WorldWideScience

Sample records for sod1 transgenic rats

  1. Administration of 4-(α-L-Rhamnosyloxy-benzyl Isothiocyanate Delays Disease Phenotype in SOD1G93A Rats: A Transgenic Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Maria Galuppo

    2015-01-01

    Full Text Available 4-(α-L-Rhamnosyloxy-benzyl glucosinolate (glucomoringin, GMG is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy-benzyl isothiocyanate (GMG-ITC. The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg bioactivated with myrosinase (20 µL/rat via intraperitoneal (i.p. injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease.

  2. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Genetic biomarkers for ALS disease in transgenic SOD1(G93A mice.

    Directory of Open Access Journals (Sweden)

    Ana C Calvo

    Full Text Available The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10 could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.

  4. Neuroprotective effects of JGK-263 in transgenic SOD1-G93A mice of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ahn, Suk-Won; Jeon, Gye Sun; Kim, Myung-Jin; Shon, Jee-Heun; Kim, Jee-Eun; Shin, Je-Young; Kim, Sung-Min; Kim, Seung Hyun; Ye, In-Hae; Lee, Kwang-Woo; Hong, Yoon-Ho; Sung, Jung-Joon

    2014-05-15

    Glycogen synthase kinase-3β (GSK-3β) activity plays a central role in motor neuron degeneration. GSK-3β inhibitors have been shown to prolong motor neuron survival and suppress disease progression in amyotrophic lateral sclerosis (ALS). In this study, we evaluated the therapeutic effects of a new GSK-3b inhibitor, JGK-263, on ALS in G93A SOD1 transgenic mice. Previously, biochemical efficacy of JGK-263 was observed in normal and mutant (G93A) hSOD1-transfected motor neuronal cell lines (NSC34). Based on these previous results, we administered JGK-263 orally to 93 transgenic mice with the human G93A-mutated SOD1 gene. The mice were divided into three groups: a group administered 20mg/kg JGK-263, a group administered 50mg/kg JGK-263, and a control group not administered with JGK-263. Clinical status, rotarod test, and survival rates of transgenic mice with ALS were evaluated. Sixteen mice from each group were selected for further biochemical study that involved examination of motor neuron count, apoptosis, and cell survival signals. JGK-263 administration remarkably improved motor function and prolonged the time until symptom onset, rotarod failure, and death in transgenic mice with ALS compared to control mice. In JGK-263 groups, choline acetyltransferase (ChAT) staining in the ventral horn of the lower lumbar spinal cord showed a large number of motor neurons, suggesting normal morphology. The neuroprotective effects of JGK-263 in ALS mice were also suggested by western blot analysis of spinal cord tissues in transgenic mice. These results suggest that JGK-263, an oral GSK-3β inhibitor, is promising as a novel therapeutic agent for ALS. Still, further biochemical studies on the underlying mechanisms and safety of JGK-263 are necessary. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function

    Directory of Open Access Journals (Sweden)

    Monk Peter N

    2011-09-01

    Full Text Available Abstract Background Overexpression of mutant copper/zinc superoxide dismutase (SOD1 in rodents has provided useful models for studying the pathogenesis of amyotrophic lateral sclerosis (ALS. Microglia have been shown to contribute to ALS disease progression in these models, although the mechanism of this contribution remains to be elucidated. Here, we present the first evidence of the effects of overexpression of mutant (TG G93A and wild type (TG WT human SOD1 transgenes on a set of functional properties of microglia relevant to ALS progression, including expression of integrin β-1, spreading and migration, phagocytosis of apoptotic neuronal cell debris, and intracellular calcium changes in response to an inflammatory stimulus. Results TG SOD1 G93A but not TG SOD1 WT microglia had lower expression levels of the cell adhesion molecule subunit integrin β-1 than their NTG control cells [NTG (G93A and NTG (WT, respectively, 92.8 ± 2.8% on TG G93A, 92.0 ± 6.6% on TG WT, 100.0 ± 1.6% on NTG (G93A, and 100.0 ± 2.7% on NTG (WT cells], resulting in decreased spreading ability, with no effect on ability to migrate. Both TG G93A and TG WT microglia had reduced capacity to phagocytose apoptotic neuronal cell debris (13.0 ± 1.3% for TG G93A, 16.5 ± 1.9% for TG WT, 28.6 ± 1.8% for NTG (G93A, and 26.9 ± 2.8% for NTG (WT cells. Extracellular stimulation of microglia with ATP resulted in smaller increase in intracellular free calcium in TG G93A and TG WT microglia relative to NTG controls (0.28 ± 0.02 μM for TG G93A, 0.24 ± 0.03 μM for TG WT, 0.39 ± 0.03 μM for NTG (G93A, and 0.37 ± 0.05 μM for NTG (WT microglia. Conclusions These findings indicate that, under resting conditions, microglia from mutant SOD1 transgenic mice have a reduced capacity to elicit physiological responses following tissue disturbances and that higher levels of stimulatory signals, and/or prolonged stimulation may be necessary to initiate these responses. Overall, resting

  6. Tempol moderately extends survival in a hSOD1(G93A ALS rat model by inhibiting neuronal cell loss, oxidative damage and levels of non-native hSOD1(G93A forms.

    Directory of Open Access Journals (Sweden)

    Edlaine Linares

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1(G93A . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS.

  7. Tempol Moderately Extends Survival in a hSOD1G93A ALS Rat Model by Inhibiting Neuronal Cell Loss, Oxidative Damage and Levels of Non-Native hSOD1G93A Forms

    Science.gov (United States)

    Linares, Edlaine; Seixas, Luciana V.; dos Prazeres, Janaina N.; Ladd, Fernando V. L.; Ladd, Aliny A. B. L.; Coppi, Antonio A.; Augusto, Ohara

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1G93A . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS. PMID:23405225

  8. Tempol moderately extends survival in a hSOD1(G93A) ALS rat model by inhibiting neuronal cell loss, oxidative damage and levels of non-native hSOD1(G93A) forms.

    Science.gov (United States)

    Linares, Edlaine; Seixas, Luciana V; dos Prazeres, Janaina N; Ladd, Fernando V L; Ladd, Aliny A B L; Coppi, Antonio A; Augusto, Ohara

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1(G93A) . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS.

  9. Bee Venom Acupuncture Augments Anti-Inflammation in the Peripheral Organs of hSOD1G93A Transgenic Mice.

    Science.gov (United States)

    Lee, Sun-Hwa; Choi, Sun-Mi; Yang, Eun Jin

    2015-07-29

    Amyotrophic lateral sclerosis (ALS) includes progressively degenerated motor neurons in the brainstem, motor cortex, and spinal cord. Recent reports demonstrate the dysfunction of multiple organs, including the lungs, spleen, and liver, in ALS animals and patients. Bee venom acupuncture (BVA) has been used for treating inflammatory diseases in Oriental Medicine. In a previous study, we demonstrated that BV prevented motor neuron death and increased anti-inflammation in the spinal cord of symptomatic hSOD1G93A transgenic mice. In this study, we examined whether BVA's effects depend on acupuncture point (ST36) in the organs, including the liver, spleen and kidney, of hSOD1G93A transgenic mice. We found that BV treatment at ST36 reduces inflammation in the liver, spleen, and kidney compared with saline-treatment at ST36 and BV injected intraperitoneally in symptomatic hSOD1G93A transgenic mice. Those findings suggest that BV treatment combined with acupuncture stimulation is more effective at reducing inflammation and increasing immune responses compared with only BV treatment, at least in an ALS animal model.

  10. Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Ilaria Caron

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.

  11. Optimised and rapid pre-clinical screening in the SOD1(G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS.

    Directory of Open Access Journals (Sweden)

    Richard J Mead

    Full Text Available The human SOD1(G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS. In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6 SOD1(G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.

  12. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Lu, Yi; Tang, Chunyan; Zhu, Lei; Li, Jiao; Liang, Huiting; Zhang, Jie; Xu, Renshi

    2016-01-01

    The recent investigation suggested that the TDP-43 protein was closely related to the motor neuron degeneration in amyotrophic lateral sclerosis (ALS), but the pathogenesis contributed to motor neuron degeneration largely remained unknown. Therefore, we detected the alteration of TDP-43 expression and distribution in the adult spinal cord of the SOD1 G93A transgenic mouse model for searching the possible pathogenesis of ALS. We examined the TDP-43 expression and distribution in the different anatomic regions, segments and neural cells in the adult spinal cord at the different stages of the SOD1 wild-type and G93A transgenic model by the fluorescent immunohistochemical technology. We revealed that the amount of TDP-43 positive cell was cervical>lumbar>thoracic segment, that in the ventral horn was more than that in the dorsal horn, a few of TDP-43 protein sparsely expressed and distributed in the other regions, the TDP-43 protein weren't detected in the white matter and the central canal. The TDP-43 protein was mostly expressed and distributed in the nuclear of neuron cells and the cytoplasm of oligodendrocyte cells of the gray matter surrounding the central canal of spinal cord by the granular shape in the SOD1 wild-type and G93A transgenic mice. The amount of TDP-43 positive cell significantly increased at the onset and progression stages of ALS following with the increase of neuron death in spinal cord, particularly in the ventral horn of cervical segment at the progression stage. Our results suggested that the overexpression of TDP-43 protein in the neuron and oligodendrocyte cell causes the progressive motor neuron degeneration in the ALS-like mouse model.

  13. Exercise training improves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats

    Directory of Open Access Journals (Sweden)

    Antunes Edson

    2008-05-01

    Full Text Available Abstract Background Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods Male Wistar rats were divided into sedentary (SD; trained (TR; sedentary diet (SDD and trained diet (TRD groups. Run training (RT was performed in sessions of 60 min, 5 days/week for 12 weeks (70–80% VO2max. Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx- were measured. Concentration-response curves to acetylcholine (ACh and sodium nitroprusside (SNP were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1 was assessed by Western blotting. Results High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl. Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml. On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl. Neither high caloric diet nor RT modified NOx- levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM. Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%, but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups or mesenteric rings (10%, for TR and 17%, to TRD groups that was accompanied by up-regulation of SOD-1

  14. Systemic injection of AAV9-GDNF provides modest functional improvements in the SOD1G93A ALS rat but has adverse side effects.

    Science.gov (United States)

    Thomsen, G M; Alkaslasi, M; Vit, J-P; Lawless, G; Godoy, M; Gowing, G; Shelest, O; Svendsen, C N

    2017-04-01

    Injecting proteins into the central nervous system that stimulate neuronal growth can lead to beneficial effects in animal models of disease. In particular, glial cell line-derived neurotrophic factor (GDNF) has shown promise in animal and cell models of Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis (ALS). Here, systemic AAV9-GDNF was delivered via tail vein injections to young rats to determine whether this could be a safe and functional strategy to treat the SOD1 G93A rat model of ALS and, therefore, translated to a therapy for ALS patients. We found that GDNF administration in this manner resulted in modest functional improvement, whereby grip strength was maintained for longer and the onset of forelimb paralysis was delayed compared to non-treated rats. This did not, however, translate into an extension in survival. In addition, ALS rats receiving GDNF exhibited slower weight gain, reduced activity levels and decreased working memory. Collectively, these results confirm that caution should be applied when applying growth factors such as GDNF systemically to multiple tissues.

  15. Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons

    Science.gov (United States)

    Magrané, Jordi; Sahawneh, Mary Anne; Przedborski, Serge; Estévez, Álvaro G.; Manfredi, Giovanni

    2012-01-01

    Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS. PMID:22219285

  16. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1G93A ALS rat model.

    Science.gov (United States)

    Stamenković, Stefan; Pavićević, Aleksandra; Mojović, Miloš; Popović-Bijelić, Ana; Selaković, Vesna; Andjus, Pavle; Bačić, Goran

    2017-07-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1 G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t 1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1 G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of

  17. Neurotoxic species of misfolded SOD1G93A recognized by antibodies against the P2X4 subunit of the ATP receptor accumulate in damaged neurons of transgenic animal models of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Hernández, Sara; Casanovas, Anna; Piedrafita, Lidia; Tarabal, Olga; Esquerda, Josep E

    2010-02-01

    We recently reported that degenerating motor neurons of superoxide dismutase mutant 1 (SOD1) rodents exhibit immunoreactivity to P2X(4) antibodies. Neurons with strong P2X(4)-like immunoreactivity (P2X(4)-LIR) do not show an apoptotic phenotype and are often associated with microglial cells that display neuronophagic activity. Western blot analysis showed that P2X(4) antibodies recognize not only the P2X(4) adenosine triphosphate receptor protein but also a hitherto unidentified low-molecular weight band. Here, we identify the molecular counterpart of the strong P2X(4)-LIR observed in association with neuronal degeneration in SOD1 animals. After matrix-assisted laser desorption/ionization time-of-flight, we found that the low-molecular weight P2X(4)-immunoreactive protein was SOD1. Further analysis demonstrated that the P2X(4) antibody recognizes a form of misfolded mutant SOD1 that is expressed in neuronal cells undergoing degeneration but not in glial cells. Cross-reactivity could have been caused by the abnormal exposure of an epitope in the inner hydrophobic region of SOD1 that shared structural homology with the P2X(4)-immunizing peptide used for raising the antibody. No positive P2X(4) immunostaining was detected in mice overexpressing human wild-type SOD1. Intracerebral injections of affinity chromatography-isolated P2X(4)-immunoreactive SOD1 species promote microglial and astroglial activation. We conclude that neuronal SOD1 conformers with P2X(4)-LIR may have pathogenetic relevance in the promotion of neuroinflammation.

  18. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca2+/Akt/ERK1/2 prosurvival pathway

    Science.gov (United States)

    Petrozziello, Tiziana; Secondo, Agnese; Tedeschi, Valentina; Esposito, Alba; Sisalli, MariaJosè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe human adult-onset neurodegenerative disease affecting lower and upper motor neurons. In >20% of cases, the familial form of ALS is caused by mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1). Interestingly, administration of wild-type SOD1 to SOD1G93A transgenic rats ameliorates motor symptoms through an unknown mechanism. Here we investigated whether the neuroprotective effects of SOD1 are due to the Ca2+-dependent activation of such prosurvival signaling pathway and not to its catalytic activity. To this aim, we also examined the mechanism of neuroprotective action of ApoSOD1, the metal-depleted state of SOD1 that lacks dismutase activity, in differentiated motor neuron-like NSC-34 cells and in primary motor neurons exposed to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA). Preincubation of ApoSOD1 and SOD1, but not of human recombinant SOD1G93A, prevented cell death in motor neurons exposed to L-BMAA. Moreover, ApoSOD1 elicited ERK1/2 and Akt phosphorylation in motor neurons through an early increase of intracellular Ca2+ concentration ([Ca2+]i). Accordingly, inhibition of ERK1/2 by siMEK1 and PD98059 counteracted ApoSOD1- and SOD1-induced neuroprotection. Similarly, transfection of the dominant-negative form of Akt in NSC-34 motor neurons and treatment with the selective PI3K inhibitor LY294002 prevented ApoSOD1- and SOD1-mediated neuroprotective effects in L-BMAA-treated motor neurons. Furthermore, ApoSOD1 and SOD1 prevented the expression of the two markers of L-BMAA-induced ER stress GRP78 and caspase-12. Collectively, our data indicate that ApoSOD1, which is devoid of any catalytic dismutase activity, exerts a neuroprotective effect through an early activation of Ca2+/Akt/ERK1/2 pro-survival pathway that, in turn, prevents ER stress in a neurotoxic model of ALS. PMID:28085149

  19. ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation

    NARCIS (Netherlands)

    Vlug, Angela S; Teuling, Eva; Haasdijk, Elize D; French, Pim; Hoogenraad, Casper C; Jaarsma, Dick

    2005-01-01

    To obtain insight into the morphological and molecular correlates of motoneuron degeneration in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant superoxide dismutase (SOD)1 (G93A mice), we have mapped and characterized 'sick' motoneurons labelled by the 'stress transcription

  20. ALS-linked misfolded SOD1 species have divergent impacts on mitochondria.

    Science.gov (United States)

    Pickles, Sarah; Semmler, Sabrina; Broom, Helen R; Destroismaisons, Laurie; Legroux, Laurine; Arbour, Nathalie; Meiering, Elizabeth; Cashman, Neil R; Vande Velde, Christine

    2016-04-27

    Approximately 20 % of familial Amyotrophic Lateral Sclerosis (ALS) is caused by mutations in superoxide dismutase (SOD1), which leads to misfolding of the SOD1 protein, resulting in a toxic gain of function. Several conformation-restricted antibodies have been generated that specifically recognize misfolded SOD1 protein, and have been used as therapeutics in pre-clinical models. Misfolded SOD1 selectively associates with spinal cord mitochondria in SOD1 rodent models. Using the SOD1(G93A) rat model, we find that SOD1 conformational specific antibodies AMF7-63 and DSE2-3H1 labeled a fibrillar network concentrated in the anterior horn; while A5C3, B8H10, C4F6 and D3H5 labeled motor neurons as well as puncta in the neuropil. There is a time-dependent accumulation of misfolded SOD1 at the surface of spinal cord mitochondria with AMF7-63-labeled mitochondria having increased volume in contrast to a mitochondrial subset labeled with B8H10. In spinal cord homogenates and isolated mitochondria, AMF7-63, DSE2-3H1 and B8H10 detect misfolded SOD1 aggregates. SOD1 that lacks its metal cofactors has an increased affinity for naïve mitochondria and misfolded SOD1 antibodies B8H10 and DSE2-3H1 readily detect demetalated mutant and wild-type SOD1. Together, these data suggest that multiple non-native species of misfolded SOD1 may exist, some of which are associated with mitochondrial damage. Conformational antibodies are invaluable tools to identify and characterize the variation in misfolded SOD1 species with regards to biochemical characteristics and toxicity. This information is highly relevant to the further development of these reagents as therapeutics.

  1. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  2. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna eGajowiak

    2016-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS and associated with mutations, frequently in the superoxide dismutase 1 (SOD1 gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS – transgenic mice overexpressing human mutated SOD1G93A gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month old and symptomatic, 4-month old SOD1G93A mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1G93A genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.

  3. Nodularin Exposure Induces SOD1 Phosphorylation and Disrupts SOD1 Co-localization with Actin Filaments

    Directory of Open Access Journals (Sweden)

    Kari E. Fladmark

    2012-12-01

    Full Text Available Apoptotic cell death is induced in primary hepatocytes by the Ser/Thr protein phosphatase inhibiting cyanobacterial toxin nodularin after only minutes of exposure. Nodularin-induced apoptosis involves a rapid development of reactive oxygen species (ROS, which can be delayed by the Ca2+/calmodulin protein kinase II inhibitor KN93. This apoptosis model provides us with a unique population of highly synchronized dying cells, making it possible to identify low abundant phosphoproteins participating in apoptosis signaling. Here, we show that nodularin induces phosphorylation and possibly also cysteine oxidation of the antioxidant Cu,Zn superoxide dismutase (SOD1, without altering enzymatic SOD1 activity. The observed post-translational modifications of SOD1 could be regulated by Ca2+/calmodulin protein kinase II. In untreated hepatocytes, a high concentration of SOD1 was found in the sub-membranous area, co-localized with the cortical actin cytoskeleton. In the early phase of nodularin exposure, SOD1 was found in high concentration in evenly distributed apoptotic buds. Nodularin induced a rapid reorganization of the actin cytoskeleton and, at the time of polarized budding, SOD1 and actin filaments no longer co-localized.

  4. Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Edward Pokrishevsky

    Full Text Available Amyotrophic lateral sclerosis (ALS is incurable and characterized by progressive paralysis of the muscles of the limbs, speech and swallowing, and respiration due to the progressive degeneration of voluntary motor neurons. Clinically indistinguishable ALS can be caused by genetic mutations of Cu/Zn superoxide dismutase (SOD1, TAR-DNA binding protein 43 (TDP43, or fused in sarcoma/translocated in liposarcoma (FUS/TLS, or can occur in the absence of known mutation as sporadic disease. In this study, we tested the hypothesis that FUS/TLS and TDP43 gain new pathogenic functions upon aberrant accumulation in the cytosol that directly or indirectly include misfolding of SOD1.Patient spinal cord necropsy immunohistochemistry with SOD1 misfolding-specific antibodies revealed misfolded SOD1 in perikarya and motor axons of SOD1-familial ALS (SOD1-FALS, and in motor axons of R521C-FUS FALS and sporadic ALS (SALS with cytoplasmic TDP43 inclusions. SOD1 misfolding and oxidation was also detected using immunocytochemistry and quantitative immunoprecipitation of human neuroblastoma SH-SY5Y cells as well as cultured murine spinal neural cells transgenic for human wtSOD1, which were transiently transfected with human cytosolic mutant FUS or TDP43, or wtTDP43.We conclude that cytosolic mislocalization of FUS or TDP43 in vitro and ALS in vivo may kindle wtSOD1 misfolding in non-SOD1 FALS and SALS. The lack of immunohistochemical compartmental co-localization of misfolded SOD1 with cytosolic TDP43 or FUS suggests an indirect induction of SOD1 misfolding followed by propagation through template directed misfolding beyond its site of inception. The identification of a final common pathway in the molecular pathogenesis of ALS provides a treatment target for this devastating disease.

  5. Soluble RAGE Treatment Delays Progression of Amyotrophic Lateral Sclerosis in SOD1 Mice.

    Science.gov (United States)

    Juranek, Judyta K; Daffu, Gurdip K; Geddis, Matthew S; Li, Huilin; Rosario, Rosa; Kaplan, Benjamin J; Kelly, Lauren; Schmidt, Ann Marie

    2016-01-01

    The etiology of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder characterized by progressive muscle weakness and spasticity, remains largely unknown. Approximately 5-10% of cases are familial, and of those, 15-20% are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Mutations of the SOD1 gene interrupt cellular homeostasis and contribute to cellular toxicity evoked by the presence of altered SOD1, along with other toxic species, such as advanced glycation end products (AGEs). AGEs trigger activation of their chief cell surface receptor, RAGE (receptor for advanced glycation end products), and induce RAGE-dependent cellular stress and inflammation in neurons, thereby affecting their function and leading to apoptosis. Here, we show for the first time that the expression of RAGE is higher in the SOD1 transgenic mouse model of ALS vs. wild-type mouse spinal cord. We tested whether pharmacological blockade of RAGE may delay the onset and progression of disease in this mouse model. Our findings reveal that treatment of SOD1 transgenic mice with soluble RAGE (sRAGE), a natural competitor of RAGE that sequesters RAGE ligands and blocks their interaction with cell surface RAGE, significantly delays the progression of ALS and prolongs life span compared to vehicle treatment. We demonstrate that in sRAGE-treated SOD1 transgenic animals at the final stage of the disease, a significantly higher number of neurons and lower number of astrocytes is detectable in the spinal cord. We conclude that RAGE antagonism may provide a novel therapeutic strategy for ALS intervention.

  6. Spinal cord homogenates from SOD1 familial amyotrophic lateral sclerosis induce SOD1 aggregation in living cells.

    Directory of Open Access Journals (Sweden)

    Edward Pokrishevsky

    Full Text Available Mutant Cu/Zn superoxide dismutase (SOD1 can confer its misfolding on wild-type SOD1 in living cells; the propagation of misfolding can also be transmitted between cells in vitro. Recent studies identified fluorescently-tagged SOD1G85R as a promiscuous substrate that is highly prone to aggregate by a variety of templates, in vitro and in vivo. Here, we utilized several SOD1-GFP reporter proteins with G37R, G85R, or G93A mutations in SOD1. We observed that human spinal cord homogenates prepared from SOD1 familial ALS (FALS can induce significantly more intracellular reporter protein aggregation than spinal cord homogenates from sporadic ALS, Alzheimer's disease, multiple system atrophy or healthy control individuals. We also determined that the induction of reporter protein aggregation by SOD1-FALS tissue homogenates can be attenuated by incubating the cells with the SOD1 misfolding-specific antibody 3H1, or the small molecule 5-fluorouridine. Our study further implicates SOD1 as the seeding particle responsible for the spread of SOD1-FALS neurodegeneration from its initial onset site(s, and demonstrates two potential therapeutic strategies for SOD1-mediated disease. This work also comprises a medium-throughput cell-based platform of screening potential therapeutics to attenuate propagated aggregation of SOD1.

  7. Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways.

    Science.gov (United States)

    Ayers, Jacob I; Fromholt, Susan E; O'Neal, Veronica M; Diamond, Jeffrey H; Borchelt, David R

    2016-01-01

    A hallmark feature of amyotrophic lateral sclerosis (ALS) is that symptoms appear to spread along neuroanatomical pathways to engulf the motor nervous system, suggesting a propagative toxic entity could be involved in disease pathogenesis. Evidence for such a propagative entity emerged recently in studies using mice that express G85R-SOD1 mutant protein fused to YFP (G85R-SOD1:YFP). Heterozygous G85R-SOD1:YFP transgenic mice do not develop ALS symptoms out to 20 months of age. However, when newborns are injected with spinal homogenates from paralyzed mutant SOD1 mice, the G85R-SOD1:YFP mice develop paralysis as early as 6 months of age. We now demonstrate that injecting spinal homogenates from paralyzed mutant SOD1 mice into the sciatic nerves of adult G85R-SOD1:YFP mice produces a spreading motor neuron disease within 3.0 ± 0.2 months of injection. The formation of G85R-SOD1:YFP inclusion pathology spreads slowly in this model system; first appearing in the ipsilateral DRG, then lumbar spinal cord, before spreading rostrally up to the cervical cord by the time mice develop paralysis. Reactive astrogliosis mirrors the spread of inclusion pathology and motor neuron loss is most severe in lumbar cord. G85R-SOD1:YFP inclusion pathology quickly spreads to discrete neurons in the brainstem and midbrain that are synaptically connected to spinal neurons, suggesting a trans-synaptic propagation of misfolded protein. Taken together, the data presented here describe the first animal model that recapitulates the spreading phenotype observed in patients with ALS, and implicates the propagation of misfolded protein as a potential mechanism for the spreading of motor neuron disease.

  8. A Model of Oxidative Stress Management: Moderation of Carbohydrate Metabolizing Enzymes in SOD1-Null Drosophila melanogaster

    Science.gov (United States)

    Bernard, Kristine E.; Parkes, Tony L.; Merritt, Thomas J. S.

    2011-01-01

    The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain. PMID

  9. SOD1 aggregation in ALS mice shows simplistic test tube behavior.

    Science.gov (United States)

    Lang, Lisa; Zetterström, Per; Brännström, Thomas; Marklund, Stefan L; Danielsson, Jens; Oliveberg, Mikael

    2015-08-11

    A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general.

  10. Metal-deficient SOD1 in amyotrophic lateral sclerosis

    OpenAIRE

    Hilton, James B.; White, Anthony R.; Crouch, Peter J.

    2015-01-01

    Mutations to the ubiquitous antioxidant enzyme Cu/Zn superoxide dismutase (SOD1) were the first established genetic cause of the fatal, adult-onset neurodegenerative disease amyotrophic lateral sclerosis (ALS). It is widely accepted that these mutations do not cause ALS via a loss of antioxidant function, but elucidating the alternate toxic gain of function has proven to be elusive. Under physiological conditions, SOD1 binds one copper ion and one zinc ion per monomer to form a highly stable ...

  11. Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking.

    Directory of Open Access Journals (Sweden)

    Shinji Hadano

    Full Text Available BACKGROUND: ALS2/alsin is a guanine nucleotide exchange factor for the small GTPase Rab5 and involved in macropinocytosis-associated endosome fusion and trafficking, and neurite outgrowth. ALS2 deficiency accounts for a number of juvenile recessive motor neuron diseases (MNDs. Recently, it has been shown that ALS2 plays a role in neuroprotection against MND-associated pathological insults, such as toxicity induced by mutant Cu/Zn superoxide dismutase (SOD1. However, molecular mechanisms underlying the relationship between ALS2-associated cellular function and its neuroprotective role remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we investigated the molecular and pathological basis for the phenotypic modification of mutant SOD1-expressing mice by ALS2 loss. Genetic ablation of Als2 in SOD1(H46R, but not SOD1(G93A, transgenic mice aggravated the mutant SOD1-associated disease symptoms such as body weight loss and motor dysfunction, leading to the earlier death. Light and electron microscopic examinations revealed the presence of degenerating and/or swollen spinal axons accumulating granular aggregates and autophagosome-like vesicles in early- and even pre-symptomatic SOD1(H46R mice. Further, enhanced accumulation of insoluble high molecular weight SOD1, poly-ubiquitinated proteins, and macroautophagy-associated proteins such as polyubiquitin-binding protein p62/SQSTM1 and a lipidated form of light chain 3 (LC3-II, emerged in ALS2-deficient SOD1(H46R mice. Intriguingly, ALS2 was colocalized with LC3 and p62, and partly with SOD1 on autophagosome/endosome hybrid compartments, and loss of ALS2 significantly lowered the lysosome-dependent clearance of LC3 and p62 in cultured cells. CONCLUSIONS/SIGNIFICANCE: Based on these observations, although molecular basis for the distinctive susceptibilities to ALS2 loss in different mutant SOD1-expressing ALS models is still elusive, disturbance of the endolysosomal system by ALS2 loss

  12. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    Science.gov (United States)

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  13. Th17 Cell Response in SOD1G93A Mice following Motor Nerve Injury

    Directory of Open Access Journals (Sweden)

    Allen Ni

    2016-01-01

    Full Text Available An increased risk of ALS has been reported for veterans, varsity athletes, and professional football players. The mechanism underlying the increased risk in these populations has not been identified; however, it has been proposed that motor nerve injury may trigger immune responses which, in turn, can accelerate the progression of ALS. Accumulating evidence indicates that abnormal immune reactions and inflammation are involved in the pathogenesis of ALS, but the specific immune cells involved have not been clearly defined. To understand how nerve injury and immune responses may contribute to ALS development, we investigated responses of CD4+ T cell after facial motor nerve axotomy (FNA at a presymptomatic stage in a transgenic mouse model of ALS (B6SJL SOD1G93A. SOD1G93A mice, compared with WT mice, displayed an increase in the basal activation state of CD4+ T cells and higher frequency of Th17 cells, which were further enhanced by FNA. In conclusion, SOD1G93A mice exhibit abnormal CD4+ T cell activation with increased levels of Th17 cells prior to the onset of neurological symptoms. Motor nerve injury exacerbates Th17 cell responses and may contribute to the development of ALS, especially in those who carry genetic susceptibility to this disease.

  14. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice.

    Directory of Open Access Journals (Sweden)

    Rebecca Banerjee

    2008-07-01

    Full Text Available Innate neuroimmune dysfunction is a pathobiological feature of amyotrophic lateral sclerosis (ALS. However, links, if any, between disease and adaptive immunity are poorly understood. Thus, the role of T cell immunity in disease was investigated in human G93A superoxide dismutase 1 (SOD1 transgenic (Tg mice and subsequently in ALS patients.Quantitative and qualitative immune deficits in lymphoid cell and T cell function were seen in G93A-SOD1 Tg mice. Spleens of Tg animals showed reductions in size, weight, lymphocyte numbers, and morphological deficits at terminal stages of disease compared to their wild-type (Wt littermates. Spleen sizes and weights of pre-symptomatic Tg mice were unchanged, but deficits were readily seen in T cell proliferation coincident with increased annexin-V associated apoptosis and necrosis of lymphocytes. These lymphoid deficits paralleled failure of Copolymer-1 (COP-1 immunization to affect longevity. In addition, among CD4(+ T cells in ALS patients, levels of CD45RA(+ (naïve T cells were diminished, while CD45RO(+ (memory T cells were increased compared to age-matched caregivers. In attempts to correct mutant SOD1 associated immune deficits, we reconstituted SOD1 Tg mice with unfractionated naïve lymphocytes or anti-CD3 activated CD4(+CD25(+ T regulatory cells (Treg or CD4(+CD25(- T effector cells (Teff from Wt donor mice. While naive lymphocytes failed to enhance survival, both polyclonal-activated Treg and Teff subsets delayed loss of motor function and extended survival; however, only Treg delayed neurological symptom onset, whereas Teff increased latency between disease onset and entry into late stage.A profound and progressive immunodeficiency is operative in G93A-SOD1 mice and is linked to T cell dysfunction and the failure to elicit COP-1 neuroprotective immune responses. In preliminary studies T cell deficits were also observed in human ALS. These findings, taken together, suggest caution in ascribing

  15. Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Tillmann Weber

    Full Text Available The serotonergic (5-HT system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP, in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.

  16. ALS-linked mutant SOD1 proteins promote Aβ aggregates in ALS through direct interaction with Aβ.

    Science.gov (United States)

    Jang, Ja-Young; Cho, Hyungmin; Park, Hye-Yoon; Rhim, Hyangshuk; Kang, Seongman

    2017-11-04

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons. Aggregation of ALS-linked mutant Cu/Zn superoxide dismutase (SOD1) is a hallmark of a subset of familial ALS (fALS). Recently, intracellular amyloid-β (Aβ) is detected in motor neurons of both sporadic and familial ALS. We have previously shown that intracellular Aβ specifically interacts with G93A, an ALS-linked SOD1 mutant. However, little is known about the pathological and biological effect of this interaction in neurons. In this study, we have demonstrated that the Aβ-binding region is exposed on the SOD1 surface through the conformational changes due to misfolding of SOD1. Interestingly, we found that the intracellular aggregation of Aβ is enhanced through the direct interaction of Aβ with the Aβ-binding region exposed to misfolded SOD1. Ultimately, increased Aβ aggregation by this interaction promotes neuronal cell death. Consistent with this result, Aβ aggregates was three-fold higher in the brains of G93A transgenic mice than those of non Tg. Our study provides the first direct evidence that Aβ, an AD-linked factor, is associated to the pathogenesis of ALS and provides molecular clues to understand common aggregation mechanisms in the pathogenesis of neurodegenerative diseases. Furthermore, it will provide new insights into the development of therapeutic approaches for ALS. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. PP005. Vitamin D depletion aggravates hypertension in transgenic rats

    DEFF Research Database (Denmark)

    Bjørkholt Andersen, Louise; Herse, Florian; Christesen, Henrik Thybo

    2013-01-01

    INTRODUCTION: Vitamin D may ameliorate hypertension and kidney disease through genomic and extra-genomic pathways. OBJECTIVE: To investigate the impact of vitamin D in a transgenic rat model of angiotensin II-mediated hypertensive organ failure. METHODS: In 4-week-old age-matched rats...... found between groups in mortality or proteinuria. CONCLUSION: Short-term vitamin D depletion aggravated hypertension and end-organ damage in a rat model of angiotensin II-induced hypertension. Short-term interventions with high-dose vitamin D analogues had no protective effect....

  18. An Efficient Method for Generation of Transgenic Rats Avoiding Embryo Manipulation

    Directory of Open Access Journals (Sweden)

    Bhola Shankar Pradhan

    2016-01-01

    Full Text Available Although rats are preferred over mice as an animal model, transgenic animals are generated predominantly using mouse embryos. There are limitations in the generation of transgenic rat by embryo manipulation. Unlike mouse embryos, most of the rat embryos do not survive after male pronuclear DNA injection which reduces the efficiency of generation of transgenic rat by this method. More importantly, this method requires hundreds of eggs collected by killing several females for insertion of transgene to generate transgenic rat. To this end, we developed a noninvasive and deathless technique for generation of transgenic rats by integrating transgene into the genome of the spermatogonial cells by testicular injection of DNA followed by electroporation. After standardization of this technique using EGFP as a transgene, a transgenic disease model displaying alpha thalassemia was successfully generated using rats. This efficient method will ease the generation of transgenic rats without killing the lives of rats while simultaneously reducing the number of rats used for generation of transgenic animal.

  19. A transgenic rat with ubiquitous expression of firefly luciferase gene

    Science.gov (United States)

    Hakamata, Yoji; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    In vivo imaging strategies provide cellular and molecular events in real time that helps us to understand biological processes in living animals. The development of molecular tags such as green fluorescent proteins and luciferase from the firefly Photinus pyralis has lead to a revolution in the visualization of complex biochemical processes. We developed a novel inbred transgenic rat strain containing firefly luciferase based on the transgenic (Tg) technique in rats. This Tg rat expressed the luciferase gene ubiquitously under control of the ROSA26 promoter. Cellular immune responsiveness against the luciferase protein was evaluated using conventional skin grafting and resulted in the long-term acceptance of Tg rat skin on wild-type rats. Strikingly, organ transplant with heart and small bowel demonstrated organ viability and graft survival, suggesting that cells from luciferase-Tg are transplantable to track their fate. Taking advantage of the less immunogenic luciferase, we also tested the role of hepatocyte-infusion in a liver injury model, and bone marrow-derived cells in a skin defect model. Employed in conjunction with modern advances in optical imaging, this luciferase-Tg rat system provides an innovative animal tool and a new means of facilitating biomedical research such as in the case of regeneration medicine.

  20. PGC-1 silencing compounds the perturbation of mitochondrial function caused by mutant SOD1 in skeletal muscle of ALS mouse model

    Directory of Open Access Journals (Sweden)

    Yan eQi

    2015-10-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal neurodegenerative disease causing death of motor neurons. This study investigated the roles of energy metabolism in the pathogenesis of ALS in the SOD1(G93A transgenic mouse model. Control and SOD1(G93A mice were administered with shcontrol or shPGC-1α in combination with PBS or TZD for 8 weeks. Gene expression was analyzed by quantitative real-time PCR and western blot. ROS and fibrosis were assessed with a colorimetric kit and Sirius staining respectively. Inflammatory cytokines were measured using ELISA kits. The levels of tissue ROS and serum inflammatory cytokines were significantly higher in SOD1(G93A mice compared to control mice, and knocking down PGC-1α drastically increased cytokine levels in both control and SOD1(G93A mice. Muscle fibrosis was much severer in SOD1(G93A mice, and worsened by silencing PGC-1α and attenuate d by TZD. The expression levels of PGC-1α, SOD1, UCP2, and cytochrome C were substantially reduced by shPGC-1α and increased by TZD in muscle of both control and SOD1(G93A mice whereas the level of NF-B was significantly elevated in SOD1(G93A mice, which was further increased by PGC-1α silencing. These data indicated that disruption of energy homeostasis would exacerbate the pathological changes caused by SOD1 mutations to promote the pathogenesis of ALS.

  1. Transgenic Rat Models for Breast Cancer Research

    Science.gov (United States)

    1998-10-01

    mutations in the rat genome is suggested on the heels of the recent abilities to clone animals from somatic cells, as was the case for sheep named...34 Dolly " (32). In this approach one would generate the desired mutations by gene targeting in somatic cells that can be grown in culture. One cell clones

  2. The effects of bee venom acupuncture on the central nervous system and muscle in an animal hSOD1G93A mutant.

    Science.gov (United States)

    Cai, MuDan; Choi, Sun-Mi; Yang, Eun Jin

    2015-03-13

    Amyotrophic lateral sclerosis (ALS) is caused by the degeneration of lower and upper motor neurons, leading to muscle paralysis and respiratory failure. However, there is no effective drug or therapy to treat ALS. Complementary and alternative medicine (CAM), including acupuncture, pharmacopuncture, herbal medicine, and massage is popular due to the significant limitations of conventional therapy. Bee venom acupuncture (BVA), also known as one of pharmacopunctures, has been used in Oriental medicine to treat inflammatory diseases. The purpose of this study is to investigate the effect of BVA on the central nervous system (CNS) and muscle in symptomatic hSOD1G93A transgenic mice, an animal model of ALS. Our findings show that BVA at ST36 enhanced motor function and decreased motor neuron death in the spinal cord compared to that observed in hSOD1G93A transgenic mice injected intraperitoneally (i.p.) with BV. Furthermore, BV treatment at ST36 eliminated signaling downstream of inflammatory proteins such as TLR4 in the spinal cords of symptomatic hSOD1G93A transgenic mice. However, i.p. treatment with BV reduced the levels of TNF-α and Bcl-2 expression in the muscle hSOD1G93A transgenic mice. Taken together, our findings suggest that BV pharmacopuncture into certain acupoints may act as a chemical stimulant to activate those acupoints and subsequently engage the endogenous immune modulatory system in the CNS in an animal model of ALS.

  3. The Effects of Bee Venom Acupuncture on the Central Nervous System and Muscle in an Animal hSOD1G93A Mutant

    Directory of Open Access Journals (Sweden)

    MuDan Cai

    2015-03-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is caused by the degeneration of lower and upper motor neurons, leading to muscle paralysis and respiratory failure. However, there is no effective drug or therapy to treat ALS. Complementary and alternative medicine (CAM, including acupuncture, pharmacopuncture, herbal medicine, and massage is popular due to the significant limitations of conventional therapy. Bee venom acupuncture (BVA, also known as one of pharmacopunctures, has been used in Oriental medicine to treat inflammatory diseases. The purpose of this study is to investigate the effect of BVA on the central nervous system (CNS and muscle in symptomatic hSOD1G93A transgenic mice, an animal model of ALS. Our findings show that BVA at ST36 enhanced motor function and decreased motor neuron death in the spinal cord compared to that observed in hSOD1G93A transgenic mice injected intraperitoneally (i.p. with BV. Furthermore, BV treatment at ST36 eliminated signaling downstream of inflammatory proteins such as TLR4 in the spinal cords of symptomatic hSOD1G93A transgenic mice. However, i.p. treatment with BV reduced the levels of TNF-α and Bcl-2 expression in the muscle hSOD1G93A transgenic mice. Taken together, our findings suggest that BV pharmacopuncture into certain acupoints may act as a chemical stimulant to activate those acupoints and subsequently engage the endogenous immune modulatory system in the CNS in an animal model of ALS.

  4. Aberrant association of misfolded SOD1 with Na(+)/K(+)ATPase-α3 impairs its activity and contributes to motor neuron vulnerability in ALS

    NARCIS (Netherlands)

    Ruegsegger, Céline; Maharjan, Niran; Goswami, Anand; Filézac de L'Etang, Audrey; Weis, Joachim; Troost, Dirk; Heller, Manfred; Gut, Heinz; Saxena, Smita

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron

  5. A Transgenic Rat for Specifically Inhibiting Adult Neurogenesis.

    Science.gov (United States)

    Snyder, Jason S; Grigereit, Laura; Russo, Alexandra; Seib, Désirée R; Brewer, Michelle; Pickel, James; Cameron, Heather A

    2016-01-01

    The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis.

  6. HIV-1 transgenic rats develop T cell abnormalities

    International Nuclear Information System (INIS)

    Reid, William; Abdelwahab, Sayed; Sadowska, Mariola; Huso, David; Neal, Ashley; Ahearn, Aaron; Bryant, Joseph; Gallo, Robert C.; Lewis, George K.; Reitz, Marvin

    2004-01-01

    HIV-1 infection leads to impaired antigen-specific T cell proliferation, increased susceptibility of T cells to apoptosis, progressive impairment of T-helper 1 (Th1) responses, and altered maturation of HIV-1-specific memory cells. We have identified similar impairments in HIV-1 transgenic (Tg) rats. Tg rats developed an absolute reduction in CD4 + and CD8 + T cells able to produce IFN-γ following activation and an increased susceptibility of T cells to activation-induced apoptosis. CD4 + and CD8 + effector/memory (CD45RC - CD62L - ) pools were significantly smaller in Tg rats compared to non-Tg controls, although the converse was true for the naieve (CD45RC + CD62L + ) T cell pool. Our interpretation is that the HIV transgene causes defects in the development of T cell effector function and generation of specific effector/memory T cell subsets, and that activation-induced apoptosis may be an essential factor in this process

  7. SOD1 Lysine 123 Acetylation in the Adult Central Nervous System

    Directory of Open Access Journals (Sweden)

    Michael Kaliszewski

    2016-12-01

    Full Text Available Superoxide dismutase 1 (SOD1 knockout (Sod1-/- mice exhibit an accelerated aging phenotype. In humans, SOD1 mutations are linked to familial amyotrophic lateral sclerosis (ALS, and post-translational modification (PTM of wild-type SOD1 has been associated with sporadic ALS. Reversible acetylation regulates many enzymes and proteomic studies have identified SOD1 acetylation at lysine 123 (K123. The function and distribution of K123-acetylated SOD1 (Ac-K123 SOD1 in the nervous system is unknown. Here, we generated polyclonal rabbit antibodies against Ac-K123 SOD1. Sod1 deletion in Sod1-/- mice, K123 mutation, or preabsorption with Ac-K123 peptide all abolished antibody binding. Using immunohistochemistry, we assessed Ac-K123 SOD1 distribution in the normal adult mouse nervous system. In the cerebellum, Ac-K123 SOD1 staining was prominent in cell bodies of the granular cell layer and Purkinje cell dendrites and interneurons of the molecular cell layer. In the hippocampus, Ac-K123 SOD1 staining was strong in the fimbria, subiculum, pyramidal cells, and Schaffer collateral fibers of the cornus ammonis (CA1 region and granule and neuronal progenitor cells of the dentate gyrus. In addition, labeling was observed in the choroid plexus and the ependyma of the brain ventricles and central canal of the spinal cord. In the olfactory bulb, Ac-K123 SOD1 staining was prominent in axons of sensory neurons, in cell bodies of interneurons, and neurites of the mitral and tufted cells. In the retina, labeling was strong in the retinal ganglion cell layer and axons of retinal ganglion cells, the inner nuclear layer, and cone photoreceptors of the outer nuclear layer. In summary, our findings describe Ac-K123 SOD1 distribution to distinct regions and cell types of the normal nervous system.

  8. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation

    Directory of Open Access Journals (Sweden)

    Qi Min

    2006-01-01

    Full Text Available Abstract Detailed study of glial inflammation has been hindered by lack of cell culture systems that spontaneously demonstrate the "neuroinflammatory phenotype". Mice expressing a glycine → alanine substitution in cytosolic Cu, Zn-superoxide dismutase (G93A-SOD1 associated with familial amyotrophic lateral sclerosis (ALS demonstrate age-dependent neuroinflammation associated with broad-spectrum cytokine, eicosanoid and oxidant production. In order to more precisely study the cellular mechanisms underlying glial activation in the G93A-SOD1 mouse, primary astrocytes were cultured from 7 day mouse neonates. At this age, G93A-SOD1 mice demonstrated no in vivo hallmarks of neuroinflammation. Nonetheless astrocytes cultured from G93A-SOD1 (but not wild-type human SOD1-expressing transgenic mouse pups demonstrated a significant elevation in either the basal or the tumor necrosis alpha (TNFα-stimulated levels of proinflammatory eicosanoids prostaglandin E2 (PGE2 and leukotriene B4 (LTB4; inducible nitric oxide synthase (iNOS and •NO (indexed by nitrite release into the culture medium; and protein carbonyl products. Specific cytokine- and TNFα death-receptor-associated components were similarly upregulated in cultured G93A-SOD1 cells as assessed by multiprobe ribonuclease protection assays (RPAs for their mRNA transcripts. Thus, endogenous glial expression of G93A-SOD1 produces a metastable condition in which glia are more prone to enter an activated neuroinflammatory state associated with broad-spectrum increased production of paracrine-acting substances. These findings support a role for active glial involvement in ALS and may provide a useful cell culture tool for the study of glial inflammation.

  9. SOD1 Transcriptional and Posttranscriptional Regulation and Its Potential Implications in ALS

    Directory of Open Access Journals (Sweden)

    Pamela Milani

    2011-01-01

    Full Text Available Copper-zinc superoxide dismutase (SOD1 is a detoxifying enzyme localized in the cytosol, nucleus, peroxisomes, and mitochondria. The discovery that mutations in SOD1 gene cause a subset of familial amyotrophic lateral sclerosis (FALS has attracted great attention, and studies to date have been mainly focused on discovering mutations in the coding region and investigation at protein level. Considering that changes in SOD1 mRNA levels have been associated with sporadic ALS (SALS, a molecular understanding of the processes involved in the regulation of SOD1 gene expression could not only unravel novel regulatory pathways that may govern cellular phenotypes and changes in diseases but also might reveal therapeutic targets and treatments. This review seeks to provide an overview of SOD1 gene structure and of the processes through which SOD1 transcription is controlled. Furthermore, we emphasize the importance to focus future researches on investigating posttranscriptional mechanisms and their relevance to ALS.

  10. Seeking homeostasis: Temporal trends in respiration, oxidation, and calcium in SOD1 G93A Amyotrophic Lateral Sclerosis mice

    Directory of Open Access Journals (Sweden)

    Cameron W Irvin

    2015-07-01

    Full Text Available Impairments in mitochondria, oxidative regulation, and calcium homeostasis have been well documented in numerous amyotrophic lateral sclerosis (ALS experimental models, especially in the superoxide dismutase 1 glycine 93 to alanine (SOD1 G93A transgenic mouse. However, the timing of these deficiencies has been debatable. In a systematic review of 45 articles, we examine experimental measurements of cellular respiration, mitochondrial mechanisms, oxidative markers, and calcium regulation. We evaluate the quantitative magnitude and statistical temporal trend of these aggregated assessments in high transgene copy SOD1 G93A mice compared to wild type mice. Analysis of overall trends reveals cellular respiration, intracellular ATP, and corresponding mitochondrial elements (Cox, cytochrome c, complex I, enzyme activity are depressed for the entire lifespan of the SOD1 G93A mouse. Oxidant markers (H2O2, 8OH2’dG, MDA are initially similar to wild type but are double that of wild type by the time of symptom onset despite early post-natal elevation of protective heat shock proteins. All aspects of calcium regulation show early disturbances, although a notable and likely compensatory convergence to near wild type levels appears to occur between 40-80 days (pre-onset, followed by a post-onset elevation in intracellular calcium. The identified temporal trends and compensatory fluctuations provide evidence that the cause of ALS may lay within failed homeostatic regulation, itself, rather than any one particular perturbing event or cellular mechanism. We discuss the vulnerabilities of motoneurons to regulatory instability and possible hypotheses regarding failed regulation and its potential treatment in ALS.

  11. Implications of fALS Mutations on Sod1 Function and Oligomerization in Cell Models.

    Science.gov (United States)

    Brasil, Aline A; Magalhães, Rayne S S; De Carvalho, Mariana D C; Paiva, Isabel; Gerhardt, Ellen; Pereira, Marcos D; Outeiro, Tiago F; Eleutherio, Elis C A

    2017-09-07

    Among the familial forms of amyotrophic lateral sclerosis (fALS), 20% are associated with the Cu,Zn-superoxide dismutase (Sod1). fALS is characterized by the accumulation of aggregated proteins and the increase in oxidative stress markers. Here, we used the non-invasive bimolecular fluorescence complementation (BiFC) assay in human H4 cells to investigate the kinetics of aggregation and subcellular localization of Sod1 mutants. We also studied the effect of the different Sod1 mutants to respond against oxidative stress by following the levels of reactive oxygen species (ROS) after treatment with hydrogen peroxide. Our results showed that only 30% of cells transfected with A4VSod1 showed no inclusions while for the other Sod1 mutants tested (L38V, G93A and G93C), this percentage was at least 70%. In addition, we found that 10% of cells transfected with A4VSod1 displayed more than five inclusions per cell and that A4V and G93A Sod1 formed inclusions more rapidly than L38V and G93C Sod1. Expression of WTSod1 significantly decreased the intracellular oxidation levels in comparison with expression of fALS Sod1 mutants, suggesting the mutations induce a functional impairment. All fALS mutations impaired nuclear localization of Sod1, which is important for maintaining genomic stability. Consistently, expression of WTSod1, but not of fALS Sod1 mutants, reduced DNA damage, as measured by the comet assay. Altogether, our study sheds light into the effects of fALS Sod1 mutations on inclusion formation, dynamics, and localization as well as on antioxidant response, opening novel avenues for investigating the role of fALS Sod1 mutations in pathogenesis.

  12. Post activation depression of the Ia EPSP in motoneurones is reduced in both aged mice and in the G127X SOD1 model of Amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Hedegaard, Anne; Lehnhoff, Janna; Moldovan, Mihai

    2014-01-01

    D in both normal aging and in the neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). We used both wild type (WT) C57BL/6J mice and the G127X SOD1 transgenic model of ALS (Jonsson et al 2004)Mice were anaesthetized with Hypnorm (0.315mg/mL fentanyl-citrate +10mg/mL fluanisone), Midazolam (5mg...

  13. Comprehensive analysis to explain reduced or increased SOD1 enzymatic activity in ALS patients and their relatives.

    Science.gov (United States)

    Keskin, Isil; Birve, Anna; Berdynski, Mariusz; Hjertkvist, Karin; Rofougaran, Reza; Nilsson, Torbjörn K; Glass, Jonathan D; Marklund, Stefan L; Andersen, Peter M

    2017-08-01

    To characterise stabilities in erythrocytes of mutant SOD1 proteins, compare SOD1 enzymatic activities between patients with different genetic causes of ALS and search for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. Blood samples from 4072 individuals, ALS patients with or without a SOD1 mutation, family members and controls were studied. Erythrocyte SOD1 enzymatic activities normalised to haemoglobin content were determined, and effects of haemoglobin disorders on dismutation assessed. Coding SOD1 sequences were analysed by Sanger sequencing, exon copy number variations by fragment length analysis and by TaqMan Assay. Of the 44 SOD1 mutations found, 75% caused severe destabilisation of the mutant protein but in 25% it was physically stable. Mutations producing structural changes caused halved erythrocyte SOD1 activities. There were no differences in SOD1 activities between patients without a SOD1 mutation and control individuals or carriers of TBK1 mutations and C9orf72 HRE . In the low and high SOD1 activity groups no deviations were found in exon copy numbers and intron gross structures. Thalassemias and iron deficiency were associated with increased SOD1 activity/haemoglobin ratios. Adjunct erythrocyte SOD1 activity analysis reliably signals destabilising SOD1 mutations including intronic mutations that are missed by exon sequencing.

  14. Comparison of dendritic calcium transients in juvenile wild type and SOD1G93A mouse lumbar motoneurons

    Directory of Open Access Journals (Sweden)

    Katharina Ann Quinlan

    2015-04-01

    Full Text Available Previous studies of spinal motoneurons in the SOD1 mouse model of amyotrophic lateral sclerosis have shown alterations long before disease onset, including increased dendritic branching, increased persistent Na+ and Ca2+ currents, and impaired axonal transport. In this study dendritic Ca2+ entry was investigated using 2 photon excitation fluorescence microscopy and whole-cell patch-clamp of juvenile (P4-11 motoneurons. Neurons were filled with both Ca2+ Green-1 and Texas Red dextrans, and line scans performed throughout. Steps were taken to account for different sources of variability, including 1 dye filling and laser penetration, 2 dendritic anatomy, and 3 the time elapsed from the start of recording. First, Ca2+ Green-1 fluorescence was normalized by Texas Red; next, neurons were reconstructed so anatomy could be evaluated; finally, time was recorded. Customized software detected the largest Ca2+ transients (area under the curve from each line scan and matched it with parameters above. Overall, larger dendritic diameter and shorter path distance from the soma were significant predictors of larger transients, while time was not significant up to 2 hours (data thereafter was dropped. However, Ca2+ transients showed additional variability. Controlling for previous factors, significant variation was found between Ca2+ signals from different processes of the same neuron in 3/7 neurons. This could reflect differential expression of Ca2+ channels, local neuromodulation or other variations. Finally, Ca2+ transients in SOD1G93A motoneurons were significantly smaller than in non-transgenic motoneurons. In conclusion, motoneuron processes show highly variable Ca2+ transients, but these transients are smaller overall SOD1G93A motoneurons.

  15. Neuroprotective effect of bexarotene in the SOD1G93A mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Javier eRiancho

    2015-07-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favourable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1G93A mouse model of ALS.Mice were treated with Bxt or vehicle five times per week from day 60 onwards. Survival, weight and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1G93A mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions and modulated the lysosomal response. As an agonist of the retinoic-X receptor pathway (RXR, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations.

  16. Neuroprotective Effect of Bexarotene in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Riancho, Javier; Ruiz-Soto, María; Berciano, María T.; Berciano, José; Lafarga, Miguel

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1G93A mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1G93A mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations. PMID:26190974

  17. A Novel Model of Intravital Platelet Imaging Using CD41-ZsGreen1 Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Makoto Mizuno

    Full Text Available Platelets play pivotal roles in both hemostasis and thrombosis. Although models of intravital platelet imaging are available for thrombosis studies in mice, few are available for rat studies. The present effort aimed to generate fluorescent platelets in rats and assess their dynamics in a rat model of arterial injury. We generated CD41-ZsGreen1 transgenic rats, in which green fluorescence protein ZsGreen1 was expressed specifically in megakaryocytes and thus platelets. The transgenic rats exhibited normal hematological and biochemical values with the exception of body weight and erythroid parameters, which were slightly lower than those of wild-type rats. Platelet aggregation, induced by 20 μM ADP and 10 μg/ml collagen, and blood clotting times were not significantly different between transgenic and wild-type rats. Saphenous arteries of transgenic rats were injured with 10% FeCl3, and the formation of fluorescent thrombi was evaluated using confocal microscopy. FeCl3 caused time-dependent increases in the mean fluorescence intensity of injured arteries of vehicle-treated rats. Prasugrel (3 mg/kg, p.o., administered 2 h before FeCl3, significantly inhibited fluorescence compared with vehicle-treated rats (4.5 ± 0.4 vs. 14.9 ± 2.4 arbitrary fluorescence units at 30 min, respectively, n = 8, P = 0.0037. These data indicate that CD41-ZsGreen1 transgenic rats represent a useful model for intravital imaging of platelet-mediated thrombus formation and the evaluation of antithrombotic agents.

  18. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment

    NARCIS (Netherlands)

    Dieleman, L. A.; Goerres, M. S.; Arends, A.; Sprengers, D.; Torrice, C.; Hoentjen, F.; Grenther, W. B.; Sartor, R. B.

    2003-01-01

    Bacteroides vulgatus induces colitis in gnotobiotic HLA-B27 transgenic (TG) rats while broad spectrum antibiotics prevent and treat colitis in specific pathogen free (SPF) TG rats although disease recurs after treatment ends. Lactobacilli treat human pouchitis and experimental colitis. We

  19. Effects of SCN lesions on circadian blood pressure rhythm in normotensive and transgenic hypertensive rats

    NARCIS (Netherlands)

    Witte, K.; Schnecko, A.; Buijs, R. M.; van der Vliet, J.; Scalbert, E.; Delagrange, P.; Guardiola-Lemaître, B.; Lemmer, B.

    1998-01-01

    Transgenic hypertensive TGR(mREN2)27 (TGR) rats, carrying an additional mouse renin gene, have been found to show inverse circadian blood pressure profiles compared to normotensive Sprague-Dawley rats. In order to evaluate the contributions of the suprachiasmatic nucleus (SCN) and the neurohormone

  20. High blood pressure in transgenic mice carrying the rat angiotensinogen gene.

    Science.gov (United States)

    Kimura, S; Mullins, J J; Bunnemann, B; Metzger, R; Hilgenfeldt, U; Zimmermann, F; Jacob, H; Fuxe, K; Ganten, D; Kaling, M

    1992-01-01

    Transgenic mice were generated by injecting the entire rat angiotensinogen gene into the germline of NMRI mice. The resulting transgenic animals were characterized with respect to hemodynamics, parameters of the renin angiotension system, and expression of the transgene. The transgenic line TGM(rAOGEN)123 developed hypertension with a mean arterial blood pressure of 158 mmHg in males and 132 mmHg in females. In contrast, the transgenic line TGM(rAOGEN)92 was not hypertensive. Rat angiotensinogen was detectable only in plasma of animals of line 123. Total plasma angiotensinogen and plasma angiotensin II concentrations were about three times as high as those of negative control mice. In TGM(rAOGEN)123 the transgene was highly expressed in liver and brain. Transcripts were also detected in heart, kidney and testis. In TGM(rAOGEN)92 the brain was the main expressing organ. In situ hybridization revealed an mRNA distribution in the brain of TGM(rAOGEN)123 similar to the one in rat. In TGM(rAOGEN)92 the expression pattern in the brain was aberrant. These data indicate that overexpression of the angiotensinogen gene in liver and brain leads to the development of hypertension in transgenic mice. The TGM(rAOGEN)123 constitutes a high angiotensin II type of hypertension and may provide a new experimental animal model to study the kinetics and function of the renin angiotensin system. Images PMID:1547785

  1. Transgenic rat model of neurodegeneration caused by mutation in the TDP gene.

    Science.gov (United States)

    Zhou, Hongxia; Huang, Cao; Chen, Han; Wang, Dian; Landel, Carlisle P; Xia, Pedro Yuxing; Bowser, Robert; Liu, Yong-Jian; Xia, Xu Gang

    2010-03-26

    TDP-43 proteinopathies have been observed in a wide range of neurodegenerative diseases. Mutations in the gene encoding TDP-43 (i.e., TDP) have been identified in amyotrophic lateral sclerosis (ALS) and in frontotemporal lobe degeneration associated with motor neuron disease. To study the consequences of TDP mutation in an intact system, we created transgenic rats expressing normal human TDP or a mutant form of human TDP with a M337V substitution. Overexpression of mutant, but not normal, TDP caused widespread neurodegeneration that predominantly affected the motor system. TDP mutation reproduced ALS phenotypes in transgenic rats, as seen by progressive degeneration of motor neurons and denervation atrophy of skeletal muscles. This robust rat model also recapitulated features of TDP-43 proteinopathies including the formation of TDP-43 inclusions, cytoplasmic localization of phosphorylated TDP-43, and fragmentation of TDP-43 protein. TDP transgenic rats will be useful for deciphering the mechanisms underlying TDP-43-related neurodegenerative diseases.

  2. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jiou Wang

    2009-01-01

    Full Text Available The nature of toxic effects exerted on neurons by misfolded proteins, occurring in a number of neurodegenerative diseases, is poorly understood. One approach to this problem is to measure effects when such proteins are expressed in heterologous neurons. We report on effects of an ALS-associated, misfolding-prone mutant human SOD1, G85R, when expressed in the neurons of Caenorhabditis elegans. Stable mutant transgenic animals, but not wild-type human SOD1 transgenics, exhibited a strong locomotor defect associated with the presence, specifically in mutant animals, of both soluble oligomers and insoluble aggregates of G85R protein. A whole-genome RNAi screen identified chaperones and other components whose deficiency increased aggregation and further diminished locomotion. The nature of the locomotor defect was investigated. Mutant animals were resistant to paralysis by the cholinesterase inhibitor aldicarb, while exhibiting normal sensitivity to the cholinergic agonist levamisole and normal muscle morphology. When fluorescently labeled presynaptic components were examined in the dorsal nerve cord, decreased numbers of puncta corresponding to neuromuscular junctions were observed in mutant animals and brightness was also diminished. At the EM level, mutant animals exhibited a reduced number of synaptic vesicles. Neurotoxicity in this system thus appears to be mediated by misfolded SOD1 and is exerted on synaptic vesicle biogenesis and/or trafficking.

  3. EGFR inhibitor erlotinib delays disease progression but does not extend survival in the SOD1 mouse model of ALS.

    Directory of Open Access Journals (Sweden)

    Claire E Le Pichon

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease that causes progressive paralysis due to motor neuron death. Several lines of published evidence suggested that inhibition of epidermal growth factor receptor (EGFR signaling might protect neurons from degeneration. To test this hypothesis in vivo, we treated the SOD1 transgenic mouse model of ALS with erlotinib, an EGFR inhibitor clinically approved for oncology indications. Although erlotinib failed to extend ALS mouse survival it did provide a modest but significant delay in the onset of multiple behavioral measures of disease progression. However, given the lack of protection of motor neuron synapses and the lack of survival extension, the small benefits observed after erlotinib treatment appear purely symptomatic, with no modification of disease course.

  4. Transgenic rats with green, red, and blue fluorescence: powerful tools for bioimaging, cell trafficking, and differentiation

    Science.gov (United States)

    Murakami, Takashi; Kobayashi, Eiji

    2005-04-01

    The rat represents a perfect animal for broadening medical experiments, because its physiology has been well understood in the history of experimental animals. In addition, its larger body size takes enough advantage for surgical manipulation, compared to the mouse. Many rat models mimicking human diseases, therefore, have been used in a variety of biomedical studies including physiology, pharmacology, transplantation, and immunology. In an effort to create the specifically designed rats for biomedical research and regenerative medicine, we have developed the engineered rat system on the basis of transgenic technology and succeeded in establishing various transgenic rat strains. The transgenic rats with green fluorescent protein (GFP) were generated in the two different strains (Wistar and Lewis), in which GFP is driven under the chicken beta-actin promoter and cytomegalovirus enhancer (CAG promoter). Their GFP expression levels were different in each organ, but the Lewis line expressed GFP strongly and ubiquitously in most of the organs compared with that of Wistar. For red fluorescence, DsRed2 was transduced to the Wistar rats: one line specifically expresses DsRed2 in the liver under the mouse albumin promoter, another is designed for the Cre/LoxP system as the double reporter rat (the initial DsRed2 expression turns on GFP in the presence of Cre recombinase). LacZ-transgenic rats represent blue color, and LacZ is driven the CAG (DA) or ROSA26 promoter (Lewis). Our unique transgenic rats" system highlights the powerful performance for the elucidation of many cellular processes in regenerative medicine, leading to innovative medical treatments.

  5. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  6. Fast skeletal muscle troponin activator tirasemtiv increases muscle function and performance in the B6SJL-SOD1G93A ALS mouse model.

    Directory of Open Access Journals (Sweden)

    Darren T Hwee

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a motor neuron disease characterized by progressive motor neuron loss resulting in muscle atrophy, declining muscle function, and eventual paralysis. Patients typically die from respiratory failure 3 to 5 years from the onset of symptoms. Tirasemtiv is a fast skeletal troponin activator that sensitizes the sarcomere to calcium; this mechanism of action amplifies the response of muscle to neuromuscular input producing greater force when nerve input is reduced. Here, we demonstrate that a single dose of tirasemtiv significantly increases submaximal isometric force, forelimb grip strength, grid hang time, and rotarod performance in a female transgenic mouse model (B6SJL-SOD1 G93A of ALS with functional deficits. Additionally, diaphragm force and tidal volume are significantly higher in tirasemtiv-treated female B6SJL-SOD1 G93A mice. These results support the potential of fast skeletal troponin activators to improve muscle function in neuromuscular diseases.

  7. CuATSM efficacy is independently replicated in a SOD1 mouse model of ALS while unmetallated ATSM therapy fails to reveal benefits

    Directory of Open Access Journals (Sweden)

    Fernando G. Vieira

    2017-06-01

    Full Text Available A copper chelator known as diacetylbis(N(4-methylthiosemicarbazonato copper II (CuATSM, has been reported to be efficacious in multiple transgenic SOD1 models of amyotrophic lateral sclerosis (ALS, a fatal neurodegenerative disorder affecting motor neurons. Here we report that we also observed CuATSM efficacy on disease onset and progression in a standardized litter-matched and gender-balanced efficacy study using B6SJL-SOD1G93A/1Gur mice. We also report improved survival trends with CuATSM treatment. In addition, we report a lack of efficacy by unmetallated ATSM in the same model using the same standardized study design. These results add to existing evidence supporting an efficacious role for copper delivery using chaperone molecules in mouse models of ALS.

  8. Sod1 deficiency reduces incubation time in mouse models of prion disease.

    Directory of Open Access Journals (Sweden)

    Shaheen Akhtar

    Full Text Available Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02 and Sod1 (P<0.0001 suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.

  9. In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress.

    Science.gov (United States)

    Klöppel, Christine; Michels, Christine; Zimmer, Julia; Herrmann, Johannes M; Riemer, Jan

    2010-12-03

    The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1(G93A) becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1(G85R). Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI.

    Science.gov (United States)

    Agosta, Federica; Spinelli, Edoardo Gioele; Marjanovic, Ivan V; Stevic, Zorica; Pagani, Elisabetta; Valsasina, Paola; Salak-Djokic, Biljana; Jankovic, Milena; Lavrnic, Dragana; Kostic, Vladimir S; Filippi, Massimo

    2018-02-20

    To explore structural and functional changes of the brain and cervical cord in patients with amyotrophic lateral sclerosis (ALS) due to mutation in the superoxide dismutase ( SOD1 ) gene compared with sporadic ALS. Twenty patients with SOD1 ALS, 11 with sporadic ALS, and 33 healthy controls underwent clinical evaluation and brain MRI. Cortical thickness analysis, diffusion tensor MRI of the corticospinal tracts (CST) and corpus callosum, and resting-state functional connectivity were performed. Patients with ALS also underwent cervical cord MRI to evaluate cord cross-sectional area and magnetization transfer ratio (MTR). Patients with SOD1 ALS showed longer disease duration and slower rate of functional decline relative to those with sporadic ALS. No cortical thickness abnormalities were found in patients with ALS compared with controls. Fractional anisotropy showed that sporadic ALS patients had significant CST damage relative to both healthy controls ( p = 0.001-0.02) and SOD1-related ALS ( p = 0.05), although the latter showed alterations that were intermediate between controls and sporadic ALS. Functional hyperconnectivity of the motor cortex in the sensorimotor network was observed in patients with sporadic ALS relative to controls. Conversely, patients with SOD1 ALS showed lower cord cross-sectional area along the whole cervical cord relative to those with sporadic ALS ( p ALS showed cervical cord atrophy relative to those with sporadic ALS and a relative preservation of brain motor structural and functional networks. Neurodegeneration in SOD1 ALS is likely to occur primarily in the spinal cord. An objective and accurate estimate of spinal cord damage has potential in the future assessment of preventive SOD1 ALS therapies. © 2018 American Academy of Neurology.

  11. ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.

    Science.gov (United States)

    Wang, Huan; Yi, Jianxun; Li, Xuejun; Xiao, Yajuan; Dhakal, Kamal; Zhou, Jingsong

    2018-01-01

    While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1 G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1 G93A . Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1 G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1 G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1 G93A on mitochondrial network and dynamics, indicating that SOD1 G93A likely promotes

  12. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice.

    Science.gov (United States)

    Butovsky, Oleg; Jedrychowski, Mark P; Cialic, Ron; Krasemann, Susanne; Murugaiyan, Gopal; Fanek, Zain; Greco, David J; Wu, Pauline M; Doykan, Camille E; Kiner, Olga; Lawson, Robert J; Frosch, Matthew P; Pochet, Nathalie; Fatimy, Rachid El; Krichevsky, Anna M; Gygi, Steven P; Lassmann, Hans; Berry, James; Cudkowicz, Merit E; Weiner, Howard L

    2015-01-01

    To investigate miR-155 in the SOD1 mouse model and human sporadic and familial amyotrophic lateral sclerosis (ALS). NanoString microRNA, microglia and immune gene profiles, protein mass spectrometry, and RNA-seq analyses were measured in spinal cord microglia, splenic monocytes, and spinal cord tissue from SOD1 mice and in spinal cord tissue of familial and sporadic ALS. miR-155 was targeted by genetic ablation or by peripheral or centrally administered anti-miR-155 inhibitor in SOD1 mice. In SOD1 mice, we found loss of the molecular signature that characterizes homeostatic microglia and increased expression of miR-155. There was loss of the microglial molecules P2ry12, Tmem119, Olfml3, transcription factors Egr1, Atf3, Jun, Fos, and Mafb, and the upstream regulators Csf1r, Tgfb1, and Tgfbr1, which are essential for microglial survival. Microglia biological functions were suppressed including phagocytosis. Genetic ablation of miR-155 increased survival in SOD1 mice by 51 days in females and 27 days in males and restored the abnormal microglia and monocyte molecular signatures. Disease severity in SOD1 males was associated with early upregulation of inflammatory genes, including Apoe in microglia. Treatment of adult microglia with apolipoprotein E suppressed the M0-homeostatic unique microglia signature and induced an M1-like phenotype. miR-155 expression was increased in the spinal cord of both familial and sporadic ALS. Dysregulated proteins that we identified in human ALS spinal cord were restored in SOD1(G93A) /miR-155(-/-) mice. Intraventricular anti-miR-155 treatment derepressed microglial miR-155 targeted genes, and peripheral anti-miR-155 treatment prolonged survival. We found overexpression of miR-155 in the SOD1 mouse and in both sporadic and familial human ALS. Targeting miR-155 in SOD1 mice restores dysfunctional microglia and ameliorates disease. These findings identify miR-155 as a therapeutic target for the treatment of ALS. © 2014 American

  13. Polymorphism Analysis of VSX1 and SOD1 Genes in Greek Patients with Keratoconus.

    Science.gov (United States)

    Moschos, Marilita M; Kokolakis, Nikolaos; Gazouli, Maria; Chatziralli, Irini P; Droutsas, Dimitrios; Anagnou, Nicholas P; Ladas, Ioannis D

    2015-01-01

    A number of mutations in the VSX1 and SOD1 genes have been reported to be associated with keratoconus (KC), however the results from different studies are controversial. In this study, we conducted the genotyping of common polymorphisms [VSX1: D144E, H244R, R166W, G160D; SOD1: intronic 7-base deletion (c.169 + 50 delTAAACAG)], in a case-control sample panel of the Greek population. A case-control panel, with 33 KC patients and 78 healthy controls, were surveyed. DNA from each individual was tested for the VSX1: D144E, H244R, R166W, G160D and SOD1: intronic 7-base deletion (c.169 + 50 delTAAACAG) polymorphisms by direct sequencing. We observed no polymorphisms of the VSX1 gene in the case-control panel. Concerning the SOD1 intronic 7-base deletion (c.169 + 50 delTAAACAG), our findings suggest that heterozygous carriers are over-represented among KC cases compared to healthy controls (p = 0.002). We cannot confirm the previously reported association of the polymorphism in the VSX1 gene with KC. Our results suggest a possible causative role of SOD1 in the pathogenesis of KC. Further studies are required to identify other important genetic factors involved in the pathogenesis and progression of KC.

  14. Determining the Effect of Catechins on SOD1 Conformation and Aggregation by Ion Mobility Mass Spectrometry Combined with Optical Spectroscopy

    Science.gov (United States)

    Zhao, Bing; Zhuang, Xiaoyu; Pi, Zifeng; Liu, Shu; Liu, Zhiqiang; Song, Fengrui

    2018-02-01

    The aggregation of Cu,Zn-superoxide dismutase (SOD1) plays an important role in the etiology of amyotrophic lateral sclerosis (ALS). For the disruption of ALS progression, discovering new drugs or compounds that can prevent SOD1 aggregation is important. In this study, ESI-MS was used to investigate the interaction of catechins and SOD1. The noncovalent complex of catechins that interact with SOD1 was found and retained in the gas phase under native ESI-MS condition. The conformation changes of SOD1 after binding with catechins were also explored via traveling wave ion mobility (IM) spectrometry. Epigallocatechin gallate (EGCG) can stabilize SOD1 conformation against unfolding in three catechins. To further evaluate the efficacy of EGCG, we monitored the fluorescence changes of dimer E2,E2,-SOD1(apo-SOD1, E:empty) with and without ligands under denaturation conditions, and found that EGCG can inhibit apo-SOD1 aggregation. In addition, the circular dichroism spectra of the samples showed that EGCG can decrease the β-sheet content of SOD1, which can produce aggregates. These results indicated that orthogonal separation dimension in the gas-phase IM coupled with ESI-MS (ESI-IM-MS) can potentially provide insight into the interaction between SOD1 and small molecules. The advantage is that it dramatically decreases the analysis time. Meantime, optical spectroscopy techniques can be used to confirm ESI-IM-MS results. [Figure not available: see fulltext.

  15. Analysis of the SOD1 Gene in Keratoconus Patients from Saudi Arabia.

    Science.gov (United States)

    Al-Muammar, Abdulrahman M; Kalantan, Hatem; Azad, Taif Anwar; Sultan, Tahira; Abu-Amero, Khaled K

    2015-01-01

    We investigated Saudi patients with familial and sporadic Keratoconus for mutations in the Superoxide dismutase 1, soluble (SOD1) gene. We sequenced the entire coding region, exon-intron boundaries and intron 2 encompassing a 7-bp deletion in clinically confirmed Keratoconus patients (n = 55) and 100 ethnically matched healthy controls. All cases and controls were unrelated. Sequencing the SOD1 gene revealed the presence of four nucleotide changes and all were non-coding. Those were g.12035 C > A; g.13978 T > A; g.12037 G > A and g.11931 A > C with similar frequencies in patients and controls. All four sequence changes were benign polymorphisms with no apparent clinical significance. Additionally, the 7-bp deletion in intro2 reported previously, were not detected in any of our Keratocnus cohort. In our Keratoconus cohort, no pathogenic SOD1 mutation(s) was identified.

  16. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    Science.gov (United States)

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  17. Metal-Deficient Aggregates and Diminished Copper Found in Cells Expressing SOD1 Mutations that Cause ALS

    Directory of Open Access Journals (Sweden)

    Megan W Bourassa

    2014-06-01

    Full Text Available Disruptions in metal ion homeostasis have been described in association with amyotrophic lateral sclerosis (ALS for a number of years but the precise mechanism of involvement is poorly understood. Metal ions are especially important to familial ALS cases caused by mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1. To investigate the role of metals in aggregation of mutant SOD1, we have examined the localization of metal ions in a cell culture model of overexpression. Chinese hamster ovary cells (CHO-K1 were transfected to overexpress SOD1 fused to yellow fluorescent protein (YFP to readily identify the transfected cells and the intracellular aggregates that develop in the cells expressing mutant or wild-type (WT SOD1. The concentration and distribution of iron, copper, and zinc were determined for four SOD1 mutants (A4V, G37R, H80R, and D125H as well as a WT SOD1 using X-ray fluorescence microscopy (XFM. Results demonstrated that the SOD1 aggregates were Metal-deficient within the cells, which is consistent with recent in vitro studies. In addition, all SOD1 mutants showed significantly decreased copper content compared to the WT SOD1 cells, regardless of the mutant’s ability to bind copper. These results suggest that SOD1 overexpression creates an unmet demand on the cell for copper. This is particularly true for the SOD1 mutants where copper delivery may also be impaired. Hence, the SOD1 mutants are less stable than WT SOD1 and if copper is limited, aggregate formation of the metal-deficient, mutant SOD1 protein occurs.

  18. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

    Directory of Open Access Journals (Sweden)

    Cao Huang

    2011-03-01

    Full Text Available Fused in Sarcoma (FUS proteinopathy is a feature of frontotemporal lobar dementia (FTLD, and mutation of the fus gene segregates with FTLD and amyotrophic lateral sclerosis (ALS. To study the consequences of mutation in the fus gene, we created transgenic rats expressing the human fus gene with or without mutation. Overexpression of a mutant (R521C substitution, but not normal, human FUS induced progressive paralysis resembling ALS. Mutant FUS transgenic rats developed progressive paralysis secondary to degeneration of motor axons and displayed a substantial loss of neurons in the cortex and hippocampus. This neuronal loss was accompanied by ubiquitin aggregation and glial reaction. While transgenic rats that overexpressed the wild-type human FUS were asymptomatic at young ages, they showed a deficit in spatial learning and memory and a significant loss of cortical and hippocampal neurons at advanced ages. These results suggest that mutant FUS is more toxic to neurons than normal FUS and that increased expression of normal FUS is sufficient to induce neuron death. Our FUS transgenic rats reproduced some phenotypes of ALS and FTLD and will provide a useful model for mechanistic studies of FUS-related diseases.

  19. Subchronic feeding study of high-free-lysine transgenic rice in Sprague-Dawley rats.

    Science.gov (United States)

    Yang, Qing-Qing; He, Xiao-Yun; Wu, Hong-Yu; Zhang, Chang-Quan; Zou, Shi-Ying; Lang, Tian-Qi; Sun, Samuel Sai-Ming; Liu, Qiao-Quan

    2017-07-01

    Lysine is considered to be the first essential amino acid in rice. An elite High-Free-Lysine transgenic line HFL1 was previously produced by metabolic engineering to regulate lysine metabolism. In this study, a 90-day toxicology experiment was undertaken to investigate the potential health effect of feeding different doses of HFL1 rice to Sprague-Dawley rats. During the trial, body weight gain, food consumption and food efficiency were recorded, and no adverse effect was observed in rats fed transgenic (T) rice diets compared with non-transgenic (N) or control diets. At both midterm and final assessments, hematological parameters and serum chemistry were measured, and organ weights and histopathology were examined at the end of the trial. There was no diet-related difference in most hematological or serum chemistry parameters or organ weights between rats fed the T diets and those fed the N or control diets. Some parameters were found to differ between T groups and their corresponding N and/or control groups, but no adverse histological effect was observed. Taken together, the data from the current trial demonstrates that high lysine transgenic rice led to no adverse effect in Sprague-Dawley rats given a diet containing up to 70% HFL1 rice in 90 days. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Ruth Chia

    2010-05-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease that specifically affects motor neurons and leads to a progressive and ultimately fatal loss of function, resulting in death typically within 3 to 5 years of diagnosis. The disease starts with a focal centre of weakness, such as one limb, and appears to spread to other parts of the body. Mutations in superoxide dismutase 1 (SOD1 are known to cause disease and it is generally accepted they lead to pathology not by loss of enzymatic activity but by gain of some unknown toxic function(s. Although different mutations lead to varying tendencies of SOD1 to aggregate, we suggest abnormal proteins share a common misfolding pathway that leads to the formation of amyloid fibrils.Here we demonstrate that misfolding of superoxide dismutase 1 leads to the formation of amyloid fibrils associated with seeding activity, which can accelerate the formation of new fibrils in an autocatalytic cascade. The time limiting event is nucleation to form a stable protein "seed" before a rapid linear polymerisation results in amyloid fibrils analogous to other protein misfolding disorders. This phenomenon was not confined to fibrils of recombinant protein as here we show, for the first time, that spinal cord homogenates obtained from a transgenic mouse model that overexpresses mutant human superoxide dismutase 1 (the TgSOD1(G93A mouse also contain amyloid seeds that accelerate the formation of new fibrils in both wildtype and mutant SOD1 protein in vitro.These findings provide new insights into ALS disease mechanism and in particular a mechanism that could account for the spread of pathology throughout the nervous system. This model of disease spread, which has analogies to other protein misfolding disorders such as prion disease, also suggests it may be possible to design assays for therapeutics that can inhibit fibril propagation and hence, possibly, disease progression.

  1. Prognostic role of ‘prion-like propagation’ in SOD1-linked familial ALS: an alternative view

    Directory of Open Access Journals (Sweden)

    Keizo eSugaya

    2014-10-01

    Full Text Available ‘Prion-like propagation’ has recently been proposed for disease spread in Cu/Zn superoxide dismutase 1 (SOD1-linked familial amyotrophic lateral sclerosis (ALS. Pathological SOD1 conformers are presumed to propagate via cell-to-cell transmission. In this model, the risk-based kinetics of neuronal cell loss over time appears to be represented by a sigmoidal function that reflects the kinetics of intercellular transmission. Here, we describe an alternative view of prion-like propagation in SOD1-linked ALS−its relation to disease prognosis under the protective-aggregation hypothesis. Nucleation-dependent polymerization has been widely accepted as the molecular mechanism of prion propagation. If toxic species of misfolded SOD1, as soluble oligomers, are formed as on-pathway intermediates of nucleation-dependent polymerization, further fibril extension via sequential addition of monomeric mutant SOD1 would be protective against neurodegeneration. This is because the concentration of unfolded mutant SOD1 monomers, which serve as precursor of nucleation and toxic species of mutant SOD1, would decline in proportion to the extent of aggregation. The nucleation process requires that native conformers exist in an unfolded state that may result from escaping the cellular protein quality control machinery. However, prion-like propagation−SOD1 aggregated form self-propagates by imposing its altered conformation on normal SOD1−appears to antagonize the protective role of aggregate growth. The cross-seeding reaction with normal SOD1 would lead to a failure to reduce the concentration of unfolded mutant SOD1 monomers, resulting in continuous nucleation and subsequent generation of toxic species, and influence disease prognosis. In this alternative view, the kinetics of neuronal loss appears to be represented by an exponential function, with decreasing risk reflecting the protective role of aggregate and the potential for cross-seeding reactions between

  2. New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Ana Isabel Garcia Diaz

    2016-04-01

    Full Text Available The Wistar Kyoto (WKY rat and the spontaneously hypertensive (SHR rat inbred strains are well-established models for human crescentic glomerulonephritis (CRGN and metabolic syndrome, respectively. Novel transgenic (Tg strains add research opportunities and increase scientific value to well-established rat models. We have created two novel Tg strains using Sleeping Beauty transposon germline transgenesis, ubiquitously expressing green fluorescent protein (GFP under the rat elongation factor 1 alpha (EF1a promoter on the WKY and SHR genetic backgrounds. The Sleeping Beauty system functioned with high transgenesis efficiency; 75% of new rats born after embryo microinjections were transgene positive. By ligation-mediated PCR, we located the genome integration sites, confirming no exonic disruption and defining a single or low copy number of the transgenes in the new WKY-GFP and SHR-GFP Tg lines. We report GFP-bright expression in embryos, tissues and organs in both lines and show preliminary in vitro and in vivo imaging data that demonstrate the utility of the new GFP-expressing lines for adoptive transfer, transplantation and fate mapping studies of CRGN, metabolic syndrome and other traits for which these strains have been extensively studied over the past four decades.

  3. Resveratrol Derivative-Rich Melinjo Seed Extract Attenuates Skin Atrophy in Sod1-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Kenji Watanabe

    2015-01-01

    Full Text Available The oxidative damages induced by a redox imbalance cause age-related changes in cells and tissues. Superoxide dismutase (SOD enzymes play a pivotal role in the antioxidant system and they also catalyze superoxide radicals. Since the loss of cytoplasmic SOD (SOD1 resulted in aging-like phenotypes in several types of murine tissue, SOD1 is essential for the maintenance of tissue homeostasis. Melinjo (Gnetum gnemon Linn seed extract (MSE contains trans-resveratrol (RSV and resveratrol derivatives, including gnetin C, gnemonoside A, and gnemonoside D. MSE intake also exerts no adverse events in human study. In the present studies, we investigated protective effects of MSE on age-related skin pathologies in mice. Orally MSE and RSV treatment reversed the skin thinning associated with increased oxidative damage in the Sod1−/− mice. Furthermore, MSE and RSV normalized gene expression of Col1a1 and p53 and upregulated gene expression of Sirt1 in skin tissues. In vitro experiments revealed that RSV significantly promoted the viability of Sod1−/− fibroblasts. These finding demonstrated that RSV in MSE stably suppressed an intrinsic superoxide generation in vivo and in vitro leading to protecting skin damages. RSV derivative-rich MSE may be a powerful food of treatment for age-related skin diseases caused by oxidative damages.

  4. Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice

    Directory of Open Access Journals (Sweden)

    Patrick M. Cowley

    2017-10-01

    Full Text Available Down syndrome (DS is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1; a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p 0.05. Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05. In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress.

  5. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset.

    Directory of Open Access Journals (Sweden)

    Christine Vande Velde

    Full Text Available Mutations in superoxide dismutase (SOD1 are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.

  6. Early gene expression changes in spinal cord from SOD1G93A Amyotrophic Lateral Sclerosis animal model

    Directory of Open Access Journals (Sweden)

    Gabriela Pintar Oliveira

    2013-11-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is an adult-onset and fast progression neurodegenerative disease that leads to the loss of motor neurons. Mechanisms of selective motor neuron loss in ALS are unknown. The early events occurring in the spinal cord that may contribute to motor neuron death are not described, neither astrocytes participation in the pre-symptomatic phases of the disease. In order to identify ALS early events, we performed a microarray analysis employing a whole mouse genome platform to evaluate the gene expression pattern of lumbar spinal cords of transgenic SOD1G93A mice and their littermate controls at pre-symptomatic ages of 40 and 80 days. Differentially expressed genes were identified by means of the Bioconductor packages Agi4x44Preprocess and limma. FunNet web based tool was used for analysis of over-represented pathways. Furthermore, immunolabeled astrocytes from 40 and 80 days old mice were submitted to laser microdissection and RNA was extracted for evaluation of a selected gene by qPCR. Statistical analysis has pointed to 492 differentially expressed genes (155 up and 337 down regulated in 40 days and 1105 (433 up and 672 down in 80 days old ALS mice. KEGG analysis demonstrated the over-represented pathways tight junction, antigen processing and presentation, oxidative phosphorylation, endocytosis, chemokine signaling pathway, ubiquitin mediated proteolysis and glutamatergic synapse at both pre-symptomatic ages. Ube2i gene expression was evaluated in astrocytes from both transgenic ages, being up regulated in 40 and 80 days astrocytes enriched samples. Our data points to important early molecular events occurring in pre-symptomatic phases of ALS in mouse model. Early SUMOylation process linked to astrocytes might account to non autonomous cell toxicity in ALS. Further studies on the signaling pathways presented here may provide new insights to better understand the events triggering motor neuron death in this devastating

  7. Chromosome assignment of Cd36 transgenes in two rat SHR lines by FISH and linkage mapping of transgenic insert in the SHR-TG19 line

    Czech Academy of Sciences Publication Activity Database

    Liška, F.; Levan, G.; Helou, K.; Sladká, M.; Pravenec, Michal; Zídek, Václav; Landa, Vladimír; Křen, Vladimír

    2002-01-01

    Roč. 48, č. 4 (2002), s. 139-144 ISSN 0015-5500 R&D Projects: GA ČR GV204/98/K015 Institutional research plan: CEZ:AV0Z5011922 Keywords : spontaneously hypertensive rat * Cd36 * transgenic lines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.615, year: 2002

  8. Chronic alcohol ingestion exacerbates skeletal muscle myopathy in HIV-1 transgenic rats

    Directory of Open Access Journals (Sweden)

    Bratina Margaux A

    2011-08-01

    Full Text Available Abstract Background Separately, chronic alcohol ingestion and HIV-1 infection are associated with severe skeletal muscle derangements, including atrophy and wasting, weakness, and fatigue. One prospective cohort study reported that 41% of HIV-infected patients met the criteria for alcoholism, however; few reports exist on the co-morbid effects of these two disease processes on skeletal muscle homeostasis. Thus, we analyzed the atrophic effects of chronic alcohol ingestion in HIV-1 transgenic rats and identified alterations to several catabolic and anabolic factors. Findings Relative plantaris mass, total protein content, and fiber cross-sectional area were reduced in each experimental group compared to healthy, control-fed rats. Alcohol abuse further reduced plantaris fiber area in HIV-1 transgenic rats. Consistent with previous reports, gene levels of myostatin and its receptor activin IIB were not increased in HIV-1 transgenic rat muscle. However, myostatin and activin IIB were induced in healthy and HIV-1 transgenic rats fed alcohol for 12 weeks. Catabolic signaling factors such as TGFβ1, TNFα, and phospho-p38/total-p38 were increased in all groups compared to controls. There was no effect on IL-6, leukemia inhibitory factor (LIF, cardiotrophin-1 (CT-1, or ciliary neurotrophic factor (CNTF in control-fed, transgenic rats. However, the co-morbidity of chronic alcohol abuse and HIV-1-related protein expression decreased expression of the two anabolic factors, CT-1 and CNTF. Conclusions Consistent with previous reports, alcohol abuse accentuated skeletal muscle atrophy in an animal model of HIV/AIDS. While some catabolic pathways known to drive alcoholic or HIV-1-associated myopathies were also elevated in this co-morbid model (e.g., TGFβ1, consistent expression patterns were not apparent. Thus, specific alterations to signaling mechanisms such as the induction of the myostatin/activin IIB system or reductions in growth factor signaling via

  9. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Phoebe Lin

    Full Text Available The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m, compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.

  10. HLA-B27 and Human β2-Microglobulin Affect the Gut Microbiota of Transgenic Rats

    Science.gov (United States)

    Lin, Phoebe; Bach, Mary; Asquith, Mark; Lee, Aaron Y.; Akileswaran, Lakshmi; Stauffer, Patrick; Davin, Sean; Pan, Yuzhen; Cambronne, Eric D.; Dorris, Martha; Debelius, Justine W.; Lauber, Christian L.; Ackermann, Gail; Baeza, Yoshiki V.; Gill, Tejpal; Knight, Rob; Colbert, Robert A.; Taurog, Joel D.; Van Gelder, Russell N.; Rosenbaum, James T.

    2014-01-01

    The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m), compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK) and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene. PMID:25140823

  11. A three generation reproduction study with Sprague-Dawley rats consuming high-amylose transgenic rice.

    Science.gov (United States)

    Zhou, Xing Hua; Dong, Ying; Zhao, Yan Sheng; Xiao, Xiang; Wang, Yun; He, Yuan Qing; Liu, Qiao Quan

    2014-12-01

    The transgenic rice line (TRS) enriched with amylose and resistant starch (RS) was developed by antisense RNA inhibition of starch-branching enzymes. Cereal starch with high amylose has a great benefit on human health through its resistant starch. In order to evaluate the effect of transgenic rice on rats, the rats were fed diets containing 70% TRS rice flour, its near-isogenic rice flour or the standard diet as the control through three generations. In the present study, clinical performance, reproductive capacity and pathological responses including body weight, food consumption, reproductive data, hematological parameters, serum chemistry components, organ relative weights and histopathology were examined. Some statistically significant differences were observed in rats consuming the high amylose rice diet when compared to rats fed the near-isogenic control rice diet or the conventional (non-rice) standard diet. These differences were generally of small magnitude, appeared to be random in nature, and were within normal limits for the strain of rat used, and were therefore not considered to be biologically meaningful or treatment related. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. Mutational screening of VSX1, SPARC, SOD1, LOX, and TIMP3 in keratoconus.

    Science.gov (United States)

    De Bonis, Patrizia; Laborante, Antonio; Pizzicoli, Costantina; Stallone, Raffaella; Barbano, Raffaela; Longo, Costanza; Mazzilli, Emilio; Zelante, Leopoldo; Bisceglia, Luigi

    2011-01-01

    To evaluate the involvement of Visual System Homeobox 1 (VSX1), Secreted Protein Acidic and Rich in Cysteine (SPARC), Superoxide Dismutase 1 (SOD1), Lysyl Oxidase (LOX), and Tissue Inhibitor of Metalloproteinase 3 (TIMP3) in sporadic and familial keratoconus. Mutational analysis of the five genes was performed by sequencing and fragment analysis in a large cohort of 302 Italian patients, with a diagnosis of keratoconus based on clinical examination and corneal topography. The variants identified in VSX1 and SPARC were also assessed in the available relatives of the probands. A novel mutation p.G239R and previously reported mutations were found in VSX1. Novel and already reported variants were identified in SPARC and SOD1, whose pathogenic significance has not been established. No pathogenic variants have been identified in LOX and TIMP3. Molecular analysis of the five genes in a cohort of 225 sporadic and 77 familial keratoconus cases confirms the possible pathogenic role of VSX1 though in a small number of patients; a possible involvement of LOX and TIMP3 could be excluded; and the role played by SOD1 and SPARC in determining the disease as not been definitively clarified. Further studies are required to identify other important genetic factors involved in the pathogenesis and progression of the disease that in the authors' opinion, and according with several authors, should be considered as a complex disease.

  13. Mutational screening of VSX1, SPARC, SOD1, LOX, and TIMP3 in keratoconus

    Science.gov (United States)

    De Bonis, Patrizia; Laborante, Antonio; Pizzicoli, Costantina; Stallone, Raffaella; Barbano, Raffaela; Longo, Costanza; Mazzilli, Emilio; Zelante, Leopoldo

    2011-01-01

    Purpose To evaluate the involvement of Visual System Homeobox 1 (VSX1), Secreted Protein Acidic and Rich in Cysteine (SPARC), Superoxide Dismutase 1 (SOD1), Lysyl Oxidase (LOX), and Tissue Inhibitor of Metalloproteinase 3 (TIMP3) in sporadic and familial keratoconus. Methods Mutational analysis of the five genes was performed by sequencing and fragment analysis in a large cohort of 302 Italian patients, with a diagnosis of keratoconus based on clinical examination and corneal topography. The variants identified in VSX1 and SPARC were also assessed in the available relatives of the probands. Results A novel mutation p.G239R and previously reported mutations were found in VSX1. Novel and already reported variants were identified in SPARC and SOD1, whose pathogenic significance has not been established. No pathogenic variants have been identified in LOX and TIMP3. Conclusions Molecular analysis of the five genes in a cohort of 225 sporadic and 77 familial keratoconus cases confirms the possible pathogenic role of VSX1 though in a small number of patients; a possible involvement of LOX and TIMP3 could be excluded; and the role played by SOD1 and SPARC in determining the disease as not been definitively clarified. Further studies are required to identify other important genetic factors involved in the pathogenesis and progression of the disease that in the authors’ opinion, and according with several authors, should be considered as a complex disease. PMID:21976959

  14. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1.

    Science.gov (United States)

    Ghadge, Ghanashyam D; Pavlovic, John D; Koduvayur, Sujatha P; Kay, Brian K; Roos, Raymond P

    2013-08-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Reduction of colitis by prebiotics in HLA-1327 transgenic rats is associated with microflora changes and immunomodulation

    NARCIS (Netherlands)

    Hoentjen, F; Welling, GW; Harmsen, HJM; Zhang, XY; Snart, J; Tannock, GW; Lien, K; Churchill, TA; Lupicki, M; Dieleman, LA

    2005-01-01

    HLA-B27 transgenic rats develop spontaneous colitis under specific pathogen-free conditions (SPF) but germ-free rats remain disease-free, emphasizing a role for intestinal bacteria in the pathogenesis of chronic intestinal inflammation. Prebiotics are dietary substances that affect the host by

  16. Megaesophagus in a line of transgenic rats: a model of achalasia.

    Science.gov (United States)

    Pang, J; Borjeson, T M; Muthupalani, S; Ducore, R M; Carr, C A; Feng, Y; Sullivan, M P; Cristofaro, V; Luo, J; Lindstrom, J M; Fox, J G

    2014-11-01

    Megaesophagus is defined as the abnormal enlargement or dilatation of the esophagus, characterized by a lack of normal contraction of the esophageal walls. This is called achalasia when associated with reduced or no relaxation of the lower esophageal sphincter (LES). To date, there are few naturally occurring models for this disease. A colony of transgenic (Pvrl3-Cre) rats presented with megaesophagus at 3 to 4 months of age; further breeding studies revealed a prevalence of 90% of transgene-positive animals having megaesophagus. Affected rats could be maintained on a total liquid diet long term and were shown to display the classic features of dilated esophagus, closed lower esophageal sphincter, and abnormal contractions on contrast radiography and fluoroscopy. Histologically, the findings of muscle degeneration, inflammation, and a reduced number of myenteric ganglia in the esophagus combined with ultrastructural lesions of muscle fiber disarray and mitochondrial changes in the striated muscle of these animals closely mimic that seen in the human condition. Muscle contractile studies looking at the response of the lower esophageal sphincter and fundus to electrical field stimulation, sodium nitroprusside, and L-nitro-L-arginine methyl ester also demonstrate the similarity between megaesophagus in the transgenic rats and patients with achalasia. No primary cause for megaesophagus was found, but the close parallel to the human form of the disease, as well as ease of care and manipulation of these rats, makes this a suitable model to better understand the etiology of achalasia as well as study new management and treatment options for this incurable condition. © The Author(s) 2014.

  17. DDX4-EGFP transgenic rat model for the study of germline development and spermatogenesis.

    Science.gov (United States)

    Gassei, Kathrin; Sheng, Yi; Fayomi, Adetunji; Mital, Payal; Sukhwani, Meena; Lin, Chih-Cheng; Peters, Karen A; Althouse, Andrew; Valli, Hanna; Orwig, Kyle E

    2017-03-01

    Spermatogonial stem cells (SSC) are essential for spermatogenesis and male fertility. In addition, these adult tissue stem cells can be used as vehicles for germline modification in animal models and may have application for treating male infertility. To facilitate the investigation of SSCs and germ lineage development in rats, we generated a DEAD-box helicase 4 (DDX4) (VASA) promoter-enhanced green fluorescent protein (EGFP) reporter transgenic rat. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed that EGFP was expressed in the germ cells of the ovaries and testes and was absent in somatic cells and tissues. Germ cell transplantation demonstrated that the EGFP-positive germ cell population from DDX4-EGFP rat testes contained SSCs capable of establishing spermatogenesis in experimentally infertile mouse recipient testes. EGFP-positive germ cells could be easily isolated by fluorescence-activated cells sorting, while simultaneously removing testicular somatic cells from DDX4-EGFP rat pup testes. The EGFP-positive fraction provided an optimal cell suspension to establish rat SSC cultures that maintained long-term expression of zinc finger and BTB domain containing 16 (ZBTB16) and spalt-like transcription factor 4 (SALL4), two markers of mouse SSCs that are conserved in rats. The novel DDX4-EGFP germ cell reporter rat described here combined with previously described GCS-EGFP rats, rat SSC culture and gene editing tools will improve the utility of the rat model for studying stem cells and germ lineage development. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction.

  18. P2X7 Receptor Activation Modulates Autophagy in SOD1-G93A Mouse Microglia

    Directory of Open Access Journals (Sweden)

    Paola Fabbrizio

    2017-08-01

    Full Text Available Autophagy and inflammation play determinant roles in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS, an adult-onset neurodegenerative disease characterized by deterioration and final loss of upper and lower motor neurons (MN priming microglia to sustain neuroinflammation and a vicious cycle of neurodegeneration. Given that extracellular ATP through P2X7 receptor constitutes a neuron-to-microglia alarm signal implicated in ALS, and that P2X7 affects autophagy in immune cells, we have investigated if autophagy can be directly triggered by P2X7 activation in primary microglia from superoxide dismutase 1 (SOD1-G93A mice. We report that P2X7 enhances the expression of the autophagic marker microtubule-associated protein 1 light chain 3 (LC3-II, via mTOR pathway and concomitantly with modulation of anti-inflammatory M2 microglia markers. We also demonstrate that the autophagic target SQSTM1/p62 is decreased in SOD1-G93A microglia after a short stimulation of P2X7, but increased after a sustained challenge. These effects are prevented by the P2X7 antagonist A-804598, and the autophagy/phosphoinositide-3-kinase inhibitor wortmannin (WM. Finally, a chronic in vivo treatment with A-804598 in SOD1-G93A mice decreases the expression of SQSTM1/p62 in lumbar spinal cord at end stage of disease. These data identify the modulation of the autophagic flux as a novel mechanism by which P2X7 activates ALS-microglia, to be considered for further investigations in ALS.

  19. Specific expression of an oxytocin-enhanced cyan fluorescent protein fusion transgene in the rat hypothalamus and posterior pituitary

    Science.gov (United States)

    Katoh, Akiko; Fujihara, Hiroaki; Ohbuchi, Toyoaki; Onaka, Tatsushi; Young, W. Scott; Dayanithi, Govindan; Yamasaki, Yuka; Kawata, Mitsuhiro; Suzuki, Hitoshi; Otsubo, Hiroki; Suzuki, Hideaki; Murphy, David; Ueta, Yoichi

    2010-01-01

    We have generated rats bearing an oxytocin (OXT)-enhanced cyan fluorescent protein (eCFP) fusion transgene designed from a murine construct previously shown to be faithfully expressed in transgenic mice. In situ hybridisation histochemistry revealed that the OXT-eCFP fusion gene was expressed in the supraoptic (SON) and the paraventricular nuclei (PVN) in these rats. The fluorescence emanating from eCFP was observed only in the SON, the PVN, the internal layer of the median eminence (ME) and the posterior pituitary (PP). In in vitro preparations, freshly dissociated cells from the SON and axon terminals showed clear eCFP fluorescence. Immunohistochemistry for OXT and arginine vasopressin (AVP) revealed that the eCFP fluorescence co-localises with OXT-immunofluorescence, but not with AVP-immunofluorescence in the SON and the PVN. Although the expression levels of the OXT-eCFP fusion gene in the SON and the PVN showed a wide range of variation in transgenic rats, eCFP fluorescence was markedly increased in the SON and the PVN, but decreased in the PP after chronic salt loading. The expression of the OXT gene was significantly increased in the SON and the PVN after chronic salt loading in both non-transgenic and transgenic rats. Compared to wild-type animals, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration, OXT and AVP levels, suggesting that the fusion gene expression did not disturb any physiological processes. These results suggest that our new transgenic rat is a valuable new tool to identify OXT-producing neurones and their terminals. PMID:20026620

  20. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  1. Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2008-04-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infection and the consequent acquired immunodeficiency syndrome (AIDS has protean manifestations, including muscle wasting and cardiomyopathy, which contribute to its high morbidity. The pathogenesis of these myopathies remains partially understood, and may include nutritional deficiencies, biochemical abnormalities, inflammation, and other mechanisms due to viral infection and replication. Growing evidence has suggested that HIV-1-related proteins expressed by the host in response to viral infection, including Tat and gp120, may also be involved in the pathophysiology of AIDS, particularly in cells or tissues that are not directly infected with HIV-1. To explore the potentially independent effects of HIV-1-related proteins on heart and skeletal muscles, we used a transgenic rat model that expresses several HIV-1-related proteins (e.g., Tat, gp120, and Nef. Outcome measures included basic heart and skeletal muscle morphology, glutathione metabolism and oxidative stress, and gene expressions of atrogin-1, muscle ring finger protein-1 (MuRF-1 and Transforming Growth Factor-β1 (TGFβ1, three factors associated with muscle catabolism. Results Consistent with HIV-1 associated myopathies in humans, HIV-1 transgenic rats had increased relative heart masses, decreased relative masses of soleus, plantaris and gastrocnemius muscles, and decreased total and myosin heavy chain type-specific plantaris muscle fiber areas. In both tissues, the levels of cystine (Cyss, the oxidized form of the anti-oxidant cysteine (Cys, and Cyss:Cys ratios were significantly elevated, and cardiac tissue from HIV-1 transgenic rats had altered glutathione metabolism, all reflective of significant oxidative stress. In HIV-1 transgenic rat hearts, MuRF-1 gene expression was increased. Further, HIV-1-related protein expression also increased atrogin-1 (~14- and ~3-fold and TGFβ1 (~5-fold and ~3-fold in heart and

  2. Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats.

    Science.gov (United States)

    Persons, Amanda L; Bradaric, Brinda D; Dodiya, Hemraj B; Ohene-Nyako, Michael; Forsyth, Christopher B; Keshavarzian, Ali; Shaikh, Maliha; Napier, T Celeste

    2018-01-01

    The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1), two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults.

  3. Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats.

    Directory of Open Access Journals (Sweden)

    Amanda L Persons

    Full Text Available The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1, two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults.

  4. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    International Nuclear Information System (INIS)

    Smietana, Michael J.; Arruda, Ellen M.; Faulkner, John A.; Brooks, Susan V.; Larkin, Lisa M.

    2010-01-01

    Research highlights: → Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. → Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. → Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Mice deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1 -/- mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1 -/- mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm 2 ) and strength (MPa) is diminished in Sod1 -/- compared to WT mice. Femurs were obtained from male and female WT and Sod1 -/- mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1 -/- mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1 -/- mice compared to WT as well as between genders. These data indicate that increased oxidative stress

  5. Motor terminal degeneration unaffected by activity changes in SOD1G93A mice; a possible role for glycolysis

    OpenAIRE

    Carrasco, Dario I.; Bichler, Edyta K.; Rich, Mark M.; Wang, Xueyong; Seburn, Kevin L.; Pinter, Martin J.

    2012-01-01

    This study examined whether activity is a contributing factor to motor terminal degeneration in mice that overexpress the G93A mutation of the SOD1 enzyme found in humans with inherited motor neuron disease. Previously, we showed that overload of muscles accomplished by synergist denervation accelerated motor terminal degeneration in dogs with hereditary canine spinal muscular atrophy (HCSMA). In the present study, we found that SOD1 plantaris muscles overloaded for 2 months showed no differe...

  6. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress.

    Science.gov (United States)

    Rowson, Sydney A; Harrell, Constance S; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J; Kelly, Sean D; Reddy, Renuka; Neigh, Gretchen N

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  7. Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A

    Energy Technology Data Exchange (ETDEWEB)

    Galaleldeen, Ahmad; Strange, Richard W.; Whitson, Lisa J.; Antonyuk, Svetlana V.; Narayana, Narendra; Taylor, Alexander B.; Schuermann, Jonathan P.; Holloway, Stephen P.; Hasnain, S.Samar; Hart, P. John; (Texas-HSC); (Liverpool)

    2010-07-19

    Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here we report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.

  8. SOD1 Overexpression Preserves Baroreflex Control of Heart Rate with an Increase of Aortic Depressor Nerve Function

    Science.gov (United States)

    Hatcher, Jeffrey; Gu, He; Cheng, Zixi (Jack)

    2016-01-01

    Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2 ∙−), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2 ∙− may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951

  9. Relaxin Treatment in an Ang-II-Based Transgenic Preeclamptic-Rat Model.

    Directory of Open Access Journals (Sweden)

    Nadine Haase

    Full Text Available Relaxin is a peptide related to pregnancy that induces nitric oxide-related and gelatinase-related effects, allowing vasodilation and pregnancy-related adjustments permitting parturition to occur. Relaxin controls the hemodynamic and renovascular adaptive changes that occur during pregnancy. Interest has evolved regarding relaxin and a therapeutic principle in preeclampsia and heart failure. Preeclampsia is a pregnancy disorder, featuring hypertension, proteinuria and placental anomalies. We investigated relaxin in an established transgenic rat model of preeclampsia, where the phenotype is induced by angiotensin (Ang-II production in mid pregnancy. We gave recombinant relaxin to preeclamtic rats at day 9 of gestation. Hypertension and proteinuria was not ameliorated after relaxin administration. Intrauterine growth retardation of the fetus was unaltered by relaxin. Heart-rate responses and relaxin levels documented drug effects. In this Ang-II-based model of preeclampsia, we could not show a salubrious effect on preeclampsia.

  10. Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats

    Directory of Open Access Journals (Sweden)

    Haller Hermann

    2002-01-01

    Full Text Available Abstract Background We are investigating a double transgenic rat (dTGR model, in which rats transgenic for the human angiotensinogen and renin genes are crossed. These rats develop moderately severe hypertension but die of end-organ cardiac and renal damage by week 7. The heart shows necrosis and fibrosis, whereas the kidneys resemble the hemolytic-uremic syndrome vasculopathy. Surface adhesion molecules (ICAM-1 and VCAM-1 are expressed early on the endothelium, while the corresponding ligands are found on circulating leukocytes. Leukocyte infiltration in the vascular wall accompanies PAI-1, MCP-1, iNOS and Tissue Factor expression. Furthermore we show evidence that Ang II causes the upregulation of NF-kB in our model. Methods We started PDTC-treatment on four weeks old dTGR (200 mg/kg sc and age-matched SD rats.. Blood-pressure- and albuminuria- measurements were monitored during the treatement period (four weeks. The seven weeks old animals were killed, hearts and kidneys were isolated and used for immunohistochemical-and electromobility shift assay analsis. Results Chronic treatment with the antioxidant PDTC decreased blood pressure (162 ± 8 vs. 190 ± 7 mm Hg, p = 0.02. Cardiac hypertrophy index was significantly reduced (4.90 ± 0.1 vs. 5.77 ± 0.1 mg/g, p Conclusion Our data show that inhibition of NF-κB by PDTC markedly reduces inflammation, iNOS expression in the dTGR most likely leading to decreased cytotoxicity, and cell proliferation. Thus, NF-κB activation plays an important role in ANG II-induced end-organ damage.

  11. HIV-1 transgenic rats display alterations in immunophenotype and cellular responses associated with aging.

    Science.gov (United States)

    Abbondanzo, Susan J; Chang, Sulie L

    2014-01-01

    Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg) rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS) to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.

  12. HIV-1 transgenic rats display alterations in immunophenotype and cellular responses associated with aging.

    Directory of Open Access Journals (Sweden)

    Susan J Abbondanzo

    Full Text Available Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.

  13. Increased oxytocin-monomeric red fluorescent protein 1 fluorescent intensity with urocortin-like immunoreactivity in the hypothalamo-neurohypophysial system of aged transgenic rats.

    Science.gov (United States)

    Ohno, Shigeo; Hashimoto, Hirofumi; Fujihara, Hiroaki; Fujiki, Nobuhiro; Yoshimura, Mitsuhiro; Maruyama, Takashi; Motojima, Yasuhito; Saito, Reiko; Ueno, Hiromichi; Sonoda, Satomi; Ohno, Motoko; Umezu, Yuichi; Hamamura, Akinori; Saeki, Satoru; Ueta, Yoichi

    2018-03-01

    To visualize oxytocin in the hypothalamo-neurohypophysial system, we generated a transgenic rat that expresses the oxytocin-monomeric red fluorescent protein 1 (mRFP1) fusion gene. In the present study, we examined the age-related changes of oxytocin-mRFP1 fluorescent intensity in the posterior pituitary (PP), the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of transgenic rats. The mRFP1 fluorescent intensities were significantly increased in the PP, the SON and the PVN of 12-, 18- and 24-month-old transgenic rats in comparison with 3-month-old transgenic rats. Immunohistochemical staining for urocortin, which belongs to the family of corticotropin-releasing factor family, revealed that the numbers of urocortin-like immunoreactive (LI) cells in the SON and the PVN were significantly increased in 12-, 18- and 24-month-old transgenic rats in comparison with 3-month-old transgenic rats. Almost all of urocortin-LI cells co-exist mRFP1-expressing cells in the SON and the PVN of aged transgenic rats. These results suggest that oxytocin content of the hypothalamo-neurohypophysial system may be modulated by age-related regulation. The physiological role of the co-existence of oxytocin and urocortin in the SON and PVN of aged rats remains unclear. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  14. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats

    Directory of Open Access Journals (Sweden)

    Melissa N. van Tok

    2017-08-01

    Full Text Available Spondyloarthritis (SpA does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8+ T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response. In vitro, splenocytes were stimulated with heat-inactivated Mycobacterium tuberculosis and cytokine expression and production was measured. In vivo, male and female rats were immunized with 30, 60, or 90 µg of heat-inactivated M. tuberculosis and clinically monitored for spondylitis and arthritis development. After validation of the model, we tested whether prophylactic and therapeutic TNF targeting affected spondylitis and arthritis. In vitro stimulation with heat-inactivated M. tuberculosis strongly induced gene expression of pro-inflammatory cytokines such as TNF, IL-6, IL-1α, and IL-1β, in the HLA-B27 transgenic rats compared with controls. In vivo immunization induced an increased spondylitis and arthritis incidence and an accelerated and synchronized onset of spondylitis and arthritis in HLA-B27 transgenic males and females. Moreover, immunization overcame the protective effect of orchiectomy. Prophylactic TNF targeting resulted in delayed spondylitis and arthritis development and reduced arthritis severity, whereas therapeutic TNF blockade did not affect spondylitis and arthritis severity. Collectively, these data indicate that innate immune activation plays a role in the initiation of HLA-B27-associated disease and allowed to establish a useful in vivo model to study the cellular and molecular mechanisms of disease initiation and progression.

  15. Modified impact of emotion on temporal discrimination in a transgenic rat model of Huntington disease

    Directory of Open Access Journals (Sweden)

    Alexis eFaure

    2013-09-01

    Full Text Available Huntington’s disease (HD is characterized by triad of motor, cognitive and emotional symptoms along with neuropathology in fronto-striatal circuit and limbic system including amygdala. Emotional alterations, which have a negative impact on patient well-being, represent some of the earliest symptoms of HD and might be related to the onset of the neurodegenerative process. In the transgenic rat model (tgHD rats, evidence suggest emotional alterations at the symptomatic stage along with neuropathology of the central nucleus of amygdala (CE. Studies in humans and animals demonstrate that emotion can modulate time perception. The impact of emotion on time perception has never been tested in HD, nor is it known if that impact could be part of the presymptomatic emotional phenotype of the pathology. The aim of this paper was to characterize the effect of emotion on temporal discrimination in presymptomatic tgHD animals. In the first experiment, we characterized the acute effect of an emotion (fear conditioned stimulus on temporal discrimination using a bisection procedure, and tested its dependency upon an intact central amygdala. The second experiment was aimed at comparing presymptomatic homozygous transgenic animals at 7-months of age and their wild-type littermates (WT in their performance on the modulation of temporal discrimination by emotion. Our principal findings show that (1 a fear cue produces a short-lived decrease of temporal precision after its termination, and (2 animals with medial CE lesion and presymptomatic tgHD animals demonstrate an alteration of this emotion-evoked temporal distortion. The results contribute to our knowledge about the presymptomatic phenotype of this HD rat model, showing susceptibility to emotion that may be related to dysfunction of the central nucleus of amygdala.

  16. Moderate additive effects of endothelin receptor A blockade in Ren-2 transgenic rats subjected to various types of RAS blockade

    Czech Academy of Sciences Publication Activity Database

    Vaněčková, Ivana; Řezáčová, Lenka; Kuneš, Jaroslav; Zicha, Josef

    2016-01-01

    Roč. 159, Aug 15 (2016), s. 127-154 ISSN 0024-3205 R&D Projects: GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : aliskiren * captopril * atrasentan * hypertension * losartan * ren-2 transgenic rats Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.936, year: 2016

  17. Suppression of inflammation by dexamethasone prolongs adenoviral vector-mediated transgene expression in the facial nucleus of the rat

    NARCIS (Netherlands)

    Hermens, W.T.J.M.C.; Verhaagen, J

    1998-01-01

    Adenoviral vector directed gene transfer to rat facial motoneurons occurs efficiently following intra-parenchymal injection of relatively high dosages (> or =10(7) pfu per injection) of a prototype first generation adenoviral vector. However, high level of transgene expression, as observed during

  18. Cardiac remodeling during and after renin-angiotensin system stimulation in Cyp1a1-Ren2 transgenic rats

    DEFF Research Database (Denmark)

    Heijnen, Bart Fj; Pelkmans, Leonie Pj; Danser, Ah Jan

    2013-01-01

    This study investigated renin-angiotensin system (RAS)-induced cardiac remodeling and its reversibility in the presence and absence of high blood pressure (BP) in Cyp1a1-Ren2 transgenic inducible hypertensive rats (IHR). In IHR (pro)renin levels and BP can be dose-dependently titrated by oral...

  19. Propensity of mutant SOD1 to form a destabilized monomer predicts cellular aggregation and toxicity but not in vitro aggregation propensity

    Directory of Open Access Journals (Sweden)

    Luke McAlary

    2016-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterised by the rapid and progressive degeneration of upper and lower motor neurons in the spinal cord, brain stem and motor cortex. The first gene linked to ALS was the gene encoding the free radical scavenging enzyme superoxide dismutase-1 (SOD1 that currently has over 180, mostly missense, ALS-associated mutations identified. SOD1-associated fALS patients show remarkably broad mean survival times (< 1 year to ~17 years death post-diagnosis that are mutation dependent. A hallmark of SOD1-associated ALS is the deposition of SOD1 into large insoluble aggregates in motor neurons. This is thought to be a consequence of mutation induced structural destabilisation and/or oxidative damage leading to the misfolding and aggregation of SOD1 into a neurotoxic species. Here we aim to understand the relationship between SOD1 variant toxicity, structural stability, and aggregation propensity using a combination of cell culture and purified protein assays. Cell based assays indicated that aggregation of SOD1 variants correlate closely to cellular toxicity. However, the relationship between cellular toxicity and disease severity was less clear. We next utilised mass spectrometry to interrogate the structural consequences of metal loss and disulfide reduction on fALS-associated SOD1 variant structure. All variants showed evidence of unfolded, intermediate, and compact conformations, with SOD1G37R, SOD1G93A and SOD1V148G having the greatest abundance of intermediate and unfolded SOD1. SOD1G37R was an informative outlier as it had a high propensity to unfold and form oligomeric aggregates, but it did not aggregate to the same extent as SOD1G93A and SOD1V148G in in vitro aggregation assays. Furthermore, seeding the aggregation of DTT/EDTA-treated SOD1G37R with preformed SOD1G93A fibrils elicited minimal aggregation response, suggesting that the arginine substitution at position-37 blocks

  20. Analysis of mutant SOD1 electrophoretic mobility by Blue Native gel electrophoresis; evidence for soluble multimeric assemblies.

    Directory of Open Access Journals (Sweden)

    Hilda H Brown

    Full Text Available Mutations in superoxide dismutase 1 (SOD1 cause familial forms of amyotrophic lateral sclerosis (fALS. Disease causing mutations have diverse consequences on the activity and half-life of the protein, ranging from complete inactivity and short half-life to full activity and long-half-life. Uniformly, disease causing mutations induce the protein to misfold and aggregate and such aggregation tendencies are readily visualized by over-expression of the proteins in cultured cells. In the present study we have investigated the potential of using immunoblotting of proteins separated by Blue-Native gel electrophoresis (BNGE as a means to identify soluble multimeric forms of mutant protein. We find that over-expressed wild-type human SOD1 (hSOD1 is generally not prone to form soluble high molecular weight entities that can be separated by BNGE. For ALS mutant SOD1, we observe that for all mutants examined (A4V, G37R, G85R, G93A, and L126Z, immunoblots of BN-gels separating protein solubilized by digitonin demonstrated varied amounts of high molecular weight immunoreactive entities. These entities lacked reactivity to ubiquitin and were partially dissociated by reducing agents. With the exception of the G93A mutant, these entities were not reactive to the C4F6 conformational antibody. Collectively, these data demonstrate that BNGE can be used to assess the formation of soluble multimeric assemblies of mutant SOD1.

  1. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion.

    Science.gov (United States)

    Pokrishevsky, Edward; Grad, Leslie I; Cashman, Neil R

    2016-03-01

    Amyotrophic lateral sclerosis (ALS), which appears to spread through the neuroaxis in a spatiotemporally restricted manner, is linked to heritable mutations in genes encoding SOD1, TDP-43, FUS, C9ORF72, or can occur sporadically without recognized genetic mutations. Misfolded human wild-type (HuWt) SOD1 has been detected in both familial and sporadic ALS patients, despite mutations in SOD1 accounting for only 2% of total cases. We previously showed that accumulation of pathological TDP-43 or FUS coexist with misfolded HuWtSOD1 in patient motor neurons, and can trigger its misfolding in cultured cells. Here, we used immunocytochemistry and immunoprecipitation to demonstrate that TDP-43 or FUS-induced misfolded HuWtSOD1 can propagate from cell-to-cell via conditioned media, and seed cytotoxic misfolding of endogenous HuWtSOD1 in the recipient cells in a prion-like fashion. Knockdown of SOD1 using siRNA in recipient cells, or incubation of conditioned media with misfolded SOD1-specific antibodies, inhibits intercellular transmission, indicating that HuWtSOD1 is an obligate seed and substrate of propagated misfolding. In this system, intercellular spread of SOD1 misfolding is not accompanied by transmission of TDP-43 or FUS pathology. Our findings argue that pathological TDP-43 and FUS may exert motor neuron pathology in ALS through the initiation of propagated misfolding of SOD1.

  2. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for huntington disease.

    Directory of Open Access Journals (Sweden)

    Yah-Se K Abada

    Full Text Available RATIONALE: Huntington disease (HD is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35 in the HUNTINGTIN (HTT gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies. OBJECTIVES: The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats. MATERIALS AND METHODS: Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test. RESULTS: Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age. CONCLUSION: The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.

  3. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for huntington disease.

    Science.gov (United States)

    Abada, Yah-Se K; Nguyen, Huu Phuc; Schreiber, Rudy; Ellenbroek, Bart

    2013-01-01

    Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies. The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats. Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test. Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age. The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.

  4. Developmental immunotoxicity is not associated with the consumption of transgenic Bt rice TT51 in rats.

    Science.gov (United States)

    Hu, Jing; Liang, Chunlai; Zhang, Xiaopeng; Zhang, Qiannan; Cui, Wenming; Yu, Zhou

    2018-04-01

    TT51 is a transgenic strain of Bt rice generated by fusing a synthetic CryAb/Ac gene into MingHui rice. In this study, rats from F0, F1, and F2 generations were fed a diet with 60% TT51 rice, MingHui rice, or nominal-origin rice. The study focused on developmental immunotoxicity in F1 and F2 offspring after long-term consumption of TT51. A wide range of immunological parameters was monitored in this two-generation study on reproductive toxicity. The experiments were performed on F1 and F2 offspring at postnatal days 21 and 42. No adverse clinical effects were observed in any of the experimental groups. In addition, histopathology observations and immunotoxicity tests, including hematological indicators, spleen lymphocyte subsets, natural killer cell activity, lymphoproliferative response, and plaque-forming cell assay, revealed no significant difference between the groups. These results indicated that developmental immunotoxicity was not associated with a diet of transgenic Bt rice TT51, compared to the parental MingHui rice. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Motor terminal degeneration unaffected by activity changes in SOD1(G93A) mice; a possible role for glycolysis.

    Science.gov (United States)

    Carrasco, Dario I; Bichler, Edyta K; Rich, Mark M; Wang, Xueyong; Seburn, Kevin L; Pinter, Martin J

    2012-10-01

    This study examined whether activity is a contributing factor to motor terminal degeneration in mice that overexpress the G93A mutation of the SOD1 enzyme found in humans with inherited motor neuron disease. Previously, we showed that overload of muscles accomplished by synergist denervation accelerated motor terminal degeneration in dogs with hereditary canine spinal muscular atrophy (HCSMA). In the present study, we found that SOD1 plantaris muscles overloaded for 2months showed no differences of neuromuscular junction innervation status when compared with normally loaded, contralateral plantaris muscles. Complete elimination of motor terminal activity using blockade of sciatic nerve conduction with tetrodotoxin cuffs for 1month also produced no change of plantaris innervation status. To assess possible effects of activity on motor terminal function, we examined the synaptic properties of SOD1 soleus neuromuscular junctions at a time when significant denervation of close synergists had occurred as a result of natural disease progression. When examined in glucose media, SOD1 soleus synaptic properties were similar to wildtype. When glycolysis was inhibited and ATP production limited to mitochondria, however, blocking of evoked synaptic transmission occurred and a large increase in the frequency of spontaneous mEPCs was observed. Similar effects were observed at neuromuscular junctions in muscle from dogs with inherited motor neuron disease (HCSMA), although significant defects of synaptic transmission exist at these neuromuscular junctions when examined in glucose media, as reported previously. These results suggest that glycolysis compensates for mitochondrial dysfunction at motor terminals of SOD1 mice and HCSMA dogs. This compensatory mechanism may help to support resting and activity-related metabolism in the presence of dysfunctional mitochondria and prolong the survival of SOD1 motor terminals. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Motor terminal degeneration unaffected by activity changes in SOD1G93A mice; a possible role for glycolysis

    Science.gov (United States)

    Carrasco, Dario I.; Bichler, Edyta K.; Rich, Mark M.; Wang, Xueyong; Seburn, Kevin L.; Pinter, Martin J.

    2012-01-01

    This study examined whether activity is a contributing factor to motor terminal degeneration in mice that overexpress the G93A mutation of the SOD1 enzyme found in humans with inherited motor neuron disease. Previously, we showed that overload of muscles accomplished by synergist denervation accelerated motor terminal degeneration in dogs with hereditary canine spinal muscular atrophy (HCSMA). In the present study, we found that SOD1 plantaris muscles overloaded for 2 months showed no differences of neuromuscular junction innervation status when compared with normally loaded, contralateral plantaris muscles. Complete elimination of motor terminal activity using blockade of sciatic nerve conduction with tetrodotoxin cuffs for 1 month also produced no change of plantaris innervation status. To assess possible effects of activity on motor terminal function, we examined the synaptic properties of SOD1 soleus neuromuscular junctions at a time when significant denervation of close synergists had occurred as a result of natural disease progression. When examined in glucose media, SOD1 soleus synaptic properties were similar to wildtype. When glycolysis was inhibited and ATP production limited to mitochondria, however, blocking of evoked synaptic transmission occurred and a large increase in the frequency of spontaneous mEPCs was observed. Similar effects were observed at neuromuscular junctions in muscle from dogs with inherited motor neuron disease (HCSMA), although significant defects of synaptic transmission exist at these neuromuscular junctions when examined in glucose media, as reported previously. These results suggest that glycolysis compensates for mitochondrial dysfunction at motor terminals of SOD1 mice and HCSMA dogs. This compensatory mechanism may help to support resting and activity-related metabolism in the presence of dysfunctional mitochondria and prolong the survival of SOD1 motor terminals. PMID:22750521

  7. Reduced p75NTRexpression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Küst, B.M.; Brouwer, N.; Mantingh, I.J.; Boddeke, H.W.G.M.; Copray, J.C.V.M.

    2003-01-01

    hSOD1 (G93A) transgenic mice develop pathological changes similar to those in patients with familial amyotrophic lateral sclerosis (FALS). In particular, the progressive degeneration of motoneurons is charactered in this mouse model. One feature of stressed motoneurons in ALS and the hSOD1 mice is

  8. Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats

    Science.gov (United States)

    Davidson, Alec J.; Stokkan, Karl-Arne; Yamazaki, Shin; Menaker, Michael

    2002-01-01

    The mammalian Per1 gene is an important component of the core cellular clock mechanism responsible for circadian rhythms. The rodent liver and other tissues rhythmically express Per1 in vitro but typically damp out within a few cycles. In the liver, the peak of this rhythm occurs in the late subjective night in an ad lib-fed rat, but will show a large phase advance in response to restricted availability of food during the day. The relationship between this shift in the liver clock and food-anticipatory activity (FAA), the circadian behavior entrained by daily feeding, is currently unknown. Insulin is released during feeding in mammals and could serve as an entraining signal to the liver. To test the role of insulin in the shift in liver Per1 expression and the generation of FAA, per-luciferase transgenic rats were made diabetic with a single injection of streptozotocine. Following 1 week of restricted feeding and locomotor activity monitoring, liver was collected for per-luc recording. In two separate experiments, FAA emerged and liver Per1 phase-shifted in response to daytime 8-h food restriction. The results rule out insulin as a necessary component of this system.

  9. XBP1 Depletion Precedes Ubiquitin Aggregation and Golgi Fragmentation in TDP-43 Transgenic Rats

    Science.gov (United States)

    Tong, Jianbin; Huang, Cao; Bi, Fangfang; Wu, Qinxue; Huang, Bo; Zhou, Hongxia

    2012-01-01

    Protein inclusion is a prominent feature of neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) that is characterized by the presence of ubiquitinated TDP-43 inclusion. Presence of protein inclusions indicates an interruption to protein degradation machinery or the overload of misfolded proteins. In response to the increase in misfolded proteins, cells usually initiate a mechanism called unfolded protein response (UPR) to reduce misfolded proteins in the lumen of endoplasmic reticules. Here we examined the effects of mutant TDP-43 on the UPR in transgenic rats that express mutant human TDP-43 restrictedly in the neurons of the forebrain. Overexpression of mutant TDP-43 in rats caused prominent aggregation of ubiquitin and remarkable fragmentation of Golgi complexes prior to neuronal loss. While ubiquitin aggregates and Golgi fragments were accumulating, neurons expressing mutant TDP-43 failed to upregulate chaperones residing in the endoplasmic reticules and failed to initiate the UPR. Prior to ubiquitin aggregation and Golgi fragmentation, neurons were depleted of X-box binding protein 1 (XBP1), a key player of UPR machinery. While it remains to determine how mutation of TDP-43 leads to the failure of the UPR, our data demonstrate that failure of the UPR is implicated in TDP-43 pathogenesis. PMID:22970712

  10. Phylogenetic Spread of Sequence Data Affects Fitness of SOD1 Consensus Enzymes: Insights from Sequence Statistics and Structural Analyses.

    Science.gov (United States)

    Goyal, Venuka Durani; Magliery, Thomas J

    2018-02-28

    Non-natural protein sequences with native-like structures and functions can be constructed successfully using consensus design. This design strategy is relatively well understood in repeat proteins with simple binding function, however detailed studies are lacking in globular enzymes. The SOD1 family is a good model for such studies due to the availability of large amount of sequence and structure data motivated by involvement of human SOD1 in the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). We constructed two consensus SOD1 enzymes from multiple sequence alignments from all organisms and eukaryotic organisms. A significant difference in their catalytic activities shows that the phylogenetic spread of the sequences used affects the fitness of the construct obtained. A mutation in an electrostatic loop and overall design incompatibilities between bacterial and eukaryotic sequences were implicated in this disparity. Based on this analysis, a bioinformatics approach was used to classify mutations thought to cause familial ALS providing a unique high level view of the physical basis of disease-causing aggregation of human SOD1. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  11. Increased Sensitivity to Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Atrayee Banerjee

    Full Text Available The mechanisms of alcohol-mediated advanced liver injury in HIV-infected individuals are poorly understood. Thus, this study was aimed to investigate the effect of binge alcohol on the inflammatory liver disease in HIV transgenic rats as a model for simulating human conditions. Female wild-type (WT or HIV transgenic rats were treated with three consecutive doses of binge ethanol (EtOH (3.5 g/kg/dose oral gavages at 12-h intervals or dextrose (Control. Blood and liver tissues were collected at 1 or 6-h following the last dose of ethanol or dextrose for the measurements of serum endotoxin and liver pathology, respectively. Compared to the WT, the HIV rats showed increased sensitivity to alcohol-mediated gut leakiness, hepatic steatosis and inflammation, as evidenced with the significantly elevated levels of serum endotoxin, hepatic triglycerides, histological fat accumulation and F4/80 staining. Real-time PCR analysis revealed that hepatic levels of toll-like receptor-4 (TLR4, leptin and the downstream target monocyte chemoattractant protein-1 (MCP-1 were significantly up-regulated in the HIV-EtOH rats, compared to all other groups. Subsequent experiments with primary cultured cells showed that both hepatocytes and hepatic Kupffer cells were the sources of the elevated MCP-1 in HIV-EtOH rats. Further, TLR4 and MCP-1 were found to be upregulated by leptin. Collectively, these results show that HIV rats, similar to HIV-infected people being treated with the highly active anti-retroviral therapy (HAART, are more susceptible to binge alcohol-induced gut leakiness and inflammatory liver disease than the corresponding WT, possibly due to additive or synergistic interaction between binge alcohol exposure and HIV infection. Based on these results, HIV transgenic rats can be used as a surrogate model to study the molecular mechanisms of many disease states caused by heavy alcohol intake in HIV-infected people on HAART.

  12. Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression

    Directory of Open Access Journals (Sweden)

    Priestley John V

    2008-10-01

    Full Text Available Abstract Background Mutations of the superoxide dismutase 1 (SOD1 gene are linked to amyotrophic lateral sclerosis (ALS, an invariably fatal neurological condition involving cortico-spinal degeneration. Mechanical injury can also determine spinal cord degeneration and act as a risk factor for the development of ALS. Results We have performed a comparative ontological analysis of the gene expression profiles of thoracic cord samples from rats carrying the G93A SOD1 gene mutation and from wild-type littermates subjected to mechanical compression of the spinal cord. Common molecular responses and gene expression changes unique to each experimental paradigm were evaluated against the functional development of each animal model. Gene Ontology categories crucial to protein folding, extracellular matrix and axonal formation underwent early activation in both experimental paradigms, but decreased significantly in the spinal cord from animals recovering from injury after 7 days and from the G93A SOD1 mutant rats at end-stage disease. Functional improvement after compression coincided with a massive up-regulation of growth-promoting gene categories including factors involved in angiogenesis and transcription, overcoming the more transitory surge of pro-apoptotic components and cell-cycle genes. The cord from G93A SOD1 mutants showed persistent over-expression of apoptotic and stress molecules with fewer neurorestorative signals, while functional deterioration was ongoing. Conclusion this study illustrates how cytoskeletal protein metabolism is central to trauma and genetically-induced spinal cord degeneration and elucidates the main molecular events accompanying functional recovery or decline in two different animal models of spinal cord degeneration.

  13. A transgenic rat for investigating the anatomy and function of corticotrophin releasing factor circuits

    Directory of Open Access Journals (Sweden)

    Matthew B Pomrenze

    2015-12-01

    Full Text Available Corticotrophin-releasing factor (CRF is a 41 amino acid neuropeptide that coordinates adaptive responses to stress. CRF projections from neurons in the central nucleus of the amygdala (CeA to the brainstem are of particular interest for their role in motivated behavior. To directly examine the anatomy and function of CRF neurons, we generated a BAC transgenic Crh-Cre rat in which bacterial Cre recombinase is expressed from the Crh promoter. Using Cre-dependent reporters, we found that Cre expressing neurons in these rats are immunoreactive for CRF and are clustered in the lateral CeA (CeL and the oval nucleus of the BNST. We detected major projections from CeA CRF neurons to parabrachial nuclei and the locus coeruleus, dorsal and ventral BNST, and more minor projections to lateral portions of the substantia nigra, ventral tegmental area, and lateral hypothalamus. Optogenetic stimulation of CeA CRF neurons evoked GABA-ergic responses in 11% of non-CRF neurons in the medial CeA (CeM and 44% of non-CRF neurons in the CeL. Chemogenetic stimulation of CeA CRF neurons induced Fos in a similar proportion of non-CRF CeM neurons but a smaller proportion of non-CRF CeL neurons. The CRF1 receptor antagonist R121919 reduced this Fos induction by two-thirds in these regions. These results indicate that CeL CRF neurons provide both local inhibitory GABA and excitatory CRF signals to other CeA neurons, and demonstrate the value of the Crh-Cre rat as a tool for studying circuit function and physiology of CRF neurons.

  14. Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats.

    Science.gov (United States)

    Katoh, Akiko; Fujihara, Hiroaki; Ohbuchi, Toyoaki; Onaka, Tatsushi; Hashimoto, Takashi; Kawata, Mitsuhiro; Suzuki, Hideaki; Ueta, Yoichi

    2011-07-01

    We have generated rats bearing an oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion transgene. The mRFP1 fluorescence was highly visible in ventral part of the supraoptic nucleus (SON) and the posterior pituitary in a whole mount. mRFP1 fluorescence in hypothalamic sections was also observed in the SON, the paraventricular nucleus (PVN), and the internal layer of the median eminence. Salt loading for 5 d caused a marked increase in mRFP1 fluorescence in the SON, the PVN, the median eminence, and the posterior pituitary. In situ hybridization histochemistry revealed that the expression of the mRNA encoding the OXT-mRFP1 fusion gene was observed in the SON and the PVN of euhydrated rats and increased dramatically after chronic salt loading. The expression of the endogenous OXT and the arginine vasopressin (AVP) genes were significantly increased in the SON and the PVN after chronic salt loading in both nontransgenic and transgenic rats. These responses were not different between male and female rats. Compared with nontransgenic rats, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration, OXT, and AVP levels. Finally, we succeeded in generating a double-transgenic rat that expresses both the OXT-mRFP1 fusion gene and the AVP-enhanced green fluorescent protein fusion gene. Our new transgenic rats are valuable new tools to study the physiology of the hypothalamo-neurohypophysial system.

  15. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation.

    Science.gov (United States)

    Hoentjen, Frank; Welling, Gjalt W; Harmsen, Hermie J M; Zhang, Xiaoyin; Snart, Jennifer; Tannock, Gerald W; Lien, Kelvin; Churchill, Thomas A; Lupicki, Maryla; Dieleman, Levinus A

    2005-11-01

    HLA-B27 transgenic rats develop spontaneous colitis under specific pathogen-free conditions (SPF) but germ-free rats remain disease-free, emphasizing a role for intestinal bacteria in the pathogenesis of chronic intestinal inflammation. Prebiotics are dietary substances that affect the host by stimulating growth and/or activity of potentially health promoting bacteria. The aims of this study were to investigate whether prebiotics can prevent colitis in SPF HLA-B27 rats, and secondly, to explore mechanisms of protection. SPF HLA-B27 transgenic rats received orally the prebiotic combination long-chain inulin and oligofructose (Synergy 1), or not, prior to the development of clinically detectable colitis. After seven weeks, cecal and colonic tissues were collected for gross cecal scores (GCS), histologic inflammatory scores (scale 0-4), and mucosal cytokine measurement. Cecal and colonic contents were collected for analysis of the gut microbiota by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH), and analysis of short-chain fatty acid composition. Prebiotic treatment significantly decreased GCS and inflammatory histologic scores in the cecum and colon. Prebiotic treatment also decreased cecal IL-1beta, but increased cecal TGF-beta concentrations. Inulin/oligofructose altered the cecal and colonic PCR-DGGE profiles, and FISH analysis showed significant increases in cecal Lactobacillus and Bifidobacterium populations after prebiotic treatment compared with water-treated rats. In conclusion, the prebiotic combination Synergy 1 reduced colitis in HLA-B27 transgenic rats, which effect was associated with alterations to the gut microbiota, decreased tissue proinflammatory cytokines and increased immunomodulatory molecules. These results show promise for prebiotics as primary or adjuvant maintenance therapy for chronic inflammatory bowel diseases.

  16. Rosuvastatin ameliorates inflammation, renal fat accumulation, and kidney injury in transgenic spontaneously hypertensive rats expressing human C-reactive protein

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Jan; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Mlejnek, Petr; Oliyarnyk, O.; Malínská, H.; Kazdová, L.; Mancini, M.; Pravenec, Michal

    2015-01-01

    Roč. 64, č. 3 (2015), s. 295-301 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LH11049; GA MŠk(CZ) LL1204; GA MZd(CZ) NT14325; GA ČR(CZ) GB14-36804G Institutional support: RVO:67985823 Keywords : rosuvastatin * kidney damage * CRP * transgenic * spontaneously hypertensive rat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.643, year: 2015

  17. Fat-specific transgenic expression of resistin in the spontaneously hypertensive rat impairs fatty acid re-esterification

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kazdová, L.; Cahová, M.; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Wang, J.; Qi, N.; Kurtz, T. W.

    2006-01-01

    Roč. 30, č. 7 (2006), s. 1157-1159 ISSN 0307-0565 R&D Projects: GA ČR(CZ) GA301/03/0751; GA MZd(CZ) NB7403; GA MŠk(CZ) 1M0520 Grant - others:HHMI(US) 55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : spontaneously hypertensive rat * transgenic resistin * fatty acid reesterification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.055, year: 2006

  18. Effects of Metformin on Tissue Oxidative and Dicarbonyl Stress in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein

    Czech Academy of Sciences Publication Activity Database

    Malínská, H.; Oliyarnyk, O.; Škop, V.; Šilhavý, Jan; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Strnad, Hynek; Kazdová, L.; Pravenec, Michal

    2016-01-01

    Roč. 11, č. 3 (2016), e0150924 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LL1204; GA MZd(CZ) NT14325 Institutional support: RVO:67985823 ; RVO:68378050 Keywords : inflammation * spontaneously hypertensive rat * transgenic * C-reactive protein * dicarbonyl stress * metformin Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.806, year: 2016

  19. Effects of transgenic expression of dopamine beta hydroxylase (Dbh) gene on blood pressure in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šilhavý, Jan; Mir, S.A.; Vaingankar, S. M.; Wang, J.; Kurtz, T. W.

    2016-01-01

    Roč. 65, č. 6 (2016), s. 1039-1044 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP301/12/0696; GA TA ČR(CZ) TA02010013 Institutional support: RVO:67985823 Keywords : spontaneously hypertensive rat * transgenic * dopamine beta hydroxylase * catecholamines * blood pressure * left ventricular mass Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.461, year: 2016

  20. Selection for increased adult body weight in mouse lines with and without the rat growth hormone transgene.

    Science.gov (United States)

    Nagai, J; Lin, C Y; Sabour, P

    1993-01-12

    Four lines of mice with and without the rat growth hormone (rGH) transgene were developed to measure responses to selection for increased 42-day body weight and evaluate fitness of mice with and without the rGH transgene. Each line contained selected and unselected (control) sublines. At the last three generations of selection (Generations 12-14), selected sublines differed from unselected controls by 3.8 to 4.7 g (14.8 to 19.8%) in 42-day weight, -0.5 to -8.3% in fertility, and 0.5 to 1.6 in litter size at birth. The origin of the lines (W: previously selected for 42-day weight and C: unselected) affected 42-day weight, i. e. 42-day weight of mice originating from W was significantly (P transgene that increased 63-day weight by 54% was not found at Generation 12. The unexpected loss of rGH transgene was due to poor fitness of mice with the rGH transgene. Mice with the transgene had lower fertility rate than those without the transgene (50.0 to 73.7% vs. 95.0%), smaller litter size (6.8 to 7.8 vs. 8.6) and poorer survival of the progeny (69.2 to 74.5% vs. 88.3%). Based on these data, selective advantage/disadvantage of the rGH transgene in the fitness traits was estimated quantitatively. The results from the study on growth and reproductive traits suggest that desirable effects of gene transfer on a specific trait (42- and 63-day weight in the present study) might be offset by undesirable effects on other traits (e. g., reproduction and survival) in some cases of transgenic animals. ZUSAMMENFASSUNG: Selektion auf hohes adultes Gewicht in Mäuselinien mit und ohne Rattenwachstumshormon-Transgenen Vier Mäuselinien mit und ohne das Rattenwachstumshormon (rGH) Transgen wurden zur Messung des Selektionserfolges auf gesteigertes 42-Tage-Körpergewicht entwickelt, um auch Fitneß zu prüfen. Jede Linie bestand aus einer selektierten und aus einer unselektierten (Kontroll-)Unterlinie. In den drei letzten Selektionsgenerationen (Generationen 12-14) unterschieden sich die

  1. Regional gene expression of LOX-1, VCAM-1, and ICAM-1 in aorta of HIV-1 transgenic rats.

    Directory of Open Access Journals (Sweden)

    Anne Mette Fisker Hag

    Full Text Available BACKGROUND: Increased prevalence of atherosclerotic cardiovascular disease in HIV-infected patients has been observed. The cause of this accelerated atherosclerosis is a matter of controversy. As clinical studies are complicated by a multiplicity of risk-factors and a low incidence of hard endpoints, studies in animal models could be attractive alternatives. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated gene expression of lectin-like oxidized-low-density-lipoprotein receptor-1 (LOX-1, vascular cell adhesion molecule-1 (VCAM-1, and intercellular adhesion molecule-1 (ICAM-1 in HIV-1 transgenic (HIV-1Tg rats; these genes are all thought to play important roles in early atherogenesis. Furthermore, the plasma level of sICAM-1 was measured. We found that gene expressions of LOX-1 and VCAM-1 were higher in the aortic arch of HIV-1Tg rats compared to controls. Also, the level of sICAM-1 was elevated in the HIV-1Tg rats compared to controls, but the ICAM-1 gene expression profile did not show any differences between the groups. CONCLUSIONS/SIGNIFICANCE: HIV-1Tg rats have gene expression patterns indicating endothelial dysfunction and accelerated atherosclerosis in aorta, suggesting that HIV-infection per se may cause atherosclerosis. This transgenic rat model may be a very promising model for further studies of the pathophysiology behind HIV-associated cardiovascular disease.

  2. Loss of bone strength in HLA-B27 transgenic rats is characterized by a high bone turnover and is mainly osteoclast-driven.

    Science.gov (United States)

    Rauner, Martina; Thiele, Sylvia; Fert, Ingrid; Araujo, Luiza M; Layh-Schmitt, Gerlinde; Colbert, Robert A; Hofbauer, Christine; Bernhardt, Ricardo; Bürki, Alexander; Schwiedrzik, Jakob; Zysset, Philippe K; Pietschmann, Peter; Taurog, Joel D; Breban, Maxime; Hofbauer, Lorenz C

    2015-06-01

    Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, μCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Analysis of Serum Cytokines and Single-Nucleotide Polymorphisms of SOD1, SOD2, and CAT in Erysipelas Patients

    Directory of Open Access Journals (Sweden)

    Charles C. Emene

    2017-01-01

    Full Text Available Increased free radical production had been documented in group A (β-hemolytic streptococcus infection cases. Comparing 71 erysipelas patients to 55 age-matched healthy individuals, we sought for CAT, SOD1, and SOD2 single polymorphism mutation (SNPs interactions with erysipelas’ predisposition and serum cytokine levels in the acute and recovery phases of erysipelas infection. Whereas female patients had a higher predisposition to erysipelas, male patients were prone to having a facial localization of the infection. The presence of SOD1 G7958, SOD2 T2734, and CAT C262 alleles was linked to erysipelas’ predisposition. T and C alleles of SOD2 T2734C individually were linked to patients with bullous and erythematous erysipelas, respectively. G and A alleles of SOD1 G7958A individually were associated with lower limbs and higher body part localizations of the infection, respectively. Serum levels of IL-1β, CCL11, IL-2Rα, CXCL9, TRAIL, PDGF-BB, and CCL4 were associated with symptoms accompanying the infection, while IL-6, IL-9, IL-10, IL-13, IL-15, IL-17, G-CSF, and VEGF were associated with predisposition and recurrence of erysipelas. While variations of IL-1β, IL-7, IL-8, IL-17, CCL5, and HGF were associated with the SOD2 T2734C SNP, variations of PDFG-BB and CCL2 were associated with the CAT C262T SNP.

  4. A 50 bp deletion in the SOD1 promoter lowers enzyme expression but is not associated with ALS in Sweden.

    Science.gov (United States)

    Ingre, Caroline; Wuolikainen, Anna; Marklund, Stefan L; Birve, Anna; Press, Rayomand; Andersen, Peter M

    2016-01-01

    Mutations in the superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). A 50 base pair (bp) deletion of SOD1 has been suggested to reduce transcription and to be associated with later disease onset in ALS. This study was aimed to reveal if the 50 bp deletion influenced SOD1 enzymatic activity, occurrence and phenotype of the disease in a Swedish ALS/control cohort. Blood samples from 512 Swedish ALS patients and 354 Swedish controls without coding SOD1 mutations were analysed for the 50 bp deletion allele. The enzymatic activity of SOD1 in erythrocytes was analysed and genotype-phenotype correlations were assessed. Results demonstrated that the genotype frequencies of the 50 bp deletion were all found to be in Hardy-Weinberg equilibrium. No significant differences were found for age of onset, disease duration or site of onset. SOD1 enzymatic activity showed a statistically significant decreasing trend in the control group, in which the allele was associated with a 5% reduction in SOD1 activity. The results suggest that the 50 bp deletion has a moderate reducing effect on SOD1 synthesis. No modulating effects, however, were found on ALS onset, phenotype and survival in the Swedish population.

  5. Methyl bromide causes DNA methylation in rats and mice but fails to induce somatic mutations in λlacZ transgenic mice

    NARCIS (Netherlands)

    Pletsa, V.; Steenwinkel, M.-J.S.T.; Delft, J.H.M. van; Baan, R.A.; Kyrtopoulos, S.A.

    1998-01-01

    Following single or multiple oral treatments of rats or λlacZ transgenic mice with methyl bromide, methylated DNA adducts (N7- and/or O6-methylguanine) were found at comparable levels in various tissues, including among others the glandular stomach, the forestomach and the liver. Multiple rat

  6. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease.

    Science.gov (United States)

    Galeano, Pablo; Martino Adami, Pamela V; Do Carmo, Sonia; Blanco, Eduardo; Rotondaro, Cecilia; Capani, Francisco; Castaño, Eduardo M; Cuello, A Claudio; Morelli, Laura

    2014-01-01

    Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg(+/-)) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Aβ accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6, and 12 months of age. In parallel, we measured Aβ by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Aβ peptide accumulated at low levels (~9 pg/mg) without differences among ages. However, Western blots showed SDS-resistant Aβ oligomers (~30 kDa) at 6 and 12 months, but not at 3 months. When compared to wild-type (WT), male Tg(+/-) rats exhibited a spatial reference memory deficit in the Morris Water Maze (MWM) as early as 3 months of age, which persisted at 6 and 12 months. In addition, Tg(+/-) rats displayed a working memory impairment in the Y-maze and higher anxiety levels in the Open Field (OF) at 6 and 12 months of age, but not at 3 months. Exploratory activity in the OF was similar to that of WT at all-time points. Spatial learning in the MWM and the recognition memory, as assessed by the Novel Object Recognition Test, were unimpaired at any time point. The data from the present study demonstrate that the hemizygous transgenic McGill-R-Thy1-APP rat has a wide array of behavioral and cognitive impairments from young adulthood to middle-age. The low Aβ burden and early emotional and cognitive deficits in this transgenic rat model supports its potential use for drug discovery purposes in

  7. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease

    Science.gov (United States)

    Galeano, Pablo; Martino Adami, Pamela V.; Do Carmo, Sonia; Blanco, Eduardo; Rotondaro, Cecilia; Capani, Francisco; Castaño, Eduardo M.; Cuello, A. Claudio; Morelli, Laura

    2014-01-01

    Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg+/−) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Aβ accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6, and 12 months of age. In parallel, we measured Aβ by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Aβ peptide accumulated at low levels (~9 pg/mg) without differences among ages. However, Western blots showed SDS-resistant Aβ oligomers (~30 kDa) at 6 and 12 months, but not at 3 months. When compared to wild-type (WT), male Tg+/− rats exhibited a spatial reference memory deficit in the Morris Water Maze (MWM) as early as 3 months of age, which persisted at 6 and 12 months. In addition, Tg+/− rats displayed a working memory impairment in the Y-maze and higher anxiety levels in the Open Field (OF) at 6 and 12 months of age, but not at 3 months. Exploratory activity in the OF was similar to that of WT at all-time points. Spatial learning in the MWM and the recognition memory, as assessed by the Novel Object Recognition Test, were unimpaired at any time point. The data from the present study demonstrate that the hemizygous transgenic McGill-R-Thy1-APP rat has a wide array of behavioral and cognitive impairments from young adulthood to middle-age. The low Aβ burden and early emotional and cognitive deficits in this transgenic rat model supports its potential use for drug discovery purposes in

  8. Reduced impact of emotion on choice behavior in presymptomatic BACHD rats, a transgenic rodent model for Huntington Disease.

    Science.gov (United States)

    Adjeroud, Najia; Yagüe, Sara; Yu-Taeger, Libo; Bozon, Bruno; Leblanc-Veyrac, Pascale; Riess, Olaf; Allain, Philippe; Nguyen, Huu Phuc; Doyère, Valérie; El Massioui, Nicole

    2015-11-01

    Executive dysfunction and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder genetically characterized by expanded CAG repeats in the HTT gene. Using the BACHD rat model of HD (97 CAG-CAA repeats), the present research seeks to characterize the progressive emergence of decision-making impairments in a rat version of the Iowa Gambling Task (RGT) and the impact of emotional modulation, whether positive or negative, on choice behavior. The choice efficiency shown both by WT rats (independent of their age) and the youngest BACHD rats (2 and 8months old) evidenced that they are able to integrate outcomes of past decisions to determine expected reward values for each option. However, 18months old BACHD rats made fewer choices during the RGT session and were less efficient in choosing advantageous options than younger animals. Presenting either chocolate pellets or electrical footshocks half-way through a second RGT session reduced exploratory activity (inefficient nose-poking) and choices with a weaker effect on BACHD animals than on WT. Choice efficiency was left intact in transgenic rats. Our results bring new knowledge on executive impairments and impact of emotional state on decision-making at different stages of the disease, increasing the face-validity of the BACHD rat model. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The lack of effect of specific overexpression of IGF-1 in the central nervous system or skeletal muscle on pathophysiology in the G93A SOD-1 mouse model of ALS.

    Science.gov (United States)

    Messi, Maria Laura; Clark, Heather M; Prevette, David M; Oppenheim, Ronald W; Delbono, Osvaldo

    2007-09-01

    The ability of insulin like growth factor 1 (IGF-1) to prevent the pathophysiology associated with amyotrophic lateral sclerosis (ALS) is currently being explored with animal models and in clinical trials with patients. Several studies have reported positive effects of IGF-1 in reducing motor neuron death, delaying the onset of motor performance decline, and increasing life span, in SOD-1 mouse models of ALS and in one clinical trial. However, a second clinical trial produced no positive results raising questions about the therapeutic efficacy of IGF-1. To investigate the effect of specific and sustained IGF-1 expression in skeletal muscle or central nervous system on motor performance, life span, and motor neuron survival, human-IGF-1 transgenic mice were crossed with the G93A SOD-1 mutant model of ALS. No significant differences were found in onset of motor performance decline, life span, or motor neuron survival in the spinal cord, between SOD+/IGF-1+ and SOD+/IGF-1- hybrid mice. IGF-1 concentration levels, measured by radioimmunoassay, were found to be highly increased throughout life in the central nervous system (CNS) and skeletal muscle of IGF-1 transgenic hybrid mice. Additionally, increased CNS weight in SOD+ mice crossbred with CNS IGF-1 transgenic mice demonstrates that IGF-1 overexpression is biologically active even after the disease is fully developed. Taken together, these results raise questions concerning the therapeutic value of IGF-1 and indicate that further studies are needed to examine the relationship between methods of IGF-1 administration and its potential therapeutic value.

  10. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter.

    Directory of Open Access Journals (Sweden)

    Hiroshi Tomita

    Full Text Available Channelrhodopsin-2 (ChR2, one of the archea-type rhodopsins from green algae, is a potentially useful optogenetic tool for restoring vision in patients with photoreceptor degeneration, such as retinitis pigmentosa. If the ChR2 gene is transferred to retinal ganglion cells (RGCs, which send visual information to the brain, the RGCs may be repurposed to act as photoreceptors. In this study, by using a transgenic rat expressing ChR2 specifically in the RGCs under the regulation of a Thy-1.2 promoter, we tested the possibility that direct photoactivation of RGCs could restore effective vision. Although the contrast sensitivities of the optomotor responses of transgenic rats were similar to those observed in the wild-type rats, they were enhanced for visual stimuli of low-spatial frequency after the degeneration of native photoreceptors. This result suggests that the visual signals derived from the ChR2-expressing RGCs were reinterpreted by the brain to form behavior-related vision.

  11. Age-related autocrine diabetogenic effects of transgenic resistin in spontaneously hypertensive rats: gene expression profile analysis

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Mlejnek, Petr; Šilhavý, J.; Maxová, M.; Kazdová, L.; Seidman, J. G.; Seidman, Ch. E.; Eminaga, S.; Gorham, J.; Wang, J.; Kurtz, T. W.

    2011-01-01

    Roč. 43, č. 7 (2011), s. 372-379 ISSN 1094-8341 R&D Projects: GA MŠk(CZ) ME08006; GA MŠk(CZ) 1M0510; GA AV ČR(CZ) IAA500110805; GA MZd(CZ) NS9759 Grant - others:Fondation Leducq(FR) 06CVD03 Institutional research plan: CEZ:AV0Z50110509 Keywords : transgenic rat * adipose tissue * insulin resistance * autocrine effects Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.735, year: 2011

  12. A botanical containing freeze dried açai pulp promotes healthy aging and reduces oxidative damage in sod1 knockdown flies

    OpenAIRE

    Laslo, Mara; Sun, Xiaoping; Hsiao, Cheng-Te; Wu, Wells W.; Shen, Rong-Fong; Zou, Sige

    2012-01-01

    Superoxide dismutase 1 (SOD1), a critical enzyme against oxidative stress, is implicated in aging and degenerative diseases. We previously showed that a nutraceutical containing freeze-dried açai pulp promotes survival of flies fed a high-fat diet or sod1 knockdown flies fed a standard diet. Here, we investigated the effect of açai supplementation initiated at the early or late young adulthood on lifespan, physiological function, and oxidative damage in sod1 knockdown flies. We found that Aça...

  13. A 90-day safety study in Sprague-Dawley rats fed milk powder containing recombinant human lactoferrin (rhLF) derived from transgenic cloned cattle.

    Science.gov (United States)

    Zhou, Cui; Wang, Jian Wu; Huang, Kun Lun; He, XiaoYun; Chen, Xiu Ping; Sun, Hong; Yu, Tian; Che, Hui Lian

    2011-10-01

    Transgenic cloned animals expressing beneficial human nutritional traits offer a new strategy for large-scale production of some kinds of functional substances. In some cases, the required safety testing for genetically modified (GM) foods do not seem appropriate for human food safety, though regulations do not seem to provide alternatives. A 90-day rat feeding study is the core study for the safety assessment of GM foods. The test material in this 90-day study was prepared nonfat milk powder containing recombinant human lactoferrin (rhLF), which was expressed in transgenic cloned cattle. Groups of 10 male and female Sprague-Dawley rats were given a nutritionally balanced purified diet containing 7.5, 15, or 30% transgenic or conventional milk powder for 90 days. A commercial AIN93G diet was used as an additional control group. Clinical, biological, and pathological parameters were compared between groups. The only significant effect of treatment was higher mean ferritin and Fe(+) concentrations for both male and female rats fed the transgenic milk powder diets, as compared to rats fed nontransgenic milk diets or the commercial diet. The results of the present study are consistent with previous research, which indicates that milk powder containing rhLF derived from healthy transgenic cloned cattle is as safe as conventional milk powder.

  14. Response to metal stress of Nicotiana langsdorffii plants wild-type and transgenic for the rat glucocorticoid receptor gene.

    Science.gov (United States)

    Fuoco, Roger; Bogani, Patrizia; Capodaglio, Gabriele; Del Bubba, Massimo; Abollino, Ornella; Giannarelli, Stefania; Spiriti, Maria Michela; Muscatello, Beatrice; Doumett, Saer; Turetta, Clara; Zangrando, Roberta; Zelano, Vincenzo; Buiatti, Marcello

    2013-05-01

    Recently our findings have shown that the integration of the gene coding for the rat gluco-corticoid receptor (GR receptor) in Nicotiana langsdorffii plants induced morphophysiological effects in transgenic plants through the modification of their hormonal pattern. Phytohormones play a key role in plant responses to many different biotic and abiotic stresses since a modified hormonal profile up-regulates the activation of secondary metabolites involved in the response to stress. In this work transgenic GR plants and isogenic wild type genotypes were exposed to metal stress by treating them with 30ppm cadmium(II) or 50ppm chromium(VI). Hormonal patterns along with changes in key response related metabolites were then monitored and compared. Heavy metal up-take was found to be lower in the GR plants. The transgenic plants exhibited higher values of S-abscisic acid (S-ABA) and 3-indole acetic acid (IAA), salicylic acid and total polyphenols, chlorogenic acid and antiradical activity, compared to the untransformed wild type plants. Both Cd and Cr treatments led to an increase in hormone concentrations and secondary metabolites only in wild type plants. Analysis of the results suggests that the stress responses due to changes in the plant's hormonal system may derive from the interaction between the GR receptor and phytosteroids, which are known to play a key role in plant physiology and development. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Compensatory Motor Neuron Response to Chromatolysis in the Murine hSOD1G93A Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Riancho, Javier; Ruiz-Soto, Maria; Villagrá, Nuria T.; Berciano, Jose; Berciano, Maria T.; Lafarga, Miguel

    2014-01-01

    We investigated neuronal self-defense mechanisms in a murine model of amyotrophic lateral sclerosis (ALS), the transgenic hSOD1G93A, during both the asymptomatic and symptomatic stages. This is an experimental model of endoplasmic reticulum (ER) stress with severe chromatolysis. As a compensatory response to translation inhibition, chromatolytic neurons tended to reorganize the protein synthesis machinery at the perinuclear region, preferentially at nuclear infolding domains enriched in nuclear pores. This organization could facilitate nucleo-cytoplasmic traffic of RNAs and proteins at translation sites. By electron microscopy analysis, we observed that the active euchromatin pattern and the reticulated nucleolar configuration of control motor neurons were preserved in ALS chromatolytic neurons. Moreover the 5′-fluorouridine (5′-FU) transcription assay, at the ultrastructural level, revealed high incorporation of the RNA precursor 5′-FU into nascent RNA. Immunogold particles of 5′-FU incorporation were distributed throughout the euchromatin and on the dense fibrillar component of the nucleolus in both control and ALS motor neurons. The high rate of rRNA transcription in ALS motor neurons could maintain ribosome biogenesis under conditions of severe dysfunction of proteostasis. Collectively, the perinuclear reorganization of protein synthesis machinery, the predominant euchromatin architecture, and the active nucleolar transcription could represent compensatory mechanisms in ALS motor neurons in response to the disturbance of ER proteostasis. In this scenario, epigenetic activation of chromatin and nucleolar transcription could have important therapeutic implications for neuroprotection in ALS and other neurodegenerative diseases. Although histone deacetylase inhibitors are currently used as therapeutic agents, we raise the untapped potential of the nucleolar transcription of ribosomal genes as an exciting new target for the therapy of some neurodegenerative

  16. Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Savina Apolloni

    2014-09-01

    Full Text Available In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a ‘gene modifier’ in amyotrophic lateral sclerosis (ALS: the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG, a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising

  17. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  18. Enhanced neuroinflammation and pain hypersensitivity after peripheral nerve injury in rats expressing mutated superoxide dismutase 1

    Directory of Open Access Journals (Sweden)

    Lavand'homme Patricia

    2011-04-01

    Full Text Available Abstract Background Neuroinflammation and nitroxidative stress are implicated in the pathophysiology of neuropathic pain. In view of both processes, microglial and astroglial activation in the spinal dorsal horn play a predominant role. The present study investigated the severity of neuropathic pain and the degree of glial activation in an inflammatory- and nitroxidative-prone animal model. Methods Transgenic rats expressing mutated superoxide dismutase 1 (hSOD1G93A are classically used as a model for amyotrophic lateral sclerosis (ALS. Because of the associated inflammatory- and nitroxidative-prone properties, this model was used to study thermal and mechanical hypersensitivity following partial sciatic nerve ligation (PSNL. Next to pain hypersensitivity assessment, microglial and astroglial activation states were moreover characterized, as well as inflammatory marker gene expression and the glutamate clearance system. Results PSNL induced thermal and mechanical hypersensitivity in both wild-type (WT and transgenic rats. However, the degree of thermal hypersensitivity was found to be exacerbated in transgenic rats while mechanical hypersensitivity was only slightly and not significantly increased. Microglial Iba1 expression was found to be increased in the ipsilateral dorsal horn of the lumbar spinal cord after PSNL but such Iba1 up-regulation was enhanced in transgenic rats as compared WT rats, both at 3 days and at 21 days after injury. Moreover, mRNA levels of Nox2, a key enzyme in microglial activation, but also of pro-inflammatory markers (IL-1β and TLR4 were not modified in WT ligated rats at 21 days after PSNL as compared to WT sham group while transgenic ligated rats showed up-regulated gene expression of these 3 targets. On the other hand, the PSNL-induced increase in GFAP immunoreactivity spreading that was evidenced in WT rats was unexpectedly found to be attenuated in transgenic ligated rats. Finally, GLT-1 gene expression and

  19. The in vivo contribution of motor neuron TrkB receptors to mutant SOD1 motor neuron disease.

    Science.gov (United States)

    Zhai, Jinbin; Zhou, Weiguo; Li, Jian; Hayworth, Christopher R; Zhang, Lei; Misawa, Hidemi; Klein, Rudiger; Scherer, Steven S; Balice-Gordon, Rita J; Kalb, Robert Gordon

    2011-11-01

    Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) are widely expressed in the vertebrate nervous system and play a central role in mature neuronal function. In vitro BDNF/TrkB signaling promotes neuronal survival and can help neurons resist toxic insults. Paradoxically, BDNF/TrkB signaling has also been shown, under certain in vitro circumstances, to render neurons vulnerable to insults. We show here that in vivo conditional deletion of TrkB from mature motor neurons attenuates mutant superoxide dismutase 1 (SOD1) toxicity. Mutant SOD1 mice lacking motor neuron TrkB live a month longer than controls and retain motor function for a longer period, particularly in the early phase of the disease. These effects are subserved by slowed motor neuron loss, persistence of neuromuscular junction integrity and reduced astrocytic and microglial reactivity within the spinal cord. These results suggest that manipulation of BDNF/TrkB signaling might have therapeutic efficacy in motor neuron diseases.

  20. Time-Point Dependent Activation of Autophagy and the UPS in SOD1G93A Mice Skeletal Muscle.

    Science.gov (United States)

    Oliván, Sara; Calvo, Ana Cristina; Gasco, Samanta; Muñoz, María Jesús; Zaragoza, Pilar; Osta, Rosario

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by a selective loss of motor neurons together with a progressive muscle weakness. Albeit the pathophysiological mechanisms of the disease remain unknown, growing evidence suggests that skeletal muscle can be a target of ALS toxicity. In particular, the two main intracellular degradation mechanisms, autophagy and the ubiquitin-proteasome degradative system (UPS) have been poorly studied in this tissue. In this study we investigated the activation of autophagy and the UPS as well as apoptosis in the skeletal muscle from SOD1G93A mice along disease progression. Our results showed a significant upregulation of proteasome activity at early symptomatic stage, while the autophagy activation was found at presymptomatic and terminal stages. The mRNA upregulated levels of LC3, p62, Beclin1, Atg5 and E2f1 were only observed at symptomatic and terminal stages, which reinforced the time-point activation of autophagy. Furthermore, no apoptosis activation was observed along disease progression. The combined data provided clear evidence for the first time that there is a time-point dependent activation of autophagy and UPS in the skeletal muscle from SOD1G93A mice.

  1. HIV-1 transgene expression in rats induces differential expression of tumor necrosis factor alpha and zinc transporters in the liver and the lung

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2011-10-01

    Full Text Available Abstract Background Highly effective antiviral treatment can suppress HIV-1 infection, but the chronic effects of HIV-1-related viral proteins, including gp120 and Tat, on organs such as the lungs can be damaging. HIV-1 transgenic rodent models are useful for studying the systemic effects of these proteins independently of viral infection. We have previously shown that HIV-1 transgene expression (and therefore, HIV-1-related protein expression in rats decreases alveolar macrophage zinc levels and phagocytic capacity by unknown mechanisms. We hypothesized that HIV-1 transgene expression induces chronic inflammation and zinc sequestration within the liver and thereby decreases zinc bioavailability in the lung. We examined the expression of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα, the zinc storage protein, metallothionein (MT1, and the zinc exporter, ZNT1 in the livers and the lungs of wild type and HIV-1 transgenic rats ± dietary zinc supplementation. In addition, we measured zinc levels, the zinc importing protein ZIP1, and the phagocytic capacity in the alveolar macrophages. Results HIV-1 transgene expression increased the liver-specific expression of TNFα, suggesting a chronic inflammatory response within the liver in response to HIV-1-related protein expression. In parallel, HIV-1 transgene expression significantly increased MT1 and ZNT1 expression in the liver as compared to the lung, a pattern that is consistent with zinc sequestration in the liver as occurs during systemic inflammation. Further, HIV-1 transgene expression decreased intracellular zinc levels and increased expression of ZIP1 in the alveolar macrophages, a pattern consistent with zinc deficiency, and decreased their bacterial phagocytic capacity. Interestingly, dietary zinc supplementation in HIV-1 transgenic rats decreased gene expression of TNFα, MT1, and ZNT1 in the liver while simultaneously increasing their expression in the lung. In parallel

  2. Activation of endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line with DREADDs system.

    Science.gov (United States)

    Yoshimura, Mitsuhiro; Nishimura, Kazuaki; Nishimura, Haruki; Sonoda, Satomi; Ueno, Hiromichi; Motojima, Yasuhito; Saito, Reiko; Maruyama, Takashi; Nonaka, Yuki; Ueta, Yoichi

    2017-11-16

    Various studies contributed to discover novel mechanisms of central arginine vasopressin (AVP) system responsible for the behaviour albeit endogenous vasopressin activation. We established a novel transgenic rat line which expresses both human muscarinic acetylcholine receptors (hM3Dq), of which ligand is clozapine-N-oxide (CNO), and mCherry fluorescence specifically in AVP neurons. The mCherry neurons that indicate the expression of the hM3Dq gene were observed in the suprachiasmatic (SCN), supraoptic (SON), and paraventricular nuclei (PVN). hM3Dq-mCherry fluorescence was localized mainly in the membrane of the neurons. The mCherry neurons were co-localized with AVP-like immunoreactive (LI) neurons, but not with oxytocin-LI neurons. The induction of Fos, which is the indicator for neuronal activity, was observed in approximately 90% of the AVP-LI neurons in the SON and PVN 90 min after intraperitoneal (i.p.) administration of CNO. Plasma AVP was significantly increased and food intake, water intake, and urine volume were significantly attenuated after i.p. administration of CNO. Although the detailed mechanism has unveiled, we demonstrated, for the first time, that activation of endogenous AVP neurons decreased food intake. This novel transgenic rat line may provide a revolutionary insight into the neuronal mechanism regarding central AVP system responsible for various kind of behaviours.

  3. A novel animal model of thymic tumour: Development of epithelial thymoma in transgenic rats carrying human T lymphocyte virus type I pX gene

    Science.gov (United States)

    Kikuchi, Kazunori; Ikeda, Hitoshi; Tsuchikawa, Takahiro; Tsuji, Takahiro; Tanaka, Satoshi; Fugo, Kazunori; Sugaya, Toshiaki; Tanaka, Yuetsu; Tateno, Masatoshi; Maruyama, Naoki; Yoshiki, Takashi

    2002-01-01

    The pX region encodes a major product of human T lymphocyte virus type I (HTLV-I) that has been implicated previously in tumour formation. To investigate the pathogenesis of pX gene in lymphoid tissues, we established a series of novel transgenic rats carrying the pX gene under the control of a rat lymphocyte-specific protein tyrosine kinase (p56lck) proximal promoter. The transgene was constructed with the −269 to +26 region of a rat p56lck proximal promoter and the pX cDNA, and was microinjected into fertilized ova of Fischer 344/jcl female rats. Six transgenic lines from 114 pups were established. Integration and expression of the transgene were detected by polymerase chain reaction (PCR) and Southern hybridization or by reverse transcriptase-PCR, northern hybridization, and immunostaining.  Thymic tumours with lethal expansion occurred in 4 of 6 transgenic lines. The tumour consisted of spindle shaped cells. Immunohistochemical and ultra-structural analysis characterized the tumour cells to as epithelial cell type, and in the tumour arose in the medulla. Therefore, the tumour is classified into predominantly epithelial and spindle cell of medullary thymoma (type A of the new World Health Organization classification), as based on the human classification. Tumor occurrence increased in proportion to levels of the pX transcription in the thymus, for each line, and sex distinction was evident regarding rates related to tumour expansion. The transgenic rat model described here is suitable as a model for analysing tumorigenesis in epithelial thymoma occurring in humans. PMID:12641821

  4. Effects of 90-Day Feeding of Transgenic Maize BT799 on the Reproductive System in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Qian-ying Guo

    2015-12-01

    Full Text Available BT799 is a genetically modified (GM maize plant that expresses the Cry1Ac gene from Bacillus thuringiensis (Bt. The Cry1Ac gene was introduced into maize line Zhen58 to encode the Bt crystal protein and thus produce insect-resistant maize BT799. Expression of Bt protein in planta confers resistance to Lepidopteran pests and corn rootworms. The present study was designed to investigate any potential effects of BT799 on the reproductive system of male rats and evaluate the nutritional value of diets containing BT799 maize grain in a 90-day subchronic rodent feeding study. Male Wistar rats were fed with diets containing BT799 maize flours or made from its near isogenic control (Zhen58 at a concentration of 84.7%, nutritionally equal to the standard AIN-93G diet. Another blank control group of male rats were treated with commercial AIN-93G diet. No significant differences in body weight, hematology and serum chemistry results were observed between rats fed with the diets containing transgenic BT799, Zhen58 and the control in this 13-week feeding study. Results of serum hormone levels, sperm parameters and relative organ/body weights indicated no treatment-related side effects on the reproductive system of male rats. In addition, no diet-related changes were found in necropsy and histopathology examinations. Based on results of the current study, we did not find any differences in the parameters tested in our study of the reproductive system of male rats between BT799 and Zhen58 or the control.

  5. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Ji

    Full Text Available In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2 transgene is driven by the Thy-1.2 promoter. In one of them, W-TChR2V4, some neurons were endowed with photosensitivity by the introduction of the ChR2 gene, coding an algal photoreceptor molecule. The DRG neurons expressing ChR2 were immunohistochemically identified using specific antibodies to the markers of mechanoreceptive or nociceptive neurons. Their peripheral nerve endings in the plantar skin as well as the central endings in the spinal cord were also examined. We identified that ChR2 is expressed in a certain population of large neurons in the DRG of W-TChR2V4. On the basis of their morphology and molecular markers, these neurons were classified as mechanoreceptive but not nociceptive. ChR2 was also distributed in their peripheral sensory nerve endings, some of which were closely associated with CK20-positive cells to form Merkel cell-neurite complexes or with S-100-positive cells to form structures like Meissner's corpuscles. These nerve endings are thus suggested to be involved in the sensing of touch. Each W-TChR2V4 rat showed a sensory-evoked behavior in response to blue LED flashes on the plantar skin. It is thus suggested that each rat acquired an unusual sensory modality of sensing blue light through the skin as touch-pressure. This light-evoked somatosensory perception should facilitate study of how the complex tactile sense emerges in the brain.

  6. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1−/− mice is correlated to increased cellular senescence

    Directory of Open Access Journals (Sweden)

    Yiqiang Zhang

    2017-04-01

    Full Text Available In contrast to other mouse models that are deficient in antioxidant enzymes, mice null for Cu/Zn-superoxide dismutase (Sod1−/− mice show a major decrease in lifespan and several accelerated aging phenotypes. The goal of this study was to determine if cell senescence might be a contributing factor in the accelerated aging phenotype observed in the Sod1−/− mice. We focused on kidney because it is a tissue that has been shown to a significant increase in senescent cells with age. The Sod1−/− mice are characterized by high levels of DNA oxidation in the kidney, which is attenuated by DR. The kidney of the Sod1−/− mice also have higher levels of double strand DNA breaks than wild type (WT mice. Expression (mRNA and protein of p16 and p21, two of the markers of cellular senescence, which increased with age, are increased significantly in the kidney of Sod1−/− mice as is β-gal staining cells. In addition, the senescence associated secretory phenotype was also increased significantly in the kidney of Sod1−/− mice compared to WT mice as measured by the expression of transcripts for IL-6 and IL-1β. Dietary restriction of the Sod1−/− mice attenuated the increase in DNA damage, cellular senescence, and expression of IL-6 and IL-1β. Interestingly, the Sod1−/− mice showed higher levels of circulating cytokines than WT mice, suggesting that the accelerated aging phenotype shown by the Sod1−/− mice could result from increased inflammation arising from an accelerated accumulation of senescent cells. Based on our data with Sod1−/− mice, we propose that various bouts of increased oxidative stress over the lifespan of an animal leads to the accumulation of senescent cells. The accumulation of senescent cells in turn leads to increased inflammation, which plays a major role in the loss of function and increased pathology that are hallmark features of aging.

  7. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1-/-mice is correlated to increased cellular senescence.

    Science.gov (United States)

    Zhang, Yiqiang; Unnikrishnan, Archana; Deepa, Sathyaseelan S; Liu, Yuhong; Li, Yan; Ikeno, Yuji; Sosnowska, Danuta; Van Remmen, Holly; Richardson, Arlan

    2017-04-01

    In contrast to other mouse models that are deficient in antioxidant enzymes, mice null for Cu/Zn-superoxide dismutase (Sod1 -/ - mice) show a major decrease in lifespan and several accelerated aging phenotypes. The goal of this study was to determine if cell senescence might be a contributing factor in the accelerated aging phenotype observed in the Sod1 -/ - mice. We focused on kidney because it is a tissue that has been shown to a significant increase in senescent cells with age. The Sod1 -/ - mice are characterized by high levels of DNA oxidation in the kidney, which is attenuated by DR. The kidney of the Sod1 -/ - mice also have higher levels of double strand DNA breaks than wild type (WT) mice. Expression (mRNA and protein) of p16 and p21, two of the markers of cellular senescence, which increased with age, are increased significantly in the kidney of Sod1 -/ - mice as is β-gal staining cells. In addition, the senescence associated secretory phenotype was also increased significantly in the kidney of Sod1 -/ - mice compared to WT mice as measured by the expression of transcripts for IL-6 and IL-1β. Dietary restriction of the Sod1 -/ - mice attenuated the increase in DNA damage, cellular senescence, and expression of IL-6 and IL-1β. Interestingly, the Sod1 -/ - mice showed higher levels of circulating cytokines than WT mice, suggesting that the accelerated aging phenotype shown by the Sod1 -/ - mice could result from increased inflammation arising from an accelerated accumulation of senescent cells. Based on our data with Sod1 -/ - mice, we propose that various bouts of increased oxidative stress over the lifespan of an animal leads to the accumulation of senescent cells. The accumulation of senescent cells in turn leads to increased inflammation, which plays a major role in the loss of function and increased pathology that are hallmark features of aging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Benzo[a]pyrene-enhanced mutagenesis by man-made mineral fibres in the lung of gama-lacI transgenic rats.

    Czech Academy of Sciences Publication Activity Database

    Topinka, Jan; Loli, P.; Hurbánková, M.; Kováčiková, Z.; Volkovová, K.; Wolff, T.; Oesterle, D.; Kyrtopoulos, S.A.; Georgiadis, P.

    2006-01-01

    Roč. 595, - (2006), s. 167-173 ISSN 0027-5107 Institutional research plan: CEZ:AV0Z50390512 Keywords : transgenic rats * mineral fibres * mutations Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.111, year: 2006

  9. Supplemental Antioxidants Do Not Ameliorate Colitis Development in HLA-B27 Transgenic Rats Despite Extremely Low Glutathione Levels in Colonic Mucosa

    NARCIS (Netherlands)

    Schepens, M.A.A.; Vink, C.; Schonewille, A.J.; Roelofs, H.M.J.; Brummer, R.J.; Meer, van der R.; Bovee-Oudenhoven, I.M.J.

    2011-01-01

    Background: Oxidative stress is presumed to play an important role in inflammatory bowel disease (IBD). Accordingly, antioxidant supplementation might be protective. Dietary calcium inhibited colitis development in HLA-B27 transgenic rats, an animal model mimicking IBD. As antioxidants might act at

  10. Sterol regulatory element binding protein 2 overexpression is associated with reduced adipogenesis and ectopic fat accumulation in transgenic spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Trnovská, J.; Kazdová, L.; Pravenec, Michal

    2014-01-01

    Roč. 63, č. 5 (2014), s. 587-590 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LH12061 Institutional support: RVO:67985823 Keywords : sterol regulatory element binding protein 2 * transgenic * spontaneously hypertensive rat * lipid metabolism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.293, year: 2014

  11. Age-related prodiabetogenic effects of transgenic resistin in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Zídek, Václav; Landa, Vladimír; Kazdová, L.; Kurtz, T.

    2006-01-01

    Roč. 23, Suppl. 4 (2006), s. 271-271 ISSN 0742-3071. [World Diabetes Congress /19./. 03.12.2006-07.12.2006, Cape Town] R&D Projects: GA ČR(CZ) GA301/06/0028 Institutional research plan: CEZ:AV0Z50110509 Keywords : resistin * autocrine effects * transgenic Subject RIV: ED - Physiology

  12. Prodiabetogenic effect of transgenic resistin expression in the old spontaneously hypertensive rat

    Czech Academy of Sciences Publication Activity Database

    Marková, I.; Landa, Vladimír; Zídek, Václav; Šeda, O.; Kazdová, L.; Pravenec, Michal

    2005-01-01

    Roč. 48, č. S1 (2005), A100-A100 ISSN 0012-186X. [Annual Meeting of the European Association for the Study of Diabetes /41./. 10.09.2005-15.09.2005, Athen] R&D Projects: GA MZd(CZ) NB7403 Institutional research plan: CEZ:AV0Z50110509 Keywords : resistin * transgenic SHR Subject RIV: ED - Physiology

  13. Combined renin inhibition/(prorenin receptor blockade in diabetic retinopathy--a study in transgenic (mREN227 rats.

    Directory of Open Access Journals (Sweden)

    Wendy W Batenburg

    Full Text Available Dysfunction of renin-angiotensin system (RAS contributes to the pathogenesis of diabetic retinopathy (DR. Prorenin, the precursor of renin is highly elevated in ocular fluid of diabetic patients with proliferative retinopathy. Prorenin may exert local effects in the eye by binding to the so-called (prorenin receptor ((PRR. Here we investigated the combined effects of the renin inhibitor aliskiren and the putative (PRR blocker handle-region peptide (HRP on diabetic retinopathy in streptozotocin (STZ-induced diabetic transgenic (mRen227 rats (a model with high plasma prorenin levels as well as prorenin stimulated cytokine expression in cultured Müller cells. Adult (mRen227 rats were randomly divided into the following groups: (1 non-diabetic; (2 diabetic treated with vehicle; (3 diabetic treated with aliskiren (10 mg/kg per day; and (4 diabetic treated with aliskiren+HRP (1 mg/kg per day. Age-matched non-diabetic wildtype Sprague-Dawley rats were used as control. Drugs were administered by osmotic minipumps for three weeks. Transgenic (mRen227 rat retinas showed increased apoptotic cell death of both inner retinal neurons and photoreceptors, increased loss of capillaries, as well as increased expression of inflammatory cytokines. These pathological changes were further exacerbated by diabetes. Aliskiren treatment of diabetic (mRen227 rats prevented retinal gliosis, and reduced retinal apoptotic cell death, acellular capillaries and the expression of inflammatory cytokines. HRP on top of aliskiren did not provide additional protection. In cultured Müller cells, prorenin significantly increased the expression levels of IL-1α and TNF-α, and this was completely blocked by aliskiren or HRP, their combination, (PRR siRNA and the AT1R blocker losartan, suggesting that these effects entirely depended on Ang II generation by (PRR-bound prorenin. In conclusion, the lack of effect of HRP on top of aliskiren, and the Ang II-dependency of the ocular

  14. Alsin and SOD1G93A Proteins Regulate Endosomal Reactive Oxygen Species Production by Glial Cells and Proinflammatory Pathways Responsible for Neurotoxicity*

    Science.gov (United States)

    Li, Qiang; Spencer, Netanya Y.; Pantazis, Nicholas J.; Engelhardt, John F.

    2011-01-01

    Recent studies have implicated enhanced Nox2-mediated reactive oxygen species (ROS) by microglia in the pathogenesis of motor neuron death observed in familial amyotrophic lateral sclerosis (ALS). In this context, ALS mutant forms of SOD1 enhance Rac1 activation, leading to increased Nox2-dependent microglial ROS production and neuron cell death in mice. It remains unclear if other genetic mutations that cause ALS also function through similar Nox-dependent pathways to enhance ROS-mediate motor neuron death. In the present study, we sought to understand whether alsin, which is mutated in an inherited juvenile form of ALS, functionally converges on Rac1-dependent pathways acted upon by SOD1G93A to regulate Nox-dependent ROS production. Our studies demonstrate that glial cell expression of SOD1G93A or wild type alsin induces ROS production, Rac1 activation, secretion of TNFα, and activation of NFκB, leading to decreased motor neuron survival in co-culture. Interestingly, coexpression of alsin, or shRNA against Nox2, with SOD1G93A in glial cells attenuated these proinflammatory indicators and protected motor neurons in co-culture, although shRNAs against Nox1 and Nox4 had little effect. SOD1G93A expression dramatically enhanced TNFα-mediated endosomal ROS in glial cells in a Rac1-dependent manner and alsin overexpression inhibited SOD1G93A-induced endosomal ROS and Rac1 activation. SOD1G93A expression enhanced recruitment of alsin to the endomembrane compartment in glial cells, suggesting that these two proteins act to modulate Nox2-dependent endosomal ROS and proinflammatory signals that modulate NFκB. These studies suggest that glial proinflammatory signals regulated by endosomal ROS are influenced by two gene products known to cause ALS. PMID:21937428

  15. Effects of Cu/Zn superoxide dismutase (sod1 genotype and genetic background on growth, reproduction and defense in Biomphalaria glabrata.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Bonner

    Full Text Available Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1. We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation.

  16. A new transgenic rat model of hepatic steatosis and the metabolic syndrome

    Czech Academy of Sciences Publication Activity Database

    Qi, N.R.; Wang, J.; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Kazdová, L.; Pravenec, Michal; Kurtz, T. W.

    2005-01-01

    Roč. 45, č. 5 (2005), s. 1004-1011 ISSN 0194-911X R&D Projects: GA MZd(CZ) NB7403; GA MŠk(CZ) 1M0520 Grant - others:NIH(US) HL35018; NIH(US) HL63709; NIH(US) TW01236 Institutional research plan: CEZ:AV0Z50110509 Keywords : hepatic steatosis * Srebp1a * transgenic SHR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.331, year: 2005

  17. Safety evaluation of transgenic low-gliadin wheat in Sprague Dawley rats: An alternative to the gluten free diet with no subchronic adverse effects.

    Science.gov (United States)

    Ozuna, Carmen Victoria; Barro, Francisco

    2017-09-01

    Gluten-associated pathologies have increased in recent years and there is a greater demand for low or gluten-free products. Transgenic low-gliadin wheat lines showed low T-cell response, good bread-making properties, and excellent sensory assets. The aim of this study was to evaluate the safety of the whole-wheat flour from one transgenic low-gliadin line (named E82) in a 90-day feeding study. In this study males (n = 50) and females (n = 50) SD rats were used. They were fed with doses of 1.42, 2.83 and 5.67 g/kg/day of the transgenic E82 line, 5.67 g/kg/day of the WT and a blank group. We found that there were no significant differences in the development of animals. Biochemistry for liver and kidney function were similar for males and females of all groups. Other haematological and metabolic blood parameters, as well as organ weight did not show significant differences in the five groups of animals. In the histopathological study performed for the higher dose of transgenic E82 line, WT and blank group no abnormalities were observed. The whole-wheat flour of E82 line administered to rats at tested doses for 90 days did not have any adverse effects and there was no difference with the rats which ate WT wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease

    Directory of Open Access Journals (Sweden)

    Zippelius Annette

    2009-06-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons (MN in the brain stem and spinal cord. Intracellular disruptions of cytosolic and mitochondrial calcium have been associated with selective MN degeneration, but the underlying mechanisms are not well understood. The present evidence supports a hypothesis that mitochondria are a target of mutant SOD1-mediated toxicity in familial amyotrophic lateral sclerosis (fALS and intracellular alterations of cytosolic and mitochondrial calcium might aggravate the course of this neurodegenerative disease. In this study, we used a fluorescence charged cool device (CCD imaging system to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations in individual cells in an established cellular model of ALS. Results To gain insights into the molecular mechanisms of SOD1G93A associated motor neuron disease, we simultaneously monitored cytosolic and mitochondrial calcium concentrations in individual cells. Voltage – dependent cytosolic Ca2+ elevations and mitochondria – controlled calcium release mechanisms were monitored after loading cells with fluorescent dyes fura-2 and rhod-2. Interestingly, comparable voltage-dependent cytosolic Ca2+ elevations in WT (SH-SY5YWT and G93A (SH-SY5YG93A expressing cells were observed. In contrast, mitochondrial intracellular Ca2+ release responses evoked by bath application of the mitochondrial toxin FCCP were significantly smaller in G93A expressing cells, suggesting impaired calcium stores. Pharmacological experiments further supported the concept that the presence of G93A severely disrupts mitochondrial Ca2+ regulation. Conclusion In this study, by fluorescence measurement of cytosolic calcium and using simultaneous [Ca2+]i and [Ca2+]mito measurements, we are able to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations

  19. The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Hanspal, Maya A; Dobson, Christopher M; Yerbury, Justin J; Kumita, Janet R

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving the formation of cytoplasmic aggregates by proteins including TDP-43 and SOD1, in affected cells in the central nervous system (CNS). Pathology spreads from an initial site of onset to contiguous anatomical regions. There is evidence that for disease-associated proteins, including TDP-43 and SOD1, non-native protein conformers can promote misfolding of the natively folded counterparts, and cell-to-cell transfer of pathological aggregates may underlie the spread of the disease throughout the CNS. A variety of studies have demonstrated that SOD1 is released by neuron-like cells into the surrounding culture medium, either in their free state or encapsulated in extracellular vesicles such as exosomes. Extracellular SOD1 can then be internalised by naïve cells incubated in this conditioned medium, leading to the misfolding and aggregation of endogenous intracellular SOD1; an effect that propagates over serial passages. A similar phenomenon has also been observed with other proteins associated with protein misfolding and progressive neurological disorders, including tau, α-synuclein and both mammalian and yeast prions. Conditioned media experiments using TDP-43 have been less conclusive, with evidence for this protein undergoing intercellular transfer being less straightforward. In this review, we describe the properties of TDP-43 and SOD1 and look at the evidence for their respective abilities to participate in cell-to-cell transfer via conditioned medium, and discuss how variations in the nature of cell-to-cell transfer suggests that a number of different mechanisms are involved in the spreading of pathology in ALS. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Presymptomatic Treatment with Acetylcholinesterase Antisense Oligonucleotides Prolongs Survival in ALS (G93A-SOD1 Mice

    Directory of Open Access Journals (Sweden)

    Gotkine Marc

    2013-01-01

    Full Text Available Objective. Previous research suggests that acetylcholinesterase (AChE may be involved in ALS pathogenesis. AChE enzyme inhibitors can upregulate AChE transcription which in certain contexts can have deleterious (noncatalytic effects, making them theoretically harmful in ALS, whilst AChE antisense-oligonucleotides (mEN101, which downregulate AChE may be beneficial. Our aim was to investigate whether downregulation of AChE using mEN101 is beneficial in an ALS mouse model. Methods. ALS (G93A-SOD1 mice received saline, mEN101, inverse-EN101, or neostigmine. Treatments were administered from 5 weeks. Disease-onset and survival were recorded. Additional mice were sacrificed for pathological analysis at 15 weeks of age. In a follow-up experiment treatment was started at the symptomatic stage at a higher dose. Results. mEN101 given at the presymptomatic (but not symptomatic stage prolonged survival and attenuated motor-neuron loss in ALS mice. In contrast, neostigmine exacerbated the clinical parameters. Conclusions. These results suggest that AChE may be involved in ALS pathogenesis. The accelerated disease course with neostigmine suggests that any beneficial effects of mEN101 occur through a non-catalytic rather than cholinergic mechanism.

  1. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    International Nuclear Information System (INIS)

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William

    2006-01-01

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the α/β T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells

  2. A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration.

    Science.gov (United States)

    Moore, Amy M; Borschel, Gregory H; Santosa, Katherine A; Flagg, Eric R; Tong, Alice Y; Kasukurthi, Rahul; Newton, Piyaraj; Yan, Ying; Hunter, Daniel A; Johnson, Philip J; Mackinnon, Susan E

    2012-02-15

    In order to evaluate nerve regeneration in clinically relevant hindlimb surgical paradigms not feasible in fluorescent mice models, we developed a rat that expresses green fluorescent protein (GFP) in neural tissue. Transgenic Sprague-Dawley rat lines were created using pronuclear injection of a transgene expressing GFP under the control of the thy1 gene. Nerves were imaged under fluorescence microscopy and muscles were imaged with confocal microscopy to determine GFP expression following sciatic nerve crush, transection and direct suturing, and transection followed by repair with a nerve isograft from nonexpressing littermates. In each surgical paradigm, fluorescence microscopy demonstrated the loss and reappearance of fluorescence with regeneration of axons following injury. Nerve regeneration was confirmed with imaging of Wallerian degeneration followed by reinnervation of extensor digitorum longus (EDL) muscle motor endplates using confocal microscopy. The generation of a novel transgenic rat model expressing GFP in neural tissue allows in vivo imaging of nerve regeneration and visualization of motor endplate reinnervation. This rat provides a new model for studying peripheral nerve injury and regeneration over surgically relevant distances. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats.

    Science.gov (United States)

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M; Calu, Donna J; Baumann, Michael H; Marchant, Nathan J; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R; Shaham, Yavin; Hope, Bruce T

    2012-06-20

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express GFP in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5-2 mg/kg) or pellet priming (1-4 noncontingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and nonactivated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPA receptor/NMDA receptor current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. While ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior.

  4. Exosomes from NSC-34 Cells Transfected with hSOD1-G93A Are Enriched in miR-124 and Drive Alterations in Microglia Phenotype

    Directory of Open Access Journals (Sweden)

    Sara Pinto

    2017-05-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal adult-onset neurodegenerative disorder affecting motor neurons (MNs. Evidences indicate that ALS is a non-cell autonomous disease in which glial cells participate in both disease onset and progression. Exosomal transfer of mutant copper-zinc superoxide dismutase 1 (mSOD1 from cell-to-cell was suggested to contribute to disease dissemination. Data from our group and others showed that exosomes from activated cells contain inflammatory-related microRNAs (inflamma-miRNAs that recapitulate the donor cell. While glia-derived exosomes and their effects in neurons have been addressed by several studies, only a few investigated the influence of motor neuron (MN-derived exosomes in other cell function, the aim of the present study. We assessed a set of inflamma-miRs in NSC-34 MN-like cells transfected with mutant SOD1(G93A and extended the study into their derived exosomes (mSOD1 exosomes. Then, the effects produced by mSOD1 exosomes in the activation and polarization of the recipient N9 microglial cells were investigated. Exosomes in coculture with N9 microglia and NSC-34 cells [either transfected with either wild-type (wt human SOD1 or mutant SOD1(G93A] showed to be transferred into N9 cells. Increased miR-124 expression was found in mSOD1 NSC-34 cells and in their derived exosomes. Incubation of mSOD1 exosomes with N9 cells determined a sustained 50% reduction in the cell phagocytic ability. It also caused a persistent NF-kB activation and an acute generation of NO, MMP-2, and MMP-9 activation, as well as upregulation of IL-1β, TNF-α, MHC-II, and iNOS gene expression, suggestive of induced M1 polarization. Marked elevation of IL-10, Arginase 1, TREM2, RAGE, and TLR4 mRNA levels, together with increased miR-124, miR-146a, and miR-155, at 24 h incubation, suggest the switch to mixed M1 and M2 subpopulations in the exosome-treated N9 microglial cells. Exosomes from mSOD1 NSC-34 MNs also enhanced the number

  5. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Jia, Yijia; Wu, Dou; Zhang, Ruiping; Shuang, Weibing; Sun, Jiping; Hao, Haihu; An, Qijun; Liu, Qiang

    2014-06-24

    Spinal cord injury (SCI) is one of the most disabling diseases. Cell-based gene therapy is becoming a major focus for the treatment of SCI. Bone marrow-derived mesenchymal stem cells (BMSCs) are a promising stem cell type useful for repairing SCI. However, the effects of BMSCs transplants are likely limited because of low transplant survival after SCI. Sonic hedgehog (Shh) is a multifunctional growth factor which can facilitate neuronal and BMSCs survival, promote axonal growth, prevent activation of the astrocyte lineage, and enhance the delivery of neurotrophic factors in BMSCs. However, treatment of SCI with Shh alone also has limited effects on recovery, because the protein is cleared quickly. In this study, we investigated the use of BMSCs overexpressing the Shh transgene (Shh-BMSCs) in the treatment of rats with SCI, which could stably secrete Shh and thereby enhance the effects of BMSCs, in an attempt to combine the advantages of Shh and BMSCs and so to promote functional recovery. After Shh-BMSCs treatment of SCI via the subarachnoid, we detected significantly greater damage recovery compared with that seen in rats treated with phosphate-buffered saline (PBS) and BMSCs. Use of Shh-BMSCs increased the expression and secretion of Shh, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), improved the behavioral function, enhanced the BMSCs survival, promoted the expression level of neurofilament 200 (NF200), and reduced the expression of glial fibrillary acidic protein (GFAP). Thus, our results indicated that Shh-BMSCs enhanced recovery of neurological function after SCI in rats and could be a potential valuable therapeutic intervention for SCI in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Benzo[a]pyrene-enhanced mutagenesis by asbestos in the lung of lambda-lacI transgenic rats.

    Science.gov (United States)

    Loli, P; Topinka, J; Georgiadis, P; Dusinská, M; Hurbánková, M; Kováciková, Z; Volkovová, K; Wolff, T; Oesterle, D; Kyrtopoulos, S A

    2004-09-03

    To study the suspected mechanism of the interaction between tobacco smoking and asbestos exposure in the modulation of cancer risk, the mutagenic potential of asbestos in combination with the tobacco smoke carcinogen benzo[a]pyrene (B[a]P) was examined in vivo in the rat lung. B[a]P was administered intratracheally in one set of experiments, or by two daily intraperitoneal injections in another set of experiments, to lambdalacI transgenic rats, together with 1, 2 or 4 x 2 mg amosite in one experiment. In the first experiment, the combined action of amosite and B[a]P caused a synergistic (superadditive) increase of mutation frequency in the lung, as compared to groups treated only with asbestos or B[a]P. In the second experiment, i.p. treatment with B[a]P did not significantly alter the mutation frequency induced by amosite, neither after 4 nor after 16 weeks of exposure. The B[a]P-DNA adduct levels were unaffected by amosite co-treatment in both experiments. We assume that the synergistic increase of mutation frequency after intratracheal treatment was due to the mitogenic activities of B[a]P and of amosite. In conclusion, our findings indicate that a weak and delayed mutagenic effect of amosite in rat lung observed in another study was strongly enhanced by the concomitant action of B[a]P. The striking enhancement effect of B[a]P may provide a basis for understanding the suspected synergism of smoking on asbestos carcinogenesis.

  7. Nerve excitability changes related to axonal degeneration in amyotrophic lateral sclerosis: Insights from the transgenic SOD1(G127X) mouse model

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2012-01-01

    Motor nerve excitability studies by "threshold tracking" in amyotrophic lateral sclerosis (ALS) revealed heterogeneous abnormalities in motor axon membrane function possibly depending on disease stage. It remains unclear to which extent the excitability deviations reflect a pathogenic mechanism...

  8. Fumaric Acid Esters Can Block Pro-Inflammatory Actions of Human CRP and Ameliorate Metabolic Disturbances in Transgenic Spontaneously Hypertensive Rats

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Jan; Zídek, Václav; Mlejnek, Petr; Landa, Vladimír; Šimáková, Miroslava; Strnad, Hynek; Oliyarnyk, O.; Škop, V.; Kazdová, L.; Kurtz, T.; Pravenec, Michal

    2014-01-01

    Roč. 9, č. 7 (2014), e101906 E-ISSN 1932-6203 R&D Projects: GA MZd(CZ) NT14325; GA MŠk(CZ) LH12061; GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 ; RVO:68378050 Keywords : fumaric acid esters * C-reactive protein * transgenic * spontaneously hypertensive rat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2014

  9. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation

    DEFF Research Database (Denmark)

    Folkesson, Ronnie; Malkiewicz, Katarzyna; Kloskowska, Ewa

    2007-01-01

    protein (APP) containing the Swedish AD mutation. The highest level of expression in the brain is found in the cortex, hippocampus, and cerebellum. Starting after the age of 15 months, the rats show increased tau phosphorylation and extracellular Abeta staining. The Abeta is found predominantly...

  10. Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Klevstig, M.; Manakov, D.; Kašparová, D.; Brabcová, I.; Papoušek, František; Žurmanová, J.; Zídek, Václav; Šilhavý, Jan; Neckář, Jan; Pravenec, Michal; Kolář, František; Nováková, O.; Novotný, J.

    2013-01-01

    Roč. 465, č. 10 (2013), s. 1477-1486 ISSN 0031-6768 R&D Projects: GA MŠk(CZ) LL1204; GA AV ČR(CZ) IAAX01110901; GA ČR(CZ) GAP303/10/0505 Institutional support: RVO:67985823 Keywords : SHR rats * Cd36 * heart * beta-Adrenergic receptors * Adenylyl cyclase * Protein kinase A Subject RIV: ED - Physiology Impact factor: 3.073, year: 2013

  11. Genotoxicity of phenacetin in the kidney and liver of Sprague-Dawley gpt delta transgenic rats in 26-week and 52-week repeated-dose studies.

    Science.gov (United States)

    Kawamura, Yuji; Hayashi, Hiroyuki; Masumura, Kenichi; Numazawa, Satoshi; Nohmi, Takehiko

    2014-10-03

    Transgenic rat mutation assays can be used to assess genotoxic properties of chemicals in target organs for carcinogenicity. Mutations in transgenes are genetically neutral and accumulate during a treatment period; thus, assays are suitable for assessing the genotoxic risk of chemicals using a repeated-dose treatment paradigm. However, only a limited number of such studies have been conducted. To examine the utility of transgenic rat assays in repeated-dose studies, we fed male and female Sprague-Dawley gpt delta rats with a 0.5% phenacetin-containing diet for 26 and 52 weeks. A long-term feeding of phenacetin is known to induce renal cancer in rats. Phenacetin administration for 52 weeks in males significantly increased gpt (point mutations) mutant frequency (MF) in the kidney, the target organ of carcinogenesis. In the liver, the nontarget organ of carcinogenesis, gpt MFs were significantly elevated in phenacetin treatment groups of both genders during 26- and 52-week treatments. Furthermore, sensitive to P2 interference (Spi(-)deletions) MF increased in the liver of both genders following 52-week treatment. MFs were higher after treatment for 52 weeks than after treatment for 26 weeks. Frequencies of phenacetin-induced mutations were higher in the liver than in the kidney, suggesting that the intensity of genotoxicity does not necessarily correlate with the induction of tumor formation. Results from gpt delta rat assays of repeated-dose treatments are extremely useful to elucidate the relationship between gene mutations and carcinogenesis in the target organ induced by cancer-causing agents. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Science.gov (United States)

    Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  13. Multi-Shell Hybrid Diffusion Imaging (HYDI at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Directory of Open Access Journals (Sweden)

    Madelaine Daianu

    Full Text Available Diffusion weighted imaging (DWI is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI and high-angular resolution imaging (HARDI are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI, composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA, generalized fractional anisotropy (GFA and normalized quantitative anisotropy (NQA. We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI. We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  14. Establishment of mesenchymal stem cells derived from bone marrow and synovium of transgenic rats expressing dual reporter genes

    Science.gov (United States)

    Horie, Masafumi; Sekiya, Ichiro; Muneta, Takeshi; Murakami, Takashi; Kobayashi, Eiji

    2008-02-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because they can be harvested in a relatively less invasive manner, easily isolated, and expanded with multipotentiality. Bone marrow seems to be the most commonly used tissue as a source for MSCs at present. However, there are emerging reports to describe that MSCs exist in most mesenchymal tissues. We have recently compared in vivo chondrogenic potential in MSCs derived from various mesenchymal tissues and demonstrated that synovium-MSCs and bone marrow-MSCs possessed greater chondrogenic ability than other mesenchymal tissue-derived MSCs. This indicates that those MSCs are promising cellular sources for cartilage regeneration. As the fate of synovium-MSCs is unclear after transplantation, we herein established MSCs using double transgenic rats expressing either Luciferase/GFP or Luciferase/LacZ. The cellular fate of MSCs could be traced by an in vivo luciferase-based luminescent imaging system, and also followed histologically by green fluorescence and by X-gal staining, respectively. Thus, both synovium-MSCs and bone marrow-MSCs expressing Luciferase/GFP or Luciferase/LacZ provide powerful tools not only for cell tracking in vivo but also for histological analysis, leading to a compelling experimental model of cartilage regeneration with cell therapy.

  15. Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene

    Directory of Open Access Journals (Sweden)

    Streit Wolfgang J

    2007-02-01

    Full Text Available Abstract Background Microglial neuroinflammation is thought to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS. The purpose of this study was to provide a histopathological evaluation of the microglial neuroinflammatory response in a rodent model of ALS, the SOD1G93A transgenic rat. Methods Multiple levels of the CNS from spinal cord to cerebral cortex were studied in SOD1G93A transgenic rats during three stages of natural disease progression, including presymptomatic, early symptomatic (onset, and late symptomatic (end stage, using immuno- and lectin histochemical markers for microglia, such as OX-42, OX-6, and Griffonia simplicifolia isolectin B4. Results Our studies revealed abnormal aggregates of microglia forming in the spinal cord as early as the presymptomatic stage. During the symptomatic stages there was prominent formation of multinucleated giant cells through fusion of microglial cells in the spinal cord, brainstem, and red nucleus of the midbrain. Other brain regions, including substantia nigra, cranial nerve nuclei, hippocampus and cortex showed normal appearing microglia. In animals during end stage disease at 4–5 months of age virtually all microglia in the spinal cord gray matter showed extensive fragmentation of their cytoplasm (cytorrhexis, indicative of widespread microglial degeneration. Few microglia exhibiting nuclear fragmentation (karyorrhexis indicative of apoptosis were identified at any stage. Conclusion The current findings demonstrate the occurrence of severe abnormalities in microglia, such as cell fusions and cytorrhexis, which may be the result of expression of mutant SOD1 in these cells. The microglial changes observed are different from those that accompany normal microglial activation, and they demonstrate that aberrant activation and degeneration of microglia is part of the pathogenesis of motor neuron disease.

  16. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat

    Directory of Open Access Journals (Sweden)

    Rafael Casas

    2018-01-01

    Conclusion: The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible.

  17. Pulsatile luteinizing hormone and follicle-stimulating hormone secretion and gonadotropin subunit mRNA levels in the ovariectomized GPR-4 transgenic rat.

    Science.gov (United States)

    El Majdoubi, Mohammed; Paruthiyil, Sreenivasan; Weiner, Richard I

    2003-12-01

    Genetic targeting of the cAMP-specific phosphodiesterase 4D1 (PDE4D1) to gonadotropin-releasing hormone (GnRH) neurons in the GPR-4 transgenic rat resulted in decreased luteinizing hormone (LH) pulse frequency in castrated female and male rats. A similar decrease in the intrinsic GnRH pulse frequency was observed in GT1 GnRH cells expressing the PDE4D1 phosphodiesterase. We have extended these findings in ovariectomized (OVX) GPR-4 rats by asking what effect transgene expression had on pulsatile LH and follicle-stimulating hormone (FSH) secretion, plasma and pituitary levels of LH and FSH, and levels of the alpha-glycoprotein hormone subunit (alpha-GSU), LH-beta and FSH-beta subunit mRNAs. In OVX GPR-4 rats the LH pulse frequency but not pulse amplitude was decreased by 50% compared to wild-type littermate controls. Assaying the same samples for FSH, the FSH pulse frequency and amplitude were unchanged. The plasma and anterior pituitary levels of LH in the GPR-4 rats were significantly decreased by approximately 45%, while the plasma but not anterior pituitary level of FSH was significantly decreased by 25%. As measured by real-time RT-PCR, the mRNA levels for the alpha-GSU in the GPR-4 rats were significantly decreased by 41%, the LH-beta subunit by 38% and the FSH-beta subunit by 28%. We conclude that in the castrated female GPR-4 rats the decreased GnRH pulse frequency results in decreased levels of LH and FSH and in the alpha- and beta-subunit mRNA levels. Copyright 2003 S. Karger AG, Basel

  18. Intraspinal administration of human spinal cord-derived neural progenitor cells in the G93A-SOD1 mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors.

    Science.gov (United States)

    Knippenberg, Sarah; Rath, Klaus Jan; Böselt, Sebastian; Thau-Habermann, Nadine; Schwarz, Sigrid C; Dengler, Reinhard; Wegner, Florian; Petri, Susanne

    2017-03-01

    Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Transgenic Rat Model of Huntington’s Disease: A Histopathological Study and Correlations with Neurodegenerative Process in the Brain of HD Patients

    Directory of Open Access Journals (Sweden)

    Yvona Mazurová

    2014-01-01

    Full Text Available Rats transgenic for Huntington’s disease (tgHD51 CAG rats, surviving up to two years, represent an animal model of HD similar to the late-onset form of human disease. This enables us to follow histopathological changes in course of neurodegenerative process (NDP within the striatum and compare them with postmortem samples of human HD brains. A basic difference between HD pathology in human and tgHD51 rats is in the rate of NDP progression that originates primarily from slow neuronal degeneration consequently resulting in lesser extent of concomitant reactive gliosis in the brain of tgHD51 rats. Although larger amount of striatal neurons displays only gradual decrease in their size, their number is significantly reduced in the oldest tgHD51 rats. Our quantitative analysis proved that the end of the first year represents the turn in the development of morphological changes related to the progression of NDP in tgHD51 rats. Our data also support the view that all types of CNS glial cells play an important, irreplaceable role in NDP. To the best of our knowledge, our findings are the first to document that tgHD51 CAG rats can be used as a valid animal model for detailed histopathological studies related to HD in human.

  20. Structural instability and Cu-dependent pro-oxidant activity acquired by the apo form of mutant SOD1 associated with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kitamura, Furi; Fujimaki, Nobuhiro; Okita, Wakana; Hiramatsu, Hirotsugu; Takeuchi, Hideo

    2011-05-24

    Cu,Zn-superoxide dismutase (SOD1) is a cytosolic antioxidant enzyme, and its mutation has been implicated in amyotrophic lateral sclerosis (ALS), a disease causing a progressive loss of motor neurons. Although the pathogenic mechanism of ALS remains unclear, it is hypothesized that some toxic properties acquired by mutant SOD1 play a role in the development of ALS. We have examined the structural and catalytic properties of an ALS-linked mutant of human SOD1, His43Arg (H43R), which is characterized by rapid disease progression. As revealed by circular dichroism spectroscopy, H43R assumes a stable β-barrel structure in the Cu(2+),Zn(2+)-bound holo form, but its metal-depleted apo form is highly unstable and readily unfolds or misfolds into an irregular structure at physiological temperature. The conformational change occurs as a two-state transition from a nativelike apo form to a denatured apo form with a half-life of ∼0.5 h. At the same time as the denaturation, the apo form of H43R acquires pro-oxidant potential, which is fully expressed in the presence of Cu(2+) and H(2)O(2), as monitored with a fluorogenic probe for detecting pro-oxidant activity. Comparison of d-d absorption bands suggests that the Cu(2+) binding mode of the denatured apo form is different from that of the native holo form. The denatured apo form of H43R is likely to provide non-native Cu(2+) binding sites where the Cu(2+) ion is activated to catalyze harmful oxidation reactions. This study raises the possibility that the structural instability and the resultant Cu-dependent pro-oxidant activity of the apo form of mutant SOD1 may be one of the pathogenic mechanisms of ALS.

  1. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    Science.gov (United States)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  2. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus.

    Science.gov (United States)

    Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2017-08-01

    Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.

  3. SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI).

    Science.gov (United States)

    Chen, Xueping; Guan, Teng; Li, Chen; Shang, Huifang; Cui, Liying; Li, Xin-Min; Kong, Jiming

    2012-10-12

    Ubiquitinated-protein aggregates are implicated in cerebral ischemia/reperfusion injury. The very presence of these ubiquitinated-protein aggregates is abnormal and seems to be disease-related. However, it is not clear what leads to aggregate formation and whether the aggregations represent a reaction to aggregate-mediated neurodegeneration. To study the nitrosative stress-induced protein aggregation in cerebral ischemia/reperfusion injury, we used primary astrocyte cultures as a cell model, and systematically examined their iNOS expression and consequent NO generation following oxygen glucose deprivation and reperfusion. The expression of protein disulfide isomerase (PDI) and copper-zinc superoxide dismutase (SOD1) were also examined, and the biochemical interaction between PDI and SOD1 was determined by immunoprecipitation. In addition, the levels of S-nitrosylated PDI in cultured astrocytes after oxygen glucose deprivation and reperfusion treatment were measured using the biotin-switch assay. The formation of ubiquitinated-protein aggregates was detected by immunoblot and immunofluorescence staining. Our data showed that the up-regulation of iNOS expression after oxygen glucose deprivation and reperfusion treatment led to excessive NO generation. Up-regulation of PDI and SOD1 was also identified in cultured astrocytes following oxygen glucose deprivation and reperfusion, and these two proteins were found to bind to each other. Furthermore, the increased nitrosative stress due to ischemia/reperfusion injury was highly associated with NO-induced S-nitrosylation of PDI, and this S-nitrosylation of PDI was correlated with the formation of ubiquitinated-protein aggregates; the levels of S-nitrosylated PDI increased in parallel with the formation of aggregates. When NO generation was pharmacologically inhibited by iNOS specific inhibitor 1400W, S-nitrosylation of PDI was significantly blocked. In addition, the formation of ubiquitinated-protein aggregates in cultured

  4. SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI

    Directory of Open Access Journals (Sweden)

    Chen Xueping

    2012-10-01

    Full Text Available Abstract Background Ubiquitinated-protein aggregates are implicated in cerebral ischemia/reperfusion injury. The very presence of these ubiquitinated-protein aggregates is abnormal and seems to be disease-related. However, it is not clear what leads to aggregate formation and whether the aggregations represent a reaction to aggregate-mediated neurodegeneration. Methods To study the nitrosative stress-induced protein aggregation in cerebral ischemia/reperfusion injury, we used primary astrocyte cultures as a cell model, and systematically examined their iNOS expression and consequent NO generation following oxygen glucose deprivation and reperfusion. The expression of protein disulfide isomerase (PDI and copper-zinc superoxide dismutase (SOD1 were also examined, and the biochemical interaction between PDI and SOD1 was determined by immunoprecipitation. In addition, the levels of S-nitrosylated PDI in cultured astrocytes after oxygen glucose deprivation and reperfusion treatment were measured using the biotin-switch assay. The formation of ubiquitinated-protein aggregates was detected by immunoblot and immunofluorescence staining. Results Our data showed that the up-regulation of iNOS expression after oxygen glucose deprivation and reperfusion treatment led to excessive NO generation. Up-regulation of PDI and SOD1 was also identified in cultured astrocytes following oxygen glucose deprivation and reperfusion, and these two proteins were found to bind to each other. Furthermore, the increased nitrosative stress due to ischemia/reperfusion injury was highly associated with NO-induced S-nitrosylation of PDI, and this S-nitrosylation of PDI was correlated with the formation of ubiquitinated-protein aggregates; the levels of S-nitrosylated PDI increased in parallel with the formation of aggregates. When NO generation was pharmacologically inhibited by iNOS specific inhibitor 1400W, S-nitrosylation of PDI was significantly blocked. In addition, the

  5. Transgenic mouse lines expressing rat AH receptor variants - A new animal model for research on AH receptor function and dioxin toxicity mechanisms

    International Nuclear Information System (INIS)

    Pohjanvirta, Raimo

    2009-01-01

    Han/Wistar (Kuopio; H/W) rats are exceptionally resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity mainly because of their mutated aryl hydrocarbon receptor (AHR) gene. In H/W rats, altered splicing of the AHR mRNA generates two AHR proteins: deletion (DEL) and insertion (INS) variants, with the INS isoform being predominantly expressed. To gain further insight into their functional properties, cDNAs of these and rat wild-type (rWT) isoform were transferred into C57BL/6J-derived mice by microinjection. The endogenous mouse AHR was eliminated by selective crossing with Ahr-null mice. A single mouse line was obtained for each of the three constructs. The AHR mRNA levels in tissues were generally close to those of C57BL/6 mice in INS and DEL mice and somewhat higher in rWT mice; in testis, however, all 3 constructs exhibited marked overexpression. The transgenic mouse lines were phenotypically normal except for increased testis weight. Induction of drug-metabolizing enzymes by TCDD occurred similarly to that in C57BL/6 mice, but there tended to be a correlation with AHR concentrations, especially in testis. In contrast to C57BL/6 mice, the transgenics did not display any major gender difference in susceptibility to the acute lethality and hepatotoxicity of TCDD; rWT mice were highly sensitive, DEL mice moderately resistant and INS mice highly resistant. Co-expression of mouse AHR and rWT resulted in augmented sensitivity to TCDD and abolished the natural resistance of female C57BL/6 mice, whereas mice co-expressing mouse AHR and INS were resistant. Thus, these transgenic mouse lines provide a novel promising tool for molecular studies on dioxin toxicity and AHR function.

  6. Safety assessment of transgenic Bacillus thuringiensis rice T1c-19 in Sprague-Dawley rats from metabonomics and bacterial profile perspectives.

    Science.gov (United States)

    Cao, Sishuo; He, Xiaoyun; Xu, Wentao; Luo, YunBo; Yuan, Yanfang; Liu, Pengfei; Cao, Bo; Shi, Hui; Huang, Kunlun

    2012-03-01

    Bacillus thuringiensis rice is facing commercialization as the main food source in the near future. The unintended effects of genetically modified (GM) organisms are the most important barriers to their promotion. We aimed to establish a new in vivo evaluation model for genetically modified foods by using metabonomics and bacterial profile approaches. T1c-19 rice flour or its transgenic parent MH63 was used at 70% wt/wt to produce diets that were fed to rats for ∼ 90 days. Urine metabolite changes were detected using (1)H NMR. Denaturing gradient gel electrophoresis and real-time polymerase chain reaction (RT-PCR) were used to detect the bacterial profiles between the two groups. The metabonomics was analyzed for metabolite changes in rat urine, when compared with the non-GM rice group, where rats were fed a GM rice diet. Several metabolites correlated with rat age and sex but not with GM rice diet. Significant biological differences were not identified between the GM rice diet and the non-GM rice diet. The bacteria related to rat urine metabolites were also discussed. The results from metabonomics and bacterial profile analyses were comparable with the results attained using the traditional method. Because metabonomics and bacterial profiling offer noninvasive, dynamic approaches for monitoring food safety, they provide a novel process for assessing the safety of GM foods. Copyright © 2012 Wiley Periodicals, Inc.

  7. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Savina Apolloni

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.

  8. Fumaric acid esters can block pro-inflammatory actions of human CRP and ameliorate metabolic disturbances in transgenic spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Jan Šilhavý

    Full Text Available Inflammation and oxidative stress have been implicated in the pathogenesis of metabolic disturbances. Esters of fumaric acid, mainly dimethyl fumarate, exhibit immunomodulatory, anti-inflammatory, and anti-oxidative effects. In the current study, we tested the hypothesis that fumaric acid ester (FAE treatment of an animal model of inflammation and metabolic syndrome, the spontaneously hypertensive rat transgenically expressing human C-reactive protein (SHR-CRP, will ameliorate inflammation, oxidative stress, and metabolic disturbances. We studied the effects of FAE treatment by administering Fumaderm, 10 mg/kg body weight for 4 weeks, to male SHR-CRP. Untreated male SHR-CRP rats were used as controls. All rats were fed a high sucrose diet. Compared to untreated controls, rats treated with FAE showed significantly lower levels of endogenous CRP but not transgenic human CRP, and amelioration of inflammation (reduced levels of serum IL6 and TNFα and oxidative stress (reduced levels of lipoperoxidation products in liver, heart, kidney, and plasma. FAE treatment was also associated with lower visceral fat weight and less ectopic fat accumulation in liver and muscle, greater levels of lipolysis, and greater incorporation of glucose into adipose tissue lipids. Analysis of gene expression profiles in the liver with Affymetrix arrays revealed that FAE treatment was associated with differential expression of genes in pathways that involve the regulation of inflammation and oxidative stress. These findings suggest potentially important anti-inflammatory, anti-oxidative, and metabolic effects of FAE in a model of inflammation and metabolic disturbances induced by human CRP.

  9. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1.

    Directory of Open Access Journals (Sweden)

    Yujiao Zhang

    Full Text Available A critical mechanism in atrial fibrillation (AF is cardiac autonomic nerve remodeling (ANR. MicroRNAs (miRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Numerous miRNAs are involved in diseases of the nervous and cardiovascular systems.We aimed to assess the underlying role of miRNAs in regulating cardiac ANR in AF by right atrial tachypacing (A-TP in canines.Following 4-week A-TP, the superior left ganglionated plexuses (SLGPs, which are embedded in the fat pads of the left atrium, were subjected to miRNA expression profiling to screen preferentially expressed miRNAs. Sixteen miRNAs showed significantly differential expression between the control and A-TP groups, including miR-206, miR-203, miR-224 and miR-137. In particular, we focused on miR-206, which was elevated ~10-fold in A-TP dogs. Forced expression of miR-206 through lentiviral infection based on A-TP in vivo significantly shortened the atrial effective refractory period (AERP (81 ± 7 vs. 98 ± 7 ms, P < 0.05. Immunohistochemical analysis showed that the regeneration of nerves increased more than 2-fold by miR-206 overexpression (P < 0.01. The expression of superoxide dismutase 1 (SOD1 was repressed by miR-206 overexpression by Western blot and luciferase assay, indicative of SOD1 as a direct target of miR-206. Overexpression of miR-206 increased reactive oxygen species (ROS levels in vitro and in vivo, whereas miR-206 silencing attenuated irradiation- or A-TP-induced ROS. Knockdown of SOD1 effectively abolished ROS reduction caused by miR-206 silencing.Our results found the differential expression of miRNAs in response to ANR in AF and elucidated the important role of miR-206 by targeting SOD1. The study illustrated the novel molecular mechanism of ANR and indicated a potential therapeutic target for AF.

  10. Chromosome localization of the loci for PEPA, PEPB, PEPS, IDH1, GSR, MPI, PGM1, NP, SOD1, and ME1 in the common shrew (Sorex araneus).

    Science.gov (United States)

    Matyakhina, L D; Colonin, M G; Pack, S D; Borodin, P M; Searle, J B; Serov, O L

    1996-04-01

    This report extends the genetic map of the common shrew (Sorex araneus) by adding chromosome assignments for ten genes to the seven already mapped (Pack et al. 1995). A somatic cell hybrid panel was used for the mapping. The genes for peptidase A (PEPA) and isocitrate dehydrogenase-1 (IDH1) map to chromosome de; the genes for phosphoglucomutase-1 (PGM1), superoxide dismutase-1 (SOD1), and mannosephosphate isomerase (MPI) are located on chromosome af; the genes for nucleoside phosphorylase (NP) and glutathione reductase (GSR) are on chromosome ik; and the genes for peptidase S (PEPS), malic enzyme-1 (ME1), peptidase B (PEPB) are found on chromosomes jl, go, and mp respectively.

  11. Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo

    Directory of Open Access Journals (Sweden)

    Littman Dan R

    2009-01-01

    Full Text Available Abstract Background Cells derived from native rodents have limits at distinct steps of HIV replication. Rat primary CD4 T-cells, but not macrophages, display a profound transcriptional deficit that is ameliorated by transient trans-complementation with the human Tat-interacting protein Cyclin T1 (hCycT1. Results Here, we generated transgenic rats that selectively express hCycT1 in CD4 T-cells and macrophages. hCycT1 expression in rat T-cells boosted early HIV gene expression to levels approaching those in infected primary human T-cells. hCycT1 expression was necessary, but not sufficient, to enhance HIV transcription in T-cells from individual transgenic animals, indicating that endogenous cellular factors are critical co-regulators of HIV gene expression in rats. T-cells from hCD4/hCCR5/hCycT1-transgenic rats did not support productive infection of prototypic wild-type R5 HIV-1 strains ex vivo, suggesting one or more significant limitation in the late phase of the replication cycle in this primary rodent cell type. Remarkably, we identify a replication-competent HIV-1 GFP reporter strain (R7/3 YU-2 Env that displays characteristics of a spreading, primarily cell-to-cell-mediated infection in primary T-cells from hCD4/hCCR5-transgenic rats. Moreover, the replication of this recombinant HIV-1 strain was significantly enhanced by hCycT1 transgenesis. The viral determinants of this so far unique replicative ability are currently unknown. Conclusion Thus, hCycT1 expression is beneficial to de novo HIV infection in a transgenic rat model, but additional genetic manipulations of the host or virus are required to achieve full permissivity.

  12. Decreased cardiac SERCA2 expression, SR Ca uptake, and contractile function in hypothyroidism are attenuated in SERCA2 overexpressing transgenic rats.

    Science.gov (United States)

    Vetter, Roland; Rehfeld, Uwe; Reissfelder, Christoph; Fechner, Henry; Seppet, Enn; Kreutz, Reinhold

    2011-03-01

    The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P hypothyroid TG (P hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.

  13. Home-cage anxiety levels in a transgenic rat model for Spinocerebellar ataxia type 17 measured by an approach-avoidance task: The light spot test.

    Science.gov (United States)

    Kyriakou, Elisavet I; Nguyen, Huu Phuc; Homberg, Judith R; Van der Harst, Johanneke E

    2017-08-18

    Measuring anxiety in a reliable manner is essential for behavioural phenotyping of rodent models such as the rat model for Spinocerebellar ataxia type 17 (SCA17) where anxiety is reported in patients. An automated tool for assessing anxiety within the home cage can minimize human intervention, stress of handling, transportation and novelty. We applied the anxiety test "light spot" (LS) (white led directed at the food-hopper) to our transgenic SCA17 rat model in the PhenoTyper 4500 ® to extend the knowledge of this automated tool for behavioural phenotyping and to verify an anxiety-like phenotype at three different disease stages for use in future therapeutic studies. Locomotor activity was increased in SCA17 rats at 6 and 9 months during the first 15min of the LS, potentially reflecting increased risk assessment. Both genotypes responded to the test with lower duration in the LS zone and higher time spent inside the shelter compared to baseline. We present the first data of a rat model subjected to the LS. The LS can be considered more biologically relevant than a traditional test as it measures anxiety in a familiar situation. The LS successfully evoked avoidance and shelter-seeking in rats. SCA17 rats showed a stronger approach-avoidance conflict reflected by increased activity in the area outside the LS. This home cage test, continuously monitoring pre- and post-effects, provides the opportunity for in-depth analysis, making it a potentially useful tool for detecting subtle or complex anxiety-related traits in rodents. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale).

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Zhang, Lu; Shi, Leming; Sun, Yongming Andrew; Fung, Chris; Moland, Carrie L; Dial, Stacey L; Fuscoe, James C; Chen, Tao

    2006-09-06

    Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis.

  15. Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Basso, Manuela; Pozzi, Silvia; Tortarolo, Massimo; Fiordaliso, Fabio; Bisighini, Cinzia; Pasetto, Laura; Spaltro, Gabriella; Lidonnici, Dario; Gensano, Francesco; Battaglia, Elisa; Bendotti, Caterina; Bonetto, Valentina

    2013-05-31

    Amyotrophic lateral sclerosis is the most common motor neuron disease and is still incurable. The mechanisms leading to the selective motor neuron vulnerability are still not known. The interplay between motor neurons and astrocytes is crucial in the outcome of the disease. We show that mutant copper-zinc superoxide dismutase (SOD1) overexpression in primary astrocyte cultures is associated with decreased levels of proteins involved in secretory pathways. This is linked to a general reduction of total secreted proteins, except for specific enrichment in a number of proteins in the media, such as mutant SOD1 and valosin-containing protein (VCP)/p97. Because there was also an increase in exosome release, we can deduce that astrocytes expressing mutant SOD1 activate unconventional secretory pathways, possibly as a protective mechanism. This may help limit the formation of intracellular aggregates and overcome mutant SOD1 toxicity. We also found that astrocyte-derived exosomes efficiently transfer mutant SOD1 to spinal neurons and induce selective motor neuron death. We conclude that the expression of mutant SOD1 has a substantial impact on astrocyte protein secretion pathways, contributing to motor neuron pathology and disease spread.

  16. Cognition enhancing effect of the aqueous extract of Cinnamomum zeylanicum on non-transgenic Alzheimer's disease rat model: Biochemical, histological, and behavioural studies.

    Science.gov (United States)

    Madhavadas, Sowmya; Subramanian, Sarada

    2017-11-01

    Several dietary supplements are actively being tested for their dual role of alleviating the metabolic perturbations and restricting the consequent cognitive dysfunctions seen in neurodegenerative disorders such as Alzheimer's disease (AD). The aim of the current study was to assess the influence of aqueous extract of cinnamon (CE) on the monosodium glutamate-induced non-transgenic rat model of AD (NTAD) established with insulin resistance, hyperglycaemia, neuronal loss, and cognitive impairment at a very early stage of life. The experimental design included oral administration of CE (50 mg/kg body weight) for 20 weeks to 2-month and 10-month-old NTAD rats. Following the treatments, the animals attained 7 and 15 months of age, respectively. They were then subjected to behavioural testing, biochemical analysis, and stereology experiments. The results demonstrated that CE treatment improved the insulin sensitivity, increased phosphorylated glycogen synthase kinase-3β (pGSK3β), inhibited the cholinesterase activity, and improved the learning ability in NTAD rats. Histological evaluation has shown an increase in neuron count in the DG sub-field of hippocampus upon treatment with CE. These beneficial effects of CE are suggestive of considering cinnamon as a dietary supplement in modulating the metabolic changes and cognitive functions.

  17. Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1.

    Science.gov (United States)

    Kwolek-Mirek, Magdalena; Zadrąg-Tęcza, Renata; Bednarska, Sabina; Bartosz, Grzegorz

    2015-04-01

    The yeast Saccharomyces cerevisiae is a useful eukaryotic model to study the toxicity of acrolein, an important environmental toxin and endogenous product of lipid peroxidation. The study was aimed at elucidation of the cytotoxic effect of acrolein on the yeast deficient in SOD1, Cu, Zn-superoxide dismutase which is hypersensitive to aldehydes. Acrolein generated within the cell from its precursor allyl alcohol caused growth arrest and cell death of the yeast cells. The growth inhibition involved an increase in production of reactive oxygen species and high level of protein carbonylation. DNA condensation and fragmentation, exposition of phosphatidylserine at the cell surface as well as decreased dynamic of actin microfilaments and mitochondria disintegration point to the induction of apoptotic-type cell death besides necrotic cell death.

  18. Dysfunctional mitochondrial Ca2+ handling in mutant SOD1 mouse models of fALS: integration of findings from motor neuron somata and motor terminals

    Directory of Open Access Journals (Sweden)

    Ellen F Barrett

    2014-07-01

    Full Text Available Abundant evidence indicates that mitochondrial dysfunction and Ca2+ dysregulation contribute to the muscle denervation and motor neuron death that occur in mouse models of familial amyotrophic lateral sclerosis (fALS. This perspective considers measurements of mitochondrial function and Ca2+ handling made in both motor neuron somata and motor nerve terminals of SOD1-G93A mice at different disease stages. These complementary studies are integrated into a model of how mitochondrial dysfunction disrupts handling of stimulation-induced Ca2+ loads in presymptomatic and end-stages of this disease. Also considered are possible mechanisms underlying the findings that some treatments that preserve motor neuron somata fail to postpone degeneration of motor axons and terminals.

  19. SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, but mutational inactivation of SOD-1 reduces life extension by cold.

    Science.gov (United States)

    Yen, Kelvin; Patel, Harshil B; Lublin, Alex L; Mobbs, Charles V

    2009-03-01

    The free radical theory of aging is one of the most prominent theories of aging and senescence, but has yet to be definitively proven. If free radicals are the cause of senescence, then the cellular anti-oxidant system should play a large role in lifespan determination. Because superoxide dismutase (SOD) plays a central role in detoxifying superoxide radicals, we have examined the effects of mutational inactivation of each isoform of sod on normal lifespan and lifespan extension by dietary restriction (DR) or cold-/hypothermic-induced longevity (CHIL). We find no significant decrease in lifespan for control worms or worms undergoing DR when sod isoforms are knocked-out even though sod mutational inactivation produces hypersensitivity to paraquat. In contrast, sod-1 inactivation significantly reduces lifespan extension by CHIL, suggesting that CHIL requires a specific genetic program beyond simple reduction in metabolic rate. Furthermore, CHIL paradoxically increases lifespan while reducing resistance to oxidative stress, further disassociating oxidative stress resistance and lifespan.

  20. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...... delivery to the neonatal rat and minipig striatum. The efficiency of GFP expression and the phenotype of GFP-positive cells were assessed within the forebrain at different time points up to 12 months after surgery. Both rAAV1-GFP and rAAV5-GFP delivery resulted in transduction of the striatum as well...

  1. Transgen kunst

    DEFF Research Database (Denmark)

    2007-01-01

    Oversættelse af kunstneren Eduardo Kac' tekst "Transgenic Art" i Passepartout #27. Interfacekulturens æstetik. Udgivelsesdato: 28.04.07......Oversættelse af kunstneren Eduardo Kac' tekst "Transgenic Art" i Passepartout #27. Interfacekulturens æstetik. Udgivelsesdato: 28.04.07...

  2. Unlike physical exercise, modified environment increases the lifespan of SOD1G93A mice however both conditions induce cellular changes.

    Directory of Open Access Journals (Sweden)

    Yannick N Gerber

    Full Text Available Amyotrophic lateral sclerosis (ALS is characterized by a gradual muscular paralysis resulting from progressive motoneurons death. ALS etiology remains unknown although it has been demonstrated to be a multifactorial disease involving several cellular partners. There is currently no effective treatment. Even if the effect of exercise is under investigation for many years, whether physical exercise is beneficial or harmful is still under debate.We investigated the effect of three different intensities of running exercises on the survival of SOD1(G93A mice. At the early-symptomatic stage (P60, males were isolated and randomly assigned to 5 conditions: 2 sedentary groups ("sedentary" and "sedentary treadmill" placed on the inert treadmill, and 3 different training intensity groups (5 cm/s, 10 cm/s and 21 cm/s; 15 min/day, 5days/week. We first demonstrated that an appropriate "control" of the environment is of the utmost importance since comparison of the two sedentary groups evidenced an 11.6% increase in survival in the "sedentary treadmill" group. Moreover, we showed by immunohistochemistry that this increased lifespan is accompanied with motoneurons survival and increased glial reactivity in the spinal cord. In a second step, we showed that when compared with the proper control, all three running-based training did not modify lifespan of the animals, but result in motoneurons preservation and changes in glial cells activation.We demonstrate that increase in survival induced by a slight daily modification of the environment is associated with motoneurons preservation and strong glial modifications in the lumbar spinal cord of SOD1(G93A. Using the appropriate control, we then demonstrate that all running intensities have no effect on the survival of ALS mice but induce cellular modifications. Our results highlight the critical importance of the control of the environment in ALS studies and may explain discrepancy in the literature regarding the

  3. [Two cases of familial amyotrophic lateral sclerosis with a SOD1L126S mutation showing high age at onset and slow progression].

    Science.gov (United States)

    Iwashima, Tomo; Tateishi, Takahisa; Yamasaki, Ryo; Motomura, Kyoko; Ohyagi, Yasumasa; Kira, Jun-Ichi

    2010-03-01

    An 80-year-old man (patient 1) was admitted to our hospital with numbness of the right leg and weakness of the lower extremities, predominantly in the right leg, for 1 year previously. Neurological examination revealed moderate weakness without atrophy, and fasciculation in the bilateral lower extremities. No hyperreflexia was noted, and the plantar response was flexor. Neither bulbar palsy nor sensory disturbance was observed. Electromyography (EMG) showed a chronic neurogenic pattern, including giant motor unit potentials and reduced interference in all four limb muscles. MRI images of the cervical and lumbar spines showed severe age-related spondylosis. The clinical and laboratory findings led to a diagnosis of spinal progressive muscular atrophy. Motor paralysis progressed slowly for the following four years, culminating in respiratory failure. A 79-year-man, the younger brother of patient 1 (patient 2), suffered from gait disturbance for 3 years before the admission to our hospital. During the following 3 years, bilateral leg weakness developed, causing difficulty walking. Neurological examination revealed a diffuse mild weakness with atrophy and fasciculation in the bilateral lower extremities; the right deltoid muscle was also mildly weak. Mild hyperreflexia was also noted on the left side, and the plantar response was extensor on the left. EMG showed acute and chronic neurogenic patterns in the four limb muscles. Because the missense mutation c.377 T > C; p.L126S was found on exon 5 of the superoxide dismutase (SOD) 1 gene in this patient, a diagnosis of familial ALS was made. Eight patients reported as familial ALS with the SOD1L126S mutation, including the present cases, all developed an onset of weakness in the lower extremities, but showed few upper motor neuron signs. It is important to consider the possibility of this type of familial ALS in a case of spinal progressive muscular atrophy with late-onset and mild progression, if family history is

  4. Mutant glycyl-tRNA synthetase (Gars ameliorates SOD1(G93A motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice.

    Directory of Open Access Journals (Sweden)

    Gareth T Banks

    2009-07-01

    Full Text Available In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs.We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars(C201R/+ mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars(C201R/+ mice to two other mutants: the TgSOD1(G93A model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1(Loa which has a defect in the heavy chain of the dynein complex. We found the Dync1h1(Loa/+;Gars(C201R/+ double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars(C201R mutation significantly delayed disease onset in the SOD1(G93A;Gars(C201R/+ double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated.These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.

  5. Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1

    Directory of Open Access Journals (Sweden)

    Kai Cui

    2017-01-01

    Full Text Available Our previous studies have demonstrated that erectile function was preserved in aged transgenic rats (TGR harboring the human tissue kallikrein 1 (hKLK1, while the molecular level of hKLK1 on corporal fibrosis to inhibit age-related erectile dysfunction (ED is poorly understood. Male wild-type Sprague-Dawley rats (WTR and TGR harboring the hKLK1 gene were fed to 4- or 18-month-old and divided into three groups: young WTR (yWTR as the control, aged WTR (aWTR, and aged TGR (aTGR. Erectile function of all rats was assessed by cavernous nerve electrostimulation method. Masson′s trichrome staining was used to evaluate corporal fibrosis in the corpus cavernosum. We found that the erectile function of rats in the aWTR group was significantly lower than that of other two groups. Masson′s trichrome staining revealed that compared with those of the yWTR and aTGR groups, the ratio of smooth muscle cell (SMC/collagen (C was significantly lower in the aWTR group. Immunohistochemistry and Western blotting analysis were performed, and results demonstrated that expression of α-SMA was lower, while expressions of transforming growth factor-β 1 (TGF-β1, RhoA, ROCK1, p-MYPT1, p-LIMK2, and p-cofilin were higher in the aWTR group compared with those in other two groups. However, LIMK2 and cofilin expressions did not differ among three groups. Taken together, these results indicated that the RhoA/ROCK1/LIMK/cofilin pathway may be involved in the corporal fibrosis caused by advanced age, and hKLK1 may reduce this corporal fibrosis by inhibiting the activation of this pathway to ameliorate age-related ED.

  6. DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Diane Penndorf

    Full Text Available Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1 gene are common in familial amyotrophic lateral sclerosis (fALS. The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs and double-strand breaks (DSBs, originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43 proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for

  7. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions.

    Science.gov (United States)

    Koo, Hyun-Na; Lee, Soon-Gyu; Yun, Seung-Hwan; Kim, Hyun Kyung; Choi, Yong Soo; Kim, Gil-Hah

    2016-01-01

    This study compared stress-induced expression of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) genes in the European honeybee Apis mellifera L. and Asian honeybee Apis cerana F. Expression of both SOD1 and TrxR rapidly increased up to 5 h after exposure to cold (4 °C) or heat (37 °C) treatment and then gradually decreased, with a stronger effect induced by cold stress in A. mellifera compared with A. cerana. Injection of stress-inducing substances (methyl viologen, [MV] and H2O2) also increased SOD1 and TrxR expression in both A. mellifera and A. cerana, and this effect was more pronounced with MV than H2O2. Additionally, we heterologously expressed the A. mellifera and A. cerana SOD1 and TrxR proteins in an Escherichia coli expression system, and detection by SDS-PAGE, confirmed by Western blotting using anti-His tag antibodies, revealed bands at 16 and 60 kDa, respectively. Our results show that the expression patterns of SOD1 and TrxR differ between A. mellifera and A. cerana under conditions of low or high temperature as well as oxidative stress. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  8. Decreased gonadotropin-releasing hormone neuronal activity is associated with decreased fertility and dysregulation of food intake in the female GPR-4 transgenic rat.

    Science.gov (United States)

    Gomez, Francisca; la Fleur, Susanne E; Weiner, Richard I; Dallman, Mary F; El Majdoubi, Mohammed

    2005-09-01

    Expression of a cAMP-specific phosphodiesterase in GnRH neurons in the GPR-4 transgenic rat resulted in decreased LH levels and pulse frequency and diminished fertility. We have characterized changes in fertility, adiposity, and reproductive and metabolic hormones with age. Although LH levels were decreased in 3-, 6-, and 9-month-old GPR-4 females relative to wild-type (WT) controls, GPR-4 females did not become anovulatory until 6 months of age. No differences were observed in FSH, estradiol, or androstenedione levels in 3-, 6-, or 9-month-old GPR-4 and WT females. At 9 months of age, GPR-4 females had significantly increased abdominal and sc fat depot weights that were associated with increased leptin and insulin levels not observed in WT females. We tested the hypothesis that metabolic changes observed at 9 months of age were the result of dysregulation of the mechanisms controlling energy balance. Two-month-old female GPR-4 rats placed on a high-energy diet gained weight at a rate significantly greater than WT females and, after 24 d, developed the same metabolic phenotype observed in 9-month-old GRP-4 females (increased abdominal and sc fat associated with elevated leptin and insulin concentrations). Overeating did not correlate with changes in estradiol or androstenedione levels. We conclude that decreased GnRH neuronal activity is closely associated with decreased reproductive function and dysregulation of food intake.

  9. Sub-chronic (13-week) oral toxicity study in rats with recombinant human lactoferrin produced in the milk of transgenic cows.

    Science.gov (United States)

    Appel, M J; van Veen, H A; Vietsch, H; Salaheddine, M; Nuijens, J H; Ziere, B; de Loos, F

    2006-07-01

    The oral toxicity of recombinant human lactoferrin (rhLF) produced in the milk of transgenic cows was investigated in Wistar rats by daily administration via oral gavage for 13 consecutive weeks, 7 days per week. The study used four groups of 20 rats/sex/dose. The control group received physiological saline and the three test groups received daily doses of 200, 600 and 2000 mg of rhLF per kg body weight. Clinical observations, growth, food consumption, food conversion efficiency, water consumption, neurobehavioural testing, ophthalmoscopy, haematology, clinical chemistry, renal concentration test, urinalysis, organ weights and gross examination at necropsy and microscopic examination of various organs and tissues were used as criteria for detecting the effects of treatment. Overall, no treatment-related, toxicologically significant changes were observed. The few findings that may be related to the treatment (lower cholesterol in high-dose females, lower urinary pH in high-dose males and females and very slightly higher kidney weight in high-dose females) were considered of no toxicological significance. Based on the absence of treatment-related, toxicologically relevant changes, the no-observed-adverse-effect level (NOAEL) was considered to be at least 2000 mg/kg body weight/day.

  10. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  11. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  12. Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation.

    Science.gov (United States)

    Peviani, Marco; Salvaneschi, Eleonora; Bontempi, Leonardo; Petese, Alessandro; Manzo, Antonio; Rossi, Daniela; Salmona, Mario; Collina, Simona; Bigini, Paolo; Curti, Daniela

    2014-02-01

    The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1β were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased

  13. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS

    Czech Academy of Sciences Publication Activity Database

    Forostyak, Serhiy; Homola, Aleš; Turnovcová, Karolína; Svítil, Pavel; Jendelová, Pavla; Syková, Eva

    2014-01-01

    Roč. 32, č. 12 (2014), s. 3163-3172 ISSN 1066-5099 R&D Projects: GA ČR(CZ) GAP304/11/0189; GA ČR(CZ) GBP304/12/G069; GA MŠk EE2.3.30.0018 Grant - others:GA ČR(CZ) GP14-10504P Institutional support: RVO:68378041 Keywords : stem cells * extracellular matrix * neurodegenerations Subject RIV: FH - Neurology Impact factor: 6.523, year: 2014

  14. Aging-associated changes in oxidative stress, cell proliferation, and apoptosis are prevented in the prostate of transgenic rats overexpressing regucalcin.

    Science.gov (United States)

    Vaz, Cátia V; Marques, Ricardo; Maia, Cláudio J; Socorro, Sílvia

    2015-12-01

    Regucalcin (RGN) is a calcium (Ca(2+))-binding protein that displays a characteristic downregulated expression with aging in several tissues. Besides its role in regulating intracellular Ca(2+) homeostasis, RGN has been associated with the control of oxidative stress, cell proliferation, and apoptosis. Thus, the diminished expression of RGN with aging may contribute to the age-associated deterioration of cell function. In the present study, we hypothesized that the maintenance of high expression levels of RGN may prevent age-related alterations in the processes mentioned previously. First, we confirmed that RGN expression is significantly diminished in the prostate of 8-, 9-, 12-, and 24-months wild-type rats. Then, the effect of aging on lipid peroxidation, antioxidant defenses, cell proliferation, and apoptosis in the prostate of wild-type controls and transgenic rats overexpressing RGN (Tg-RGN) was investigated. The activity of glutathione and the antioxidant capacity were increased in Tg-RGN rats in response to the age-associated increase in thiobarbituric acid reactive substances levels, an effect not seen in wild type. Overexpression of RGN also counteracted the effect of aging increasing prostate cell proliferation. In contrast to wild-type animals, the prostate weight of Tg-RGN did not change with aging and was underpinned by the diminished expression of stem cell factor and c-kit, and increased expression of p53. In addition, aged Tg-RGN animals displayed increased expression (activity) of apoptosis regulators, therefore not showing the age-induced resistance to apoptosis observed in wild type. Altogether, these findings indicate the protective role of RGN against the development of age-related pathologies, such as, for example, prostate cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease.

    Science.gov (United States)

    Martino Adami, Pamela V; Quijano, Celia; Magnani, Natalia; Galeano, Pablo; Evelson, Pablo; Cassina, Adriana; Do Carmo, Sonia; Leal, María C; Castaño, Eduardo M; Cuello, A Claudio; Morelli, Laura

    2017-01-01

    Synaptic bioenergetic deficiencies may be associated with early Alzheimer's disease (AD). To explore this concept, we assessed pre-synaptic mitochondrial function in hemizygous (+/-)TgMcGill-R-Thy1-APP rats. The low burden of Aβ and the wide array of behavioral and cognitive impairments described in 6-month-old hemizygous TgMcGill-R-Thy1-APP rats (Tg(+/-)) support their use to investigate synaptic bioenergetics deficiencies described in subjects with early Alzheimer's disease (AD). In this report, we show that pre-synaptic mitochondria from Tg(+/-) rats evidence a decreased respiratory control ratio and spare respiratory capacity associated with deficits in complex I enzymatic activity. Cognitive impairments were prevented and bioenergetic deficits partially reversed when Tg(+/-) rats were fed a nutritionally complete diet from weaning to 6-month-old supplemented with pyrroloquinoline quinone, a mitochondrial biogenesis stimulator with antioxidant and neuroprotective effects. These results provide evidence that, as described in AD brain and not proven in Tg mice models with AD-like phenotype, the mitochondrial bioenergetic capacity of synaptosomes is not conserved in the Tg(+/-) rats. This animal model may be suitable for understanding the basic biochemical mechanisms involved in early AD. © The Author(s) 2015.

  16. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease

    Science.gov (United States)

    Martino Adami, Pamela V; Quijano, Celia; Magnani, Natalia; Galeano, Pablo; Evelson, Pablo; Cassina, Adriana; Do Carmo, Sonia; Leal, María C; Castaño, Eduardo M; Cuello, A Claudio

    2015-01-01

    Synaptic bioenergetic deficiencies may be associated with early Alzheimer's disease (AD). To explore this concept, we assessed pre-synaptic mitochondrial function in hemizygous (+/−)TgMcGill-R-Thy1-APP rats. The low burden of Aβ and the wide array of behavioral and cognitive impairments described in 6-month-old hemizygous TgMcGill-R-Thy1-APP rats (Tg(+/−)) support their use to investigate synaptic bioenergetics deficiencies described in subjects with early Alzheimer's disease (AD). In this report, we show that pre-synaptic mitochondria from Tg(+/−) rats evidence a decreased respiratory control ratio and spare respiratory capacity associated with deficits in complex I enzymatic activity. Cognitive impairments were prevented and bioenergetic deficits partially reversed when Tg(+/−) rats were fed a nutritionally complete diet from weaning to 6-month-old supplemented with pyrroloquinoline quinone, a mitochondrial biogenesis stimulator with antioxidant and neuroprotective effects. These results provide evidence that, as described in AD brain and not proven in Tg mice models with AD-like phenotype, the mitochondrial bioenergetic capacity of synaptosomes is not conserved in the Tg(+/−) rats. This animal model may be suitable for understanding the basic biochemical mechanisms involved in early AD. PMID:26661224

  17. Administration of Recombinant Heat Shock Protein 70 Delays Peripheral Muscle Denervation in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    David J. Gifondorwa

    2012-01-01

    Full Text Available A prominent clinical feature of ALS is muscle weakness due to dysfunction, denervation and degeneration of motoneurons (MNs. While MN degeneration is a late stage event in the ALS mouse model, muscle denervation occurs significantly earlier in the disease. Strategies to prevent this early denervation may improve quality of life by maintaining muscle control and slowing disease progression. The precise cause of MN dysfunction and denervation is not known, but several mechanisms have been proposed that involve potentially toxic intra- and extracellular changes. Many cells confront these changes by mounting a stress response that includes increased expression of heat shock protein 70 (Hsp70. MNs do not upregulate Hsp70, and this may result in a potentially increased vulnerability. We previously reported that recombinant human hsp70 (rhHsp70 injections delayed symptom onset and increased lifespan in SOD1G93A mice. The exogenous rhHsp70 was localized to the muscle and not to spinal cord or brain suggesting it modulates peripheral pathophysiology. In the current study, we focused on earlier administration of Hsp70 and its effect on initial muscle denervation. Injections of the protein appeared to arrest denervation with preserved large myelinated peripheral axons, and reduced glial activation.

  18. Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1G93A mouse model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Chrystian Junqueira Alves

    2015-09-01

    Full Text Available Schwann cells are the main source of paracrine support to motor neurons. Oxidative stress and mitochondrial dysfunction have been correlated to motor neuron death in Amyotrophic Lateral Sclerosis (ALS. Despite the involvement of Schwann cells in early neuromuscular disruption in ALS, detailed molecular events of a dying-back triggering are unknown. Sciatic nerves of presymptomatic (60-day-old SOD1G93A mice were submitted to a high-density oligonucleotide microarray analysis. DAVID demonstrated the deregulated genes related to death, stress and mitochondrion, which allowed the identification of Cell cycle, ErbB signaling, Tryptophan metabolism and Rig-I-like receptor signaling as the most representative KEGG pathways. The protein-protein interaction networks based upon deregulated genes have identified the top hubs (TRAF2, H2AFX, E2F1, FOXO3, MSH2, NGFR, TGFBR1 and bottlenecks (TRAF2, E2F1, CDKN1B, TWIST1, FOXO3. Schwann cells were enriched from the sciatic nerve of presymptomatic mice using flow cytometry cell sorting. qPCR showed the up regulated (Ngfr, Cdnkn1b, E2f1, Traf2 and Erbb3, H2afx, Cdkn1a, Hspa1, Prdx, Mapk10 and down-regulated (Foxo3, Mtor genes in the enriched Schwann cells. In conclusion, molecular analyses in the presymptomatic sciatic nerve demonstrated the involvement of death, oxidative stress, and mitochondrial pathways in the Schwann cell non-autonomous mechanisms in the early stages of ALS.

  19. Oleuropein protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1, GPx1 and CAT expression.

    Science.gov (United States)

    Shi, Ce; Chen, Xiangrong; Liu, Zuojia; Meng, Rizeng; Zhao, Xingchen; Liu, Zonghui; Guo, Na

    2017-01-01

    Oleuropein (OL), a natural phenolic compound, comprises the major constituent of Olea europea leaves and unprocessed olives, and OL is considered to be the principal components that confer the characteristic taste and stability of olive oil. Oxidative damage induced by H 2 O 2 treatment can irreversibly damage the L-02 cells, resulting in cell death and apoptosis. Whether the effects of oxidative stress could be attenuated in cultured human L-02 cells by incubation with OL is still unknown. In this research, the function of OL in protecting human L-02 cells against H 2 O 2 induced cell death and cell apoptosis was investigated, and the mechanism by which OL underlies the effect was also examed. L-02 cells were exposed to 100μM H 2 O 2 with or without OL pretreatment at different concentrations. Cell viabilities were monitored by WST-1 assay. ALT, AST and LDH production in culture medium were also determined. ROS levels were detected by L-012 chemiluminescence, and OL increased SOD1, CAT and GPx1 expression in a concentration-dependent manner. Further studies showed that OL also inhibited H 2 O 2 -induced P38 and JNK phosphorylation but enhanced ERK1/2 phosphorylation in a dose-dependent manner. These findings suggested that OL as a potent antioxidant agent and a natural compound found in several plants, may be exploited as a potentially useful method for hepatopathy prevention. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease

    OpenAIRE

    Martino Adami, Pamela V; Quijano, Celia; Magnani, Natalia; Galeano, Pablo; Evelson, Pablo; Cassina, Adriana; Do Carmo, Sonia; Leal, María C; Castaño, Eduardo M; Cuello, A Claudio; Morelli, Laura

    2015-01-01

    Synaptic bioenergetic deficiencies may be associated with early Alzheimer's disease (AD). To explore this concept, we assessed pre-synaptic mitochondrial function in hemizygous (+/−)TgMcGill-R-Thy1-APP rats. The low burden of Aβ and the wide array of behavioral and cognitive impairments described in 6-month-old hemizygous TgMcGill-R-Thy1-APP rats (Tg(+/−)) support their use to investigate synaptic bioenergetics deficiencies described in subjects with early Alzheimer's disease (AD). In this re...

  1. Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes.

    Science.gov (United States)

    Katoh, A; Shoguchi, K; Matsuoka, H; Yoshimura, M; Ohkubo, J-I; Matsuura, T; Maruyama, T; Ishikura, T; Aritomi, T; Fujihara, H; Hashimoto, H; Suzuki, H; Murphy, D; Ueta, Y

    2014-05-01

    The up-regulation of c-fos gene expression is widely used as a marker of neuronal activation elicited by various stimuli. Anatomically precise observation of c-fos gene products can be achieved at the RNA level by in situ hybridisation or at the protein level by immunocytochemistry. Both of these methods are time and labour intensive. We have developed a novel transgenic rat system that enables the trivial visualisation of c-fos expression using an enhanced green fluorescent protein (eGFP) tag. These rats express a transgene consisting of c-fos gene regulatory sequences that drive the expression of a c-fos-eGFP fusion protein. In c-fos-eGFP transgenic rats, robust nuclear eGFP fluorescence was observed in osmosensitive brain regions 90 min after i.p. administration of hypertonic saline. Nuclear eGFP fluorescence was also observed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) 90 min after i.p. administration of cholecystokinin (CCK)-8, which selectively activates oxytocin (OXT)-secreting neurones in the hypothalamus. In double transgenic rats that express c-fos-eGFP and an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene, almost all mRFP1-positive neurones in the SON and PVN expressed nuclear eGFP fluorescence 90 min after i.p. administration of CCK-8. It is possible that not only a plane image, but also three-dimensional reconstruction image may identify cytoplasmic vesicles in an activated neurone at the same time. © 2014 British Society for Neuroendocrinology.

  2. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for Huntington disease

    NARCIS (Netherlands)

    Abada, Yah-se K.; Nguyen, Huu Phuc; Schreiber, Rudy; Ellenbroek, Bart

    2013-01-01

    Rationale: Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97

  3. Intrapulmonary activation of the angiotensin-converting enzyme type 2/angiotensin 1-7/G-protein-coupled Mas receptor axis attenuates pulmonary hypertension in Ren-2 transgenic rats exposed to chronic hypoxia.

    Science.gov (United States)

    Hampl, V; Herget, J; Bíbová, J; Baňasová, A; Husková, Z; Vaňourková, Z; Jíchová, Š; Kujal, P; Vernerová, Z; Sadowski, J; Červenka, L

    2015-01-01

    The present study was performed to evaluate the role of intrapulmonary activity of the two axes of the renin-angiotensin system (RAS): vasoconstrictor angiotensin-converting enzyme (ACE)/angiotensin II (ANG II)/ANG II type 1 receptor (AT₁) axis, and vasodilator ACE type 2 (ACE2)/angiotensin 1-7 (ANG 1-7)/Mas receptor axis, in the development of hypoxic pulmonary hypertension in Ren-2 transgenic rats (TGR). Transgene-negative Hannover Sprague-Dawley (HanSD) rats served as controls. Both TGR and HanSD rats responded to two weeks´ exposure to hypoxia with a significant increase in mean pulmonary arterial pressure (MPAP), however, the increase was much less pronounced in the former. The attenuation of hypoxic pulmonary hypertension in TGR as compared to HanSD rats was associated with inhibition of ACE gene expression and activity, inhibition of AT₁receptor gene expression and suppression of ANG II levels in lung tissue. Simultaneously, there was an increase in lung ACE2 gene expression and activity and, in particular, ANG 1-7 concentrations and Mas receptor gene expression. We propose that a combination of suppression of ACE/ANG II/AT₁receptor axis and activation of ACE2/ANG 1-7/Mas receptor axis of the RAS in the lung tissue is the main mechanism explaining attenuation of hypoxic pulmonary hypertension in TGR as compared with HanSD rats.

  4. Sperm parameters and epididymis function in transgenic rats overexpressing the Ca2+-binding protein regucalcin: a hidden role for Ca2+ in sperm maturation?

    Science.gov (United States)

    Correia, S; Oliveira, P F; Guerreiro, P M; Lopes, G; Alves, M G; Canário, A V M; Cavaco, J E; Socorro, Sílvia

    2013-09-01

    Sperm undergo maturation acquiring progressive motility and the ability to fertilize oocytes through exposure to the components of the epididymal fluid (EF). Although the establishment of a calcium (Ca(2+)) gradient along the epididymis has been described, its direct effects on epididymal function remain poorly explored. Regucalcin (RGN) is a Ca(2+)-binding protein, regulating the activity of Ca(2+)-channels and Ca(2+)-ATPase, for which a role in male reproductive function has been suggested. This study aimed at comparing the morphology, assessed by histological analysis, and function of epididymis, by analysis of sperm parameters, antioxidant potential and Ca(2+) fluxes, between transgenic rats overexpressing RGN (Tg-RGN) and their wild-type littermates. Tg-RGN animals displayed an altered morphology of epididymis and lower sperm counts and motility. Tissue incubation with (45)Ca(2+) showed also that epididymis of Tg-RGN displayed a diminished rate of Ca(2+)-influx, indicating unbalanced Ca(2+) concentrations in the epididymal lumen. Sperm viability and the frequency of normal sperm, determined by the one-step eosin-nigrosin staining technique and the Diff-Quik staining method, respectively, were higher in Tg-RGN. Moreover, sperm of Tg-RGN rats showed a diminished incidence of tail defects. Western blot analysis demonstrated the presence of RGN in EF as well as its higher expression in the corpus region. The results presented herein demonstrated the importance of maintaining Ca(2+)-levels in the epididymal lumen and suggest a role for RGN in sperm maturation. Overall, a new insight into the molecular mechanisms driving epididymal sperm maturation was obtained, which could be relevant to development of better approaches in male infertility treatment and contraception.

  5. Fipronil induced oxidative stress involves alterations in SOD1 and catalase gene expression in male mice liver: Protection by vitamins E and C.

    Science.gov (United States)

    Badgujar, Prarabdh C; Chandratre, Gauri A; Pawar, Nitin N; Telang, A G; Kurade, N P

    2016-09-01

    In the present investigation, hepatic oxidative stress induced by fipronil was evaluated in male mice. We also investigated whether pretreatment with antioxidant vitamins E and C could protect mice against these effects. Several studies conducted in cell lines have shown fipronil as a potent oxidant; however, no information is available regarding its oxidative stress inducing potential in an animal model. Out of 8 mice groups, fipronil was administered to three groups at low, medium, and high dose based on its oral LD50 (2.5, 5, and 10 mg/kg). All three doses of fipronil caused a significant increase in the serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) level with concomitant increase in the absolute and relative weight of liver. High dose of fipronil caused significant down-regulation in the hepatic mRNA expression of superoxide dismutase 1 (SOD1) and catalase (0.412 ± 0.01 and 0.376 ± 0.05-fold, respectively) as well as an increase in the lipid peroxidation (LPO). Also, decrease in the activity of antioxidant enzymes; SOD, catalase, and glutathione-S-transferase (GST) and the content of nonantioxidant enzymes; glutathione and total thiol were recorded. Histopathological examination of liver revealed dose dependant changes such as severe fatty degeneration and vacuolation leading to hepatocellular necrosis. Prior administration of vitamin E or vitamin C against fipronil high dose caused decrease in lipid peroxidation and increased activity of antioxidant enzymes. Severe reduction observed in functional activities of antioxidant enzymes was aptly substantiated by down-regulation seen in their relative mRNA expression. Thus results of the present study imply that liver is an important target organ for fipronil and similar to in vitro reports, it induces oxidative stress in the mice liver, which in turn could be responsible for its hepatotoxic nature. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1147-1158, 2016. © 2015

  6. Establishment and functional characterization of a tracheal epithelial cell line RTEC11 from transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen.

    Science.gov (United States)

    Tabuchi, Yoshiaki; Doi, Takeshi; Takasaki, Ichiro; Takahashi, Ri-ichi; Ueda, Masatsugu; Suzuki, Yoshihisa; Obinata, Masuo

    2008-11-01

    A tracheal epithelial cell line RTEC11 was established from transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen. The cells grew continuously at a permissive temperature of 33 degrees C but not at a non-permissive temperature of 39 degrees C. Morphological and functional investigations demonstrated that the cells were polarized epithelial cells maintaining a regulated permeability barrier function. Interestingly, the expression levels of Muc1 (mucin 1) and Scgb1a1 (uteroglobin), non-ciliated secretory cell markers, and Tubb4 (tubulin beta 4), a ciliated cell marker, were significantly increased under the cell growth-restricted condition. Global gene expression and computational network analyses demonstrated a significant genetic network associated with cellular development and differentiation in cells cultured at the non-permissive temperature. The tracheal epithelial cell line RTEC11 with unique characteristics should be useful as an in vitro model for studies of the physiological functions and gene expression of tracheal epithelial cells.

  7. Genetic polymorphisms (Pro197Leu of Gpx1, +35A/C of SOD1, -262C/T of CAT), the level of antioxidant proteins (GPx1, SOD1, CAT) and the risk of distal symmetric polyneuropathy in Polish patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Kasznicki, Jacek; Sliwinska, Agnieszka; Kosmalski, Marcin; Merecz, Anna; Majsterek, Ireneusz; Drzewoski, Jozef

    2016-03-01

    Oxidative stress and impaired anti-oxidant defense are regarded as contributory factors for distal symmetric polyneuropathy (DSPN). The purpose of the study was to evaluate the plasma level of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) and the association between polymorphic variants in genes encoding for GPx1, SOD, CAT and the risk of DSPN in T2DM patients. We included 401 individuals: 110 T2DM patients with DSPN, 135 T2DM patients without DSPN, and 156 control subjects with normoglycemia, and without DSPN. We employed RFPL-PCR to genotype polymorphic variants Pro197Leu of Gpx1, +35A/C of SOD1, -262C/T of CAT and ELISA tests to measure plasma level of SOD1, GPx1 and CAT. The odds ratios (ORs) and 95% confidence intervals (CIs) for each genotype and allele were calculated. There was a significant decrease in the level of GPx1 (pCAT levels were lower in T2DM patients with DSPN compared to T2DM patients without DSPN (p<0.05). The genetic analysis revealed the lack of association between examined polymorphic variants and the risk of DSPN. The examined polymorphic variants are not associated with DSPN in Polish T2DM patients. The obtained results suggest that disturbances in antioxidant defense system may play significant role in the development and progression of DSPN. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Nogo-A-deficient transgenic rats show deficits in higher cognitive functions, decreased anxiety and altered circadian activity patterns

    Directory of Open Access Journals (Sweden)

    Tomas ePetrasek

    2014-03-01

    Full Text Available Decreased levels of Nogo-A dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knock-down laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A-knockout rats and their circadian period (tau did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality and activity patterns.

  9. Recombinant human antithrombin expressed in the milk of non-transgenic goats exhibits high efficiency on rat DIC model.

    Science.gov (United States)

    Yang, Hai; Li, Qing-Wang; Han, Zeng-Sheng; Hu, Jian-Hong; Li, Wen-Ye; Liu, Zhi-Bin

    2009-11-01

    Plasma-derived antithrombin (pAT) is often used for the treatments of disseminated intravascular coagulation (DIC) patients. In this paper, the recombinant adenovirus vector encoding human antithrombin (AT) cDNA was constructed and directly infused into the mammary gland of two goats. The recombinant human antithrombin (rhAT) was purified by heparin affinity chromatography from the goat milk, and then used in the treatment of thirty lipopolysaccharide (LPS) induced DIC rats. A high expression level of rhAT up to 2.8 g/l was obtained in the milk of goats. After purification, the recovery rate and the purity of the rhAT were up to 54.7 +/- 3.2% and 96.2 +/- 2.7%, respectively. In blood of the DIC rat model treated with rhAT, the levels of antithrombin and thrombin-antithrombin (TAT) were augmented significantly; meanwhile the consumption of fibrinogen and platelet was reduced significantly, and the increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentration was restrained modest and non-significant. For the above DIC indexes, there were no differences between pAT and rhAT (P > 0.05). Our results demonstrated that the way we established is a pragmatic tool for large-scale production of rhAT, and the rhAT produced with this method has potential as a substitute for pAT in the therapy of DIC patients.

  10. Potential subchronic food safety of the stacked trait transgenic maize GH5112E-117C in Sprague-Dawley rats.

    Science.gov (United States)

    Han, Shiwen; Zou, Shiying; He, Xiaoyun; Huang, Kunlun; Mei, Xiaohong

    2016-08-01

    The food safety of stacked trait genetically modified (GM) maize GH5112E-117C containing insect-resistance gene Cry1Ah and glyphosate-resistant gene G2-aroA was evaluated in comparison to non-GM Hi-II maize fed to Sprague-Dawley rats during a 90-day subchronic feeding study. Three different dietary concentrations (12.5, 25 and 50 %, w/w) of the GM maize were used or its corresponding non-GM maize. No biologically significant differences in the animals' clinical signs, body weights, food consumption, hematology, clinical chemistry, organ weights and histopathology were found between the stacked trait GM maize groups, and the non-GM maize groups. The results of the 90-day subchronic feeding study demonstrated that the stacked trait GM maize GH5112E-117C is as safe as the conventional non-GM maize Hi-II.

  11. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model.

    Science.gov (United States)

    Saito, Yasuhiko; Zhang, Yue; Yanagawa, Yuchio

    2015-04-01

    Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. The structural analysis of the pro-oxidant copper-binding site of denatured apo-H43R SOD1 and the elucidation of the origin of the acquisition of the pro-oxidant activity.

    Science.gov (United States)

    Fujimaki, Nobuhiro; Miura, Takashi; Nakabayashi, Takakazu

    2016-02-14

    The pathogenesis of amyotrophic lateral sclerosis (ALS) is associated with mutations of Cu,Zn-superoxide dismutase (SOD1), which is a representative antioxidant enzyme. A previous study showed that the denatured apo-form of an ALS-linked mutant of human SOD1, His43 → Arg (H43R), obtains pro-oxidant activity as the reverse behavior of the native antioxidant activity by rebinding Cu(2+), which is considered to be closely related to the development of ALS. The Cu(2+)-binding site in denatured apo-H43R can be regarded as the center of the pro-oxidant activity, causing cellular oxidative stress. In the present study, the structure of the Cu(2+)-binding site of denatured apo-H43R was investigated to clarify the mechanism of the acquisition of the pro-oxidant activity. His residues constructing the Cu(2+)-binding site in denatured apo-H43R were experimentally assigned by absorption and fluorescence-based assays of SOD1 mutants, in which each of the seven His residues in H43R SOD1 is replaced with Ala. It was found that His120 is not involved with the Cu(2+)-binding site after denaturation, although the other His residues constructing the metal-binding site remain constant after denaturation. The disappearance of His120 from the Cu(2+)-binding site is therefore considered to be one of the important factors in obtaining the pro-oxidant activity. The mechanism of the acquisition of the pro-oxidant activity is discussed based on the results obtained.

  13. Lack of TNF-alpha receptor type 2 protects motor neurons in a cellular model of amyotrophic lateral sclerosis and in mutant SOD1 mice but does not affect disease progression.

    Science.gov (United States)

    Tortarolo, Massimo; Vallarola, Antonio; Lidonnici, Dario; Battaglia, Elisa; Gensano, Francesco; Spaltro, Gabriella; Fiordaliso, Fabio; Corbelli, Alessandro; Garetto, Stefano; Martini, Elisa; Pasetto, Laura; Kallikourdis, Marinos; Bonetto, Valentina; Bendotti, Caterina

    2015-10-01

    Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies. © 2015 International Society for Neurochemistry.

  14. Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.

    Science.gov (United States)

    Yang, Jingli; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping; Li, Chenghao

    2011-03-01

    A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd(2+), Zn(2+), Cu(2+), and NaCl stress. Transgenic yeast also accumulated more Cd(2+), Zn(2+), and NaCl, but not Cu(2+). Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd(2+)) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in ThMT3-transgenic yeast. H(2)O(2) levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in the transgenic yeast. Cd(2+), Zn(2+), and Cu(2+) increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.

  15. Association between single nucleotide polymorphisms in the antioxidant genes CAT, GR and SOD1, erythrocyte enzyme activities, dietary and life style factors and breast cancer risk in a Danish, prospective cohort study

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov; Vogel, Ulla; Dragsted, Lars Ove

    2017-01-01

    investigated in 703 breast cancer case-control pairs in the Danish, prospective "Diet, Cancer and Health" cohort together with gene-environment interactions between the polymorphisms, enzyme activities and intake of fruits and vegetables, alcohol and smoking in relation to breast cancer risk. Our results...... showed that genetically determined variations in the antioxidant enzyme activities of SOD1, CAT and GSR were not associated with risk of breast cancer per se. However, intake of alcohol, fruit and vegetables, and smoking status interacted with some of the polymorphisms in relation to breast cancer risk...

  16. The anti-inflammatory peptide stearyl-norleucine-VIP delays disease onset and extends survival in a rat model of inherited amyotrophic lateral sclerosis.

    Science.gov (United States)

    Goursaud, Stéphanie; Schäfer, Sabrina; Dumont, Amélie O; Vergouts, Maxime; Gallo, Alessandro; Desmet, Nathalie; Deumens, Ronald; Hermans, Emmanuel

    2015-01-01

    Vasoactive intestinal peptide (VIP) has potent immune modulatory actions that may influence the course of neurodegenerative disorders associated with chronic inflammation. Here, we show the therapeutic benefits of a modified peptide agonist stearyl-norleucine-VIP (SNV) in a transgenic rat model of amyotrophic lateral sclerosis (mutated superoxide dismutase 1, hSOD1(G93A)). When administered by systemic every-other-day intraperitoneal injections during a period of 80 days before disease, SNV delayed the onset of motor dysfunction by no less than three weeks, while survival was extended by nearly two months. SNV-treated rats showed reduced astro- and microgliosis in the lumbar ventral spinal cord and a significant degree of motor neuron preservation. Throughout the treatment, SNV promoted the expression of the anti-inflammatory cytokine interleukin-10 as well as neurotrophic factors commonly considered as beneficial in amyotrophic lateral sclerosis management (glial derived neuroptrophic factor, insulin like growth factor, brain derived neurotrophic factor). The peptide nearly totally suppressed the expression of tumor necrosis factor-α and repressed the production of the pro-inflammatory mediators interleukin-1β, nitric oxide and of the transcription factor nuclear factor kappa B. Inhibition of tumor necrosis factor-α likely accounted for the observed down-regulation of nuclear factor kappa B that modulates the transcription of genes specifically involved in amyotrophic lateral sclerosis (sod1 and the glutamate transporter slc1a2). In line with this, levels of human superoxide dismutase 1 mRNA and protein were decreased by SNV treatment, while the expression and activity of the glutamate transporter-1 was promoted. Considering the large diversity of influences of this peptide on both clinical features of the disease and associated biochemical markers, we propose that SNV or related peptides may constitute promising candidates for amyotrophic lateral sclerosis

  17. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...

  18. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice.

    Science.gov (United States)

    Xie, Yufeng; Wu, Jie; Xu, Aizhang; Ahmeqd, Shahid; Sami, Amer; Chibbar, Rajni; Freywald, Andrew; Zheng, Changyu; Xiang, Jim

    2018-03-07

    DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-T EXO capable of stimulating HER2-specific CD8 + T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdV HuRt expressing HuRt fusion protein composed of NH 2 -HER2 1-407 (Hu) and COOH-neu 408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-T EXO using polyclonal CD4 + T-cells uptaking exosomes released by AdV HuRt -transfected dendritic cells. We found that the HuRt-T EXO vaccine stimulates enhanced CD4 + T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-T EXO vaccine. By using PE-H-2K d /HER2 23-71 tetramer, we determined that HuRt-T EXO stimulates stronger HER2-specific CD8 + T-cell responses eradicating 90% of HER2-specific target cells, while HER2-T EXO -induced CD8 + T-cell responses only eliminating 53% targets. Furthermore, HuRt-T EXO , but not HER2-T EXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1 HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10 A2/HER2 melanoma. HuRt-T EXO -stimulated HER2-specific CD8 + T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-T EXO, circumventing HER2 tolerance, may provide a new

  19. Effect of delta sleep-inducing peptide on the expression of antioxidant enzyme genes in the brain and blood of rats during physiological aging.

    Science.gov (United States)

    Kutilin, D S; Bondarenko, T I; Kornienko, I V; Mikhaleva, I I

    2014-09-01

    Subcutaneous injections of exogenous delta sleep-inducing peptide in a dose of 100 μg/kg (monthly, 5-day courses) to rats of various age groups (2-24 months) were followed by an increase in the expression of genes for SOD 1 (Sod1) and glutathione peroxidase 1 (Gpx1) in the brain and nucleated blood cells. The expression of these genes was shown to decrease during physiological aging of the body.

  20. Effects of Human Alpha-Synuclein A53T-A30P Mutations on SVZ and Local Olfactory Bulb Cell Proliferation in a Transgenic Rat Model of Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Faustine Lelan

    2011-01-01

    Full Text Available A transgenic Sprague Dawley rat bearing the A30P and A53T α-synuclein (α-syn human mutations under the control of the tyrosine hydroxylase promoter was generated in order to get a better understanding of the role of the human α-syn mutations on the neuropathological events involved in the progression of the Parkinson’s disease (PD. This rat displayed olfactory deficits in the absence of motor impairments as observed in most early PD cases. In order to investigate the role of the mutated α-syn on cell proliferation, we focused on the subventricular zone (SVZ and the olfactory bulbs (OB as a change of the proliferation could affect OB function. The effect on OB dopaminergic innervation was investigated. The human α-syn co-localized in TH-positive OB neurons. No human α-syn was visualized in the SVZ. A significant increase in resident cell proliferation in the glomerular but not in the granular layers of the OB and in the SVZ was observed. TH innervation was significantly increased within the glomerular layer without an increase in the size of the glomeruli. Our rat could be a good model to investigate the role of human mutated α-syn on the development of olfactory deficits.

  1. Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Landa, Vladimír; Zídek, Václav; Musilová, Alena; Kazdová, L.; Qi, N.; Wang, J.; St. Lezin, E. S.; Kurtz, T. W.

    2003-01-01

    Roč. 52, č. 6 (2003), s. 681-688 ISSN 0862-8408 R&D Projects: GA ČR GA305/00/1646; GA ČR GA301/00/1636; GA MZd NB4904 Grant - others:HHMI(US) 55000331 Institutional research plan: CEZ:AV0Z5011922 Keywords : Cd36 * dyslipidemia * transgenic SHR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.939, year: 2003

  2. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1G93A mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tefera, Tesfaye W; Borges, Karin

    2018-01-01

    Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1- 13 C]glucose and [1,2- 13 C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1 G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1 H and 13 C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3- 13 C]lactate, total alanine and [3- 13 C]alanine, but not cortical glucose and [1- 13 C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1- 13 C]glucose-derived [4- 13 C]glutamate, [4- 13 C]glutamine and [2- 13 C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3- 13 C]pyruvate entry into the TCA cycle. Lack of changes in [1,2- 13 C]acetate-derived [4,5- 13 C]glutamate, [4,5- 13 C]glutamine and [1,2- 13 C]GABA levels indicate unchanged astrocytic 13 C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2- 13 C] and [4- 13 C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1 G93A mouse model at symptomatic disease stages.

  3. Molecular Analyses of Transgenic Plants.

    Science.gov (United States)

    Trijatmiko, Kurniawan Rudi; Arines, Felichi Mae; Oliva, Norman; Slamet-Loedin, Inez Hortense; Kohli, Ajay

    2016-01-01

    One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue.

  4. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...

  5. Toxicity assessment of transgenic papaya ringspot virus of 823-2210 line papaya fruits.

    Science.gov (United States)

    Lin, Hsin-Tang; Yen, Gow-Chin; Huang, Ting-Tzu; Chan, Lit-Fu; Cheng, Ying-Huey; Wu, Jhaol-Huei; Yeh, Shyi-Dong; Wang, Sheng-Yang; Liao, Jiunn-Wang

    2013-02-20

    The transgenic papaya is a valuable strategy for creating plants resistant to papaya ringspot virus (PRSV) infection and increasing production. This study was further performed to evaluate the comparative toxicity effects of the newly developed transgenic line of the fruits of two backcross transgenic papaya lines (2210 and 823) and one hybrid line (823-2210) and compare to their parent non-transgenic (TN-2) counterparts. The stability analysis of coat protein (CP) of PRSV was investigated using the digestion stability assays in simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and bile salts to detect the CP fragments. Results revealed that the CP fragments were rapidly hydrolyzed in SGF and were undetectable in organs and gastrointestinal contents in rats. For the genotoxicity, three in vitro assays were conducted and exhibited that non-transgenic and backcross transgenic papaya fruits were negative. Moreover, a repeated animal feeding study was conducted by feeding 2 g/kg of body weight (bw) of non-transgenic and backcross transgenic papaya fruits for 28 days in rats. There were no biological or toxicological significances between non-transgenic and backcross transgenic papaya fruits in rats. The results demonstrated that the backcross transgenic papaya fruit can be recognized as an equivalent substitution for traditional papaya in food safety.

  6. Advances in transgenic animal models and techniques.

    Science.gov (United States)

    Ménoret, Séverine; Tesson, Laurent; Remy, Séverine; Usal, Claire; Ouisse, Laure-Hélène; Brusselle, Lucas; Chenouard, Vanessa; Anegon, Ignacio

    2017-10-01

    On May 11th and 12th 2017 was held in Nantes, France, the international meeting "Advances in transgenic animal models and techniques" ( http://www.trm.univ-nantes.fr/ ). This biennial meeting is the fifth one of its kind to be organized by the Transgenic Rats ImmunoPhenomic (TRIP) Nantes facility ( http://www.tgr.nantes.inserm.fr/ ). The meeting was supported by private companies (SONIDEL, Scionics computer innovation, New England Biolabs, MERCK, genOway, Journal Disease Models and Mechanisms) and by public institutions (International Society for Transgenic Technology, University of Nantes, INSERM UMR 1064, SFR François Bonamy, CNRS, Région Pays de la Loire, Biogenouest, TEFOR infrastructure, ITUN, IHU-CESTI and DHU-Oncogeffe and Labex IGO). Around 100 participants, from France but also from different European countries, Japan and USA, attended the meeting.

  7. Electrophysiological effects of kainic acid on vasopressin-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 neurones isolated from the supraoptic nucleus in transgenic rats.

    Science.gov (United States)

    Ohkubo, J; Ohbuchi, T; Yoshimura, M; Maruyama, T; Ishikura, T; Matsuura, T; Suzuki, H; Ueta, Y

    2014-01-01

    The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)-producing and oxytocin (OXT)-producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP-enhanced green fluorescent protein (eGFP) and the other expressing an OXT-monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP-eGFP and OXT-mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate-induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP-eGFP and OXT-mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA-induced responses were inhibited by the non-NMDA ionotrophic receptor antagonist 6-cyano-7-nitroquinoxaline-2,3(1H4H)-dione in both AVP-eGFP and OXT-mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose-dependent manner. The KA-induced currents were significantly larger in OXT-mRFP1 neurones than in AVP-eGFP neurones. This significant difference in KA-induced currents was abolished by the GluK1-containing KAR antagonist UBP302. At high concentrations (250-500 μm), the specific GluK1-containing KAR agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) induced significantly larger currents in OXT-mRFP1 neurones than in AVP-eGFP neurones. Furthermore, the difference between the AVP-eGFP and OXT-mRFP1 neurones in the ATPA currents

  8. Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Deitch

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease of the motor neuron. While most cases of ALS are sporadic, 10% are familial (FALS with 20% of FALS caused by a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1. There is variability in sporadic ALS as well as FALS where even within the same family some siblings with the same mutation do not manifest disease. A transgenic (Tg mouse model of FALS containing 25 copies of the mutant human SOD1 gene demonstrates motor neuron pathology and progressive weakness similar to ALS patients, leading to death at approximately 130 days. The onset of symptoms and survival of these transgenic mice are directly related to the number of copies of the mutant gene. We report the phenotype of a very low expressing (VLE G93A SOD1 Tg carrying only 4 copies of the mutant G93ASOD1 gene. While weakness can start at 9 months, only 74% of mice 18 months or older demonstrate disease. The VLE mice show decreased motor neurons compared to wild-type mice as well as increased cytoplasmic translocation of TDP-43. In contrast to the standard G93A SOD1 Tg mouse which always develops motor weakness leading to death, not all VLE animals manifested clinical disease or shortened life span. In fact, approximately 20% of mice older than 24 months had no motor symptoms and only 18% of VLE mice older than 22 months reached end stage. Given the variable penetrance of clinical phenotype, prolonged survival, and protracted loss of motor neurons the VLE mouse provides a new tool that closely mimics human ALS. This tool will allow the study of pathologic events over time as well as the study of genetic and environmental modifiers that may not be causative, but can exacerbate or accelerate motor neuron disease.

  9. A novel transgenic mouse model of lysosomal storage disorder

    OpenAIRE

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A.; Greiner, Dale L.; Bortell, Rita; Gregg, Ronald G.; Cheng, Alan; Hennings, Leah J.; Rittenhouse, Ann R.

    2016-01-01

    We provide an explanation for striking pathology found in a subset of genetically engineered mice homozygous for a rat CaVβ2a transgene (Tg+/+). Multiple transgene (Tg) copies inserted into chromosome 19; at this same site a large deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95. Their loss of function can account for lipid build up and immune system hypertrophy, which defines this phenotype and serendipitously provides a novel model...

  10. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale)

    OpenAIRE

    Mei Nan; Guo Lei; Zhang Lu; Shi Leming; Sun Yongming; Fung Chris; Moland Carrie L; Dial Stacey L; Fuscoe James C; Chen Tao

    2006-01-01

    Abstract Background Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. Results In this study, we identified comfrey...

  11. Transgene mus som sygdomsmodeller

    DEFF Research Database (Denmark)

    Schuster, Mikkel Bruhn; Porse, Bo Torben

    2003-01-01

    Transgenic animal models have proven to be useful tools in understanding both basic biology and the events associated with disease. Recent technical advances in the area of genomic manipulation in combination with the availability of the human and murine genomic sequences now allow the precise...... tailoring of the mouse genome. In this review we describe a few systems in which transgenic animal models have been employed for the purpose of studying the etiology of human diseases. Udgivelsesdato: 2003-Feb-17...

  12. Weeding with transgenes.

    Science.gov (United States)

    Duke, Stephen O

    2003-05-01

    Transgenes promise to reduce insecticide and fungicide use but relatively little has been done to significantly reduce herbicide use through genetic engineering. Recently, three strategies for transgene utilization have been developed that have the potential to change this. These are the improvement of weed-specific biocontrol agents, enhancement of crop competition or allelopathic traits, and production of cover crops that will self-destruct near the time of planting. Failsafe risk mitigation technologies are needed for most of these strategies.

  13. THE TRIAL OF TRANSGENICS

    Directory of Open Access Journals (Sweden)

    Antonio f. Díaz García

    2015-04-01

    Full Text Available This paper discloses the uncertainty with which transgenic uses are authorized.  It provides a list of reasons showing that there is no absolute proof of the benefits of transgenic use.  Moreover it discusses the need to provide more credibility to safety studies and reports on results of various tests of GMOs.  Finally it proposes the establishment of higher penalties for specialists that omit relevant information in their studies and reports on this matter.

  14. Effect of Oenanthe Javanica Extract on Antioxidant Enzyme in the Rat Liver

    Directory of Open Access Journals (Sweden)

    Choong-Hyun Lee

    2015-01-01

    Full Text Available Background: Oenanthe javanica (O. javanica has been known to have high antioxidant properties via scavenging reactive oxygen species. We examined the effect of O. javanica extract (OJE on antioxidant enzymes in the rat liver. Methods: We examined the effect of the OJE on copper, zinc-superoxide dismutase (SOD1, manganese superoxide dismutase (SOD2, catalase (CAT, and glutathione peroxidase (GPx in the rat liver using immunohistochemistry and western blot analysis. Sprague-Dawley rats were randomly assigned to three groups; (1 normal diet fed group (normal-group, (2 diet containing ascorbic acid (AA-fed group (AA-group as a positive control, (3 diet containing OJE-fed group (OJE-group. Results: In this study, no histopathological finding in the rat liver was found in all the experimental groups. Numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells and their protein levels were significantly increased in the AA-fed group compared with those in the normal-group. On the other hand, in the OJE-group, numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells in the liver were significantly increased by about 190%, 478%, 685%, and 346%, respectively, compared with those in the AA-group. In addition, protein levels of SOD1, SOD2, CAT, and GPx in the OJE-group were also significantly much higher than those in the AA-group. Conclusion: OJE significantly increased expressions of SOD1 and SOD2, CAT, and GPx in the liver cells of the rat, and these suggests that significant enhancements of endogenous enzymatic antioxidants by OJE might be a legitimate strategy for decreasing oxidative stresses in the liver.

  15. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    Gene electrotransfer is expanding in clinical use, thus we have searched for an emergency procedure to stop transgene expression in case of serious adverse events. Calcium is cytotoxic at high intracellular levels, so we tested effects of calcium electrotransfer on transgene expression in muscle....... A clinical grade calcium solution (20 µl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...... voltage pulses of 1000 V/cm. Using these parameters, in vivo imaging showed that transgene expression significantly decreased 4 hr after Ca(2+) electrotransfer and was eliminated within 24 hr. Similarly, serum erythropoietin was reduced by 46% at 4 hr and to control levels at 2 days. Histological analyses...

  16. Vitamin D depletion does not affect key aspects of the preeclamptic phenotype in a transgenic rodent model for preeclampsia

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Golic, Michaela; Przybyl, Lukasz

    2016-01-01

    -mediated preeclampsia. Adult rat dams, transgenic for human angiotensinogen (hAGT) and mated with male rats transgenic for human renin (hREN), were fed either vitamin D-depleted chow (VDd) or enriched chow (VDh) 2 weeks before mating and during pregnancy. Mean blood pressure was recorded by tail-cuff, and 24-hour urine......Maternal vitamin D deficiency is proposed as a risk factor for preeclampsia in humans. We tested the hypothesis that vitamin D depletion aggravates and high supplementation ameliorates the preeclampsia phenotype in an established transgenic rat model of human renin-angiotensin system...... of the preeclampsia phenotype using the transgenic rodent model of human renin-angiotensin system-mediated pre-eclampsia, plausibly due to altered vitamin D metabolism or excretion in the transgenic rats....

  17. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    . A clinical grade calcium solution (20 μl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...

  18. Transgenic mice susceptible to poliovirus.

    OpenAIRE

    Koike, S; Taya, C; Kurata, T; Abe, S; Ise, I; Yonekawa, H; Nomoto, A

    1991-01-01

    Poliovirus-sensitive transgenic mice were produced by introducing the human gene encoding cellular receptors for poliovirus into the mouse genome. Expression of the receptor mRNAs in tissues of the transgenic mice was analyzed by using RNA blot hybridization and the polymerase chain reaction. The human gene is expressed in many tissues of the transgenic mice just as in tissues of humans. The transgenic mice are susceptible to all three poliovirus serotypes, and the mice inoculated with poliov...

  19. Transgenic Crops for Herbicide Resistance

    Science.gov (United States)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  20. [Progress on transgenic mosquitoes].

    Science.gov (United States)

    Yang, Pin

    2011-04-30

    The genetically modified mosquitoes have been developed aiming to control mosquito-borne diseases by either reducing population sizes or replacing existing populations with vectors unable to transmit the disease. introduces some progress on the generation of transgenic mosquitoes and their fitness in wild population. This paper

  1. Transgenics in Agriculture

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Transgenics in Agriculture. D Rex Arunraj B Gajendra Babu. Classroom Volume 6 Issue 2 February 2001 pp 83-92. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0083-0092 ...

  2. Transgenics in Agriculture

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Transgenics in Agriculture. D Rex Arunraj B Gajendra Babu. Classroom Volume 6 Issue 2 February 2001 pp 83-92. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/02/0083-0092 ...

  3. Hypothyroidism modulates renal antioxidant gene expression during postnatal development and maturation in rat.

    Science.gov (United States)

    Jena, Srikanta; Chainy, Gagan Bihari Nityananda; Dandapat, Jagneshwar

    2012-08-01

    In the present study effects of 6-n-propyl thiouracil (PTU)-induced hypothyroidism on renal antioxidant defence system during postnatal development (from birth to 7, 15 and 30days old) and on adult rats were reported. Hypothyroidism in rats was induced by feeding the lactating mothers (from the day of parturition till weaning, 25days old) or directly to the pups with 0.05% PTU in drinking water. The activities of Cu/Zn-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) were increased in 30days old hypothyroid rats with respect to their respective controls, on the other hand, levels of translated products and activities of Mn-superoxide dismutase (SOD2) and catalase (CAT) were decreased in hypothyroid rats of all age groups as compared to their respective control rats. SOD1 activity remained unchanged in persistent (PTU-treatment from birth to 90days old) hypothyroid rats as compared to euthyroid. However, a decreased activity of SOD1 was recorded in transient (PTU-treatment from birth to 30days then withdrawal till 90days old) hypothyroid rats with respect to control rats. The mRNA level, protein expression and activity of SOD2 and CAT were significantly decreased in persistent hypothyroid rats as compared to euthyroid rats. The activity of GPx was significantly increased in both persistent and transient hypothyroid rats with respect to euthyroid rats. The present study indicates modulation of antioxidant defence status of rat kidney during postnatal development and maturation by hypothyroidism. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis.

    Science.gov (United States)

    Du, Chao; Zhao, Pingping; Zhang, Huirong; Li, Ningning; Zheng, Linlin; Wang, Yingchun

    2017-08-01

    Reaumuria trigyna (R. trigyna) is an endangered small shrub endemic to the Eastern Alxa-Western Ordos area in Inner Mongolia, China. Based on R. trigyna transcriptome data, the Group I WRKY transcription factor gene RtWRKY1 was cloned from R. trigyna. The full-length RtWRKY1 gene was 2100bp, including a 1261-bp open reading frame (ORF) encoding 573 amino acids. RtWRKY1 was mainly expressed in the stem and was induced by salt, cold stress, and ABA treatment. Overexpression of RtWRKY1 in Arabidopsis significantly enhanced the chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. RtWRKY1 transgenic Arabidopsis exhibited higher proline content, GSH-PX, POD, SOD, and CAT activities, and lower MDA content, Na + content, and Na + /K + ratio than wild-type Arabidopsis under salt stress conditions. Salt stress affected the expression of ion transport, proline biosynthesis, and antioxidant related genes, including AtAPX1, AtCAT1, AtSOD1, AtP5CS1, AtP5CS2, AtPRODH1, AtPRODH2, and AtSOS1 in transgenic lines. RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis by regulating plant growth, osmotic balance, Na + /K + homeostasis, and the antioxidant system. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Transgenics in crops

    Science.gov (United States)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  6. Transgenic Rat Models for Breast Cancer Research

    Science.gov (United States)

    1999-10-01

    that the addition of 7.5 ýIg/ml cytochalasin B, a microfilament inhibitor, to injection medium would facilitate microinjection (called NPNG cytoB... SPERMATOZOA . N Songsasen, KJ G. Rivera *, G. Alanis*, R. Bosch* and H. Monello 4 . Dept de Reprod Betteridge, SP Leibo. Dept Biomedical Sciences, Ontario...thawed spermatozoa has been reported. However, sperm survival has The effects of season of kidding on postpartum intervals were evaluated been either

  7. [Study on sub-chronic toxicity of powered milk containing transgenic human alpha-lactalbumin].

    Science.gov (United States)

    Zhi, Yuan; Liu, Haibo; Geng, Guiying; Wang, Huiling; Yang, Hua; Feng, Xiaolian; Gao, Peng; Yu, Qiang; Feng, Yongquan; Xu, Haibin

    2011-07-01

    To investigate the potential toxic or adverse effect of transgenic human alpha-lactalbumin powered milk on rats. Weanling Wistar rats were randomly divided into seven groups according the weight: three transgenic milk powder (T) groups, three non-transgenic milk powder (N) groups and the control (C) group. The diets of T groups contain 15%, 30% and 60% transgenic human alpha-lactalbumin milk powder. The diets of N groups contain 15%, 30% and 60% non-transgenic human alpha-lactalbumin milk powder for 90 days. The diet of C group contains only basic feed. Haematological and biochemical parameters was measured during the study (at 45th and 90th of the experiment). At the end of the 90th day, organ tissues analysis was performed. There were no transgenic human alpha-lactalbumin related adverse effects on the body weight, food intake, food consumption, hematology,serum biochemistry, as well as histopathology. There were no signs of toxic and adverse effects for transgenic human alpha-lactalbumin powdered milk on rats.

  8. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  9. Biosafety assessment of transgenic Bt cotton on model animals

    Directory of Open Access Journals (Sweden)

    Sadia Bano

    2016-05-01

    Full Text Available Abstract Background: To know the effects of transgenic crops on soil microorganisms, animals and other expected hazards due to the introduction of GM crops into the environment is critical both scientifically and environmentally. The work was conducted to study the effect of insecticidal Bt protein on Rats and Earthworms. Methods: For this purpose, animals like rat and soil organisms like Earthworm were selected. Rats were selected on the basis of its 95% homology on genomic, cellular and enzymatic level with human while earthworm were preferred on the basis of their direct contact with soil to evaluate the impact of Bt (Cry1AC crop field soil on earthworm, secreted by root exudates of Bt cotton. Several physical, molecular, biochemical and histological analyses were performed on both Rats/Earthworms fed on standard diet (control group as well containing Bt protein (experimental group. Results: Molecular analyses such as immune Dot blot, SDS-PAGE, ELISA and PCR, confirmed the absence of Cry1Ac protein in blood and urine samples of rats, which were fed with Bt protein in their diet. Furthermore, histological studies showed that there was no difference in cellular architecture in liver, heart, kidney and intestine of Bt and non-Bt diet fed rats. To see the effect of Bt on earthworm two different groups were studied, one with transgenic plant field soil supplemented with grinded leaves of cotton and second group with non-Bt field soil. Conclusions: No lethal effects of transgenic Bt protein on the survival of earthworm and rats were observed. Bradford assay, Dipstick assay ELISA demonstrated the absence of Cry1Ac protein in the mid-gut epithelial tissue of earthworm. The results of present study will be helpful in successful deployment and commercial release of genetically modified crop in Pakistan.

  10. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  11. TL transgenic mouse strains

    International Nuclear Information System (INIS)

    Obata, Y.; Matsudaira, Y.; Hasegawa, H.; Tamaki, H.; Takahashi, T.; Morita, A.; Kasai, K.

    1993-01-01

    As a result of abnormal development of the thymus of these mice, TCR αβ lineage of the T cell differentiation is disturbed and cells belonging to the TCR γδ CD4 - CD8 - double negative (DN) lineage become preponderant. The γδ DN cells migrate into peripheral lymphoid organs and constitute nearly 50% of peripheral T cells. Immune function of the transgenic mice is severely impaired, indicating that the γδ cells are incapable of participating in these reactions. Molecular and serological analyses of T-cell lymphomas reveal that they belong to the γδ lineage. Tg.Tla a -3-1 mice should be useful in defining the role of TL in normal and abnormal T cell differentiation as well as in the development of T-cell lymphomas, and further they should facilitate studies on the differentiation and function of γδ T cells. We isolated T3 b -TL gene from B6 mice and constructed a chimeric gene in which T3 b -TL is driven by the promoter of H-2K b . With the chimeric gene, two transgenic mouse strains, Tg. Con.3-1 and -2 have been derived in C3H background. Both strains express TL antigen in various tissues including skin. The skin graft of transgenic mice on C3H and (B6 X C3H)F 1 mice were rejected. In the mice which rejected the grafts, CD8 + TCRαβ cytotoxic T cells (CTL) against TL antigens were recognized. The recognition of TL by CTL did not require the antigen presentation by H-2 molecules. The results indicated that TL antigen in the skin becomes a transplantation antigen and behaves like a typical allogeneic MHC class I antigen. The facts that (B6 X C3H)F 1 mice rejected the skin expressing T3 b -TL antigen and induced CTL that killed TL + lymphomas of B6 origin revealed that TL antigen encoded by T3 b -TL is recognized as non-self in B6 mice. Experiments are now extended to analyze immune responses to TL antigen expressed on autochthonous T cell lymphomas. (J.P.N.)

  12. Transgenics, agroindustry and food sovereignty

    Directory of Open Access Journals (Sweden)

    Xavier Alejandro León Vega

    2014-10-01

    Full Text Available Food sovereignty has been implemented constitutionally in Ecuador; however, many of the actions and policies are designed to benefit the dominant model of food production, based in agroindustry, intensive monocultures, agrochemicals and transgenics. This article reflects upon the role of family farming as a generator of food sovereignty, and secondly the threat to them by agroindustry agriculture based in transgenic. The role played by food aid in the introduction of transgenic in Latin America and other regions of the world is also analyzed.

  13. Transgenic mice in developmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, R.P.

    1992-01-01

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  14. Transgene teknikker erstatter problematisk avl

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Hansen, Axel Kornerup

    2016-01-01

    Dyremodeller har ofte været baseret på avl, der ud fra et alment velfærdsmæssigt synspunkt var problematisk. Transgene teknikker kan ofte forbedre dyrevelfærden ved at erstatte disse traditionelle avlsmetoder.......Dyremodeller har ofte været baseret på avl, der ud fra et alment velfærdsmæssigt synspunkt var problematisk. Transgene teknikker kan ofte forbedre dyrevelfærden ved at erstatte disse traditionelle avlsmetoder....

  15. Extra-prostatic Transgene-associated Neoplastic Lesions in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) Mice

    Science.gov (United States)

    Berman-Booty, Lisa D.; Thomas-Ahner, Jennifer M.; Bolon, Brad; Oglesbee, Michael J.; Clinton, Steven K.; Kulp, Samuel K.; Chen, Ching-Shih; La Perle, Krista

    2014-01-01

    Male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are frequently used in prostate cancer research because their prostates consistently develop a series of pre-neoplastic and neoplastic lesions. Disease progression in TRAMP mouse prostates culminates in metastatic, poorly differentiated carcinomas with neuroendocrine features. The androgen dependence of the rat probasin promoter largely limits transgene expression to the prostatic epithelium. However, extra-prostatic transgene-positive lesions have been described in TRAMP mice, including renal tubulo-acinar carcinomas, neuroendocrine carcinomas of the urethra, and phyllodes-like tumors of the seminal vesicle. Here we describe the histologic and immunohistochemical features of two novel extra-prostatic lesions in TRAMP mice: primary anaplastic tumors of uncertain cell origin in the midbrain, and poorly differentiated adenocarcinomas of the submandibular salivary gland. These newly characterized tumors apparently result from transgene expression in extra-prostatic locations rather than representing metastatic prostate neoplasms because lesions were identified in both male and female mice as well as in male TRAMP mice without histologically apparent prostate tumors. In this paper we also calculate the incidences of the urethral carcinomas and renal tubulo-acinar carcinomas, further elucidate the biological behavior of the urethral carcinomas, and demonstrate the critical importance of complete necropsies even when evaluating presumably well characterized phenotypes in genetically engineered mice. PMID:24742627

  16. Can transgenic mosquitoes afford the fitness cost?

    Science.gov (United States)

    Lambrechts, Louis; Koella, Jacob C; Boëte, Christophe

    2008-01-01

    In a recent study, SM1-transgenic Anopheles stephensi, which are resistant partially to Plasmodium berghei, had higher fitness than non-transgenic mosquitoes when they were maintained on Plasmodium-infected blood. This result should be interpreted cautiously with respect to malaria control using transgenic mosquitoes because, despite the evolutionary advantage conferred by the transgene, a concomitant cost prevents it from invading the entire population. Indeed, for the spread of a resistance transgene in a natural situation, the transgene's fitness cost and the efficacy of the gene drive will be more crucial than any evolutionary advantage.

  17. A simple PCR method for rapid genotype analysis of the TH-MYCN transgenic mouse.

    Directory of Open Access Journals (Sweden)

    Seiki Haraguchi

    Full Text Available BACKGROUND: The TH-MYCN transgenic mouse is the most widely used murine model of human neuroblastoma, in which a human MYCN oncogene is targeted to neuroectodermal cells of developing mice under the influence of the rat tyrosine hydroxylase promoter. So far, homozygous transgenic mice have been identified by either Southern blot or quantitative real-time PCR. PRINCIPAL FINDINGS: To establish a simple and reliable genotyping method by conventional PCR, we confirmed the integration of the transgene in the TH-MYCN transgenic mouse by Southern blot and inverse PCR analyses. Our results showed that either five or six copies were found to be inserted in a head-to-tail tandem configuration at a single locus. The MYCN transgene/host DNA junction was sequenced and the integration site was identified at chromosome 18qE4. Finally, we succeeded in designing rapid, simple and reliable genotyping method by common PCR using primers flanking the integrated TH-MYCN transgene. CONCLUSION: We established a simple and reliable genotyping PCR method for determining the integration site of the TH-MYCN transgene that enables all possible genotypes to be distinguished within several hours. TH-MYCN mice are excellent model for human neuroblastoma study, thus our results will largely be useful for facilitating the pace of neuroblastoma study, including in the study of the tumourigenic process, and in the development of therapies to treat patients suffering from neuroblastoma.

  18. Intracerebral transplants of primary muscle cells: a potential 'platform' for transgene expression in the brain

    Science.gov (United States)

    Jiao, S.; Schultz, E.; Wolff, J. A.

    1992-01-01

    After the transplantation of rat primary muscle cells into the caudate or cortex of recipient rats, the muscle cells were able to persist for at least 6 months. Muscle cells transfected with expression plasmids prior to transplantation were able to express reporter genes in the brains for at least 2 months. These results suggest that muscle cells might be a useful 'platform' for transgene expression in the brain.

  19. Induction of oxidative stress and inhibition of superoxide dismutase expression in rat cerebral cortex and cerebellum by PTU-induced hypothyroidism and its reversal by curcumin.

    Science.gov (United States)

    Jena, Srikanta; Anand, Chinmay; Chainy, Gagan Bihari Nityananda; Dandapat, Jagneshwar

    2012-08-01

    The present study was carried out to elucidate the effectiveness of curcumin in ameliorating the expression of superoxide dismutase (SOD) in cerebral cortex and cerebellum of rat brain under 6-propyl-2-thiouracil (PTU)-induced hypothyroidism. Induction of hypothyroidism in adult rats by PTU resulted in augmentation of lipid peroxidation (LPx), an index of oxidative stress in cerebellum but not in cerebral cortex. Curcumin-supplementation to PTU-treated (hypothyroid) rats showed significant reduction in the level of LPx in both the regions of brain. The decreased translated products (SOD1 and SOD2) and the unchanged activity of SOD in cerebral cortex of PTU-treated rats were increased on supplementation of curcumin to the hypothyroid rats. Declined translated products of SOD1 and SOD2 in cerebellum of PTU-treated rats were alleviated on administration of curcumin to hypothyroid rats. On the other hand, the decreased activity of SOD in cerebellum of PTU-treated rats was further declined on administration of curcumin to the hypothyroid rats. Results of the present investigation indicate that curcumin differentially modulates the expression of superoxide dismutase in rat brain cortex and cerebellum under PTU-induced hypothyroidism.

  20. How To Produce and Characterize Transgenic Plants.

    Science.gov (United States)

    Savka, Michael A.; Wang, Shu-Yi; Wilson, Mark

    2002-01-01

    Explains the process of establishing transgenic plants which is a very important tool in plant biology and modern agriculture. Produces transgenic plants with the ability to synthesize opines. (Contains 17 references.) (YDS)

  1. Human antibody production in transgenic animals.

    Science.gov (United States)

    Brüggemann, Marianne; Osborn, Michael J; Ma, Biao; Hayre, Jasvinder; Avis, Suzanne; Lundstrom, Brian; Buelow, Roland

    2015-04-01

    Fully human antibodies from transgenic animals account for an increasing number of new therapeutics. After immunization, diverse human monoclonal antibodies of high affinity can be obtained from transgenic rodents, while large animals, such as transchromosomic cattle, have produced respectable amounts of specific human immunoglobulin (Ig) in serum. Several strategies to derive animals expressing human antibody repertoires have been successful. In rodents, gene loci on bacterial artificial chromosomes or yeast artificial chromosomes were integrated by oocyte microinjection or transfection of embryonic stem (ES) cells, while ruminants were derived from manipulated fibroblasts with integrated human chromosome fragments or human artificial chromosomes. In all strains, the endogenous Ig loci have been silenced by gene targeting, either in ES or fibroblast cells, or by zinc finger technology via DNA microinjection; this was essential for optimal production. However, comparisons showed that fully human antibodies were not as efficiently produced as wild-type Ig. This suboptimal performance, with respect to immune response and antibody yield, was attributed to imperfect interaction of the human constant region with endogenous signaling components such as the Igα/β in mouse, rat or cattle. Significant improvements were obtained when the human V-region genes were linked to the endogenous CH-region, either on large constructs or, separately, by site-specific integration, which could also silence the endogenous Ig locus by gene replacement or inversion. In animals with knocked-out endogenous Ig loci and integrated large IgH loci, containing many human Vs, all D and all J segments linked to endogenous C genes, highly diverse human antibody production similar to normal animals was obtained.

  2. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern.

    Directory of Open Access Journals (Sweden)

    Carlos González-Fernández

    Full Text Available Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression.Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor.Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology.

  3. Will transgenic plants adversely affect the environment?

    Indian Academy of Sciences (India)

    Transgenic insecticidal plants based on Bacillus thuringiensis (Bt) endotoxins, on proteinase inhibitors and on lectins, and transgenic herbicide tolerant plants are widely used in modern agriculture. The results of the studies on likelihood and non-likelihood of adverse effects of transgenic plants on the environment including ...

  4. Progress on researches of transgenic alfalfa

    International Nuclear Information System (INIS)

    Guo Huiqin; Wang Mi; Ren Weibo; Xu Zhu; Chen Libo

    2010-01-01

    In this paper, the progress on the researches of transgenic alfalfa in the past two decades had been reviewed in the aspects of regeneration system, transformation, improvement of the important traits and so on. Moreover, such problems as variation of transgene expression and safety of transgenic plant had also been discussed and propose had been given for the future research work. (authors)

  5. Early Alterations in Operant Performance and Prominent Huntingtin Aggregation in a Congenic F344 Rat Line of the Classical CAGn51trunc Model of Huntington Disease

    OpenAIRE

    Anne-Christine Plank; Fabio Canneva; Kerstin A. Raber; Yvonne K. Urbach; Julia Dobner; Maja Puchades; Jan G. Bjaalie; Clarissa Gillmann; Tobias Bäuerle; Olaf Riess; Hoa H. P. Nguyen; Stephan von Hörsten

    2018-01-01

    The transgenic rat model of Huntington disease expressing a fragment of mutant HTT (tgHD rat) has been thoroughly characterized and reproduces hallmark symptoms of human adult-onset HD. Pursuing the optimization of this model for evaluation of translational therapeutic approaches, the F344 inbred rat strain was considered as advantageous genetic background for the expression of the HD transgenic construct. In the present study, a novel congenic line of the SPRDtgHD transgenic model of HD, car...

  6. Rapid alteration in rat red blood cell copper chaperone for superoxide dismutase after marginal copper deficiency and repletion.

    Science.gov (United States)

    Lassi, Katie C; Prohaska, Joseph R

    2011-09-01

    There is increased incidence of human copper deficiency (CuD). A sensitive and reliable blood biomarker may reveal additional cases of marginal deficiency. Two experiments were designed to test the hypothesis that the copper chaperone for superoxide dismutase (CCS) would be a robust marker after marginal CuD. Experiment 1 used weanling male Sprague-Dawley rats that were offered a CuD diet for 4 weeks, and samples were evaluated after 1, 2, and 4 weeks and compared with copper-adequate (CuA) controls. Furthermore, iron-deficient rats were included for comparison after 2 weeks of depletion. Red blood cell and plasma cuproenzymes were evaluated through Western blot analysis. Superoxide dismutase (Sod1) and ceruloplasmin protein were found to be altered by both iron and CuD, whereas CCS and CCS/Sod1 ratio were found to only be altered only in CuD rats and, importantly, after only 1 week of treatment. Two weeks on CuA diet restored cuproenzyme levels to control values after 4 weeks of CuD depletion. In experiment 2, marginal CuD (CuM) rats were compared with CuA and CuD rats after 2 weeks of treatment. Superoxide dismutase, ceruloplasmin, and CCS/Sod1 abundances were lower in CuM and CuD groups compared with CuA rats, but there was no statistical difference between CuM and CuD rats. However, CCS was statistically different between all groups, and abundance highly correlated with liver copper concentration. Results suggest that red blood cell CCS may be an excellent biomarker for diagnosis of rapid and marginal CuD. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Temporal expression of mutant LRRK2 in adult rats impairs dopamine reuptake.

    Science.gov (United States)

    Zhou, Hongxia; Huang, Cao; Tong, Jianbin; Hong, Weimin C; Liu, Yong-Jian; Xia, Xu-Gang

    2011-01-01

    Parkinson's disease (PD) results from progressive degeneration of dopaminergic neurons. Most PD cases are sporadic, but some have pathogenic mutation in the individual genes. Mutation of the leucine-rich repeat kinase-2 (LRRK2) gene is associated with familial and sporadic PD, as exemplified by G2019S substitution. While constitutive expression of mutant LRRK2 in transgenic mice fails to induce neuron death, transient expression of the disease gene by viral delivery causes a substantial loss of dopaminergic neurons in mice. To further assess LRRK2 pathogenesis, we created inducible transgenic rats expressing human LRRK2 with G2019S substitution. Temporal overexpression of LRRK2(G2019S) in adult rats impaired dopamine reuptake by dopamine transporter (DAT) and thus enhanced locomotor activity, the phenotypes that were not observed in transgenic rats constitutively expressing the gene throughout life time. Reduced DAT binding activity is an early sign of dopaminergic dysfunction in asymptomatic subjects carrying pathogenic mutation in LRRK2. Our transgenic rats recapitulated the initiation process of dopaminergic dysfunction caused by pathogenic mutation in LRRK2. Inducible transgenic approach uncovered phenotypes that may be obscured by developmental compensation in constitutive transgenic rats. Finding in inducible LRRK2 transgenic rats would guide developing effective strategy in transgenic studies: Inducible expression of transgene may induce greater phenotypes than constitutive gene expression, particularly in rodents with short life time.

  8. Biotechnology network promotes knowledge of transgenics

    International Nuclear Information System (INIS)

    Blanco Picado, Patricia; Valdez Melara, Marta

    2015-01-01

    Red de Ingenieria Genetica Aplicada al Mejoramiento de Cultivos Tropicales (Rigatrop) integrated by a group of scientists from the Universidad de Costa Rica (UCR), Universidad Nacional (UNA) and of the Instituto Tecnologico de Costa Rica (TEC) have organized two forums on the topic of transgenics. The first forum has shown successful experiences of development of transgenic crops in Latin America, as for example: the transgenic bean, project realized in Brazil and transgenic eggplant in Bangladesh. The second forum has been about transgenics and environment effected at the UCR, on the occasion of World Environment Day. Rigatrop members are working currently in two projects applying biotechnological tools to coffee [es

  9. Differential autophagy power in the spinal cord and muscle of transgenic ALS mice

    NARCIS (Netherlands)

    Crippa, Valeria; Boncoraglio, Alessandra; Galbiati, Mariarita; Aggarwal, Tanya; Rusmini, Paola; Giorgetti, Elisa; Cristofani, Riccardo; Carra, Serena; Pennuto, Maria; Poletti, Angelo

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a motoneuron disease characterized by misfolded proteins aggregation in affected motoneurons. In mutant SOD1 (mutSOD1) ALS models, aggregation correlates to impaired functions of proteasome and/or autophagy, both essential for the intracellular

  10. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits.

    Science.gov (United States)

    Katter, Katharina; Geurts, Aron M; Hoffmann, Orsolya; Mátés, Lajos; Landa, Vladimir; Hiripi, László; Moreno, Carol; Lazar, Jozef; Bashir, Sanum; Zidek, Vaclav; Popova, Elena; Jerchow, Boris; Becker, Katja; Devaraj, Anantharam; Walter, Ingrid; Grzybowksi, Michael; Corbett, Molly; Filho, Artur Rangel; Hodges, Matthew R; Bader, Michael; Ivics, Zoltán; Jacob, Howard J; Pravenec, Michal; Bosze, Zsuzsanna; Rülicke, Thomas; Izsvák, Zsuzsanna

    2013-03-01

    Germline transgenesis is an important procedure for functional investigation of biological pathways, as well as for animal biotechnology. We have established a simple, nonviral protocol in three important biomedical model organisms frequently used in physiological studies. The protocol is based on the hyperactive Sleeping Beauty transposon system, SB100X, which reproducibly promoted generation of transgenic founders at frequencies of 50-64, 14-72, and 15% in mice, rats, and rabbits, respectively. The SB100X-mediated transgene integrations are less prone to genetic mosaicism and gene silencing as compared to either the classical pronuclear injection or to lentivirus-mediated transgenesis. The method was successfully applied to a variety of transgenes and animal models, and can be used to generate founders with single-copy integrations. The transposon vector also allows the generation of transgenic lines with tissue-specific expression patterns specified by promoter elements of choice, exemplified by a rat reporter strain useful for tracking serotonergic neurons. As a proof of principle, we rescued an inborn genetic defect in the fawn-hooded hypertensive rat by SB100X transgenesis. A side-by-side comparison of the SB100X- and piggyBac-based protocols revealed that the two systems are complementary, offering new opportunities in genome manipulation.

  11. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease.

    Science.gov (United States)

    Azzouz, Mimoun; Martin-Rendon, Enca; Barber, Robert D; Mitrophanous, Kyriacos A; Carter, Emma E; Rohll, Jonathan B; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D

    2002-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained transduction of neurons in the rat brain. Therefore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydroxydopamine (6-OHDA) animal model of PD. A self-inactivating EIAV minimal lentiviral vector that expresses tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and GTP cyclohydrolase 1 (CH1) in a single transcription unit has been generated. In cultured striatal neurons transduced with this vector, TH, AADC, and CH1 proteins can all be detected. After stereotactic delivery into the dopamine-denervated striatum of the 6-OHDA-lesioned rat, sustained expression of each enzyme and effective production of catecholamines were detected, resulting in significant reduction of apomorphine-induced motor asymmetry compared with control animals (p < 0.003). Expression of each enzyme in the striatum was observed for up to 5 months after injection. These data indicate that the delivery of three catecholaminergic synthetic enzymes by a single lentiviral vector can achieve functional improvement and thus open the potential for the use of this vector for gene therapy of late-stage PD patients.

  12. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  13. Agribusiness Perspectives on Transgenic Wheat.

    Science.gov (United States)

    Malcolm, Bill

    2017-01-01

    Declining yields of the major human food crops, looming growth in global population and rise of populism, and ill-founded bans on agricultural and horticultural crops and foodstuffs which are genetically modified have potentially serious implications. It makes the chance less than otherwise would be the case that agribusiness value chains in the future will meet the growing demand around the world for more and different foods from more and wealthier people. In the agribusiness value chain, transgenic wheat, meeting a consumer "trigger need" also must meet the "experience" and "credence," risk-related criteria of well-informed consumers. Public policy that rejects science-based evidence about the reductions in costs of production and price of genetically modified agricultural products and the science about the safety of genetically modified foods, including transgenic wheat, has imposed significant costs on producers and consumers. If the science-based evidence is accepted, transgenic wheat has potential to improve significantly the well-being of grain growers and consumers all over the world.

  14. Transgenic mouse offspring generated by ROSI

    Science.gov (United States)

    MOREIRA, Pedro; PÉREZ-CEREZALES, Serafín; LAGUNA, Ricardo; FERNÁNDEZ-GONZALEZ, Raúl; SANJUANBENITO, Belén Pintado; GUTIÉRREZ-ADÁN, Alfonso

    2015-01-01

    The production of transgenic animals is an important tool for experimental and applied biology. Over the years, many approaches for the production of transgenic animals have been tried, including pronuclear microinjection, sperm-mediated gene transfer, transfection of male germ cells, somatic cell nuclear transfer and the use of lentiviral vectors. In the present study, we developed a new transgene delivery approach, and we report for the first time the production of transgenic animals by co-injection of DNA and round spermatid nuclei into non-fertilized mouse oocytes (ROSI). The transgene used was a construct containing the human CMV immediate early promoter and the enhanced GFP gene. With this procedure, 12% of the live offspring we obtained carried the transgene. This efficiency of transgenic production by ROSI was similar to the efficiency by pronuclear injection or intracytoplasmic injection of male gamete nuclei (ICSI). However, ICSI required fewer embryos to produce the same number of transgenic animals. The expression of Egfp mRNA and fluorescence of EGFP were found in the majority of the organs examined in 4 transgenic lines generated by ROSI. Tissue morphology and transgene expression were not distinguishable between transgenic animals produced by ROSI or pronuclear injection. Furthermore, our results are of particular interest because they indicate that the transgene incorporation mediated by intracytoplasmic injection of male gamete nuclei is not an exclusive property of mature sperm cell nuclei with compact chromatin but it can be accomplished with immature sperm cell nuclei with decondensed chromatin as well. The present study also provides alternative procedures for transgene delivery into embryos or reconstituted oocytes. PMID:26498042

  15. A novel transgenic mouse model of lysosomal storage disorder.

    Science.gov (United States)

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A; Greiner, Dale L; Bortell, Rita; Gregg, Ronald G; Cheng, Alan; Hennings, Leah J; Rittenhouse, Ann R

    2016-11-01

    Knockout technology has proven useful for delineating functional roles of specific genes. Here we describe and provide an explanation for striking pathology that occurs in a subset of genetically engineered mice expressing a rat Ca V β2a transgene under control of the cardiac α-myosin heavy chain promoter. Lesions were limited to mice homozygous for transgene and independent of native Cacnb2 genomic copy number. Gross findings included an atrophied pancreas; decreased adipose tissue; thickened, orange intestines; and enlarged liver, spleen, and abdominal lymph nodes. Immune cell infiltration and cell engulfment by macrophages were associated with loss of pancreatic acinar cells. Foamy macrophages diffusely infiltrated the small intestine's lamina propria, while similar macrophage aggregates packed liver and splenic red pulp sinusoids. Periodic acid-Schiff-positive, diastase-resistant, iron-negative, Oil Red O-positive, and autofluorescent cytoplasm was indicative of a lipid storage disorder. Electron microscopic analysis revealed liver sinusoids distended by clusters of macrophages containing intracellular myelin "swirls" and hepatocytes with enlarged lysosomes. Additionally, build up of cholesterol, cholesterol esters, and triglycerides, along with changes in liver metabolic enzyme levels, were consistent with a lipid processing defect. Because of this complex pathology, we examined the transgene insertion site. Multiple transgene copies inserted into chromosome 19; at this same site, an approximate 180,000 base pair deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95 Loss of gene function can account for the altered lipid processing, along with hypertrophy of the immune system, which define this phenotype, and serendipitously provides a novel mouse model of lysosomal storage disorder. Copyright © 2016 the American Physiological Society.

  16. Promoter Sequences for Defining Transgene Expression

    Science.gov (United States)

    Jones, Huw D.; Sparks, Caroline A.

    The design of reverse genetic experiments that utilize transgenic approaches often requires transgenes to be expressed in a predefined pattern and there is limited information regarding the gene expression profile for specific promoters. It is important that expression patterns are predetermined in the specific genotype targeted for transformation because the same promoter-transgene construct can produce different expression patterns in different host species. This chapter compares constitutive, targeted, or inducible promoters that have been characterized in specific cereal species.

  17. Optimization of Biofuel Production From Transgenic Microalgae

    Science.gov (United States)

    2013-02-27

    AFRL-OSR-VA-TR-2013-0145 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Richard Sayre Donald Danforth...Technical 20080815 to 20120630 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE FA9550-08-1-0451 Richard Sayre Donald Danforth Plant...BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Grant/Contract Number: FA9550-08-1-0451 Reporting Period: Final Report Abstract: We have compared the

  18. Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units

    International Nuclear Information System (INIS)

    Kuegler, S.; Lingor, P.; Schoell, U.; Zolotukhin, S.; Baehr, M.

    2003-01-01

    Adeno-associated- (AAV) based vectors are promising tools for gene therapy applications in several organs, including the brain, but are limited by their small genome size. Two short promoters, the human synapsin 1 gene promoter (hSYN) and the murine cytomegalovirus immediate early promoter (mCMV), were evaluated in bicistronic AAV-2 vectors for their expression profiles in cultured primary brain cells and in the rat brain. Whereas transgene expression from the hSYN promoter was exclusively neuronal, the murine CMV promoter targeted expression mainly to astrocytes in vitro and showed weak transgene expression in vivo in retinal and cortical neurons, but strong expression in thalamic neurons. We propose that neuron specific transgene expression in combination with enhanced transgene capacity will further substantially improve AAV based vector technology

  19. BQ123 Stimulates Skeletal Muscle Antioxidant Defense via Nrf2 Activation in LPS-Treated Rats

    Directory of Open Access Journals (Sweden)

    Agata Kowalczyk

    2016-01-01

    Full Text Available Little is understood of skeletal muscle tissue in terms of oxidative stress and inflammation. Endothelin-1 is an endogenous, vasoconstrictive peptide which can induce overproduction of reactive oxygen species and proinflammatory cytokines. The aim of this study was to evaluate whether BQ123, an endothelin-A receptor antagonist, influences the level of TNF-α, IL-6, SOD-1, HO-1, Nrf2 mRNA, and NF-κB subunit RelA/p65 mRNA in the femoral muscle obtained from endotoxemic rats. Male Wistar rats were divided into 4 groups (n=6 and received iv (1 saline (control, (2 LPS (15 mg/kg, (3 BQ123 (1 mg/kg, (4 BQ123 (1 mg/kg, and LPS (15 mg/kg, resp. 30 min later. Injection of LPS led to significant increase in levels of RelA/p65 mRNA, TNF-α, and IL-6, while content of SOD-1, HO-1, and Nrf2 mRNA was unchanged. Administration of BQ123 prior to LPS challenge resulted in a significant reduction in RelA/p65 mRNA, TNF-α, and IL-6 levels, as well as markedly elevated concentrations of SOD-1, HO-1, and Nrf2 mRNA. BQ123 appears to enhance antioxidant defense and prevent production of TNF-α and IL-6 in skeletal muscle of LPS-treated rat. In conclusion, endothelin-A receptor antagonism exerts significant impact on the skeletal muscle favouring anti-inflammatory effects and protection against oxidative stress.

  20. [New advances in animal transgenic technology].

    Science.gov (United States)

    Sun, Zhen-Hong; Miao, Xiang-Yang; Zhu, Rui-Liang

    2010-06-01

    Animal transgenic technology is one of the fastest growing biotechnology in the 21st century. It is used to integrate foreign genes into the animal genome by genetic engineering technology so that foreign genes can be expressed and inherited to the offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors on preparation of transgenic animals. A variety of transgenic techniques are available, each of which has its own advantages and disadvantages and still needs further study because of unresolved technical and safety issues. With the in-depth research, the transgenic technology will have broad application prospects in the fields of exploration of gene function, animal genetic improvement, bioreactor, animal disease models, organ transplantation and so on. This article reviews the recently developed animal gene transfer techniques, including germline stem cell mediated method to improve the efficiency, gene targeting to improve the accuracy, RNA interference (RNAi)-mediated gene silencing technology, and the induced pluripotent stem cells (iPS) transgenic technology. The new transgenic techniques can provide a better platform for the study of trans-genic animals and promote the development of medical sciences, livestock production, and other fields.

  1. Positron emission tomography : measurement of transgene expression

    NARCIS (Netherlands)

    de Vries, EFJ; Vaalburg, W

    Noninvasive and repetitive imaging of transgene expression can play a pivotal role in the development of gene therapy strategies, as it offers investigators a means to determine the effectiveness of their gene transfection protocols. In the last decade, imaging of transgene expression using positron

  2. Improving expression of reporter transgene in stem cell by construction of different lentiviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Seong Ho; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of); Le, Uyenchi N.; Padmanabhan, Parasuraman [Singapore Bio-Imaging Imaging Consortium, Singapore (Singapore)

    2007-07-01

    For stem cell trafficking applications, it is imperative to express transgenes at desired and stable levels. In recent years, lentivirus-mediated gene transfer was shown to be an efficient method to stably introduce genetic modifications in target cells, even if these are in proliferative or nonproliferative states. Moreover, transgene expression levels can be controlled by using different promoters. The present study was designed to compare the potency of various promoters regulating expression of imaging reporter genes in embryonic H9c2 cardiomyoblasts derived from rat heart. Lentiviral vector was produced by the transient transfection of plasmids carrying required genes and those encoding for virus coating proteins into 293T cells. Harvested viral constructs were incubated with Hela and H9c2 cells, respectively. Transgene expressions were detected by several imaging modalities and evaluated by enzymatic assays. Results - We observed that the level of stable transgene expression in lentivirus-transduced myoblasts could be modulated over several orders of magnitude, with the Ubiquitin (Ub) promoter exhibiting the highest activity, intermediate expression was observed with the CAG promoter, whereas expression observed with the CMV promoter was very weak. We observed that the level of stable transgene expression in lentivirus-transduced myoblasts could be modulated over several orders of magnitude, with the Ubiquitin (Ub) promoter exhibiting the highest activity, intermediate expression was observed with the CAG promoter, whereas expression observed with the CMV promoter was very weak. Here we show that lentivirus-mediated gene transfer allows efficient and stable transgene expression in embryonic cardiomyoblasts in vitro and that transgene expression levels can be varied by using different well-characterized gene promoters. In vivo trials about gene expression will probably further determine the potential of long-term trafficking stem cells using lentivirus.

  3. Improving expression of reporter transgene in stem cell by construction of different lentiviral vectors

    International Nuclear Information System (INIS)

    Tae, Seong Ho; Min, Jung Joon; Le, Uyenchi N.; Padmanabhan, Parasuraman

    2007-01-01

    For stem cell trafficking applications, it is imperative to express transgenes at desired and stable levels. In recent years, lentivirus-mediated gene transfer was shown to be an efficient method to stably introduce genetic modifications in target cells, even if these are in proliferative or nonproliferative states. Moreover, transgene expression levels can be controlled by using different promoters. The present study was designed to compare the potency of various promoters regulating expression of imaging reporter genes in embryonic H9c2 cardiomyoblasts derived from rat heart. Lentiviral vector was produced by the transient transfection of plasmids carrying required genes and those encoding for virus coating proteins into 293T cells. Harvested viral constructs were incubated with Hela and H9c2 cells, respectively. Transgene expressions were detected by several imaging modalities and evaluated by enzymatic assays. Results - We observed that the level of stable transgene expression in lentivirus-transduced myoblasts could be modulated over several orders of magnitude, with the Ubiquitin (Ub) promoter exhibiting the highest activity, intermediate expression was observed with the CAG promoter, whereas expression observed with the CMV promoter was very weak. We observed that the level of stable transgene expression in lentivirus-transduced myoblasts could be modulated over several orders of magnitude, with the Ubiquitin (Ub) promoter exhibiting the highest activity, intermediate expression was observed with the CAG promoter, whereas expression observed with the CMV promoter was very weak. Here we show that lentivirus-mediated gene transfer allows efficient and stable transgene expression in embryonic cardiomyoblasts in vitro and that transgene expression levels can be varied by using different well-characterized gene promoters. In vivo trials about gene expression will probably further determine the potential of long-term trafficking stem cells using lentivirus

  4. Transcription-dependent silencing of inducible convergent transgenes in transgenic mice

    Directory of Open Access Journals (Sweden)

    Calero-Nieto Fernando J

    2010-01-01

    Full Text Available Abstract Background Silencing of transgenes in mice is a common phenomenon typically associated with short multi-copy transgenes. We have investigated the regulation of the highly inducible human granulocyte-macrophage colony-stimulating-factor gene (Csf2 in transgenic mice. Results In the absence of any previous history of transcriptional activation, this transgene was expressed in T lineage cells at the correct inducible level in all lines of mice tested. In contrast, the transgene was silenced in a specific subset of lines in T cells that had encountered a previous episode of activation. Transgene silencing appeared to be both transcription-dependent and mediated by epigenetic mechanisms. Silencing was accompanied by loss of DNase I hypersensitive sites and inability to recruit RNA polymerase II upon stimulation. This pattern of silencing was reflected by increased methylation and decreased acetylation of histone H3 K9 in the transgene. We found that silenced lines were specifically associated with a single pair of tail-to-tail inverted repeated copies of the transgene embedded within a multi-copy array. Conclusions Our study suggests that epigenetic transgene silencing can result from convergent transcription of inverted repeats which can lead to silencing of an entire multi-copy transgene array. This mechanism may account for a significant proportion of the reported cases of transgene inactivation in mice.

  5. DNA Nanoparticles: Detection of Long-Term Transgene Activity in Brain using Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    David M. Yurek

    2011-09-01

    Full Text Available In this study, we used bioluminescence imaging (BLI to track long-term transgene activity following the transfection of brain cells using a nonviral gene therapy technique. Formulations of deoxyribonucleic acid (DNA combined with 30-mer lysine polymers (substituted with 10 kDa polyethylene glycol form nanoparticles that transfect brain cells in vivo and produce transgene activity. Here we show that a single intracerebral injection of these DNA nanoparticles (DNPs into the rat cortex, striatum, or substantia nigra results in long-term and persistent luciferase transgene activity over an 8- to 11-week period as evaluated by in vivo BLI analysis, and single injections of DNPs into the mouse striatum showed stable luciferase transgene activity for 1 year. Compacted DNPs produced in vivo signals 7- to 34-fold higher than DNA alone. In contrast, ex vivo BLI analysis, which is subject to less signal quenching from surrounding tissues, demonstrated a DNP to DNA alone ratio of 76- to 280-fold. Moreover, the ex vivo BLI analysis confirmed that signals originated from the targeted brain structures. In summary, BLI permits serial analysis of luciferase transgene activity at multiple brain locations following gene transfer with DNPs. Ex vivo analysis may permit more accurate determination of relative activities of gene transfer vectors.

  6. 9th Transgenic Technology Meeting (TT2010) in Berlin, Germany: a meeting report.

    Science.gov (United States)

    Saunders, Thomas L; Sobieszczuk, Peter

    2010-12-01

    The first Transgenic Technology (TT) Meeting was organized in 1999 by Johannes Wilbertz, Karolinska Institute, Stockholm, Sweden as a regional meeting. The TT Meetings continued in this way, constantly gathering additional practitioners of transgenic methodologies until the breakthrough in 2005 when the 6th TT Meeting in Barcelona, Spain, hosted by Lluis Montoliu (Centro Nacional de Biotecnologia, Madrid, Spain), generated the momentum to establish the International Society for Transgenic Technologies (ISTT). Since 2006, the ISTT has continued to promote the TT Meetings and provide its membership with a forum to discuss best practices and new methods in the field. The TT2010 Meeting was held at the Max Delbrück Center for Molecular Medicine (Berlin, Germany). Participation at the TT2010 Meeting exceeded the registration capacity and set a new attendance record. Session topics included methods for the generation of rat and mouse models of human disease, fundamental and advanced topics in rodent embryonic stem cells, and the newest transgenic technologies. Short presentations from selected abstracts were of especial interest. Roundtable discussions on transgenic facility establishment and cryoarchiving of mouse lines were favorably received. Students, technical staff, and professors participated in numerous discussions and came away with practical methods and new ideas for research.

  7. Combining M-FISH and Quantum Dot technology for fast chromosomal assignment of transgenic insertions

    Directory of Open Access Journals (Sweden)

    Yusuf Mohammed

    2011-12-01

    Full Text Available Abstract Background Physical mapping of transgenic insertions by Fluorescence in situ Hybridization (FISH is a reliable and cost-effective technique. Chromosomal assignment is commonly achieved either by concurrent G-banding or by a multi-color FISH approach consisting of iteratively co-hybridizing the transgenic sequence of interest with one or more chromosome-specific probes at a time, until the location of the transgenic insertion is identified. Results Here we report a technical development for fast chromosomal assignment of transgenic insertions at the single cell level in mouse and rat models. This comprises a simplified 'single denaturation mixed hybridization' procedure that combines multi-color karyotyping by Multiplex FISH (M-FISH, for simultaneous and unambiguous identification of all chromosomes at once, and the use of a Quantum Dot (QD conjugate for the transgene detection. Conclusions Although the exploitation of the unique optical properties of QD nanocrystals, such as photo-stability and brightness, to improve FISH performance generally has been previously investigated, to our knowledge this is the first report of a purpose-designed molecular cytogenetic protocol in which the combined use of QDs and standard organic fluorophores is specifically tailored to assist gene transfer technology.

  8. Transgenes and their contributions to epigenetic research.

    Science.gov (United States)

    Meyer, Peter

    2013-01-01

    Shortly after gene transfer technologies had been established for different plant species, the first reports emerged about transgenes showing unexpected segregation patterns due to unstable expression. Initially, the erratic expression behavior of transgenes was considered a nuisance that impeded the impact and efficiency of a new technology. With the investigation of transgene silencing effects, however, it soon became clear that transgenes had helped us in a rather unexpected way to identify novel molecular pathways that were highly relevant to plant development and evolution. This article gives an account of a journey that started with the analysis of transgene-related silencing events and that led to the discovery of a new molecular world of small RNAs and epigenetic marks that regulate plant gene expression and adaptation to environmental changes.

  9. Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines.

    Directory of Open Access Journals (Sweden)

    Hongguang Shao

    Full Text Available Genetic transformation is a potential tool for analyzing gene function and thereby identifying new drug and vaccine targets in parasitic nematodes, which adversely affect more than one billion people. We have previously developed a robust system for transgenesis in Strongyloides spp. using gonadal microinjection for gene transfer. In this system, transgenes are expressed in promoter-regulated fashion in the F1 but are silenced in subsequent generations, presumably because of their location in repetitive episomal arrays. To counteract this silencing, we explored transposon-mediated chromosomal integration of transgenes in S. ratti. To this end, we constructed a donor vector encoding green fluorescent protein (GFP under the control of the Ss-act-2 promoter with flanking inverted tandem repeats specific for the piggyBac transposon. In three experiments, free-living Strongyloides ratti females were transformed with this donor vector and a helper plasmid encoding the piggyBac transposase. A mean of 7.9% of F1 larvae were GFP-positive. We inoculated rats with GFP-positive F1 infective larvae, and 0.5% of 6014 F2 individuals resulting from this host passage were GFP-positive. We cultured GFP-positive F2 individuals to produce GFP-positive F3 L3i for additional rounds of host and culture passage. Mean GFP expression frequencies in subsequent generations were 15.6% in the F3, 99.0% in the F4, 82.4% in the F5 and 98.7% in the F6. The resulting transgenic lines now have virtually uniform GFP expression among all progeny after at least 10 generations of passage. Chromosomal integration of the reporter transgenes was confirmed by Southern blotting and splinkerette PCR, which revealed the transgene flanked by S. ratti genomic sequences corresponding to five discrete integration sites. BLAST searches of flanking sequences against the S. ratti genome revealed integrations in five contigs. This result provides the basis for two powerful functional genomic tools

  10. Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines.

    Science.gov (United States)

    Shao, Hongguang; Li, Xinshe; Nolan, Thomas J; Massey, Holman C; Pearce, Edward J; Lok, James B

    2012-01-01

    Genetic transformation is a potential tool for analyzing gene function and thereby identifying new drug and vaccine targets in parasitic nematodes, which adversely affect more than one billion people. We have previously developed a robust system for transgenesis in Strongyloides spp. using gonadal microinjection for gene transfer. In this system, transgenes are expressed in promoter-regulated fashion in the F1 but are silenced in subsequent generations, presumably because of their location in repetitive episomal arrays. To counteract this silencing, we explored transposon-mediated chromosomal integration of transgenes in S. ratti. To this end, we constructed a donor vector encoding green fluorescent protein (GFP) under the control of the Ss-act-2 promoter with flanking inverted tandem repeats specific for the piggyBac transposon. In three experiments, free-living Strongyloides ratti females were transformed with this donor vector and a helper plasmid encoding the piggyBac transposase. A mean of 7.9% of F1 larvae were GFP-positive. We inoculated rats with GFP-positive F1 infective larvae, and 0.5% of 6014 F2 individuals resulting from this host passage were GFP-positive. We cultured GFP-positive F2 individuals to produce GFP-positive F3 L3i for additional rounds of host and culture passage. Mean GFP expression frequencies in subsequent generations were 15.6% in the F3, 99.0% in the F4, 82.4% in the F5 and 98.7% in the F6. The resulting transgenic lines now have virtually uniform GFP expression among all progeny after at least 10 generations of passage. Chromosomal integration of the reporter transgenes was confirmed by Southern blotting and splinkerette PCR, which revealed the transgene flanked by S. ratti genomic sequences corresponding to five discrete integration sites. BLAST searches of flanking sequences against the S. ratti genome revealed integrations in five contigs. This result provides the basis for two powerful functional genomic tools in S. ratti

  11. Autocrine effects of transgenic resistin reduce palmitate and glucose oxidation in brown adipose tissue

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Mlejnek, Petr; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Šilhavý, Jan; Strnad, Hynek; Eigner, Sebastian; Eigner-Henke, Kateřina; Škop, V.; Malínská, H.; Trnovská, J.; Kazdová, L.; Drahota, Zdeněk; Mráček, Tomáš; Houštěk, Josef

    2016-01-01

    Roč. 48, č. 6 (2016), s. 420-427 ISSN 1094-8341 R&D Projects: GA MŠk(CZ) LL1204; GA ČR(CZ) GB14-36804G; GA MZd(CZ) NT14325 Institutional support: RVO:67985823 ; RVO:68378050 ; RVO:61389005 Keywords : brown adipose tissue * autocrine * transgenic * spontaneously hypertensive rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.044, year: 2016

  12. Human Neural Stem Cell Replacement Therapy for Amyotrophic Lateral Sclerosis by Spinal Transplantation

    Czech Academy of Sciences Publication Activity Database

    Hefferan, M. P.; Galik, J.; Kakinohana, O.; Sekerková, G.; Santucci, C.; Marsala, S.; Navarro, R.; Hruška-Plocháň, Marian; Johe, K.; Feldman, E.; Cleveland, D. W.; Marsala, M.

    2012-01-01

    Roč. 7, č. 8 (2012), e42614 E-ISSN 1932-6203 Institutional support: RVO:67985904 Keywords : central nervous system * SOD 1 transgenic rats * motor neurons Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  13. Transgenic parasites accelerate drug discovery

    Science.gov (United States)

    Rodriguez, Ana; Tarleton, Rick L.

    2013-01-01

    Parasitic neglected diseases are in dire need of new drugs either to replace old drugs rendered ineffective because of resistance development, to cover clinical needs that had never been addressed or to tackle other associated problems of existing drugs such as high cost, difficult administration, restricted coverage or toxicity. The availability of transgenic parasites expressing reporter genes facilitates the discovery of new drugs through high throughput screenings, but also by allowing rapid screening in animal models of disease. Taking advantage of these, we propose an alternative pathway of drug development for neglected diseases, going from high throughput screening directly into in vivo testing of the top ranked compounds selected by medicinal chemistry. Rapid assessment animal models allow for identification of compounds with bona fide activity in vivo early in the development chain, constituting a solid basis for further development and saving valuable time and resources. PMID:22277131

  14. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy

    Science.gov (United States)

    Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  15. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L

    2012-08-01

    Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (Ppenis. Apocynin treatment of sickle mice reversed (P0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. © 2012 International Society for Sexual Medicine.

  16. Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Um, Hyun-Sub; Kang, Eun-Bum; Koo, Jung-Hoon; Kim, Hyun-Tae; Jin-Lee; Kim, Eung-Joon; Yang, Chun-Ho; An, Gil-Young; Cho, In-Ho; Cho, Joon-Yong

    2011-02-01

    The present study was undertaken to further investigate the protective effect of treadmill exercise on the hippocampal proteins associated with neuronal cell death in an aged transgenic (Tg) mice with Alzheimer's disease (AD). To address this, Tg mouse model of AD, Tg-NSE/PS2m, which expresses human mutant PS2 in the brain, was chosen. Animals were subjected to treadmill exercise for 12 weeks from 24 months of age. The exercised mice were treadmill run at speed of 12 m/min, 60 min/day, 5 days/week on a 0% gradient for 3 months. Treadmill exercised mice improved cognitive function in water maze test. Treadmill exercised mice significantly reduced the expression of Aβ-42, Cox-2, and caspase-3 in the hippocampus. In parallel, treadmill exercised Tg mice decreased the phosphorylation levels of JNK, p38MAPK and tau (Ser404, Ser202, Thr231), and increased the phosphorylation levels of ERK, PI3K, Akt and GSK-3α/β. In addition, treadmill exercised Tg mice up-regulated the expressions of NGF, BDNF and phospho-CREB, and the expressions of SOD-1, SOD-2 and HSP-70. Treadmill exercised Tg mice up-regulated the expression of Bcl-2, and down-regulated the expressions of cytochrome c and Bax in the hippocampus. The number of TUNEL-positive cells in the hippocampus in mice was significantly decreased after treadmill exercise. Finally, serum TC, insulin, glucose, and corticosterone levels were significantly decreased in the Tg mice after treadmill exercise. As a consequence of such change, Aβ-dependent neuronal cell death in the hippocampus of Tg mice was markedly suppressed following treadmill exercise. These results strongly suggest that treadmill exercise provides a therapeutic potential to inhibit both Aβ-42 and neuronal death pathways. Therefore, treadmill exercise may be beneficial in prevention or treatment of AD. Copyright © 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  17. Generation of transgenic Hydra by embryo microinjection.

    Science.gov (United States)

    Juliano, Celina E; Lin, Haifan; Steele, Robert E

    2014-09-11

    As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology(1). Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost.

  18. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    Science.gov (United States)

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  19. Expression of multiple proteins in transgenic plants

    Science.gov (United States)

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  20. Expression of bgt gene in transgenic birch (Betula platyphylla Suk ...

    African Journals Online (AJOL)

    Study on the characteristics of integration and expression is the basis of genetic stability of foreign genes in transgenic trees. To obtain insight into the relationship of transgene copy number and expression level, we screened 22 transgenic birch lines. Southern blot analysis of the transgenic birch plants indicated that the ...

  1. Expression of bgt gene in transgenic birch (Betula platyphylla Suk.)

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Study on the characteristics of integration and expression is the basis of genetic stability of foreign genes in transgenic trees. To obtain insight into the relationship of transgene copy number and expression level, we screened 22 transgenic birch lines. Southern blot analysis of the transgenic birch.

  2. Suppression of Her2/Neu mammary tumor development in mda-7/IL-24 transgenic mice.

    Science.gov (United States)

    Li, You-Jun; Liu, Guodong; Xia, Lei; Xiao, Xiao; Liu, Jeff C; Menezes, Mitchell E; Das, Swadesh K; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B; Archer, Michael C; Zacksenhaus, Eldad; Ben-David, Yaacov

    2015-11-10

    Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) encodes a tumor suppressor gene implicated in the growth of various tumor types including breast cancer. We previously demonstrated that recombinant adenovirus-mediated mda-7/IL-24 expression in the mammary glands of carcinogen-treated (methylnitrosourea, MNU) rats suppressed mammary tumor development. Since most MNU-induced tumors in rats contain activating mutations in Ha-ras, which arenot frequently detected in humans, we presently examined the effect of MDA-7/IL-24 on Her2/Neu-induced mammary tumors, in which the RAS pathway is induced. We generated tet-inducible MDA-7/IL-24 transgenic mice and crossed them with Her2/Neu transgenic mice. Triple compound transgenic mice treated with doxycycline exhibited a strong inhibition of tumor development, demonstrating tumor suppressor activity by MDA-7/IL-24 in immune-competent mice. MDA-7/IL-24 induction also inhibited growth of tumors generated following injection of Her2/Neu tumor cells isolated from triple compound transgenic mice that had not been treated with doxycycline, into the mammary fat pads of isogenic FVB mice. Despite initial growth suppression, tumors in triple compound transgenic mice lost mda-7/IL-24 expression and grew, albeit after longer latency, indicating that continuous presence of this cytokine within tumor microenvironment is crucial to sustain tumor inhibitory activity. Mechanistically, MDA-7/IL-24 exerted its tumor suppression effect on HER2+ breast cancer cells, at least in part, through PERP, a member of PMP-22 family with growth arrest and apoptosis-inducing capacity. Overall, our results establish mda-7/IL-24 as a suppressor of mammary tumor development and provide a rationale for using this cytokine in the prevention/treatment of human breast cancer.

  3. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2018-01-09

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  4. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  5. Accumulation of nickel in transgenic tobacco

    Science.gov (United States)

    Sidik, Nik Marzuki; Othman, Noor Farhan

    2013-11-01

    The accumulation of heavy metal Ni in the roots and leaves of four T1 transgenic lines of tobacco (T(1)20E, T(1)24C, T(1)18B1 and T(1)20B) expressing eiMT1 from E.indica was assessed. The aim of the study was to investigate the level of Ni accumulation in the leaves and roots of each transgenic lines and to evaluate the eligibility of the plants to be classified as a phytoremediation agent. All of the transgenic lines showed different ability in accumulating different metals and has translocation factor (TF) less than 1 (TFtransgenic lines, transgenic line T(1)24C showed the highest accumulation of Ni (251.9 ± 0.014 mg/kg) and the lowest TF value (TFT(1)24C=0.0875) at 60 ppm Ni.

  6. Transgenic animals and their application in medicine

    OpenAIRE

    Bagle TR, Kunkulol RR, Baig MS, More SY

    2013-01-01

    Transgenic animals are animals that are genetically altered to have traits that mimic symptoms of specific human pathologies. They provide genetic models of various human diseases which are important in understanding disease and developing new targets. In early 1980 Gordon and co-workers described the first gene addition experiment using the microinjection technology and since then the impact of transgenic technology on basic research has been significant. Within 20 years of its inception, AT...

  7. Comparison of nutritional value of transgenic peanut expressing bar and rcg3 genes with non-transgenic counterparts

    International Nuclear Information System (INIS)

    Robab, U.E.; )

    2014-01-01

    The transgenic peanut plants expressing bar and rcg3 genes were subjected to assessment of any change in nutritional value of the crop at various locations. The protein and fat contents of transgenic lines were compared with the non-transgenic parent varieties. Protein content in the transgenic lines was higher as compared to that in non-transgenic counterparts and differences among locations for fat and protein content were significant. No differences among fatty acids were recorded for genes, events and locations. Irrespective of small differences, all the values were in range described for this crop and transgenic lines appeared to be substantially equivalent to non-transgenic parent varieties. (author)

  8. Transgene flow: Facts, speculations and possible countermeasures

    Science.gov (United States)

    Ryffel, Gerhart U

    2014-01-01

    Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology. PMID:25523171

  9. Transgenic technologies to induce sterility

    Directory of Open Access Journals (Sweden)

    Wimmer Ernst A

    2009-11-01

    Full Text Available Abstract The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes.

  10. Selenoprotein-Transgenic Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiazuan Ni

    2013-02-01

    Full Text Available Selenium (Se deficiency is associated with the occurrence of many diseases. However, excessive Se supplementation, especially with inorganic Se, can result in toxicity. Selenoproteins are the major forms of Se in vivo to exert its biological function. Expression of those selenoproteins, especially with the application of a newly developed system, is thus very important for studying the mechanism of Se in nutrition. The use of Chlamydomonas reinhardtii (C. reinhardtii as a biological vector to express an heterogeneous protein is still at the initial stages of development. In order to investigate the possibility of using this system to express selenoproteins, human 15-KDa selenoprotein (Sep15, a small but widely distributed selenoprotein in mammals, was chosen for the expression platform test. Apart from the wild-type human Sep15 gene fragment, two Sep15 recombinants were constructed containing Sep15 open reading frame (ORF and the selenocysteine insertion sequence (SECIS element from either human Sep15 or C. reinhardtii selenoprotein W1, a highly expressed selenoprotein in this alga. Those Sep15-containing plasmids were transformed into C. reinhardtii CC-849 cells. Results showed that Sep15 fragments were successfully inserted into the nuclear genome and expressed Sep15 protein in the cells. The transgenic and wild-type algae demonstrated similar growth curves in low Se culture medium. To our knowledge, this is the first report on expressing human selenoprotein in green alga.

  11. Overcoming the Practical Barriers to Spinal Cord Cell Transplantation for ALS

    Science.gov (United States)

    2015-12-01

    Barber AE, Heins BM, Svendsen CN. Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of...anesthesia recovery. Next, animals are transferred to individual cages and monitored at least once daily for food consumption, defecation, and micturition...grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J Comp Neurol. 2009

  12. Mutagenicity of comfrey (Symphytum Officinale) in rat liver

    OpenAIRE

    Mei, N; Guo, L; Fu, P P; Heflich, R H; Chen, T

    2005-01-01

    Comfrey is a rat liver toxin and carcinogen that has been used as a vegetable and herbal remedy by humans. In order to evaluate the mechanisms underlying its carcinogenicity, we examined the mutagenicity of comfrey in the transgenic Big Blue rat model. Our results indicate that comfrey is mutagenic in rat liver and the types of mutations induced by comfrey suggest that its tumorigenicity results from the genotoxicity of pyrrolizidine alkaloids in the plant.

  13. Mutagenicity of comfrey (Symphytum Officinale) in rat liver.

    Science.gov (United States)

    Mei, N; Guo, L; Fu, P P; Heflich, R H; Chen, T

    2005-03-14

    Comfrey is a rat liver toxin and carcinogen that has been used as a vegetable and herbal remedy by humans. In order to evaluate the mechanisms underlying its carcinogenicity, we examined the mutagenicity of comfrey in the transgenic Big Blue rat model. Our results indicate that comfrey is mutagenic in rat liver and the types of mutations induced by comfrey suggest that its tumorigenicity results from the genotoxicity of pyrrolizidine alkaloids in the plant.

  14. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors.

    Science.gov (United States)

    Donaldson, Zoe R; Yang, Shang-Hsun; Chan, Anthony W S; Young, Larry J

    2009-12-01

    The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.

  15. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes

    NARCIS (Netherlands)

    Mlynarova, L.; Conner, A.J.; Nap, J.P.H.

    2006-01-01

    A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either

  16. Stability of transgenes in long-term micropropagation of plants of transgenic birch (Betula platyphylla).

    Science.gov (United States)

    Zeng, Fansuo; Qian, Jingjing; Luo, Wei; Zhan, Yaguang; Xin, Ying; Yang, Chuanping

    2010-01-01

    The stability of integration and expression level of transgenes in long-term micropropagation clones of transgenic birch (Betula platyphylla Suk.) was examined. Multiplexed PCR and reverse primer PCR demonstrated stable integration of transgenes into regenerated plants. Expression levels of the bgt and gus genes among shoot plantlets, subcultured 4, 7, 9 and 15 times, were significantly different. The transcriptional expression level of extraneous genes in regenerated plants decreased with increasing subculture number. Transcriptional gene silencing (TGS) occured in regenerated transgenic lines. The silencing rate of GUS in the 5th subculture plants was 22-65%. TGS in regenerated plants could be reactivated with 5-azacytidine (Azac) at 50-200 microM. GUS and BGT protein expression was reactivated in the micropropagated transgenic birch plants when treated with Azac. A decrease in expression level with increasing number of subcultures is thus associated with DNA methylation.

  17. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status.

    Science.gov (United States)

    Cappelli, Ana Paula G; Zoppi, Claudio C; Silveira, Leonardo R; Batista, Thiago M; Paula, Flávia M; da Silva, Priscilla M R; Rafacho, Alex; Barbosa-Sampaio, Helena C; Boschero, Antonio C; Carneiro, Everardo M

    2018-01-01

    In the present study, we investigated the relationship between early life protein malnutrition-induced redox imbalance, and reduced glucose-stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal-protein-diet (17%-protein, NP) or to a low-protein-diet (6%-protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H 2 O 2 ), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn-superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre-incubated with H 2 O 2 and/or N-acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H 2 O 2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre-incubated with H 2 O 2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N-acetylcysteine. © 2017 Wiley Periodicals, Inc.

  18. Growth factor transgenes interactively regulate articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.

  19. The transgenic animal platform for biopharmaceutical production.

    Science.gov (United States)

    Bertolini, L R; Meade, H; Lazzarotto, C R; Martins, L T; Tavares, K C; Bertolini, M; Murray, J D

    2016-06-01

    The recombinant production of therapeutic proteins for human diseases is currently the largest source of innovation in the pharmaceutical industry. The market growth has been the driving force on efforts for the development of new therapeutic proteins, in which transgenesis emerges as key component. The use of the transgenic animal platform offers attractive possibilities, residing on the low production costs allied to high productivity and quality of the recombinant proteins. Although many strategies have evolved over the past decades for the generation of transgenic founders, transgenesis in livestock animals generally faces some challenges, mainly due to random transgene integration and control over transgene copy number. But new developments in gene editing with CRISPR/Cas system promises to revolutionize the field for its simplicity and high efficiency. In addition, for the final approval of any given recombinant protein for animal or human use, the production and characterization of bioreactor founders and expression patterns and functionality of the proteins are technical part of the process, which also requires regulatory and administrative decisions, with a large emphasis on biosafety. The approval of two mammary gland-derived recombinant proteins for commercial and clinical use has boosted the interest for more efficient, safer and economic ways to generate transgenic founders to meet the increasing demand for biomedical proteins worldwide.

  20. Characterization of Agronomy, Grain Physicochemical Quality, and Nutritional Property of High-Lysine 35R Transgenic Rice with Simultaneous Modification of Lysine Biosynthesis and Catabolism.

    Science.gov (United States)

    Yang, Qingqing; Wu, Hongyu; Li, Qianfeng; Duan, Ruxu; Zhang, Changquan; Sun, Samuel Saiming; Liu, Qiaoquan

    2017-05-31

    Lysine is the first limiting essential amino acid in rice. We previously constructed a series of transgenic rice lines to enhance lysine biosynthesis (35S), down-regulate its catabolism (Ri), or simultaneously achieve both metabolic effects (35R). In this study, nine transgenic lines, three from each group, were selected for both field and animal feeding trials. The results showed that the transgene(s) caused no obvious effects on field performance and main agronomic traits. Mature seeds of transgenic line 35R-17 contained 48-60-fold more free lysine than in wild type and had slightly lower apparent amylose content and softer gel consistency. Moreover, a 35-day feeding experiment showed that the body weight gain, food efficiency, and protein efficiency ratio of rats fed the 35R-17 transgenic rice diet were improved when compared with those fed wild-type rice diet. These data will be useful for further evaluation and potential commercialization of 35R high-lysine transgenic rice.

  1. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice1

    Science.gov (United States)

    Jimenez, Tamara; Sanchez, Gladis; McDermott, Jeffrey P.; Nguyen, Anh-Nguyet; Kumar, T. Rajendra; Blanco, Gustavo

    2010-01-01

    The Na,K-ATPase alpha4 (ATP1A4) isoform is specifically expressed in male germ cells and is highly prevalent in spermatozoa. Although selective inhibition of alpha4 activity with ouabain has been shown to affect sperm motility, a more direct analysis of the role of this isoform in sperm movement has not yet been demonstrated. To establish this, we engineered transgenic mice that express the rat alpha4 isoform fused to green fluorescent protein in male germ cells, under the control of the mouse protamine 1 promoter. We showed that the rat Atp1a4 transgene is expressed in mouse spermatozoa and that it is localized to the sperm flagellum. In agreement with increased expression of the alpha4 isoform, sperm from transgenic mice displayed higher alpha4-specific Na,K-ATPase activity and binding of fluorescently labeled ouabain than wild-type mice. In contrast, expression and activity of ATP1A1 (alpha1), the other Na,K-ATPase alpha isoform present in sperm, remained unchanged. Similar to wild-type mice, mice expressing the alpha4 transgene exhibited normal testis and sperm morphology and no differences in fertility. However, compared to wild-type mice, sperm from transgenic mice displayed plasma membrane hyperpolarization and higher total and progressive motility. Other parameters of motility also increased, including straight-line, curvilinear, and average path velocities and amplitude of lateral head displacement. In addition, sperm from the transgenic mice showed enhanced sperm hyperactive motility, but no changes in progesterone-induced acrosome reaction. Altogether, these results provide new genetic evidence for the role of the ATP1A4 isoform in sperm motility, under both noncapacitating and capacitating conditions. PMID:20826726

  2. Toxins for Transgenic Resistance to Hemipteran Pests

    Directory of Open Access Journals (Sweden)

    Bryony C. Bonning

    2012-06-01

    Full Text Available The sap sucking insects (Hemiptera, which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  3. Metabolic effects of developmental, tissue-, and cell-specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice

    NARCIS (Netherlands)

    McGrane, M. M.; Yun, J. S.; Moorman, A. F.; Lamers, W. H.; Hendrick, G. K.; Arafah, B. M.; Park, E. A.; Wagner, T. E.; Hanson, R. W.

    1990-01-01

    Transgenic mice were used to investigate sequences within the promoter of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the rat (EC 4.1.1.32) (PEPCK) which are involved in tissue-specific and developmental regulation of gene expression. Segments of the PEPCK

  4. Generation of BAC transgenic epithelial organoids.

    Directory of Open Access Journals (Sweden)

    Gerald Schwank

    Full Text Available Under previously developed culture conditions, mouse and human intestinal epithelia can be cultured and expanded over long periods. These so-called organoids recapitulate the three-dimensional architecture of the gut epithelium, and consist of all major intestinal cell types. One key advantage of these ex vivo cultures is their accessibility to live imaging. So far the establishment of transgenic fluorescent reporter organoids has required the generation of transgenic mice, a laborious and time-consuming process, which cannot be extended to human cultures. Here we present a transfection protocol that enables the generation of recombinant mouse and human reporter organoids using BAC (bacterial artificial chromosome technology.

  5. Production of homozygous transgenic rainbow trout with enhanced disease resistance

    Science.gov (United States)

    Previous studies conducted in our laboratory showed that transgenic medaka expressing cecropin B transgenes exhibited resistant characteristic to fish bacterial pathogens, Pseudomonas fluorescens and Vibrio anguillarum. To confirm whether antimicrobial peptide gene will also exhibit antibacterial an...

  6. Lectin cDNA and transgenic plants derived therefrom

    Science.gov (United States)

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  7. Insertional Mutagenesis by a Hybrid PiggyBac and Sleeping Beauty Transposon in the Rat

    Science.gov (United States)

    Furushima, Kenryo; Jang, Chuan-Wei; Chen, Diane W.; Xiao, Ningna; Overbeek, Paul A.; Behringer, Richard R.

    2012-01-01

    A hybrid piggyBac/Sleeping Beauty transposon-based insertional mutagenesis system that can be mobilized by simple breeding was established in the rat. These transposons were engineered to include gene trap sequences and a tyrosinase (Tyr) pigmentation reporter to rescue the albinism of the genetic background used in the mutagenesis strategy. Single-copy transposon insertions were transposed into the rat genome by co-injection of plasmids carrying the transposon and RNA encoding piggyBac transposase into zygotes. The levels of transgenic Tyr expression were influenced by chromosomal context, leading to transgenic rats with different pigmentation that enabled visual genotyping. Transgenic rats designed to ubiquitously express either piggyBac or Sleeping Beauty transposase were generated by standard zygote injection also on an albino background. Bigenic rats carrying single-copy transposons at known loci and transposase transgenes exhibited coat color mosaicism, indicating somatic transposition. PiggyBac or Sleeping Beauty transposase bigenic rats bred with wild-type albino rats yielded offspring with pigmentation distinct from the initial transposon insertions as a consequence of germline transposition to new loci. The germline transposition frequency for Sleeping Beauty and piggyBac was ∼10% or about one new insertion per litter. Approximately 50% of the insertions occurred in introns. Chimeric transcripts containing endogenous and gene trap sequences were identified in Gabrb1 mutant rats. This mutagenesis system based on simple crosses and visual genotyping can be used to generate a collection of single-gene mutations in the rat. PMID:23023007

  8. Maize transgenes containing zein promoters are regulated by opaque2

    Science.gov (United States)

    Transgenes have great potential in crop improvement, but relatively little is known about the epistatic interaction of transgenes with the native genes in the genome. Understanding these interactions is critical for predicting the response of transgenes to different genetic backgrounds and environm...

  9. Development of transgenic finger millet (Eleusine coracana (L ...

    Indian Academy of Sciences (India)

    In segregation analysis, the transgenic R1 lines produced three resistant and one sensitive for hygromycin, confirming the normal Mendelian pattern of transgene segregation. Transgenic plants showed high level of resistance to leaf blast disease compared to control plants. This is the first study reporting the introduction of ...

  10. IDENTIFICATION OF ESCAPED TRANSGENIC CREEPING BENTGRASS IN OREGON

    Science.gov (United States)

    When transgenic plants are cultivated near wild species that are sexually compatible with the crop, gene flow between the crop and wild plants is possible. A resultant concern is that transgene flow and transgene introgression within wild populations could have unintended ecologi...

  11. Will transgenic plants adversely affect the environment?

    Indian Academy of Sciences (India)

    Unknown

    *Corresponding author (Fax, (0967) 330-528; Email, vvvelkov@rambler.ru). Transgenic insecticidal plants based on .... Authors claimed that these results suggested that. Bt corn can have adverse sublethal effects on ..... provide resistance against the Mexican rice borer, Eore- uma loftini (Dyar), the primary pest of south ...

  12. Exobiopolymer from polyhydroxyalkanoate-producing transgenic yeast

    African Journals Online (AJOL)

    Recently, the wild type yeast Kloeckera sp. strain KY1 was equipped in their cytoplasm with the phaABC operon containing genes phbA, phbB and phbC of the PHA biosynthetic pathway of Ralstonia eutropha. Unpredicted, resulted transgenic yeast strain KY1/PHA was able to synthesize another exopolymer beside the ...

  13. Can Transgenic Maize Affect Soil Microbial Communities?

    NARCIS (Netherlands)

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-01-01

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical

  14. Transgenic Mouse Model of Chronic Beryllium Disease

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  15. Assessing the value of transgenic crops.

    Science.gov (United States)

    Lacey, Hugh

    2002-10-01

    In the current controversy about the value of transgenic crops, matters open to empirical inquiry are centrally at issue. One such matter is a key premise in a common argument (that I summarize) that transgenic crops should be considered to have universal value. The premise is that there are no alternative forms of agriculture available to enable the production of sufficient food to feed the world. The proponents of agroecology challenge it, claiming that agroecology provides an alternative, and they deny the claim that it is well founded on empirical evidence. It is, therefore, a matter of both social and scientific importance that this premise and the criticisms of it be investigated rigorously and empirically, so that the benefits and disadvantages of transgenic-intensive agriculture and agroecology can be compared in a reliable way. Conducting adequate investigation about the potential contribution of agroecology requires that the cultural conditions of its practice (and, thus, of the practices and movements of small-scale farmers in the "third world") be strengthened--and this puts the interests of investigation into tension with the socio-economic interests driving the development of transgenics. General issues about relationship between ethical argument and empirical (scientific) investigation are raised throughout the article.

  16. A transgenic mouse model for trilateral retinoblastoma

    NARCIS (Netherlands)

    O'Brien, J.M.; Marcus, D.M.; Bernards, R.A.; Carpenter, J.L.; Windle, J.J.; Mellon, P.; Albert, D.M.

    1990-01-01

    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically

  17. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  18. Transgenic plants with increased calcium stores

    Science.gov (United States)

    Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Robertson, Dominique (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  19. First-Generation Transgenic Plants and Statistics

    NARCIS (Netherlands)

    Nap, Jan-Peter; Keizer, Paul; Jansen, Ritsert

    1993-01-01

    The statistical analyses of populations of first-generation transgenic plants are commonly based on mean and variance and generally require a test of normality. Since in many cases the assumptions of normality are not met, analyses can result in erroneous conclusions. Transformation of data to

  20. Transgenic cassava lines carrying heterologous alternative oxidase ...

    African Journals Online (AJOL)

    Afuape

    2013-07-03

    Jul 3, 2013 ... Organized embryogenic callus development: In our experiment, somatic embryos were developed from leaf lobes collected from transgenic cassava lines carrying the AtAOX1a gene. Immature leaf lobes measuring about 1 to 6 mm obtained from about six weeks old in vitro derived plants were used.

  1. Generation of antiviral transgenic chicken using spermatogonial ...

    African Journals Online (AJOL)

    This study was conducted in order to generate anti-viral transgenic chickens through transfected spermatogonial stem cell with fusion gene EGFP-MMx. After injecting fusion gene EGFP-MMx into testes, tissues frozen section, polymerase chain reaction (PCR) and dot blot of testes was performed at 30, 40, 50, 60, 70 and 80 ...

  2. Transgenic cassava lines carrying heterologous alternative oxidase ...

    African Journals Online (AJOL)

    Messenger RNA was extracted from selected PCR-positive lines for reverse transcription-PCR analysis for gene expression. To screen positive lines for gene function, leaf lobes from two transgenic lines with a line carrying an empty vector and the wild type were subjected to somatic embryogenesis (SE), a known oxidative ...

  3. Generation of antiviral transgenic chicken using spermatogonial ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2011-11-09

    Nov 9, 2011 ... This study was conducted in order to generate anti-viral transgenic chickens through transfected spermatogonial stem cell with fusion gene EGFP-MMx. After injecting fusion gene EGFP-MMx into testes, tissues frozen section, polymerase chain reaction (PCR) and dot blot of testes was performed at. 30, 40 ...

  4. Effect of transgene number of spontaneous and radiation-induced micronuclei in lacl transgenic mice

    International Nuclear Information System (INIS)

    O'Loughlin, K.G.; Hamer, J.D.; Winegar, R.A.; Mirsalis, J.C.; Short, J.M.

    1994-01-01

    Lacl transgenic mice are widely used for the measurement of mutations in specific target issues. The lacl transgene is present in mice as 40 tandem repeats; this sequence is homozygous (contained in both copies of chromosome 5) in C57Bl/6 mice, and is hemizygous in B6C3F1 mice. Previous reports have indicated that tandem repeats can produce chromosome instability, fragile sites, and other effects. To determine whether the presence of the transgene effects micronucleus induction we compared the response of nontransgenic (NTR) to hemizygous (HEMI) transgenic B6C3F1 mice and to hemizygous and homozygous (HOMO) transgenic C57Bl/6 mice. Five mice/group were irradiated with 500 cGy from a 137 Cs source. Bone marrow was harvested 24 hr after treatment and 2000 polychromatic erythrocytes (PCE) were analyzed per animal. The presence or absence of the lacl transgene had no effect in unirradiated mice on the percent of micronucleated PCE (MN) or on the ratio of PCE to total red blood cells for either strain: B6C3F1 mice had MN frequencies of 0.26% and 0.20% for NTR and HEMI mice, respectively; C57Bl/6 mice had MN frequencies of 0.34%, 0.32%, and 0.38% for NTR, HEMI, and HOMO mice, respectively. Radiation-induced micronucleus frequencies were significantly higher in HEMI lacl B6C3F1 mice (2.85%) than in NTR litter mates (1.59%); the converse was true in C57Bl/6 mice: NTR were 2.45%, HEMI were 1.25%, HOMO were 1.65%. These data suggest that the lacl transgene does not cause chromosome instability as measured by spontaneous micronucleus levels. However, the response of these transgenic mice to a variety of clastogenic agents needs to be investigated before they are integrated into standard in vivo assays for chromosome damage

  5. Primary transgenic bovine cells and their rejuvenated cloned equivalents show transgene-specific epigenetic differences.

    Science.gov (United States)

    Alonso-González, Lucia; Couldrey, Christine; Meinhardt, Marcus W; Cole, Sally A; Wells, David N; Laible, Götz

    2012-01-01

    Cell-mediated transgenesis, based on somatic cell nuclear transfer (SCNT), provides the opportunity to shape the genetic make-up of cattle. Bovine primary fetal fibroblasts, commonly used cells for SCNT, have a limited lifespan, and complex genetic modifications that require sequential transfections can be challenging time and cost-wise. To overcome these limitations, SCNT is frequently used to rejuvenate the cell lines and restore exhausted growth potential. We have designed a construct to be used in a 2-step cassette exchange experiment. Our transgene contains a puromycin resistance marker gene and an enhanced green fluorescence protein (EGFP) expression cassette, both driven by a strong mammalian promoter, and flanked by loxP sites and sequences from the bovine β-casein locus. Several transgenic cell lines were generated by random insertion into primary bovine cell lines. Two of these original cell lines were rederived by SCNT and new primary cells, with the same genetic makeup as the original donors, were established. While the original cell lines were puromycin-resistant and had a characteristic EGFP expression profile, all rejuvenated cell lines were sensitive to puromycin, and displayed varied EGFP expression, indicative of various degrees of silencing. When the methylation states of individual CpG sites within the transgene were analyzed, a striking increase in transgene-specific methylation was observed in all rederived cell lines. The results indicate that original transgenic donor cells and their rejuvenated derivatives may not be equivalent and differ in the functionality of their transgene sequences.

  6. Molecular characterization of transgene integration by next-generation sequencing in transgenic cattle.

    Science.gov (United States)

    Zhang, Ran; Yin, Yinliang; Zhang, Yujun; Li, Kexin; Zhu, Hongxia; Gong, Qin; Wang, Jianwu; Hu, Xiaoxiang; Li, Ning

    2012-01-01

    As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species.

  7. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Mengling Wen

    Full Text Available The Cre/loxP system is increasingly exploited for genetic manipulation of DNA in vitro and in vivo. It was previously reported that inactive ''split-Cre'' fragments could restore Cre activity in transgenic mice when overlapping co-expression was controlled by two different promoters. In this study, we analyzed recombination activities of split-Cre proteins, and found that no recombinase activity was detected in the in vitro recombination reaction in which only the N-terminal domain (NCre of split-Cre protein was expressed, whereas recombination activity was obtained when the C-terminal (CCre or both NCre and CCre fragments were supplied. We have also determined the recombination efficiency of split-Cre proteins which were co-expressed in hair roots of transgenic tobacco. No Cre recombination event was observed in hair roots of transgenic tobacco when the NCre or CCre genes were expressed alone. In contrast, an efficient recombination event was found in transgenic hairy roots co-expressing both inactive split-Cre genes. Moreover, the restored recombination efficiency of split-Cre proteins fused with the nuclear localization sequence (NLS was higher than that of intact Cre in transgenic lines. Thus, DNA recombination mediated by split-Cre proteins provides an alternative method for spatial and temporal regulation of gene expression in transgenic plants.

  8. Molecular characterization of transgene integration by next-generation sequencing in transgenic cattle.

    Directory of Open Access Journals (Sweden)

    Ran Zhang

    Full Text Available As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species.

  9. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  10. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J. (CH-PA); (UPENN); (Danforth)

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  11. Tamoxifen induces regression of estradiol-induced mammary cancer in ACI.COP-Ept2 rat model

    OpenAIRE

    Ruhlen, Rachel L.; Willbrand, Dana M.; Besch-Williford, Cynthia L.; Ma, Lixin; Shull, James D.; Sauter, Edward R.

    2008-01-01

    The ACI rat is a unique model of human breast cancer in that mammary cancers are induced by estrogen without carcinogens, irradiation, xenografts or transgenic manipulations. We sought to characterize mammary cancers in a congenic variant of the ACI rat, the ACI.COP-Ept2. All rats with estradiol implants developed mammary cancers in 5–7 months. Rats bearing estradiol-induced mammary cancers were treated with tamoxifen for three weeks. Tamoxifen reduced tumor mass, measured by magnetic resonan...

  12. Assessment of peanut quality and compositional characteristics among transgenic sclerotinia blight-resistant and non-transgenic susceptible cultivars.

    Science.gov (United States)

    Hu, Jiahuai; Telenko, Darcy E P; Phipps, Patrick M; Grabau, Elizabeth A

    2014-08-06

    This study presents the results of a comparison that includes an analysis of variance and a canonical discriminant analysis to determine compositional equivalence and similarity between transgenic, sclerotinia blight-resistant and non-transgenic, susceptible cultivars of peanut in 3 years of field trials. Three Virginia-type cultivars (NC 7, Wilson, and Perry) and their corresponding transgenic lines (N70, W73, and P39) with a barley oxalate oxidase gene were analyzed for differences in key mineral nutrients, fatty acid components, hay constituents, and grade characteristics. Results from both analyses demonstrated that transgenic lines were compositionally similar to their non-transgenic parent cultivar in all factors as well as market-grade characteristics and nutritional value. Transgenic lines expressing oxalate oxidase for resistance to sclerotinia blight were substantially equivalent to their non-transgenic parent cultivar in quality and compositional characteristics.

  13. Phytoremediation of selenium using transgenic plants.

    Science.gov (United States)

    Pilon-Smits, Elizabeth A H; LeDuc, Danika L

    2009-04-01

    Selenium (Se) is a micronutrient for many organisms but also toxic at higher concentrations. Both selenium deficiency and toxicity are serious problems worldwide. Owing to the similarity of selenium to sulfur, plants readily take up and assimilate selenate via sulfur transporters and enzymes and can even volatilize selenium. Selenium accumulating or volatilizing plants may be used for phytoremediation of selenium pollution and as fortified foods. Several transgenic approaches have been used successfully to further enhance plant selenium accumulation, tolerance, and volatilization: upregulation of genes involved in sulfur/selenium assimilation and volatilization, methylation of selenocysteine, and conversion of selenocysteine to elemental Se. Lab and field trials with different transgenic plants have yielded promising results, showing up to ninefold higher levels of selenium accumulation and up to threefold faster volatilization rates.

  14. Chromatin organisation of transgenes in Dictyostelium.

    Science.gov (United States)

    Windhof, I M; Dubin, M J; Nellen, W

    2013-07-01

    The introduction of transgenes in Dictyostelium discoideum typically results in the integration of the transformation vector into the genome at one or a few insertion sites as tandem arrays of approximately 100 copies. Exceptions are extrachromosomal vectors, which do not integrate into chromosomes, and vectors containing resistance markers such as blasticidin, which integrate as single copies at one or a few sites. Here we report that low copy number vector inserts display typical euchromatic features while high copy number insertions are enriched for modifications associate with heterochromatin. Interestingly, high copy number insertions also colocalise with heterochromatin, are enriched for the centromeric histone CenH3 and display centromere-like behaviour during mitosis. We also found that the chromatin organisation on extrachromosmal transgenes is different from those integrated into the chromosomes.

  15. Dolly: a New Form of Transgenic Breedwealth

    OpenAIRE

    Sarah Franklin

    1997-01-01

    Public debate in Britain surrounding the cloning of Dolly the sheep has primarily focused on the legitimacy of cloning humans, not sheep. This bracketing of the human question relies on a distinction between humans and animals belied by the very constitution of transgenic animals who are made with human DNA, such as Polly. Moreover, the ways in which human beings think about, manipulate and classify animals have distinct cultural consequences, for example in relation to cultural understanding...

  16. Transgenic nonhuman primates for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2004-06-01

    Full Text Available Abstract Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD, Parkinson's disease (PD and Huntington's disease (HD have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which

  17. Generation of cyanogen-free transgenic cassava.

    Science.gov (United States)

    Siritunga, Dimuth; Sayre, Richard T

    2003-07-01

    Cassava ( Manihot esculenta Crantz.) is the major source of calories for subsistence farmers in sub-Saharan Africa. Cassava, however, contains potentially toxic levels of the cyanogenic glucoside, linamarin. The cyanogen content of cassava foods can be reduced to safe levels by maceration, soaking, rinsing and baking; however, short-cut processing techniques can yield toxic food products. Our objective was to eliminate cyanogens from cassava so as to eliminate the need for food processing. To achieve this goal we generated transgenic acyanogenic cassava plants in which the expression of the cytochrome P450 genes ( CYP79D1 and CYP79D2), that catalyze the first-dedicated step in linamarin synthesis, was inhibited. Using a leaf-specific promoter to drive the antisense expression of the CYP79D1/ CYP79D2 genes we observed up to a 94% reduction in leaf linamarin content associated with an inhibition of CYP79D1 and CYP79D2 expression. Importantly, the linamarin content of roots also was reduced by 99% in transgenic plants having between 60 and 94% reduction in leaf linamarin content. Analysis of CYP79D1/ CYP79D2 transcript levels in transgenic roots indicated they were unchanged relative to wild-type plants. These results suggest that linamarin is transported from leaves to roots and that a threshold level of leaf linamarin production is required for transport.

  18. Potential transgenic routes to increase tree biomass.

    Science.gov (United States)

    Dubouzet, Joseph G; Strabala, Timothy J; Wagner, Armin

    2013-11-01

    Biomass is a prime target for genetic engineering in forestry because increased biomass yield will benefit most downstream applications such as timber, fiber, pulp, paper, and bioenergy production. Transgenesis can increase biomass by improving resource acquisition and product utilization and by enhancing competitive ability for solar energy, water, and mineral nutrients. Transgenes that affect juvenility, winter dormancy, and flowering have been shown to influence biomass as well. Transgenic approaches have increased yield potential by mitigating the adverse effects of prevailing stress factors in the environment. Simultaneous introduction of multiple genes for resistance to various stress factors into trees may help forest trees cope with multiple or changing environments. We propose multi-trait engineering for tree crops, simultaneously deploying multiple independent genes to address a set of genetically uncorrelated traits that are important for crop improvement. This strategy increases the probability of unpredictable (synergistic or detrimental) interactions that may substantially affect the overall phenotype and its long-term performance. The very limited ability to predict the physiological processes that may be impacted by such a strategy requires vigilance and care during implementation. Hence, we recommend close monitoring of the resultant transgenic genotypes in multi-year, multi-location field trials. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Transgenics and vertebrate cloning as tools for species conservation.

    Science.gov (United States)

    Ehrenfeld, David

    2006-06-01

    It has been suggested that transgenics and vertebrate cloning have a role to play in conservation. Now is the time to evaluate their risks and benefits, before these technologies are widely implemented in our field. Direct risks of transgenics include escape and introgression of transgenes into wild populations; weedy invasion by transgenic organisms; toxicity or pathogenicity of engineered organisms and their products; and human error in the field testing and tracking of transgenic organisms. Indirect risks include environmental effects of increased herbicide use; the danger that engineered organisms may aid the development of bioweapons; the likelihood that gene patenting will lead to the privatization of natural resources; and the diversion of support from less glamorous forms of conservation. Formal risk assessments are commonly used to evaluate transgenic procedures, but our incomplete understanding of both ecosystem processes and the action of transgenes renders most of these assessments scientifically and socially unjustified. Nevertheless, a few, low-risk applications of transgenics may be possible: for example, "super-sterile" ornamental cultivars. Vertebrate cloning poses little risk to the environment, but it can consume scarce conservation resources, and its chances of success in preserving species seem poor To date, the conservation benefits of transgenics and vertebrate cloning remain entirely theoretical, but many of the risks are known and documented. Conservation biologists should devote their research and energies to the established methods of conservation, none of which require transgenics or vertebrate cloning.

  20. Genotypic and phenotypic characterization of P23H line 1 rat model.

    Directory of Open Access Journals (Sweden)

    Elise Orhan

    Full Text Available Rod-cone dystrophy, also known as retinitis pigmentosa (RP, is the most common inherited degenerative photoreceptor disease, for which no therapy is currently available. The P23H rat is one of the most commonly used autosomal dominant RP models. It has been created by incorporation of a mutated mouse rhodopsin (Rho transgene in the wild-type (WT Sprague Dawley rat. Detailed genetic characterization of this transgenic animal has however never been fully reported. Here we filled this knowledge gap on P23H Line 1 rat (P23H-1 and provide additional phenotypic information applying non-invasive and state-of-the-art in vivo techniques that are relevant for preclinical therapeutic evaluations. Transgene sequence was analyzed by Sanger sequencing. Using quantitative PCR, transgene copy number was calculated and its expression measured in retinal tissue. Full field electroretinography (ERG and spectral domain optical coherence tomography (SD-OCT were performed at 1-, 2-, 3- and 6-months of age. Sanger sequencing revealed that P23H-1 rat carries the mutated mouse genomic Rho sequence from the promoter to the 3' UTR. Transgene copy numbers were estimated at 9 and 18 copies in the hemizygous and homozygous rats respectively. In 1-month-old hemizygous P23H-1 rats, transgene expression represented 43% of all Rho expressed alleles. ERG showed a progressive rod-cone dysfunction peaking at 6 months-of-age. SD-OCT confirmed a progressive thinning of the photoreceptor cell layer leading to the disappearance of the outer retina by 6 months with additional morphological changes in the inner retinal cell layers in hemizygous P23H-1 rats. These results provide precise genotypic information of the P23H-1 rat with additional phenotypic characterization that will serve basis for therapeutic interventions, especially for those aiming at gene editing.

  1. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  2. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    International Nuclear Information System (INIS)

    Ham, Young-Mi; Mahoney, Sarah Jane

    2013-01-01

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors

  3. Dual reporter transgene driven by 2.3Col1a1 promoter is active in differentiated osteoblasts

    Science.gov (United States)

    Marijanovic, Inga; Jiang, Xi; Kronenberg, Mark S.; Stover, Mary Louise; Erceg, Ivana; Lichtler, Alexander C.; Rowe, David W.

    2003-01-01

    AIM: As quantitative and spatial analyses of promoter reporter constructs are not easily performed in intact bone, we designed a reporter gene specific to bone, which could be analyzed both visually and quantitatively by using chloramphenicol acetyltransferase (CAT) and a cyan version of green fluorescent protein (GFPcyan), driven by a 2.3-kb fragment of the rat collagen promoter (Col2.3). METHODS: The construct Col2.3CATiresGFPcyan was used for generating transgenic mice. Quantitative measurement of promoter activity was performed by CAT analysis of different tissues derived from transgenic animals; localization was performed by visualized GFP in frozen bone sections. To assess transgene expression during in vitro differentiation, marrow stromal cell and neonatal calvarial osteoblast cultures were analyzed for CAT and GFP activity. RESULTS: In mice, CAT activity was detected in the calvaria, long bone, teeth, and tendon, whereas histology showed that GFP expression was limited to osteoblasts and osteocytes. In cell culture, increased activity of CAT correlated with increased differentiation, and GFP activity was restricted to mineralized nodules. CONCLUSION: The concept of a dual reporter allows a simultaneous visual and quantitative analysis of transgene activity in bone.

  4. Welfare assessment in transgenic pigs expressing green fluorescent protein (GFP)

    DEFF Research Database (Denmark)

    Huber, Reinhard C.; Remuge, Liliana; Carlisle, Ailsa

    2012-01-01

    Since large animal transgenesis has been successfully attempted for the first time about 25 years ago, the technology has been applied in various lines of transgenic pigs. Nevertheless one of the concerns with the technology—animal welfare—has not been approached through systematic assessment...... and statements regarding the welfare of transgenic pigs have been based on anecdotal observations during early stages of transgenic programs. The main aim of the present study was therefore to perform an extensive welfare assessment comparing heterozygous transgenic animals expressing GFP with wildtype animals...... months. The absence of significant differences between GFP and wildtype animals in the parameters observed suggests that the transgenic animals in question are unlikely to suffer from deleterious effects of transgene expression on their welfare and thus support existing anecdotal observations of pigs...

  5. An industry perspective on the utility of short-term carcinogenicity testing in transgenic mice in pharmaceutical development.

    Science.gov (United States)

    Storer, Richard D; Sistare, Frank D; Reddy, M Vijayaraj; DeGeorge, Joseph J

    2010-01-01

    International guidelines allow for use of a short-term cancer bioassay (twenty-six weeks) in transgenic mice as a substitute for one of the two required long-term rodent bioassays in the preclinical safety evaluation of pharmaceuticals. The two models that have gained the widest acceptance by sponsors and regulatory authorities are the CB6F1-RasH2 mouse hemizygous for a human H-ras transgene and the B6.129N5-Trp53 mouse heterozygous for a p53 null allele. The p53(+/-) model is of particular value for compounds with residual concern that genotoxic activity may contribute to tumorigenesis. The rasH2 model is an appropriate alternative without regard to evidence of genotoxic potential. Since results from a short-term bioassay can be obtained relatively early in drug development, there is the potential for more timely assessment of cancer risk for individuals in long-term clinical trials. Use of these models in preclinical safety evaluation also significantly reduces animal use, time, and manpower. Preliminary findings indicate that prediction of two-year rat bioassay outcomes based on data from chronic rat toxicity studies, together with early assessment of carcinogenic potential in short-term transgenic models, may have the potential to increase the timeliness and efficiency of strategies for the identification of human carcinogenic hazards.

  6. Benefits of Transgenic Insect Resistance in Brassica Hybrids under Selection

    Directory of Open Access Journals (Sweden)

    Cynthia L. Sagers

    2015-01-01

    Full Text Available Field trials of transgenic crops may result in unintentional transgene flow to compatible crop, native, and weedy species. Hybridization outside crop fields may create novel forms with potential negative outcomes for wild and weedy plant populations. We report here the outcome of large outdoor mesocosm studies with canola (Brassica napus, transgenic canola, a sexually compatible weed B. rapa, and their hybrids. Brassica rapa was hybridized with canola and canola carrying a transgene for herbivore resistance (Bt Cry1Ac and grown in outdoor mesocosms under varying conditions of competition and insect herbivory. Treatment effects differed significantly among genotypes. Hybrids were larger than all other genotypes, and produced more seeds than the B. rapa parent. Under conditions of heavy herbivory, plants carrying the transgenic resistance were larger and produced more seeds than non-transgenic plants. Pollen derived gene flow from transgenic canola to B. rapa varied between years (5%–22% and was not significantly impacted by herbivory. These results confirm that canola-weed hybrids benefit from transgenic resistance and are aggressive competitors with congeneric crops and ruderals. Because some crop and crop-weed hybrids may be competitively superior, escapees may alter the composition and ecological functions of plant communities near transgenic crop fields.

  7. From transgene expression to public acceptance of transgenic plants: a matter of predictability

    NARCIS (Netherlands)

    Nap, J.P.H.; Mlynárová, L.; Stiekema, W.J.

    1996-01-01

    A good strategy for acceptable legislation of transgenic plants can be thought to be composed of several stacked levels of decision-making. These levels range from global to individual to cellular to nuclear and beyond. Any decision will depend on decisions made on the level below. Various examples

  8. Comparative Proteomics of Leaves from Phytase-transgenic Maize and the Non-transgenic Isogenic Variety

    Directory of Open Access Journals (Sweden)

    Yanhua Tan

    2016-08-01

    Full Text Available To investigate unintended effects in genetically modified crops (GMCs, a comparative proteomics analysis between the leaves of the phytase-transgenic maize and those of non-transgenic plants was performed by using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed protein spots (DEPs were successfully identified, which represented 44 unique proteins. Functional classification of the identified unique proteins showed that these proteins were predominantly involved in carbohydrate transport and metabolism, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Comparison of the changes in the protein and gene transcript levels of the identified unique proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially altered between the leaves of phytase-transgenic maize and its non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences of proteome between the two kinds of maize leaves might be attributed to both genetic modification and hybrid influence.

  9. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety.

    Science.gov (United States)

    Tan, Yanhua; Yi, Xiaoping; Wang, Limin; Peng, Cunzhi; Sun, Yong; Wang, Dan; Zhang, Jiaming; Guo, Anping; Wang, Xuchu

    2016-01-01

    To investigate unintended effects in genetically modified crops (GMCs), a comparative proteomic analysis between the leaves of the phytase-transgenic maize and the non-transgenic plants was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed proteins (DEPs) were successfully identified, which represents 44 unique proteins. Functional classification of the identified proteins showed that these DEPs were predominantly involved in carbohydrate transport and metabolism category, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Among them, 15 proteins were found to show protein-protein interactions with each other, and these proteins were mainly participated in glycolysis and carbon fixation. Comparison of the changes in the protein and tanscript levels of the identified proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially different between the leaves of the phytase-transgenic maize and the non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences between the leaf proteome might be attributed to both genetic modification and hybrid influence.

  10. Intein-mediated Cre protein assembly for transgene excision in hybrid progeny of transgenic Arabidopsis.

    Science.gov (United States)

    Ge, Jia; Wang, Lijun; Yang, Chen; Ran, Lingyu; Wen, Mengling; Fu, Xianan; Fan, Di; Luo, Keming

    2016-10-01

    An approach for restoring recombination activity of complementation split-Cre was developed to excise the transgene in hybrid progeny of GM crops. Growing concerns about the biosafety of genetically modified (GM) crops has currently become a limited factor affecting the public acceptance. Several approaches have been developed to generate selectable-marker-gene-free GM crops. However, no strategy was reported to be broadly applicable to hybrid crops. Previous studies have demonstrated that complementation split-Cre recombinase restored recombination activity in transgenic plants. In this study, we found that split-Cre mediated by split-intein Synechocystis sp. DnaE had high recombination efficiency when Cre recombinase was split at Asp232/Asp233 (866 bp). Furthermore, we constructed two plant expression vectors, pCA-NCre-In and pCA-Ic-CCre, containing NCre866-In and Ic-CCre866 fragments, respectively. After transformation, parent lines of transgenic Arabidopsis with one single copy were generated and used for hybridization. The results of GUS staining demonstrated that the recombination activity of split-Cre could be reassembled in these hybrid progeny of transgenic plants through hybridization and the foreign genes flanked by two loxP sites were efficiently excised. Our strategy may provide an effective approach for generating the next generation of GM hybrid crops without biosafety concerns.

  11. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    Full Text Available To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0% compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  12. Characterization of a Maize Wip1 Promoter in Transgenic Plants

    Directory of Open Access Journals (Sweden)

    Shengxue Zhang

    2013-12-01

    Full Text Available The Maize Wip1 gene encodes a wound-induced Bowman-Birk inhibitor (BBI protein which is a type of serine protease inhibitor, and its expression is induced by wounding or infection, conferring resistance against pathogens and pests. In this study, the maize Wip1 promoter was isolated and its function was analyzed. Different truncated Wip1 promoters were fused upstream of the GUS reporter gene and transformed into Arabidopsis, tobacco and rice plants. We found that (1 several truncated maize Wip1 promoters led to strong GUS activities in both transgenic Arabidopsis and tobacco leaves, whereas low GUS activity was detected in transgenic rice leaves; (2 the Wip1 promoter was not wound-induced in transgenic tobacco leaves, but was induced by wounding in transgenic rice leaves; (3 the truncated Wip1 promoter had different activity in different organs of transgenic tobacco plants; (4 the transgenic plant leaves containing different truncated Wip1 promoters had low GUS transcripts, even though high GUS protein level and GUS activities were observed; (5 there was one transcription start site of Wip1 gene in maize and two transcription start sites of GUS in Wip1::GUS transgenic lines; (6 the adjacent 35S promoter which is present in the transformation vectors enhanced the activity of the truncated Wip1 promoters in transgenic tobacco leaves, but did not influence the disability of truncated Wip1231 promoter to respond to wounding signals. We speculate that an ACAAAA hexamer, several CAA trimers and several elements similar to ACAATTAC octamer in the 5'-untranslated region might contribute to the strong GUS activity in Wip1231 transgenic lines, meanwhile, compared to the 5'-untranslated region from Wip1231 transgenic lines, the additional upstream open reading frames (uORFs in the 5'-untranslated region from Wip1737 transgenic lines might contribute to the lower level of GUS transcript and GUS activity.

  13. Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice

    Directory of Open Access Journals (Sweden)

    Bunnell Bruce A

    2009-01-01

    Full Text Available Abstract Background Adipose derived- and bone marrow-derived murine mesenchymal stem cells (mMSCs may be used to study stem cell properties in an in vivo setting for the purposes of evaluating therapeutic strategies that may have clinical applications in the future. If these cells are to be used for transplantation, the question arises of how to track the administered cells. One solution to this problem is to transplant cells with an easily identifiable genetic marker such as enhanced green fluorescent protein (eGFP. This protein is fluorescent and therefore does not require a chemical substrate for identification and can be visualized in living cells. This study seeks to characterize and compare adipose derived- and bone marrow-derived stem cells from C57Bl/6 mice and eGFP transgenic C57Bl/6 mice. Results The expression of eGFP does not appear to affect the ability to differentiate along adipogenic or osteogenic lineages; however it appears that the tissue of origin can influence differentiation capabilities. The presence of eGFP had no effect on cell surface marker expression, and mMSCs derived from both bone marrow and adipose tissue had similar surface marker profiles. There were no significant differences between transgenic and non-transgenic mMSCs. Conclusion Murine adipose derived and bone marrow derived mesenchymal stem cells from non-transgenic and eGFP transgenic C57Bl/6 mice have very similar characterization profiles. The availability of mesenchymal stem cells stably expressing a genetic reporter has important applications for the advancement of stem cell research.

  14. Identification of abnormal gene expression in bovine transgenic somatic cell nuclear transfer embryos

    OpenAIRE

    Cho, Jongki; Kang, Sungkeun; Lee, Byeong Chun

    2014-01-01

    This study was conducted to investigate the expression of three genes related to early embryonic development in bovine transgenic cloned embryos. To accomplish this, development of bovine transgenic somatic cell nuclear transfer (SCNT) embryos was compared with non-transgenic embryos. Next, mRNA transcription of three specific genes (DNMT1, Hsp 70.1, and Mash2) related to early embryo development in transgenic SCNT embryos was compared between transgenic and non-transgenic SCNTs, parthenogene...

  15. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  16. Modifying Bananas: From Transgenics to Organics?

    Directory of Open Access Journals (Sweden)

    James Dale

    2017-02-01

    Full Text Available Bananas are one of the top ten world food crops. Unlike most other major food crops, bananas are difficult to genetically improve. The challenge is that nearly all banana cultivars and landraces are triploids, with high levels of male and female infertility. There are a number of international conventional breeding programs and many of these are developing new cultivars. However, it is virtually impossible to backcross bananas, thus excluding the possibility of introgressing new traits into a current cultivar. The alternative strategy is to “modify” the cultivar itself. We have been developing the capacity to modify Cavendish bananas and other cultivars for both disease resistance and enhanced fruit quality. Initially, we were using transgenes; genes that were derived from species outside of the Musa or banana genus. However, we have recently incorporated two banana genes (cisgenes into Cavendish; one to enhance the level of pro-vitamin A and the other to increase the resistance to Panama disease. Modified Cavendish with these cisgenes have been employed in a field trial. Almost certainly, the next advance will be to edit the Cavendish genome, to generate the desired traits. As these banana cultivars are essentially sterile, transgene flow and the outcrossing of modified genes into wild Musa species. are highly unlikely and virtually impossible in other triploid cultivars. Therefore, genetic changes in bananas may be compatible with organic farming.

  17. Gene-manipulated embryonic stem cells for rat transgenesis.

    Science.gov (United States)

    Kawamata, Masaki; Ochiya, Takahiro

    2011-06-01

    Embryonic stem cells (ESCs) are derived from blastocysts and are capable of differentiating into whole tissues and organs. Transplantation of ESCs into recipient blastocysts leads to the generation of germline-competent chimeras in mice. Transgenic, knockin, and knockout gene manipulations are available in mouse ESCs, enabling the production of genetically modified animals. Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. However, in contrast to mouse ESCs, rat ESCs were not established until 2008 because of the difficulty of maintaining pluripotency. Although the use of signaling inhibitors has allowed the generation of rat ESCs, the production of genetically modified rats has been difficult due to problems in rat ESCs after gene introduction. In this review, we will focus on some well-documented examples of gene manipulation in rat ESCs.

  18. [Production of human proteins in the blood of transgenic animals

    NARCIS (Netherlands)

    Massoud, M.; Bischoff, Rainer; Dalemans, W.; Pointu, H.; Attal, J.; Schultz, H.; Clesse, D.; Stinnakre, M.G.; Pavirani, A.; Houdebine, L.M.

    1990-01-01

    The human alpha 1-antitrypsin gene has been microinjected into rabbit embryos. A line of transgenic rabbits has thus been established. Human alpha 1-antitrypsin was found in the blood of transgenic animals at the concentration of 1 mg/ml plasma. The human protein was active and separable from its

  19. Transgene transmission in chickens by sperm-mediated gene ...

    Indian Academy of Sciences (India)

    DNA by spermatozoa. Avian species, particularly chickens, have been increas- ingly used in transgenic research due to their inherent advantages, such as short generation times, high semen production and potential applications as transgenic bioreac- tors for heterologous protein production (Lillico et al. 2007;. Han 2009).

  20. Transgenic Learning for STEAM Subjects and Virtual Containers for OER

    Science.gov (United States)

    Burgos, Daniel; Corbí, Alberto

    2018-01-01

    Transgenic learning is a disruptive approach in education. It encourages modification of moving parts of the educational chain. This article provides a view of transgenic learning focused on the delivery of enriched learning contents in STEAM areas. It discusses the mutagenic role that the virtual containers may play in current distance education.…

  1. Principles and application of transgenic technology in marine organisms

    Science.gov (United States)

    Marine organisms into which a foreign gene or noncoding DNA fragment is artificially introduced and stably integrated in their genomes are termed transgenic marine organisms. Since the first report in 1985, a wide range of transgenic fish and marine bivalve mollusks have been produced by microinjec...

  2. Transgenic sorghum ( Sorghum bicolor L. Moench) developed by ...

    African Journals Online (AJOL)

    In planta and ex planta C. sublineolum infection assays were carried out using one-week old seedlings to determine tolerance to anthracnose. Seedlings from a transgenic line, KOSA-1, were found to be significantly more tolerant to anthracnose than the parent wild type, KAT 412. The transgenic line was further compared ...

  3. Transgenic manipulation of the metabolism of polyamines in poplar cells

    Science.gov (United States)

    Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...

  4. Development and application of transgenic technologies in cassava

    NARCIS (Netherlands)

    Taylor, N.; Chavarriaga, P.; Raemakers, C.J.J.M.; Sititunga, D.; Zhang, P.

    2004-01-01

    The capacity to integrate transgenes into the tropical root crop cassava (Manihot esculenta Crantz) is now established and being utilized to generate plants expressing traits of agronomic interest. The tissue culture and gene transfer systems currently employed to produce these transgenic cassava

  5. Ethical perception of human gene in transgenic banana | Amin ...

    African Journals Online (AJOL)

    Transgenic banana has been developed to prevent hepatitis B through vaccination. Its production seems to be an ideal alternative for cheaper vaccines. The objective of this paper is to assess the ethical perception of transgenic banana which involved the transfer of human albumin gene, and to compare their ethical ...

  6. Bioavailability of transgenic microRNAs in genetically modified plants

    Science.gov (United States)

    Transgenic expression of small RNAs is a prevalent approach in agrobiotechnology for the global enhancement of plant foods. Meanwhile, emerging studies have, on the one hand, emphasized the potential of transgenic microRNAs (miRNAs) as novel dietary therapeutics and, on the other, suggested potentia...

  7. Recent advances in the development of new transgenic animal technology.

    Science.gov (United States)

    Miao, Xiangyang

    2013-03-01

    Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.

  8. Clean vector technology for marker-free transgenic fruit crops

    NARCIS (Netherlands)

    Krens, F.A.; Pelgrom, K.T.B.; Schaart, J.G.; Nijs, den A.P.M.; Rouwendal, G.J.A.

    2004-01-01

    Marker-free transgenic crops confer several advantages over transgenic crops equipped with selection genes coding e.g. for antibiotic resistance. Firstly, the European Union has prepared a guidance document for risk assessment of GM-crops to be introduced in the environment (E.U. Joint Working Group

  9. Bioavailability of transgenic microRNAs in genetically modified plants.

    Science.gov (United States)

    Yang, Jian; Primo, Cecilia; Elbaz-Younes, Ismail; Hirschi, Kendal D

    2017-01-01

    Transgenic expression of small RNAs is a prevalent approach in agrobiotechnology for the global enhancement of plant foods. Meanwhile, emerging studies have, on the one hand, emphasized the potential of transgenic microRNAs (miRNAs) as novel dietary therapeutics and, on the other, suggested potential food safety issues if harmful miRNAs are absorbed and bioactive. For these reasons, it is necessary to evaluate the bioavailability of transgenic miRNAs in genetically modified crops. As a pilot study, two transgenic Arabidopsis lines ectopically expressing unique miRNAs were compared and contrasted with the plant bioavailable small RNA MIR2911 for digestive stability and serum bioavailability. The expression levels of these transgenic miRNAs in Arabidopsis were found to be comparable to that of MIR2911 in fresh tissues. Assays of digestive stability in vitro and in vivo suggested the transgenic miRNAs and MIR2911 had comparable resistance to degradation. Healthy mice consuming diets rich in Arabidopsis lines expressing these miRNAs displayed MIR2911 in the bloodstream but no detectable levels of the transgenic miRNAs. These preliminary results imply digestive stability and high expression levels of miRNAs in plants do not readily equate to bioavailability. This initial work suggests novel engineering strategies be employed to enhance miRNA bioavailability when attempting to use transgenic foods as a delivery platform.

  10. Biodiversity versus transgenic sugar beet : the one Euro question

    NARCIS (Netherlands)

    Demont, M.; Wesseler, J.; Tollens, E.

    2002-01-01

    The decision whether to release transgenic crops in the EU is one subject to flexibility, uncertainty and irreversibility. The case of herbicide tolerant sugar beet is analysed. Reassessed is whether the 1998 de facto moratorium of the EU on transgenic crops for sugar beet was correct from a

  11. Transgene transmission in chickens by sperm-mediated gene ...

    Indian Academy of Sciences (India)

    Transgenic animals have been successfully produced by mass gene transfer techniques such as sperm-mediated gene transfer (SMGT). The aim of this work was to demonstrate transgene transmission by SMGT in chickens using dimethylsulfoxide (DMSO) or ,-dimethylacetamide (DMAc) as transfectants after seminal ...

  12. 2013 North Dakota Transgenic Barley Research and FHB Nursery Report

    Science.gov (United States)

    Research continues to develop and test new transgenic plants using genes provided by collaborators. As lines are developed in Golden Promise, they are crossed to Conlon for field testing. Transgenic lines developed in Conlon are being crossed to resistant lines developed by the breeding programs. ...

  13. Dissection of a Synthesized Quantitative Trait to Characterize Transgene Interactions

    NARCIS (Netherlands)

    Nap, Jan-Peter; Conner, Anthony J.; Mlynárová, Ludmila; Stiekema, Willem J.; Jansen, Ritsert C.

    1997-01-01

    Six transgenic tobacco lines, each homozygous for the β-glucuronidase (GUS) gene at a different locus, and wild type were selfed and intercrossed to evaluate GUS activity in all possible hemizygous, homozygous and dihybrid combinations of GUS alleles. The transgenic lines are characterized by their

  14. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    The results confirm inheritance and segregation of. the exogenous Bt gene in transgenic CCRI 30 and NewCott 33B, governing resistance to bollworm, and; the exogenous tfdA gene in transgenic TFD, governing resistance to the herbicide 2,4-D. Both resistance characters were governed by a single dominant nuclear gene ...

  15. Biodiversity versus transgenic sugar beet: the one euro question

    NARCIS (Netherlands)

    Demont, M.; Wesseler, J.H.H.; Tollens, E.

    2004-01-01

    The decision on whether to release transgenic crops in the EU is subject to irreversibility, uncertainty and flexibility. We analyse the case of herbicide-tolerant sugar beet and assess whether the EU's 1998 de facto moratorium on transgenic crops for sugar beet was correct from a cost-benefit

  16. Advancing environmental risk assessment for transgenic biofeedstock crops

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D

    2009-11-01

    Full Text Available Abstract Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release. For currently envisioned biofeedstock crops, particular emphasis in risk assessment will be given to characterization of altered metabolic profiles and their implications relative to non-target environmental effects and food safety; weediness and invasiveness when plants are modified for abiotic stress tolerance or are domesticated; and aggregate risk when plants are platforms for multi-product production. Robust risk assessments for transgenic biofeedstock crops are case-specific, initiated through problem formulation, and use tiered approaches for risk characterization.

  17. Single-copy insertion of transgenes in Caenorhabditis elegans.

    Science.gov (United States)

    Frøkjaer-Jensen, Christian; Davis, M Wayne; Hopkins, Christopher E; Newman, Blake J; Thummel, Jason M; Olesen, Søren-Peter; Grunnet, Morten; Jorgensen, Erik M

    2008-11-01

    At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.

  18. ADAM 12 protease induces adipogenesis in transgenic mice

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Xu, Xiufeng; Tajima, Rie

    2002-01-01

    -anchored protein, ADAM 12-L, and a shorter secreted form, ADAM 12-S. Here we report the occurrence of adipocytes in the skeletal muscle of transgenic mice in which overexpression of either form is driven by the muscle creatine kinase promoter. Cells expressing a marker of early adipogenesis were apparent...... in the perivascular space in muscle tissue of 1- to 2-week-old transgenic mice whereas mature lipid-laden adipocytes were seen at 3 to 4 weeks. Moreover, female transgenics expressing ADAM 12-S exhibited increases in body weight, total body fat mass, abdominal fat mass, and herniation, but were normoglycemic and did...... not exhibit increased serum insulin, cholesterol, or triglycerides. Male transgenics were slightly overweight and also developed herniation but did not become obese. Transgenic mice expressing a truncated form of ADAM 12-S lacking the prodomain and the metalloprotease domain did not develop this adipogenic...

  19. Characterization of Growth and Reproduction Performance, Transgene Integration, Expression, and Transmission Patterns in Transgenic Pigs Produced by piggyBac Transposition-Mediated Gene Transfer.

    Science.gov (United States)

    Zeng, Fang; Li, Zicong; Cai, Gengyuan; Gao, Wenchao; Jiang, Gelong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang

    2016-10-01

    Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance and characterized the transgene insertion, transmission, and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression, and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favorable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition.

  20. [Study on food safety of genetically modified rice which expressed cowpea trypsin inhibitor by 90 day feeding test on rats].

    Science.gov (United States)

    Zhuo, Qin; Chen, Xiaoping; Piao, Jianhua; Gu, Lüzhen

    2004-03-01

    Rats were fed by transgenic rice which expressed insecticidal protein CPTI (cowpea trypsin inhibitor) to study if the transgenic rice possessed potential toxic or adverse effects. Weanling Wistar rats were randomly divided into three groups: T, N and C group. The diet of T group contained 78.3% transgenic rice. The diet of N group contained 74.7% non transgenic rice which was the parent line of the transgenic one. The diet formula of C group was AIN93G. The macro- and micronutrient content were equal in three diets. The rats were fed for 90 days. Food intakes were weight every day, body-weight were weight and body-length were measured every week. In the middle and at the end of feeding period, haematological value and clinical chemistry parameters were measured, at the end of the 90th day, post-mortem organ coefficient were measured, organ tissues analysis was performed and bone density was measured. In most situation, there were no significant differences among the three groups(P > 0.05) and no histopathological damage were detected. At the end of the 1st month, the male rats' body length of the T group was longer than the other two groups and at the end of the test period, the male rats' blood glucose and ALT were lower than the other two groups. In the middle of the test period, the female rats' red blood cell number and hemoglobin were higher than the other two groups and at the end of the test period, the female rats' monocyte number was higher than the other two groups (P transgenic rice on rats there did not reveal any signs of toxic and adverse effects.

  1. Oral insulin treatment suppresses virus-induced antigen-specific destruction of beta cells and prevents autoimmune diabetes in transgenic mice.

    OpenAIRE

    von Herrath, M G; Dyrberg, T; Oldstone, M B

    1996-01-01

    Oral administration of self-antigens has been proposed as a therapy to prevent and treat autoimmune diseases. Here we report that oral treatment with insulin prevents virus-induced insulin-dependent diabetes mellitus (IDDM) in a transgenic (tg) mouse model. Such mice express the viral nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) under control of the rat insulin promoter in their pancreatic beta cells and < 2% spontaneously develop diabetes. However, 2 mo after challenge wit...

  2. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots

    DEFF Research Database (Denmark)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke

    2014-01-01

    induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots...

  3. Apple juice intervention modulates expression of ARE-dependent genes in rat colon and liver.

    Science.gov (United States)

    Soyalan, Bülent; Minn, Jutta; Schmitz, Hans J; Schrenk, Dieter; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine

    2011-03-01

    The risk of cancer and other degenerative diseases is inversely correlated with consumption of fruits and vegetables. This beneficial effect is mainly attributed to secondary plant constituents such as polyphenols, supposed to play a major role in protection against ROS (reactive oxygen species)-associated toxicity. To elucidate the potential of differently manufactured apple juices (clear AJ/cloudy AJ/smoothie, in comparison with a polyphenol-free control juice) to modulate expression of ARE-dependent genes. In male Sprague-Dawley rats (n = 8/group; 10d juice intervention, 4d wash-out; 4 treatment cycles), expression of target genes (superoxide dismutase, SOD1/SOD2; glutathione peroxidase, GPX1/GPX2; γ-glutamylcysteine ligase, GCLC/GCLM; glutathione reductase, GSR; catalase, CAT; NAD(P)H:quinone oxidoreductase-1, NQO1 and transcription factor erythroid-derived 2-like-2, Nrf2) was quantified with duplex RT-PCR, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as control. In colon and liver of rats consuming polyphenol-free control juice, rather similar basic expressions were observed (relative GAPDH ratios ranging from 2 to 0.7 and 2.5-0.3, respectively). In the distal colon, apple juice intervention slightly but significantly induced most genes (e.g. GPX2, GSR, CAT, Nrf2; p target genes were not affected or down-regulated (SOD1, SOD2, GCLC/M, GSR), concomitant with the absence of Nrf2 induction. Induction of antioxidant gene expression differed with juice type (cloudy AJ > clear AJ ~ smoothie). Taken together, the results underline the potential of polyphenol-rich apple juice to increase the expression of ARE-dependent antioxidant genes.

  4. Maternal obesity in the rat impairs male offspring aging of the testicular antioxidant defence system.

    Science.gov (United States)

    Bautista, Claudia J; Rodríguez-González, Guadalupe L; Morales, Angélica; Lomas-Soria, Consuelo; Cruz-Pérez, Fabiola; Reyes-Castro, Luis A; Zambrano, Elena

    2017-09-01

    A high-fat diet during intrauterine development predisposes offspring (F 1 ) to phenotypic alterations, such as lipid synthesis imbalance and increased oxidative stress, causing changes in male fertility. The objective of this study was to evaluate the effects of maternal obesity during pregnancy and lactation on antioxidant enzymes in the F 1 testes. Female Wistar rats (F 0 ) were fed either a control (C, 5% fat) or an obesogenic (MO, maternal obesity, 25% fat) diet from weaning and throughout subsequent pregnancy and lactation. F 1 offspring were weaned to the control diet. Testes were retrieved at 110, 450 and 650 postnatal days (PND) for real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC) antioxidant enzyme analyses. Catalase was similar between groups by RT-qPCR, whereas by IHC it was higher in the MO group at all ages than in the C group. Superoxide dismutase 1 (SOD1) had lower expression at PND 110 in MO than in C by both techniques; at PND 450 and 650 by immunoanalysis SOD1 was higher in MO than in C. Glutathione peroxidase 1 (GPX1), GPX2 and GPX4 by RT-qPCR were similar between groups and ages; by IHC GPX1/2 was higher in MO than in C, whereas GPX4 showed the opposite result at PND 110 and 450. In conclusion, antioxidant enzymes in the rat testes are modified with age. Maternal obesity negatively affects the F 1 testicular antioxidant defence system, which, in turn, can explain the decrease in reproductive capacity.

  5. High-value products from transgenic maize.

    Science.gov (United States)

    Naqvi, Shaista; Ramessar, Koreen; Farré, Gemma; Sabalza, Maite; Miralpeix, Bruna; Twyman, Richard M; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2011-01-01

    Maize (also known as corn) is a domesticated cereal grain that has been grown as food and animal feed for tens of thousands of years. It is currently the most widely grown crop in the world, and is used not only for food/feed but also to produce ethanol, industrial starches and oils. Maize is now at the beginning of a new agricultural revolution, where the grains are used as factories to synthesize high-value molecules. In this article we look at the diversity of high-value products from maize, recent technological advances in the field and the emerging regulatory framework that governs how transgenic maize plants and their products are grown, used and traded. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Novel transgenic rice-based vaccines.

    Science.gov (United States)

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  7. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  8. WP1: transgenic opto-animals

    Science.gov (United States)

    UŻarowska, E.; Czajkowski, Rafał; Konopka, W.

    2014-11-01

    We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.

  9. Magnetic biomineralisation in Huntington's disease transgenic mice

    International Nuclear Information System (INIS)

    Beyhum, W; Hautot, D; Dobson, J; Pankhurst, Q A

    2005-01-01

    The concentration levels of biogenic magnetite nanoparticles in transgenic R6/2 Huntington's disease (HD) mice have been investigated, using seven control and seven HD mice each from an 8 week-old litter and from a 12 week-old litter. Hysteresis and isothermal remnant magnetisation data were collected on a SQUID magnetometer, and analysed using a model comprising dia/paramagnetic, ferrimagnetic and superparamagnetic contributions, to extract the magnetite and ferritin concentrations present. It was found that magnetite was present in both superparamagnetic and blocked states. A larger spread and higher concentration of magnetite levels was found in the diseased mice for both the 8 week-old and 12 week-old batches, compared to the controls

  10. Comparative proteomics of Bt-transgenic and non-transgenic cotton leaves.

    Science.gov (United States)

    Wang, Limin; Wang, Xuchu; Jin, Xiang; Jia, Ruizong; Huang, Qixing; Tan, Yanhua; Guo, Anping

    2015-01-01

    As the rapid growth of the commercialized acreage in genetically modified (GM) crops, the unintended effects of GM crops' biosafety assessment have been given much attention. To investigate whether transgenic events cause unintended effects, comparative proteomics of cotton leaves between the commercial transgenic Bt + CpTI cotton SGK321 (BT) clone and its non-transgenic parental counterpart SY321 wild type (WT) was performed. Using enzyme linked immunosorbent assay (ELISA), Cry1Ac toxin protein was detected in the BT leaves, while its content was only 0.31 pg/g. By 2-DE, 58 differentially expressed proteins (DEPs) were detected. Among them 35 were identified by MS. These identified DEPs were mainly involved in carbohydrate transport and metabolism, chaperones related to post-translational modification and energy production. Pathway analysis revealed that most of the DEPs were implicated in carbon fixation and photosynthesis, glyoxylate and dicarboxylate metabolism, and oxidative pentose phosphate pathway. Thirteen identified proteins were involved in protein-protein interaction. The protein interactions were mainly involved in photosynthesis and energy metabolite pathway. Our study demonstrated that exogenous DNA in a host cotton genome can affect the plant growth and photosynthesis. Although some unintended variations of proteins were found between BT and WT cotton, no toxic proteins or allergens were detected. This study verified genetically modified operation did not sharply alter cotton leaf proteome, and the target proteins were hardly checked by traditional proteomic analysis.

  11. Transgenic Studies with a Keratin Promoter-Driven Growth Hormone Transgene: Prospects for Gene Therapy

    Science.gov (United States)

    Wang, Xiaoming; Zinkel, Sandra; Polonsky, Kenneth; Fuchs, Elaine

    1997-01-01

    Keratinocytes are potentially appealing vehicles for the delivery of secreted gene products because they can be transferred to human skin by the relatively simple procedure of grafting. Adult human keratinocytes can be efficiently propagated in culture with sufficient proliferative capacity to produce enough epidermis to cover the body surface of an average adult. However, the feasibility of delivering secreted proteins through skin grafting rests upon (i) the strength of the promoter in keratinocytes and (ii) the efficiency of protein transport through the basement membrane of the stratified epithelium and into the bloodstream. In this paper, we use transgenic technology to demonstrate that the activity of the human keratin 14 promoter remains high in adult skin and that keratinocyte-derived human growth hormone (hGH) can be produced, secreted, and transported to the bloodstream of mice with efficiency that is sufficient to exceed by an order of magnitude the circulating hGH concentration in growing children. Transgenic skin grafts from these adults continue to produce and secrete hGH stably, at ≈ 1/10 physiological levels in the bloodstream of nontransgenic recipient mice. These studies underscore the utility of the keratin 14 promoter for expressing foreign transgenes in keratinocytes and demonstrate that keratinocytes can be used as effective vehicles for transporting factors to the bloodstream and for eliciting metabolic changes. These findings have important implications for considering the keratinocyte as a possible vehicle for gene therapy.

  12. Comparison of Sirtuin 3 Levels in ALS and Huntington’s Disease—Differential Effects in Human Tissue Samples vs. Transgenic Mouse Models

    Directory of Open Access Journals (Sweden)

    Eva Buck

    2017-05-01

    Full Text Available Neurodegenerative diseases are characterized by distinct patterns of neuronal loss. In amyotrophic lateral sclerosis (ALS upper and lower motoneurons degenerate whereas in Huntington’s disease (HD medium spiny neurons in the striatum are preferentially affected. Despite these differences the pathophysiological mechanisms and risk factors are remarkably similar. In addition, non-neuronal features, such as weight loss implicate a dysregulation in energy metabolism. Mammalian sirtuins, especially the mitochondrial NAD+ dependent sirtuin 3 (SIRT3, regulate mitochondrial function and aging processes. SIRT3 expression depends on the activity of the metabolic master regulator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α, a modifier of ALS and HD in patients and model organisms. This prompted us to systematically probe Sirt3 mRNA and protein levels in mouse models of ALS and HD and to correlate these with patient tissue levels. We found a selective reduction of Sirt3 mRNA levels and function in the cervical spinal cord of end-stage ALS mice (superoxide dismutase 1, SOD1G93A. In sharp contrast, a tendency to increased Sirt3 mRNA levels was found in the striatum in HD mice (R6/2. Cultured primary neurons express the highest levels of Sirt3 mRNA. In primary cells from PGC-1α knock-out (KO mice the Sirt3 mRNA levels were highest in astrocytes. In human post mortem tissue increased mRNA and protein levels of Sirt3 were found in the spinal cord in ALS, while Sirt3 levels were unchanged in the human HD striatum. Based on these findings we conclude that SIRT3 mediates the different effects of PGC-1α during the course of transgenic (tg ALS and HD and in the human conditions only partial aspects Sirt3 dysregulation manifest.

  13. [Effect of transgenic insect-resistant rice on biodiversity].

    Science.gov (United States)

    Zhang, Lei; Zhu, Zhen

    2011-05-01

    Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.

  14. Welfare assessment in transgenic pigs expressing green fluorescent protein (GFP).

    Science.gov (United States)

    Huber, Reinhard C; Remuge, Liliana; Carlisle, Ailsa; Lillico, Simon; Sandøe, Peter; Sørensen, Dorte B; Whitelaw, C Bruce A; Olsson, I Anna S

    2012-08-01

    Since large animal transgenesis has been successfully attempted for the first time about 25 years ago, the technology has been applied in various lines of transgenic pigs. Nevertheless one of the concerns with the technology--animal welfare--has not been approached through systematic assessment and statements regarding the welfare of transgenic pigs have been based on anecdotal observations during early stages of transgenic programs. The main aim of the present study was therefore to perform an extensive welfare assessment comparing heterozygous transgenic animals expressing GFP with wildtype animals along various stages of post natal development. The protocol used covered reproductory performance and behaviour in GFP and wildtype sows and general health and development, social behaviour, exploratory behaviour and emotionality in GFP and wildtype littermates from birth until an age of roughly 4 months. The absence of significant differences between GFP and wildtype animals in the parameters observed suggests that the transgenic animals in question are unlikely to suffer from deleterious effects of transgene expression on their welfare and thus support existing anecdotal observations of pigs expressing GFP as healthy. Although the results are not surprising in the light of previous experience, they give a more solid fundament to the evaluation of GFP expression as being relatively non-invasive in pigs. The present study may furthermore serve as starting point for researchers aiming at a systematic characterization of welfare relevant effects in the line of transgenic pigs they are working with.

  15. Design and Management of Field Trials of Transgenic Cereals

    Science.gov (United States)

    Bedő, Zoltán; Rakszegi, Mariann; Láng, László

    The development of gene transformation systems has allowed the introgression of alien genes into plant genomes, thus providing a mechanism for broadening the genetic resources available to plant breeders. The design and the management of field trials vary according to the purpose for which transgenic cereals are developed. Breeders study the phenotypic and genotypic stability of transgenic plants, monitor the increase in homozygosity of transgenic genotypes under field conditions, and develop backcross generations to transfer the introduced genes into secondary transgenic cereal genotypes. For practical purposes, they may also multiply seed of the transgenic lines to produce sufficient amounts of grain for the detailed analysis of trait(s) of interest, to determine the field performance of transgenic lines, and to compare them with the non-transformed parental genotypes. Prior to variety registration, the Distinctness, Uniformity and Stability (DUS) tests and Value for Cultivation and Use (VCU) experiments are carried out in field trials. Field testing includes specific requirements for transgenic cereals to assess potential environmental risks. The capacity of the pollen to survive, establish and disseminate in the field test environment, the potential for gene transfer, the effects of products expressed by the introduced sequences and phenotypic and genotypic instability that might cause deleterious effects must all be specifically monitored, as required by EU Directives 2003/701/EC (1) on the release of genetically modified higher plants in the environment.

  16. Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard × Brassica napus (oilseed rape hybrid populations

    Directory of Open Access Journals (Sweden)

    Warwick Suzanne I

    2009-10-01

    Full Text Available Abstract Background One theoretical explanation for the relatively poor performance of Brassica rapa (weed × Brassica napus (crop transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur. Results In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003 and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems, there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001, although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a

  17. Transgenic fish systems and their application in ecotoxicology.

    Science.gov (United States)

    Lee, Okhyun; Green, Jon M; Tyler, Charles R

    2015-02-01

    The use of transgenics in fish is a relatively recent development for advancing understanding of genetic mechanisms and developmental processes, improving aquaculture, and for pharmaceutical discovery. Transgenic fish have also been applied in ecotoxicology where they have the potential to provide more advanced and integrated systems for assessing health impacts of chemicals. The zebrafish (Daniorerio) is the most popular fish for transgenic models, for reasons including their high fecundity, transparency of their embryos, rapid organogenesis and availability of extensive genetic resources. The most commonly used technique for producing transgenic zebrafish is via microinjection of transgenes into fertilized eggs. Transposon and meganuclease have become the most reliable methods for insertion of the genetic construct in the production of stable transgenic fish lines. The GAL4-UAS system, where GAL4 is placed under the control of a desired promoter and UAS is fused with a fluorescent marker, has greatly enhanced model development for studies in ecotoxicology. Transgenic fish have been developed to study for the effects of heavy metal toxicity (via heat-shock protein genes), oxidative stress (via an electrophile-responsive element), for various organic chemicals acting through the aryl hydrocarbon receptor, thyroid and glucocorticoid response pathways, and estrogenicity. These models vary in their sensitivity with only very few able to detect responses for environmentally relevant exposures. Nevertheless, the potential of these systems for analyses of chemical effects in real time and across multiple targets in intact organisms is considerable. Here we illustrate the techniques used for generating transgenic zebrafish and assess progress in the development and application of transgenic fish (principally zebrafish) for studies in environmental toxicology. We further provide a viewpoint on future development opportunities.

  18. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Directory of Open Access Journals (Sweden)

    Hye-Jung Yeom

    Full Text Available Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1, an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs. Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  19. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats.

    Science.gov (United States)

    Chen, Haw-Wen; Huang, Chin-Shiu; Li, Chien-Chun; Lin, Ai-Hsuan; Huang, Yu-Ju; Wang, Tsu-Shing; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1μM which peaked at 30min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (pandrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl4) at day 6. Andrographolide pretreatment suppressed CCl4-induced plasma aminotransferase activity and hepatic lipid peroxidation (pandrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Targeted transgenic expression of beta(2)-adrenergic receptors to type II cells increases alveolar fluid clearance.

    Science.gov (United States)

    McGraw, D W; Fukuda, N; James, P F; Forbes, S L; Woo, A L; Lingrel, J B; Witte, D P; Matthay, M A; Liggett, S B

    2001-10-01

    Clearance of edema fluid from the alveolar space can be enhanced by endogenous and exogenous beta-agonists. To selectively delineate the effects of alveolar type II (ATII) cell beta(2)-adrenergic receptors (beta(2)-ARs) on alveolar fluid clearance (AFC), we generated transgenic (TG) mice that overexpressed the human beta(2)-AR under control of the rat surfactant protein C promoter. In situ hybridization showed that transgene expression was consistent with the distribution of ATII cells. TG mice expressed 4.8-fold greater beta(2)-ARs than nontransgenic (NTG) mice (939 +/- 113 vs. 194 +/- 18 fmol/mg protein; P < 0.001). Basal AFC in TG mice was approximately 40% greater than that in untreated NTG mice (15 +/- 1.4 vs. 10.9 +/- 0.6%; P < 0.005) and approached that of NTG mice treated with the beta-agonist formoterol (19.8 +/- 2.2%; P = not significant). Adrenalectomy decreased basal AFC in TG mice to 9.7 +/- 0.5% but had no effect on NTG mice (11.5 +/- 1.0%). Na(+)-K(+)-ATPase alpha(1)-isoform expression was unchanged, whereas alpha(2)-isoform expression was approximately 80% greater in the TG mice. These findings show that beta(2)-AR overexpression can be an effective means to increase AFC in the absence of exogenous agonists and that AFC can be stimulated by activation of beta(2)-ARs specifically expressed on ATII cells.

  1. Imaging mouse cancer models in vivo using reporter transgenes.

    Science.gov (United States)

    Lyons, Scott K; Patrick, P Stephen; Brindle, Kevin M

    2013-08-01

    Imaging mouse models of cancer with reporter transgenes has become a relatively common experimental approach in the laboratory, which allows noninvasive and longitudinal investigation of diverse aspects of tumor biology in vivo. Our goal here is to outline briefly the principles of the relevant imaging modalities, emphasizing particularly their strengths and weaknesses and what the researcher can expect in a practical sense from each of these techniques. Furthermore, we discuss how relatively subtle modifications in the way reporter transgene expression is regulated in the cell underpin the ability of reporter transgenes as a whole to provide readouts on such varied aspects of tumor biology in vivo.

  2. Single-copy insertion of transgenes in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Frøkjaer-Jensen, Christian; Davis, M Wayne; Hopkins, Christopher E

    2008-01-01

    developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can...... be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines....

  3. Down with DON: Strategies for precise transgene delivery and rnai-based suppression of fusarium

    Science.gov (United States)

    Transgenic strategies can effectively supplement other methods for controlling Fusarium head blight (FHB). Impediments to deploying FHB-resistant transgenic barley include a long time-frame for creating and testing transgenes in barley, imprecise transgene insertions that lead to unstable gene expre...

  4. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    Science.gov (United States)

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  5. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.).

    Science.gov (United States)

    Nageswara-Rao, Madhugiri; Kwit, Charles; Agarwal, Sujata; Patton, Mariah T; Skeen, Jordan A; Yuan, Joshua S; Manshardt, Richard M; Stewart, C Neal

    2013-09-01

    Genetically engineered (GE) ringspot virus-resistant papaya cultivars 'Rainbow' and 'SunUp' have been grown in Hawai'i for over 10 years. In Hawai'i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai'i for the presence of transgenic seed at typical regulatory threshold levels

  6. Reversal of tolerance induced by transplantation of skin expressing the immunodominant T cell epitope of rat type II collagen entitles development of collagen-induced arthritis but not graft rejection

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Firan, Mihail

    2002-01-01

    Collagen-induced arthritis (CIA) is induced in H-2(q) mice after immunization with rat type II collagen (CII). The immunodominant T cell epitope on heterologous CII has been located to CII256-270. We have previously shown that TSC transgenic mice, which express the heterologous epitope in type I...... collagen (CI), e.g. in skin, are tolerized against rat CII and resistant to CIA. In this study we transplanted skin from TSC transgenic mice onto non-transgenic CIA-susceptible littermates to investigate whether introduction of this epitope to a naïve immune system would lead to T cell priming and graft...

  7. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  8. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    International Nuclear Information System (INIS)

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-01-01

    Highlights: ► Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. ► β-catenin translocated from the cell membrane to the nucleus in the ALS mice. ► Wnt3a, β-catenin and Cyclin D1 co-localized for astrocytes were all increased. ► BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. ► BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, β-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/β-catenin signaling pathway. We determined the expression of Wnt3a, β-catenin, and Cyclin D1 in the adult spinal cord of SOD1 G93A ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, β-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, β-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, β-catenin or Cyclin D1 in mature GFAP + astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that neurodegeneration activates the Wnt/β-catenin signaling pathway, which is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. This

  9. Microinjection of A. aegypti Embryos to Obtain Transgenic Mosquitoes

    OpenAIRE

    Jasinskiene, Nijole; Juhn, Jennifer; James, Anthony A.

    2007-01-01

    In this video, Nijole Jasinskiene demonstrates the methodology employed to generate transgenic Aedes aegypti mosquitoes, which are vectors for dengue fever. The techniques for correctly preparing microinjection needles, dessicating embryos, and performing microinjection are demonstrated.

  10. Microinjection of A. aegypti embryos to obtain transgenic mosquitoes.

    Science.gov (United States)

    Jasinskiene, Nijole; Juhn, Jennifer; James, Anthony A

    2007-01-01

    In this video, Nijole Jasinskiene demonstrates the methodology employed to generate transgenic Aedes aegypti mosquitoes, which are vectors for dengue fever. The techniques for correctly preparing microinjection needles, desiccating embryos, and performing microinjection are demonstrated.

  11. Efficient production of transgenic Alstroemeria plants by using Agrobacterium tumefaciens

    NARCIS (Netherlands)

    Kim, J.B.; Raemakers, C.J.J.M.; Jacobsen, E.; Visser, R.G.F.

    2007-01-01

    A highly efficient and reproducible protocol was developed to obtain transgenic Alstroemeria plants by combining Agrobacterium tumefaciens with friable embryogenic callus (FEC). To develop this transformation method, factors such as infection time, cocultivation period, effect of acetosyringone

  12. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    Science.gov (United States)

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  13. Strategies for metabolic pathway engineering with multiple transgenes.

    Science.gov (United States)

    Bock, Ralph

    2013-09-01

    The engineering of metabolic pathways in plants often requires the concerted expression of more than one gene. While with traditional transgenic approaches, the expression of multiple transgenes has been challenging, recent progress has greatly expanded our repertoire of powerful techniques making this possible. New technological options include large-scale co-transformation of the nuclear genome, also referred to as combinatorial transformation, and transformation of the chloroplast genome with synthetic operon constructs. This review describes the state of the art in multigene genetic engineering of plants. It focuses on the methods currently available for the introduction of multiple transgenes into plants and the molecular mechanisms underlying successful transgene expression. Selected examples of metabolic pathway engineering are used to illustrate the attractions and limitations of each method and to highlight key factors that influence the experimenter's choice of the best strategy for multigene engineering.

  14. Assessment of Bollgard II cotton pollen mediated transgenes flow to ...

    African Journals Online (AJOL)

    Assessment of Bollgard II cotton pollen mediated transgenes flow to conventional cotton in the farming conditions of Burkina Faso. Bourgou Larbouga, Sanfo Denys, Tiemtore C Bernard, Traore Oula, Sanou Jacob, Traore Karim ...

  15. Analysis of Multistep Mammary Tumorigenesis in Wnt-1 Transgenic Mice

    National Research Council Canada - National Science Library

    Shankar, Deepa

    1997-01-01

    Mouse mammary tumor virus (MMTV) is used as an insertion mutagen in transgenic mice that express the Wnt1 gene in their mammary gland, to produce additional events like activation of a second oncogene...

  16. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to prod