the feasibility of CNT sponges as a novel solid-phase extraction (SPE) adsorbent for the enrichment and determination of heavy metal ions (Co(2+), Cu(2+), and Hg(2+)) was investigated for the first time. Sodium diethyldithiocarbamate (DDTC) was used as the chelating agent and high performance liquid chromatography (HPLC) for the final analysis. Important factors which may influence extraction efficiency of SPE were optimized, such as the kind and volume of eluent, volume of DDTC, sample pH, flow rate, etc. Under the optimized conditions, wide range of linearity (0.5-400 μg L(-1)), low limits of detection (0.089~0.690 μg L(-1); 0.018~0.138 μg), and good repeatability (1.27~3.60 %, n = 5) were obtained. The developed method was applied for the analysis of the three metal ions in real water samples, and satisfactory results were achieved. All of these findings demonstrated that CNT sponges will be a good choice for the enrichment and determination of target ions at trace levels in the future.

  10. Separation and recovery of sodium nitrate from low-level radioactive liquid waste by electrodialysis

    International Nuclear Information System (INIS)

    Meguro, Yoshihiro; Kato, Atsushi; Watanabe, Yoko; Takahashi, Kuniaki

    2011-01-01

    An advanced method, in which electrodialysis separation of sodium nitrate and decomposition of nitrate ion are combined, has been developed to remove nitrate ion from low-level radioactive liquid wastes including nitrate salts of high concentration. In the electrodialysis separation, the sodium nitrate was recovered as nitric acid and sodium hydroxide. When they are reused, it is necessary to reduce the quantity of impurities getting mixed with them from the waste fluid as much as possible. In this study, therefore, a cation exchange membrane with permselectivity for sodium ion and an anion exchange membrane with permselectivity for monovalent anion were employed. Using these membranes sodium and nitrate ions were effectively removed form a sodium nitrate solution of high concentration. And also it was confirmed that sodium ion was successfully separated from cesium and strontium ions and that nitrate ion was separated from sulfate and phosphate ions. (author)

  11. Structure of sodium perbromate monohydrate

    International Nuclear Information System (INIS)

    Blackburn, A.C.; Gallucci, J.C.; Gerkin, R.E.; Reppart, W.J.

    1992-01-01

    NaBrO 4 .H 2 O, M r =184.90, monoclinic, C2/c, a=15.7575(19), b=5.7373(15), c=11.3390(19) A, β=111.193(10)deg. In this structure, there are two inequivalent Na ions, each coordinated by six O atoms. In each of the two types of distorted octahedra, there are three inequivalent Na-O distances; the average Na(1)-O and Na(2)-O distances are 2.379(10) and 2.405(23) A, respectively. The perbromate ion in this structure displays very nearly regular tetrahedral geometry, although it is subject to no symmetry constraints; the average observed Br-O distance is 1.601(4) A, while the average observed O-Br-O angle is 109.5(9)deg. These values agree well with previously reported values. The perbromate ion, but neither of the sodium coordination polyhedra, shows rigid-body behavior. The average rigid-body corrected Br-O distance in the perbromate ion is 1.624(3) A. Refinement of the two inequivalent H atoms permitted detailed analysis of the hydrogen bonding, which is slightly different from that reported for the isomorphic sodium perchlorate monohydrate. Dynamic disordering of the H atoms as detailed by magnetic resonance methods for sodium perchlorate monohydrate is not clearly indicated in our X-ray study of sodium perbromate monohydrate. (orig./GSCH)

  12. The solvent extraction of alkali metal ions with β-diketones

    International Nuclear Information System (INIS)

    Munakata, Megumu; Niina, Syozo; Shimoji, Noboru

    1974-01-01

    This work was undertaken to investigate effects of solvent and chelating-agent on the solvent extraction of alkali metal ions by seven β-diketones, acetylacetone (Acac), benzoylacetone (BzA), dipivaloylmethane (DPM), dibenzoylmethane (DBM), thenoyltrifluoloacetone (TTA), benzoyltrifluoroacetone (BFA) and hexafluoroacetylacetone (HFA), and to separate lithium from alkali metals. The extraction of alkali metals increase with increasing donor power of the solvent: i.e., benzene Na>K>Rb>Cs, which is also the order in which the adduct formation of these β-diketone chelates with donor solvents increase. The adduct formations between β-diketone chelates of alkali metals and donor solvents markedly enhance the solubilities of the chelates in solvents and, consequently, the extractabilities of alkali metals with β-diketones. Lithium was extracted with TTA in ether at such a low base concentration that sodium, potassium, rubidium and cesium were hardly extracted, and this enabled to separate lithium from other metals by the use of rubidium hydroxide (0.02 M). An attempt has been made to isolate alkali metal β-diketone chelates and some chelates have been obtained as crystals. The infrared absorption bands arising from C=O and C.=C of TTA shift to lower frequencies in the alkali metal chelates with TTA, and consequently, β-diketones is suggested to coordinate to alkali metal as a bidentate ligand. (JPN)

  13. Comparison of estimated dietary intake of acrylamide with hemoglobin adducts of acrylamide and glycidamide

    DEFF Research Database (Denmark)

    Bjellaas, Thomas; Olesen, Pelle Thonning; Frandsen, Henrik Lauritz

    2007-01-01

    , a significant positive correlation was found between the AA-Hb adduct concentration and the intake of chips/snacks and crisp bread. GA-Hb adduct did not correlate with consumption of any of the main food groups. Neither AA-Hb nor GA-Hb adduct concentration correlated with total dietary intake of AA...

  14. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  15. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    Science.gov (United States)

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  16. Thermodynamic parameters for polyether adducts with neutral molecules

    International Nuclear Information System (INIS)

    Spencer, J.N.; Zafar, A.I.; Ganunis, T.F.

    1992-01-01

    Using calorimetry, thermodynamic parameters for the interaction of neutral molecules with polyether adducts are determined. When compared to its analogous acyclic ether, no macrocyclic effect is observed for 12-crown-4. The ether's collective oxygen atoms' action determines interaction with acetonitrile and malononitrile, with dimethyltin dichloride having a specific oxygen-binding site. 14 refs., 1 tab

  17. Vaporization of GaI3Py adduct

    International Nuclear Information System (INIS)

    Timoshkina, A.Yu.; Grigor'ev, A.A.; Suvorov, A.V.

    1995-01-01

    Processes of GaI 3 Py complex vaporization have been studied by mass-spectrometric, tensimetric and calorimetric methods. It is shown that adduct transformation into vapour is accompanied by its thermal dissociation. Thermodynamic characteristics of evaporation and dissociation of GaI 3 Py complex have been obtained. 14 refs., 2 figs., 6 tabs

  18. Conformations of stereoisomeric base adducts to 4-hydroxyequilenin.

    Science.gov (United States)

    Ding, Shuang; Shapiro, Robert; Geacintov, Nicholas E; Broyde, Suse

    2003-06-01

    Exposure to estrogen through estrogen replacement therapy increases the risk of women developing cancer in hormone sensitive tissues. Premarin (Wyeth), which has been the most frequent choice for estrogen replacement therapy in the United States, contains the equine estrogens equilin and equilenin as major components. 4-Hydroxyequilenin (4-OHEN) is a phase I metabolite of both of these substances. This catechol estrogen autoxidizes to potent cytotoxic quinoids that can react with dG, dA, and dC to form unusual stereoisomeric cyclic adducts (Bolton, J. L., et al. (1998) Chem. Res. Toxicol. 11, 1113-1127). Like other bulky DNA adducts, these lesions may exhibit different susceptibilities to DNA repair and mutagenic potential, if not repaired in a structure-dependent manner. To ultimately gain insights into structure-function relationships, we computed conformations of stereoisomeric guanine, adenine, and cytosine base adducts using density functional theory. We find near mirror image conformations in stereoisomer adduct pairs for each modified base, suggesting opposite orientations with respect to the 5' --> 3' direction of the modified strand when the stereoisomer pairs are incorporated into duplex DNA. Such opposite orientations could cause stereoisomer pairs of lesions to respond differently to DNA replication and repair enzymes.

  19. The fate of H atom adducts to 3'-uridine monophosphate.

    Science.gov (United States)

    Wang, Ran; Zhang, Ru Bo; Eriksson, Leif A

    2010-07-29

    The stabilities of the adducts deriving from H free radical addition to the O2, O4, and C5 positions of 3'-uridine monophosphate (3'UMP) are studied by the hybrid density functional B3LYP approach. Upon H atom addition at the O2 position, a concerted low-barrier proton-transfer process will initially occur, followed by the potential ruptures of the N-glycosidic or beta-phosphate bonds. The rupture barriers are strongly influenced by the rotational configuration of the phosphate group at the 3' terminal, and are influenced by bulk solvation effects. The O4-H adduct has the highest thermal stability, as the localization of the unpaired electron does not enable cleavage of either the C1'-N1 or the C3'-O(P) bonds. For the most stable adduct, with H atom added to the C5 position, the rate-controlled step is the H2'a abstraction by the C6 radical site, after which the subsequent strand rupture reactions proceed with low barriers. The main unpaired electron densities are presented for the transient species. Combined with previous results, it is concluded that the H atom adducts are more facile to drive the strand scission rather than N-glycosidic bond ruptures within the nucleic acid bases.

  20. Fullerene–Carbene Lewis Acid–Base Adducts

    KAUST Repository

    Li, Huaping; Risko, Chad; Seo, Jung Hwa; Campbell, Casey; Wu, Guang; Brédas, Jean-Luc; Bazan, Guillermo C.

    2011-01-01

    The reaction between a bulky N-heterocylic carbene (NHC) and C60 leads to the formation of a thermally stable zwitterionic Lewis acid-base adduct that is connected via a C-C single bond. Low-energy absorption bands with weak oscillator strengths

  1. Metal-isonitrile adducts for preparing radionuclide complexes

    International Nuclear Information System (INIS)

    Carpenter, A.P.; Linder, K.E.; Maheu, L.J.; Patz, M.A.; Thompson, J.S.; Tulip, T.H.; Subramanyam, V.

    1988-01-01

    An method for preparing a coordination complex of isonitrile ligand and a radioisotope of Te, Ru, Co, Pt, Re, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Nb and Ta from a non-radioactive metal adduct of the isonitrile

  2. Characterization of trypsin-derived peptides acrylamide-adducted hemoglobin

    International Nuclear Information System (INIS)

    Springer, D.L.; Goheen, S.C.; Edmonds, C.G.; McCulloch, M.; Sylvester, D.M.; Sander, C.; Bull, R.J.

    1991-01-01

    Even though there are a number of sources for human exposure to acrylamide, reliable biomarkers of exposure are not available. In an effort to develop such a biomarker, the authors are characterizing peptides derived from trypsin digests of acrylamide-adducted hemoglobin. For this, radiolabeled acrylamide was incubated with this, radiolabeled acrylamide was incubated with purified human hemoglobin (Ao) and decomposition products removed by dialysis. When the adducted hemoglobin was separated by reverse-phase HPLC, radioactivity eluted with the α and β subunits, suggesting covalent binding. Digestion of individual subunits with trypsin followed by reverse phase HPLC, indicated that most of the radioactivity associated with the α subunit co-eluted with a single peptide. Similar results were observed for the β subunit except that significant amounts of radioactivity eluted with the solvent front, suggesting that radioactivity was released by trypsin digestion. Currently, these preparation are under further characterization by electrospray ionization mass spectrometry. This approach will aid in the identification of the adducted will aid in the identification of the adducted peptide and subsequent preparation of an acrylamide-specific antibody

  3. Determination of nitrite, nitrate, bromide, and iodide in seawater by ion chromatography with UV detection using dilauryldimethylammonium-coated monolithic ODS columns and sodium chloride as an eluent.

    Science.gov (United States)

    Ito, Kazuaki; Nomura, Ryosuke; Fujii, Takuya; Tanaka, Masahito; Tsumura, Tomoaki; Shibata, Hiroyuki; Hirokawa, Takeshi

    2012-11-01

    A method was developed for determination of inorganic anions, including nitrite (NO(2)(-)), nitrate (NO(3)(-)), bromide (Br(-)), and iodide (I(-)), in seawater by ion chromatography (IC). The IC system used two dilauryldimethylammonium bromide (DDAB)-coated monolithic ODS columns (50 × 4.6 mm i.d. and 100 × 4.6 mm i.d.) connected in series for separation of the ions. Aqueous NaCl (0.5 mol/L; flow rate, 3 mL/min) containing 5 mmol/L phosphate buffer (pH 5) was used as the eluent, and detection was with a UV detector at 225 nm. The monolithic ODS columns were coated and equilibrated with a 1-mmol/L DDAB solution (in H(2)O/methanol, 90:10 v/v). The hydrophilic ions (NO(2)(-), NO(3)(-), and Br(-)) were separated within 3 min and the retention time of I(-) was 16 min. No interferences from matrix ions, such as chloride and sulfate ions, were observed in 35 ‰ artificial seawater. The detection limits were 0.6 μg/L for NO(2)(-), 1.1 μg/L for NO(3)(-), 70 μg/L for Br(-), and 1.6 μg/L for I(-) with a 200-μL sample injection. The performance of the coated columns was maintained without addition of DDAB in the eluent. The IC system was successfully applied to real seawater samples with recovery rates of 94-108 % for all ions.

  4. Test Your Sodium Smarts

    Science.gov (United States)

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  5. Crystal and molecular structure of praseodymium nitrate dipivalate adduct with o-phenanthroline

    International Nuclear Information System (INIS)

    Pisarevskij, A.P.; Mitrofanova, N.D.; Frolovskaya, S.N.; Martynenko, L.I.

    1995-01-01

    The paper deals with the synthesis and X-ray diffraction investigation of praseodymium nitrate dipivalate adduct with o-phenanthroline of PrPiv 2 (NO 3 )Phen 2 composition. The crystals are triclinic: a = 9.738(4), b = 11.860(5), c = 15.451(6) A, α = 91.80(2), β = 99.41(2), γ = 103.69(2) deg, sp. gr. P1, d cald = 1.490 g/cm 3 . The coordination number of praseodymium atom in a monomeric molecule equals 10, both carboxylate groups and nitrate ion are coordinated by the bidentate-cyclic method. Phenanthroline molecules are formed by five-membered chelate cycles in the process of coordination. 5 refs., 1 fig., 2 tab

  6. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J.

    1998-12-07

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variable on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB.

  7. Study and application of ion chromatography and activation analysis without chemical separation for the determination of sodium and potassium in muscle tissues

    International Nuclear Information System (INIS)

    Haber, E.P.

    1984-01-01

    The simultaneous determination of Na and K in small amounts of muscular tissue by use of two methods, namely activation analysis and ion chromatography, is presented. For the activation analysis the samples were irradiated for 30 minutes in a 5 X 10 11 n cm sup(-) 2 s sup(-) 1 flux. The induced activities of 24 Na and 42 K were determined, without chemical separation, using a Ge(Li) detector equipped with a 4096 channel analyser on-line with a computer. The gamma ray spectra registered from the samples and standards were analysed and compared by the computer. For the ion chromatography analysis the samples and standards in solution were injected into the apparatus. The ions were separated by an ion-exchange system of columns and the concentrations were measured by conductivity. In addition, the two analytical methods were compared in regard to sensitivity, precision and accuracy as well as simplicity, cost and working time involved in the analysis. From the point of view of the reliability of the results, both techniques proved to be excelent and might be of great value in medical research. (Author) [pt

  8. Simultaneous determination of free calcium, magnesium, sodium and potassium ion concentrations in simulated milk ultrafiltrate and reconstituted skim milk using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Gao, R.; Temminghoff, E.J.M.; Leeuwen, van H.P.; Valenberg, van H.J.F.; Eisner, M.D.; Boekel, van M.A.J.S.

    2009-01-01

    This study focused on determination of free Ca2+, Mg2+, Na+ and K+ concentrations in a series of CaCl2 solutions, simulated milk ultrafiltrate and reconstituted skim milk using a recently developed Donnan Membrane Technique (DMT). A calcium ion selective electrode was used to compare the DMT

  9. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  10. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    International Nuclear Information System (INIS)

    Shi, Yun-bo.

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs

  11. Environmental, Dietary, Maternal, and Fetal Predictors of Bulky DNA Adducts in Cord Blood

    DEFF Research Database (Denmark)

    Pedersen, Marie; Mendez, Michelle A; Schoket, Bernadette

    2015-01-01

    and drinking-water disinfection by-products, mainly trihalomethanes (THMs), were available for a large proportion of the study population. RESULTS: Greek and Spanish neonates had higher adduct levels than the northern European neonates [median, 12.1 (n = 179) vs. 6.8 (n = 332) adducts per 108 nucleotides, p...... with higher adduct levels in adjusted models. Exposure to fine particulate matter and nitrogen dioxide was associated with significantly higher adducts in the Danish subsample only. Overall, the pooled results for THMs in water show no evidence of association with adduct levels; however, there are country...

  12. Formation of DNA adducts in mouse tissues after 1-nitropyrene administration

    International Nuclear Information System (INIS)

    Mitchell, C.E.

    1986-01-01

    DNA adducts were isolated and characterized in mouse lung, liver and kidney after intratracheal instillation of [ 3 H]-1-nitropyrene (1-NP). HPLC analysis of the enzymatically digested DNA indicated the presence of multiple DNA adducts in mouse lung, liver and kidney. These results indicate that DNA adducts of 1-NP are formed in mouse lung, liver and kidney after intratracheal instillation of 1-NP; the HPLC profiles of the multiple adducts suggests that adducts may be formed via metabolic pathways that involve both nitroreduction and ring-oxidation. 6 references, 1 figure

  13. 32P-postlabeling DNA adduct assay: cigarette smoke-induced dna adducts in the respiratory and nonrespiratory rat tissues. Book chapter

    International Nuclear Information System (INIS)

    Gupta, R.C.; Gairola, C.G.

    1990-01-01

    An analysis of the tissue DNA adducts in rats by the sensitive (32)p-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. Chronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancement of most adducts in the lung and heart DNA. Since cigarette smoke contains several thousand chemicals and a few dozen of them are known or potential carcinogens, the difference between the DNA adducts of nasal and the other tissues may reflect the diversity of reactive constituents and their differential absorption in different tissues. In comparison to the lung DNA adducts, the adducts in nasal DNA were less hydrophobic. Identity of the predominant adducts was further investigated by comparison with several reference DNA adducts from 10 PAH and aromatic amines. Since some of these chemicals are present in cigarette smoke, the results suggest that these constituents of cigarette smoke may not be directly responsible for formation of DNA adducts in the lung and heart of the smoke-exposed animals

  14. The radiation chemistry of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate

    International Nuclear Information System (INIS)

    Burchill, C.E.; Smith, D.M.; Charlton, J.L.

    1976-01-01

    The 60 Co γ-radiolysis of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate has been studied in acidic, unbuffered, and alkaline conditions and with addition of N 2 O and 2-propanol. Mechanisms are proposed to account for the yields of H 2 O 2 and hydroxylated anthraquinone sulfonates. In neutral solution, in the absence of O 2 , the OH and e - adducts undergo preferential cross termination. Reduction of the OH adduct leads to dehydration and regeneration of the quinone. (author)

  15. Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1-xO2 cathodes for sodium-ion batteries.

    Science.gov (United States)

    Hemalatha, K; Jayakumar, M; Prakash, A S

    2018-01-23

    The resurgence of sodium-ion batteries in recent years is due to their potential ability to form intercalation compounds possessing a high specific capacity and energy density comparable to existing lithium systems. To comprehend the role of cobalt substitution in the structure and electrochemical performance of Na 0.67 MnO 2 , the solid solutions of P2-Na 0.67 Mn x Co 1-x O 2 (x = 0.25, 0.5, 0.75) are synthesized and characterized. The XRD-Rietveld analysis revealed that the Co-substitution in Na 0.67 MnO 2 decreases lattice parameters 'a' and 'c' resulting in the contraction of MO 6 octahedra and the enlargement of inter-layer 'd' spacing. XPS indicates that the isovalent cobalt substitution in Na 0.67 MnO 2 results in the partial/complete replacement of Jahn-Teller active trivalent manganese to form low-spin complexes of better structural stability. The Na-ion diffusion coefficient, D Na + , derived from cyclic voltammetry and impedance spectroscopy, confirmed the enhanced mass transport in Co-rich phases compared to Mn-rich phases. Furthermore, higher diffusion coefficient values are observed for Co 3+ /Co 4+ than for their Mn 3+ /Mn 4+ redox processes. In addition, Co-rich phases exhibit a high structural stability and superior capacity retention, whereas Mn-rich phases discharge higher capacities.

  16. Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations.

    Science.gov (United States)

    Coldwell, Kate E; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2008-09-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.

  17. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.

  18. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M •+ , MH + , [M - H 2 O] + , and solvent adducts were observed in positive LPPI, [M - H] - and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure. Graphical Abstract ᅟ.

  19. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution......-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Udgivelsesdato: 2007-Dec-13...

  20. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  1. Sodium setpoint and gradient in bicarbonate hemodialysis.

    Science.gov (United States)

    Basile, Carlo; Libutti, Pasquale; Lisi, Piero; Vernaglione, Luigi; Casucci, Francesco; Losurdo, Nicola; Teutonico, Annalisa; Lomonte, Carlo

    2013-01-01

    The demonstration of an individual osmolar setpoint in hemodialysis (HD) is crucial to individualize dialysate sodium concentrations. Furthermore, the diffusive gradient between plasma and dialysate sodium is important in the "fine tuning" of the intradialytic sodium mass balance (MB). The design of this study included part A: a retrospective analysis of predialysis plasma sodium concentrations extracted from a 6-year database in our HD population (147 prevalent white anuric patients); and part B: study of intradialytic sodium kinetics in 48 patients undergoing one 4-hour bicarbonate HD session. Direct potentiometry with an ion-selective electrode was used for sodium measurements. Study part A: the mean number of plasma sodium measurements per patient was 16.06 ± 14.03 over a mean follow-up of 3.55 ± 1.76 years. The mean of the averaged plasma sodium concentrations was 136.7 ± 2.1 mmol/L, with a low mean intraindividual coefficient of variation (1.39 ± 0.4). Study part B: mean predialysis and postdialysis plasma sodium concentrations were 135.8 ± 0.9 and 138.0 ± 0.9 mmol/L (p<0.001). Mean inlet dialyzer sodium concentration was 138.7 ± 1.1 mmol/L; the hourly diffusion concentration gradients showed a statistically significant transfer from dialysate to plasma (Wilks ? <0.0001). A statistically significant relationship was found between sodium MB and diffusion gradient (p<0.02), and between sodium MB and ultrafiltration volume (p<0.01). A relatively "fixed" and individual osmolar setpoint in HD patients was shown for the first time in a long-term follow-up. A dialysate sodium concentration of 140 mmol/L determined a dialysate to plasma sodium gradient.

  2. One-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries

    Science.gov (United States)

    Karegeya, Claude; Mahmoud, Abdelfattah; Vertruyen, Bénédicte; Hatert, Frédéric; Hermann, Raphaël P.; Cloots, Rudi; Boschini, Frédéric

    2017-09-01

    The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na+ and presence of vacancies in A(2)', Na+ and small amounts of Mn2+ in A(1), Mn2+ in M(1), 0.5 Mn2+ and Fe cations (Mn2+,Fe2+ and Fe3+) in M(2), leading to the structural formula Na2Mn(Mn0.5Fe1.5)(PO4)3. The particles morphology was investigated by SEM. Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 h at 220 °C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220 °C for 6 h. When the reaction time was increased from 6 to 12, 24 and 48 h, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mA h g-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99% during 50 cycles.

  3. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  4. First-principles study of mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x=0-2, M = Mn, Co, Ni): A new family of high electrode potential cathodes for the sodium-ion battery

    Science.gov (United States)

    Ri, Gum-Chol; Choe, Song-Hyok; Yu, Chol-Jun

    2018-02-01

    Natural abundance of sodium and its similar behavior to lithium triggered recent extensive studies of cost-effective sodium-ion batteries (SIBs) for large-scale energy storage systems. A challenge is to develop electrode materials with a high electrode potential, specific capacity and a good rate capability. In this work we propose mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x = 0-2, M = Mn, Co, Ni) as a new family of high electrode potential cathodes of SIBs and present their material properties predicted by first-principles calculations. The structural optimizations show that these materials have significantly small volume expansion rates below 5% upon Na insertion/desertion with negative Na binding energies. Through the electronic structure calculations, we find band insulating properties and hole (and/or electron) polaron hoping as a possible mechanism for the charge transfer. Especially we confirm the high electrode voltages over 4 V with reasonably high specific capacities. We also investigate the sodium ion mobility by estimating plausible diffusion pathways and calculating the corresponding activation barriers, demonstrating the reasonably fast migrations of sodium ions during the operation. Our calculation results indicate that these mixed eldfellite compounds can be suitable materials for high performance SIB cathodes.

  5. Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodon dactylon under NaCl treatment: a parallel investigation with rice.

    Science.gov (United States)

    Roy, Swarnendu; Chakraborty, Usha

    2018-01-01

    Comparative analyses of the responses to NaCl in Cynodon dactylon and a sensitive crop species like rice could effectively unravel the salt tolerance mechanism in the former. C. dactylon, a wild perennial chloridoid grass having a wide range of ecological distribution is generally adaptable to varying degrees of salinity stress. The role of salt exclusion mechanism present exclusively in the wild grass was one of the major factors contributing to its tolerance. Salt exclusion was found to be induced at 4 days when the plants were treated with a minimum conc. of 200 mM NaCl. The structural peculiarities of the salt exuding glands were elucidated by the SEM and TEM studies, which clearly revealed the presence of a bicellular salt gland actively functioning under NaCl stress to remove the excess amount of Na + ion from the mesophyll tissues. Moreover, the intracellular effect of NaCl on the photosynthetic apparatus was found to be lower in C. dactylon in comparison to rice; at the same time, the vacuolization process increased in the former. Accumulation of osmolytes like proline and glycine betaine also increased significantly in C. dactylon with a concurrent check on the H 2 O 2 levels, electrolyte leakage and membrane lipid peroxidation. This accounted for the proper functioning of the Na + ion transporters in the salt glands and also in the vacuoles for the exudation and loading of excess salts, respectively, to maintain the osmotic balance of the protoplasm. In real-time PCR analyses, CdSOS1 expression was found to increase by 2.5- and 5-fold, respectively, and CdNHX expression increased by 1.5- and 2-fold, respectively, in plants subjected to 100 and 200 mM NaCl treatment for 72 h. Thus, the comparative analyses of the expression pattern of the plasma membrane and tonoplast Na + ion transporters, SOS1 and NHX in both the plants revealed the significant role of these two ion transporters in conferring salinity tolerance in Cynodon.

  6. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    International Nuclear Information System (INIS)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates

  7. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  8. PHOSPHATO AND PHOSPHONATO ADDUCTS: SYNTHESIS AND SPECTROSCOPIC STUDY

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2014-05-01

    Full Text Available Two new adducts have been synthesized and studied by infrared and NMR spectroscopy. The suggested structures are discrete or of infinite chain type with a phosphate behaving as a bidentate ligand, a phosphonate acting as a monodentate ligand, the environments around the tin centre being tetrahedral or trigonal bipyramidal. In all the studied compounds, supramolecular architectures are obtained when hydrogen bonds are considered.

  9. Protein modification by acrolein: Formation and stability of cysteine adducts

    OpenAIRE

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2009-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to iden...

  10. Exposure of bus and taxi drivers to urban air pollutants as measured by DNA and protein adducts

    DEFF Research Database (Denmark)

    Hemminki, K.; Zhang, L.F.; Krüger, J.

    1994-01-01

    Urinary 1-hydroxypyrene, lymphocyte DNA adducts, serum protein-bound PAH and hemoglobin-bound alkene adducts were analysed from 4 groups of non-smoking men: urban and suburban bus drivers, taxi drivers and suburban controls. The only differences between the groups were in DNA adducts between...... suburban bus drivers and controls, and in DNA adduct and plasma protein PAH-adducts between taxi drivers and controls....

  11. First principle study of sodium decorated graphyne

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com [Assam University, Silchar (India); Bhattacharya, Barnali [Assam University, Silchar (India); Seriani, Nicola [The Abdus Salam ICTP, Trieste (Italy)

    2015-11-05

    Highlights: • Presence of Na decreases the stability of the system. • Na-decorated graphyne compounds are metallic and might be used in electronics. • The sodium-adsorbed graphyne can be used as electrodes in Na-ion battery. - Abstract: We present first-principles calculations of the electronic properties of Na-decorated graphyne. This structure of the graphyne family is a direct band gap semiconductor with a band gap of 0.44 eV in absence of sodium, but Na-decorated graphyne compounds are metallic, and can then be employed as carbon-based conductors. Metallization is due to charge donation from sodium to carbon. Pristine graphyne is more stable than Na-decorated graphyne, therefore is seems probable that, if this material should be employed as electrode in Na-ion batteries, it would lead to the formation of metallic sodium rather than well dispersed sodium ions. On the other side, this property might be useful if graphyne is employed in water desalination. Finally, the abrupt change from a semiconducting to a metallic state in presence of a small amount of sodium might be exploited in electronics, e.g. for the production of smooth metal–semiconductor interfaces through spatially selective deposition of sodium.

  12. Diagnosis and dosimetry of exposure to sulfur mustard: Development of a standard operating procedure for hemoglobin adducts: Exploratory research on albumin and keratin adducts

    NARCIS (Netherlands)

    Noort, D.; Fidder, A.; Jong, L.P.A. de; Schans, G.P. van der; Benschop, H.P.

    2000-01-01

    A standard operating procedure (SOP) for determination of the sulfur mustard adduct to the N-terminal valine in hemoglobin was developed. By using this SOP, it was found that the Nterminal valine adduct in globin of hairless guinea pigs and marmosets which had been exposed to sulfur mustard (0.5

  13. Effect of turmeric and curcumin on BP-DNA adducts.

    Science.gov (United States)

    Mukundan, M A; Chacko, M C; Annapurna, V V; Krishnaswamy, K

    1993-03-01

    Many human cancers that are widely prevalent today can be prevented through modifications in life-styles, of which diet appears to be an important agent. Several dietary constituents modulate the process of carcinogenesis and prevent genotoxicity. Many plant constituents including turmeric appear to be potent antimutagens and antioxidants. Therefore the modulatory effects of turmeric and curcumin on the levels of benzo[a]pyrene induced DNA adducts in the livers of rats were studied by the newly developed 32P-postlabelling assay method. Turmeric when fed at 0.1, 0.5 and 3% and the active principle of turmeric (curcumin) when fed at a level of 0.03% in the diet for 4 weeks significantly reduced the level of BP-DNA adducts including the major adduct dG-N2-BP, formed within 24 h in response to a single i.p. injection of benzo[a]pyrene. The significance of these effects in terms of the potential anticarcinogenic effects of turmeric is discussed. Further, these results strengthen the various other biological effects of turmeric which have direct relevance to anticarcinogenesis and chemoprevention.

  14. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Science.gov (United States)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  15. Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Jian Feng; Paul A. Lindahl

    2004-07-28

    OAK-B135 The structure of the active-site C-cluster in CO dehydrogenase from Carboxythermus hydrogenoformans includes a {mu}{sup 2}-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODH{sub Rr}) and Moorella thermoacetica (CODH{sub Mt}) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH{sub Rr} and generated a lag prior to steady-state. CODH{sub Mt} was inhibited similarly but without a lag. Adding sulfide to CODH{sub Mt} in the C{sub red1} state caused the g{sub av} = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g{sub av} = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g{sub av} = 1.86 signal from the C{sub red2} state. A model was developed in which sulfide binds reversibly to C{sub red1}, inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C{sub red2} to develop, and activity to recover. Using this model, apparent K{sub I} values are 40 {+-} 10 nM for CODH{sub Rr} and 60 {+-} 30 {micro}M for CODH{sub Mt}. Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency towards attacking Ni-bound carbonyl.

  16. Sodium in diet

    Science.gov (United States)

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... Too much sodium in the diet may lead to: High blood pressure in some people A serious buildup of fluid in people with heart failure , cirrhosis of ...

  17. Including the Copenhagen Adduction Exercise in the FIFA 11+ Provides Missing Eccentric Hip Adduction Strength Effect in Male Soccer Players: A Randomized Controlled Trial.

    Science.gov (United States)

    Harøy, Joar; Thorborg, Kristian; Serner, Andreas; Bjørkheim, André; Rolstad, Linn E; Hölmich, Per; Bahr, Roald; Andersen, Thor Einar

    2017-11-01

    The FIFA 11+ was developed as a complete warm-up program to prevent injuries in soccer players. Although reduced hip adduction strength is associated with groin injuries, none of the exercises included in the FIFA 11+ seem to specifically target hip adduction strength. To investigate the effect on eccentric hip adduction strength of the FIFA 11+ warm-up program with or without the Copenhagen adduction exercise. Randomized controlled trial; Level of evidence, 1. We recruited 45 eligible players from 2 U19 elite male soccer teams. Players were randomized into 2 groups; 1 group carried out the standard FIFA 11+ program, while the other carried out the FIFA 11+ but replaced the Nordic hamstring exercise with the Copenhagen adduction exercise. Both groups performed the intervention 3 times weekly for 8 weeks. Players completed eccentric strength and sprint testing before and after the intervention. Per-protocol analyses were performed, and 12 players were excluded due to low compliance (<67% of sessions completed). The main outcome was eccentric hip adduction strength (N·m/kg). Between-group analyses revealed a significantly greater increase in eccentric hip adduction strength of 0.29 Nm/kg (8.9%; P = .01) in favor of the group performing the Copenhagen adduction exercise, whereas no within-group change was noted in the group that used the standard FIFA 11+ program (-0.02 N·m/kg [-0.7%]; P = .69). Including the Copenhagen adduction exercise in the FIFA 11+ program increases eccentric hip adduction strength, while the standard FIFA 11+ program does not. Registration: Registration: ISRCTN13731446 (International Standard Randomised Controlled Trial Number registry).

  18. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining; Caracterizacao do po de titanato de bario dopado com ions sodio e potasio com o refinamento de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R., E-mail: mcalixto@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Araujo, J.C. [Universidade do Estado do Rio de Janeiro (FFP/UERJ), Sao Goncalo, RJ (Brazil). Fac. de Formacao de Professores; Moreira, E.L.; Moraes, V.C.A.; Lopes, A.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO{sub 3} formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  19. Sustainable solid-state strategy to hierarchical core-shell structured Fe 3 O 4 @graphene towards a safer and green sodium ion full battery

    KAUST Repository

    Ding, Xiang

    2017-12-11

    A sustainable solid-state strategy of SPEX milling is developed to coat metal oxide (e.g., Fe3O4) with tunable layers of graphene, and a new hierarchical core-shell structured Fe3O4@graphene composite is constructed. The presented green process can preserve the physicochemical properties of metal (oxide) nanocrystals well while conveniently modifying them with graphene carbon, which is unique from the conventional approaches carried out in the solution followed by high temperature calcinations/carbonization. This strategy is environmental-friendly, cost-effective and feasible to extend for preparing more metal (oxide)-graphene materials readily with controllable layers of graphene. In energy storage applications, as-prepared Fe3O4@graphene only modified with 10 wt% of graphene can show greater capacity of 283 mAh g−1 at 100 mA g−1 with capacity retention of 84% over 100 cycles in sodium battery (vs. 17% of pristine Fe3O4). As an appealing nonflammable anode, a completely new full battery of Fe3O4@graphite/Na2.4Fe1.8(SO4)3 is assembled, and an impressive energy density beyond 300 Wh kgcathode−1 with a high working voltage of 3.2 V is attained. Such kind of green battery comprising from the earth-abundant elements (i.e., Na, Fe, S and O) can demonstrate extremely long cycle ability over 500 cycles and robust rate capability even to 10 C (where 1 C define as 108 mA gcathode−1) which are rarely reported before.

  20. Novel pre-treatment of zeolite materials for the removal of sodium ions: potential materials for coal seam gas co-produced wastewater.

    Science.gov (United States)

    Santiago, Oscar; Walsh, Kerry; Kele, Ben; Gardner, Edward; Chapman, James

    2016-01-01

    Coal seam gas (CSG) is the extraction of methane gas that is desorbed from the coal seam and brought to the surface using a dewatering and depressurisation process within the saturated coalbed. The extracted water is often referred to as co-produced CSG water. In this study, co-produced water from the coal seam of the Bowen Basin (QLD, Australia) was characterised by high concentration levels of Na(+) (1156 mg/L), low concentrations of Ca(2+) (28.3 mg/L) and Mg(2+) (5.6 mg/L), high levels of salinity, which are expected to cause various environmental problems if released to land or waters. The potential treatment of co-produced water using locally sourced natural ion exchange (zeolite) material was assessed. The zeolite material was characterized for elemental composition and crystal structure. Natural, untreated zeolite demonstrated a capacity to adsorb Na(+) ions of 16.16 mEq/100 g, while a treated zeolite using NH4 (+) using a 1.0 M ammonium acetate (NH4C2H3O2) solution demonstrated an improved 136 % Na(+) capacity value of 38.28 mEq/100 g after 720 min of adsorption time. The theoretical exchange capacity of the natural zeolite was found to be 154 mEq/100 g. Reaction kinetics and diffusion models were used to determine the kinetic and diffusion parameters. Treated zeolite using a NH4 (+) pre-treatment represents an effective treatment to reduce Na(+) concentration in coal seam gas co-produced waters, supported by the measured and modelled kinetic rates and capacity.

  1. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

    Science.gov (United States)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran

    2017-02-01

    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl- O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  2. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.

    1976-01-01

    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)

  3. High-performance liquid chromatography/electrospray mass spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA adduct.

    Science.gov (United States)

    Leclercq, L; Laurent, C; De Pauw, E

    1997-05-15

    A method was developed for the analysis of 7-(2-hydroxyethyl)guanine (7HEG), the major DNA adduct formed after exposure to ethylene oxide (EO). The method is based on DNA neutral thermal hydrolysis, adduct micro-concentration, and final characterization and quantification by HPLC coupled to single-ion monitoring electrospray mass spectrometry (HPLC/SIR-ESMS). The method was found to be selective, sensitive, and easy to handle with no need for enzymatic digestion or previous sample derivatization. Detection limit was found to be close to 1 fmol of adduct injected (10(-10) M), thus allowing the detection of approximately three modified bases on 10(8) intact nucleotides in blood sample analysis. Quantification results are shown for 7HEG after calf thymus DNA and blood exposure to various doses of EO, in both cases obtaining clear dose-response relationships.

  4. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  5. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    Science.gov (United States)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  6. Fast repair of oxidizing OH adducts of DNA by hydroxycinnamic acid derivatives. A pulse radiolytic study

    International Nuclear Information System (INIS)

    Yue Jiang; Lin Weizhen; Yao Side; Lin Nianyun; Zhu Dayuan

    1999-01-01

    Using pulse radiolytic techniques, it has been demonstrated that the interactions of oxidizing OH adducts of DNA (ssDNA and dsDNA), polyA and polyG with hydroxycinnamic acid derivatives proceed via an electron transfer process (k=5-30x10 8 dm 3 mol -1 s -1 ). In addition, the rates for fast repair of OH adducts of dAMP, polyA and DNA (ssDNA and dsDNA) are slower than the corresponding rates for the rest OH adducts of DNA constituents. The slower rates for repair of oxidizing OH adducts of dAMP may be the rate determining step during the interaction of hydroxycinnamic acid derivatives with OH adducts of DNA containing the varieties of OH adducts of DNA constituents

  7. /sup 32/P-postlabelling analysis of aromatic DNA adducts in human oral mucosal cells

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, B.P.; Stich, H.F.

    1986-07-01

    Exfoliated mucosal cells were collected from the oral cavity of three groups at high risk for oral cancer: Indian betel nut chewers, Filipino inverted smokers (burning end of cigar in mouth) and Indian Khaini tobacco chewers. DNA was extracted from these samples, as well as from samples of exfoliated cells of Canadian non-smoking controls. DNA was analyzed for the presence of aromatic DNA adducts using /sup 32/P-postlabelling analysis. Five chromatographically distinct adducts were found in samples from both the high risk groups and the nonsmoking controls. Individual adducts were detectable in approximately 30-95% of samples, depending on the adduct and population group. Estimated levels of specific adducts ranged from non-detectable (prevalence relative to normal nucleotides less than 1 X 10(-9)) to occasionally greater than 1 X 10(-7). No adducts were found in high risk groups which did not also appear in control subjects.

  8. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  9. Solvent extraction of lanthanum (III), europium (III), and lutetium (III) with 5,7-dichloro-8-quinolinol into chloroform in the absence and presence of tetrabutylammonium ions or trioctylphosphine oxide

    International Nuclear Information System (INIS)

    Noro, Junji; Sekine, Tatsuya.

    1993-01-01

    The solvent extractions of lanthanum(III), europium(III), and lutetium(III) (M 3+ ) in 0.1 moldm -3 sodium nitrate solutions with 5,7-dichloro-8-quinolinol (HA) into chloroform were studied in both the absence and presence of tetrabutylammonium ions (tba + ) or trioctylphosphine oxide (TOPO). In the absence of tba + or TOPO, the extracted species were the MA 3 and MA H A (self-adduct), though MA 4 - tba + was found when tba + was added; MA 3 TOPO and MA 3 (TOPO) 2 were found when TOPO was added in addition to the above mentioned two species. The anionic complex or TOPO adducts greatly enhanced the extraction. The data were statistically analyzed and the equilibrium constants for the extraction of these species, as well as the constants for the association of the HA, the A - tba + , or the TOPO on the MA 3 in the organic phase, were determined. The extraction of the MA 3 is better in the order LaA 3 3 3 . Although the values of the association constant of the HA or the TOPO on the MA 3 are rather similar for the three metal chelates, the constants for A - tba + are larger in the same order as mentioned above. Thus, the separation of these three metal ions by solvent extraction with this chelating extractant is not much affected by the addition of TOPO, but is greatly improved by the addition of tba + . (author)

  10. Bulky DNA adducts in white blood cells: a pooled analysis of 3,600 subjects

    DEFF Research Database (Denmark)

    Ricceri, Fulvio; Godschalk, Roger W; Peluso, Marco

    2010-01-01

    Bulky DNA adducts are markers of exposure to genotoxic aromatic compounds, which reflect the ability of an individual to metabolically activate carcinogens and to repair DNA damage. Polycyclic aromatic hydrocarbons (PAHs) represent a major class of carcinogens that are capable of forming such add...... such adducts. Factors that have been reported to be related to DNA adduct levels include smoking, diet, body mass index (BMI), genetic polymorphisms, the season of collection of biologic material, and air pollutants....

  11. Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress.

    LENUS (Irish Health Repository)

    Enjalbert, Brice

    2009-04-01

    Candida albicans is more pathogenic than Candida dubliniensis. However, this disparity in virulence is surprising given the high level of sequence conservation and the wide range of phenotypic traits shared by these two species. Increased sensitivity to environmental stresses has been suggested to be a possible contributory factor to the lower virulence of C. dubliniensis. In this study, we investigated, in the first comparison of C. albicans and C. dubliniensis by transcriptional profiling, global gene expression in each species when grown under conditions in which the two species exhibit differential stress tolerance. The profiles revealed similar core responses to stresses in both species, but differences in the amplitude of the general transcriptional responses to thermal, salt and oxidative stress. Differences in the regulation of specific stress genes were observed between the two species. In particular, ENA21, encoding a sodium ion transporter, was strongly induced in C. albicans but not in C. dubliniensis. In addition, ENA21 was identified in a forward genetic screen for C. albicans genomic sequences that increase salt tolerance in C. dubliniensis. Introduction of a single copy of CaENA21 was subsequently shown to be sufficient to confer salt tolerance upon C. dubliniensis.

  12. Study of the electrochemical behavior at low temperatures of green anodes for Lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder

    International Nuclear Information System (INIS)

    Mancini, M.; Nobili, F.; Tossici, R.; Marassi, R.

    2012-01-01

    Highlights: ► Water soluble CMC and PVDF binders are used to prepare anatase TiO 2 electrodes. ► The electrochemical behavior of the different electrodes is studied between 20 and −30 °C. ► CMC/TiO 2 anodes show lower ICL, lower polarization and higher low-temperature capacity at high rates than PVDF/TiO 2 anodes. ► Electrochemical Impedance Spectroscopy results show better kinetics for CMC/TiO 2 electrodes. - Abstract: The electrochemical behavior at low temperatures of anatase TiO 2 electrodes for Lithium ion batteries have been evaluated by galvanostatic cycles in the temperature range 20 to −30 °C. Two different manufacturing processes have been used to prepare anatase anodes containing water soluble sodium carboxymethyl cellulose (CMC) or poly(vinilydene fluoride) (PVDF) as binder. The low temperature performances at different charge/discharge rates of TiO 2 /CMC and TiO 2 /PVDF electrodes are compared and discussed in terms of irreversible capacity loss (ICL) at the first cycle, capacity retention and reversible capacity. The kinetics of the electrodes containing CMC or PVDF is evaluated by Electrochemical Impedance Spectroscopy.

  13. Purification of the labeled cyanogen bromide peptides of the. cap alpha. polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the ..cap alpha..-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate.

  14. Cu2+ Dual-Doped Layer-Tunnel Hybrid Na0.6Mn1- xCu xO2 as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability.

    Science.gov (United States)

    Chen, Ting-Ru; Sheng, Tian; Wu, Zhen-Guo; Li, Jun-Tao; Wang, En-Hui; Wu, Chun-Jin; Li, Hong-Tai; Guo, Xiao-Dong; Zhong, Ben-He; Huang, Ling; Sun, Shi-Gang

    2018-03-28

    Sodium-ion batteries (SIBs) have been regarded as a promising candidate for large-scale renewable energy storage system. Layered manganese oxide cathode possesses the advantages of high energy density, low cost and natural abundance while suffering from limited cycling life and poor rate capacity. To overcome these weaknesses, layer-tunnel hybrid material was developed and served as the cathode of SIB, which integrated high capacity, superior cycle ability, and rate performance. In the current work, the doping of copper was adopted to suppress the Jahn-Teller effect of Mn 3+ and to affect relevant structural parameters. Multifunctions of the Cu 2+ doping were carefully investigated. It was found that the structure component ratio is varied with the Cu 2+ doping amount. Results demonstrated that Na + /vacancy rearrangement and phase transitions were suppressed during cycling without sacrificing the reversible capacity and enhanced electrochemical performances evidenced with 96 mA h g -1 retained after 250 cycles at 4 C and 85 mA h g -1 at 8 C. Furthermore, ex situ X-ray diffraction has demonstrated high reversibility of the Na 0.6 Mn 0.9 Cu 0.1 O 2 cathode during Na + extraction/insertion processes and superior air stability that results in better storage properties. This study reveals that the Cu 2+ doping could be an effective strategy to tune the properties and related performances of Mn-based layer-tunnel hybrid cathode.

  15. An experiment on multibubble sonoluminescence spectra in sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhan; XU JunFeng; HUANG Wei; CHEN WeiZhong; MIAO GuoQing

    2008-01-01

    We investigated experimentally the spectra of MBSL in sodium chloride water solution with krypton as dissolved gas. We observed and compared the spectra of hydroxyl ion at 310 nm and that of sodium atom at 589 nm. It has been found that under the same experimental condition, the intensity of sodium atom spectra is obviously higher than that of the hydroxyl ion spectra, and is more sensitive to the experimental condition. The krypton content, the concentration of sodium chloride solution, and the driving sound pressure obviously affect the spectra intensity in certain range.

  16. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation.

    Science.gov (United States)

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Angela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  17. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    Energy Technology Data Exchange (ETDEWEB)

    Batal, Mohamed [Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier – Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); Bérard, Izabel [Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier – Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Cléry-Barraud, Cécile [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA