WorldWideScience

Sample records for soc orbital space

  1. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  2. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    Science.gov (United States)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  3. Metrics in Keplerian orbits quotient spaces

    Science.gov (United States)

    Milanov, Danila V.

    2018-03-01

    Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.

  4. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  5. 3D Embedded Reconfigurable SoC for Expediting Magnetometric Space Missions

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the development of a state-of-the-art three-dimensional embedded reconfigurable System-on-Chip (SoC) for accelerating the design of future magnetometric space missions. This involves measurements of planetary magnetic fields or measurements of heliospheric physics events' signatures superimposed on the aggregate measurements of the stronger planetary fields. The functionality of the embedded core is fully customizable, therefore, its operation is independent of the magnetic sensor being used. Standard calibration procedures still apply for setting the magnetometer measurements to the desired initial state and removing any seriatim interference inferred by the adjacent environment. The system acts as a pathfinder for future high-resolution heliospheric space missions.

  6. Theory and design methods of special space orbits

    CERN Document Server

    Zhang, Yasheng; Zhou, Haijun

    2017-01-01

    This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.

  7. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya

    2008-01-01

    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  8. Methylation profiling of SOCS1, SOCS2, SOCS3, CISH and SHP1 in Philadelphia-negative myeloproliferative neoplasm.

    Science.gov (United States)

    Zhang, Min Yue; Fung, Tsz Kin; Chen, Fang Yuan; Chim, Chor Sang

    2013-10-01

    Janus kinase-signal transducer and activator of transcription (JAK/STAT) signalling, pivotal in Philadelphia-negative (Ph-ve) myeloproliferative neoplasm (MPN), is negatively regulated by molecules including SOCSs, CISH and SHP1. SOCS1, SOCS2 and SOCS3 methylation have been studied in MPN with discordant results. Herein, we studied the methylation status of SOCS1, SOCS2 and SOCS3, CISH and SHP1 by methylation-specific polymerase chain reaction (MSP) in cell lines and 45 diagnostic marrow samples of Ph-ve MPN. Moreover, we attempted to explain the discordance of methylation frequency by mapping the studied MSP primers to the respective genes. Methylation was detected in normal controls using SOCS2 MSP primers in the 3'translated exonic sequence, but not primers around the transcription start site in the 5' untranslated regions (5'UTR). SOCS1, SOCS2, SOCS3 and CISH were completely unmethylated in primary MPN samples and cell lines. In contrast, methylation of SHP1 was detected in 8.9% primary marrow samples. Moreover, SHP1 was completely methylated in K562 cell line, leading to reversible SHP1 silencing. A review of methylation studies of SOCS1 and SOCS3 showed that spuriously high rates of SOCS methylation had been reported using MSP primers targeting CpG sites in the 3'translated exonic sequence, which is also methylated in normal controls. However, using MSP primers localized to the 5'UTR, methylation of SOCS1, SOCS2 and SOCS3 is infrequent across all studies. In summary, methylation of SOCS1, SOCS2, SOCS3 and CISH is infrequent in Ph-ve MPN. Appropriate MSP primers are important for accurate estimation of the methylation frequency. The role of SHP1 methylation in the pathogenesis of MPN warrants further investigation. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. IGF-1 induces SOCS-2 but not SOCS-1 and SOCS-3 transcription in juvenile Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Liu, Cai-Zhi; Luo, Yuan; Limbu, Samwel Mchele; Chen, Li-Qiao; Du, Zhen-Yu

    2018-05-20

    Insulin-like growth factor-1 (IGF-1) plays a crucial role in regulating growth in vertebrates whereas suppressors of cytokine signaling (SOCS) act as feedback inhibitors of the GH/IGF-1 axis. Although SOCS-2 binds the IGF-1 receptor and inhibits IGF-1-induced STAT3 activation, presently there is no clear evidence as to whether IGF-1 could induce SOCS gene expression. The current study aimed to determine whether IGF-1 could induce the transcription of SOCS in juvenile Nile tilapia ( Oreochromis niloticus ). We show that there is a common positive relationship between the mRNA expression of IGF-I and SOCS-2 under different nutritional statuses and stimulants, but not the mRNA expression of SOCS-1 and SOCS-3 Furthermore, rhIGF-1 treatment and transcriptional activity assay confirmed the hypothesis that IGF-1 could induce SOCS-2 expression, whereas it had no effect or even decreased the expression of SOCS-1 and SOCS-3 Overall, we obtained evidence that the transcription of SOCS-2, but not SOCS-1 or SOCS-3, could be induced by IGF signaling, suggesting that SOCS-2 serves as a feedback suppressor of the IGF-1 axis in juvenile Nile tilapia. © 2018. Published by The Company of Biologists Ltd.

  10. Prominent Role of Spin-Orbit Coupling in FeSe Revealed by Inelastic Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Mingwei Ma

    2017-05-01

    Full Text Available In most existing theories for iron-based superconductors, spin-orbit coupling (SOC has been assumed to be insignificant. Here, we use spin-polarized inelastic neutron scattering to show that collective low-energy spin excitations in the orthorhombic (or “nematic” phase of FeSe possess nearly no in-plane component. Such spin-space anisotropy is present over an energy range greater than the superconducting gap 2Δ_{sc} and gets fully inherited in the superconducting state, resulting in a c-axis polarized “spin resonance” without any noticeable isotropic spectral-weight rearrangement related to the superconductivity, which is distinct from observations in the superconducting iron pnictides. The contrast between the strong suppression of long-range magnetic order in FeSe and the persisting large spin-space anisotropy, which cannot be explained microscopically by introducing single-ion anisotropy into local-moment spin models, demonstrates the importance of SOC in an itinerant-electron description of the low-energy spin excitations. Our result helps to elucidate the nearby magnetic instabilities and the debated interplay between spin and orbital degrees of freedom in FeSe. The prominent role of SOC also implies a possible unusual nature of the superconducting state.

  11. Changes of Space Debris Orbits After LDR Operation

    Science.gov (United States)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  12. Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism

    Science.gov (United States)

    Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu

    2018-02-01

    Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.

  13. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    Science.gov (United States)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  14. Low-Power Differential SRAM design for SOC Based on the 25-um Technology

    Science.gov (United States)

    Godugunuri, Sivaprasad; Dara, Naveen; Sambasiva Nayak, R.; Nayeemuddin, Md; Singh, Yadu, Dr.; Veda, R. N. S. Sunil

    2017-08-01

    In recent, the SOC styles area unit the vast complicated styles in VLSI these SOC styles having important low-power operations problems, to comprehend this we tend to enforced low-power SRAM. However these SRAM Architectures critically affects the entire power of SOC and competitive space. To beat the higher than disadvantages, during this paper, a low-power differential SRAM design is planned. The differential SRAM design stores multiple bits within the same cell, operates at minimum in operation low-tension and space per bit. The differential SRAM design designed supported the 25-um technology using Tanner-EDA Tool.

  15. Flying spin-qubit gates implemented through Dresselhaus and Rashba spin-orbit couplings

    International Nuclear Information System (INIS)

    Gong, S.J.; Yang, Z.Q.

    2007-01-01

    A theoretical scheme is proposed to implement flying spin-qubit gates based on two semiconductor wires with Dresselhaus and Rashba spin-orbit couplings (SOCs), respectively. It is found that under the manipulation of the Dresselhaus/Rashba SOC, spin rotates around x/y axis in the three-dimensional spin space. By combining the two kinds of manipulations, i.e. connecting the two kinds of semiconductor wires in series, we obtain a universal set of losses flying single-qubit gates including Hadamard, phase, and π/8 gates. A ballistic switching effect of electronic flow is also found in the investigation. Our results may be useful in future spin or nanoscale electronics

  16. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Two-dimensional spin-orbit Dirac point in monolayer HfGeTe

    Science.gov (United States)

    Guan, Shan; Liu, Ying; Yu, Zhi-Ming; Wang, Shan-Shan; Yao, Yugui; Yang, Shengyuan A.

    2017-10-01

    Dirac points in two-dimensional (2D) materials have been a fascinating subject of research, with graphene as the most prominent example. However, the Dirac points in existing 2D materials, including graphene, are vulnerable against spin-orbit coupling (SOC). Here, based on first-principles calculations and theoretical analysis, we propose a new family of stable 2D materials, the HfGeTe-family monolayers, which host so-called spin-orbit Dirac points (SDPs) close to the Fermi level. These Dirac points are special in that they are formed only under significant SOC, hence they are intrinsically robust against SOC. We show that the existence of a pair of SDPs are dictated by the nonsymmorphic space group symmetry of the system, which are very robust under various types of lattice strains. The energy, the dispersion, and the valley occupation around the Dirac points can be effectively tuned by strain. We construct a low-energy effective model to characterize the Dirac fermions around the SDPs. Furthermore, we find that the material is simultaneously a 2D Z2 topological metal, which possesses nontrivial Z2 invariant in the bulk and spin-helical edge states on the boundary. From the calculated exfoliation energies and mechanical properties, we show that these materials can be readily obtained in experiment from the existing bulk materials. Our result reveals HfGeTe-family monolayers as a promising platform for exploring spin-orbit Dirac fermions and topological phases in two-dimensions.

  18. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    Science.gov (United States)

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  19. Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings.

    Science.gov (United States)

    Rybkin, Artem G; Rybkina, Anna A; Otrokov, Mikhail M; Vilkov, Oleg Yu; Klimovskikh, Ilya I; Petukhov, Anatoly E; Filianina, Maria V; Voroshnin, Vladimir Yu; Rusinov, Igor P; Ernst, Arthur; Arnau, Andrés; Chulkov, Evgueni V; Shikin, Alexander M

    2018-03-14

    A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.

  20. Application of Semi-analytical Satellite Theory orbit propagator to orbit determination for space object catalog maintenance

    Science.gov (United States)

    Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke

    2016-05-01

    Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.

  1. Space Facility for Orbital Remote Manufacturing (SPACEFORM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA need in continued cost efficient International Space Station (ISS) exploration FOMS Inc. proposes to develop and deploy Space Facility for Orbital...

  2. Noncommutative Phase Spaces by Coadjoint Orbits Method

    Directory of Open Access Journals (Sweden)

    Ancille Ngendakumana

    2011-12-01

    Full Text Available We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing. We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field.

  3. Optimal selection of Orbital Replacement Unit on-orbit spares - A Space Station system availability model

    Science.gov (United States)

    Schwaab, Douglas G.

    1991-01-01

    A mathematical programing model is presented to optimize the selection of Orbital Replacement Unit on-orbit spares for the Space Station. The model maximizes system availability under the constraints of logistics resupply-cargo weight and volume allocations.

  4. Spin-orbit coupling in ultracold Fermi gases of 173Yb atoms

    Science.gov (United States)

    Song, Bo; He, Chengdong; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Cai, Geyue; Amanov, Dovran; Zhang, Shanchao; Jo, Gyu-Boong

    2017-04-01

    Synthetic spin-orbit coupling (SOC) in cold atoms opens an intriguing new way to probe nontrivial topological orders beyond natural conditions. Here, we report the realization of the SOC physics both in a bulk system and in an optical lattice. First, we demonstrate two hallmarks induced from SOC in a bulk system, spin dephasing in the Rabi oscillation and asymmetric atomic distribution in the momentum space respectively. Then we describe the observation of non-trivial spin textures and the determination of the topological phase transition in a spin-dependent optical lattice dressed by the periodic Raman field. Furthermore, we discuss the quench dynamics between topological and trivial states by suddenly changing the band topology. Our work paves a new way to study non-equilibrium topological states in a controlled manner. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants).

  5. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    Science.gov (United States)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  6. Satellite orbits in Levi-Civita space

    Science.gov (United States)

    Humi, Mayer

    2018-03-01

    In this paper we consider satellite orbits in central force field with quadratic drag using two formalisms. The first using polar coordinates in which the satellite angular momentum plays a dominant role. The second is in Levi-Civita coordinates in which the energy plays a central role. We then merge these two formalisms by introducing polar coordinates in Levi-Civita space and derive a new equation for satellite orbits which unifies these two paradigms. In this equation energy and angular momentum appear on equal footing and thus characterize the orbit by its two invariants. Using this formalism we show that equatorial orbits around oblate spheroids can be expressed analytically in terms of Elliptic functions. In the second part of the paper we derive in Levi-Civita coordinates a linearized equation for the relative motion of two spacecrafts whose trajectories are in the same plane. We carry out also a numerical verification of these equations.

  7. Space Shuttle Orbiter Endeavour STS-47 Launch

    Science.gov (United States)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Orbiter Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke on September 12, 1992. The primary payload for the plarned seven-day flight was the Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  8. Options for Staging Orbits in Cis-Lunar Space

    Science.gov (United States)

    Martinez, Roland; Whitley, Ryan

    2016-01-01

    NASA has been studying options to conduct missions beyond Low Earth Orbit, but within the Earth-Moon system, in preparation for deep space exploration including human missions to Mars. Referred to as the Proving Ground, this arena of exploration activities will enable the development of human spaceflight systems and operations to satisfy future exploration objectives beyond the cis-lunar environment. One option being considered includes the deployment of a habitable element or elements, which could be used as a central location for aggregation of supplies and resources for human missions in cis-lunar space and beyond. Characterizing candidate orbit locations for this asset and the impacts on system design and mission operations is important in the overall assessment of the options being considered. The orbits described in this paper were initially selected by taking advantage of previous studies conducted by NASA and the work of other authors. In this paper orbits are assessed for their relative attractiveness based on various factors. A set of constraints related to the capability of the combined Orion and SLS system to deliver humans and cargo to and from the orbit are evaluated. Deployed assets intended to spend multiple years in the Proving Ground would ideally require minimal station keeping costs to reduce the mass budget allocated to this function. Additional mission design drivers include eclipse frequency, potential for uninterrupted communication with deployed assets, thermal, attitude control, communications, and other operational implications. Also the ability to support potential lunar surface activities and excursion missions beyond Earth-Moon space is considered. The results of the characterization and evaluation of the selected orbits indicate a Near Rectilinear Orbit (NRO) is an attractive candidate as an aggregation point or staging location for operations. In this paper, the NRO is further described in terms which balance a number of key

  9. Orbital tomography: Molecular band maps, momentum maps and the imaging of real space orbitals of adsorbed molecules

    Energy Technology Data Exchange (ETDEWEB)

    Offenbacher, Hannes; Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg, E-mail: georg.koller@uni-graz.at; Puschnig, Peter; Ramsey, Michael G., E-mail: michael.ramsey@uni-graz.at

    2015-10-01

    Highlights: • Orbital tomography within the plane wave final state approximation. • One electron orbital predictions versus angle resolved photoemission experiment. • Geometric and electronic structure of organic thin films elucidated by ARUPS. • Influence of molecular conformation and orientation on ARUPS. • Retrieval of sexiphenyl and pentacene orbitals in real space. - Abstract: The frontier orbitals of molecules are the prime determinants of their chemical, optical and electronic properties. Arguably, the most direct method of addressing the (filled) frontier orbitals is ultra-violet photoemission spectroscopy (UPS). Although UPS is a mature technique from the early 1970s on, the angular distribution of the photoemitted electrons was thought to be too complex to be analysed quantitatively. Recently angle resolved UPS (ARUPS) work on conjugated molecules both, in ordered thick films and chemisorbed monolayers, has shown that the angular (momentum) distribution of the photocurrent from orbital emissions can be simply understood. The approach, based on the assumption of a plane wave final state is becoming known as orbital tomography. Here we will demonstrate, with selected examples of pentacene (5A) and sexiphenyl (6P), the potential of orbital tomography. First it will be shown how the full angular distribution of the photocurrent (momentum map) from a specific orbital is related to the real space orbital by a Fourier transform. Examples of the reconstruction of 5A orbitals will be given and the procedure for recovering the lost phase information will be outlined. We then move to examples of sexiphenyl where we interrogate the original band maps of thick sexiphenyl in the light of our understanding of orbital tomography that has developed since then. With comparison to theoretical simulations of the molecular band maps, the molecular conformation and orientation will be concluded. New results for the sexiphenyl monolayer on Al(1 1 0) will then be

  10. The problem of space nuclear power sources collisions with artificial space objects in near-earth orbits

    International Nuclear Information System (INIS)

    Gafarov, A.A.

    1993-01-01

    Practically all space objects with onboard nuclear power sources stay in earth satellite orbits with an orbital lifetime long enough to reduce their radioactivity to levels presenting no danger for the Earth population. One of the reasons for orbit lifetime reduction can be collisions with other space objects in near-earth orbits. The possible consequence of collisions can be partial, or even complete, destruction of the spacecraft with an onboard nuclear power source; as well as delivery of additional impulse both to the spacecraft and its fragments. It is shown that collisions in orbit do not cause increase of radiation hazard for the Earth population if there is aerodynamic breakup of nuclear power sources into fragments of safe sizes during atmospheric reentry

  11. Phase-space curvature in spin-orbit-coupled ultracold atomic systems

    Science.gov (United States)

    Armaitis, J.; Ruseckas, J.; Anisimovas, E.

    2017-04-01

    We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.

  12. Phase-space distributions and orbital angular momentum

    Directory of Open Access Journals (Sweden)

    Pasquini B.

    2014-06-01

    Full Text Available We review the concept of Wigner distributions to describe the phase-space distributions of quarks in the nucleon, emphasizing the information encoded in these functions about the quark orbital angular momentum.

  13. Improved Space Object Orbit Determination Using CMOS Detectors

    Science.gov (United States)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario

  14. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  15. A step toward 'plug and play' robotics with SoC technology

    DEFF Research Database (Denmark)

    Sørensen, Anders Stengaard; Falsig, Simon; Ugilt, Rolf

    p, li { white-space: pre-wrap; } This article describe our progress toward simplifying and streamlining the low level systems integration of experimental robots, combining a System on Chip (SoC) approach with conventional modular approaches. The combined approach has increased flexibility, improved...... the embedded integration, and decreased the complexity of programming, compared to conventional modular approaches. We show the impact of the SoC approach in a simple demonstration and teaching model of a walking robot....

  16. Periodic orbits and TDHF phase space structure

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Yukio; Iwasawa, Kazuo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics; Tsukuma, Hidehiko; Sakata, Fumihiko

    1998-03-01

    The collective motion of atomic nuclei is closely coupled with the motion of nucleons, therefore, it is nonlinear, and the contents of the motion change largely with the increase of its amplitude. As the framework which describes the collective motion accompanied by the change of internal structure, time-dependent Hurtley Fock (TDHF) method is suitable. At present, the authors try to make the method for studying the large region structure in quantum system by utilizing the features of the TDHF phase space. The studies made so far are briefed. In this report, the correspondence of the large region patterns appearing in the band structure chart of three-level model with the periodic orbit group in the TDHF phase space is described. The Husimi function is made, and it possesses the information on the form of respective corresponding intrinsic state. The method of making the band structure chart is explained. There are three kinds of the tendency in the intrinsic state group. The E-T charts are made for the band structure charts to quantitatively express the large region tendency. The E-T chart and the T{sub r}-T chart are drawn for a selected characteristic orbit group. It became to be known that the large region properties of the quantum intrinsic state group of three-level model can be forecast by examining the properties of the periodic orbit group in the TDHF phase space. (K.I.)

  17. Cryogenic implications of orbit selection of the Space Infrared Telescope Facility (SIRTF)

    International Nuclear Information System (INIS)

    Lee, J.H.; Brooke, W.F.; Maa, S.

    1986-01-01

    The Infrared Astronomical Satellite (IRAS) which completed the first all sky survey in the infrared demonstrated the tremendous advantage of space-based infrared astronomy. The ability to cool the telescope optics and focal plane to liquid helium temperatures and the absence of atmospheric disturbances which cause ''seeing'' effects resulted in the discovery of 250,000 IR sources and many interesting phenomena including dust clouds around Vega and the infrared ''cirrus'' at 100 μm. To realize the true benefit of space infrared astronomy, NASA is now studying the Space Infrared Telescope Facility, a long-life space-based observatory, to follow up on the survey results of IRAS. The choice of orbits is a critical program decision. The objective of this paper is to compare the performance of an all superfluid helium SIRTF system in the two possible orbit inclinations, polar orbit (99 0 ) and the low inclination orbit (28.5 0 )

  18. Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling

    Directory of Open Access Journals (Sweden)

    Junwen Zheng

    2015-01-01

    Full Text Available Respiratory syncytial virus (RSV infection upregulates genes of the suppressor of cytokine signaling (SOCS family, which utilize a feedback loop to inhibit type I interferon dependent antiviral signaling pathway. Here, we reconstituted RSV nonstructural (NS protein expression plasmids (pNS1, pNS2, and pNS1/2 and tested whether NS1 or NS2 would trigger SOCS1 and SOCS3 protein expression. These NS proteins inhibited interferon- (IFN- α signaling through a mechanism involving the induction of SOCS1 and SOCS3, which appeared to be different from autocrine IFN dependent. NS1 induced both SOCS1 and SOCS3 upregulation, while NS2 only induced SOCS1 expression. The induced expression of SOCS1 and SOCS3 preceded endogenous IFN-signaling activation and inhibited the IFN-inducible antiviral response as well as chemokine induction. Treatments with INF-α and NS proteins both induced SOCS1 expression; however, they had opposing effects on IFN-α-dependent antiviral gene expression. Our results indicate that NS1 and NS2, which induce the expression of SOCS1 or SOCS3, might represent an independent pathway of stimulating endogenous IFN signaling.

  19. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  20. On the effects of solar storms to the decaying orbital space debris

    International Nuclear Information System (INIS)

    Herdiwijaya, Dhani; Rachman, Abdul

    2014-01-01

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force

  1. On the effects of solar storms to the decaying orbital space debris

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132 (Indonesia); Rachman, Abdul [Space Science Center, National Institute of Aeronautics and Space, Junjunan 133, Bandung 40173 (Indonesia)

    2014-03-24

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force.

  2. Magnetoshell Aerocapture for Manned Missions and Planetary Deep Space Orbiters

    Data.gov (United States)

    National Aeronautics and Space Administration — It is clear from past mission studies that a manned Mars mission, as well as deep space planetary orbiters will require aerobraking and aerocapture which use...

  3. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    Science.gov (United States)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  4. Crowded orbits conflict and cooperation in space

    CERN Document Server

    James

    2014-01-01

    Written for all readers, this expert analysis details the basics of space technology, diplomacy, commerce, exploration, and military applications from the mid-twentieth century to today. Space has become increasingly crowded since the end of the Cold War, and this book pays particular attention to the politics and economics of space and recent debates over national security, focusing on the competing themes of international competition and cooperation and the effort to avoid dangerous conflicts. Unfortunately, the growth of human space activity and challenges to existing international tools of management, such as rules, laws, and treaties, have increased the likelihood of conflict over a diminishing pool of space resources close to Earth. Drawing on more than twenty years of experience in international space debates and policy, James Clay Moltz points to the logic of cooperation and collaboration among the expanding number of space actors, considering their shared challenges regarding space traffic, orbital d...

  5. Area Students Get a Call from Orbiting Space Shuttle Discovery

    OpenAIRE

    Naval Postgraduate School Public Affairs Office

    2010-01-01

    More than 1,000 students, parents and members of the NPS community packed King Auditorium Saturday morning where they received a call from the Space Shuttle Discovery orbiting more than 200 miles into space — part of the NPS Centennial’s Education Downlink STS-131, Teaching from Space event.

  6. Spin polarization of tunneling current in barriers with spin-orbit coupling

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons

  7. Spin polarization of tunneling current in barriers with spin-orbit coupling.

    Science.gov (United States)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-03-19

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.

  8. SOCS proteins in development and disease

    Science.gov (United States)

    Trengove, Monique C; Ward, Alister C

    2013-01-01

    Cytokine and growth factor signaling mediates essential roles in the differentiation, proliferation, survival and function of a number of cell lineages. This is achieved via specific receptors located on the surface of target cells, with ligand binding activating key intracellular signal transduction cascades to mediate the requisite cellular outcome. Effective resolution of receptor signaling is also essential, with excessive signaling having the potential for pathological consequences. The Suppressor of cytokine signaling (SOCS) family of proteins represent one important mechanism to extinguish cytokine and growth factor receptor signaling. There are 8 SOCS proteins in mammals; SOCS1-7 and the alternatively named Cytokine-inducible SH2-containing protein (CISH). SOCS1-3 and CISH are predominantly associated with the regulation of cytokine receptor signaling, while SOCS4-7 are more commonly involved in the control of Receptor tyrosine kinase (RTK) signaling. Individual SOCS proteins are typically induced by specific cytokines and growth factors, thereby generating a negative feedback loop. As a consequence of their regulatory properties, SOCS proteins have important functions in development and homeostasis, with increasing recognition of their role in disease, particularly their tumor suppressor and anti-inflammatory functions. This review provides a synthesis of our current understanding of the SOCS family, with an emphasis on their immune and hematopoietic roles. PMID:23885323

  9. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-01-01

    Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  10. On the gauge orbit space stratification: a review

    International Nuclear Information System (INIS)

    Rudolph, G.; Schmidt, M.; Volobuev, I.P.

    2002-01-01

    First, we review the basic mathematical structures and results concerning the gauge orbit space stratification. This includes general properties of the gauge group action, fibre bundle structures induced by this action, basic properties of the stratification and the natural Riemannian structures of the strata. In the second part, we study the stratification for theories with gauge group SU(n) in spacetime dimension 4. We develop a general method for determining the orbit types and their partial ordering, based on the 1-1 correspondence between orbit types and holonomy-induced Howe subbundles of the underlying principal SU(n)-bundle. We show that the orbit types are classified by certain cohomology elements of spacetime satisfying two relations and that the partial ordering is characterized by a system of algebraic equations. Moreover, operations for generating direct successors and direct predecessors are formulated, which allow one to construct the set of orbit types, starting from the principal type. Finally, we discuss an application to nodal configurations in Yang-Mills-Chern-Simons theory. (author)

  11. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    Science.gov (United States)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal

  12. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    Science.gov (United States)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  13. Large-size space debris flyby in low earth orbits

    Science.gov (United States)

    Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.

    2017-09-01

    the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total

  14. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  15. An efficient method for hybrid density functional calculation with spin-orbit coupling

    Science.gov (United States)

    Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui

    2018-03-01

    In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.

  16. Cost-effective and robust mitigation of space debris in low earth orbit

    Science.gov (United States)

    Walker, R.; Martin, C.

    It is predicted that the space debris population in low Earth orbit (LEO) will continue to grow and in an exponential manner in the long-term due to an increasing rate of collisions between large objects, unless internationally-accepted space debris mitigation measures are adopted soon. Such measures are aimed at avoiding the future generation of space debris objects and primarily need to be effective in preventing significant long-term growth in the debris population, even in the potential scenario of an increase in future space activity. It is also important that mitigation measures can limit future debris population levels, and therefore the underlying collision risk to space missions, to the lowest extent possible. However, for their wide acceptance, the cost of implementation associated with mitigation measures needs to be minimised as far as possible. Generally, a lower collision risk will cost more to achieve and vice versa, so it is necessary to strike a balance between cost and risk in order to find a cost-effective set of mitigation measures. In this paper, clear criteria are established in order to assess the cost-effectiveness of space debris mitigation measures. A full cost-risk-benefit trade-off analysis of numerous mitigation scenarios is presented. These scenarios consider explosion prevention and post-mission disposal of space systems, including de-orbiting to limited lifetime orbits and re-orbiting above the LEO region. The ESA DELTA model is used to provide long-term debris environment projections for these scenarios as input to the benefit and risk parts of the trade-off analysis. Manoeuvre requirements for the different post-mission disposal scenarios were also calculated in order to define the cost-related element. A 25-year post-mission lifetime de-orbit policy, combined with explosion prevention and mission-related object limitation, was found to be the most cost-effective solution to the space debris problem in LEO. This package would also

  17. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing

    Science.gov (United States)

    Feng, Yi; Sanders, Andrew J.; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G.; Jiang, Wen G.

    2016-01-01

    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound-healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine-induced signalling in the chronic wound-healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds. PMID:27635428

  18. Comparison Study on the Battery SoC Estimation with EKF and UKF Algorithms

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2013-09-01

    Full Text Available The battery state of charge (SoC, whose estimation is one of the basic functions of battery management system (BMS, is a vital input parameter in the energy management and power distribution control of electric vehicles (EVs. In this paper, two methods based on an extended Kalman filter (EKF and unscented Kalman filter (UKF, respectively, are proposed to estimate the SoC of a lithium-ion battery used in EVs. The lithium-ion battery is modeled with the Thevenin model and the model parameters are identified based on experimental data and validated with the Beijing Driving Cycle. Then space equations used for SoC estimation are established. The SoC estimation results with EKF and UKF are compared in aspects of accuracy and convergence. It is concluded that the two algorithms both perform well, while the UKF algorithm is much better with a faster convergence ability and a higher accuracy.

  19. On the identification of substructure in phase space using orbital frequencies

    NARCIS (Netherlands)

    Gomez, Facundo A.; Helmi, Amina

    2010-01-01

    We study the evolution of satellite debris to establish the most suitable space to identify past merger events. We confirm that the space of orbital frequencies is very promising in this respect. In frequency space individual streams can be easily identified, and their separation provides a direct

  20. Orbital mechanics and astrodynamics techniques and tools for space missions

    CERN Document Server

    Hintz, Gerald R

    2015-01-01

    This textbook covers fundamental and advanced topics in orbital mechanics and astrodynamics to expose the student to the basic dynamics of space flight. The engineers and graduate students who read this class-tested text will be able to apply their knowledge to mission design and navigation of space missions. Through highlighting basic, analytic and computer-based methods for designing interplanetary and orbital trajectories, this text provides excellent insight into astronautical techniques and tools. This book is ideal for graduate students in Astronautical or Aerospace Engineering and related fields of study, researchers in space industrial and governmental research and development facilities, as well as researchers in astronautics. This book also: ·       Illustrates all key concepts with examples ·       Includes exercises for each chapter ·       Explains concepts and engineering tools a student or experienced engineer can apply to mission design and navigation of space missions ·�...

  1. SOCS2 and SOCS3 expression in ulcerative colitis and their correlation with inflammatory response and immune response

    Directory of Open Access Journals (Sweden)

    Le Huang1

    2017-05-01

    Full Text Available Objective: To study the correlation of SOCS2 and SOCS3 expression in ulcerative colitis tissue with inflammatory response and immune response. Methods: Ulcerative colitis lesions and normal mucosa from colonoscopic biopsy in Central Hospital of Zibo Mining Refco Group Ltd between May 2014 and July 2016 were selected and enrolled in UC group and control group respectively. RNA was extracted to determine mRNA expression of SOCS2 and SOCS3 as well as inflammatory response JAKs/STATs pathway molecules; protein was extracted to determine the contents of immune response cytokines. Results: SOCS2 mRNA expression in intestinal mucosa of UC group was not significantly different from that of control group, and SOCS3 mRNA expression was significantly lower than that of control group; JAK1, JAK2, JAK3, STAT1, STAT3 and STAT5 mRNA expression as well as IFN-γ and IL-17 protein contents in intestinal mucosa of UC group were significantly higher than those of control group while IL-4 and IL-10 protein contents were significantly lower than those of control group; JAK1, JAK2, JAK3, STAT1, STAT3 and STAT5 mRNA expression as well as IFN-γ and IL-17 protein contents in UC group of intestinal mucosa with low SOCS3 expression were significantly higher than those of intestinal mucosa with high SOCS3 expression while IL-4 and IL-10 protein contents were significantly lower than those of intestinal mucosa with high SOCS3 expression. Conclusion: Low expression of SOCS3 in ulcerative colitis can aggravate the inflammatory reaction and cause the imbalance of Th1/Th2 and Th17/Treg immune response.

  2. Resonant Orbital Dynamics in LEO Region: Space Debris in Focus

    Directory of Open Access Journals (Sweden)

    J. C. Sampaio

    2014-01-01

    Full Text Available The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  3. Vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates: Effects of the Rashba-Dresselhaus coupling and Zeeman splitting.

    Science.gov (United States)

    Sakaguchi, Hidetsugu; Sherman, E Ya; Malomed, Boris A

    2016-09-01

    We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by ∼1.5×10^{4}. The results are obtained by means of combined analytical and numerical methods.

  4. Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables

    Science.gov (United States)

    Johnson, D. W.; Curry, D. M.; Kelly, R. E.

    1986-01-01

    Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.

  5. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  6. Specialized Finite Set Statistics (FISST)-Based Estimation Methods to Enhance Space Situational Awareness in Medium Earth Orbit (MEO) and Geostationary Earth Orbit (GEO)

    Science.gov (United States)

    2016-08-17

    Specialized Finite Set Statistics (FISST)-based Estimation Methods to Enhance Space Situational Awareness in Medium Earth Orbit (MEO) and Geostationary...terms of specialized Geostationary Earth Orbit (GEO) elements to estimate the state of resident space objects in the geostationary regime. Justification...AFRL-RV-PS- AFRL-RV-PS- TR-2016-0114 TR-2016-0114 SPECIALIZED FINITE SET STATISTICS (FISST)- BASED ESTIMATION METHODS TO ENHANCE SPACE SITUATIONAL

  7. The role of spin-orbit coupling in the photolysis of methylcobalamin

    Energy Technology Data Exchange (ETDEWEB)

    Andruniów, Tadeusz [Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Lodowski, Piotr; Jaworska, Maria [Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice (Poland); Garabato, Brady D. [Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 (United States); Kozlowski, Pawel M., E-mail: pawel@louisville.edu [Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 (United States); Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk (Poland)

    2016-03-28

    The photolysis of the methylcobalamin cofactor (MeCbl) in its base-off form was investigated by considering the extent of spin-orbit coupling (SOC). Triplet Co–C photodissociation pathways previously invoked at the density functional theory level using Landau-Zener theory were further validated with ab initio calculations that combine SOC based on multi-state second order perturbation theory. It was determined that SOC is feasible between singlet and triplet states at elongated Co–C distances, leading to photodissociation from the state having dominant σ(d{sub z}{sup 2}) character, by either direct coupling with the lowest singlet states or by crossing with SOC mixed triplets.

  8. Use of libration-point orbits for space observatories

    Science.gov (United States)

    Farquhar, Robert W.; Dunham, David W.

    1990-01-01

    The sun-earth libration points, L1 and L2, are located 1.5 million kilometers from the earth toward and away from the sun. Halo orbits about these points have significant advantages for space observatories in terms of viewing geometry, thermal and radiation environment, and delta-V expediture.

  9. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  10. Universal relations of an ultracold Fermi gas with arbitrary spin-orbit coupling

    Science.gov (United States)

    Jie, Jianwen; Qi, Ran; Zhang, Peng

    2018-05-01

    We derive the universal relations for an ultracold two-component Fermi gas with a spin-orbit coupling (SOC) ∑α,β =x ,y ,zλα βσαpβ , where px ,y ,z and σx ,y ,z are the single-atom momentum and Pauli operators for pseudospin, respectively, and the SOC intensity λα β could take an arbitrary value. We consider the system with an s -wave short-range interspecies interaction, and ignore the SOC-induced modification for the value of the scattering length. Using the first-quantized approach developed by Tan [S. Tan, Phys. Rev. Lett. 107, 145302 (2011), 10.1103/PhysRevLett.107.145302], we obtain the short-range and high-momentum expansions for the one-body real-space correlation function and momentum distribution function, respectively. For our system these functions are a 2 ×2 matrix in the pseudospin basis. We find that the leading-order (1 /k4 ) behavior of the diagonal elements of the momentum distribution function, i.e., n↑↑(k ) and n↓↓(k ) , are not modified by the SOC. However, the SOC can significantly modify the large-k behaviors of the distribution difference δ n (k ) ≡n↑↑(k ) -n↓↓(k ) as well as the nondiagonal elements of the momentum distribution function, i.e., n↑↓(k ) and n↓↑(k ) . In the absence of the SOC, the leading order of δ n (k ) , n↑↓(k ) , and n↓↑(k ) is O (1 /k6) . When SOC appears, it can induce a term on the order of 1 /k5 for these elements. We further derive the adiabatic relation and the energy functional. Our results show that the SOC can induce an additional term in the energy functional, which describes the contribution from the SOC to the total energy. In addition, the form of the adiabatic relation for our system is not modified by the SOC. Our results are applicable for the systems with any type of single-atom trapping potential, which could be either diagonal or nondiagonal in the pseudospin basis.

  11. Asymmetric Landau bands due to spin–orbit coupling

    International Nuclear Information System (INIS)

    Erlingsson, Sigurdur I; Manolescu, Andrei; Marinescu, D C

    2015-01-01

    We show that the Landau bands obtained in a two-dimensional lateral semiconductor superlattice with spin–orbit coupling (SOC) of the Rashba/Dresselhaus type, linear in the electron momentum, placed in a tilted magnetic field, do not follow the symmetry of the spatial modulation. Moreover, this phenomenology is found to depend on the relative tilt of magnetic field and on the SOC type: (a) when only Rashba SOC exists and the magnetic field is tilted in the direction of the superlattice (b) Dresselhaus SOC exists and the magnetic field is tilted in the direction perpendicular to the superlattice. Consequently, measurable properties of the modulated system become anisotropic in a tilted magnetic field when the field is conically rotated around the z axis, at a fixed polar angle, as we demonstrate by calculating the resistivity and the magnetization. (paper)

  12. EXPRESSION OF SOCS3 AND SOCS5 MRNAS IN PERIPHERAL BLOOD MONONUCLEARS FROM THE PATIENTS WITH BRONCHIAL ASTHMA

    Directory of Open Access Journals (Sweden)

    V. V. Lim

    2014-01-01

    Full Text Available We observed sixty patients with allergic bronchial asthma (ABA and 54 with non-allergic bronchial asthma (NABA. Quantitative SOCS3 and SOCS5 mRNA expression was evaluated by means of real-time PCR. Eighteen healthy persons served as a control group. In patients with bronchial asthma (irrespectively of pathogenetic form, a significant increase of SOCS3 transcription factor expression was detected in peripheral blood mononuclears, as compared with control group. This increase was more pronounced in NABA group. The mRNA SOCS5 level was significantly decreased in bronchial asthma patients, as compared to control group, especially, in ABA subgroup rather than in NABA patients. Thus, an increased expression of SOCS3 mRNA in BA patients could be regarded as a protective antiinflammatory response Decrease of SOCS5 mRNA expression in patients with bronchial asthma (being more pronounced in ABA, may be indicative for a deficiency in negative feedback regulation of gene transcription in allergic bronchial asthma.

  13. Thermal Analysis of MIRIS Space Observation Camera for Verification of Passive Cooling

    Directory of Open Access Journals (Sweden)

    Duk-Hang Lee

    2012-09-01

    Full Text Available We conducted thermal analyses and cooling tests of the space observation camera (SOC of the multi-purpose infrared imaging system (MIRIS to verify passive cooling. The thermal analyses were conducted with NX 7.0 TMG for two cases of attitude of the MIRIS: for the worst hot case and normal case. Through the thermal analyses of the flight model, it was found that even in the worst case the telescope could be cooled to less than 206°K. This is similar to the results of the passive cooling test (~200.2°K. For the normal attitude case of the analysis, on the other hand, the SOC telescope was cooled to about 160°K in 10 days. Based on the results of these analyses and the test, it was determined that the telescope of the MIRIS SOC could be successfully cooled to below 200°K with passive cooling. The SOC is, therefore, expected to have optimal performance under cooled conditions in orbit.

  14. Dynamics and design of space nets for orbital capture

    CERN Document Server

    Yang, Leping; Zhen, Ming; Liu, Haitao

    2017-01-01

    This book covers the topics of theoretical principles, dynamics model and algorithm, mission analysis, system design and experimental studies of space nets system, aiming to provide an initial framework in this field and serve as a ready reference for those interested. Space nets system represents a forefront field in future development of aerospace technologies. However, it involves new challenges and problems such as nonlinear and distorted nets structure, complex rigid flexible coupling dynamics, orbital transfer of space flexible composite and dynamics control. Currently, no comprehensive books on space nets dynamics and design are available, so potential readers can get to know the working mechanism, dynamics elements, and mission design of the space nets system from a Chinese perspective.

  15. Mapping the variation of soil organic carbon (SOC) stock in time and space in Sicily, an extremely variable semi-arid Mediterranean region, highlighted that C was lost in area rich in organic C and gained in poor-C areas

    Science.gov (United States)

    Schillaci, Calogero; Acutis, Marco; Lombardo, Luigi; Lipani, Aldo; Fantappiè, Maria; Märker, Michael; Saia, Sergio

    2017-04-01

    The stock of organic carbon in the soil (SOC) is an indicator of soil ability to support agro-ecosystems productivity and resilience to environmental changes (Schillaci et al. 2016; 2017). In addition, SOC stock change through space and especially time is a valuable indicator of the soil ability to sequester CO2 from the atmosphere and thus its potential to reduce the greenhouse gas effect. In the present work, we mapped (1-km resolution) the space-time variation of the SOC stock after 15 years (1993 to 2008) in a semi-arid Mediterranean area (25,286 km2) after modelling SOC concentration (0-0.4 m depth) with boosted regression trees (BRT) and computing the SOC stock after the application of the bulk density maps of ISRIC (soilgrid.com, Hengl et al., 2014). The area under study (Sicily, south of Italy) has a plenty of contrasting environments, with changing ecosystems, soils, and microclimatic regions. The BRT procedure was run with a set of 25 predictors per year, including land use, soil traits, morphometric indicators and remote sensing covariates (derived from Landsat5 data). The BRT output consisted of a high pseudo-R2(=0.71 for 1993 and 0.63 for 2008) of the SOC concentration, low uncertainty (standard deviation doi:10.1016/j.geoderma.2016.10.

  16. Space Station Freedom assembly and operation at a 51.6 degree inclination orbit

    Science.gov (United States)

    Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.

    1993-01-01

    This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.

  17. PODAAC-SMP20-2SOCS

    Data.gov (United States)

    National Aeronautics and Space Administration — The version 2.0 SMAP-SSS, level 2C product contains the first release of the validated sea surface salinity orbital/swath data from the NASA Soil Moisture Active...

  18. Space Weather Impacts to Conjunction Assessment: A NASA Robotic Orbital Safety Perspective

    Science.gov (United States)

    Ghrist, Richard; Ghrist, Richard; DeHart, Russel; Newman, Lauri

    2013-01-01

    National Aeronautics and Space Administration (NASA) recognizes the risk of on-orbit collisions from other satellites and debris objects and has instituted a process to identify and react to close approaches. The charter of the NASA Robotic Conjunction Assessment Risk Analysis (CARA) task is to protect NASA robotic (unmanned) assets from threats posed by other space objects. Monitoring for potential collisions requires formulating close-approach predictions a week or more in the future to determine analyze, and respond to orbital conjunction events of interest. These predictions require propagation of the latest state vector and covariance assuming a predicted atmospheric density and ballistic coefficient. Any differences between the predicted drag used for propagation and the actual drag experienced by the space objects can potentially affect the conjunction event. Therefore, the space environment itself, in particular how space weather impacts atmospheric drag, is an essential element to understand in order effectively to assess the risk of conjunction events. The focus of this research is to develop a better understanding of the impact of space weather on conjunction assessment activities: both accurately determining the current risk and assessing how that risk may change under dynamic space weather conditions. We are engaged in a data-- ]mining exercise to corroborate whether or not observed changes in a conjunction event's dynamics appear consistent with space weather changes and are interested in developing a framework to respond appropriately to uncertainty in predicted space weather. In particular, we use historical conjunction event data products to search for dynamical effects on satellite orbits from changing atmospheric drag. Increased drag is expected to lower the satellite specific energy and will result in the satellite's being 'later' than expected, which can affect satellite conjunctions in a number of ways depending on the two satellites' orbits

  19. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    Science.gov (United States)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  20. Thermal stresses in the space shuttle orbiter: Analysis versus test

    International Nuclear Information System (INIS)

    Grooms, H.R.; Gibson, W.F. Jr.; Benson, P.L.

    1984-01-01

    Significant temperature differences occur between the internal structure and the outer skin of the Space Shuttle Orbiter as it returns from space. These temperature differences cause important thermal stresses. A finite element model containing thousands of degrees of freedom is used to predict these stresses. A ground test was performed to verify the prediction method. The analysis and test results compare favorably. (orig.)

  1. Tuning Rashba spin-orbit coupling in homogeneous semiconductor nanowires

    Science.gov (United States)

    Wójcik, Paweł; Bertoni, Andrea; Goldoni, Guido

    2018-04-01

    We use k .p theory to estimate the Rashba spin-orbit coupling (SOC) in large semiconductor nanowires. We specifically investigate GaAs- and InSb-based devices with different gate configurations to control symmetry and localization of the electron charge density. We explore gate-controlled SOC for wires of different size and doping, and we show that in high carrier density SOC has a nonlinear electric field susceptibility, due to large reshaping of the quantum states. We analyze recent experiments with InSb nanowires in light of our calculations. Good agreement is found with the SOC coefficients reported in Phys. Rev. B 91, 201413(R) (2015), 10.1103/PhysRevB.91.201413, but not with the much larger values reported in Nat. Commun. 8, 478 (2017), 10.1038/s41467-017-00315-y. We discuss possible origins of this discrepancy.

  2. Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses

    Directory of Open Access Journals (Sweden)

    Bingbing Zhang

    2017-03-01

    Full Text Available Swarm is a European Space Agency (ESA project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1–25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD of 10−2 mm/s in radial (R, along-track (T and cross-track (N directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD. During high ionospheric activity, the mean Root Mean Square (RMS of Swarm GPS phase residuals is at 9–11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2–4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2–4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery.

  3. Lunar base mission technology issues and orbital demonstration requirements on space station

    Science.gov (United States)

    Llewellyn, Charles P.; Weidman, Deene J.

    1992-01-01

    The International Space Station has been the object of considerable design, redesign, and alteration since it was originally proposed in early 1984. In the intervening years the station has slowly evolved to a specific design that was thoroughly reviewed by a large agency-wide Critical Evaluation Task Force (CETF). As space station designs continue to evolve, studies must be conducted to determine the suitability of the current design for some of the primary purposes for which the station will be used. This paper concentrates on the technology requirements and issues, the on-orbit demonstration and verification program, and the space station focused support required prior to the establishment of a permanently manned lunar base as identified in the National Commission on Space report. Technology issues associated with the on-orbit assembly and processing of the lunar vehicle flight elements are also discussed.

  4. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    Energy Technology Data Exchange (ETDEWEB)

    Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)

    2015-07-28

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.

  5. To orbit and back again how the space shuttle flew in space

    CERN Document Server

    Sivolella, Davide

    2014-01-01

    The question may be simple, but the answer is not as easy to give. This book describes the structures and systems used each time the Shuttle was launched, and then follows an imaginary mission, explaining how those structures and systems were used in orbital operations and the return to Earth. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. Highly illustrated with many diagrams, photographs and technical drawings, To Orbit and Back Again • focuses on the engineering aspects of the Shuttle • describes the systems and subsystems in clear, non-technical terms • brings to the fore the design work behind the Space Shuttle and the mission itself.    .

  6. Sapphire: Canada's Answer to Space-Based Surveillance of Orbital Objects

    Science.gov (United States)

    Maskell, P.; Oram, L.

    The Canadian Department of National Defence is in the process of developing the Canadian Space Surveillance System (CSSS) as the main focus of the Surveillance of Space (SofS) Project. The CSSS consists of two major elements: the Sapphire System and the Sensor System Operations Centre (SSOC). The space segment of the Sapphire System is comprised of the Sapphire Satellite - an autonomous spacecraft with an electro-optical payload which will act as a contributing sensor to the United States (US) Space Surveillance Network (SSN). It will operate in a circular, sunsynchronous orbit at an altitude of approximately 750 kilometers and image a minimum of 360 space objects daily in orbits ranging from 6,000 to 40,000 kilometers in altitude. The ground segment of the Sapphire System is composed of a Spacecraft Control Center (SCC), a Satellite Processing and Scheduling Facility (SPSF), and the Sapphire Simulator. The SPSF will be responsible for data transmission, reception, and processing while the SCC will serve to control and monitor the Sapphire Satellite. Surveillance data will be received from Sapphire through two ground stations. Following processing by the SPSF, the surveillance data will then be forwarded to the SSOC. The SSOC will function as the interface between the Sapphire System and the US Joint Space Operations Center (JSpOC). The JSpOC coordinates input from various sensors around the world, all of which are a part of the SSN. The SSOC will task the Sapphire System daily and provide surveillance data to the JSpOC for correlation with data from other SSN sensors. This will include orbital parameters required to predict future positions of objects to be tracked. The SSOC receives daily tasking instructions from the JSpOC to determine which objects the Sapphire spacecraft is required to observe. The advantage of this space-based sensor over ground-based telescopes is that weather and time of day are not factors affecting observation. Thus, space-based optical

  7. Circular Orbit Target Capture Using Space Tether-Net System

    Directory of Open Access Journals (Sweden)

    Guang Zhai

    2013-01-01

    Full Text Available The space tether-net system for on-orbit capture is proposed in this paper. In order to research the dynamic behaviors during system deployment, both free and nonfree deployment dynamics in circular orbit are developed; the system motion with respect to Local Vertical and Local Horizontal frame is also researched with analysis and simulation. The results show that in the case of free deployment, the capture net follows curve trajectories due to the relative orbit dynamic perturbation, and the initial deployment velocities are planned by state transformation equations for static and floating target captures; in the case of non-free deployment, the system undergoes an altitude libration along the Local Vertical, and the analytical solutions that describe the attitude libration are obtained by using variable separation and integration. Finally, the dynamics of postdeployment system is also proved marginally stable if the critical initial conditions are satisfied.

  8. The Lunar Space Tug: A sustainable bridge between low Earth orbits and the Cislunar Habitat

    Science.gov (United States)

    Mammarella, M.; Paissoni, C. A.; Viola, N.; Denaro, A.; Gargioli, E.; Massobrio, F.

    2017-09-01

    The International Space Station is the first space human outpost and over the last 15 years, it has represented a peculiar environment where science, technology and human innovation converge together in a unique microgravity and space research laboratory. With the International Space Station entering the second part of its life and its operations running steadily at nominal pace, the global space community is starting planning how the human exploration could move further, beyond Low-Earth-Orbit. According to the Global Exploration Roadmap, the Moon represents the next feasible path-way for advances in human exploration towards the nal goal, Mars. Based on the experience of the ISS, one of the most widespread ideas is to develop a Cislunar Station in preparation of long duration missions in a deep space environment. Cislunar space is de ned as the area of deep space under the influence of Earth-Moon system, including a set of special orbits, e.g. Earth-Moon Libration points and Lunar Retrograde Orbit. This habitat represents a suitable environment for demonstrating and testing technologies and capabilities in deep space. In order to achieve this goal, there are several crucial systems and technologies, in particular related to transportation and launch systems. The Orion Multi-Purpose Crew Vehicle is a reusable transportation capsule designed to provide crew transportation in deep space missions, whereas NASA is developing the Space Launch System, the most powerful rocket ever built, which could provide the necessary heavy-lift launch capability to support the same kind of missions. These innovations would allow quite-fast transfers from Earth to the Cislunar Station and vice versa, both for manned and unmanned missions. However, taking into account the whole Concept of Operations for both the growth and sustainability of the Cislunar Space Station, the Lunar Space Tug can be considered as an additional, new and fundamental element for the mission architecture. The

  9. Fermionic Hubbard model with Rashba or Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-06-01

    In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground (Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by the spin wave expansion up to order 1/{S}2. In some SOC parameter regimes, the Y-y state supports a massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms are discussed.

  10. Space radiation dosimetry in low-Earth orbit and beyond

    International Nuclear Information System (INIS)

    Benton, E.R.; Benton, E.V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars

  11. LauncherOne: Virgin Orbit's Dedicated Launch Vehicle for Small Satellites & Impact to the Space Enterprise Vision

    Science.gov (United States)

    Vaughn, M.; Kwong, J.; Pomerantz, W.

    Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.

  12. Assessing soil carbon stocks under pastures through orbital remote sensing

    Directory of Open Access Journals (Sweden)

    Gabor Gyula Julius Szakács

    2011-10-01

    Full Text Available The growing demand of world food and energy supply increases the threat of global warming due to higher greenhouse gas emissions by agricultural activity. Therefore, it is widely admitted that agriculture must establish a new paradigm in terms of environmental sustainability that incorporate techniques for mitigation of greenhouse gas emissions. This article addresses to the scientific demand to estimate in a fast and inexpensive manner current and potential soil organic carbon (SOC stocks in degraded pastures, using remote sensing techniques. Four pastures on sandy soils under Brazilian Cerrado vegetation in São Paulo state were chosen due to their SOC sequestration potential, which was characterized for the soil depth 0-50 cm. Subsequently, a linear regression analysis was performed between SOC and Leaf Area Index (LAI measured in the field (LAIfield and derived by satellite (LAIsatellite as well as SOC and pasture reflectance in six spectra from 450 nm - 2350 nm, using the Enhanced Thematic Mapper (ETM+ sensor of satellite Landsat 7. A high correlation between SOC and LAIfield (R² = 0.9804 and LAIsatellite (R² = 0.9812 was verified. The suitability of satellite derived LAI for SOC determination leads to the assumption, that orbital remote sensing is a very promising SOC estimation technique from regional to global scale.

  13. Space environment effects on polymers in low earth orbit

    International Nuclear Information System (INIS)

    Grossman, E.; Gouzman, I.

    2003-01-01

    Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment

  14. Spin-orbit-coupling induced torque in ballistic domain walls: Equivalence of charge-pumping and nonequilibrium magnetization formalisms

    NARCIS (Netherlands)

    Yuan, Z.; Kelly, Paul J.

    2016-01-01

    To study the effect of spin-orbit coupling (SOC) on spin-transfer torque in magnetic materials, we have implemented two theoretical formalisms that can accommodate SOC. Using the “charge-pumping” formalism, we find two contributions to the out-of-plane spin-transfer torque parameter β in ballistic

  15. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam

    2017-05-11

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  16. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam; McNellis, Erik R.; Nielsen, Christian B.; Chen, Hung-Yang; Watanabe, Shun; Tanaka, Hisaaki; McCulloch, Iain; Takimiya, Kazuo; Sinova, Jairo; Sirringhaus, Henning

    2017-01-01

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  17. A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC Estimation for LNMCO Battery

    Directory of Open Access Journals (Sweden)

    Caiping Zhang

    2016-11-01

    Full Text Available A state-of-charge (SOC versus open-circuit-voltage (OCV model developed for batteries should preferably be simple, especially for real-time SOC estimation. It should also be capable of representing different types of lithium-ion batteries (LIBs, regardless of temperature change and battery degradation. It must therefore be generic, robust and adaptive, in addition to being accurate. These challenges have now been addressed by proposing a generalized SOC-OCV model for representing a few most widely used LIBs. The model is developed from analyzing electrochemical processes of the LIBs, before arriving at the sum of a logarithmic, a linear and an exponential function with six parameters. Values for these parameters are determined by a nonlinear estimation algorithm, which progressively shows that only four parameters need to be updated in real time. The remaining two parameters can be kept constant, regardless of temperature change and aging. Fitting errors demonstrated with different types of LIBs have been found to be within 0.5%. The proposed model is thus accurate, and can be flexibly applied to different LIBs, as verified by hardware-in-the-loop simulation designed for real-time SOC estimation.

  18. Non-equilibrium study of spin wave interference in systems with both Rashba and Dresselhaus (001) spin-orbit coupling

    International Nuclear Information System (INIS)

    Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien

    2014-01-01

    We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern

  19. SOCS-1 deficiency does not prevent diet-induced insulin resistance

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Macotela, Yazmin; Boucher, Jérémie

    2008-01-01

    Obesity is associated with inflammation and increased expression of suppressor of cytokine signaling (SOCS) proteins, which inhibit cytokine and insulin signaling. Thus, reducing SOCS expression could prevent the development of obesity-induced insulin resistance. Using SOCS-1 knockout mice, we...... investigated the contribution of SOCS-1 in the development of insulin resistance induced by a high-fat diet (HFD). SOCS-1 knockout mice on HFD gained 70% more weight, displayed a 2.3-fold increase in epididymal fat pads mass and increased hepatic lipid content. This was accompanied by increased mRNA expression...... of leptin and the macrophage marker CD68 in white adipose tissue and of SREBP1c and FAS in liver. HFD also induced hyperglycemia in SOCS-1 deficient mice with impairment of glucose and insulin tolerance tests. Thus, despite the role of SOCS proteins in obesity-related insulin resistance, SOCS-1 deficiency...

  20. Quantum pump in a system with both Rashba and Dresselhaus spin–orbit couplings

    International Nuclear Information System (INIS)

    Xiao, Yun-Chang; Deng, Wei-Yin; Deng, Wen-Ji; Zhu, Rui; Wang, Rui-Qiang

    2013-01-01

    We investigate the adiabatic quantum pump phenomena in a semiconductor with Rashba and Dresselhaus spin–orbit couplings (SOCs). Although it is driven by applying spin-independent potentials, the system can pump out spin-dependent currents, i.e., generate nonzero charge and spin currents at the same time. The SOC can modulate both the magnitude and the direction of currents, exhibiting an oscillating behavior. Moreover, it is shown that the spin current has different sensitivities to two types of the SOC. These results provide an alternative method to adjust pumped current and might be helpful for designing spin pumping devices.

  1. Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle

    Science.gov (United States)

    Hale, N. Wayne (Editor); Lulla, Kamlesh (Editor); Lane, Helen W. (Editor); Chapline, Gail (Editor)

    2010-01-01

    This Space Shuttle book project reviews Wings In Orbit-scientific and engineering legacies of the Space Shuttle. The contents include: 1) Magnificent Flying Machine-A Cathedral to Technology; 2) The Historical Legacy; 3) The Shuttle and its Operations; 4) Engineering Innovations; 5) Major Scientific Discoveries; 6) Social, Cultural, and Educational Legacies; 7) Commercial Aerospace Industries and Spin-offs; and 8) The Shuttle continuum, Role of Human Spaceflight.

  2. Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata

    International Nuclear Information System (INIS)

    Sartori, G; Valente, G

    2003-01-01

    Functions which are equivariant or invariant under the transformations of a compact linear group G acting in a Euclidean space R n , can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the G-orbits with the same orbit-type. In this paper, we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry-adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown

  3. Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, G; Valente, G [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy)

    2003-02-21

    Functions which are equivariant or invariant under the transformations of a compact linear group G acting in a Euclidean space R{sup n}, can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the G-orbits with the same orbit-type. In this paper, we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry-adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown.

  4. TARGETED ANALYSIS OF JAK-STAT-SOCS GENES IN DAIRY CATTLE

    Directory of Open Access Journals (Sweden)

    Arun Sondur Jayappa

    2015-12-01

    Full Text Available The Janus kinase and signal transducer and activator of transcription (JAK-STAT pathway genes along with suppressors of cytokine signalling (SOCS family genes play a crucial role in controlling cytokine signals in the mammary gland and thus mammary gland development. Mammary gene expression studies showed differential expression patterns for all the JAK-STAT pathway genes. Gene expression studies using qRT-PCR revealed differential expression of SOCS2, SOCS4 and SOCS5 genes across the lactation cycle in dairy cows. Using genotypes from 1,546 Australian Holstein- Friesian bulls, a statistical model based on SNPs within 500kb of JAK-STAT pathway genes, and SOCS genes alone was carried out. The analysis suggested that these genes and pathways make a significant contribution to the Australian milk production traits. Selection of 24 SNPs close to SOCS1, SOCS3, SOCS5, SOCS7 and CISH genes were significantly associated with, Australian Profit Ranking (APR, Australian Selection Index (ASI and protein yield (PY. This study supports the view that there may be some merit in choosing SNPs around functionally relevant genes for the selection and genetic improvement schemes for dairy production traits.

  5. The coadjoint orbit spaces of Diff(S1) and Teichmueller spaces

    International Nuclear Information System (INIS)

    Nag, S.; Verjovsky, A.

    1989-09-01

    Precisely two of the homogeneous spaces that appear as coadjoint orbits of the group of string reparametrizations (Diff (S 1 )) carry in a natural way the structure of infinite dimensional, holomorphically homogeneous complex analytic Kaehler manifolds. These are N = Diff (S 1 )/Rot (S 1 ) and M = Diff (S 1 )/Moeb (S 1 ). Note that N is a holomorphic disc fiber space over M. Now, M can be naturally considered as embedded in the classical universal Teichmueller space T(1), simply by noting that a diffeomorphism of S 1 is a quasisymmetric homeomorphism. T(1) is itself a homomorphically homogeneous complex Banach manifold. We prove in the first part of the paper that the inclusion of M in T(1) is complex analytic. In the latter portion of this paper it is shown that the unique homogeneous Kaehler metric carried by M = Diff (S 1 )/SL(2, R) induces precisely the Weil-Petersson metric on the Teichmueller space. This is via our identification of M as a holomorphic submanifold of universal Teichmueller space. Now recall that every Teichmueller space T(G) of finite or infinite dimension is contained canonically and holomorphically within T(1). Our computations allow us also to prove that every T(G), G any infinite Fuchsian group, projects out of M transversely. This last assertion is related to the ''fractal'' nature of G-invariant quasicircles, and to Mostow rigidity on the line. Our results thus connect the loop space approach to bosonic string theory with the sumover moduli (Polyakov path integral) approach. (author). 21 refs

  6. Space tourism: from earth orbit to the moon

    Science.gov (United States)

    Collins, P.

    Travel to and from the lunar surface has been known to be feasible since it was first achieved 34 years ago. Since that time there has been enormous progress in related engineering fields such as rocket propulsion, materials and avionics, and about 1 billion has been spent on lunar science and engineering research. Consequently there are no fundamental technical problems facing the development of lunar tourism - only business and investment problems. The outstanding problem is to reduce the cost of launch to low Earth orbit. Recently there has been major progress towards overturning the myth that launch costs are high because of physical limits. Several "X Prize" competitor vehicles currently in test-flight are expected to be able to perform sub-orbital flights at approximately 1/1,000 of the cost of Alan Shepard's similar flight in 1961. This activity could have started 30 years ago if space agencies had had economic rather than political objectives. A further encouraging factor is that the demand for space tourism seems potentially limitless. Starting with sub-orbital flights and growing through orbital activities, travel to the Moon will offer further unique attractions. In every human culture there is immense interest in the Moon arising from millennia of myths. In addition, bird-like flying sports, first described by Robert Heinlein, will become another powerful demand factor. Roundtrips of 1 to 2 weeks are very convenient for travel companies; and the radiation environment will permit visitors several days of surface activity without significant health risks. The paper also discusses economic aspects of lunar tourism, including the benefits it will have for those on Earth. Lunar economic development based on tourism will have much in common with economic development on Earth based on tourism: starting from the fact that many people spontaneously wish to visit popular places, companies in the tourism industry invest to sell a growing range of services to ever

  7. Settling-velocity specific SOC distribution on hillslopes

    DEFF Research Database (Denmark)

    Hu, Yaxian; Berhe, Asmeret Asefaw; Fogel, Marilyn L.

    The net effect of soil erosion by water, as a sink or source of atmospheric CO2, is determined by the spatial (re-)distribution and stability of eroded soil organic carbon (SOC). The depositional position of eroded SOC is a function of the transport distances of soil fractions where the SOC...... fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples were fractionated into five settling classes using a settling tube apparatus. The spatial distribution of soil settling classes...... shows a coarsening effect immediately below the eroding slope, followed by a fining trend at the slope tail. The 13C values of soil fractions were more positive at the footslope than on the slope shoulder or at the slope tail, suggesting enhanced decomposition rate of fresh SOC input at the footslope...

  8. Nuclear space power systems for orbit raising and maneuvering

    International Nuclear Information System (INIS)

    Buden, D.; Sullivan, J.A.

    1984-01-01

    Reference is made to recent studies which have shown that direct thrust nuclear rockets for routine orbit raising and near-earth space tug missions are probably not cost-effective. The need for additional trade-off studies and comparisons of direct-thrust nuclear systems with chemical systems to clarify the role of nuclear rockets in missions requiring rapid orbit maneuvering is stressed. Attention is confined here to nuclear electric propulsion considerations. Low-mass nuclear power plants are constructed to optimize nuclear electric propulsion systems. Electric power levels from 100 kilowatts to as much as several megawatts are desirable. The goals for the power plant specific mass are 20-30 kg/kW at the lower powers to 2-4 kg/kW at the higher powers

  9. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  10. Superintegrability on curved spaces, orbits and momentum hodographs: revisiting a classical result by Hamilton

    International Nuclear Information System (INIS)

    Carinena, Jose F; Ranada, Manuel F; Santander, Mariano

    2007-01-01

    The equation of the orbits (in the configuration space) and of the hodographs (in the 'momentum' plane) for the 'curved' Kepler and harmonic oscillator systems, living in a configuration space of any constant curvature and either signature type, are derived by purely algebraic means. This result extends to the 'curved' Kepler or harmonic oscillator for the classical Hamilton derivation of the orbits of the Euclidean Kepler problem through its hodographs. In both cases, the fundamental property allowing these derivations to work is the superintegrability of the 'curved' Kepler and harmonic oscillator, no matter whether the constant curvature of the configuration space is zero or not, or whether the configuration space metric is Riemannian or Lorentzian. In the 'curved' case the basic result does not refer to the 'velocity hodograph' but to the 'momentum hodograph'; both coincide in a Euclidean configuration space, but only the latter is unambiguously defined in all curved spaces

  11. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  12. ExoMars Trace Gas Orbiter Instrument Modelling Approach to Streamline Science Operations

    Science.gov (United States)

    Munoz Fernandez, Michela; Frew, David; Ashman, Michael; Cardesin Moinelo, Alejandro; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Nespoli, Federico; Muniz Solaz, Carlos

    2018-05-01

    ExoMars Trace Gas Orbiter (TGO) science operations activities are centralised at ESAC's Science Operations Centre (SOC). The SOC receives the inputs from the principal investigators (PIs) in order to implement and deliver the spacecraft pointing requests and instrument timelines to the Mission Operations Centre (MOC). The high number of orbits per planning cycle has made it necessary to abstract the planning interactions between the SOC and the PI teams at the observation level. This paper describes the modelling approach we have conducted for TGOís instruments to streamline science operations. We have created dynamic observation types that scale to adapt to the conditions specified by the PI teams including observation timing, and pointing block parameters calculated from observation geometry. This approach is considered and improvement with respect to previous missions where the generation of the observation pointing and commanding requests was performed manually by the instrument teams. Automation software assists us to effectively handle the high density of planned orbits with increasing volume of scientific data and to successfully meet opportunistic scientific goals and objectives. Our planning tool combines the instrument observation definition files provided by the PIs together with the flight dynamics products to generate the Pointing Requests and the instrument timeline (ITL). The ITL contains all the validated commands at the TC sequence level and computes the resource envelopes (data rate, power, data volume) within the constraints. At the SOC, our main goal is to maximise the science output while minimising the number of iterations among the teams, ensuring that the timeline does not violate the state transitions allowed in the Mission Operations Rules and Constraints Document.

  13. Correlation between the model accuracy and model-based SOC estimation

    International Nuclear Information System (INIS)

    Wang, Qianqian; Wang, Jiao; Zhao, Pengju; Kang, Jianqiang; Yan, Few; Du, Changqing

    2017-01-01

    State-of-charge (SOC) estimation is a core technology for battery management systems. Considerable progress has been achieved in the study of SOC estimation algorithms, especially the algorithm on the basis of Kalman filter to meet the increasing demand of model-based battery management systems. The Kalman filter weakens the influence of white noise and initial error during SOC estimation but cannot eliminate the existing error of the battery model itself. As such, the accuracy of SOC estimation is directly related to the accuracy of the battery model. Thus far, the quantitative relationship between model accuracy and model-based SOC estimation remains unknown. This study summarizes three equivalent circuit lithium-ion battery models, namely, Thevenin, PNGV, and DP models. The model parameters are identified through hybrid pulse power characterization test. The three models are evaluated, and SOC estimation conducted by EKF-Ah method under three operating conditions are quantitatively studied. The regression and correlation of the standard deviation and normalized RMSE are studied and compared between the model error and the SOC estimation error. These parameters exhibit a strong linear relationship. Results indicate that the model accuracy affects the SOC estimation accuracy mainly in two ways: dispersion of the frequency distribution of the error and the overall level of the error. On the basis of the relationship between model error and SOC estimation error, our study provides a strategy for selecting a suitable cell model to meet the requirements of SOC precision using Kalman filter.

  14. Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)

    Science.gov (United States)

    Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.

    Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour

  15. Cosmic-ray-induced radiation environment and dose to man for low-orbit space applications

    International Nuclear Information System (INIS)

    Sandmeier, H.A.; Hansen, G.E.; Battat, M.E.; O'Brien, K.

    1981-09-01

    Neutrons and photons resulting from the interaction of galactic cosmic rays with the material of an orbiting satellite or an orbiting space station at an altitude of some few hundreds of kilometers, and below the level of the radiation belts, have been calculated as a function of geomagnetic latitude and solar activity level. The photon and neutron leakage currents from the top of the atmosphere have been computed. The radiation dose-equivalent rate to an unshielded astronaut has also been calculated. The maximum dose-equivalent rate, near the magnetic poles, was 2 mrem/h. In deep space this would amount to 18 rem/y, indicating that for a prolonged stay in space, shielding would be needed

  16. SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome.

    Science.gov (United States)

    Vuong, Bao Q; Arenzana, Teresita L; Showalter, Brian M; Losman, Julie; Chen, X Peter; Mostecki, Justin; Banks, Alexander S; Limnander, Andre; Fernandez, Neil; Rothman, Paul B

    2004-10-01

    The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unknown. In this report, SOCS-1 is found to colocalize and biochemically copurify with the microtubule organizing complex (MTOC) and its associated 20S proteasome. The SOCS-1 SH2 domain is required for the localization of SOCS-1 to the MTOC. Overexpression of SOCS-1 targets Jak1 in an SH2-dependent manner to a perinuclear distribution resembling the MTOC-associated 20S proteasome. Analysis of MTOCs fractionated from SOCS-1-deficient cells demonstrates that SOCS-1 may function redundantly to regulate the localization of Jak1 to the MTOC. Nocodazole inhibits the protein turnover of SOCS-1, demonstrating that the minus-end transport of SOCS-1 to the MTOC-associated 20S proteasome is required to regulate SOCS-1 protein levels. These data link SOCS-1 directly with the proteasome pathway and suggest another function for the SH2 domain of SOCS-1 in the regulation of Jak/STAT signaling.

  17. Interleaved Subtask Scheduling on Multi Processor SOC

    NARCIS (Netherlands)

    Zhe, M.

    2006-01-01

    The ever-progressing semiconductor processing technique has integrated more and more embedded processors on a single system-on-achip (SoC). With such powerful SoC platforms, and also due to the stringent time-to-market deadlines, many functionalities which used to be implemented in ASICs are

  18. Exploiting Orbital Data and Observation Campaigns to Improve Space Debris Models

    Science.gov (United States)

    Braun, V.; Horstmann, A.; Reihs, B.; Lemmens, S.; Merz, K.; Krag, H.

    The European Space Agency (ESA) has been developing the Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) software as the European reference model for space debris for more than 25 years. It is an event-based simulation of all known individual debris-generating events since 1957, including breakups, solid rocket motor firings and nuclear reactor core ejections. In 2014, the upgraded Debris Risk Assessment and Mitigation Analysis (DRAMA) tool suite was released. In the same year an ESA instruction made the standard ISO 24113:2011 on space debris mitigation requirements, adopted via the European Cooperation for Space Standardization (ECSS), applicable to all ESA missions. In order to verify the compliance of a space mission with those requirements, the DRAMA software is used to assess collision avoidance statistics, estimate the remaining orbital lifetime and evaluate the on-ground risk for controlled and uncontrolled reentries. In this paper, the approach to validate the MASTER and DRAMA tools is outlined. For objects larger than 1 cm, thus potentially being observable from ground, the MASTER model has been validated through dedicated observation campaigns. Recent campaign results shall be discussed. Moreover, catalogue data from the Space Surveillance Network (SSN) has been used to correlate the larger objects. In DRAMA, the assessment of collision avoidance statistics is based on orbit uncertainty information derived from Conjunction Data Messages (CDM) provided by the Joint Space Operations Center (JSpOC). They were collected for more than 20 ESA spacecraft in the recent years. The way this information is going to be used in a future DRAMA version is outlined and the comparison of estimated manoeuvre rates with real manoeuvres from the operations of ESA spacecraft is shown.

  19. The effect of increased intra-abdominal pressure on orbital subarachnoid space width and intraocular pressure.

    Science.gov (United States)

    Liu, Su-Meng; Wang, Ning-Li; Zuo, Zhen-Tao; Chen, Wei-Wei; Yang, Di-Ya; Li, Zhen; Cao, Yi-Wen

    2018-02-01

    In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can relieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22-30 years (12 females and 3 males), at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa), then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 ± 0.1 mm (range: 0.77-1.05 mm), 0.77 ± 0.11 mm (range: 0.60-0.94 mm), 0.70 ± 0.08 mm (range: 0.62-0.80 mm), and 0.68 ± 0.08 mm (range: 0.57-0.77 mm) at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no significant difference in the

  20. Preliminary results on the dynamics of large and flexible space structures in Halo orbits

    Science.gov (United States)

    Colagrossi, Andrea; Lavagna, Michèle

    2017-05-01

    The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around

  1. Investigating fundamental physics and space environment with a dedicated Earth-orbiting spacecraft

    Science.gov (United States)

    Peron, Roberto

    The near-Earth environment is a place of first choice for performing fundamental physics experiments, given its proximity to Earth and at the same time being relatively quiet dynamically for particular orbital arrangements. This environment also sees a rich phenomenology for what concerns gravitation. In fact, the general theory of relativity is an incredibly accurate description of gravitational phenomenology. However, its overall validity is being questioned by the theories that aim at reconciling it with the microscopic domain. Challenges come also from the ‘mysteries’ of Dark Matter and Dark Energy, though mainly at scales from the galactic up to the cosmological. It is therefore important to precisely test the consequences of the theory -- as well as those of competing ones -- at all the accessible scales. At the same time, the development of high-precision experimental space techniques, which are needed for tests in fundamental physics, opens the way to complementary applications. The growth of the (man-made) orbital debris population is creating problems to the future development of space. The year 2009 witnessed the first accidental collision between two satellites in orbit (Iridium and Cosmos) that led to the creation of more debris. International and national agencies are intervening by issuing and/or adopting guidelines to mitigate the growth of orbital debris. A central tenet of these guidelines requires a presence in space shorter than 25 years to satellites in low Earth orbit (LEO) after the conclusion of their operational lives. However, the determination of the natural lifetime of a satellite in LEO is very uncertain due to a large extent to the short-term and long-term variability of the atmospheric density in LEO and the comparatively low-accuracy of atmospheric density models. Many satellites orbiting in the 500-1200 km region with circular or elliptical orbits will be hard pressed to establish before flight whether or not they meet the 25

  2. Dynamical analysis of rendezvous and docking with very large space infrastructures in non-Keplerian orbits

    Science.gov (United States)

    Colagrossi, Andrea; Lavagna, Michèle

    2018-03-01

    A space station in the vicinity of the Moon can be exploited as a gateway for future human and robotic exploration of the solar system. The natural location for a space system of this kind is about one of the Earth-Moon libration points. The study addresses the dynamics during rendezvous and docking operations with a very large space infrastructure in an EML2 Halo orbit. The model takes into account the coupling effects between the orbital and the attitude motion in a circular restricted three-body problem environment. The flexibility of the system is included, and the interaction between the modes of the structure and those related with the orbital motion is investigated. A lumped parameter technique is used to represents the flexible dynamics. The parameters of the space station are maintained as generic as possible, in a way to delineate a global scenario of the mission. However, the developed model can be tuned and updated according to the information that will be available in the future, when the whole system will be defined with a higher level of precision.

  3. Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance

    Science.gov (United States)

    Zhang, Pengfei; Sun, Ning

    2018-04-01

    Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.

  4. Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices

    Science.gov (United States)

    Grusdt, Fabian; Li, Tracy; Bloch, Immanuel; Demler, Eugene

    2017-06-01

    Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states with topological order. Here we present a general scheme based on a combination of microwave driving and lattice shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent square lattice. More generally, our method can be used to open gaps between different spin states without breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators with nontrivial spin textures closely related to the Kane-Mele model.

  5. Defective interleukin-4/Stat6 activity correlates with increased constitutive expression of negative regulators SOCS-3, SOCS-7, and CISH in colon cancer cells.

    Science.gov (United States)

    Liu, Xiao Hong; Xu, Shuang Bing; Yuan, Jia; Li, Ben Hui; Zhang, Yan; Yuan, Qin; Li, Pin Dong; Li, Feng; Zhang, Wen Jie

    2009-12-01

    Interleukin-4 (IL-4)-induced Stat6 activities (phenotypes) vary among human cancer cells, of which the HT-29 cell line carries an active Stat6(high) phenotype, while Caco-2 carries a defective Stat6(null) phenotype, respectively. Cancer cells with Stat6(high) show resistance to apoptosis and exaggerated metastasis, suggesting the clinical significance of Stat6 phenotypes. We previously showed that Stat6(high) HT-29 cells exhibited low constitutive expression of Stat6-negative regulators SOCS-1 and SHP-1 because of gene hypermethylation. This study further examined the constitutive expression of other closely related SOCS family numbers including SOCS-3, SOCS-5, SOCS-7, and CISH using RT-PCR. Similar to SOCS-1 and SHP-1, Stat6(high) HT-29 cells expressed low constitutive mRNA of SOCS-3, SOCS-7, and CISH than Stat6(null) Caco-2 cells. Interestingly, DNA demethylation using 5-aza-2'-deoxycytidine in HT-29 cells up-regulated mRNA expression of the above genes, indicating a hypermethylation status, which was confirmed by methylation-specific sequencing in selected SOCS-3 gene. Furthermore, defective Stat6(null) Caco-2 exhibited impaired phosphorylation of Stat6 after IL-4 stimulation by flow cytometry, in keeping with the notion of an over-performed negative regulation. The findings that IL-4/Stat6 phenotypes show differential expression of multiple negative regulators suggest a model that a collective force of powerful negative regulators, directly and indirectly, acts on Stat6 activation, which may result in differential Stat6 phenotypes.

  6. SPAD array based TOF SoC design for unmanned vehicle

    Science.gov (United States)

    Pan, An; Xu, Yuan; Xie, Gang; Huang, Zhiyu; Zheng, Yanghao; Shi, Weiwei

    2018-03-01

    As for the requirement of unmanned-vehicle mobile Lidar system, this paper presents a SoC design based on pulsed TOF depth image sensor. This SoC has a detection range of 300m and detecting resolution of 1.5cm. Pixels are made of SPAD. Meanwhile, SoC adopts a structure of multi-pixel sharing TDC, which significantly reduces chip area and improve the fill factor of light-sensing surface area. SoC integrates a TCSPC module to achieve the functionality of receiving each photon, measuring photon flight time and processing depth information in one chip. The SOC is designed in the SMIC 0.13μm CIS CMOS technology

  7. Research on SOC Calibration of Large Capacity Lead Acid Battery

    Science.gov (United States)

    Ye, W. Q.; Guo, Y. X.

    2018-05-01

    Large capacity lead-acid battery is used in track electric locomotive, and State of Charge (SOC) is an important quantitative parameter of locomotive power output and operating mileage of power emergency recovery vehicle. But State of Charge estimation has been a difficult part in the battery management system. In order to reduce the SOC estimation error better, this paper uses the linear relationship of Open Circuit Voltage (OCV) and State of Charge to fit the SOC-OCV curve equation by MATLAB. The method proposed in this paper is small, easy to implement and can be used in the battery non-working state SOC estimation correction, improve the estimation accuracy of SOC.

  8. Using The Global Positioning System For Earth Orbiter and Deep Space Network

    Science.gov (United States)

    Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.

  9. Acquisition/expulsion system for earth orbital propulsion system study. Volume 1: Summary report. [cryogenic storage and fuel flow regulation system for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    Design, construction, and quality control tests on a dual screen liner device for the space shuttle orbiter cryogenic fuel tank and feedliner system are summarized. The dual stainless steel mesh of the device encloses eight liquid fuel channels and provides the liquid/vapor interface stability required for low gravity orbits.

  10. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    Science.gov (United States)

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  11. Wuhan University Deep-space Orbit Determination and Gravity Recovery System(WUDOGS and Its Application Analysis

    Directory of Open Access Journals (Sweden)

    YE Mao

    2017-03-01

    Full Text Available WUDOGS(Wuhan University deep-space orbit determination and gravity recovery system is a software system designed for deep spacecraft precise orbit determination and planetary gravity recovery, developed independently at Wuhan University. WUDOGS now has the function for Lunar and Mars spacecraft precision orbit determination. Its design pattern and main function are briefly introduced. The cross verification test(CVT between WUDOGS and state of the art planetary precise orbit determination software GEODYN-Ⅱ are elaborated. The results show that:①for orbit propagation, with all the same forces and other configuration, the predicted orbit difference in R,T,N directions are less than 0.3 mm for one month arc, 5×10-3 mm for 2 days arc, compared with GEODYN-Ⅱ;②the difference RMS of computed values of observables for two-way range and two-way range rate is at levels of 0.06 mm and 0.002 mm/s respectively;③for Chinese Chang'E-1 POD, the reconstructed orbit difference between WUDOGS and GEODYN-Ⅱ is at 2 cm level, for ESA MEX POD, the reconstructed orbit difference between WUDOGS and ESA is at 25 m level. Current developing situation of WUDOGS and comparison with international research level show that WUDOGS has a good application prospect, which will be important for meeting the demand of Chinese future planetary exploration and the development of deep space spacecraft POD software.

  12. Negative tunneling magneto-resistance in quantum wires with strong spin-orbit coupling.

    Science.gov (United States)

    Han, Seungju; Serra, Llorenç; Choi, Mahn-Soo

    2015-07-01

    We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the quantum-wire axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.

  13. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    Science.gov (United States)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  14. Favorable prognostic value of SOCS2 and IGF-I in breast cancer

    International Nuclear Information System (INIS)

    Haffner, Michael C; Petridou, Barbara; Peyrat, Jean Phillipe; Révillion, Françoise; Müller-Holzner, Elisabeth; Daxenbichler, Günter; Marth, Christian; Doppler, Wolfgang

    2007-01-01

    Suppressor of cytokine signaling (SOCS) proteins comprise a protein family, which has initially been described as STAT induced inhibitors of the Jak/Stat pathway. Recent in vivo and in vitro studies suggest that SOCS proteins are also implicated in cancer. The STAT5 induced IGF-I acts as an endocrine and para/autocrine growth and differentiation factor in mammary gland development. Whereas high levels of circulating IGF-I have been associated with increased cancer risk, the role of autocrine acting IGF-I is less clear. The present study is aimed to elucidate the clinicopathological features associated with SOCS1, SOCS2, SOCS3, CIS and IGF-I expression in breast cancer. We determined the mRNA expression levels of SOCS1, SOCS2, SOCS3, CIS and IGF-I in 89 primary breast cancers by reverse transcriptase PCR. SOCS2 protein expression was further evaluated by immuno-blot and immunohistochemistry. SOCS2 expression inversely correlated with histopathological grade and ER positive tumors exhibited higher SOCS2 levels. Patients with high SOCS2 expression lived significantly longer (108.7 vs. 77.7 months; P = 0.015) and high SOCS2 expression proved to be an independent predictor for good prognosis (HR = 0.45, 95% CI 0.23 – 0.91, P = 0.026). In analogy to SOCS2, high IGF-I expression was an independent predictor for good prognosis in the entire patient cohort. In the subgroup of patients with lymph-node negative disease, high IGF-I was a strong predictor for favorable outcome in terms of overall survival and relapse free survival (HR = 0.075, 95% CI 0.014 – 0.388, P = 0.002). This is the first report on the favorable prognostic value of high SOCS2 expression in primary mammary carcinomas. Furthermore a strong association of high IGF-I expression levels with good prognosis was observed especially in lymph-node negative patients. Our results suggest that high expression of the STAT5 target genes SOCS2 and IGF-I is a feature of differentiated and less malignant tumors

  15. NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems

    Science.gov (United States)

    Quadrelli, Marco B.; Basinger, Scott; Arumugam, Darmindra; Swartzlander, Grover

    2017-01-01

    Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures

  16. Identification of suppressor of cytokine signalling (SOCS) 6, 7, 9 and CISH in rainbow trout Oncorhynchus mykiss and analysis of their expression in relation to other known trout SOCS.

    Science.gov (United States)

    Wang, Tiehui; Gao, Qian; Nie, Pin; Secombes, Christopher J

    2010-10-01

    Four new members of the SOCS family of molecules in rainbow trout (Oncorhynchus mykiss), CISH and SOCS6, 7 and 9, are described for the first time in this species. The genes had a wide tissue distribution in trout, and were detected in gills, skin, muscle, liver, spleen, head kidney, intestine and brain, with brain having the highest expression levels. Stimulation of a rainbow trout leucocyte cell line, RTS-11, (mononuclear/macrophage-like cells) with LPS or Poly I:C had no effect on the expression of these genes, although in both cases the previously identified SOCS1-3 genes were up-regulated. Similarly, stimulation of RTS-11 or RTG-2 (fibroblasts) cells with the trout recombinant cytokines IFN-gamma or IL-1beta had no effect on CISH or SOCS6, 7 and 9 expression. However, PMA stimulation did impact on SOCS6 and SOCS9 expression, and LPS stimulation of primary cultures or bacterial infection (Yersinia ruckeri) increased significantly CISH expression (as well as SOCS1 and SOCS2 or SOCS3 respectively). It is apparent that the type II SOCS genes (CISH, SOCS1-3) are particularly relevant to immune regulation in fish, although the intriguing expansion of the SOCS4/5 subgroup in fish requires further investigation as to their role and functional divergence. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Cost prediction model for various payloads and instruments for the Space Shuttle Orbiter

    Science.gov (United States)

    Hoffman, F. E.

    1984-01-01

    The following cost parameters of the space shuttle were undertaken: (1) to develop a cost prediction model for various payload classes of instruments and experiments for the Space Shuttle Orbiter; and (2) to show the implications of various payload classes on the cost of: reliability analysis, quality assurance, environmental design requirements, documentation, parts selection, and other reliability enhancing activities.

  18. SoCRocket: A Virtual Platform for SoC Design

    Science.gov (United States)

    Fossati, Luca; Schuster, Thomas; Meyer, Rolf; Berekovic, Mladen

    2013-08-01

    Both in the commercial and in the aerospace domain, the continuous increase of transistor density on a single die is leading towards the production of more and more complex systems on a single chip, with an increasing number of components. This brought to the introduction of the System-On-Chip (SoC) architecture, that integrates on a single circuit all the elements of a full system. This strive for efficient utilization of the available silicon has triggered several paradigm shifts in system design. Similarly to what happened in the early 1990s, when VHDL and Verilog took over from schematic design, today SystemC and Transaction Level Modeling [1] are about to further raise the design abstraction level. Such descriptions have to be accurate enough to describe the entire system throughout the phases of its development, and has to provide enough flexibility to be refined iteratively up to the point where the actual device can be produced using current process technology. Besides requiring new languages and methodologies, the complexity of current and future SoCs (SCOC3 [16] and NGMP [5] are example in the space domain) forces the SoC design process to rely on pre-designed or third party components. Components obtained from different providers, and even those designed by different teams of the same company, may be heterogeneous on several aspects: design domains, interfaces, abstraction levels, granularity, etc. Therefore, component integration is required at system level. Only by applying design re-use it is possible to successfully and timely design such complex SoCs. This transition to new languages and design methods is also motivated by the implementation with software of an increasing amount of system functionalities. Hence the need for methodologies to enable early software development and which allow the analysis of the performance of the combined Hw/Sw system, as their design and configuration cannot be performed separately. Virtual Prototyping is a key

  19. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.

    1979-01-01

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)

  20. Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits

    Science.gov (United States)

    Genova, A. L.; Dunham, D. W.; Hardgrove, C.

    2018-02-01

    Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.

  1. Autonomous Phase-Space Mapping and Navigation for Spacecraft Operations in Extreme Orbital Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed research is to generate a suite of algorithms for the autonomous navigation of highly nonlinear orbital regimes. These algorithms must...

  2. Favorable prognostic value of SOCS2 and IGF-I in breast cancer

    Directory of Open Access Journals (Sweden)

    Daxenbichler Günter

    2007-07-01

    Full Text Available Abstract Background Suppressor of cytokine signaling (SOCS proteins comprise a protein family, which has initially been described as STAT induced inhibitors of the Jak/Stat pathway. Recent in vivo and in vitro studies suggest that SOCS proteins are also implicated in cancer. The STAT5 induced IGF-I acts as an endocrine and para/autocrine growth and differentiation factor in mammary gland development. Whereas high levels of circulating IGF-I have been associated with increased cancer risk, the role of autocrine acting IGF-I is less clear. The present study is aimed to elucidate the clinicopathological features associated with SOCS1, SOCS2, SOCS3, CIS and IGF-I expression in breast cancer. Methods We determined the mRNA expression levels of SOCS1, SOCS2, SOCS3, CIS and IGF-I in 89 primary breast cancers by reverse transcriptase PCR. SOCS2 protein expression was further evaluated by immuno-blot and immunohistochemistry. Results SOCS2 expression inversely correlated with histopathological grade and ER positive tumors exhibited higher SOCS2 levels. Patients with high SOCS2 expression lived significantly longer (108.7 vs. 77.7 months; P = 0.015 and high SOCS2 expression proved to be an independent predictor for good prognosis (HR = 0.45, 95% CI 0.23 – 0.91, P = 0.026. In analogy to SOCS2, high IGF-I expression was an independent predictor for good prognosis in the entire patient cohort. In the subgroup of patients with lymph-node negative disease, high IGF-I was a strong predictor for favorable outcome in terms of overall survival and relapse free survival (HR = 0.075, 95% CI 0.014 – 0.388, P = 0.002. Conclusion This is the first report on the favorable prognostic value of high SOCS2 expression in primary mammary carcinomas. Furthermore a strong association of high IGF-I expression levels with good prognosis was observed especially in lymph-node negative patients. Our results suggest that high expression of the STAT5 target genes SOCS2 and IGF

  3. "Diffusion" region of magnetic reconnection: electron orbits and the phase space mixing

    Science.gov (United States)

    Kropotkin, Alexey P.

    2018-05-01

    The nonlinear dynamics of electrons in the vicinity of magnetic field neutral lines during magnetic reconnection, deep inside the diffusion region where the electron motion is nonadiabatic, has been numerically analyzed. Test particle orbits are examined in that vicinity, for a prescribed planar two-dimensional magnetic field configuration and with a prescribed uniform electric field in the neutral line direction. On electron orbits, a strong particle acceleration occurs due to the reconnection electric field. Local instability of orbits in the neighborhood of the neutral line is pointed out. It combines with finiteness of orbits due to particle trapping by the magnetic field, and this should lead to the effect of mixing in the phase space, and the appearance of dynamical chaos. The latter may presumably be viewed as a mechanism producing finite conductivity in collisionless plasma near the neutral line. That conductivity is necessary to provide violation of the magnetic field frozen-in condition, i.e., for magnetic reconnection to occur in that region.

  4. Autonomous orbit determination and its error analysis for deep space using X-ray pulsar

    International Nuclear Information System (INIS)

    Feng, Dongzhu; Yuan, Xiaoguang; Guo, Hehe; Wang, Xin

    2014-01-01

    Autonomous orbit determination (OD) is a complex process using filtering method to integrate observation and orbit dynamic model effectively and estimate the position and velocity of a spacecraft. As a novel technology for autonomous interplanetary OD, X-ray pulsar holds great promise for deep space exploration. The position and velocity of spacecraft should be estimated accurately during the OD process. However, under the same condition, the accuracy of OD can be greatly reduced by the error of the initial orbit value and the orbit mutation. To resolve this problem, we propose a novel OD method, which is based on the X-ray pulsar measurement and Adaptive Unscented Kalman Filter (AUKF). The accuracy of OD can be improved obviously because the AUKF estimates the orbit of spacecraft using measurement residual. During the simulation, the orbit of Phoenix Mars Lander, Deep Impact Probe, and Voyager 1 are selected. Compared with Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF), the simulation results demonstrate that the proposed OD method based on AUKF can accurately determinate the velocity and position and effectively decrease the orbit estimated errors which is caused by the orbit mutation and orbit initial errors. (authors)

  5. Implementation of National Space Policy on US Air Force End of Life Operations and Orbital Debris Mitigation

    Science.gov (United States)

    2012-06-01

    Space Development and Test Directorate, Kirtland AFB, NM, 87117 Recent changes to US space policy regarding the execution of satellite End of Life ( EOL ...procedures have been driven by the rising significance of the orbital debris problem in Low Earth Orbit (LEO). Therefore current EOL plans are...considerations for writing operational EOL plans, with special applicability to military missions and focus on LEO satellites that are unable to relocate

  6. Space-based pseudo-fixed latitude observation mode based on the characteristics of geosynchronous orbit belt

    Science.gov (United States)

    Hu, Yun-peng; Chen, Lei; Huang, Jian-yu

    2017-08-01

    The US Lincoln Laboratory proved that space-based visible (SBV) observation is efficient to observe space objects, especially Geosynchronous Orbit (GEO) objects. After that, SBV observation plays an important role in the space surveillance. In this paper, a novel space-based observation mode is designed to observe all the GEO objects in a relatively short time. A low earth orbit (LEO) satellite, especially a dawn-dusk sun-synchronous orbit satellite, is useful for space-based observation. Thus, the observation mode for GEO objects is based on a dawn-dusk sun-synchronous orbit satellite. It is found that the Pinch Point (PP) regions proposed by the US Lincoln Laboratory are spreading based on the analysis of the evolution principles of GEO objects. As the PP regions becoming more and more widely in the future, many strategies based on it may not be efficient any more. Hence, the key point of the space-based observation strategy design for GEO objects should be emphasized on the whole GEO belt as far as possible. The pseudo-fixed latitude observation mode is proposed in this paper based on the characteristics of GEO belt. Unlike classical space-based observation modes, pseudo-fixed latitude observation mode makes use of the one-dimensional attitude adjustment of the observation satellite. The pseudo-fixed latitude observation mode is more reliable and simple in engineering, compared with the gazing observation mode which needs to adjust the attitude from the two dimensions. It includes two types of attitude adjustment, i.e. daily and continuous attitude adjustment. Therefore, the pseudo-fixed latitude observation mode has two characteristics. In a day, the latitude of the observation region is fixed and the scanning region is about a rectangle, while the latitude of the observation region centre changes each day in a long term based on a daily strategy. The capabilities of a pseudo-fixed latitude observation instrument with a 98° dawn-dusk sun-synchronous orbit are

  7. Spin Orbit Coupling Gap and Indirect Gap in Strain-Tuned Topological Insulator-Antimonene

    OpenAIRE

    Cheung, Chi-Ho; Fuh, Huei-Ru; Hsu, Ming-Chien; Lin, Yeu-Chung; Chang, Ching-Ray

    2016-01-01

    Recently, searching large-bulk band gap topological insulator (TI) is under intensive study. Through k?P theory and first-principles calculations analysis on antimonene, we find that ?-phase antimonene can be tuned to a 2D TI under an in-plane anisotropic strain and the magnitude of direct bulk band gap (SOC gap) depends on the strength of spin-orbit coupling (SOC) which is strain-dependent. As the band inversion of this TI accompanies with an indirect band gap, the TI bulk band gap is the in...

  8. Study of flywheel energy storage for space stations

    Science.gov (United States)

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  9. Experiences Supporting the Lunar Reconnaissance Orbiter Camera: the Devops Model

    Science.gov (United States)

    Licht, A.; Estes, N. M.; Bowman-Cisnesros, E.; Hanger, C. D.

    2013-12-01

    Introduction: The Lunar Reconnaissance Orbiter Camera (LROC) Science Operations Center (SOC) is responsible for instrument targeting, product processing, and archiving [1]. The LROC SOC maintains over 1,000,000 observations with over 300 TB of released data. Processing challenges compound with the acquisition of over 400 Gbits of observations daily creating the need for a robust, efficient, and reliable suite of specialized software. Development Environment: The LROC SOC's software development methodology has evolved over time. Today, the development team operates in close cooperation with the systems administration team in a model known in the IT industry as DevOps. The DevOps model enables a highly productive development environment that facilitates accomplishment of key goals within tight schedules[2]. The LROC SOC DevOps model incorporates industry best practices including prototyping, continuous integration, unit testing, code coverage analysis, version control, and utilizing existing open source software. Scientists and researchers at LROC often prototype algorithms and scripts in a high-level language such as MATLAB or IDL. After the prototype is functionally complete the solution is implemented as production ready software by the developers. Following this process ensures that all controls and requirements set by the LROC SOC DevOps team are met. The LROC SOC also strives to enhance the efficiency of the operations staff by way of weekly presentations and informal mentoring. Many small scripting tasks are assigned to the cognizant operations personnel (end users), allowing for the DevOps team to focus on more complex and mission critical tasks. In addition to leveraging open source software the LROC SOC has also contributed to the open source community by releasing Lunaserv [3]. Findings: The DevOps software model very efficiently provides smooth software releases and maintains team momentum. Scientists prototyping their work has proven to be very efficient

  10. Process modeling of a reversible solid oxide cell (r-SOC) energy storage system utilizing commercially available SOC reactor

    International Nuclear Information System (INIS)

    Mottaghizadeh, Pegah; Santhanam, Srikanth; Heddrich, Marc P.; Friedrich, K. Andreas; Rinaldi, Fabio

    2017-01-01

    Highlights: • An electric energy storage system was developed based on a commercially available SOC reactor. • Heat generated in SOFC mode of r-SOC is utilized in SOEC operation of r-SOC using latent heat storage. • A round trip efficiency of 54.3% was reached for the reference system at atmospheric pressure. • An improved process system design achieved a round-trip efficiency of 60.4% at 25 bar. - Abstract: The increase of intermittent renewable energy contribution in power grids has urged us to seek means for temporal decoupling of electricity production and consumption. A reversible solid oxide cell (r-SOC) enables storage of surplus electricity through electrochemical reactions when it is in electrolysis mode. The reserved energy in form of chemical compounds is then converted to electricity when the cell operates as a fuel cell. A process system model was implemented using Aspen Plus® V8.8 based on a commercially available r-SOC reactor experimentally characterized at DLR. In this study a complete self-sustaining system configuration is designed by optimal thermal integration and balance of plant. Under reference conditions a round trip efficiency of 54.3% was achieved. Generated heat in fuel cell mode is exploited by latent heat storage tanks to enable endothermic operation of reactor in its electrolysis mode. In total, out of 100 units of thermal energy stored in heat storage tanks during fuel cell mode, 90% was utilized to offset heat demand of system in its electrolysis mode. Parametric analysis revealed the significance of heat storage tanks in thermal management even when reactor entered its exothermic mode of electrolysis. An improved process system design demonstrates a system round-trip efficiency of 60.4% at 25 bar.

  11. The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling

    Science.gov (United States)

    Wang, Z. H.; Zheng, Q.; Wang, Xiaoguang; Li, Yong

    2016-03-01

    We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via performing a unitary transformation. We find that the energy-level crossing can occur in the quantum well system within the available parameters rather than in cavity and circuit quantum eletrodynamics systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive explanation from the viewpoint of the stationary perturbation theory is given.

  12. IL-10 and socs3 Are Predictive Biomarkers of Dengue Hemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Lilian Karem Flores-Mendoza

    2017-01-01

    Full Text Available Background. Cytokines play important roles in the physiopathology of dengue infection; therefore, the suppressors of cytokine signaling (socs that control the type and timing of cytokine functions could be involved in the origin of immune alterations in dengue. Objective. To explore the association of cytokine and socs levels with disease severity in dengue patients. Methods. Blood samples of 48 patients with confirmed dengue infection were analyzed. Amounts of interleukins IL-2, IL-4, IL-6, and IL-10, interferon- (IFN- γ, and tumor necrosis factor- (TNF- α were quantified by flow cytometry, and the relative expression of socs1 and socs3 mRNA was quantified by real-time RT-PCR. Results. Increased levels of IL-10 and socs3 and lower expression of socs1 were found in patients with dengue hemorrhagic fever (DHF with respect to those with dengue fever (DF (p199.8-fold, socs1 (134 pg/ml have the highest sensitivity and specificity to discriminate between DF and DHF. Conclusion. Simultaneous changes in IL-10 and socs1/socs3 could be used as prognostic biomarkers of dengue severity.

  13. International Space Station Nickel-Hydrogen Battery On-Orbit Performance

    Science.gov (United States)

    Dalton, Penni; Cohen, Fred

    2002-01-01

    International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35 percent depth of discharge (DOD) maximum during normal operation. Thirty-eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 (Port) Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will discuss the battery performance data after eighteen months of cycling.

  14. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  15. Spin-Orbit Effect on the Molecular Properties of TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4): A Density Functional Theory and Ab Initio Study.

    Science.gov (United States)

    Moon, Jiwon; Kim, Joonghan

    2016-09-29

    Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.

  16. Spin-orbit coupling and transport in strongly correlated two-dimensional systems

    Science.gov (United States)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2017-05-01

    Measuring the magnetoresistance (MR) of ultraclean GaAs two-dimensional holes for a large rs range of 20-50, two striking behaviors in relation to the spin-orbit coupling (SOC) emerge in response to strong electron-electron interaction. First, in exact correspondence to the zero-field metal-to-insulator transition (MIT), the sign of the MR switches from being positive in the metallic regime to being negative in the insulating regime when the carrier density crosses the critical density pc of MIT (rs˜39 ). Second, as the SOC-driven correction Δ ρ to the MR decreases with reducing carrier density (or the in-plane wave vector), it exhibits an upturn in the close proximity just above pc where rs is beyond 30, indicating a substantially enhanced SOC effect. This peculiar behavior echoes with a trend of delocalization long suspected for the SOC-interaction interplay. Meanwhile, for p 40 , in contrast to the common belief that a magnet field enhances Wigner crystallization, the negative MR is likely linked to enhanced interaction.

  17. Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2006-01-01

    Full Text Available In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space E_n are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space E_n. Orbit functions are solutions of the corresponding Laplace equation in E_n, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.

  18. Spin-orbit torque induced magnetization switching in heavy metal/ferromagnet multilayers with bilayer of heavy metals

    Science.gov (United States)

    Bekele, Zelalem Abebe; Meng, Kangkang; Zhao, Bing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Jiang, Yong

    2017-08-01

    Symmetry breaking provides new insight into the physics of spin-orbit torque (SOT) and the switching without a magnetic field could lead to significant impact. In this work, we demonstrate the robust zero-field SOT switching of a perpendicular ferromagnet (FM) layer where the symmetry is broken by a bilayer of heavy metals (HMs) with the strong spin-orbit coupling (SOC). We observed the change of coercivity value by 31% after inserting Co2FeAl in the multilayer structure. These two HM layers (Ta and Pt) are used to strengthen the SOC by linear combination. With different angles between the magnetization and the current (i.e. parallel and anti-parallel), the structures show different switching behaviors such as clockwise or counterclockwise.

  19. Applying transport-distance specific SOC distribution to calibrate soil erosion model WaTEM

    Science.gov (United States)

    Hu, Yaxian; Heckrath, Goswin J.; Kuhn, Nikolaus J.

    2016-04-01

    Slope-scale soil erosion, transport and deposition fundamentally decide the spatial redistribution of eroded sediments in terrestrial and aquatic systems, which further affect the burial and decomposition of eroded SOC. However, comparisons of SOC contents between upper eroding slope and lower depositional site cannot fully reflect the movement of eroded SOC in-transit along hillslopes. The actual transport distance of eroded SOC is decided by its settling velocity. So far, the settling velocity distribution of eroded SOC is mostly calculated from mineral particle specific SOC distribution. Yet, soil is mostly eroded in form of aggregates, and the movement of aggregates differs significantly from individual mineral particles. This urges a SOC erodibility parameter based on actual transport distance distribution of eroded fractions to better calibrate soil erosion models. Previous field investigation on a freshly seeded cropland in Denmark has shown immediate deposition of fast settling soil fractions and the associated SOC at footslopes, followed by a fining trend at the slope tail. To further quantify the long-term effects of topography on erosional redistribution of eroded SOC, the actual transport-distance specific SOC distribution observed on the field was applied to a soil erosion model WaTEM (based on USLE). After integrating with local DEM, our calibrated model succeeded in locating the hotspots of enrichment/depletion of eroded SOC on different topographic positions, much better corresponding to the real-world field observation. By extrapolating into repeated erosion events, our projected results on the spatial distribution of eroded SOC are also adequately consistent with the SOC properties in the consecutive sample profiles along the slope.

  20. On the fluctuations of density and temperature in outer space atmosphere obtained from orbital shift of TAIYO

    International Nuclear Information System (INIS)

    Kato, Yoshio; Onishi, Nobuto; Shimizu, Osamu; Enmi, Sachiko; Hirao, Kunio.

    1976-01-01

    The temperature and density in outer space atmosphere were obtained from the change of the orbital period of the artificial satellite TAIYO which was launched on February 24, 1975, from Kagoshima. An equation to calculate atmospheric density with the characteristic values of the satellite is presented in the first part together with the observed variation of the orbital elements of TAIYO. The weekly changes of temperature and density in outer space atmosphere at the altitude of 250 km, which is the perigee of the satellite, from April 1975 to May 1976 were obtained. The relations between outer space temperature and sigma KP, F10.7, and the position of the perigee were also obtained. The outer space temperature as a function of local time is presented, and it is observed that the temperature change in relation to the local time agrees with the atmospheric model, and that the ratio of maximum or minimum temperature within a day becomes nearly 1.3. It is commented that more data will be available for the further detailed analysis because TAIYO is still orbiting normally. (Aoki, K.)

  1. Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS) - Cyclops

    Science.gov (United States)

    Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2013-01-01

    Access to space for satellites in the 50-100 kg class is a challenge for the small satellite community. Rideshare opportunities are limited and costly, and the small sat must adhere to the primary payloads schedule and launch needs. Launching as an auxiliary payload on an Expendable Launch Vehicle presents many technical, environmental, and logistical challenges to the small satellite community. To assist the community in mitigating these challenges and in order to provide the community with greater access to space for 50-100 kg satellites, the NASA International Space Station (ISS) and Engineering communities in collaboration with the Department of Defense (DOD) Space Test Program (STP) is developing a dedicated 50-100 kg class ISS small satellite deployment system. The system, known as Cyclops, will utilize NASA's ISS resupply vehicles to launch small sats to the ISS in a controlled pressurized environment in soft stow bags. The satellites will then be processed through the ISS pressurized environment by the astronaut crew allowing satellite system diagnostics prior to orbit insertion. Orbit insertion is achieved through use of the Japan Aerospace Exploration Agency's Experiment Module Robotic Airlock (JEM Airlock) and one of the ISS Robotic Arms. Cyclops' initial satellite deployment demonstration of DOD STP's SpinSat and UT/TAMU's Lonestar satellites will be toward the end of 2013 or beginning of 2014. Cyclops will be housed on-board the ISS and used throughout its lifetime. The anatomy of Cyclops, its concept of operations for satellite deployment, and its satellite interfaces and requirements will be addressed further in this paper.

  2. The simple art of SoC design

    CERN Document Server

    Keating, Michael

    2011-01-01

    This book tackles head-on the challenges of digital design in the era of billion-transistor SoCs. It discusses fundamental design concepts in design and coding required to produce robust, functionally correct designs. It also provides specific techniques for measuring and minimizing complexity in RTL code. Finally, it discusses the tradeoff between RTL and high-level (C-based) design and how tools and languages must progress to address the needs of tomorrow's SoC designs.

  3. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    Science.gov (United States)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  4. Applicability of meteor radiant determination methods depending on orbit type. I. High-eccentric orbits

    Science.gov (United States)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1993-07-01

    It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D0.2 the fit is rather poor and the change of orbit unrealistic. The optimal methods with the smallest values of D for given types of orbits are shown in two series of six plots. The new method of rotation around the line of apsides we propose is very appropriate in the region of small inclinations. There is no doubt that Hasegawa's omega-adjustment method (Hasegawa, I.: 1990, Publ. Astron. Soc. Japan 42, 175) has the widest application. A comparison of the theoretical radiants with the observed radiants of seven known meteor showers is also presented.

  5. Fish Suppressors of Cytokine Signaling (SOCS): Gene Discovery, Modulation of Expression and Function

    Science.gov (United States)

    Wang, Tiehui; Gorgoglione, Bartolomeo; Maehr, Tanja; Holland, Jason W.; Vecino, Jose L. González; Wadsworth, Simon; Secombes, Christopher J.

    2011-01-01

    The intracellular suppressors of cytokine signaling (SOCS) family members, including CISH and SOCS1 to 7 in mammals, are important regulators of cytokine signaling pathways. So far, the orthologues of all the eight mammalian SOCS members have been identified in fish, with several of them having multiple copies. Whilst fish CISH, SOCS3, and SOCS5 paralogues are possibly the result of the fish-specific whole genome duplication event, gene duplication or lineage-specific genome duplication may also contribute to some paralogues, as with the three trout SOCS2s and three zebrafish SOCS5s. Fish SOCS genes are broadly expressed and also show species-specific expression patterns. They can be upregulated by cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, and IL-21, by immune stimulants such as LPS, poly I:C, and PMA, as well as by viral, bacterial, and parasitic infections in member- and species-dependent manners. Initial functional studies demonstrate conserved mechanisms of fish SOCS action via JAK/STAT pathways. PMID:22203897

  6. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  7. Real-space mapping of electronic orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Löffler, Stefan, E-mail: stefan.loeffler@tuwien.ac.at [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); University Service Centre for Transmission Electron Microscopy, TU Vienna, Wiedner Hauptstraße 8-10/E057B, 1040 Wien (Austria); Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria); Bugnet, Matthieu; Gauquelin, Nicolas [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); Lazar, Sorin [FEI Electron Optics, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Assmann, Elias; Held, Karsten [Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria); Botton, Gianluigi A. [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); Schattschneider, Peter [University Service Centre for Transmission Electron Microscopy, TU Vienna, Wiedner Hauptstraße 8-10/E057B, 1040 Wien (Austria); Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria)

    2017-06-15

    Highlights: • Electronic orbitals in Rutile are mapped using STEM-EELS. • Inelastic scattering simulations are performed for the experimental conditions. • The experiments and the simulations are found to be in excellent agreement. - Abstract: Electronic states are responsible for most material properties, including chemical bonds, electrical and thermal conductivity, as well as optical and magnetic properties. Experimentally, however, they remain mostly elusive. Here, we report the real-space mapping of selected transitions between p and d states on the Ångström scale in bulk rutile (TiO{sub 2}) using electron energy-loss spectrometry (EELS), revealing information on individual bonds between atoms. On the one hand, this enables the experimental verification of theoretical predictions about electronic states. On the other hand, it paves the way for directly investigating electronic states under conditions that are at the limit of the current capabilities of numerical simulations such as, e.g., the electronic states at defects, interfaces, and quantum dots.

  8. Effect of SOCS1 overexpression on RPE cell activation by proinflammatory cytokines.

    Science.gov (United States)

    Bazewicz, Magdalena; Draganova, Dafina; Makhoul, Maya; Chtarto, Abdel; Elmaleh, Valerie; Tenenbaum, Liliane; Caspers, Laure; Bruyns, Catherine; Willermain, François

    2016-09-06

    The purpose of this study was to investigate the in vitro effect of Suppressor Of Cytokine Signaling 1 (SOCS1) overexpression in retinal pigment epithelium (RPE) cells on their activation by pro-inflammatory cytokines IFNγ, TNFα and IL-17. Retinal pigment epithelium cells (ARPE-19) were stably transfected with the control plasmid pIRES2-AcGFP1 or the plasmid pSOCS1-IRES2-AcGFP1. They were stimulated by IFNγ (150ng/ml), TNFα (30ng/ml) or IL-17 (100ng/ml). The levels of SOCS1 mRNA were measured by real-time PCR. Signal Transducer and Activator of Transcription 1 (STAT1) phosphorylation and IκBα expression were analysed by western Blot (WB). IL-8 secretion was analysed by ELISA and expression of MHCII molecules and ICAM-1/CD54 by flow cytometry. Our data show that SOCS1 mRNA overexpression in RPE cells prevents IFNγ-induced SOCS1 mRNA increase and IFNγ-mediated STAT1 phosphorylation. Moreover, SOCS1 overexpression in RPE cells inhibits IFNγ-induced decrease of IL-8 secretion and prevents IFNγ-induced MHC II and ICAM1/CD54 upregulation. However, SOCS1 overexpression does not affect TNFα-induced IκBα degradation nor block TNFα-induced or IL-17-induced IL-8 secretion. On the contrary, IL-17-induced secretion is increased by SOCS1 overexpression. In conclusion, SOCS1 overexpression in RPE cells inhibits some IFNγ-mediated responses that lead to uveitis development. This notion raises the possibility that SOCS1 overexpression could be a novel target for treating non-infectious uveitis. However, some proinflammatory effects of TNFα and IL-17 stimulation on RPE are not blocked by SOCS1 overexpression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco.

    Science.gov (United States)

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Hildebrandt, Britton; Leasia, Michael

    2013-11-01

    The K-domain of a blueberry-derived SOC1 -like gene promotes flowering in tobacco without negatively impacting yield, demonstrating potential for manipulation of flowering time in horticultural crops. The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and SOC1-likes, belonging to the MIKC(c) (type II) MADS-box gene subfamily, are major floral activators and integrators of plant flowering. Both MADS-domains and K (Keratin)-domains are highly conserved in MIKC(c)-type MADS proteins. While there are many reports on overexpression of intact MIKC(c)-type MADS-box genes, few studies have been conducted to investigate the effects of the K-domains. In this report, a 474-bp K-domain of Vaccinium SOC1-like (VcSOC1-K) was cloned from the cDNA library of the northern highbush blueberry (Vaccinium corymbosum L.). Functional analysis of the VcSOC1-K was conducted by ectopically expressing of 35S:VcSOC1-K in tobacco. Reverse transcription PCR confirmed expression of the VcSOC1-K in T0 plants. Phenotypically, T1 transgenic plants (10 T1 plants/event) flowered sooner after seeding, and were shorter with fewer leaves at the time of flowering, than nontransgenic plants; but seed pod production of transgenic plants was not significantly affected. These results demonstrate that overexpression of the K-domain of a MIKC(c)-type MADS-box gene alone is sufficient to promote early flowering and more importantly without affecting seed production.

  10. Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter

    Science.gov (United States)

    Ashman, Mike; Cardesin Moinelo, Alejandro; Frew, David; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Muñoz, Michela; Nespoli, Federico

    2018-05-01

    The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occultation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning

  11. Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.

    Science.gov (United States)

    Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q

    2018-02-02

    We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.

  12. Internet-to-orbit gateway and virtual ground station: A tool for space research and scientific outreach

    Science.gov (United States)

    Jaffer, Ghulam; Nader, Ronnie; Koudelka, Otto

    2011-09-01

    Students in higher education, and scientific and technological researchers want to communicate with the International Space Station (ISS), download live satellite images, and receive telemetry, housekeeping and science/engineering data from nano-satellites and larger spacecrafts. To meet this need the Ecuadorian Civilian Space Agency (EXA) has recently provided the civilian world with an internet-to-orbit gateway (Hermes-A/Minotaur) Space Flight Control Center (SFCC) available for public use. The gateway has a maximum range of tracking and detection of 22,000 km and sensitivity such that it can receive and discriminate the signals from a satellite transmitter with power˜0.1 W. The capability is enough to receive the faintest low-earth-orbit (LEO) satellites. This gateway virtually connects participating internet clients around the world to a remote satellite ground station (GS), providing a broad community for multinational cooperation. The goal of the GS is to lower financial and engineering barriers that hinder access to science and engineering data from orbit. The basic design of the virtual GS on a user side is based on free software suites. Using these and other software tools the GS is able to provide access to orbit for a multitude of users without each having to go through the costly setups. We present the design and implementation of the virtual GS in a higher education and scientific outreach settings. We also discuss the basic architecture of the single existing system and the benefits of a proposed distributed system. Details of the software tools and their applicability to synchronous round-the-world tracking, monitoring and processing performed by students and teams at Graz University of Technology, Austria, EXA-Ecuador, University of Michigan, USA and JAXA who have participated in various mission operations and have investigated real-time satellite data download and image acquisition and processing. Students and other remote users at these

  13. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  14. SOCS-1 Localizes to the Microtubule Organizing Complex-Associated 20S Proteasome

    OpenAIRE

    Vuong, Bao Q.; Arenzana, Teresita L.; Showalter, Brian M.; Losman, Julie; Chen, X. Peter; Mostecki, Justin; Banks, Alexander S.; Limnander, Andre; Fernandes, Neil; Rothman, Paul B.

    2005-01-01

    The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unkno...

  15. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells.

    Science.gov (United States)

    Xiong, Hua; Du, Wan; Zhang, Yan-Jie; Hong, Jie; Su, Wen-Yu; Tang, Jie-Ting; Wang, Ying-Chao; Lu, Rong; Fang, Jing-Yuan

    2012-02-01

    Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells. Copyright © 2011 Wiley Periodicals, Inc.

  16. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Brender, C; Nielsen, M; Kaltoft, K

    2001-01-01

    ) obtained from affected skin from a patient with mycosis fungoides (MF) and from peripheral blood from a patient with Sezary syndrome (SS). In contrast, constitutive SOCS-3 expression is not found in the leukemic Jurkat T-cell line, the MOLT-4 acute lymphoblastic leukemia cell line, and the monocytic......, it has been hypothesized that an aberrant SOCS expression plays a role in neoplastic transformation. This study reports on a constitutive SOCS-3 expression in cutaneous T-cell lymphoma (CTCL) cell lines. SOCS-3 protein is constitutively expressed in tumor cell lines (but not in nonmalignant T cells...... leukemic cell line U937. Expression of SOCS-3 coincides with a constitutive activation of STAT3 in CTCL tumor cells, and stable transfection of CTCL tumor cells with a dominant negative STAT3 strongly inhibits SOCS-3 expression, whereas transfection with wild-type STAT3 does not. Moreover, the reduced SOCS...

  17. EUV imager and spectrometer for LYOT and solar orbiter space missions

    Science.gov (United States)

    Millard, Anne; Lemaire, Philippe; Vial, Jean-Claude

    2017-11-01

    In the 2010 horizon, solar space missions such as LYOT and Solar Orbiter will allow high cadence UV observations of the Sun at spatial and spectral resolution never obtained before. To reach these goals, the two missions could take advantage of spectro-imagers. A reflective only optical solution for such an instrument is described in this paper and the first results of the mock-up being built at IAS are shown.

  18. Essential issues in SOC design designing complex systems-on-chip

    CERN Document Server

    Lin, Youn-long Steve

    2007-01-01

    Covers issues related to system-on-chip (SoC) design. This book covers IP development, verification, integration, chip implementation, testing and software. It contains valuable academic and industrial examples for those involved with the design of complex SOCs.

  19. Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data

    Directory of Open Access Journals (Sweden)

    Eunji Lee

    2017-09-01

    Full Text Available The deep space orbit determination software (DSODS is a part of a flight dynamic subsystem (FDS for the Korean Pathfinder Lunar Orbiter (KPLO, a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

  20. Experimental Space Shuttle Orbiter Studies to Acquire Data for Code and Flight Heating Model Validation

    Science.gov (United States)

    Wadhams, T. P.; Holden, M. S.; MacLean, M. G.; Campbell, Charles

    2010-01-01

    In an experimental study to obtain detailed heating data over the Space Shuttle Orbiter, CUBRC has completed an extensive matrix of experiments using three distinct models and two unique hypervelocity wind tunnel facilities. This detailed data will be employed to assess heating augmentation due to boundary layer transition on the Orbiter wing leading edge and wind side acreage with comparisons to computational methods and flight data obtained during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM during STS-119 reentry. These comparisons will facilitate critical updates to be made to the engineering tools employed to make assessments about natural and tripped boundary layer transition during Orbiter reentry. To achieve the goals of this study data was obtained over a range of Mach numbers from 10 to 18, with flight scaled Reynolds numbers and model attitudes representing key points on the Orbiter reentry trajectory. The first of these studies were performed as an integral part of Return to Flight activities following the accident that occurred during the reentry of the Space Shuttle Columbia (STS-107) in February of 2003. This accident was caused by debris, which originated from the foam covering the external tank bipod fitting ramps, striking and damaging critical wing leading edge heating tiles that reside in the Orbiter bow shock/wing interaction region. During investigation of the accident aeroheating team members discovered that only a limited amount of experimental wing leading edge data existed in this critical peak heating area and a need arose to acquire a detailed dataset of heating in this region. This new dataset was acquired in three phases consisting of a risk mitigation phase employing a 1.8% scale Orbiter model with special temperature sensitive paint covering the wing leading edge, a 0.9% scale Orbiter model with high resolution thin-film instrumentation in the span direction, and the primary 1.8% scale Orbiter model with detailed

  1. Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering

    Directory of Open Access Journals (Sweden)

    Jared B. Fudge

    2018-04-01

    Full Text Available Like Arabidopsis thaliana, the flowering of the legume Medicago truncatula is promoted by long day (LD photoperiod and vernalization. However, there are differences in the molecular mechanisms involved, with orthologs of two key Arabidopsis thaliana regulators, FLOWERING LOCUS C (FLC and CONSTANS (CO, being absent or not having a role in flowering time function in Medicago. In Arabidopsis, the MADS-box transcription factor gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (AtSOC1, plays a key role in integrating the photoperiodic and vernalization pathways. In this study, we set out to investigate whether the Medicago SOC1 genes play a role in regulating flowering time. Three Medicago SOC1 genes were identified and characterized (MtSOC1a–MtSOC1c. All three MtSOC1 genes, when heterologously expressed, were able to promote earlier flowering of the late-flowering Arabidopsis soc1-2 mutant. The three MtSOC1 genes have different patterns of expression. However, consistent with a potential role in flowering time regulation, all three MtSOC1 genes are expressed in the shoot apex and are up-regulated in the shoot apex of plants in response to LD photoperiods and vernalization. The up-regulation of MtSOC1 genes was reduced in Medicago fta1-1 mutants, indicating that they are downstream of MtFTa1. Insertion mutant alleles of Medicago soc1b do not flower late, suggestive of functional redundancy among Medicago SOC1 genes in promoting flowering.

  2. An optimum organizational structure for a large earth-orbiting multidisciplinary Space Base

    Science.gov (United States)

    Ragusa, J. M.

    1973-01-01

    The purpose of this exploratory study was to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The essential finding of this research was that a four-level project type 'total matrix' model will optimize the efficiency and effectiveness of Space Base technologists.

  3. Platelet injectors for Space Shuttle orbit maneuvering engine

    Science.gov (United States)

    Kahl, R. C.; Labotz, R. J.; Bassham, L. B.

    1974-01-01

    The Space Shuttle Orbit Maneuvering Subsystem Rocket Engine employs a platelet element injector concept. This injector has demonstrated 316-sec vacuum specific impulse performance under simulated altitude conditions when tested with a milled slot/electroformed nickel close-out regenerative chamber and a full 71 area ratio nozzle. To date, over 300 altitude engine tests and 300 stability bomb tests have demonstrated stable, erosion free operation with this concept to test durations of 150 seconds. The injector and chamber also meet the reusable requirements of the shuttle with a cycle life capability in excess of 1000 cycles. An extensive altitude restart program has also demonstrated OMS-engine operation over large variations in the burn and coast times with helium saturated propellants.

  4. The role of spin–orbit coupling in topologically protected interface states in Dirac materials

    International Nuclear Information System (INIS)

    Abergel, D S L; Balatsky, Alexander V; Edge, Jonathan M

    2014-01-01

    We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin–orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw–Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as MoS 2 . (paper)

  5. Over-expression of KdSOC1 gene affected plantlet morphogenesis in Kalanchoe daigremontiana.

    Science.gov (United States)

    Zhu, Chen; Wang, Li; Chen, Jinhua; Liu, Chenglan; Zeng, Huiming; Wang, Huafang

    2017-07-17

    Kalanchoe daigremontiana reproduces asexually by producing plantlets along the leaf margin. The aim of this study was to identify the function of the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 gene in Kalanchoe daigremontiana (KdSOC1) during plantlet morphogenesis. In this study, KdSOC1 gene expression was detected at stem cell niche during in vitro somatic embryogenesis and plantlet morphogenesis. Disrupting endogenous auxin transportation suppressed the KdSOC1 gene response. Knockdown of the KdSOC1 gene caused a defect in cotyledon formation during the early heart stage of somatic embryogenesis. Over-expression (OE) of the KdSOC1 gene resulted in asymmetric plantlet distribution, a reduced number of plantlets, thicker leaves, and thicker vascular fibers. Higher KdPIN1 gene expression and auxin content were found in OE plant compared to those of wild-type plant leaves, which indicated possible KdSOC1 gene role in affecting auxin distribution and accumulation. KdSOC1 gene OE in DR5-GUS Arabidopsis reporting lines resulted in an abnormal auxin response pattern during different stages of somatic embryogenesis. In summary, the KdSOC1 gene OE might alter auxin distribution and accumulation along leaf margin to initiate plantlet formation and distribution, which is crucial for plasticity during plantlet formation under various environmental conditions.

  6. The Science Operations Concept for the ExoMars 2016 Trace Gas Orbiter

    Science.gov (United States)

    Frew, D.

    2014-04-01

    The ExoMars 2016 Science Operations Centre (SOC) based at the European Space Astronomy Centre is responsible for coordinating the science planning activities for the Trace Gas Orbiter. Science planning will involve all members of the ExoMars 2016 science ground segment (SGS), namely the SOC at ESAC, the Russian SOC at IKI, the orbiter instrument teams and the science management of the 2016 mission represented by the science working team (SWT) that is chaired by the project scientist. The science operations concept for the mission builds on the legacy inherited from previous ESA planetary missions, in particular from Mars Express for the core plan validation aspects and from the Smart-1 lunar mission for the opportunity analysis and longterm planning approach. Further concept drivers have been derived from the ExoMars 2016 mission profile in the areas of orbit predictability, instrument design and the usage of TGO as a relay for surface assets including the ExoMars 2018 rover. This paper will give an over view of the entire uplink planning process as it is conducted over 3 distinct planning cycles. The Long Term Plan (LTP) establishes the baseline science plan and demonstrates the operational feasibility of meeting the mission science goals formulated by the science working team (SWT) at science management level. The LTP has a planning horizon of 6 months. Each month of the baseline science plan is refined with the instrument teams within the Medium Term Plan (MTP) to converge on a frozen attitude request and resource envelopes for all of the observations in the plan. During the Short Term Planning cycle the SOC will iterate with the teams to finalise the commanding for all of the observations in the plan for the coming week. The description of the uplink planning process will focus on two key areas that are common to all of the planning cycles mentioned above: • Science Plan Abstraction: Interacting with the science plan at the appropriate level of abstraction to

  7. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  8. Calculations of spin-polarized Goos-Hänchen displacement in magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit couplings

    Science.gov (United States)

    Lu, Mao-Wang; Chen, Sai-Yan; Zhang, Gui-Lian; Huang, Xin-Hong

    2018-04-01

    We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure—a magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.

  9. Calculations of spin-polarized Goos-Hänchen displacement in magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit couplings.

    Science.gov (United States)

    Lu, Mao-Wang; Chen, Sai-Yan; Zhang, Gui-Lian; Huang, Xin-Hong

    2018-04-11

    We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure-a magnetically confined GaAs/Al x Ga 1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.

  10. A Numerical Approach to Estimate the Ballistic Coefficient of Space Debris from TLE Orbital Data

    Science.gov (United States)

    Narkeliunas, Jonas

    2016-01-01

    Low Earth Orbit (LEO) is full of space debris, which consist of spent rocket stages, old satellites and fragments from explosions and collisions. As of 2009, more than 21,000 orbital debris larger than 10 cm are known to exist], and while it is hard to track anything smaller than that, the estimated population of particles between 1 and 10 cm in diameter is approximately 500,000, whereas small as 1 cm exceeds 100 million. These objects orbit Earth with huge kinetic energies speeds usually exceed 7 kms. The shape of their orbit varies from almost circular to highly elliptical and covers all LEO, a region in space between 160 and 2,000 km above sea level. Unfortunately, LEO is also the place where most of our active satellites are situated, as well as, International Space Station (ISS) and Hubble Space Telescope, whose orbits are around 400 and 550 km above sea level, respectively.This poses a real threat as debris can collide with satellites and deal substantial damage or even destroy them.Collisions between two or more debris create clouds of smaller debris, which are harder to track and increase overall object density and collision probability. At some point, the debris density couldthen reach a critical value, which would start a chain reaction and the number of space debris would grow exponentially. This phenomenon was first described by Kessler in 1978 and he concluded that it would lead to creation of debris belt, which would vastly complicate satellite operations in LEO. The debris density is already relatively high, as seen from several necessary debris avoidance maneuvers done by Shuttle, before it was discontinued, and ISS. But not all satellites have a propulsion system to avoid collision, hence different methods need to be applied. One of the proposed collision avoidance concepts is called LightForce and it suggests using photon pressure to induce small orbital corrections to deflect debris from colliding. This method is very efficient as seen from

  11. A low cost automatic detection and ranging system for space surveillance in the medium Earth orbit region and beyond.

    Science.gov (United States)

    Danescu, Radu; Ciurte, Anca; Turcu, Vlad

    2014-02-11

    The space around the Earth is filled with man-made objects, which orbit the planet at altitudes ranging from hundreds to tens of thousands of kilometers. Keeping an eye on all objects in Earth's orbit, useful and not useful, operational or not, is known as Space Surveillance. Due to cost considerations, the space surveillance solutions beyond the Low Earth Orbit region are mainly based on optical instruments. This paper presents a solution for real-time automatic detection and ranging of space objects of altitudes ranging from below the Medium Earth Orbit up to 40,000 km, based on two low cost observation systems built using commercial cameras and marginally professional telescopes, placed 37 km apart, operating as a large baseline stereovision system. The telescopes are pointed towards any visible region of the sky, and the system is able to automatically calibrate the orientation parameters using automatic matching of reference stars from an online catalog, with a very high tolerance for the initial guess of the sky region and camera orientation. The difference between the left and right image of a synchronized stereo pair is used for automatic detection of the satellite pixels, using an original difference computation algorithm that is capable of high sensitivity and a low false positive rate. The use of stereovision provides a strong means of removing false positives, and avoids the need for prior knowledge of the orbits observed, the system being able to detect at the same time all types of objects that fall within the measurement range and are visible on the image.

  12. On-Orbit Prospective Echocardiography on International Space Station Crew

    Science.gov (United States)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David S.; Garcia, Kathleen M.; Melton, Shannon L.; Feiveson, Alan; Dulchavsky, Scott A.

    2010-01-01

    Introduction A prospective trial of echocardiography was conducted on of six crewmembers onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what "space normal" echocardiographic data is. Methods Each crewmember operator (n=6) had 2-hour preflight training. Baseline echocardiographic data were collected 55 to 167days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure - 114 days (34 -- 190)). On Orbit ultrasound operators used an e-learning system within 24h of these sessions. Expert assistance was provided using ultrasound video downlink and two-way voice. Testing was repeated 5 to 16 days after landing. Separate ANOVA was used on each echocardiographic variable (n=33). Within each ANOVA, three tests were made: a) effect of mission phase (preflight, in-flight, post flight); b) effect of echo technician (two technicians independently analyzed the data); c) interaction between mission phase and technician. Results Nine rejections of the null hypothesis (mission phase or technician or both had no effect) were discovered and considered for follow up. Of these, six rejections were for significant technician effects, not as a result of space flight. Three rejections of the null hypothesis (Aortic Valve time velocity integral, Mitral E wave Velocity and heart rate) were attributable to space flight, however determined not to be clinically significant. No rejections were due to the interaction between technician and space flight. Conclusion No consistent clinically significant effects of long-duration space flight were seen in echocardiographic variables of the given group of subjects.

  13. SOCS3 inhibiting migration of A549 cells correlates with PYK2 signaling in vitro

    Directory of Open Access Journals (Sweden)

    Zhang Qingfu

    2008-05-01

    Full Text Available Abstract Background Suppressor of cytokine signaling 3 (SOCS3 is considered to inhibit cytokine responses and play a negative role in migration of various cells. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor kinase and has been found crucial to cell motility. However, little is known about whether SOCS3 could regulate PYK2 pro-migratory function in lung cancer. Methods The methylation status of SOCS3 was investigated in HBE and A549 cell lines by methylation-specific PCR. A549 cells were either treated with a demethylation agent 5-aza-2'-deoxycytidine or transfected with three SOCS3 mutants with various functional domains deleted. Besides, cells were pretreated with a proteasome inhibitor β-lactacystin where indicated. The effects of SOCS3 up-regulation on PYK2 expression, PYK2 and ERK1/2 phosphorylations were assessed by western blot using indicated antibodies. RT-PCR was used to estimate PYK2 mRNA levels. Transwell experiments were performed to evaluate cell migration. Results SOCS3 expression was found impaired in A549 cells and higher PYK2 activity was correlated with enhanced cell migration. We identified that SOCS3 was aberrantly methylated in the exon 2, and 5-aza-2'-deoxycytidine restored SOCS3 expression. Reactivation of SOCS3 attenuated PYK2 expression and phosphorylation, cell migration was inhibited as well. Transfection studies indicated that exogenous SOCS3 interacted with PYK2, and both the Src homology 2 (SH2 and the kinase inhibitory region (KIR domains of SOCS3 contributed to PYK2 binding. Furthermore, SOCS3 was found to inhibit PYK2-associated ERK1/2 activity in A549 cells. SOCS3 possibly promoted degradation of PYK2 in a SOCS-box-dependent manner and interfered with PYK2-related signaling events, such as cell migration. Conclusion These data indicate that SOCS3 negatively regulates cell motility and decreased SOCS3 induced by methylation may confer a migration advantage to A549 cells. These results also suggest a

  14. What Threats to Human Health Does Space Radiation Pose in Orbit

    Science.gov (United States)

    Wu, Honglu; Semones, Eddie; Weyland, Mark; Zapp, Neal; Cucinotta, Francis A.

    2011-01-01

    The Space Shuttle program spanned more than the entire length of a solar cycle. Investigations aimed towards understanding the health risks of the astronauts from exposures to space radiation involved mostly physical measurements of the dose and the linear energy transfer (LET) spectrum. Measurement of the dose rate on the Shuttle provided invariable new data for different periods of the solar cycle, whereas measurement of the LET spectrum using the tissue equivalent proportional counter (TEPC) produced the most complete mapping of the radiation environment of the low Earth orbits (LEO). Exposures to the Shuttle astronauts were measured by the personal dosimeter worn by the crewmembers. Analysis of over 300 personal dosimeter readings indicated a dependence on the mission duration, the altitude and inclination of the orbit, and the solar cycle, with the crewmembers on the launch and repair of the Hubble telescope receiving the highest doses due to the altitude of the mission. Secondary neutrons inside the Shuttle were determined by recoil protons or with Bonner spheres, and may contribute significantly to the risks of the crewmembers. In addition, the skin dose and the doses received at different organs were compared using a human phantom onboard a Shuttle mission. A number of radiobiology investigations wer e also performed. The biological doses were determined on six astronauts/cosmonauts on long-duration Shuttle/Mir missions and on two crewmembers on a Hubble repair mission by analyzing the damages in the chromosomes of the crewmembers? white blood cells. Several experiments were also conducted to address the question of possible synergistic effects of spaceflight, microgravity in particular, on the repair of radiation-induced DNA damages. The experimental design included exposure of cells before launch, during flight, or after landing. These physical and biological studies were invaluable in predicting the health risks for astronauts on ISS and future

  15. Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Science.gov (United States)

    Cottin, Hervé; Kotler, Julia Michelle; Billi, Daniela; Cockell, Charles; Demets, René; Ehrenfreund, Pascale; Elsaesser, Andreas; d'Hendecourt, Louis; van Loon, Jack J. W. A.; Martins, Zita; Onofri, Silvano; Quinn, Richard C.; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; de la Torre, Rosa; de Vera, Jean-Pierre; Westall, Frances; Carrasco, Nathalie; Fresneau, Aurélien; Kawaguchi, Yuko; Kebukawa, Yoko; Nguyen, Dara; Poch, Olivier; Saiagh, Kafila; Stalport, Fabien; Yamagishi, Akihiko; Yano, Hajime; Klamm, Benjamin A.

    2017-07-01

    The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format.

  16. Topology of tokamak orbits

    International Nuclear Information System (INIS)

    Rome, J.A.; Peng, Y.K.M.

    1978-09-01

    Guiding center orbits in noncircular axisymmetric tokamak plasmas are studied in the constants of motion (COM) space of (v, zeta, psi/sub m/). Here, v is the particle speed, zeta is the pitch angle with respect to the parallel equilibrium current, J/sub parallels/, and psi/sub m/ is the maximum value of the poloidal flux function (increasing from the magnetic axis) along the guiding center orbit. Two D-shaped equilibria in a flux-conserving tokamak having β's of 1.3% and 7.7% are used as examples. In this space, each confined orbit corresponds to one and only one point and different types of orbits (e.g., circulating, trapped, stagnation and pinch orbits) are represented by separate regions or surfaces in the space. It is also shown that the existence of an absolute minimum B in the higher β (7.7%) equilibrium results in a dramatically different orbit topology from that of the lower β case. The differences indicate the confinement of additional high energy (v → c, within the guiding center approximation) trapped, co- and countercirculating particles whose orbit psi/sub m/ falls within the absolute B well

  17. Evaluation of SOC for the presumptive identification of Candida albicans and Cryptococcus neoformans.

    Science.gov (United States)

    Fleming, W H; Knezek, K L; Dorn, G L

    1987-01-01

    SOC, a fungal growth medium composed of Solryth, oxgall, and caffeic acid, was evaluated as a medium to provide rapid, differential identification of Candida albicans and Cryptococcus neoformans. Using a variety of common isolation media to produce the yeast inocula, the germ tube methods tested ranked in the following order of decreasing sensitivity: SOC (97% +/- 1), serum (92% +/- 5), rabbit coagulase plasma with EDTA in combination with tryptic soy broth (89% +/- 5), TOC (89% +/- 6), and rabbit coagulase plasma with EDTA (83% +/- 4). In chlamydospore production, SOC also proved to be the most sensitive after 24 h incubation: SOC (96% +/- 2), TOC (80% +/- 2), and cornmeal-Tween 80 agar (14% +/- 3). Other medically important yeasts showed normal patterns of growth within 24 h on SOC, thus assisting in their identification. Eighty strains of Cryptococcus neoformans showed characteristic brown pigmentation on SOC and TOC within 18 h, while all other species of the genus Cryptococcus and 229 Candida isolates did not show a change in pigmentation.

  18. Estimation of power lithium-ion battery SOC based on fuzzy optimal decision

    Science.gov (United States)

    He, Dongmei; Hou, Enguang; Qiao, Xin; Liu, Guangmin

    2018-06-01

    In order to improve vehicle performance and safety, need to accurately estimate the power lithium battery state of charge (SOC), analyzing the common SOC estimation methods, according to the characteristics open circuit voltage and Kalman filter algorithm, using T - S fuzzy model, established a lithium battery SOC estimation method based on the fuzzy optimal decision. Simulation results show that the battery model accuracy can be improved.

  19. What are the effects of agricultural management on soil organic carbon (SOC) stocks?

    DEFF Research Database (Denmark)

    Söderström, Bo; Hedlund, Katarina; Jackson, Louise E.

    2014-01-01

    the physical and biological properties of the soil. Intensification of agriculture and land-use change from grasslands to croplands are generally known to deplete SOC stocks. The depletion is exacerbated through agricultural practices with low return of organic material and various mechanisms......Changes in soil organic carbon (SOC) stocks significantly influence the atmospheric C concentration. Agricultural management practices that increase SOC stocks thus may have profound effects on climate mitigation. Additional benefits include higher soil fertility since increased SOC stocks improve......, such as oxidation/mineralization, leaching and erosion. However, a systematic review comparing the efficacy of different agricultural management practices to increase SOC stocks has not yet been produced. Since there are diverging views on this matter, a systematic review would be timely for framing policies...

  20. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling.

    Science.gov (United States)

    Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.

  1. Anomalous property of Ag(BO2)2 hyperhalogen: does spin-orbit coupling matter?

    Science.gov (United States)

    Chen, Hui; Kong, Xiang-Yu; Zheng, Weijun; Yao, Jiannian; Kandalam, Anil K; Jena, Puru

    2013-10-07

    Hyperhalogens were recently identified as a new class of highly electronagative species which are composed of metals and superhalogens. In this work, high-level theoretical calculations and photoelectron spectroscopy experiments are systematically conducted to investigate a series of coinage-metal-containing hyperhalogen anions, Cu(BO(2))(2)(-), Ag(BO(2))(2)(-), and Au(BO(2))(2)(-). The vertical electron detachment energy (VDE) of Ag(BO(2))(2)(-) is anomalously higher than those of Au(BO(2))(2)(-) and Cu(BO(2))(2)(-). In quantitative agreement with the experiment, high-level ab initio calculations reveal that spin-orbit coupling (SOC) lowers the VDE of Au(BO(2))(2)(-) significantly. The sizable magnitude of about 0.5 eV of SOC effect on the VDE of Au(BO(2))(2)(-) demonstrates that SOC plays an important role in the electronic structure of gold hyperhalogens. This study represents a new paradigm for relativistic electronic structure calculations for the one-electron-removal process of ionic Au(I)L(2) complexes, which is characterized by a substantial SOC effect. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    Science.gov (United States)

    Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.

    2018-04-01

    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

  3. The impact of soil redistribution on SOC pools in a Mediterranean agroforestry catchment

    Science.gov (United States)

    Quijano, Laura; Gaspar, Leticia; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soil redistribution processes play an important role influencing the spatial distribution patterns of soil and associated soil organic carbon (SOC) at landscape scale. Information on drivers of SOC dynamics is key for evaluating both soil degradation and SOC stability that can affect soil quality and sustainability. 137Cs measurements provide a very effective tool to infer spatial patterns of soil redistribution and quantify soil redistribution rates in different landscapes, but to date these data are scarce in mountain Mediterranean agroecosystems. We evaluate the effect of soil redistribution on SOC and SOC pools in relation to land use in a Mediterranean mountain catchment (246 ha). To this purpose, two hundred and four soil bulk cores were collected on a 100 m grid in the Estaña lakes catchment located in the central sector of the Spanish Pyrenees (31T 4656250N 295152E). The study area is an agroforestry and endorheic catchment characterized by the presence of evaporite dissolution induced dolines, some of which host permanent lakes. The selected landscape is representative of rainfed areas of Mediterranean continental climate with erodible lithology and shallow soils, and characterized by an intense anthropogenic activity through cultivation and water management. The cultivated and uncultivated areas are heterogeneously distributed. SOC and SOC pools (the active and decomposable fraction, ACF and the stable carbon fraction SCF) were measured by the dry combustion method and soil redistribution rates were derived from 137Cs measurements. The results showed that erosion predominated in the catchment, most of soil samples were identified as eroded sites (n=114) with an average erosion rate of 26.9±51.4 Mg ha-1 y-1 whereas the mean deposition rate was 13.0±24.2 Mg ha-1 y-1. In cultivated soils (n=54) the average of soil erosion rate was significantly higher (78.5±74.4 Mg ha-1 y-1) than in uncultivated soils (6.8±10.4 Mg ha-1 y-1). Similarly, the mean of soil

  4. Update on International Space Station Nickel-Hydrogen Battery On-Orbit Performance

    Science.gov (United States)

    Dalton, Penni; Cohen, Fred

    2003-01-01

    International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35% depth of discharge (DOD) maximum during normal operation. Thirty-eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells, to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 (Port) Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will discuss the battery performance data after two and a half years of cycling.

  5. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  6. Space shuttle orbital maneuvering engine platelet injector program

    Science.gov (United States)

    1975-01-01

    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  7. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    Science.gov (United States)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  8. Orbital Debris and NASA's Measurement Program

    Science.gov (United States)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  9. Selection of key terrain attributes for SOC model

    DEFF Research Database (Denmark)

    Greve, Mogens Humlekrog; Adhikari, Kabindra; Chellasamy, Menaka

    As an important component of the global carbon pool, soil organic carbon (SOC) plays an important role in the global carbon cycle. SOC pool is the basic information to carry out global warming research, and needs to sustainable use of land resources. Digital terrain attributes are often use...... was selected, total 2,514,820 data mining models were constructed by 71 differences grid from 12m to 2304m and 22 attributes, 21 attributes derived by DTM and the original elevation. Relative importance and usage of each attributes in every model were calculated. Comprehensive impact rates of each attribute...

  10. An Online SOC and SOH Estimation Model for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Shyh-Chin Huang

    2017-04-01

    Full Text Available The monitoring and prognosis of cell degradation in lithium-ion (Li-ion batteries are essential for assuring the reliability and safety of electric and hybrid vehicles. This paper aims to develop a reliable and accurate model for online, simultaneous state-of-charge (SOC and state-of-health (SOH estimations of Li-ion batteries. Through the analysis of battery cycle-life test data, the instantaneous discharging voltage (V and its unit time voltage drop, V′, are proposed as the model parameters for the SOC equation. The SOH equation is found to have a linear relationship with 1/V′ times the modification factor, which is a function of SOC. Four batteries are tested in the laboratory, and the data are regressed for the model coefficients. The results show that the model built upon the data from one single cell is able to estimate the SOC and SOH of the three other cells within a 5% error bound. The derived model is also proven to be robust. A random sampling test to simulate the online real-time SOC and SOH estimation proves that this model is accurate and can be potentially used in an electric vehicle battery management system (BMS.

  11. NEW EPICS/RTEMS IOC BASED ON ALTERA SOC AT JEFFERSON LAB

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jianxun [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Seaton, Chad [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Allison, Trent L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Bevins, Brian S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Cuffe, Anthony W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-02-01

    A new EPICS/RTEMS IOC based on the Altera System-on-Chip (SoC) FPGA is being designed at Jefferson Lab. The Altera SoC FPGA integrates a dual ARM Cortex-A9 Hard Processor System (HPS) consisting of processor, peripherals and memory interfaces tied seamlessly with the FPGA fabric using a high-bandwidth interconnect backbone. The embedded Altera SoC IOC has features of remote network boot via U-Boot from SD card or QSPI Flash, 1Gig Ethernet, 1GB DDR3 SDRAM on HPS, UART serial ports, and ISA bus interface. RTEMS for the ARM processor BSP were built with CEXP shell, which will dynamically load the EPICS applications at runtime. U-Boot is the primary bootloader to remotely load the kernel image into local memory from a DHCP/TFTP server over Ethernet, and automatically run RTEMS and EPICS. The first design of the SoC IOC will be compatible with Jefferson Lab’s current PC104 IOCs, which have been running in CEBAF 10 years. The next design would be mounting in a chassis and connected to a daughter card via standard HSMC connectors. This standard SoC IOC will become the next generation of low-level IOC for the accelerator controls at Jefferson Lab.

  12. Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling.

    Science.gov (United States)

    Kedzierski, Lukasz; Tate, Michelle D; Hsu, Alan C; Kolesnik, Tatiana B; Linossi, Edmond M; Dagley, Laura; Dong, Zhaoguang; Freeman, Sarah; Infusini, Giuseppe; Starkey, Malcolm R; Bird, Nicola L; Chatfield, Simon M; Babon, Jeffrey J; Huntington, Nicholas; Belz, Gabrielle; Webb, Andrew; Wark, Peter Ab; Nicola, Nicos A; Xu, Jianqing; Kedzierska, Katherine; Hansbro, Philip M; Nicholson, Sandra E

    2017-02-14

    Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5 -deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza.

  13. NIRS as an alternative to conventional soil analysis for Greenland soils (focus on SOC)

    DEFF Research Database (Denmark)

    Knadel, Maria; Ogric, Mateja; Adhikari, Kabindra

    Soil organic carbon (SOC) is an important soil property. It is the main constituents of soil organic matter and a good indicator of soil quality. The estimation and mapping of SOC content could be used to select potential agricultural areas in the Arctic areas. However, conventional analysis of SOC...... are time consuming and expensive. They involve a lot of sample preparation, and chemicals and are destructive. Near infrared spectroscopy (NIRS) in the range between 400 and 2500 nm is an alternative method for SOC analysis. It is fast and non-destructive. The aims of this study where to test...... the feasibility of using NIRS to estimate SOC content on a landscape and field scale in Greenland. Partial Least squares regression models were built to correlated soil spectra and their reference SOC data to develop calibration models. Very good predictive ability for both landscape and field scale were obtained...

  14. Spin injection into Pt-polymers with large spin-orbit coupling

    Science.gov (United States)

    Sun, Dali; McLaughlin, Ryan; Siegel, Gene; Tiwari, Ashutosh; Vardeny, Z. Valy

    2014-03-01

    Organic spintronics has entered a new era of devices that integrate organic light-emitting diodes (OLED) in organic spin valve (OSV) geometry (dubbed bipolar organic spin valve, or spin-OLED), for actively manipulating the device electroluminescence via the spin alignment of two ferromagnetic electrodes (Science 337, 204-209, 2012; Appl. Phys. Lett. 103, 042411, 2013). Organic semiconductors that contain heavy metal elements have been widely used as phosphorescent dopants in white-OLEDs. However such active materials are detrimental for OSV operation due to their large spin-orbit coupling (SOC) that may limit the spin diffusion length and thus spin-OLED based on organics with large SOC is a challenge. We report the successful fabrication of OSVs based on pi-conjugated polymers which contain intrachain Platinum atoms (dubbed Pt-polymers). Spin injection into the Pt-polymers is investigated by the giant magnetoresistance (GMR) effect as a function of bias voltage, temperature and polymer layer thickness. From the GMR bias voltage dependence we infer that the ``impendence mismatch'' between ferromagnetic electrodes and Pt-polymer may be suppressed due to the large SOC. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.

  15. Antisymmetric Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2007-02-01

    Full Text Available In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform. Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  16. Survey of orbital dynamics and control of space rendezvous

    Directory of Open Access Journals (Sweden)

    Luo Yazhong

    2014-02-01

    Full Text Available Rendezvous orbital dynamics and control (RODC is a key technology for operating space rendezvous and docking missions. This paper surveys the studies on RODC. Firstly, the basic relative dynamics equation set is introduced and its improved versions are evaluated. Secondly, studies on rendezvous trajectory optimization are commented from three aspects: the linear rendezvous, the nonlinear two-body rendezvous, and the perturbed and constrained rendezvous. Thirdly, studies on relative navigation are briefly reviewed, and then close-range control methods including automated control, manual control, and telecontrol are analyzed. Fourthly, advances in rendezvous trajectory safety and robust analysis are surveyed, and their applications in trajectory optimization are discussed. Finally, conclusions are drawn and prospects of studies on RODC are presented.

  17. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo Ricardo da, E-mail: diogo_cost@hotmail.com [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Hansen, Matheus [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ. São Paulo, Rua do Matão, Cidade Universitária, 05314-970, São Paulo – SP (Brazil); Guarise, Gustavo [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Medrano-T, Rene O. [Departamento de Ciências Exatas e da Terra, UNIFESP – Universidade Federal de São Paulo, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP (Brazil); Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)

    2016-04-22

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  18. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    International Nuclear Information System (INIS)

    Costa, Diogo Ricardo da; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-01-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  19. Space Shuttle Orbiter oxygen partial pressure sensing and control system improvements

    Science.gov (United States)

    Frampton, Robert F.; Hoy, Dennis M.; Kelly, Kevin J.; Walleshauser, James J.

    1992-01-01

    A program aimed at developing a new PPO2 oxygen sensor and a replacement amplifier for the Space Shuttle Orbiter is described. Experimental design methodologies used in the test and modeling process made it possible to enhance the effectiveness of the program and to reduce its cost. Significant cost savings are due to the increased lifetime of the basic sensor cell, the maximization of useful sensor life through an increased amplifier gain adjustment capability, the use of streamlined production processes for the manufacture of the assemblies, and the refurbishment capability of the replacement sensor.

  20. Synergy of SOCS-1 Inhibition and Microbial-Based Cancer Vaccines

    Science.gov (United States)

    2013-09-01

    SH2 domain; a docking motif for interaction with tyrosine...IL‐ 4, IL‐7, IL‐15), IFN‐α, IFN‐γ, and IL‐12. While the SH2 domain targets the SOCS proteins to specific molecules within the JAK‐ STAT pathway, the...SOCS‐box functions as an E3 ubiquitin ligase, promoting degradation of the cytokine receptor complex. SOCS1 also contains a kinase inhibitory

  1. The complex structures on the coadjoint orbit spaces of Diff(S1) and on Bers' universal Teichmueller space are compatible

    International Nuclear Information System (INIS)

    Nag, S.; Verjovsky, A.

    1988-08-01

    Precisely two coadjoint orbit spaces of the group of string reparametrizations carry in a natural way the structure of infinite dimensional, holomorphically homogeneous complex manifolds. These are M 1 =Diff(S 1 )/Rot(S 1 ) and M 2 =Diff(S 1 )/Mo-barb(S 1 ). M 2 can be naturally considered as (embedded in) the classical univeral Teichmueller space T(Δ), simply by noting that a diffeomorphism of S 1 is a quasi-symmetric homeomorphism. T(Δ) is itself a homomorphically homogeneous complex Banach manifold. We prove that the inclusion of M 2 in T(Δ) is complex analytic. Every Teichmueller space of finite or infinite dimension is contained canonically and holomorphically in T(Δ). Our result thus appears to connect the loop space approach to bosonic string theory with the sum-over moduli (Polyakov path integral) approach. (author). 12 refs

  2. Clock generators for SOC processors circuits and architectures

    CERN Document Server

    Fahim, Amr

    2004-01-01

    This book explores the design of fully-integrated frequency synthesizers suitable for system-on-a-chip (SOC) processors. The text takes a more global design perspective in jointly examining the design space at the circuit level as well as at the architectural level. The comprehensive coverage includes summary chapters on circuit theory as well as feedback control theory relevant to the operation of phase locked loops (PLLs). On the circuit level, the discussion includes low-voltage analog design in deep submicron digital CMOS processes, effects of supply noise, substrate noise, as well device noise. On the architectural level, the discussion includes PLL analysis using continuous-time as well as discrete-time models, linear and nonlinear effects of PLL performance, and detailed analysis of locking behavior. The book provides numerous real world applications, as well as practical rules-of-thumb for modern designers to use at the system, architectural, as well as the circuit level.

  3. Impact of vegetation types on soil organic carbon stocks SOC-S in Mediterranean natural areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Cantudo-Pérez, Marta

    2015-04-01

    Soils play a key role in the carbon geochemical cycle because they can either emit large quantities of CO2 or on the contrary they can act as a store for carbon. Agriculture and forestry are the only activities that can achieve this effect through photosynthesis and the carbon incorporation into carbohydrates (Parras-Alcántara et al., 2013). The Mediterranean evergreen oak Woodland (MEOW - dehesa) is a type of pasture with scattered evergreen and deciduous oak stands in which cereals are often grown under the tree cover. It is a system dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork as well as to hunting. These semi-natural areas still preserve some of the primitive vegetation of the Mediterranean oak forests. The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. These Iberian open woodland rangelands (dehesas) have been studied from different points of view: hydrologically, with respect to soil organic matter content, as well as in relation to gully erosion, topographical thresholds, soil erosion and runoff production, soil degradation and management practices…etc, among others. The soil organic carbon stock capacity depends not only on abiotic factors such as the mineralogical composition and the climate, but also on soil use and management (Parras et al., 2014 and 2015). In Spanish soils, climate, use and management strongly affect the carbon variability, mainly in soils in dry Mediterranean climates characterized by low organic carbon content, weak structure and readily degradable soils. Hontoria et al. (2004) emphasized that the climate and soil use are two factors that greatly influence carbon content in the Mediterranean climate. This research sought to analyze the SOC stock (SOCS) variability in MEOW - dehesa with cereals, olive grove and Mediterranean oak forest

  4. A numerical model of the electrodynamics of plasma within the contaminant gas cloud of the space shuttle orbiter at low Earth orbit

    International Nuclear Information System (INIS)

    Eccles, J.V.; Raitt, W.J.; Banks, P.M.

    1989-01-01

    This paper presents results from a two-dimensional, finite-difference model used to solve for the time evolution of low beta plasma within the neutral contaminant cloud in the vicinity of space platforms in low earth orbit. The model of the ambient and contaminant plasma dynamics takes into account the effects of the geomagnetic field, electric fields, background ionosphere, ion-neutral collisions, chemistry, and both Pederson and Hall currents. Net ionization and charge exchange source terms are included in the fluid equations to study electrodynamic effects of chemistry within a moving neutral cloud in the low earth orbit ionosphere. The model is then used with complete water cloud chemistry to simulate the known outgassing situation of the space shuttle Orbiter. A comparison is made of the model results with plasma observations made during daytime on OSS-1/STS-3 mission. The reported density enhancements of the OSS-1 mission are unattainable with normal photoionization and charge exchange rates of simple water cloud chemistry used in the two-dimensional model. The enhanced densities are only attained by a generic chemistry model if a net ionization rate 1,000 times higher than the photoionization rate of water is used. It is also shown that significant plasma buildup at the front of the contaminant neutral cloud can occur due to momentum transfer from the neutral outgas cloud to the plasma through elastic collisions and charge exchange. The currents caused by elastic and reactive collisions result in the generation of a small polarization electric field within the outgas cloud

  5. DMPD: Regulation of cytokine signaling by SOCS family molecules. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14644140 Regulation of cytokine signaling by SOCS family molecules. Fujimoto M, Nak...a T. Trends Immunol. 2003 Dec;24(12):659-66. (.png) (.svg) (.html) (.csml) Show Regulation of cytokine signaling by SOCS family... molecules. PubmedID 14644140 Title Regulation of cytokine signaling by SOCS family molec

  6. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  7. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  8. Optimization method of star tracker orientation for sun-synchronous orbit based on space light distribution.

    Science.gov (United States)

    Wang, Geng; Xing, Fei; Wei, Minsong; Sun, Ting; You, Zheng

    2017-05-20

    Star trackers, optical attitude sensors with high precision, are susceptible to space light from the Sun and the Earth albedo. Until now, research in this field has lacked systematic analysis. In this paper, we propose an installation orientation method for a star tracker onboard sun-synchronous-orbit spacecraft and analyze the space light distribution by transforming the complicated relative motion among the Sun, Earth, and the satellite to the body coordinate system of the satellite. Meanwhile, the boundary-curve equations of the areas exposed to the stray light from the Sun and the Earth albedo were calculated by the coordinate-transformation matrix under different maneuver attitudes, and the installation orientation of the star tracker was optimized based on the boundary equations instead of the traditional iterative simulation method. The simulation and verification experiment indicate that this installation orientation method is effective and precise and can provide a reference for the installation of sun-synchronous orbit star trackers free from the stray light.

  9. An Overview and Comparison of Online Implementable SOC Estimation Methods for Lithium-ion Battery

    DEFF Research Database (Denmark)

    Meng, Jinhao; Ricco, Mattia; Luo, Guangzhao

    2018-01-01

    . Many SOC estimation methods have been proposed in the literature. However, only a few of them consider the real-time applicability. This paper reviews recently proposed online SOC estimation methods and classifies them into five categories. Their principal features are illustrated, and the main pros...... and cons are provided. The SOC estimation methods are compared and discussed in terms of accuracy, robustness, and computation burden. Afterward, as the most popular type of model based SOC estimation algorithms, seven nonlinear filters existing in literature are compared in terms of their accuracy...

  10. Spatial analysis of galactic cosmic ray particles in low earth orbit/near equator orbit using SPENVIS

    International Nuclear Information System (INIS)

    Suparta, W; Zulkeple, S K

    2014-01-01

    The space environment has grown intensively harmful to spacecraft and astronauts. Galactic cosmic rays (GCRs) are one of the radiation sources that composed of high energetic particles originated from space and capable of damaging electronic systems through single event upset (SEU) process. In this paper, we analyzed GCR fluxes at different altitudes by using Space Environment Information System (SPENVIS) software and the results are compared to determine their intensities with respect to distance in the Earth's orbit. The altitudes are set at low earth orbit (400 km and 685 km), medium earth orbit (19,100 km and 20,200 km) and high earth orbit (35,793 km and 1,000,000 km). Then, within Low Earth Orbit (LEO) near the equator (NEqO), we used altitude of 685 km to compare GCRs with the intensities of solar particles and trapped particles in the radiation belt to determine the significance of GCRs in the orbit itself.

  11. Key KdSOC1 gene expression profiles during plantlet morphogenesis under hormone, photoperiod, and drought treatments.

    Science.gov (United States)

    Liu, C; Zhu, C; Zeng, H M

    2016-02-11

    Kalanchoe daigremontiana utilizes plantlet formation between its zigzag leaf margins as its method of asexual reproduction. In this study, K. daigremontiana SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (KdSOC1), a key intermediate in the transition from vegetative to asexual growth, was cloned. Furthermore, its expression profiles during plantlet formation under different environmental and hormone induction conditions were analyzed. The full-KdSOC1 cDNA sequence length was 1410 bp with 70% shared homology with Carya cathayensis SOC1. The conserved domain search of KdSOC1 showed the absence of I and C domains, which might indicate novel biological functions in K. daigremontiana. The full-KdSOC1 promoter sequence was 1401 bp long and contained multiple-hormone-responsive cis-acting elements. Hormone induction assays showed that gibberellins and salicylic acid mainly regulated KdSOC1 expression. The swift change from low to high KdSOC1 expression levels during long-day induction was accompanied by the rapid emergence of plantlets. Drought stress stimulated KdSOC1 expression in leaves both with and without plantlet formation. Together, the results suggested that KdSOC1 was closely involved in environmental stimulation signal perception and the transduction of K. daigremontiana plantlet formation. Therefore, future identification of KdSOC1 functions might reveal key information that will help elucidate the transition network between embryogenesis and organogenesis during plantlet formation.

  12. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan

    2016-07-07

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.

  13. ROGER a potential orbital space debris removal system

    Science.gov (United States)

    Starke, Juergen; Bischof, Bernd; Foth, W.-O.; -J., J.; Günther

    The previous activities in the field of On Orbit Servicing studied in the 1990's included in partic-ular the capability of vehicles in GEO to capture and support satellites (mainly communication satellites) to enable repair and continuation of operations, and finally the controlled transfer the target into a permanent graveyard orbit. The specific capture tools for these applications were mostly based on robotic systems to capture and fix the target under specific dynamic constraints (e.g. slowly tumbling target) without damage, and to allow the stabilization, re-orientation and potential repair of the target and subsequent release or transport to the final disposal orbit. Due to the drastically increasing number of debris particularly in the Low Earth Orbits (SSO) the active debris removal is now necessary to counteract to the predicted debris production cascade (Kessler Syndrome), which means the pollution of the total sphere in low earth orbit and not only the SSO area. In most of the debris congresses it was recommended to start removal with the still integrated systems as soon as possible. In the case of large debris objects, the soft capture system can be replaced by a simpler and robust system able to operate from a safe distance to the target and flexible enough to capture and hold different types of targets such as deactivated and/or defective satellites, upper stages and big fragments. These nominally non -cooperative targets might be partially destroyed by the capture process, but the production of additional debris shall be avoided. A major argument for the commercial applications is a multi-target mission potential, which is possible at GEO because the transfer propellant requirement to the disposal orbit and the return to the orbit of the next potential target is relative low (orbits with similar inclination and altitude). The proposed ROGER system is designed as a spacecraft with rendezvous capabilities including inspection in the vicinity of the

  14. GASP. IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters

    Science.gov (United States)

    Jaffé, Yara L.; Poggianti, Bianca M.; Moretti, Alessia; Gullieuszik, Marco; Smith, Rory; Vulcani, Benedetta; Fasano, Giovanni; Fritz, Jacopo; Tonnesen, Stephanie; Bettoni, Daniela; Hau, George; Biviano, Andrea; Bellhouse, Callum; McGee, Sean

    2018-06-01

    It is well known that galaxies falling into clusters can experience gas stripping due to ram pressure by the intra-cluster medium. The most spectacular examples are galaxies with extended tails of optically bright stripped material known as `jellyfish'. We use the first large homogeneous compilation of jellyfish galaxies in clusters from the WINGS and OmegaWINGS surveys, and follow-up MUSE observations from the GASP MUSE programme to investigate the orbital histories of jellyfish galaxies in clusters and reconstruct their stripping history through position versus velocity phase-space diagrams. We construct analytic models to define the regions in phase-space where ram-pressure stripping is at play. We then study the distribution of cluster galaxies in phase-space and find that jellyfish galaxies have on average higher peculiar velocities (and higher cluster velocity dispersion) than the overall population of cluster galaxies at all cluster-centric radii, which is indicative of recent infall into the cluster and radial orbits. In particular, the jellyfish galaxies with the longest gas tails reside very near the cluster cores (in projection) and are moving at very high speeds, which coincides with the conditions of the most intense ram pressure. We conclude that many of the jellyfish galaxies seen in clusters likely formed via fast (˜1-2 Gyr), incremental, outside-in ram-pressure stripping during first infall into the cluster in highly radial orbits.

  15. High-dimensional free-space optical communications based on orbital angular momentum coding

    Science.gov (United States)

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  16. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    Science.gov (United States)

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  17. IPv6 and IPsec Tests of a Space-Based Asset, the Cisco Router in Low Earth Orbit (CLEO)

    Science.gov (United States)

    Ivancic, William; Stewart, David; Wood, Lloyd; Jackson, Chris; Northam, James; Wilhelm, James

    2008-01-01

    This report documents the design of network infrastructure to support testing and demonstrating network-centric operations and command and control of space-based assets, using IPv6 and IPsec. These tests were performed using the Cisco router in Low Earth Orbit (CLEO), an experimental payload onboard the United Kingdom--Disaster Monitoring Constellation (UK-DMC) satellite built and operated by Surrey Satellite Technology Ltd (SSTL). On Thursday, 29 March 2007, NASA Glenn Research Center, Cisco Systems and SSTL performed the first configuration and demonstration of IPsec and IPv6 onboard a satellite in low Earth orbit. IPv6 is the next generation of the Internet Protocol (IP), designed to improve on the popular IPv4 that built the Internet, while IPsec is the protocol used to secure communication across IP networks. This demonstration was made possible in part by NASA s Earth Science Technology Office (ESTO) and shows that new commercial technologies such as mobile networking, IPv6 and IPsec can be used for commercial, military and government space applications. This has direct application to NASA s Vision for Space Exploration. The success of CLEO has paved the way for new spacebased Internet technologies, such as the planned Internet Routing In Space (IRIS) payload at geostationary orbit, which will be a U.S. Department of Defense Joint Capability Technology Demonstration. This is a sanitized report for public distribution. All real addressing has been changed to psueco addressing.

  18. Unified treatment of complete orthonormal sets for wave functions, and Slater orbitals of particles with arbitrary spin in coordinate, momentum and four-dimensional spaces

    International Nuclear Information System (INIS)

    Guseinov, I.I.

    2007-01-01

    The new analytical relations of complete orthonormal sets for the tensor wave functions and the tensor Slater orbitals of particles with arbitrary spin in coordinate, momentum and four-dimensional spaces are derived using the properties of tensor spherical harmonics and complete orthonormal scalar basis sets of ψ α -exponential type orbitals, φ α -momentum space orbitals and z α -hyperspherical harmonics introduced by the author for particles with spin s=0, where the α=1,0,-1,-2,.... All of the tensor wave functions obtained are complete without the inclusion of the continuum and, therefore, their group of transformations is the four-dimensional rotation group O(4). The analytical formulas in coordinate space are also derived for the overlap integrals over tensor Slater orbitals with the same screening constant. We notice that the new idea presented in this work is the combination of tensor spherical harmonics of rank s with complete orthonormal scalar sets for radial parts of ψ α -, φ α - and z α -orbitals, where s=1/2,1,3/2,2,...

  19. Orbital transport

    International Nuclear Information System (INIS)

    Oertel, H. Jr.; Koerner, H.

    1993-01-01

    The Third Aerospace Symposium in Braunschweig presented, for the first time, the possibility of bringing together the classical disciplines of aerospace engineering and the natural science disciplines of meteorology and air chemistry in a european setting. In this way, aspects of environmental impact on the atmosphere could be examined quantitatively. An essential finding of the european conference, is the unrestricted agreement of the experts that the given launch frequencies of the present orbital transport result in a negligible amount of pollutants being released in the atmosphere. The symposium does, however, call attention to the increasing need to consider the effect of orbital and atmospheric environmental impact of a future increase in launch frequencies of orbital transport in connection with future space stations. The Third Aerospace Symposium, 'Orbital Transport, Technical, Meteorological and Chemical Aspects', constituted a first forum of discussion for engineers and scientists. Questions of new orbital transport technologies and their environmental impact were to be discussed towards a first consensus. Through the 34 reports and articles, the general problems of space transportation and environmental protection were addressed, as well as particular aspects of high temperatures during reentry in the atmosphere of the earth, precision navigation of flight vehicles or flow behavior and air chemistry in the stratosphere. (orig./CT). 342 figs

  20. Effects of spin orbital coupling on atomic and electronic structures in Al2Cu and Al2Au crystal and liquid phases via ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Y.; Lu, Y.H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Jiang, J.Z.

    2014-01-01

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al 2 Cu and Al 2 Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al 2 Cu and Al 2 Au

  1. Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Xu, Q.; Zhao, T.S.; Zhang, C.

    2014-01-01

    Highlights: • The correlations of electrolyte viscosity and SOC are obtained. • Effect of SOC-dependent electrolyte viscosity is considered in this model. • This model enables a more realistic simulation of variable distributions. • It provides accurate estimations of pumping work and system efficiency. - Abstract: The viscosity of the electrolyte in vanadium redox flow batteries (VRFBs) varies during charge and discharge as the concentrations of acid and vanadium ions in the electrolyte continuously change with the state of charge (SOC). In previous VRFB models, however, the electrolyte has been treated as a constant-viscosity solution. In this work, a mass-transport and electrochemical model taking account of the effect of SOC-dependent electrolyte viscosity is developed. The comparison between the present model and the model with the constant-viscosity simplification indicates that the consideration of the SOC-dependent electrolyte viscosity enables (i) a more realistic simulation of the distributions of overpotential and current density in the electrodes, and (ii) more accurate estimations of pumping work and the system efficiency of VRFBs

  2. Robustness of SOC Estimation Algorithms for EV Lithium-Ion Batteries against Modeling Errors and Measurement Noise

    Directory of Open Access Journals (Sweden)

    Xue Li

    2015-01-01

    Full Text Available State of charge (SOC is one of the most important parameters in battery management system (BMS. There are numerous algorithms for SOC estimation, mostly of model-based observer/filter types such as Kalman filters, closed-loop observers, and robust observers. Modeling errors and measurement noises have critical impact on accuracy of SOC estimation in these algorithms. This paper is a comparative study of robustness of SOC estimation algorithms against modeling errors and measurement noises. By using a typical battery platform for vehicle applications with sensor noise and battery aging characterization, three popular and representative SOC estimation methods (extended Kalman filter, PI-controlled observer, and H∞ observer are compared on such robustness. The simulation and experimental results demonstrate that deterioration of SOC estimation accuracy under modeling errors resulted from aging and larger measurement noise, which is quantitatively characterized. The findings of this paper provide useful information on the following aspects: (1 how SOC estimation accuracy depends on modeling reliability and voltage measurement accuracy; (2 pros and cons of typical SOC estimators in their robustness and reliability; (3 guidelines for requirements on battery system identification and sensor selections.

  3. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  4. Effects of DeOrbitSail as applied to Lifetime predictions of Low Earth Orbit Satellites

    Science.gov (United States)

    Afful, Andoh; Opperman, Ben; Steyn, Herman

    2016-07-01

    Orbit lifetime prediction is an important component of satellite mission design and post-launch space operations. Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital debris or operational satellites. This risk is especially high within the Low Earth Orbit (LEO) region where the highest density of space debris is accumulated. This paper investigates orbital decay of some LEO micro-satellites and accelerating orbit decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite Toolkit was employed to determine the mean elements and expressions for the time rates of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used to evaluate the predicted theory. Results for the test cases indicated that the theory fitted observational data well within acceptable limits. Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital parameters derived from historic Two Line Element (TLE) sets and comparing with decay and lifetime prediction models. This paper also explored the deorbit date and time for a 1U CubeSat (ZACUBE-01). The use of solar sails as devices to speed up the deorbiting of LEO satellites is considered. In a drag sail mode, the deorbitsail technique significantly increases the effective cross-sectional area of a satellite, subsequently increasing atmospheric drag and accelerating orbit decay. The concept proposed in this study introduced a very useful technique of orbit decay as well as deorbiting of spacecraft.

  5. Enhancement of antiproliferative activity of interferons by RNA interference-mediated silencing of SOCS gene expression in tumor cells.

    Science.gov (United States)

    Takahashi, Yuki; Kaneda, Haruka; Takasuka, Nana; Hattori, Kayoko; Nishikawa, Makiya; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2008-08-01

    The suppressor of cytokine signaling (SOCS) proteins, negative regulators of interferon (IFN)-induced signaling pathways, is involved in IFN resistance of tumor cells. To improve the growth inhibitory effect of IFN-beta and IFN-gamma on a murine melanoma cell line, B16-BL6, and a murine colon carcinoma cell line, Colon26 cells, SOCS-1 and SOCS-3 gene expression in tumor cells was downregulated by transfection of plasmid DNA expressing short hairpin RNA targeting one of these genes (pshSOCS-1 and pshSOCS-3, respectively). Transfection of pshSOCS-1 significantly increased the antiproliferative effect of IFN-gamma on B16-BL6 cells. However, any other combinations of plasmids and IFN had little effect on the growth of B16-BL6 cells. In addition, transfection of pshSOCS-1 and pshSOCS-3 produced little improvement in the effect of IFN on Colon26 cells. To understand the mechanism underlining these findings, the level of SOCS gene expression was measured by real time polymerase chain reaction. Addition of IFN-gamma greatly increased the SOCS-1 mRNA expression in B16-BL6 cells. Taking into account the synergistic effect of pshSOCS-1 and IFN-gamma on the growth of B16-BL6 cells, these findings suggest that IFN-gamma-induced high SOCS-1 gene expression in B16-BL6 cells significantly interferes with the antiproliferative effect of IFN-gamma. These results indicate that silencing SOCS gene expression can be an effective strategy to enhance the antitumor effect of IFN under conditions in which the SOCS gene expression is upregulated by IFN.

  6. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  7. Ultrafast intersystem-crossing in platinum containing π-conjugated polymers with tunable spin-orbit coupling.

    Science.gov (United States)

    Sheng, C-X; Singh, S; Gambetta, A; Drori, T; Tong, M; Tretiak, S; Vardeny, Z V

    2013-01-01

    The development of efficient organic light-emitting diodes (OLED) and organic photovoltaic cells requires control over the dynamics of spin sensitive excitations. Embedding heavy metal atoms in π-conjugated polymer chains enhances the spin-orbit coupling (SOC), and thus facilitates intersystem crossing (ISC) from the singlet to triplet manifolds. Here we use various nonlinear optical spectroscopies such as two-photon absorption and electroabsorption in conjunction with electronic structure calculations, for studying the energies, emission bands and ultrafast dynamics of spin photoexcitations in two newly synthesized π-conjugated polymers that contain intrachain platinum (Pt) atoms separated by one (Pt-1) or three (Pt-3) organic spacer units. The controllable SOC in these polymers leads to a record ISC time of white OLEDs.

  8. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  9. Summary results of the first United States manned orbital space flight

    Science.gov (United States)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  10. STM Studies of Spin-­Orbit Coupled Phases in Real-­ and Momentum-­Space

    Energy Technology Data Exchange (ETDEWEB)

    Madhavan, Vidya [Univ. of Illinois, Urbana, IL (United States)

    2016-10-17

    The recently discovered class of spin-orbit coupled materials with interesting topological character are fascinating both from fundamental as well as application point of view. Two striking examples are 3D topological insulators (TIs) and topological crystalline insulators (TCIs). These materials host linearly dispersing (Dirac like) surface states with an odd number of Dirac nodes and are predicted to carry a quantized half-integer value of the axion field. The non-trivial topological properties of TIs and TCIs arise from strong spin-orbit coupling leading to an inverted band structure; which also leads to the chiral spin texture in momentum space. In this project we used low temperature scanning tunneling microscopy (STM) and spectroscopy (STS) to study materials with topological phases in real- and momentum-space. We studied both single crystals and thin films of topological materials which are susceptible to being tuned by doping, strain or gating, allowing us to explore their physical properties in the most interesting regimes and set the stage for future technological applications. .

  11. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation

    International Nuclear Information System (INIS)

    Hu, Chao; Youn, Byeng D.; Chung, Jaesik

    2012-01-01

    Highlights: ► We develop a mutiscale framework with EKF to estimate SOC and capacity. ► The framework is a hybrid of coulomb counting and adaptive filtering techniques. ► It decouples SOC and capacity estimation in terms of measurement and time-scale. ► Results verify the framework achieves higher accuracy and efficiency than dual EKF. -- Abstract: State-of-charge (SOC) and capacity estimation plays an essential role in many battery-powered applications, such as electric vehicle (EV) and hybrid electric vehicle (HEV). However, commonly used joint/dual extended Kalman filter (EKF) suffers from the lack of accuracy in the capacity estimation since (i) the cell voltage is the only measurable data for the SOC and capacity estimation and updates and (ii) the capacity is very weakly linked to the cell voltage. The lack of accuracy in the capacity estimation may further reduce the accuracy in the SOC estimation due to the strong dependency of the SOC on the capacity. Furthermore, although the capacity is a slowly time-varying quantity that indicates cell state-of-health (SOH), the capacity estimation is generally performed on the same time-scale as the quickly time-varying SOC, resulting in high computational complexity. To resolve these difficulties, this paper proposes a multiscale framework with EKF for SOC and capacity estimation. The proposed framework comprises two ideas: (i) a multiscale framework to estimate SOC and capacity that exhibit time-scale separation and (ii) a state projection scheme for accurate and stable capacity estimation. Simulation results with synthetic data based on a valid cell dynamic model suggest that the proposed framework, as a hybrid of coulomb counting and adaptive filtering techniques, achieves higher accuracy and efficiency than joint/dual EKF. Results of the cycle test on Lithium-ion prismatic cells further verify the effectiveness of our framework.

  12. Evaluation of sensor placement algorithms for on-orbit identification of space platforms

    Science.gov (United States)

    Glassburn, Robin S.; Smith, Suzanne Weaver

    1994-01-01

    Anticipating the construction of the international space station, on-orbit modal identification of space platforms through optimally placed accelerometers is an area of recent activity. Unwanted vibrations in the platform could affect the results of experiments which are planned. Therefore, it is important that sensors (accelerometers) be strategically placed to identify the amount and extent of these unwanted vibrations, and to validate the mathematical models used to predict the loads and dynamic response. Due to cost, installation, and data management issues, only a limited number of sensors will be available for placement. This work evaluates and compares four representative sensor placement algorithms for modal identification. Most of the sensor placement work to date has employed only numerical simulations for comparison. This work uses experimental data from a fully-instrumented truss structure which was one of a series of structures designed for research in dynamic scale model ground testing of large space structures at NASA Langley Research Center. Results from this comparison show that for this cantilevered structure, the algorithm based on Guyan reduction is rated slightly better than that based on Effective Independence.

  13. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Science.gov (United States)

    Chancellor, Jeffery C.; Scott, Graham B. I.; Sutton, Jeffrey P.

    2014-01-01

    Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts. PMID:25370382

  14. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Jeffery C. Chancellor

    2014-09-01

    Full Text Available Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO. Shielding is an effective countermeasure against solar particle events (SPEs, but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.

  15. Analysis of Approaches to the Near-Earth Orbit Cleanup from Space Debris of the Size Below10 cm

    Directory of Open Access Journals (Sweden)

    V. I. Maiorova

    2016-01-01

    Full Text Available Nowadays, there are a lot of concepts aimed at space debris removal from the near-Earth orbits being under way at different stages of detailed engineering and design. As opposed to large-size space debris (upper-stages, rocket bodies, non-active satellites, to track the small objects of space debris (SOSD, such as picosatellites, satellite fragments, pyrotechnic devices, and other items less than 10 cm in size, using the ground stations is, presently, a challenge.This SOSD feature allows the authors to propose the two most rational approaches, which use, respectively, a passive and an active (prompt maneuverable space vehicles (SV and appropriate schematic diagrams for their collection:1 Passive scheme – space vehicle (SV to be launched into an orbit is characterized by high mathematical expectation of collision with a large amount of SOSD and, accordingly, by high probability to be captured using both active or the passive tools. The SV does not execute any maneuvers, but can be equipped with a propulsion system required for orbit’s maintenance and correction and also for solving the tasks of long-range guidance.2 Active scheme – the SV is to be launched into the target or operating orbit and executes a number of maneuvers to capture the SOSD using both active and passive tools. Thus, such a SV has to be equipped with a rather high-trust propulsion system, which allows the change of its trajectory and also with the guidance system to provide it with target coordinates. The guidance system can be built on either radio or optical devices, it can be installed onboard the debris-removal SV or onboard the SV which operates as a supply unit (if such SVs are foreseen.The paper describes each approach, emphasizes advantages and disadvantages, and defines the cutting-edge technologies to be implemented.

  16. The Immunohistochemical Analysis of SOCS3 Protein Identifies a Subgroup of Prostatic Cancer Biopsies With Aggressive Behavior.

    Science.gov (United States)

    Pierconti, Francesco; Martini, Maurizio; Cenci, Tonia; Larocca, Luigi M

    Recently, we demonstrated that hypermethylation of SOCS3 determines a significant reduction of its mRNA and protein expression and identifies a subgroup of prostate cancer with aggressive behavior. In this paper, our objective was to investigate whether the immunohistochemical expression of the SOCS3 protein could represent an alternative method to molecular analysis for the individualization of aggressive prostate carcinoma. We analyzed the SOCS3 immunohistochemical expression in 65 patients undergoing biopsies at the Institute of Urology of our hospital between September 2011 and October 2011 (median age, 66.4 y; range, 50 to 73 y), and in 35 cases, a subset of 65 cases originally used for the immunohistochemical study, we studied the methylation status of the SOCS3 promoter. We found that the percentage of cases with SOCS3 negativity (-) or with SOCS3 weak staining in <50% of the neoplastic glands (+/-) correlated to the worst prognosis in terms of the Gleason score (P=0.0001; Fisher's exact test), the pT stage (P=0.012; Fisher's exact test), and progression-free survival (P=0.0334; hazard ratio, 0.34; and 95% confidence interval, from 0.1261 to 0.9188). Moreover, some cases with an SOCS3 unmethylated pattern showed SOCS3-negative immunostaining (-) or SOCS3-negative glands with weak cytoplasmatic staining in <50% of the neoplastic glands (+/-). Our data suggest that in prostatic cancer biopsies, the immunohistochemical analysis of SOCS3 protein expression may provide a method that is less expensive and easier to apply than SOCS3 methylation analysis for the distinction of a subgroup of prostate cancer with a more aggressive behavior.

  17. Thermal State-of-Charge in Solar Heat Receivers

    Science.gov (United States)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  18. High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors

    International Nuclear Information System (INIS)

    Ma Jun-Tao; Gao Mei-Guo; Xiong Di; Feng Qi; Guo Bao-Feng; Dong Jian

    2017-01-01

    The development of inverse synthetic aperture radar (ISAR) imaging techniques is of notable significance for monitoring, tracking and identifying space targets in orbit. Usually, a well-focused ISAR image of a space target can be obtained in a deliberately selected imaging segment in which the target moves with only uniform planar rotation. However, in some imaging segments, the nonlinear range migration through resolution cells (MTRCs) and time-varying Doppler caused by the three-dimensional rotation of the target would degrade the ISAR imaging performance, and it is troublesome to realize accurate motion compensation with conventional methods. Especially in the case of low signal-to-noise ratio (SNR), the estimation of motion parameters is more difficult. In this paper, a novel algorithm for high-resolution ISAR imaging of a space target by using its precise ephemeris and orbital motion model is proposed. The innovative contributions are as follows. 1) The change of a scatterer projection position is described with the spatial-variant angles of imaging plane calculated based on the orbital motion model of the three-axis-stabilized space target. 2) A correction method of MTRC in slant- and cross-range dimensions for arbitrarily imaging segment is proposed. 3) Coarse compensation for translational motion using the precise ephemeris and the fine compensation for residual phase errors by using sparsity-driven autofocus method are introduced to achieve a high-resolution ISAR image. Simulation results confirm the effectiveness of the proposed method. (paper)

  19. Purification of SOCS (Suppressor of Cytokine Signaling) SH2 Domains for Structural and Functional Studies.

    Science.gov (United States)

    Liau, Nicholas P D; Laktyushin, Artem; Babon, Jeffrey J

    2017-01-01

    Src Homology 2 (SH2) domains are protein domains which have a high binding affinity for specific amino acid sequences containing a phosphorylated tyrosine residue. The Suppressors of Cytokine Signaling (SOCS) proteins use an SH2 domain to bind to components of certain cytokine signaling pathways to downregulate the signaling cascade. The recombinantly produced SH2 domains of various SOCS proteins have been used to undertake structural and functional studies elucidating the method of how such targeting occurs. Here, we describe the protocol for the recombinant production and purification of SOCS SH2 domains, with an emphasis on SOCS3.

  20. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    Science.gov (United States)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  1. SoC Estimation for Lithium-ion Batteries: Review and Future Challenges

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rivera-Barrera

    2017-11-01

    Full Text Available Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs. The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence.

  2. Synthesis of highly monodispersed Ga-soc-MOF hollow cubes, colloidosomes and nanocomposites

    KAUST Repository

    Cai, Xuechao

    2016-07-06

    Ga-soc-MOF hollow cubes with an average size of about 300 nm were prepared by a polyvinylpyrrolidone (PVP) assisted acid etching process. Colloidosomes with sizes of around 5-10 mu m composed of single-layer tetrakaidecahedron building blocks (BBs) were synthesized for the first time. Au@Ga-soc-MOF nanocomposites with excellent catalytic properties were obtained.

  3. Synthesis of highly monodispersed Ga-soc-MOF hollow cubes, colloidosomes and nanocomposites

    KAUST Repository

    Cai, Xuechao; Deng, Xiaoran; Xie, Zhongxi; Bao, Shouxin; Shi, Yanshu; Lin, Jun; Pang, Maolin; Eddaoudi, Mohamed

    2016-01-01

    Ga-soc-MOF hollow cubes with an average size of about 300 nm were prepared by a polyvinylpyrrolidone (PVP) assisted acid etching process. Colloidosomes with sizes of around 5-10 mu m composed of single-layer tetrakaidecahedron building blocks (BBs) were synthesized for the first time. Au@Ga-soc-MOF nanocomposites with excellent catalytic properties were obtained.

  4. Coupling the nongravitational forces and modified Newton dynamics for cometary orbits

    Science.gov (United States)

    Maquet, Lucie; Pierret, Frédéric

    2015-04-01

    In recent work [L. Blanchet and J. Novak, Mon. Not. R. Astron. Soc. 412, 2530 (2011); L. Blanchet and J. Novak, Testing MOND in the Solar System (2011); and M. Milgrom, Mon. Not. R. Astron. Soc. 399, 474 (2009)], the authors showed that modified Newton dynamics (MOND) has a non-negligible secular perturbation effect on planets with large semimajor axes (gaseous planets) in the Solar System. Some comets also have a very eccentric orbit with a large semimajor axis (Halley family comets) going far away from the Sun (more than 15 AU) in a low acceleration regime where they would be subject to MOND perturbation. They also approach the Sun very closely (less than 3 AU) and are affected by the sublimation of ices from their nucleus, triggering so-called nongravitational forces. The main goal of this paper is to investigate the effect of MOND perturbation on three comets with various orbital elements (2 P /Encke , 1 P /Halley and 153 P /Ikeya-Zhang ) and then compare it to the nongravitational perturbations. It is motivated by the fact that when fitting an outgassing model for a comet, we have to take into account all of the small perturbing effects to avoid absorbing these effects into the nongravitational parameters. Otherwise, we could derive a completely wrong estimation of the outgassing. For this work, we use six different forms of MOND functions and compute the secular variations of the orbital elements due to MOND and nongravitational perturbations. We show that, for comets with large semimajor axis, the MONDian effects are not negligible compared to the nongravitational perturbations.

  5. Boosted gain programmable OpAmp with embedded gain monitor for dependable SoCs

    NARCIS (Netherlands)

    Wan, J.; Kerkhoff, Hans G.

    2011-01-01

    SoCs used in safety-critical applications need to be dependable. However in the deep-submicron region, different kinds of aging effects like negative bias temperature instability (NBTI) make the SoCs, especially the analog/mixed-signal parts, undependable. In this paper, a dependability-improved

  6. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    Science.gov (United States)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  7. Orbit error characteristic and distribution of TLE using CHAMP orbit data

    Science.gov (United States)

    Xu, Xiao-li; Xiong, Yong-qing

    2018-02-01

    Space object orbital covariance data is required for collision risk assessments, but publicly accessible two line element (TLE) data does not provide orbital error information. This paper compared historical TLE data and GPS precision ephemerides of CHAMP to assess TLE orbit accuracy from 2002 to 2008, inclusive. TLE error spatial variations with longitude and latitude were calculated to analyze error characteristics and distribution. The results indicate that TLE orbit data are systematically biased from the limited SGP4 model. The biases can reach the level of kilometers, and the sign and magnitude are correlate significantly with longitude.

  8. Discrete symmetries in periodic-orbit theory

    International Nuclear Information System (INIS)

    Robbins, J.M.

    1989-01-01

    The application of periodic-orbit theory to systems which possess a discrete symmetry is considered. A semiclassical expression for the symmetry-projected Green's function is obtained; it involves a sum over classical periodic orbits on a symmetry-reduced phase space, weighted by characters of the symmetry group. These periodic orbits correspond to trajectories on the full phase space which are not necessarily periodic, but whose end points are related by symmetry. If the symmetry-projected Green's functions are summed, the contributions of the unperiodic orbits cancel, and one recovers the usual periodic-orbit sum for the full Green's function. Several examples are considered, including the stadium billiard, a particle in a periodic potential, the Sinai billiard, the quartic oscillator, and the rotational spectrum of SF 6

  9. Socs36E Controls Niche Competition by Repressing MAPK Signaling in the Drosophila Testis.

    Directory of Open Access Journals (Sweden)

    Marc Amoyel

    2016-01-01

    Full Text Available The Drosophila testis is a well-established system for studying stem cell self-renewal and competition. In this tissue, the niche supports two stem cell populations, germ line stem cells (GSCs, which give rise to sperm, and somatic stem cells called cyst stem cells (CySCs, which support GSCs and their descendants. It has been established that CySCs compete with each other and with GSCs for niche access, and mutations have been identified that confer increased competitiveness to CySCs, resulting in the mutant stem cell and its descendants outcompeting wild type resident stem cells. Socs36E, which encodes a negative feedback inhibitor of the JAK/STAT pathway, was the first identified regulator of niche competition. The competitive behavior of Socs36E mutant CySCs was attributed to increased JAK/STAT signaling. Here we show that competitive behavior of Socs36E mutant CySCs is due in large part to unbridled Mitogen-Activated Protein Kinase (MAPK signaling. In Socs36E mutant clones, MAPK activity is elevated. Furthermore, we find that clonal upregulation of MAPK in CySCs leads to their outcompetition of wild type CySCs and of GSCs, recapitulating the Socs36E mutant phenotype. Indeed, when MAPK activity is removed from Socs36E mutant clones, they lose their competitiveness but maintain self-renewal, presumably due to increased JAK/STAT signaling in these cells. Consistently, loss of JAK/STAT activity in Socs36E mutant clones severely impairs their self-renewal. Thus, our results enable the genetic separation of two essential processes that occur in stem cells. While some niche signals specify the intrinsic property of self-renewal, which is absolutely required in all stem cells for niche residence, additional signals control the ability of stem cells to compete with their neighbors. Socs36E is node through which these processes are linked, demonstrating that negative feedback inhibition integrates multiple aspects of stem cell behavior.

  10. The fundamental groupoid of the quotient of a Hausdorff space by a discontinuous action of a discrete group is the orbit groupoid of the induced action

    OpenAIRE

    Brown, Ronald; Higgins, Philip J.

    2002-01-01

    The main result is that the fundamental groupoid of the orbit space of a discontinuous action of a discrete group on a Hausdorff space which admits a universal cover is the orbit groupoid of the fundamental groupoid of the space. We also describe work of Higgins and of Taylor which makes this result usable for calculations. As an example, we compute the fundamental group of the symmetric square of a space. The main result, which is related to work of Armstrong, is due to Brown and Higgins in ...

  11. Full counting statistics in a serially coupled double quantum dot system with spin-orbit coupling

    Science.gov (United States)

    Wang, Qiang; Xue, Hai-Bin; Xie, Hai-Qing

    2018-04-01

    We study the full counting statistics of electron transport through a serially coupled double quantum dot (QD) system with spin-orbit coupling (SOC) weakly coupled to two electrodes. We demonstrate that the spin polarizations of the source and drain electrodes determine whether the shot noise maintains super-Poissonian distribution, and whether the sign transitions of the skewness from positive to negative values and of the kurtosis from negative to positive values take place. In particular, the interplay between the spin polarizations of the source and drain electrodes and the magnitude of the external magnetic field, can give rise to a gate-voltage-tunable strong negative differential conductance (NDC) and the shot noise in this NDC region is significantly enhanced. Importantly, for a given SOC parameter, the obvious variation of the high-order current cumulants as a function of the energy-level detuning in a certain range, especially the dip position of the Fano factor of the skewness can be used to qualitatively extract the information about the magnitude of the SOC.

  12. Study on SOC wavelet analysis for LiFePO4 battery

    Science.gov (United States)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.

  13. Fundamentals of IP and SoC security design, verification, and debug

    CERN Document Server

    Ray, Sandip; Sur-Kolay, Susmita

    2017-01-01

    This book is about security in embedded systems and it provides an authoritative reference to all aspects of security in system-on-chip (SoC) designs. The authors discuss issues ranging from security requirements in SoC designs, definition of architectures and design choices to enforce and validate security policies, and trade-offs and conflicts involving security, functionality, and debug requirements. Coverage also includes case studies from the “trenches” of current industrial practice in design, implementation, and validation of security-critical embedded systems. Provides an authoritative reference and summary of the current state-of-the-art in security for embedded systems, hardware IPs and SoC designs; Takes a "cross-cutting" view of security that interacts with different design and validation components such as architecture, implementation, verification, and debug, each enforcing unique trade-offs; Includes high-level overview, detailed analysis on implementation, and relevant case studies on desi...

  14. The importance of spin-orbit coupling and electron correlation in the rationalization of the ground state of the CUO molecule

    NARCIS (Netherlands)

    Infante, I.A.C.; Visscher, L.

    2004-01-01

    The importance of electron correlation and spin-orbit coupling in the rationalization of the ground state of the CUO molecule is discussed. It was observed that SOC gave a consistent energy splitting of the triplet state contribution that does not depend much on the method used to compute a

  15. Orbital structure in oscillating galactic potentials

    Science.gov (United States)

    Terzić, Balša; Kandrup, Henry E.

    2004-01-01

    Subjecting a galactic potential to (possibly damped) nearly periodic, time-dependent variations can lead to large numbers of chaotic orbits experiencing systematic changes in energy, and the resulting chaotic phase mixing could play an important role in explaining such phenomena as violent relaxation. This paper focuses on the simplest case of spherically symmetric potentials subjected to strictly periodic driving with the aim of understanding precisely why orbits become chaotic and under what circumstances they will exhibit systematic changes in energy. Four unperturbed potentials V0(r) were considered, each subjected to a time dependence of the form V(r, t) =V0(r)(1 +m0 sinωt). In each case, the orbits divide clearly into regular and chaotic, distinctions which appear absolute. In particular, transitions from regularity to chaos are seemingly impossible. Over finite time intervals, chaotic orbits subdivide into what can be termed `sticky' chaotic orbits, which exhibit no large-scale secular changes in energy and remain trapped in the phase-space region where they started; and `wildly' chaotic orbits, which do exhibit systematic drifts in energy as the orbits diffuse to different phase-space regions. This latter distinction is not absolute, transitions corresponding apparently to orbits penetrating a `leaky' phase-space barrier. The three different orbit types can be identified simply in terms of the frequencies for which their Fourier spectra have the most power. An examination of the statistical properties of orbit ensembles as a function of driving frequency ω allows us to identify the specific resonances that determine orbital structure. Attention focuses also on how, for fixed amplitude m0, such quantities as the mean energy shift, the relative measure of chaotic orbits and the mean value of the largest Lyapunov exponent vary with driving frequency ω and how, for fixed ω, the same quantities depend on m0.

  16. Suppressor of cytokine signaling (SOCS genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Moon-Hong Kim

    Full Text Available Suppressor of cytokine signaling (SOCS family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer.

  17. Structural Analysis Peer Review for the Static Display of the Orbiter Atlantis at the Kennedy Space Center Visitors Center

    Science.gov (United States)

    Minute, Stephen A.

    2013-01-01

    Mr. Christopher Miller with the Kennedy Space Center (KSC) NASA Safety & Mission Assurance (S&MA) office requested the NASA Engineering and Safety Center's (NESC) technical support on March 15, 2012, to review and make recommendations on the structural analysis being performed for the Orbiter Atlantis static display at the KSC Visitor Center. The principal focus of the assessment was to review the engineering firm's structural analysis for lifting and aligning the orbiter and its static display configuration

  18. A 0.7-V 17.4- μ W 3-lead wireless ECG SoC.

    Science.gov (United States)

    Khayatzadeh, Mahmood; Zhang, Xiaoyang; Tan, Jun; Liew, Wen-Sin; Lian, Yong

    2013-10-01

    This paper presents a fully integrated sub-1 V 3-lead wireless ECG System-on-Chip (SoC) for wireless body sensor network applications. The SoC includes a two-channel ECG front-end with a driven-right-leg circuit, an 8-bit SAR ADC, a custom-designed 16-bit microcontroller, two banks of 16 kb SRAM, and a MICS band transceiver. The microcontroller and SRAM blocks are able to operate at sub-/near-threshold regime for the best energy consumption. The proposed SoC has been implemented in a standard 0.13- μ m CMOS process. Measurement results show the microcontroller consumes only 2.62 pJ per instruction at 0.35 V . Both microcontroller and memory blocks are functional down to 0.25 V. The entire SoC is capable of working at single 0.7-V supply. At the best case, it consumes 17.4 μ W in heart rate detection mode and 74.8 μW in raw data acquisition mode under sampling rate of 500 Hz. This makes it one of the best ECG SoCs among state-of-the-art biomedical chips.

  19. Mapping SOC (Soil Organic Carbon) using LiDAR-derived vegetation indices in a random forest regression model

    Science.gov (United States)

    Will, R. M.; Glenn, N. F.; Benner, S. G.; Pierce, J. L.; Spaete, L.; Li, A.

    2015-12-01

    Quantifying SOC (Soil Organic Carbon) storage in complex terrain is challenging due to high spatial variability. Generally, the challenge is met by transforming point data to the entire landscape using surrogate, spatially-distributed, variables like elevation or precipitation. In many ecosystems, remotely sensed information on above-ground vegetation (e.g. NDVI) is a good predictor of below-ground carbon stocks. In this project, we are attempting to improve this predictive method by incorporating LiDAR-derived vegetation indices. LiDAR provides a mechanism for improved characterization of aboveground vegetation by providing structural parameters such as vegetation height and biomass. In this study, a random forest model is used to predict SOC using a suite of LiDAR-derived vegetation indices as predictor variables. The Reynolds Creek Experimental Watershed (RCEW) is an ideal location for a study of this type since it encompasses a strong elevation/precipitation gradient that supports lower biomass sagebrush ecosystems at low elevations and forests with more biomass at higher elevations. Sagebrush ecosystems composed of Wyoming, Low and Mountain Sagebrush have SOC values ranging from .4 to 1% (top 30 cm), while higher biomass ecosystems composed of aspen, juniper and fir have SOC values approaching 4% (top 30 cm). Large differences in SOC have been observed between canopy and interspace locations and high resolution vegetation information is likely to explain plot scale variability in SOC. Mapping of the SOC reservoir will help identify underlying controls on SOC distribution and provide insight into which processes are most important in determining SOC in semi-arid mountainous regions. In addition, airborne LiDAR has the potential to characterize vegetation communities at a high resolution and could be a tool for improving estimates of SOC at larger scales.

  20. Research on State-of-Charge (SOC) estimation using current integration based on temperature compensation

    Science.gov (United States)

    Yin, J.; Shen, Y.; Liu, X. T.; Zeng, G. J.; Liu, D. C.

    2017-11-01

    The traditional current integral method for the state-of-charge (SOC) estimation has an unusable estimation accuracy because of the current measuring error. This paper proposed a closed-loop temperature compensation method to improve the SOC estimation accuracy of current integral method by eliminating temperature drift. Through circuit simulation result in Multisim, the stability of current measuring accuracy is improved by more than 10 times. In a designed 70 charge-discharge experimental circle, the SOC estimation error with temperature compensation had 30 times less than error in normal situation without compensation.

  1. Suppressor of cytokine signaling 1 (SOCS1) limits NFkappaB signaling by decreasing p65 stability within the cell nucleus.

    Science.gov (United States)

    Strebovsky, Julia; Walker, Patrick; Lang, Roland; Dalpke, Alexander H

    2011-03-01

    Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytoplasmic Janus kinases (Jak) and signal transducer and activator of transcription (STAT) signaling pathways. Previously the authors surprisingly observed that SOCS1 translocated into the nucleus, which was because of the presence of a nuclear localization sequence. This report now hypothesizes that SOCS1 mediates specific functions within the nuclear compartment because it is instantly transported into the nucleus, as shown by photoactivation and live cell imaging in human HEK293 cells. The NFκB component p65 is identified as an interaction partner for SOCS1 but not for other members of the SOCS family. SOCS1 bound to p65 only within the nucleus. By means of its SOCS box domain, SOCS1 operated as a ubiquitin ligase, leading to polyubiquitination and proteasomal degradation of nuclear p65. Thus, SOCS1 limited prolonged p65 signaling and terminated expression of NFκB inducible genes. Using mutants that lack either nuclear translocation or a functional SOCS box, this report identifies genes that are regulated in a manner dependent on the nuclear availability of SOCS1. Data show that beyond its receptor-proximal function in Jak/STAT signaling, SOCS1 also regulates the duration of NFκB signaling within the cell nucleus, thus exerting a heretofore unrecognized function.

  2. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18406369 Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins...svg) (.html) (.csml) Show Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. ...PubmedID 18406369 Title Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins

  3. Effects of spin orbital coupling on atomic and electronic structures in Al{sub 2}Cu and Al{sub 2}Au crystal and liquid phases via ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Y.H., E-mail: luyh@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-11-15

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al{sub 2}Cu and Al{sub 2}Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al{sub 2}Cu and Al{sub 2}Au.

  4. Wastes in space

    International Nuclear Information System (INIS)

    2011-01-01

    As human space activities have created more wastes on low and high Earth orbits over the past 50 years than the solar system injected meteorites over billions of years, this report gives an overview of this problem. It identifies the origins of these space debris and wastes (launchers, combustion residues, exploitation wastes, out-of-use satellites, accidental explosions, accidental collisions, voluntary destructions, space erosion), and proposes a stock list of space wastes. Then, it distinguishes the situation for the different orbits: low Earth orbit or LEO (traffic, presence of the International Space Station), medium Earth orbits or MEO (traffic, operating satellites, wastes), geostationary Earth orbit or GEO (traffic, operating satellites, wastes). It also discusses wastes and bacteria present on the moon (due to Apollo missions or to crash tests). It evokes how space and nuclear industry is concerned, and discusses the re-entry issue (radioactive boomerang, metallic boomerang). It also indicates elements of international law

  5. On-Orbit Propulsion and Methods of Momentum Management for the International Space Station

    Science.gov (United States)

    Russell, Samuel P.; Spencer, Victor; Metrocavage, Kevin; Swanson, Robert A.; Krajchovich, Mark; Beisner, Matthew; Kamath, Ulhas P.

    2010-01-01

    Since the first documented design of a space station in 1929, it has been a dream of many to sustain a permanent presence in space. Russia and the US spent several decades competing for a sustained human presence in low Earth orbit. In the 1980 s, Russia and the US began to openly collaborate to achieve this goal. This collaboration lead to the current design of the ISS. Continuous improvement of procedures for controlling the ISS have lead to more efficient propellant management over the years. Improved efficiency combined with the steady use of cargo vehicles has kept ISS propellant levels well above their defined thresholds in all categories. The continuing evolution of propellant and momentum management operational strategies demonstrates the capability and flexibility of the ISS propulsion system. The hard work and cooperation of the international partners and the evolving operational strategies have made the ISS safe and successful. The ISS s proven success is the foundation for the future of international cooperation for sustaining life in space.

  6. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    Science.gov (United States)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  7. The international environment UNISPACE '82 and the ITU: A relationship between orbit-spectrum resource allocation and orbital debris

    Science.gov (United States)

    Olmstead, D.

    1985-01-01

    The 1985 Space WARC will examine and potentially modify the current geostationary orbit spectrum resource allocation methodology. Discussions in this international political environment could likely associate the geostationary orbital debris issue with the politicized issue of orbit spectrum allocation.

  8. A Bayesian Belief Network framework to predict SOC stock change: the Veneto region (Italy) case study

    Science.gov (United States)

    Dal Ferro, Nicola; Quinn, Claire Helen; Morari, Francesco

    2017-04-01

    A key challenge for soil scientists is predicting agricultural management scenarios that combine crop productions with high standards of environmental quality. In this context, reversing the soil organic carbon (SOC) decline in croplands is required for maintaining soil fertility and contributing to mitigate GHGs emissions. Bayesian belief networks (BBN) are probabilistic models able to accommodate uncertainty and variability in the predictions of the impacts of management and environmental changes. By linking multiple qualitative and quantitative variables in a cause-and-effect relationships, BBNs can be used as a decision support system at different spatial scales to find best management strategies in the agroecosystems. In this work we built a BBN to model SOC dynamics (0-30 cm layer) in the low-lying plain of Veneto region, north-eastern Italy, and define best practices leading to SOC accumulation and GHGs (CO2-equivalent) emissions reduction. Regional pedo-climatic, land use and management information were combined with experimental and modelled data on soil C dynamics as natural and anthropic key drivers affecting SOC stock change. Moreover, utility nodes were introduced to determine optimal decisions for mitigating GHGs emissions from croplands considering also three different IPCC climate scenarios. The network was finally validated with real field data in terms of SOC stock change. Results showed that the BBN was able to model real SOC stock changes, since validation slightly overestimated SOC reduction (+5%) at the expenses of its accumulation. At regional level, probability distributions showed 50% of SOC loss, while only 17% of accumulation. However, the greatest losses (34%) were associated with low reduction rates (100-500 kg C ha-1 y-1), followed by 33% of stabilized conditions (-100 < SOC < 100 kg ha-1 y-1). Land use management (especially tillage operations and soil cover) played a primary role to affect SOC stock change, while climate conditions

  9. SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Santana-Farre, Ruyman; Vesterlund, Mattias

    2012-01-01

    in the development of diet-induced hepatic steatosis and insulin resistance. SOCS2-knockout (SOCS2(-/-)) mice and wild-type littermates were fed for 4 mo with control or high-fat diet, followed by assessment of insulin sensitivity, hepatic lipid content, and expression of inflammatory cytokines. SOCS2(-/-) mice...

  10. SOCS5 is expressed in primary B and T lymphoid cells but is dispensable for lymphocyte production and function

    DEFF Research Database (Denmark)

    Brender, Christine; Columbus, Ruth; Metcalf, Donald

    2004-01-01

    the importance of SOCS5 in T helper cell responses. Unexpectedly, SOCS5-deficient CD4 T cells showed no abnormalities in Th1/Th2 differentiation and Socs5(-/-) mice showed normal resistance to infection with Leishmania major. Therefore, although SOCS5 is expressed in primary B and T cells, it appears...

  11. Space Van system update

    Science.gov (United States)

    Cormier, Len

    1992-07-01

    The Space Van is a proposed commercial launch vehicle that is designed to carry 1150 kg to a space-station orbit for a price of $1,900,000 per flight in 1992 dollars. This price includes return on preoperational investment. Recurring costs are expected to be about $840,000 per flight. The Space Van is a fully reusable, assisted-single-stage-to orbit system. The most innovative new feature of the Space Van system is the assist-stage concept. The assist stage uses only airbreathing engines for vertical takeoff and vertical landing in the horizontal attitude and for launching the rocket-powered orbiter stage at mach 0.8 and an altitude of about 12 km. The primary version of the orbiter is designed for cargo-only without a crew. However, a passenger version of the Space Van should be able to carry a crew of two plus six passengers to a space-station orbit. Since the Space Van is nearly single-stage, performance to polar orbit drops off significantly. The cargo version should be capable of carrying 350 kg to a 400-km polar orbit. In the passenger version, the Space Van should be able to carry two crew members - or one crew member plus a passenger.

  12. SEP Mission Design Space for Mars Orbiters

    Science.gov (United States)

    Woolley, Ryan C.; Nicholas, Austin K.

    2015-01-01

    The advancement of solar-electric propulsion (SEP) technologies and larger, light-weight solar arrays offer a tremendous advantage to Mars orbiters in terms of both mass and timeline flexibility. These advantages are multiplied for round-trip orbiters (e.g. potential Mars sample return) where a large total Delta V would be required. In this paper we investigate the mission design characteristics of mission concepts utilizing various combinations and types of SEP thrusters, solar arrays, launch vehicles, launch dates, arrival dates, etc. SEP allows for greater than 50% more mass delivered and launch windows of months to years. We also present the SEP analog to the ballistic Porkchop plot - the "Bacon" plot.

  13. Variation tolerant SoC design

    Science.gov (United States)

    Kozhikkottu, Vivek J.

    performance distribution. This task is particularly complex and challenging due to the inter-dependencies between components' execution, indirect effects of shared resources, and interactions between multiple system-level "execution paths". We argue that accurate variation-aware performance analysis requires Monte-Carlo based repeated system execution. Our proposed analysis framework leverages emulation to significantly speedup performance analysis without sacrificing the generality and accuracy achieved by Monte-Carlo based simulations. Our experiments show performance improvements of around 60x compared to state-of-the-art hardware-software co-simulation tools and also underscore the framework's potential to enable variation-aware design and exploration at the system level. Our second contribution addresses the problem of designing variation-tolerant SoCs using recovery based design, a popular circuit design paradigm that addresses variations by eliminating guard-bands and operating circuits at close to "zero margins" while detecting and recovering from timing errors. While previous efforts have demonstrated the potential benefits of recovery based design, we identify several challenges that need to be addressed in order to apply this technique to SoCs. We present a systematic design framework to apply recovery based design at the system level. We propose to partition SoCs into "recovery islands", wherein each recovery island consists of one or more SoC components that can recover independent of the rest of the SoC. We present a variation-aware design methodology that partitions a given SoC into recovery islands and computes the optimal operating points for each island, taking into account the various trade-offs involved. Our experiments demonstrate that the proposed design framework achieves an average of 32% energy savings over conventional worst-case designs, with negligible losses in performance. The third contribution of this thesis introduces disproportionate

  14. Biological evidence that SOCS-2 can act either as an enhancer or suppressor of growth hormone signaling

    DEFF Research Database (Denmark)

    Greenhalgh, Christopher J; Metcalf, Donald; Thaus, Anne L

    2002-01-01

    Suppressor of cytokine signaling (SOCS)-2 is a member of a family of intracellular proteins implicated in the negative regulation of cytokine signaling. The generation of SOCS-2-deficient mice, which grow to one and a half times the size of their wild-type littermates, suggests that SOCS-2 may at...

  15. Orbital debris: a technical assessment

    National Research Council Canada - National Science Library

    Committee on Space Debris, National Research Council

    ..., and other debris created as a byproduct of space operations. Orbital Debris examines the methods we can use to characterize orbital debris, estimates the magnitude of the debris population, and assesses the hazard that this population poses to spacecraft...

  16. Advanced Technology for Ultra-Low Power System-on-Chip (SoC)

    Science.gov (United States)

    2017-06-01

    was proposed for lower power applications with Ioff=10pA/μm and VDD=0.5V. In this project, the optimized structure shows great potential in both Lg...AFRL-RY-WP-TR-2017-0115 ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON-CHIP (SoC) Jason Woo, Weicong Li, and Peng Lu University of California...September 2015 – 31 March 2017 4. TITLE AND SUBTITLE ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON- CHIP (SoC) 5a. CONTRACT NUMBER FA8650-15-1-7574 5b

  17. DMPD: Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17070092 Suppressor of cytokine signaling (SOCS) 2, a protein with multiple function...Epub 2006 Oct 27. (.png) (.svg) (.html) (.csml) Show Suppressor of cytokine signaling (SOCS) 2, a protein with multiple function...SOCS) 2, a protein with multiple functions. Authors Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Pu

  18. NTP Radioisotopes SOC Ltd

    International Nuclear Information System (INIS)

    Letule, T.

    2017-01-01

    NTP Radioisotopes SOC Ltd, a wholly owned subsidiary of the South African Nuclear Energy Corporation (NECSA). Supplies around 20% of the world's medical radioisotopes used. NTP is a pioneer in the introduction and growth of nuclear medicine as in South Africa. Nuclear medicine is the medical specialty that involves the use of radioactive isotopes in the diagnosis and treatment of diseases. Nuclear medicine contributes to enhancing the lives of the society. There is a compelling need for nuclear medicine to be promoted and utilized in the rest of Africa, due to the increasing prevalence of cancer. Cancer is rapidly becoming a public health crisis in low-income and middle-income countries. In sub-Saharan Africa, patients often present with advanced disease

  19. A Framework for Orbital Performance Evaluation in Distributed Space Missions for Earth Observation

    Science.gov (United States)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Miller, David W.; de Weck, Olivier

    2015-01-01

    Distributed Space Missions (DSMs) are gaining momentum in their application to earth science missions owing to their unique ability to increase observation sampling in spatial, spectral and temporal dimensions simultaneously. DSM architectures have a large number of design variables and since they are expected to increase mission flexibility, scalability, evolvability and robustness, their design is a complex problem with many variables and objectives affecting performance. There are very few open-access tools available to explore the tradespace of variables which allow performance assessment and are easy to plug into science goals, and therefore select the most optimal design. This paper presents a software tool developed on the MATLAB engine interfacing with STK, for DSM orbit design and selection. It is capable of generating thousands of homogeneous constellation or formation flight architectures based on pre-defined design variable ranges and sizing those architectures in terms of predefined performance metrics. The metrics can be input into observing system simulation experiments, as available from the science teams, allowing dynamic coupling of science and engineering designs. Design variables include but are not restricted to constellation type, formation flight type, FOV of instrument, altitude and inclination of chief orbits, differential orbital elements, leader satellites, latitudes or regions of interest, planes and satellite numbers. Intermediate performance metrics include angular coverage, number of accesses, revisit coverage, access deterioration over time at every point of the Earth's grid. The orbit design process can be streamlined and variables more bounded along the way, owing to the availability of low fidelity and low complexity models such as corrected HCW equations up to high precision STK models with J2 and drag. The tool can thus help any scientist or program manager select pre-Phase A, Pareto optimal DSM designs for a variety of science

  20. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.

    Science.gov (United States)

    Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin

    2015-11-01

    Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  1. The History of Orbiter Corrosion Control (1981 - 2011)

    Science.gov (United States)

    Russell, Richard W.

    2014-01-01

    After 135 missions and 30 years the Orbiter fleet was retired in 2011. Working with Orbiter project management and a world class engineering team the CCRB was successful in providing successful sustaining engineering support for approximately 20 years. Lessons learned from the Orbiter program have aided NASA and contractor engineers in the design and manufacture of new spacecraft so that exploration of space can continue. The Orbiters are proudly being displayed for all the public to see in New York City, Washington D.C., Los Angeles, and at the Kennedy Space Center in Florida.

  2. SOCS3 promoter hypermethylation is a favorable prognosticator and a novel indicator for G-CIMP-positive GBM patients.

    Science.gov (United States)

    Feng, Ying; Wang, Zheng; Bao, Zhaoshi; Yan, Wei; You, Gan; Wang, Yinyan; Hu, Huimin; Zhang, Wei; Zhang, Quangeng; Jiang, Tao

    2014-01-01

    Hypermethylation of the suppressor of cytokine signaling 3(SOCS3) promoter has been reported to predict a poor prognosis in several cancers including glioblastoma multiforme (GBM). We explored the function of SOCS3 promoter hypermethylation in GBM cohorts, including analysis of the CpG island methylator phenotype (CIMP), when a large number of gene loci are simultaneously hypermethylated. A whole genome promoter methylation profile was performed in a cohort of 33 GBM samples, with 13 long-term survivors (LTS; overall survival ≥ 18 months) and 20 short-term survivors (STS; overall survival ≤ 9 months). The SOCS3 promoter methylation status was compared between the two groups. In addition, we investigated the relationship of SOCS3 promoter methylation and G-CIMP status. Interestingly, in our present study, we found that SOCS3 promoter methylation was statistically significantly higher in the 13 LTS than that in the 20 STS. Furthermore, high SOCS3 promoter methylation detected via pyro-sequencing predicted a better prognosis in an independent cohort containing 62 GBM patients. This correlation was validated by the dataset from the Cancer Genome Atlas(TCGA) and the Chinese Cancer Genome Atlas(CGGA). In addition, we found that hypermethylation of the SOCS3 promoter was tightly associated with the G-CIMP-positive GBM patients. Using a total of 359 clinical samples, we demonstrate that SOCS3 promoter hypermethylation status has a favorable prognostic value in GBM patients because of whole genome methylation status. Particularly, the hypermethylation of the SOCS3 promoter indicates positive G-CIMP status.

  3. SOCS3 promoter hypermethylation is a favorable prognosticator and a novel indicator for G-CIMP-positive GBM patients.

    Directory of Open Access Journals (Sweden)

    Ying Feng

    Full Text Available Hypermethylation of the suppressor of cytokine signaling 3(SOCS3 promoter has been reported to predict a poor prognosis in several cancers including glioblastoma multiforme (GBM. We explored the function of SOCS3 promoter hypermethylation in GBM cohorts, including analysis of the CpG island methylator phenotype (CIMP, when a large number of gene loci are simultaneously hypermethylated.A whole genome promoter methylation profile was performed in a cohort of 33 GBM samples, with 13 long-term survivors (LTS; overall survival ≥ 18 months and 20 short-term survivors (STS; overall survival ≤ 9 months. The SOCS3 promoter methylation status was compared between the two groups. In addition, we investigated the relationship of SOCS3 promoter methylation and G-CIMP status.Interestingly, in our present study, we found that SOCS3 promoter methylation was statistically significantly higher in the 13 LTS than that in the 20 STS. Furthermore, high SOCS3 promoter methylation detected via pyro-sequencing predicted a better prognosis in an independent cohort containing 62 GBM patients. This correlation was validated by the dataset from the Cancer Genome Atlas(TCGA and the Chinese Cancer Genome Atlas(CGGA. In addition, we found that hypermethylation of the SOCS3 promoter was tightly associated with the G-CIMP-positive GBM patients.Using a total of 359 clinical samples, we demonstrate that SOCS3 promoter hypermethylation status has a favorable prognostic value in GBM patients because of whole genome methylation status. Particularly, the hypermethylation of the SOCS3 promoter indicates positive G-CIMP status.

  4. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    Science.gov (United States)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  5. Correct-by-construction approaches for SoC design

    CERN Document Server

    Sinha, Roopak; Basu, Samik

    2013-01-01

    This book describes an approach for designing Systems-on-Chip such that the system meets precise mathematical requirements. The methodologies presented enable embedded systems designers to reuse intellectual property (IP) blocks from existing designs in an efficient, reliable manner, automatically generating correct SoCs from multiple, possibly mismatching, components.

  6. Extensive theoretical study on the excited states of the PCl+ molecule including spin-orbit coupling

    Science.gov (United States)

    Zhang, Xiaomei; Zhai, Hongsheng; Liu, Siyuan; Liu, Yufang

    2017-07-01

    The entire 23 Λ-S states of the PCl+ molecule have been studied by using the high-level relativistic MRCI+Q method with full-electron aug-cc-pCVQZ-DK basis set. The potential energy curves(PECs) and wavefunctions of the states have been calculated. From the PECs, the spectroscopic constants of the bound states are also determined, and the good agreements could be found with the experiments. The high density region of states exhibits many PECs' crossings, which lead to complicated interaction of the states. Here, the interactions arising from the dipolar interaction and spin-orbit coupling (SOC) effect have been discussed in detail. Under the influence of the SOC effect, the A2Π state is perturbed by the 14Σ- state. Considering the SOC effect, total 45 Ω states are generated from the original 23 Λ-S states. The transition properties are also predicted, including the transition dipole moments, Franck-Condon factors, and radiative lifetimes. The lifetimes of the transitions A2Π1/2-X2Π1/2 and A2Π3/2-X2Π3/2 are determined to be 478.9 ns and 487.0 ns(v'=0), respectively.

  7. Mapping SOC in a river catchment by integrating laboratory spectra wavelength with remote sensing spectra

    DEFF Research Database (Denmark)

    Peng, Yi; Xiong, Xiong; Knadel, Maria

    There is potential to use soil ·-proximal and remote sensing derived spectra concomitantly to develop soil organic carbon (SOC) models. Yet mixing spectral data from different sources and technologies to improve soil models is still in its infancy. The objective of this study was to incorporate...... soil spectral features indicative of SOC from laboratory visible near-infrared reflectance (vis-NlR) spectra and incorporate them with remote sensing (RS) images to improve predictions of top SOC in the Skjem river catchment, Denmark. The secondary objective was to improve prediction results...

  8. Space shuttle orbit maneuvering engine reusable thrust chamber program

    Science.gov (United States)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  9. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    Science.gov (United States)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  10. Summary of ACCSIM and ORBIT Benchmarking Simulations

    CERN Document Server

    AIBA, M

    2009-01-01

    We have performed a benchmarking study of ORBIT and ACCSIM which are accelerator tracking codes having routines to evaluate space charge effects. The study is motivated by the need of predicting/understanding beam behaviour in the CERN Proton Synchrotron Booster (PSB) in which direct space charge is expected to be the dominant performance limitation. Historically at CERN, ACCSIM has been employed for space charge simulation studies. A benchmark study using ORBIT has been started to confirm the results from ACCSIM and to profit from the advantages of ORBIT such as the capability of parallel processing. We observed a fair agreement in emittance evolution in the horizontal plane but not in the vertical one. This may be partly due to the fact that the algorithm to compute the space charge field is different between the two codes.

  11. JSC Orbital Debris Website Description

    Science.gov (United States)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  12. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Science.gov (United States)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  13. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer

    DEFF Research Database (Denmark)

    Iglesias Gato, Diego; Chuan, Yin Choy; Wikström, Pernilla

    2014-01-01

    ) as mediator of the cross talk between androgens and GH signals in the prostate and its potential role as tumor suppressor in prostate cancer (PCa). We observed that SOCS2 protein levels assayed by immunohistochemistry are elevated in hormone therapy-naive localized prostatic adenocarcinoma in comparison...... of transcription 5 protein (STAT5) and androgen receptor-dependent transcription. Consequentially, SOCS2 inhibits GH activation of Janus kinase 2, Src and STAT5 as well as both cell invasion and cell proliferation in vitro. In vivo, SOCS2 limits proliferation and production of IGF-1 in the prostate in response......Anabolic signals such as androgens and the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis play an essential role in the normal development of the prostate but also in its malignant transformation. In this study, we investigated the role of suppressor of cytokine signaling 2 (SOCS2...

  14. Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit

    Science.gov (United States)

    Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho

    2017-01-01

    As the worlds space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organisms self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as pathfinders, which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes.In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.

  15. Servicing communication satellites in geostationary orbit

    Science.gov (United States)

    Russell, Paul K.; Price, Kent M.

    1990-01-01

    The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.

  16. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling

    DEFF Research Database (Denmark)

    Adams, T E; Hansen, J A; Starr, R

    1998-01-01

    Four members (SOCS-1, SOCS-2, SOCS-3, and CIS) of a family of cytokine-inducible, negative regulators of cytokine receptor signaling have recently been identified. To address whether any of these genes are induced in response to growth hormone (GH), serum-starved 3T3-F442A fibroblasts were incuba...

  17. Spin dependent disorder in a junction device with spin orbit couplings

    International Nuclear Information System (INIS)

    Ganguly, Sudin; Basu, Saurabh

    2016-01-01

    Using the multi-probe Landauer-BUttiker formula and Green's function approach, we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC) and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder strengths. It has been found that when the strengths of the RSOC and DSOC are same, the SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same. This indicates that the cancellation of SHC is robust even in the presence of random disorder. Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as the strength of SDD increases. The physical implication of the existence of a non-zero SHC has been explored in this work. Finally, we have compared the effect of onsite SDD and hopping SDD on both longitudinal and spin Hall conductances. (paper)

  18. Spin-orbit coupling induced two-electron relaxation in silicon donor pairs

    Science.gov (United States)

    Song, Yang; Das Sarma, S.

    2017-09-01

    We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.

  19. SOC Strategies and Organizational Citizenship Behaviors toward the Benefits of Co-workers: A Multi-Source Study

    Science.gov (United States)

    Müller, Andreas; Weigl, Matthias

    2017-01-01

    Background: Individuals’ behavioral strategies like selection, optimization, and compensation (SOC) contribute to efficient use of available resources. In the work context, previous studies revealed positive associations between employees’ SOC use and favorable individual outcomes, like engagement and job performance. However, the social implications of self-directed behaviors like SOC that are favorable for the employee but may imply consequences for coworkers have not been investigated yet in an interpersonal work context. Objective: This study aimed to assess associations between employees’ use of SOC behaviors at work and their organizational citizenship behaviors (OCB) toward the benefits of co-workers rated by their peers at work. We further sought to identify age-specific associations between SOC use and OCB. Design and Method: A cross-sectional design combining multi-source data was applied in primary school teachers (age range: 23–58 years) who frequently teach in dyads. N = 114 dyads were finally included. Teachers reported on their SOC strategies at work. Their peer colleagues evaluated teachers’ OCB. Control variables were gender, workload, working hours, and perceived proximity of relationship between the dyads. Results: We observed a positive effect of loss-based selection behaviors on peer-rated OCB. Moreover, there was a significant two-way interaction effect between the use of compensation strategies and age on OCB, such that there was a positive association for older employees and a negative association for younger employees. There were no significant main and age-related interaction effects of elective selection, optimization, and of overall SOC strategies on OCB. Conclusion: Our study suggests that high use of loss-based selection and high use of compensation strategies in older employees is positively related with OCB as perceived by their colleagues. However, high use of compensation strategies in younger employees is perceived

  20. Matching soil grid unit resolutions with polygon unit scales for DNDC modelling of regional SOC pool

    Science.gov (United States)

    Zhang, H. D.; Yu, D. S.; Ni, Y. L.; Zhang, L. M.; Shi, X. Z.

    2015-03-01

    Matching soil grid unit resolution with polygon unit map scale is important to minimize uncertainty of regional soil organic carbon (SOC) pool simulation as their strong influences on the uncertainty. A series of soil grid units at varying cell sizes were derived from soil polygon units at the six map scales of 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), respectively, in the Tai lake region of China. Both format soil units were used for regional SOC pool simulation with DeNitrification-DeComposition (DNDC) process-based model, which runs span the time period 1982 to 2000 at the six map scales, respectively. Four indices, soil type number (STN) and area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils simulated with the DNDC, were attributed from all these soil polygon and grid units, respectively. Subjecting to the four index values (IV) from the parent polygon units, the variation of an index value (VIV, %) from the grid units was used to assess its dataset accuracy and redundancy, which reflects uncertainty in the simulation of SOC. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pool, matching with soil polygon units map scales, respectively. With the optimal raster resolution the soil grid units dataset can hold the same accuracy as its parent polygon units dataset without any redundancy, when VIV indices was assumed as criteria to the assessment. An quadratic curve regression model y = -8.0 × 10-6x2 + 0.228x + 0.211 (R2 = 0.9994, p < 0.05) was revealed, which describes the relationship between optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:x). The knowledge may serve for grid partitioning of regions focused on the investigation and simulation of SOC pool dynamics at certain map scale.

  1. SOC Strategies and Organizational Citizenship Behaviors toward the Benefits of Co-workers: A Multi-Source Study

    Directory of Open Access Journals (Sweden)

    Andreas Müller

    2017-10-01

    Full Text Available Background: Individuals’ behavioral strategies like selection, optimization, and compensation (SOC contribute to efficient use of available resources. In the work context, previous studies revealed positive associations between employees’ SOC use and favorable individual outcomes, like engagement and job performance. However, the social implications of self-directed behaviors like SOC that are favorable for the employee but may imply consequences for coworkers have not been investigated yet in an interpersonal work context.Objective: This study aimed to assess associations between employees’ use of SOC behaviors at work and their organizational citizenship behaviors (OCB toward the benefits of co-workers rated by their peers at work. We further sought to identify age-specific associations between SOC use and OCB.Design and Method: A cross-sectional design combining multi-source data was applied in primary school teachers (age range: 23–58 years who frequently teach in dyads. N = 114 dyads were finally included. Teachers reported on their SOC strategies at work. Their peer colleagues evaluated teachers’ OCB. Control variables were gender, workload, working hours, and perceived proximity of relationship between the dyads.Results: We observed a positive effect of loss-based selection behaviors on peer-rated OCB. Moreover, there was a significant two-way interaction effect between the use of compensation strategies and age on OCB, such that there was a positive association for older employees and a negative association for younger employees. There were no significant main and age-related interaction effects of elective selection, optimization, and of overall SOC strategies on OCB.Conclusion: Our study suggests that high use of loss-based selection and high use of compensation strategies in older employees is positively related with OCB as perceived by their colleagues. However, high use of compensation strategies in younger employees is

  2. SOC Strategies and Organizational Citizenship Behaviors toward the Benefits of Co-workers: A Multi-Source Study.

    Science.gov (United States)

    Müller, Andreas; Weigl, Matthias

    2017-01-01

    Background: Individuals' behavioral strategies like selection, optimization, and compensation (SOC) contribute to efficient use of available resources. In the work context, previous studies revealed positive associations between employees' SOC use and favorable individual outcomes, like engagement and job performance. However, the social implications of self-directed behaviors like SOC that are favorable for the employee but may imply consequences for coworkers have not been investigated yet in an interpersonal work context. Objective: This study aimed to assess associations between employees' use of SOC behaviors at work and their organizational citizenship behaviors (OCB) toward the benefits of co-workers rated by their peers at work. We further sought to identify age-specific associations between SOC use and OCB. Design and Method: A cross-sectional design combining multi-source data was applied in primary school teachers (age range: 23-58 years) who frequently teach in dyads. N = 114 dyads were finally included. Teachers reported on their SOC strategies at work. Their peer colleagues evaluated teachers' OCB. Control variables were gender, workload, working hours, and perceived proximity of relationship between the dyads. Results: We observed a positive effect of loss-based selection behaviors on peer-rated OCB. Moreover, there was a significant two-way interaction effect between the use of compensation strategies and age on OCB, such that there was a positive association for older employees and a negative association for younger employees. There were no significant main and age-related interaction effects of elective selection, optimization, and of overall SOC strategies on OCB. Conclusion: Our study suggests that high use of loss-based selection and high use of compensation strategies in older employees is positively related with OCB as perceived by their colleagues. However, high use of compensation strategies in younger employees is perceived negatively

  3. Satellite orbits perturbed by direct solar radiation pressure: general expansion of the disturbing function

    International Nuclear Information System (INIS)

    Hughes, S.

    1977-01-01

    An expression is derived for the solar radiation pressure disturbing function on an Earth satellite orbit which takes into account the variation of the solar radiation flux with distance from the Sun's centre and the absorption of radiation by the satellite. This expression is then expanded in terms of the Keplerian elements of the satellite and solar orbits using Kaula's method (Astr. J.; 67:300 (1962)). The Kaula inclination functions are replaced by an equivalent set of modified Allan (Proc. R. Soc. A.; 288:60 (1965)) inclination functions. The resulting expression reduces to the form commonly used in solar radiation pressure perturbation studies (e.g. Aksnes, Cel. Mech.; 13:89 (1976)), when certain terms are neglected. If, as happens quite often in practice, a satellite's orbit is in near-resonance with certain of these neglected terms, these near-resonant terms can cause changes in the satellite's orbital elements comparable to those produced by the largest term in Aksnes's expression. A new expression for the solar radiation pressure disturbing function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation pressure. (author)

  4. Structural Verification of the First Orbital Wonder of the World - The Structural Testing and Analysis of the International Space Station (ISS)

    Science.gov (United States)

    Zipay, John J.; Bernstein, Karen S.; Bruno, Erica E.; Deloo, Phillipe; Patin, Raymond

    2012-01-01

    The International Space Station (ISS) can be considered one of the structural engineering wonders of the world. On par with the World Trade Center, the Colossus of Rhodes, the Statue of Liberty, the Great Pyramids, the Petronas towers and the Burj Khalifa skyscraper of Dubai, the ambition and scope of the ISS structural design, verification and assembly effort is a truly global success story. With its on-orbit life projected to be from its beginning in 1998 to the year 2020 (and perhaps beyond), all of those who participated in its development can consider themselves part of an historic engineering achievement representing all of humanity. The structural design and verification of the ISS could be the subject of many scholarly papers. Several papers have been written on the structural dynamic characterization of the ISS once it was assembled on-orbit [1], but the ground-based activities required to assure structural integrity and structural life of the individual elements from delivery to orbit through assembly and planned on-orbit operations have never been totally summarized. This paper is intended to give the reader an overview of some of the key decisions made during the structural verification planning for the elements of the U.S. On-Orbit Segment (USOS) as well as to summarize the many structural tests and structural analyses that were performed on its major elements. An effort is made for this paper to be summarily comprehensive, but as with all knowledge capture efforts of this kind, there are bound to be errors of omission. Should the reader discover any of these, please feel free to contact the principal author. The ISS (Figure 1) is composed of pre-integrated truss segments and pressurized elements supplied by NASA, the Russian Federal Space Agency (RSA), the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). Each of these elements was delivered to orbit by a launch vehicle and connected to one another either robotically or

  5. Periodic driving control of Raman-induced spin-orbit coupling in Bose-Einstein condensates: The heating mechanisms

    Science.gov (United States)

    Gomez Llorente, J. M.; Plata, J.

    2016-06-01

    We focus on a technique recently implemented for controlling the magnitude of synthetic spin-orbit coupling (SOC) in ultracold atoms in the Raman-coupling scenario. This technique uses a periodic modulation of the Raman-coupling amplitude to tune the SOC. Specifically, it has been shown that the effect of a high-frequency sinusoidal modulation of the Raman-laser intensity can be incorporated into the undriven Hamiltonian via effective parameters, whose adiabatic variation can therefore be used to tune the SOC. Here, we characterize the heating mechanisms that can be relevant to this method. We identify the main mechanism responsible for the heating observed in the experiments as basically rooted in driving-induced transfer of population to excited states. Characteristics of that process determined by the harmonic trapping, the decay of the excited states, and the technique used for preparing the system are discussed. Additional heating, rooted in departures from adiabaticity in the variation of the effective parameters, is also described. Our analytical study provides some clues that may be useful in the design of strategies for curbing the effects of heating on the efficiency of the control methods.

  6. EpSoc: Social-Based Epidemic-Based Routing Protocol in Opportunistic Mobile Social Network

    Directory of Open Access Journals (Sweden)

    Halikul Lenando

    2018-01-01

    Full Text Available In opportunistic networks, the nature of intermittent and disruptive connections degrades the efficiency of routing. Epidemic routing protocol is used as a benchmark for most of routing protocols in opportunistic mobile social networks (OMSNs due to its high message delivery and latency. However, Epidemic incurs high cost in terms of overhead and hop count. In this paper, we propose a hybrid routing protocol called EpSoc which utilizes the Epidemic routing forwarding strategy and exploits an important social feature, that is, degree centrality. Two techniques are used in EpSoc. Messages’ TTL is adjusted based on the degree centrality of nodes, and the message blocking mechanism is used to control replication. Simulation results show that EpSoc increases the delivery ratio and decreases the overhead ratio, the average latency, and the hop counts as compared to Epidemic and Bubble Rap.

  7. Suppressor of Cytokine Signaling (SOCS 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1.

    Directory of Open Access Journals (Sweden)

    Edmond M Linossi

    Full Text Available Suppressor of Cytokine Signaling (SOCS5 is thought to act as a tumour suppressor through negative regulation of JAK/STAT and epidermal growth factor (EGF signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in its N-terminus, which we have termed the JAK interaction region (JIR. Co-expression of SOCS5 was able to specifically reduce JAK1 and JAK2 (but not JAK3 or TYK2 autophosphorylation and this function required both the conserved JIR and additional sequences within the long SOCS5 N-terminal region. We further demonstrate that SOCS5 can directly inhibit JAK1 kinase activity, although its mechanism of action appears distinct from that of SOCS1 and SOCS3. In addition, we identify phosphoTyr317 in Shc-1 as a high-affinity substrate for the SOCS5-SH2 domain and suggest that SOCS5 may negatively regulate EGF and growth factor-driven Shc-1 signaling by binding to this site. These findings suggest that different domains in SOCS5 contribute to two distinct mechanisms for regulation of cytokine and growth factor signaling.

  8. E-Orbit Functions

    Directory of Open Access Journals (Sweden)

    Jiri Patera

    2008-01-01

    Full Text Available We review and further develop the theory of $E$-orbit functions. They are functions on the Euclidean space $E_n$ obtained from the multivariate exponential function by symmetrization by means of an even part $W_{e}$ of a Weyl group $W$, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. They are closely related to symmetric and antisymmetric orbit functions which are received from exponential functions by symmetrization and antisymmetrization procedure by means of a Weyl group $W$. The $E$-orbit functions, determined by integral parameters, are invariant withrespect to even part $W^{aff}_{e}$ of the affine Weyl group corresponding to $W$. The $E$-orbit functions determine a symmetrized Fourier transform, where these functions serve as a kernel of the transform. They also determine a transform on a finite set of points of the fundamental domain $F^{e}$ of the group $W^{aff}_{e}$ (the discrete $E$-orbit function transform.

  9. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    Science.gov (United States)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are

  10. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes

    Science.gov (United States)

    Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz

    2018-02-01

    The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR-GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0-2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal -44.9, -35.0, and -22.4 mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear

  11. Longevity of contributions to SOC stocks from roots and aboveground plant litter below a Miscanthus plantation

    Science.gov (United States)

    Robertson, Andrew; Smith, Pete; Davies, Christian; Bottoms, Emily; McNamara, Niall

    2013-04-01

    Miscanthus is a lignocellulosic crop that uses the Hatch-Slack (C4) photosynthetic pathway as opposed to most C3 vegetation native to the UK. Miscanthus can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by improving the carbon (C) budgets associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC), however the longevity and origin of this 'new' SOC must be assessed. Consequently, we combined an input manipulation experiment with physio-chemical soil fractionation to quantify new SOC and CO2 emissions from Miscanthus roots, decomposing plant litter and soil individually. Further, fractionation of SOC from the top 30 cm gave insight into the longevity of that SOC. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input to the soil by way of controlled exclusion techniques. Treatments excluded roots only ("No Roots"), surface litter only ("No Litter"), both roots and surface litter ("No Roots or Litter") or had double the litter amount added to the soil surface ("Double Litter"). A fifth treatment was a control with undisturbed roots and an average amount of litter added. Monthly measurements of CO2 emissions were taken at the soil surface from each treatment between March 2009 and March 2013, and soil C from the top 30 cm was monitored in all plots over the same period. Miscanthus-derived SOC was determined using the isotopic discrimination between C4 plant matter and C3 soil, and soil fractionation was then used to establish the longevity of that Miscanthus-derived SOC. Ongoing results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2

  12. Single Event Upset Analysis: On-orbit performance of the Alpha Magnetic Spectrometer Digital Signal Processor Memory aboard the International Space Station

    Science.gov (United States)

    Li, Jiaqiang; Choutko, Vitaly; Xiao, Liyi

    2018-03-01

    Based on the collection of error data from the Alpha Magnetic Spectrometer (AMS) Digital Signal Processors (DSP), on-orbit Single Event Upsets (SEUs) of the DSP program memory are analyzed. The daily error distribution and time intervals between errors are calculated to evaluate the reliability of the system. The particle density distribution of International Space Station (ISS) orbit is presented and the effects from the South Atlantic Anomaly (SAA) and the geomagnetic poles are analyzed. The impact of solar events on the DSP program memory is carried out combining data analysis and Monte Carlo simulation (MC). From the analysis and simulation results, it is concluded that the area corresponding to the SAA is the main source of errors on the ISS orbit. Solar events can also cause errors on DSP program memory, but the effect depends on the on-orbit particle density.

  13. Compendium of Single Event Effects (SEE) Test Results for COTS and Standard Electronics for Low Earth Orbit and Deep Space Applications

    Science.gov (United States)

    Reddell, Brandon; Bailey, Chuck; Nguyen, Kyson; O'Neill, Patrick; Gaza, Razvan; Patel, Chirag; Cooper, Jaime; Kalb, Theodore

    2017-01-01

    We present the results of SEE testing with high energy protons and with low and high energy heavy ions. This paper summarizes test results for components considered for Low Earth Orbit and Deep Space applications.

  14. Angles-only relative orbit determination in low earth orbit

    Science.gov (United States)

    Ardaens, Jean-Sébastien; Gaias, Gabriella

    2018-06-01

    The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.

  15. Suppressor of cytokine signaling 2 (SOCS2) deletion protects against multiple low dose streptozotocin-induced type 1 diabetes in adult male mice

    DEFF Research Database (Denmark)

    Alkharusi, Amira; Mirecki-Garrido, Mercedes; Ma, Zuheng

    2016-01-01

    Background: Diabetes type 1 is characterized by the failure of beta cells to produce insulin. Suppressor of cytokine signaling (SOCS) proteins are important regulators of the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. Previous studies have shown that GH can...... prevent the development of type I diabetes in mice and that SOCS2 deficiency mimics a state of increased GH sensitivity. Methodology: The elevated sensitivity of SOCS2-/- mice to GH and possibly to PRL was the rationale to analyze the effects of multiple low dose streptozotocin (MLDSTZ)-induced diabetes...... in SOCS2-/- mice. Results: We show that 6-month-old SOCS2-/- mice, but not 2-month-old mice, were less sensitive to MLDSTZ-induced diabetes, compared to controls. MLDSTZ treatment induced glucose intolerance in both SOCS2+/+ and SOCS2-/- mice, as shown by glucose tolerance tests, with SOCS2+/+ mice...

  16. Quantum walks and orbital states of a Weyl particle

    International Nuclear Information System (INIS)

    Katori, Makoto; Fujino, Soichi; Konno, Norio

    2005-01-01

    The time-evolution equation of a one-dimensional quantum walker is exactly mapped to the three-dimensional Weyl equation for a zero-mass particle with spin 1/2, in which each wave number k of the walker's wave function is mapped to a point q(k) in the three-dimensional momentum space and q(k) makes a planar orbit as k changes its value in [-π,π). The integration over k providing the real-space wave function for a quantum walker corresponds to considering an orbital state of a Weyl particle, which is defined as a superposition (curvilinear integration) of the energy-momentum eigenstates of a free Weyl equation along the orbit. Konno's novel distribution function of a quantum walker's pseudovelocities in the long-time limit is fully controlled by the shape of the orbit and how the orbit is embedded in the three-dimensional momentum space. The family of orbital states can be regarded as a geometrical representation of the unitary group U(2) and the present study will propose a new group-theoretical point of view for quantum-walk problems

  17. Symplectic manifolds, coadjoint orbits, and Mean Field Theory

    International Nuclear Information System (INIS)

    Rosensteel, G.

    1986-01-01

    Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit

  18. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    Science.gov (United States)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  19. The mechanisms behind the formation of a strong Sense of Coherence (SOC): The role of migration and integration

    NARCIS (Netherlands)

    Slootjes, J.; Keuzenkamp, Saskia; Saharso, S.

    2017-01-01

    Considering how much we know about the impact of the Sense of Coherence (SOC) on different health-related outcomes, we know surprisingly little about how a strong SOC actually develops. In this study we examine the mechanisms behind the formation of a strong SOC and study the role of migration,

  20. LCM-seq reveals the crucial role of LsSOC1 in heat-promoted bolting of lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Chen, Zijing; Zhao, Wensheng; Ge, Danfeng; Han, Yingyan; Ning, Kang; Luo, Chen; Wang, Shenglin; Liu, Renyi; Zhang, Xiaolan; Wang, Qian

    2018-05-17

    Lettuce (Lactuca sativa L.) is one of the most economically important vegetables. The floral transition in lettuce is accelerated under high temperatures, which can significantly decrease yields. However, the molecular mechanism underlying the floral tranition in lettuce is poorly known. Using laser capture microdissection coupled with RNA sequencing, we isolated shoot apical meristem cells from the bolting-sensitive lettuce line S39 at four critical stages of development. Subsequently, we screened specifically for the flowering-related gene LsSOC1 during the floral transition through comparative transcriptomic analysis. Molecular biology, developmental biology, and biochemical tools were combined to investigate the biological function of LsSOC1 in lettuce. LsSOC1 knockdown by RNA interference resulted in a significant delay in the timing of bolting and insensitivity to high temperature, which indicated that LsSOC1 functions as an activator during heat-promoted bolting in lettuce. We determined that two heat-shock transcription factors, HsfA1e and HsfA4c, bound to the promoter of LsSOC1 to confirm that LsSOC1 played an important role in heat-promoted bolting. This study indicates that LsSOC1 plays a crucial role in the heat-promoted bolting process in lettuce. Further investigation of LsSOC1 may be useful for clarification of the bolting mechanism in lettuce. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. An Ontological Architecture for Orbital Debris Data

    OpenAIRE

    Rovetto, Robert J.

    2017-01-01

    The orbital debris problem presents an opportunity for inter-agency and international cooperation toward the mutually beneficial goals of debris prevention, mitigation, remediation, and improved space situational awareness (SSA). Achieving these goals requires sharing orbital debris and other SSA data. Toward this, I present an ontological architecture for the orbital debris domain, taking steps in the creation of an orbital debris ontology (ODO). The purpose of this ontological system is to ...

  2. SPACE-BASED MICROLENS PARALLAX OBSERVATION AS A WAY TO RESOLVE THE SEVERE DEGENERACY BETWEEN MICROLENS-PARALLAX AND LENS-ORBITAL EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Lee, C.-U.; Gould, A.; Chung, S.-J.; Kim, S.-L.; Cha, S.-M. [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Bozza, V. [Dipartimento di Fisica “E. R. Caianiello”, Uńiversitá di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Albrow, M. D. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020 (New Zealand); Jung, Y. K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Collaboration: OGLE Collaboration; KMTNet Collaboration; and others

    2016-08-10

    In this paper, we demonstrate the severity of the degeneracy between the microlens-parallax and lens-orbital effects by presenting the analysis of the gravitational binary-lens event OGLE-2015-BLG-0768. Despite the obvious deviation from the model based on the linear observer motion and the static binary, it is found that the residual can be almost equally well explained by either the parallactic motion of the Earth or the rotation of the binary-lens axis, resulting in the severe degeneracy between the two effects. We show that the degeneracy can be readily resolved with the additional data provided by space-based microlens parallax observations. By enabling us to distinguish between the two higher-order effects, space-based microlens parallax observations will not only make it possible to accurately determine the physical lens parameters but also to further constrain the orbital parameters of binary lenses.

  3. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces

    International Nuclear Information System (INIS)

    Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.

    2010-01-01

    We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.

  4. Introduction. Progress in astronomy: from gravitational waves to space weather.

    Science.gov (United States)

    Thompson, J Michael T

    2008-12-13

    This brief paper introduces and reviews the 'visions of the future' articles prepared by leading young scientists throughout the world for the first of two Christmas 2008 Triennial issues of Phil. Trans. R. Soc. A, devoted, respectively, to astronomy and Earth science. Contributions in astronomy include the very topical gamma-ray bursts, new ideas on stellar collapse and the unusual atmospheres of synchronized planets orbiting nearby stars.

  5. Space debris: modeling and detectability

    Science.gov (United States)

    Wiedemann, C.; Lorenz, J.; Radtke, J.; Kebschull, C.; Horstmann, A.; Stoll, E.

    2017-01-01

    High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is

  6. Magnetically levitated space elevator to low-earth orbit

    International Nuclear Information System (INIS)

    Hull, J. R.; Mulcahy, T. M.

    2001-01-01

    The properties of currently available NbTi superconductor and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of(approx) 200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The magnetic self-field from the loop increases the levitational force and for some geometries assists levitational stability. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. Mechanically suspended from the basic loop is an elevator structure, upon which mass can be moved between the earth's surface and the top of the loop by a linear electric motor or other mechanical or electrical means. At the top of the loop, vehicles may be accelerated to orbital velocity or higher by rocket motors, electromagnetic propulsion, or hybrid methods

  7. Influenza A virus inhibits type I IFN signaling via NF-kappaB-dependent induction of SOCS-3 expression.

    Directory of Open Access Journals (Sweden)

    Eva-K Pauli

    2008-11-01

    Full Text Available The type I interferon (IFN system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNbeta gene induction via action of the viral non-structural protein 1 (NS1. Here we present data indicating that influenza A viruses not only suppress IFNbeta gene induction but also inhibit type I IFN signaling through a mechanism involving induction of the suppressor of cytokine signaling-3 (SOCS-3 protein. Our study was based on the observation that in cells that were infected with influenza A virus and subsequently stimulated with IFNalpha/beta, phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1 was strongly reduced. This impaired STAT1 activation was not due to the action of viral proteins but rather appeared to be induced by accumulation of viral 5' triphosphate RNA in the cell. SOCS proteins are potent endogenous inhibitors of Janus kinase (JAK/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1 mRNA levels increase in an RNA- and nuclear factor kappa B (NF-kappaB-dependent but type I IFN-independent manner early in the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the induction of SOCS-3 gene expression, which results in an impaired antiviral response.

  8. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.

    Directory of Open Access Journals (Sweden)

    Takanobu Nagata

    Full Text Available Myocardial ischemia reperfusion injury (IRI adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS-3, an intrinsic negative feedback regulator of the Janus kinase (JAK-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO. The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1 was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.

  9. On-Orbit Propulsion OMS/RCS

    Science.gov (United States)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  10. Orbit equivalence and actions of F

    DEFF Research Database (Denmark)

    Törnquist, Asger Dag

    2006-01-01

    In this paper we show that there are "E many" orbit inequivalent free actions of the free groups F, 2 ≤ n ≤ ∞ by measure preserving transformations on a standard Borel probability space. In particular, there are uncountably many such actions.......In this paper we show that there are "E many" orbit inequivalent free actions of the free groups F, 2 ≤ n ≤ ∞ by measure preserving transformations on a standard Borel probability space. In particular, there are uncountably many such actions....

  11. Plant growth controls short-term changes in soil organic carbon (SOC) stocks of croplands - new insights from the CarboZALF experiment

    Science.gov (United States)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Joana; Albiac Borraz, Elisa; Schmidt, Marten; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    The long-term influence of crop rotations, climate conditions or soil type on soil organic carbon stock (SOC) patterns and gaseous C emissions of agricultural landscapes is widely recognized. However, the question of short-term seasonal changes in SOC within these areas remains unclear. A main reason for this is the detection problem of temporal and spatial variability in gaseous C exchange and thus, changes in SOC stocks (ΔSOC) in a high resolution. This study introduces dynamic C balances as a method to obtain seasonal changes in SOC stocks. Dynamic C balances were calculated by a combination of automatic chamber CO2 exchange measurements and empirical biomass models. Measurements were performed for three consecutive years at a colluvial depression (Colluvic Regosol) in the hummocky ground moraine landscape of NE Germany (CarboZALF experimental site). The investigated crop rotation was maize, winter fodder rye, maize, winter fodder rye, and sudangrass. The site is characterized by a gradient in ground water level (GWL) and related spatial heterogeneity in soil properties, such as SOC as well as soil nitrogen (Nt) stocks. Modelled dynamic C balances reveal that up to 79% of the standard deviation of estimated annual ΔSOC between single chambers emerged during the main period of crop growth (three months in summer). No significant changes in ΔSOC were detected outside the growing season. Instead, differences between chambers remain constant despite ΔSOC dynamics. Environmental variables (Nt stocks of Ap horizon and GWL), affecting plant-mediated C sequestration, explained up to 95% of temporal and spatial variability in CO2 exchange and ΔSOC. Thus, plant activities were the major catalyst for small scale differences in annual ΔSOC of croplands.

  12. Generalized molecular orbital theory: a limited multiconfiguration self-consistent-field-theory

    International Nuclear Information System (INIS)

    Hall, M.B.

    1981-01-01

    The generalized molecular orbital (GMO) approach is a limited type of multiconfiguration self-consistent-field (MCSCF) calculation which divides the orbitals of a closed shell molecule into four shells: doubly occupied, strongly occupied, weakly occupied, and unoccupied. The orbitals within each shell have the same occupation number and are associated with the same Fock operator. Thus, the orbital optimization is ideally suited to solution via a coupling operator. The determination of the orbitals is followed by a configuration interaction (CI) calculation within the strongly and weakly occupied shells. Results for BH 3 show a striking similarity between the GMO's and the natural orbitals (NO's) from an all singles and doubles CI calculation. Although the GMO approach would not be accurate for an entire potential surface, results for spectroscopic constants of N 2 show that it is suitable near the equilibrium geometry. This paper describes the use of the GMO technique to determine the primary orbital space, but a potentially important application may be in the determination of a secondary orbital space following a more accurate MCSCF determination of the primary space

  13. Feasibility analysis of cislunar flight using the Shuttle Orbiter

    Science.gov (United States)

    Haynes, Davy A.

    1991-01-01

    A first order orbital mechanics analysis was conducted to examine the possibility of utilizing the Space Shuttle Orbiter to perform payload delivery missions to lunar orbit. In the analysis, the earth orbit of departure was constrained to be that of Space Station Freedom. Furthermore, no enhancements of the Orbiter's thermal protection system were assumed. Therefore, earth orbit insertion maneuvers were constrained to be all propulsive. Only minimal constraints were placed on the lunar orbits and no consideration was given to possible landing sites for lunar surface payloads. The various phases and maneuvers of the mission are discussed for both a conventional (Apollo type) and an unconventional mission profile. The velocity impulses needed, and the propellant masses required are presented for all of the mission maneuvers. Maximum payload capabilities were determined for both of the mission profiles examined. In addition, other issues relating to the feasibility of such lunar shuttle missions are discussed. The results of the analysis indicate that the Shuttle Orbiter would be a poor vehicle for payload delivery missions to lunar orbit.

  14. Research on SEU hardening of heterogeneous Dual-Core SoC

    Science.gov (United States)

    Huang, Kun; Hu, Keliu; Deng, Jun; Zhang, Tao

    2017-08-01

    The implementation of Single-Event Upsets (SEU) hardening has various schemes. However, some of them require a lot of human, material and financial resources. This paper proposes an easy scheme on SEU hardening for Heterogeneous Dual-core SoC (HD SoC) which contains three techniques. First, the automatic Triple Modular Redundancy (TMR) technique is adopted to harden the register heaps of the processor and the instruction-fetching module. Second, Hamming codes are used to harden the random access memory (RAM). Last, a software signature technique is applied to check the programs which are running on CPU. The scheme need not to consume additional resources, and has little influence on the performance of CPU. These technologies are very mature, easy to implement and needs low cost. According to the simulation result, the scheme can satisfy the basic demand of SEU-hardening.

  15. Use of MSC/NASTRAN for the thermal analysis of the Space Shuttle Orbiter braking system

    Science.gov (United States)

    Shu, James; Mccann, David

    1987-01-01

    A description is given of the thermal modeling and analysis effort being conducted to investigate the transient temperature and thermal stress characteristics of the Space Shuttle Orbiter brake components and subsystems. Models are constructed of the brake stator as well as of the entire brake assembly to analyze the temperature distribution and thermal stress during the landing and braking process. These investigations are carried out on a UNIVAC computer system with MSC/NASTRAN Version 63. Analytical results and solution methods are presented and comparisons are made with SINDA results.

  16. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    Science.gov (United States)

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  17. Maintenance, reliability and policies for orbital space station life support systems

    International Nuclear Information System (INIS)

    Russell, James F.; Klaus, David M.

    2007-01-01

    The performance of productive work on space missions is critical to sustaining a human presence on orbital space stations (OSS), the Moon, or Mars. Available time for productive work has potentially been impacted on past OSS missions by underestimating the crew time needed to maintain systems, such as the Environmental Control and Life Support System (ECLSS). To determine the cause of this apparent disconnect between the design and operation of an OSS, documented crew time for maintenance was collected from the three Skylab missions and Increments 4-8 on the International Space Station (ISS), and the data was contrasted to terrestrial facility maintenance norms. The results of the ISS analysis showed that for four operational and seven functional categories, the largest deviation of 60.4% over the design time was caused by three of the four operational categories not being quantitatively included in the design documents. In a cross category analysis, 35.3% of the crew time was found to have been used to repair air and waste handling systems. The air system required additional crew time for maintenance due to a greater than expected failure rate and resultant increased time needed for repairs. Therefore, it appears that the disconnect between the design time and actual operations for ECLSS maintenance on ISS was caused by excluding non-repair activities from the estimates and experiencing greater than expected technology maintenance requirements. Based on these ISS and Skylab analyses, future OSS designs (and possibly lunar and Martian missions as well) should consider 3.0-3.3 h/day for crews of 2 to 3 as a baseline of crew time needed for ECLSS maintenance

  18. Suppressor of cytokine signaling 4 (SOCS4 protects against severe cytokine storm and enhances viral clearance during influenza infection.

    Directory of Open Access Journals (Sweden)

    Lukasz Kedzierski

    2014-05-01

    Full Text Available Suppressor of cytokine signaling (SOCS proteins are key regulators of innate and adaptive immunity. There is no described biological role for SOCS4, despite broad expression in the hematopoietic system. We demonstrate that mice lacking functional SOCS4 protein rapidly succumb to infection with a pathogenic H1N1 influenza virus (PR8 and are hypersusceptible to infection with the less virulent H3N2 (X31 strain. In SOCS4-deficient animals, this led to substantially greater weight loss, dysregulated pro-inflammatory cytokine and chemokine production in the lungs and delayed viral clearance. This was associated with impaired trafficking of influenza-specific CD8 T cells to the site of infection and linked to defects in T cell receptor activation. These results demonstrate that SOCS4 is a critical regulator of anti-viral immunity.

  19. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes.

    Science.gov (United States)

    Madonna, Stefania; Scarponi, Claudia; Morelli, Martina; Sestito, Rosanna; Scognamiglio, Pasqualina Liana; Marasco, Daniela; Albanesi, Cristina

    2017-04-11

    Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes.In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts.

  20. Orbital Resonances in the Vinti Solution

    Science.gov (United States)

    Zurita, L. D.

    As space becomes more congested, contested, and competitive, high-accuracy orbital predictions become critical for space operations. Current orbit propagators use the two-body solution with perturbations added, which have significant error growth when numerically integrated for long time periods. The Vinti Solution is a more accurate model than the two-body problem because it also accounts for the equatorial bulge of the Earth. Unfortunately, the Vinti solution contains small divisors near orbital resonances in the perturbative terms of the Hamiltonian, which lead to inaccurate orbital predictions. One approach to avoid the small divisors is to apply transformation theory, which is presented in this research. The methodology of this research is to identify the perturbative terms of the Vinti Solution, perform a coordinate transformation, and derive the new equations of motion for the Vinti system near orbital resonances. An analysis of these equations of motion offers insight into the dynamics found near orbital resonances. The analysis in this research focuses on the 2:1 resonance, which includes the Global Positioning System. The phase portrait of a nominal Global Positioning System satellite orbit is found to contain a libration region and a chaotic region. Further analysis shows that the dynamics of the 2:1 resonance affects orbits with semi-major axes ranging from -5.0 to +5.4 kilometers from an exactly 2:1 resonant orbit. Truth orbits of seven Global Positioning System satellites are produced for 10 years. Two of the satellites are found to be outside of the resonance region and three are found to be influenced by the libration dynamics of the resonance. The final satellite is found to be influenced by the chaotic dynamics of the resonance. This research provides a method of avoiding the small divisors found in the perturbative terms of the Vinti Solution near orbital resonances.

  1. An optimum organizational structure for a large earth-orbiting multidisciplinary space base. Ph.D. Thesis - Fla. State Univ., 1973

    Science.gov (United States)

    Ragusa, J. M.

    1975-01-01

    An optimum hypothetical organizational structure was studied for a large earth-orbiting, multidisciplinary research and applications space base manned by a crew of technologists. Because such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than with the empirical testing of the model. The essential finding of this research was that a four-level project type total matrix model will optimize the efficiency and effectiveness of space base technologists.

  2. The fate of SOC during the processes of water erosion and subsequent deposition: a field study.

    Science.gov (United States)

    van Hemelryck, H.; Govers, G.; van Oost, K.; Merckx, R.

    2009-04-01

    the effects of landscape position. From the incubation experiment, significant differences in SOC decomposition were found between the measurement sites. The average SOC decomposition rate was significantly higher for the deposited sediments (DEPO) but decreased rapidly thereafter. Lower but continued decomposition of SOC was measured on the NON-DEPO soil cores. For the CO2-efflux measurements on the field, roughly two distinct environmental periods could be distinguished: a wet, colder period and a dry warm period. The CO2-efflux is highly influenced by environmental factors, nevertheless repeated measures ANOVA revealed significant differences between the measurement sites. During the wet period, CO2-efflux was very low on the footslope soils (DEPO and NON-DEPO) as high moisture contents impeded the diffusion of substrate and oxygen (above water-filled pore spaces of 76 and 60 % for both sites respectively). During the subsequent dry period, NON-DEPO soils respired at rates equal to those measured on the SLOPE sites. On the deposited sediments, however, high peaks of CO2-efflux were measured for a consecutive 20-day period. From both field measurements and lab experiments, a conceptual model comes forth: erosion leads to a source of rapidly mineralizable C, which decomposes after deposition (permitting favorable environmental conditions). However, this erosion/deposition effect is only important in the short-term which results in a limited overall effect. During this study, only 74.3 g CO2-C additionally respired from the deposited sediments, representing a mere 1.6 % of eroded C.

  3. Influence of the Choice of Lunar Gravity Model on Orbit Determination for Lunar Orbiters

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2018-01-01

    Full Text Available We examine the influence of the lunar gravity model on the orbit determination (OD of a lunar orbiter operating in a 100 km high, lunar polar orbit. Doppler and sequential range measurements by three Deep Space Network antennas and one Korea Deep Space Antenna were used. For measurement simulation and OD analysis, STK11 and ODTK6 were utilized. GLGM2, LP100K, LP150Q, GRAIL420A, and GRAIL660B were used for investigation of lunar gravity model selection effect. OD results were assessed by position and velocity uncertainties with error covariance and an external orbit comparison using simulated true orbit. The effect of the lunar gravity models on the long-term OD, degree and order level, measurement-acquisition condition, and lunar altitude was investigated. For efficiency verification, computational times for the five lunar gravity models were compared. Results showed that significant improvements to OD accuracy are observed by applying a GRAIL-based model; however, applying a full order and degree gravity modeling is not always the best strategy, owing to the computational burden. Consequently, we consider that OD using GRAIL660B with 70 × 70 degree and order is the most efficient strategy for mission preanalysis. This study provides useful guideline for KPLO OD analysis during nominal mission operation.

  4. Transport-distance specific SOC distribution: Does it skew erosion induced C fluxes?

    DEFF Research Database (Denmark)

    Hu, Yaxian; Berbe, Asmerat Asefaw; Fogel, Marilyn L.

    2016-01-01

    Abstract The net effect of soil erosion by water, as a sink or source of atmospheric carbon dioxide (CO2), is determined by the spatial (re-)distribution and stability of eroded soil organic carbon (SOC), and the dynamic replacement of eroded C by the production of new photosynthate. The depositi......Abstract The net effect of soil erosion by water, as a sink or source of atmospheric carbon dioxide (CO2), is determined by the spatial (re-)distribution and stability of eroded soil organic carbon (SOC), and the dynamic replacement of eroded C by the production of new photosynthate...... the actual movement of eroded soil fractions along hillslopes, let alone the re-distribution pattern of SOC fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples were fractionated...... into five settling classes using a settling tube apparatus. The spatial distribution of soil settling classes shows a coarsening effect immediately below the eroding slope, followed by a fining trend at the slope tail. These findings support the validity of the conceptual model proposed by Starr et al...

  5. Measurement of the orbital angular momentum density of light by modal decomposition

    CSIR Research Space (South Africa)

    Schulze, C

    2013-07-01

    Full Text Available indices for light fields possessing orbital angular momentum Appl. Phys. Lett. 100 231115 [17] Hickmann J M, Fonseca E J S, Soares W C and Cha´vez-Cerda S 2010 Unveiling a truncated optical lattice associated with a triangular aperture using light’s... fields J. Opt. Soc. Am. A 24 3500–7 [39] Lee W-H 1979 Binary computer-generated holograms Appl. Opt. 18 3661–9 [40] Born M and Wolf E 1991 Principles of Optics (Cambridge: Cambridge University Press) [41] Berry H G, Gabrielse G and Livingston A E 1977...

  6. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  7. Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps.

    Science.gov (United States)

    Ren, Jiliang; Yuan, Ying; Wu, Yingwei; Tao, Xiaofeng

    2018-05-02

    The overlap of morphological feature and mean ADC value restricted clinical application of MRI in the differential diagnosis of orbital lymphoma and idiopathic orbital inflammatory pseudotumor (IOIP). In this paper, we aimed to retrospectively evaluate the combined diagnostic value of conventional magnetic resonance imaging (MRI) and whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in the differentiation of the two lesions. In total, 18 patients with orbital lymphoma and 22 patients with IOIP were included, who underwent both conventional MRI and diffusion weighted imaging before treatment. Conventional MRI features and histogram parameters derived from ADC maps, including mean ADC (ADC mean ), median ADC (ADC median ), skewness, kurtosis, 10th, 25th, 75th and 90th percentiles of ADC (ADC 10 , ADC 25 , ADC 75 , ADC 90 ) were evaluated and compared between orbital lymphoma and IOIP. Multivariate logistic regression analysis was used to identify the most valuable variables for discriminating. Differential model was built upon the selected variables and receiver operating characteristic (ROC) analysis was also performed to determine the differential ability of the model. Multivariate logistic regression showed ADC 10 (P = 0.023) and involvement of orbit preseptal space (P = 0.029) were the most promising indexes in the discrimination of orbital lymphoma and IOIP. The logistic model defined by ADC 10 and involvement of orbit preseptal space was built, which achieved an AUC of 0.939, with sensitivity of 77.30% and specificity of 94.40%. Conventional MRI feature of involvement of orbit preseptal space and ADC histogram parameter of ADC 10 are valuable in differential diagnosis of orbital lymphoma and IOIP.

  8. Orbit Determination Using Vinti’s Solution

    Science.gov (United States)

    2016-09-15

    crew capsule orbited the earth twice and then experienced re-entry as part of an experimental test flight (Orion EFT -1). With a flight duration of almost...utility greatly outweighs these initial difficulties. A summary of efforts required to tap into these benefits follows. • The current research developed...and Lear, D., “Orion EFT -1 Postflight MMOD Inspection,” Orbital Debris Quarterly News, Vol. 19, April 2015, pp. 6–9. [16] European Space Agency, “Space

  9. Design of a Bidirectional Energy Storage System for a Vanadium Redox Flow Battery in a Microgrid with SOC Estimation

    Directory of Open Access Journals (Sweden)

    Qingwu Gong

    2017-03-01

    Full Text Available This paper used a Vanadium Redox flow Battery (VRB as the storage battery and designed a two-stage topology of a VRB energy storage system in which a phase-shifted full bridge dc-dc converter and three-phase inverter were used, considering the low terminal voltage of the VRB. Following this, a model of the VRB was simplified, according to the operational characteristics of the VRB in this designed topology of a VRB energy storage system (ESS. By using the simplified equivalent model of the VRB, the control parameters of the ESS were designed. For effectively estimating the state of charge (SOC of the VRB, a traditional method for providing the SOC estimation was simplified, and a simple and effective SOC estimation method was proposed in this paper. Finally, to illustrate the proper design of the VRB ESS and the proposed SOC estimation method, a corresponding simulation was designed by Simulink. The test results have demonstrated that this proposed SOC estimation method is feasible and effective for indicating the SOC of a VRB and the proper design of this VRB ESS is very reasonable for VRB applications.

  10. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system - combining experimental and modeling approaches

    Science.gov (United States)

    Cardinael, Rémi; Guenet, Bertrand; Chevallier, Tiphaine; Dupraz, Christian; Cozzi, Thomas; Chenu, Claire

    2018-01-01

    Agroforestry is an increasingly popular farming system enabling agricultural diversification and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC) stocks are generally increased, but it is difficult to disentangle the different factors responsible for this storage. Organic carbon (OC) inputs to the soil may be larger, but SOC decomposition rates may be modified owing to microclimate, physical protection, or priming effect from roots, especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees (Juglans regia × nigra) and durum wheat (Triticum turgidum L. subsp. durum) and an adjacent agricultural control plot to quantify all OC inputs to the soil - leaf litter, tree fine root senescence, crop residues, and tree row herbaceous vegetation - and measured SOC stocks down to 2 m of depth at varying distances from the trees. We then proposed a model that simulates SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity. The model was calibrated to the control plot only. Measured OC inputs to soil were increased by about 40 % (+ 1.11 t C ha-1 yr-1) down to 2 m of depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha-1 down to 1 m of depth. However, most of the SOC storage occurred in the first 30 cm of soil and in the tree rows. The model was strongly validated, properly describing the measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed that the increased inputs of fresh biomass to soil explained the observed additional SOC storage in the agroforestry plot. Moreover, only a priming effect variant of the model was able to capture the depth distribution of SOC stocks, suggesting the priming effect as a possible mechanism driving deep SOC dynamics. This result questions the potential of soils to store large amounts of carbon, especially at depth. Deep

  11. 3D integration for NoC-based SoC architectures

    CERN Document Server

    Sheibanyrad, Abbas; Pétrot, Frédéric

    2011-01-01

    3D-Integration for NoC-based SoC Architectures gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures.

  12. Wings in Orbit: Scientific and Engineering Legacies of the Space Shuttle, 1971-2010

    Science.gov (United States)

    Hale, Wayne (Editor); Lane, Helen (Editor); Chapline, Gail (Editor); Lulla, Kamlesh (Editor)

    2011-01-01

    The Space Shuttle is an engineering marvel perhaps only exceeded by the station itself. The shuttle was based on the technology of the 1960s and early 1970s. It had to overcome significant challenges to make it reusable. Perhaps the greatest challenges were the main engines and the Thermal Protection System. The program has seen terrible tragedy in its 3 decades of operation, yet it has also seen marvelous success. One of the most notable successes is the Hubble Space Telescope, a program that would have been a failure without the shuttle's capability to rendezvous, capture, repair, as well as upgrade. Now Hubble is a shining example of success admired by people around the world. As the program comes to a close, it is important to capture the legacy of the shuttle for future generations. That is what "Wings In Orbit" does for space fans, students, engineers, and scientists. This book, written by the men and women who made the program possible, will serve as an excellent reference for building future space vehicles. We are proud to have played a small part in making it happen. Our journey to document the scientific and engineering accomplishments of this magnificent winged vehicle began with an audacious proposal: to capture the passion of those who devoted their energies to its success while answering the question "What are the most significant accomplishments?" of the longestoperating human spaceflight program in our nation s history. This is intended to be an honest, accurate, and easily understandable account of the research and innovation accomplished during the era.

  13. Research on orbit prediction for solar-based calibration proper satellite

    Science.gov (United States)

    Chen, Xuan; Qi, Wenwen; Xu, Peng

    2018-03-01

    Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.

  14. Magnetically levitated space elevator to low-earth orbit.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.; Mulcahy, T. M.

    2001-07-02

    The properties of currently available NbTi superconductor and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of {approx} 200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The magnetic self-field from the loop increases the levitational force and for some geometries assists levitational stability. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. Mechanically suspended from the basic loop is an elevator structure, upon which mass can be moved between the earth's surface and the top of the loop by a linear electric motor or other mechanical or electrical means. At the top of the loop, vehicles may be accelerated to orbital velocity or higher by rocket motors, electromagnetic propulsion, or hybrid methods.

  15. FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Gkolias, Ioannis; Gachet, Fabien [Department of Mathematics, University of Rome Tor Vergata, I-00133 Rome (Italy); Daquin, Jérôme [IMCCE/Observatoire de Paris, Université Lille1, F-59000 Lille (France); Rosengren, Aaron J., E-mail: gkolias@mat.uniroma2.it [IFAC-CNR, 50019 Sesto Fiorentino, Florence (Italy)

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  16. On-Orbit Gradiometry with the scientific instrument of the French Space Mission MICROSCOPE

    Science.gov (United States)

    Foulon, B.; Baghi, Q.; Panet, I.; Rodrigues, M.; Metris, G.; Touboul, P.

    2017-12-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the universality of free fall, the so-called Weak Equivalence Principle (WEP). Based on a CNES Myriade microsatellite launched on the 25th of April 2016, MICROSCOPE is a CNES-ESA-ONERA-CNRS-OCA mission, the scientific objective of which is to test of the Equivalence Principle with an extraordinary accuracy at the level of 10-15. The measurement will be obtained from the T-SAGE (Twin Space Accelerometer for Gravitational Experimentation) instrument constituted by two ultrasensitive differential accelerometers. One differential electrostatic accelerometer, labeled SU-EP, contains, at its center, two proof masses made of Titanium and Platinum and is used for the test. The twin accelerometer, labeled SU-REF, contains two Platinum proof masses and is used as a reference instrument. Separated by a 17 cm-length arm, they are embarked in a very stable and soft environment on board a satellite equipped with a drag-free control system and orbiting on a sun synchronous circular orbit at 710 km above the Earth. In addition to the WEP test, this configuration can be interesting for various applications, and one of the proposed ideas is to use MICROSCOPE data for the measurement of Earth's gravitational gradient. Considering the gradiometer formed by the inner Platinum proof-masses of the two differential accelerometers and the arm along the Y-axis of the instrument which is perpendicular to the orbital plane, possibly 3 components of the gradient can be measured: Txy, Tyy and Tzy. Preliminary studies suggest that the errors can be lower than 10mE. Taking advantage of its higher altitude with respect to GOCE, the low frequency signature of Earth's potential seen by MICROSCOPE could provide an additional observable in gradiometry to discriminate between different models describing the large scales of the mass distribution in the Earth's deep mantle. The poster will shortly present the MICROSCOPE mission

  17. Kepler: A Search for Terrestrial Planets - SOC 9.3 DR25 Pipeline Parameter Configuration Reports

    Science.gov (United States)

    Campbell, Jennifer R.

    2017-01-01

    This document describes the manner in which the pipeline and algorithm parameters for the Kepler Science Operations Center (SOC) science data processing pipeline were managed. This document is intended for scientists and software developers who wish to better understand the software design for the final Kepler codebase (SOC 9.3) and the effect of the software parameters on the Data Release (DR) 25 archival products.

  18. Cost Per Pound From Orbit

    Science.gov (United States)

    Merriam, M. L.

    2002-01-01

    Traditional studies of Reusable Launch Vehicle (RLV) designs have focused on designs that are completely reusable except for the fuel. This may not be realistic with current technology . An alternate approach is to look at partially reusable launch vehicles. This raises the question of which parts should be reused and which parts should be expendable. One approach is to consider the cost/pound of returning these parts from orbit. With the shuttle, this cost is about three times the cost/pound of launching payload into orbit. A subtle corollary is that RLVs are much less practical for higher orbits, such as the one on which the International Space Station resides, than they are for low earth orbits.

  19. Transconjunctival orbital emphysema caused by compressed air injury: a case report.

    Science.gov (United States)

    Mathew, Sunu; Vasu, Usha; Francis, Febson; Nazareth, Colin

    2008-01-01

    Orbital emphysema following conjunctival tear in the absence of orbital wall fracture, caused by air under pressure is rare. Usually orbital emphysema is seen in facial trauma associated with damage to the adjacent paranasal sinuses or facial bones. To the best of our knowledge, there have been only eight reports of orbital emphysema following use of compressed air during industrial work. The air under pressure is pushed through the subconjunctival space into the subcutaneous and retrobulbar spaces. We present here a rare cause of orbital emphysema in a young man working with compressed air gun. Although the emphysema was severe, there were no orbital bone fracture and the visual recovery of the patient was complete without attendant complications.

  20. An advanced analysis method of initial orbit determination with too short arc data

    Science.gov (United States)

    Li, Binzhe; Fang, Li

    2018-02-01

    This paper studies the initial orbit determination (IOD) based on space-based angle measurement. Commonly, these space-based observations have short durations. As a result, classical initial orbit determination algorithms give poor results, such as Laplace methods and Gauss methods. In this paper, an advanced analysis method of initial orbit determination is developed for space-based observations. The admissible region and triangulation are introduced in the method. Genetic algorithm is also used for adding some constraints of parameters. Simulation results show that the algorithm can successfully complete the initial orbit determination.

  1. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies

    International Nuclear Information System (INIS)

    Xu, Jun; Liu, Binghe; Wang, Xinyi; Hu, Dayong

    2016-01-01

    Highlights: • An anisotropic model to describe mechanical behaviors of LIB is established. • SOC dependency is included in the mechanical model of the jellyroll. • Dynamic effect is considered in the model for LIB. - Abstract: Highly nonlinear structures and constituent materials and hazardous experiment situations have resulted in a pressing need for a numerical mechanical model for lithium-ion battery (LIB). However, such a model is still not well established. In this paper, an anisotropic homogeneous model describing the jellyroll and the battery shell is established and validated through compression, indentation, and bending tests at quasi-static loadings. In this model, state-of-charge (SOC) dependency of the LIB is further included through an analogy with the strain-rate effect. Moreover, with consideration of the inertia and strain-rate effects, the anisotropic homogeneous model is extended into the dynamic regime and proven capable of predicting the dynamic response of the LIB using the drop-weight test. The established model may help to predict extreme cases with high SOCs and crashing speeds with an over 135% improved accuracy compared to traditional models. The established coupled strain rate and SOC dependencies of the numerical mechanical model for the LIB aims to provide a solid step toward unraveling and quantifying the complicated problems for research on LIB mechanical integrity.

  2. Demonstrating High-Accuracy Orbital Access Using Open-Source Tools

    Science.gov (United States)

    Gilbertson, Christian; Welch, Bryan

    2017-01-01

    Orbit propagation is fundamental to almost every space-based analysis. Currently, many system analysts use commercial software to predict the future positions of orbiting satellites. This is one of many capabilities that can replicated, with great accuracy, without using expensive, proprietary software. NASAs SCaN (Space Communication and Navigation) Center for Engineering, Networks, Integration, and Communications (SCENIC) project plans to provide its analysis capabilities using a combination of internal and open-source software, allowing for a much greater measure of customization and flexibility, while reducing recurring software license costs. MATLAB and the open-source Orbit Determination Toolbox created by Goddard Space Flight Center (GSFC) were utilized to develop tools with the capability to propagate orbits, perform line-of-sight (LOS) availability analyses, and visualize the results. The developed programs are modular and can be applied for mission planning and viability analysis in a variety of Solar System applications. The tools can perform 2 and N-body orbit propagation, find inter-satellite and satellite to ground station LOS access (accounting for intermediate oblate spheroid body blocking, geometric restrictions of the antenna field-of-view (FOV), and relativistic corrections), and create animations of planetary movement, satellite orbits, and LOS accesses. The code is the basis for SCENICs broad analysis capabilities including dynamic link analysis, dilution-of-precision navigation analysis, and orbital availability calculations.

  3. Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications

    International Nuclear Information System (INIS)

    Dai, Haifeng; Wei, Xuezhe; Sun, Zechang; Wang, Jiayuan; Gu, Weijun

    2012-01-01

    Highlights: ► We use an equivalent circuit model to describe the characteristics of battery. ► A dual time-scale estimator is used to calculate pack average SOC and cell SOC. ► The estimator is based on the dynamic descriptions and extended Kalman filter. ► Three different test cases are designed to validate the proposed method. ► Test results indicate a good performance of the method for EV applications. -- Abstract: For the vehicular operation, due to the voltage and power/energy requirements, the battery systems are usually composed of up to hundreds of cells connected in series or parallel. To accommodate the operation conditions, the battery management system (BMS) should estimate State of Charge (SOC) to facilitate safe and efficient utilization of the battery. The performance difference among the cells makes a pure pack SOC estimation hardly provide sufficient information, which at last affects the computation of available energy and power and the safety of the battery system. So for a reliable and accurate management, the BMS should “know” the SOC of each individual cell. Several possible solutions on this issue have been reported in the recent years. This paper studies a method to determine online all individual cell SOCs of a series-connected battery pack. This method, with an equivalent circuit based “averaged cell” model, estimates the battery pack’s average SOC first, and then incorporates the performance divergences between the “averaged cell” and each individual cell to generate the SOC estimations for all cells. This method is developed based on extended Kalman filter (EKF), and to reduce the computation cost, a dual time-scale implementation is designed. The method is validated using results obtained from the measurements of a Li-ion battery pack under three different tests, and analysis indicates the good performance of the algorithm.

  4. Orbit determination for ISRO satellite missions

    Science.gov (United States)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  5. Summary of the Orbiter mechanical systems

    Science.gov (United States)

    Kiker, J.; Hinson, K.

    1979-01-01

    Major mechanical systems of the Orbiter space vehicle are summarized with respect to general design details, manner of operation, expected performance, and, where applicable, unique features. A synopsis of data obtained during the five atmospheric flight tests of spacecraft OV-101 and status of the systems for the first orbital spacecraft STS-1 are presented.

  6. Using periodic orbits to compute chaotic transport rates between resonance zones

    Science.gov (United States)

    Sattari, Sulimon; Mitchell, Kevin A.

    2017-11-01

    Transport properties of chaotic systems are computable from data extracted from periodic orbits. Given a sufficient number of periodic orbits, the escape rate can be computed using the spectral determinant, a function that incorporates the eigenvalues and periods of periodic orbits. The escape rate computed from periodic orbits converges to the true value as more and more periodic orbits are included. Escape from a given region of phase space can be computed by considering only periodic orbits that lie within the region. An accurate symbolic dynamics along with a corresponding partitioning of phase space is useful for systematically obtaining all periodic orbits up to a given period, to ensure that no important periodic orbits are missing in the computation. Homotopic lobe dynamics (HLD) is an automated technique for computing accurate partitions and symbolic dynamics for maps using the topological forcing of intersections of stable and unstable manifolds of a few periodic anchor orbits. In this study, we apply the HLD technique to compute symbolic dynamics and periodic orbits, which are then used to find escape rates from different regions of phase space for the Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic plateaus, which are parameter intervals where the dynamics is hyperbolic and the symbolic dynamics does not change. After the periodic orbits are computed for a single parameter value within a hyperbolic plateau, periodic orbit continuation is used to compute periodic orbits over an interval that spans the hyperbolic plateau. The escape rates computed from a few thousand periodic orbits agree with escape rates computed from Monte Carlo simulations requiring hundreds of billions of orbits.

  7. MOM-E: Moon-Orbiting Mothership Explorer

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.

  8. Application of modern tools and techniques to maximize engineering productivity in the development of orbital operations plans for the space station progrm

    Science.gov (United States)

    Manford, J. S.; Bennett, G. R.

    1985-01-01

    The Space Station Program will incorporate analysis of operations constraints and considerations in the early design phases to avoid the need for later modifications to the Space Station for operations. The application of modern tools and administrative techniques to minimize the cost of performing effective orbital operations planning and design analysis in the preliminary design phase of the Space Station Program is discussed. Tools and techniques discussed include: approach for rigorous analysis of operations functions, use of the resources of a large computer network, and providing for efficient research and access to information.

  9. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit.

    Science.gov (United States)

    Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B

    2014-01-13

    We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.

  10. A microprocessor from AVR to embedded SoC

    International Nuclear Information System (INIS)

    Jeong, Geum Seoh

    2005-01-01

    This book was divided into two parts. The first part consists of ten chapter, which are basic knowledge, code vision AVR compiler, analysis on code vision, introduction and characteristic of AVR, I/O ports, interrupt and timer/counter, LCD, serial communication, analog comparator and stepping Motor and digital control of DC Motor. In the second part, it introduces Embedded Soc including application field, its characteristic, general description, functional description, designs with Quartus II.

  11. Toward Microsatellite Based Space Situational Awareness

    Science.gov (United States)

    Scott, L.; Wallace, B.; Sale, M.; Thorsteinson, S.

    2013-09-01

    The NEOSSat microsatellite is a dual mission space telescope which will perform asteroid detection and Space Situational Awareness (SSA) observation experiments on deep space, earth orbiting objects. NEOSSat was launched on 25 February 2013 into a 800 dawn-dusk sun synchronous orbit and is currently undergoing satellite commissioning. The microsatellite consists of a small aperture optical telescope, GPS receiver, high performance attitude control system, and stray light rejection baffle designed to reject stray light from the Sun while searching for asteroids with elongations 45 degrees along the ecliptic. The SSA experimental mission, referred to as HEOSS (High Earth Orbit Space Surveillance), will focus on objects in deep space orbits. The HEOSS mission objective is to evaluate the utility of microsatellites to perform catalog maintenance observations of resident space objects in a manner consistent with the needs of the Canadian Forces. The advantages of placing a space surveillance sensor in low Earth orbit are that the observer can conduct observations without the day-night interruption cycle experienced by ground based telescopes, the telescope is insensitive to adverse weather and the system has visibility to deep space resident space objects which are not normally visible from ground based sensors. Also, from a photometric standpoint, the microsatellite is able to conduct observations on objects with a rapidly changing observer position. The possibility of spin axis estimation on geostationary satellites may be possible and an experiment characterize spin axis of distant resident space objects is being planned. Also, HEOSS offers the ability to conduct observations of satellites at high phase angles which can potentially extend the trackable portion of space in which deep space objects' orbits can be monitored. In this paper we describe the HEOSS SSA experimental data processing system and the preliminary findings of the catalog maintenance experiments

  12. A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; Ruedenberg, Klaus

    2013-01-01

    Through a basis-set-independent web of localizing orbital-transformations, the electronic wave function of a molecule is expressed in terms of a set of orbitals that reveal the atomic structure and the bonding pattern of a molecule. The analysis is based on resolving the valence orbital space in terms of an internal space, which has minimal basis set dimensions, and an external space. In the internal space, oriented quasi-atomic orbitals and split-localized molecular orbitals are determined by new, fast localization methods. The density matrix between the oriented quasi-atomic orbitals as well as the locations of the split-localized orbitals exhibit atomic populations and inter-atomic bonding patterns. A correlation-adapted quasi-atomic basis is determined in the external orbital space. The general formulations are specified in detail for Hartree-Fock wave functions. Applications to specific molecules exemplify the general scheme

  13. A Cryptographic SoC for Robust Protection of Secret Keys in IPTV DRM Systems

    Science.gov (United States)

    Lee, Sanghan; Yang, Hae-Yong; Yeom, Yongjin; Park, Jongsik

    The security level of an internet protocol television (IPTV) digital right management (DRM) system ultimately relies on protection of secret keys. Well known devices for the key protection include smartcards and battery backup SRAMs (BB-SRAMs); however, these devices could be vulnerable to various physical attacks. In this paper, we propose a secure and cost-effective design of a cryptographic system on chip (SoC) that integrates the BB-SRAM with a cell-based design technique. The proposed SoC provides robust safeguard against the physical attacks, and satisfies high-speed and low-price requirements of IPTV set-top boxes. Our implementation results show that the maximum encryption rate of the SoC is 633Mb/s. In order to verify the data retention capabilities, we made a prototype chip using 0.18µm standard cell technology. The experimental results show that the integrated BB-SRAM can reliably retain data with a 1.4µA leakage current.

  14. Gaining Insights on the H2–Sorbent Interactions: Robust soc-MOF Platform as a Case Study

    KAUST Repository

    Cairns, Amy

    2016-09-18

    We report on the synthesis and gas adsorption properties (i.e., Ar and H2) of four robust 3-periodic metal–organic frameworks (MOFs) having the targeted soc topology. These cationic MOFs are isostructural to the parent indium-based MOF, In-soc-MOF-1a (for NO3–), previously reported by us, and likewise are constructed from the assembly of rigid μ3-oxygen-centered trinuclear metal carboxylate clusters, [M3O(O2C−)6], where M = In3+ or Fe3+. Each inorganic trinuclear molecular building block (MBB), generated in situ, is bridged by six 3,3′,5,5′-azobenzenetetracarboxylate (ABTC4–) ligands to give the extended (4,6)-connected MOF, soc-MOF. In our previous work, we confirmed that the parent soc-MOF, i.e., In-soc-MOF-1a, possesses unique structural characteristics (e.g., vacant In binding sites and narrow pores with higher localized charge density), which led to exceptional hydrogen (H2) storage capabilities. Therefore, charged MOFs with soc topology can be viewed collectively as an ideal prototypical platform to examine the impact of specific structural parameters on H2–MOF interactions via systematic gas adsorption studies. We infer that enhanced binding of molecular H2 is primarily governed by the presence and type of vacant metal centers (i.e., Fe was shown to exhibit stronger H2–MOF interactions at low H2 loading compared to the In analogues). These findings are evident from the associated isosteric heat of adsorption (Qst) at low loadings and inelastic neutron scattering (INS) experiments of the rotational transitions of sorbed H2, as well as, temperature-programmed desorption (TPD) studies (for a select compound). The importance of localized charge density is also highlighted, where the extra-framework nitrate anions in the Fe-soc-MOF-1a (for NO3–) facilitate enhanced binding affinities as compared to the chloride analogue.

  15. Risk of spacecraft on-orbit obsolescence: Novel framework, stochastic modeling, and implications

    Science.gov (United States)

    Dubos, Gregory F.; Saleh, Joseph H.

    2010-07-01

    The Government Accountability Office (GAO) has repeatedly noted the difficulties encountered by the Department of Defense (DOD) in keeping its acquisition of space systems on schedule and within budget. Among the recommendations provided by GAO, a minimum Technology Readiness Level (TRL) for technologies to be included in the development of a space system is advised. The DOD considers this recommendation impractical arguing that if space systems were designed with only mature technologies (high TRL), they would likely become obsolete on-orbit fairly quickly. The risk of on-orbit obsolescence is a key argument in the DOD's position for dipping into low technology maturity for space acquisition programs, but this policy unfortunately often results in the cost growth and schedule slippage criticized by the GAO. The concept of risk of on-orbit obsolescence has remained qualitative to date. In this paper, we formulate a theory of risk of on-orbit obsolescence by building on the traditional notion of obsolescence and adapting it to the specificities of space systems. We develop a stochastic model for quantifying and analyzing the risk of on-orbit obsolescence, and we assess, in its light, the appropriateness of DOD's rationale for maintaining low TRL technologies in its acquisition of space assets as a strategy for mitigating on-orbit obsolescence. Our model and results contribute one step towards the resolution of the conceptual stalemate on this matter between the DOD and the GAO, and we hope will inspire academics to further investigate the risk of on-orbit obsolescence.

  16. Prediction of SOC content by Vis-NIR spectroscopy at European scale using a modified local PLS algorithm

    Science.gov (United States)

    Nocita, M.; Stevens, A.; Toth, G.; van Wesemael, B.; Montanarella, L.

    2012-12-01

    In the context of global environmental change, the estimation of carbon fluxes between soils and the atmosphere has been the object of a growing number of studies. This has been motivated notably by the possibility to sequester CO2 into soils by increasing the soil organic carbon (SOC) stocks and by the role of SOC in maintaining soil quality. Spatial variability of SOC masks its slow accumulation or depletion, and the sampling density required to detect a change in SOC content is often very high and thus very expensive and labour intensive. Visible near infrared diffuse reflectance spectroscopy (Vis-NIR DRS) has been shown to be a fast, cheap and efficient tool for the prediction of SOC at fine scales. However, when applied to regional or country scales, Vis-NIR DRS did not provide sufficient accuracy as an alternative to standard laboratory soil analysis for SOC monitoring. Under the framework of Land Use/Cover Area Frame Statistical Survey (LUCAS) project of the European Commission's Joint Research Centre (JRC), about 20,000 samples were collected all over European Union. Soil samples were analyzed for several physical and chemical parameters, and scanned with a Vis-NIR spectrometer in the same laboratory. The scope of our research was to predict SOC content at European scale using LUCAS spectral library. We implemented a modified local partial least square regression (l-PLS) including, in addition to spectral distance, other potentially useful covariates (geography, texture, etc.) to select for each unknown sample a group of predicting neighbours. The dataset was split in mineral soils under cropland, mineral soils under grassland, mineral soils under woodland, and organic soils due to the extremely diverse spectral response of the four classes. Four every class training (70%) and test (30%) sets were created to calibrate and validate the SOC prediction models. The results showed very good prediction ability for mineral soils under cropland and mineral soils

  17. UD-DKF-based Parameters on-line Identification Method and AEKF-Based SOC Estimation Strategy of Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    Xuanju Dang

    2014-09-01

    Full Text Available State of charge (SOC is a significant parameter for the Battery Management System (BMS. The accurate estimation of the SOC can not only guarantee the SOC remaining within a reasonable scope of work, but also prevent the battery from being over or deeply-charged to extend the lifespan of battery. In this paper, the third-order RC equivalent circuit model is adopted to describe cell characteristics and the dual Kalman filter (DKF is used online to identify model parameters for battery. In order to avoid the impacts of rounding error calculation leading to the estimation error matrix loss of non-negative qualitative which result in the filtering divergence phenomenon, the UD decomposition method is applied for filtering time and state updates simultaneously to enhance the stability of the algorithm, reduce the computational complexity and improve the high recognition accuracy. Based on the obtained model parameters, Adaptive Extended Kalman Filter (AEKF is introduced to online estimate the SOC of battery. The simulation and experimental results demonstrate that the established third-order RC equivalent circuit model is effective, and the SOC estimation has a higher precision.

  18. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS LPVEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Satellite Simulated Orbits LPVEx dataset is available in the Orbital database, which takes account for the atmospheric profiles, the...

  19. Role of Ubiquitylation in Controlling Suppressor of Cytokine Signalling 3 (SOCS3 Function and Expression

    Directory of Open Access Journals (Sweden)

    Jamie J. L. Williams

    2014-05-01

    Full Text Available The realisation that unregulated activation of the Janus kinase–signal transducer and activator of transcription (JAK–STAT pathway is a key driver of a wide range of diseases has identified its components as targets for therapeutic intervention by small molecule inhibitors and biologicals. In this review, we discuss JAK-STAT signalling pathway inhibition by the inducible inhibitor “suppressor of cytokine signaling 3 (SOCS3, its role in diseases such as myeloproliferative disorders, and its function as part of a multi-subunit E3 ubiquitin ligase complex. In addition, we highlight potential applications of these insights into SOCS3-based therapeutic strategies for management of conditions such as vascular re-stenosis associated with acute vascular injury, where there is strong evidence that multiple processes involved in disease progression could be attenuated by localized potentiation of SOCS3 expression levels.

  20. Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Ott, Jelanie; Matuszeski, Adam

    2011-01-01

    Custom fiber optic bundle array assemblies developed by the Photonics Group at NASA Goddard Space Flight Center were an enabling technology for both the Lunar Orbiter Laser Altimeter (LOLA) and the Laser Ranging (LR) Investigation on the Lunar Reconnaissance Orbiter (LRO) currently in operation. The unique assembly array designs provided considerable decrease in size and weight and met stringent system level requirements. This is the first time optical fiber array bundle assemblies were used in a high performance space flight application. This innovation was achieved using customized Diamond Switzerland AVIM optical connectors. For LOLA, a five fiber array was developed for the receiver telescope to maintain precise alignment for each of the 200/220 micron optical fibers collecting 1,064 nm wavelength light being reflected back from the moon. The array splits to five separate detectors replacing the need for multiple telescopes. An image illustration of the LOLA instrument can be found at the top of the figure. For the laser ranging, a seven-optical-fiber array of 400/440 micron fibers was developed to transmit light from behind the LR receiver telescope located on the end of the high gain antenna system (HGAS). The bundle was routed across two moving gimbals, down the HGAS boom arm, over a deployable mandrel and across the spacecraft to a detector on the LOLA instrument. The routing of the optical fiber bundle and its end locations is identified in the figure. The Laser Ranging array and bundle is currently accepting light at a wavelength of 532 nm sent to the moon from laser stations at Greenbelt MD and other stations around the world to gather precision ranging information from the Earth to the LRO spacecraft. The LR bundle assembly is capable of withstanding temperatures down to -55 C at the connectors, and 20,000 mechanical gimbal cycles at temperatures as cold as -20 C along the length of the seven-fiber bundle (that is packaged into the gimbals). The total

  1. Dealing with Uncertainties in Initial Orbit Determination

    Science.gov (United States)

    Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato

    2015-01-01

    A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.

  2. Development of an automated processing and screening system for the space shuttle orbiter flight test data

    Science.gov (United States)

    Mccutchen, D. K.; Brose, J. F.; Palm, W. E.

    1982-01-01

    One nemesis of the structural dynamist is the tedious task of reviewing large quantities of data. This data, obtained from various types of instrumentation, may be represented by oscillogram records, root-mean-squared (rms) time histories, power spectral densities, shock spectra, 1/3 octave band analyses, and various statistical distributions. In an attempt to reduce the laborious task of manually reviewing all of the space shuttle orbiter wideband frequency-modulated (FM) analog data, an automated processing system was developed to perform the screening process based upon predefined or predicted threshold criteria.

  3. Compendium of Single Event Effects Test Results for Commercial Off-The-Shelf and Standard Electronics for Low Earth Orbit and Deep Space Applications

    Science.gov (United States)

    Reddell, Brandon D.; Bailey, Charles R.; Nguyen, Kyson V.; O'Neill, Patrick M.; Wheeler, Scott; Gaza, Razvan; Cooper, Jaime; Kalb, Theodore; Patel, Chirag; Beach, Elden R.; hide

    2017-01-01

    We present the results of Single Event Effects (SEE) testing with high energy protons and with low and high energy heavy ions for electrical components considered for Low Earth Orbit (LEO) and for deep space applications.

  4. Characteristic of the radiation field in low earth orbit and in deep space

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60 latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  5. Characteristic of the radiation field in low Earth orbit and in deep space.

    Science.gov (United States)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  6. Space Power Theory: Controlling the Medium Without Weapons in Space

    National Research Council Canada - National Science Library

    Wilkerson, Don L

    2008-01-01

    .... strategic space assets and the ability to negate enemy space systems is essential to U.S. space strategy in controlling the geographical environment of space, predominately in the Lower Earth Orbit (LEO...

  7. Growth in the Number of SSN Tracked Orbital Objects

    Science.gov (United States)

    Stansbery, Eugene G.

    2004-01-01

    The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety.

  8. De-Orbiting of Space Debris by Means of a Towering Cable and a Single Thruster Spaceship: Whiplash and Tail Wagging Effects

    Science.gov (United States)

    da Cruz Pacheco, Gabriel Felippe; Carpentier, Benjamin; Petit, Nicolas

    2013-08-01

    This papers exposes two difficulties that are likely to take place during the towing of a space debris. These effects, which could trouble de-orbitation strategies, are visible on simple simulations based on a model of coupled rigid-bodies dynamics. We name them tail wagging and whiplash effects, respectively.

  9. Small Orbital Stereo Tracking Camera Technology Development

    Science.gov (United States)

    Gagliano, L.; Bryan, T.; MacLeod, T.

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASAs Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  10. A Framework for Hardware-Accelerated Services Using Partially Reconfigurable SoCs

    Directory of Open Access Journals (Sweden)

    MACHIDON, O. M.

    2016-05-01

    Full Text Available The current trend towards ?Everything as a Service? fosters a new approach on reconfigurable hardware resources. This innovative, service-oriented approach has the potential of bringing a series of benefits for both reconfigurable and distributed computing fields by favoring a hardware-based acceleration of web services and increasing service performance. This paper proposes a framework for accelerating web services by offloading the compute-intensive tasks to reconfigurable System-on-Chip (SoC devices, as integrated IP (Intellectual Property cores. The framework provides a scalable, dynamic management of the tasks and hardware processing cores, based on dynamic partial reconfiguration of the SoC. We have enhanced security of the entire system by making use of the built-in detection features of the hardware device and also by implementing active counter-measures that protect the sensitive data.

  11. Cache Performance Optimization for SoC Vedio Applications

    OpenAIRE

    Lei Li; Wei Zhang; HuiYao An; Xing Zhang; HuaiQi Zhu

    2014-01-01

    Chip Multiprocessors (CMPs) are adopted by industry to deal with the speed limit of the single-processor. But memory access has become the bottleneck of the performance, especially in multimedia applications. In this paper, a set of management policies is proposed to improve the cache performance for a SoC platform of video application. By analyzing the behavior of Vedio Engine, the memory-friendly writeback and efficient prefetch policies are adopted. The experiment platform is simulated by ...

  12. On-orbit technology experiment facility definition

    Science.gov (United States)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  13. Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface

    Directory of Open Access Journals (Sweden)

    Mayukh Bhattacharyya

    2018-01-01

    Full Text Available Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 μ m CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 μ W. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD.

  14. The European Space Agency's FESTIP initiative

    Science.gov (United States)

    Burleson, Daphne

    1998-01-01

    In an effort to reduce the cost of access and open up new markets, the European Space Agency has begun a program called Future European Space Transportation Investigations Programme or FESTIP, in which reusable launcher concepts are being studied and developed. The ideal reusable launcher would be comparable to a normal aircraft in that it would be capable of taking off from many possible locations on Earth, enter the desired orbital plane, then accelerate to orbital velocity, release its payload, de-orbit, disperse its kinetic energy and land at the take-off base to be prepared for its next flight following a quick turnaround time. This ideal vehicle would be called the `single-stage-to-orbit reusable rocket launcher' or SSTO-RRL. All space launchers currently in use are staged to orbit and expendable, except the US Space Shuttle, and there is no SSTO-RRL in operation as yet. This paper will discuss the design options being studied by the European Space Agency (ESA) as well as their practical use in serving the space-launch market (FESTIP Workshop 1).

  15. A Flexible ADC Approach for Mixed-signal SoC Platforms

    NARCIS (Netherlands)

    Zanikopoulos, A.; Harpe, P.J.A.; Hegt, J.A.; Roermund, van A.H.M.

    2005-01-01

    Time-to-market pressure and increased design complexity created what is called a "design gap" [1] in the design of systems-on-chip (SoC). As a solution to that problem the Platform-Based Design (PBD), based on the design-reuse methodology, has been proposed [2], and successfully applied to digital

  16. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Pike, Ashley C W; Vesterlund, Mattias

    2011-01-01

    to substrate residue position pY+6 and envelopes the c-KIT phosphopeptide with a large BG loop insertion that contributes significantly to substrate interaction. We demonstrate that SOCS6 has ubiquitin ligase activity toward c-KIT and regulates c-KIT protein turnover in cells. Our data support a role of SOCS6...

  17. Lens sparing technique using multi-leaf collimators in irradiation of the unilateral retro-orbital space for benign disease

    International Nuclear Information System (INIS)

    Middleton, Mark; Medwell, Stephen; Bennie, David; Fogarty, Gerald

    2005-01-01

    The authors present a case of a 30-year-old woman with pseudolymphoma of the left medial rectus muscle. A multi-field technique was planned for irradiating the unilateral retro-orbital space to 20 Gray (GY) in 15 fractions while keeping the average dose to the lens of 8 Gy and the peak dose to the lens of 11 Gy using multi-leaf collimators is described. Copyright (2005) Australian Institute of Radiography

  18. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  19. Getting a Crew into Orbit

    Science.gov (United States)

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  20. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    Science.gov (United States)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  1. [Characteristics of Soil Respiration along Eroded Sloping Land with Different SOC Background on the Hilly Loess Plateau].

    Science.gov (United States)

    Chen, Gai; Xu, Ming-xiang; Zhang, Ya-feng; Wang, Chao-hua; Fan, Hui-min; Wang, Shan-shan

    2015-09-01

    This study aimed to characterize soil respiration along eroded sloping land at erosion and deposition area under different soil organic carbon(SOC) levels, and linked the relationship between soil respiration and soil temperature, soil moisture, SOC and slope position. Experiments were carried out in the plots of S type slopes include five different soil organic carbon levels in the Loess Hilly Region. The S type slopes were divided into control area at the top of the slope, erosion area at the middle of the slope and deposition area at the toe of the slope. We found that soil temperature had a greater impact on soil respiration in the deposition area, whereas soil moisture had a greater impact on soil respiration in the erosion area compared among control area, erosion area and deposition area. In addition, SOC was the most important factor affecting soil respiration, which can explain soil respiration variation 54. 72%, followed by soil moisture, slope position and soil temperature, which explain soil respiration variation 18. 86% , 16. 13% and 10. 29%, respectively. Soil respiration response to erosion showed obvious on-site and off-site effects along the eroded sloping land. Soil respiration in the erosion area was reduced by 21. 14% compared with control area, and soil respiration in the deposition area was increased by 21. 93% compared with control area. Erosion effect on source and sink of carbon emission was correlated with SOC content of the eroded sloping land. When SOC content was higher than 6. 82 g.kg-1, the slope. erosion tended to be a carbon sequestration process, and when SOC content was lower than 3.03 g.kg-1, the slope erosion tended to be a process of the carbon emission source. The model could reflect the relationship between soil respiration and independent variables of soil organic carbon content, soil temperature and moisture.

  2. Forward Technology Solar Cell Experiment First On-Orbit Data

    Science.gov (United States)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.; hide

    2007-01-01

    This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits

  3. New solutions for the space debris problem

    CERN Document Server

    Pelton, Joseph N

    2015-01-01

    Addressing a pressing issue in space policy, Pelton explores the new forms of technology that are being developed to actively remove the defunct space objects from orbit and analyzes their implications in the existing regime of international space law and public international law. This authoritative review covers the due diligence guidelines that nations are using to minimize the generation of new debris, mandates to de-orbit satellites at end of life, and innovative endeavours to remove non-functional satellites, upper stage rockets and other large debris from orbit under new institutional, financial and regulatory guidelines.  Commercial space services currently exceed 100 billion USD business per annum, but the alarming proliferation in the population of orbital debris in low, medium and geosynchronous satellite orbits poses a serious threat to all kinds of space assets and applications. There is a graver concern that the existing space debris will begin to collide in a cascading manner, generating furth...

  4. IL-6 modulates hepatocyte proliferation via induction of HGF/p21cip1: Regulation by SOCS3

    International Nuclear Information System (INIS)

    Sun Rui; Jaruga, Barbara; Kulkarni, Shailin; Sun Haoyu; Gao Bin

    2005-01-01

    The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21 cip1 protein expression in primary mouse hepatocytes. Disruption of the p21 cip1 gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21 cip1 protein expression and a slightly stronger inhibition of cell proliferation in SOCS3 +/- mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3 +/- mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21 cip1 -dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration

  5. Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Ines Baccouche

    2017-05-01

    Full Text Available Accurate modeling of the nonlinear relationship between the open circuit voltage (OCV and the state of charge (SOC is required for adaptive SOC estimation during the lithium-ion (Li-ion battery operation. Online SOC estimation should meet several constraints, such as the computational cost, the number of parameters, as well as the accuracy of the model. In this paper, these challenges are considered by proposing an improved simplified and accurate OCV model of a nickel manganese cobalt (NMC Li-ion battery, based on an empirical analytical characterization approach. In fact, composed of double exponential and simple quadratic functions containing only five parameters, the proposed model accurately follows the experimental curve with a minor fitting error of 1 mV. The model is also valid at a wide temperature range and takes into account the voltage hysteresis of the OCV. Using this model in SOC estimation by the extended Kalman filter (EKF contributes to minimizing the execution time and to reducing the SOC estimation error to only 3% compared to other existing models where the estimation error is about 5%. Experiments are also performed to prove that the proposed OCV model incorporated in the EKF estimator exhibits good reliability and precision under various loading profiles and temperatures.

  6. Orbiting compressor for residential air-conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Woo Young; Ahn, Jong Min [Department of Mechanical Engineering, University of Incheon, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea)

    2010-01-15

    A new type of compressor, called an orbiting compressor, is introduced in this paper. The orbiting compressor is characterized by an orbiting piston, and the piston or orbiter consists of a circular base plate and a ring type vane protruding vertically from the base plate. The orbiter is made to orbit in an annular space formed between two concentric circular walls via an Oldham-ring mechanism, producing two sealed gas pockets on both sides of the vane wrap with a 180 phase difference. This operating mechanism leads to alternating compression and discharge processes, which results in low torque variation. The orbiting compressor has been designed for an R410A residential air conditioner with a cooling capacity of 10.0 kW. The performance of the orbiting compressor model has been analytically investigated, where the volumetric, adiabatic and mechanical efficiencies were calculated to be 94.8%, 90.4% and 93.4%, respectively for the ARI condition. The EER was estimated to be about 10.86 with a motor efficiency of 89%. (author)

  7. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  8. Real-time maneuver optimization of space-based robots in a dynamic environment: Theory and on-orbit experiments

    Science.gov (United States)

    Chamitoff, Gregory E.; Saenz-Otero, Alvar; Katz, Jacob G.; Ulrich, Steve; Morrell, Benjamin J.; Gibbens, Peter W.

    2018-01-01

    This paper presents the development of a real-time path-planning optimization approach to controlling the motion of space-based robots. The algorithm is capable of planning three dimensional trajectories for a robot to navigate within complex surroundings that include numerous static and dynamic obstacles, path constraints and performance limitations. The methodology employs a unique transformation that enables rapid generation of feasible solutions for complex geometries, making it suitable for application to real-time operations and dynamic environments. This strategy was implemented on the Synchronized Position Hold Engage Reorient Experimental Satellite (SPHERES) test-bed on the International Space Station (ISS), and experimental testing was conducted onboard the ISS during Expedition 17 by the first author. Lessons learned from the on-orbit tests were used to further refine the algorithm for future implementations.

  9. Analysis of Suppressor of Cytokine Signaling 2 Gene (SOCS2 Polymorphism in Different Dog Breeds

    Directory of Open Access Journals (Sweden)

    Martina Miluchová

    2011-05-01

    Full Text Available SOCS2 is a negative regulator of growth hormone signaling. The deletion of SOCS2 in mice results in a 30-50% increase in post-natal growth. The aim of the paper was to identify of suppressor of cytokine signaling 2 gene (SOCS2 polymorphism in different dog breeds. The material involved 77 dogs from 14 different breeds. Canine genomic DNA was isolated from saliva by modified method with using DNAzol® (Molecular Research Center and linear polyacrylamide (LPA carrier and from blood by using NucleospinBlood (Macherey-Nagel and used in order to estimate SOCS2 genotypes by PCR-RFLP method. The PCR products were digested with TaqI restriction enzyme. The T allele was distributed among large dog breeds (Czech pointer, Golden retriever, Rottweiler with an allele frequency ranging from 0.2857 to 1.00. In the population of Czech pointer we detected all genotypes. There were detected homozygote genotype GG with frequency 0.5476, heterozygote genotype GT with frequency 0.3333 and homozygote genotype TT with frequency 0.1191. Results point out that frequency of G allele was high and was represented 0.7143. Frequency of T allele was 0.2857. In Rottweiler was detected homozygote genotype TT. Genotypes GG and GT has not been observed. In Golden retriever we detected only heterozygote genotype GT.

  10. GALILEO ORBITER V POS VENUS TRAJECTORY V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Galileo Orbiter 60 second sampled trajectory data from the Venus flyby in Venus Solar Orbital (VSO) coordinates. These data cover the interval 1990-02-09 00:00 to...

  11. The Initial Nine Space Settlements

    Science.gov (United States)

    Gale, Anita E.; Edwards, Richard P.

    2003-01-01

    The co-authors describe a chronology of space infrastructure development illustrating how each element of infrastructure enables development of subsequent more ambitious infrastructure. This is likened to the ``Southern California freeway phenomenon'', wherein a new freeway built in a remote area promotes establishment of gas stations, restaurants, hotels, housing, and eventually entire new communities. The chronology includes new launch vehicles, inter-orbit vehicles, multiple LEO space stations, lunar mining, on-orbit manufacturing, tourist destinations, and supporting technologies required to make it all happen. The space settlements encompassed by the chronology are in Earth orbit (L5 and L4), on the lunar surface, in Mars orbit, on the Martian surface, and in the asteroid belt. Each space settlement is justified with a business rationale for construction. This paper is based on materials developed for Space Settlement Design Competitions that enable high school students to experience the technical and management challenges of working on an industry proposal team.

  12. The acute orbit: Differentiation of orbital cellulitis from subperiosteal abscess by computerized tomography

    International Nuclear Information System (INIS)

    Handler, L.C.; Davey, I.C.; Hill, J.C.; Lauryssen, C.

    1991-01-01

    A series of 65 patients suffering from acute inflammatory disease of the orbit was studied by CT. Ethmoiditis was the cause in the vast majority; trauma and dental extraction played a lesser role in causation. Orbital cellulitis was diagnosed in 17 and subperiosteal abscess in the remaining 48. It was not possible to differentiate 33 pus-containing abscesses from the six with inflammatory masses (phlegmons). The satisfactory response to aggressive medical treatment in those patients with inflammatory masses that were not drained justifies a more conservative approach; surgical drainage being reserved for those with a deterioration in proptosis, ocular movements or vision. Six abscesses arose de novo, of which some were in the orbital fat rather than the subperiosteal space. (orig.)

  13. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Science.gov (United States)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  14. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  15. Land use changing SOC pool: A field investigation from four catchments on the Loess Plateau in China

    Science.gov (United States)

    Guo, Shengli; Wang, Rui; Hu, Yaxian

    2017-04-01

    The Loess Plateau in China has long been known for severe erosion, a degraded ecosystem and heavy sediment delivery to the Yellow River. Apart from, the highly erodible loess soil and the hilly geomorphology, intensive cultivation has been caused such most destructive human activities. This made the Loess Plateau once the least fertile region in China with extreme poverty. To restore soil fertility and ecosystem sustainability, a national-level project was launched in 1990s to encourage land use changes via afforestation or conversion of cropland back to grassland or woodland. After nearly three decades of land use conversion, the SOC pool in the soil can be expected to have substantially changed. However, climate conditions, geomorphic types and soil properties were spatially distinctive across the Loess Plateau. Their individual as well interactive impacts on changes of soil carbon pool during land use conversions must thus be properly accounted for. In this study, four watersheds distributed over the Loess Plateau were investigated. The four watersheds mainly consisted of three geomorphic types: wide gully, loess ridge, and round knoll. On each geomorphic feature, three land use types prevailed: cropland, grassland and woodland. In total, 695 soil samples were taken from the top 20 cm of the four watersheds during 2010 and 2011. Our results show: 1) Degrees of erosion hugely differed among the four watersheds, with Catchment A (hilly) having three times more erosion modulus than the least eroded Catchment D (gully) (12000 vs. 1800 Mg per km2 per year). 2) The increasing SOC content from 4 mg g-1 at Catchment A to 8.1 mg g-1 at Catchment D agreed well with their decreasing erosion, suggesting that geomorphology induced erosion history was the predominant factor to set the general level of watershed-scale SOC reservoir. 3) Within each watershed, grassland and woodland consistently had at least 34% more SOC than cropland, demonstrating the influence of land use

  16. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system – combining experimental and modeling approaches

    Directory of Open Access Journals (Sweden)

    R. Cardinael

    2018-01-01

    Full Text Available Agroforestry is an increasingly popular farming system enabling agricultural diversification and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC stocks are generally increased, but it is difficult to disentangle the different factors responsible for this storage. Organic carbon (OC inputs to the soil may be larger, but SOC decomposition rates may be modified owing to microclimate, physical protection, or priming effect from roots, especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees (Juglans regia  ×  nigra and durum wheat (Triticum turgidum L. subsp. durum and an adjacent agricultural control plot to quantify all OC inputs to the soil – leaf litter, tree fine root senescence, crop residues, and tree row herbaceous vegetation – and measured SOC stocks down to 2 m of depth at varying distances from the trees. We then proposed a model that simulates SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity. The model was calibrated to the control plot only. Measured OC inputs to soil were increased by about 40 % (+ 1.11 t C ha−1 yr−1 down to 2 m of depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha−1 down to 1 m of depth. However, most of the SOC storage occurred in the first 30 cm of soil and in the tree rows. The model was strongly validated, properly describing the measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed that the increased inputs of fresh biomass to soil explained the observed additional SOC storage in the agroforestry plot. Moreover, only a priming effect variant of the model was able to capture the depth distribution of SOC stocks, suggesting the priming effect as a possible mechanism driving deep SOC dynamics. This result questions the potential of soils to

  17. Dynamical evolution of space debris on high-elliptical orbits near high-order resonance zones

    Science.gov (United States)

    Kuznetsov, Eduard; Zakharova, Polina

    Orbital evolution of objects on Molniya-type orbits is considered near high-order resonance zones. Initial conditions correspond to high-elliptical orbits with the critical inclination 63.4 degrees. High-order resonances are analyzed. Resonance orders are more than 5 and less than 50. Frequencies of perturbations caused by the effect of sectorial and tesseral harmonics of the Earth's gravitational potential are linear combinations of the mean motion of a satellite, angular velocities of motion of the pericenter and node of its orbit, and the angular velocity of the Earth. Frequencies of perturbations were calculated by taking into account secular perturbations from the Earth oblateness, the Moon, the Sun, and a solar radiation pressure. Resonance splitting effect leads to three sub-resonances. The study of dynamical evolution on long time intervals was performed on the basis of the results of numerical simulation. We used "A Numerical Model of the Motion of Artificial Earth's Satellites", developed by the Research Institute of Applied Mathematics and Mechanics of the Tomsk State University. The model of disturbing forces taken into account the main perturbing factors: the gravitational field of the Earth, the attraction of the Moon and the Sun, the tides in the Earth’s body, the solar radiation pressure, taking into account the shadow of the Earth, the Poynting-Robertson effect, and the atmospheric drag. Area-to-mass ratio varied from small values corresponding to satellites to big ones corresponding to space debris. The locations and sizes of resonance zones were refined from numerical simulation. The Poynting-Robertson effect results in a secular decrease in the semi-major axis of a spherically symmetrical satellite. In resonance regions the effect weakens slightly. Reliable estimates of secular perturbations of the semi-major axis were obtained from the numerical simulation. Under the Poynting-Robertson effect objects pass through the regions of high

  18. Daily Socs1 rhythms alter with aging differentially in peripheral clocks in male Wistar rats: therapeutic effects of melatonin.

    Science.gov (United States)

    Vinod, Ch; Jagota, Anita

    2017-06-01

    Suprachiasmatic nucleus (SCN) in synchronization with the peripheral clocks regulates the temporal oscillations leading to overt rhythms. Aging leads to attenuation of such circadian regulation, accompanied by increased inflammatory mediators prevalently the cytokines. Suppressors of cytokine signaling (SOCS) family of proteins such as SOCS 1, 3 and cytokine-inducible SH2-containing protein (CIS) negatively regulate the cytokine signaling pathway. The role of SOCS1 in aging and circadian system is obscure. We therefore studied the daily rhythms of rSocs1 mRNA expression at Zeitgeber time (ZT) -0, 6, 12 and 18 in peripheral clocks such as liver, kidney, intestine and heart of 3, 12 and 24 months (m) old male Wistar rats. Interestingly the peripheral clocks studied displayed a rhythmic rSocs1 gene expression in 3 months. In 12 months group, 12 h phase advance in liver and 12 h phase delay in kidney and heart was observed with abolition of rhythms in intestine. Aging (24 months group) resulted in a phase advance by 6 h in liver and heart with abolition of rhythms in intestine in 24 months group. Kidney was also significantly affected upon aging with significant decrease in the rSocs1 levels and abolition of rhythms. The decrease in melatonin levels with aging is associated with decreased immunity and increased oxidative stress. The exogenous administration of melatonin has been linked to play a role in re-synchronization of circadian rhythms, reducing oxidative stress and enhancing immune properties. We therefore had studied the effect of exogenous melatonin upon age induced changes in daily rSocs1 gene expression patterns. Melatonin treatment partially restored the rhythms and daily pulse (ratio of maximum:minimum levels) in liver and intestine in 12 months group. Melatonin administration resulted in a significant increase in mean 24 h rSocs1 expression in intestine and heart of 24 months group compared to that of 3 months. The melatonin administration

  19. Just in Time in Space or Space Based JIT

    Science.gov (United States)

    VanOrsdel, Kathleen G.

    1995-01-01

    Our satellite systems are mega-buck items. In today's cost conscious world, we need to reduce the overall costs of satellites if our space program is to survive. One way to accomplish this would be through on-orbit maintenance of parts on the orbiting craft. In order to accomplish maintenance at a low cost I advance the hypothesis of having parts and pieces (spares) waiting. Waiting in the sense of having something when you need it, or just-in-time. The JIT concept can actually be applied to space processes. Its definition has to be changed just enough to encompass the needs of space. Our space engineers tell us which parts and pieces the satellite systems might be needing once in orbit. These items are stored in space for the time of need and can be ready when they are needed -- or Space Based JIT. When a system has a problem, the repair facility is near by and through human or robotics intervention, it can be brought back into service. Through a JIT process, overall system costs could be reduced as standardization of parts is built into satellite systems to facilitate reduced numbers of parts being stored. Launch costs will be contained as fewer spare pieces need to be included in the launch vehicle and the space program will continue to thrive even in this era of reduced budgets. The concept of using an orbiting parts servicer and human or robotics maintenance/repair capabilities would extend satellite life-cycle and reduce system replacement launches. Reductions of this nature throughout the satellite program result in cost savings.

  20. Parametric Dense Stereovision Implementation on a System-on Chip (SoC

    Directory of Open Access Journals (Sweden)

    Pablo Montejo

    2012-02-01

    Full Text Available This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.

  1. Parametric dense stereovision implementation on a system-on chip (SoC).

    Science.gov (United States)

    Gardel, Alfredo; Montejo, Pablo; García, Jorge; Bravo, Ignacio; Lázaro, José L

    2012-01-01

    This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.

  2. 0.45 v and 18 μA/MHz MCU SOC with Advanced Adaptive Dynamic Voltage Control (ADVC

    Directory of Open Access Journals (Sweden)

    Uzi Zangi

    2018-05-01

    Full Text Available An ultra-low-power MicroController Unit System-on-Chip (MCU SOC is described with integrated DC to DC power management and Adaptive Dynamic Voltage Control (ADVC mechanism. The SOC, designed and fabricated in a 40 nm ULP standard CMOS technology, includes the complete Synopsys ARC EM5D core MCU, featuring a full set of DSP instructions and minimizing energy consumption at a wide range of frequencies: 312 K–80 MHz. A number of unique low voltage digital libraries, comprising of approximately 300 logic cells and sequential elements, were used for the MCU SOC design. On-die silicon sensors were utilized to continuously change the operating voltage to optimize power/performance for a given frequency and environmental conditions, and also to resolve yield and life time problems, while operating at low voltages. A First Fail (FFail mechanism, which can be digitally and linearly controlled with up to 8 bits, detects the failing SOC voltage at a given frequency. The core operates between 0.45–1.1 V volts with a direct battery connection for an input voltage of 1.6–3.6 V. Measurement results show that the peak energy efficiency is 18μW/MHz. A comparison to state-of-the-art commercial SOCs is presented, showing a 3–5× improved current/DMIPS (Dhrystone Million Instructions per second compared to the next best chip.

  3. A new circuit for at-speed scan SoC testing

    International Nuclear Information System (INIS)

    Lin Wei; Shi Wenlong

    2013-01-01

    It is very important to detect transition-delay faults and stuck-at faults in system on chip (SoC) under 90 nm processing technology, and the transition-delay faults can only be detected by using an at-speed testing method. In this paper, an on-chip clock (OCC) controller with a bypass function based on an internal phase-locked loop is designed to test faults in SoC. Furthermore, a clock chain logic which can eliminate the metastable state is realized to generate an enable signal for the OCC controller, and then, the test pattern is generated by automatic test pattern generation (ATPG) tools. Next, the scan test pattern is simulated by using the Synopsys tool and the correctness of the design is verified. The result shows that the design of an at-speed scan test in this paper is highly efficient for detecting timing-related defects. Finally, the 89.29% transition-delay fault coverage and the 94.50% stuck-at fault coverage are achieved, and it is successfully applied to an integrated circuit design. (semiconductor integrated circuits)

  4. Coadjoint orbits and conformal field theory

    International Nuclear Information System (INIS)

    Taylor, W. IV.

    1993-08-01

    This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription

  5. Implementation of QoSS (Quality-of-Security Service) for NoC-Based SoC Protection

    Science.gov (United States)

    Sepúlveda, Johanna; Pires, Ricardo; Strum, Marius; Chau, Wang Jiang

    Many of the current electronic systems embedded in a SoC (System-on-Chip) are used to capture, store, manipulate and access critical data, as well as to perform other key functions. In such a scenario, security is considered as an important issue. The Network-on-chip (NoC), as the foreseen communication structure of next-generation SoC devices, can be used to efficiently incorporate security. Our work proposes the implementation of QoSS (Quality of Security Service) to overcome present SoC vulnerabilities. QoSS is a novel concept for data protection that introduces security as a dimension of QoS. In this paper, we present the implementation of two security services (access control and authentication), that may be configured to assume one from several possible levels, the implementation of a technique to avoid denial-of-service (DoS) attacks, evaluate their effectiveness and estimate their impact on NoC performance.

  6. Increasing SoC Dependability via Known Good Tile NoC Testing

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Kuiken, O.J.; Zhang, X.

    2008-01-01

    Advanced CMOS technology possibilities, power, communication and flexibility issues as well as the design gap are directing System-on-Chip (SoC) platforms towards Network-on-Chip (NoC) interconnected identical processing tiles (PT) such as the Montium processor [1]. It is broadly acknowledged that

  7. Functional SOCS1 polymorphisms are associated with variation in obesity in whites

    DEFF Research Database (Denmark)

    Gylvin, T; Ek, J; Nolsøe, R.

    2009-01-01

    . A total of more than 8100 individuals were genotyped. RESULTS: Eight variations were identified in the 5' untranslated region (UTR) region. Two of these had allele frequencies below 1% and were not further examined. The six other variants were analysed in groups of T1D families (n = 1461 subjects) and T2D...... of both the rs33977706 and the rs243330 (-1656G > A) variants to obesity were found (p = 0.047 and p = 0.015) respectively. The rs33977706 affected both binding of a nuclear protein to and the transcriptional activity of the SOCS1 promoter, indicating a relationship between this polymorphism and gene...... regulation. CONCLUSIONS/INTERPRETATION: This study demonstrates that functional variations in the SOCS1 promoter may associate with alterations in BMI in the general white population....

  8. An automated data management/analysis system for space shuttle orbiter tiles. [stress analysis

    Science.gov (United States)

    Giles, G. L.; Ballas, M.

    1982-01-01

    An engineering data management system was combined with a nonlinear stress analysis program to provide a capability for analyzing a large number of tiles on the space shuttle orbiter. Tile geometry data and all data necessary of define the tile loads environment accessed automatically as needed for the analysis of a particular tile or a set of tiles. User documentation provided includes: (1) description of computer programs and data files contained in the system; (2) definitions of all engineering data stored in the data base; (3) characteristics of the tile anaytical model; (4) instructions for preparation of user input; and (5) a sample problem to illustrate use of the system. Description of data, computer programs, and analytical models of the tile are sufficiently detailed to guide extension of the system to include additional zones of tiles and/or additional types of analyses

  9. Lidar Orbital Angular Momentum Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — The recognition in recent decades that electromagnetic fields have angular momentum (AM) in the form of not only polarization (or spin AM) but also orbital (OAM) has...

  10. Improving orbit prediction accuracy through supervised machine learning

    Science.gov (United States)

    Peng, Hao; Bai, Xiaoli

    2018-05-01

    Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.

  11. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    Science.gov (United States)

    Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-01-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069770

  12. Orbit Classification of Qutrit via the Gram Matrix

    International Nuclear Information System (INIS)

    Tay, B. A.; Zainuddin, Hishamuddin

    2008-01-01

    We classify the orbits generated by unitary transformation on the density matrices of the three-state quantum systems (qutrits) via the Gram matrix. The Gram matrix is a real symmetric matrix formed from the Hilbert–Schmidt scalar products of the vectors lying in the tangent space to the orbits. The rank of the Gram matrix determines the dimensions of the orbits, which fall into three classes for qutrits. (general)

  13. Operational factors affecting microgravity levels in orbit

    Science.gov (United States)

    Olsen, R. E.; Mockovciak, J., Jr.

    1980-01-01

    Microgravity levels desired for proposed materials processing payloads are fundamental considerations in the design of future space platforms. Disturbance sources, such as aerodynamic drag, attitude control torques, crew motion and orbital dynamics, influence the microgravity levels attainable in orbit. The nature of these effects are assessed relative to platform design parameters such as orbital altitude and configuration geometry, and examples are presented for a representative spacecraft configuration. The possible applications of control techniques to provide extremely low acceleration levels are also discussed.

  14. Using SoC Online Correction Method Based on Parameter Identification to Optimize the Operation Range of NI-MH Battery for Electric Boat

    Directory of Open Access Journals (Sweden)

    Bumin Meng

    2018-03-01

    Full Text Available This paper discusses a design of a Battery Management System (BMS solution for extending the life of Nickel-Metal Hydride (NI-MH battery. Combined with application of electric boat, a State of Charge (SoC optimal operation range control method based on high precision energy metering and online SoC correction is proposed. Firstly, a power metering scheme is introduced to reduce the original energy measurement error. Secondly, by establishing a model based parameter identification method and combining with Extended Kalman Filter (EKF method, the estimation accuracy of SoC is guaranteed. Finally, SoC optimal operation range control method is presented to make battery running in the optimal range. After two years of operation, the battery managed by proposed method has much better status, compared to batteries that use AH integral method and fixed SoC operating range. Considering the SoC estimation of NI-MH battery is more difficult becausing special electrical characteristics, proposed method also would have a very good reference value for other types of battery management.

  15. Space augmentation of military high-level waste disposal

    International Nuclear Information System (INIS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predicability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed

  16. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS TWP-ICE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Satellite Simulated Orbits TWP-ICE dataset is available in the Orbital database, which takes account for the atmospheric profiles, the...

  17. The world state of orbital debris measurements and modeling

    Science.gov (United States)

    Johnson, Nicholas L.

    2004-02-01

    For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.

  18. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank

    2003-01-01

    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  19. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum Based soc-MOF for CH4, O2 and CO2 Storage

    KAUST Repository

    Alezi, Dalal

    2015-09-28

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum based Metal-Organic Frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized, namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-properties relationship, we performed a molecular simulation study and evaluated the methane storage performance of Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes in a wide range of pressure and temperature conditions.

  20. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum Based soc-MOF for CH4, O2 and CO2 Storage

    KAUST Repository

    Alezi, Dalal; Belmabkhout, Youssef; Suetin, Mikhail; Bhatt, Prashant; Weselinski, Lukasz Jan; Solovyeva, Vera; Adil, Karim; Spanopoulos, Ioannis; Trikalitis, Pantelis N.; Emwas, Abdul-Hamid M.; Eddaoudi, Mohamed

    2015-01-01

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum based Metal-Organic Frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized, namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-properties relationship, we performed a molecular simulation study and evaluated the methane storage performance of Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes in a wide range of pressure and temperature conditions.

  1. Subgaleal Haematoma Extending into the Orbit Following Blunt ...

    African Journals Online (AJOL)

    exposure keratopathy and orbital cellulitis and blindness. The visual impairment is ... 2017 Nigerian Journal of Ophthalmology | Published by Wolters Kluwer - Medknow. 1 .... in the orbital subperiosteal space with mere needle aspiration. (b) The .... may be the need to make separate scalp stab incisions to effect its effectual ...

  2. Orbits of the inner satellites of Neptune

    Science.gov (United States)

    Brozovic, Marina; Showalter, Mark R.; Jacobson, Robert Arthur; French, Robert S.; de Pater, Imke; Lissauer, Jack

    2018-04-01

    We report on the numerically integrated orbits of seven inner satellites of Neptune, including S/2004 N1, the last moon of Neptune to be discovered by the Hubble Space Telescope (HST). The dataset includes Voyager imaging data as well as the HST and Earth-based astrometric data. The observations span time period from 1989 to 2016. Our orbital model accounts for the equatorial bulge of Neptune, perturbations from the Sun and the planets, and perturbations from Triton. The initial orbital integration assumed that the satellites are massless, but the residuals improved significantly as the masses adjusted toward values that implied that the density of the satellites is in the realm of 1 g/cm3. We will discuss how the integrated orbits compare to the precessing ellipses fits, mean orbital elements, current orbital uncertainties, and the need for future observations.

  3. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    Science.gov (United States)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  4. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daqing [Department of Respiration, Xi’an Children’s Hospital, Xi’an 710003 (China); Wang, Jing [Department of Neonatology, Xi’an Children’s Hospital, Xi’an 710003 (China); Yang, Niandi [Outpatient Department, School of Aerospace Engineering, Air Force Engineering University, Xi’an 710038 (China); Ma, Haixin, E-mail: drhaixinma@163.com [Department of Quality Control, Xi’an Children’s Hospital, Xi’an 710003 (China)

    2016-08-12

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion molecules in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.

  5. Modeling of SOC-700 Hyperspectral Imagery with the CAMEO-SIM Code

    Science.gov (United States)

    2007-10-26

    Yannick, 2001, “SOC-700 and HS-Analysis 2 User’s Manual”, Surface Optics, San Diego [2] Cohen, Michael F. and Wallace, John R., 1993, “ Radiosity ...and Realistic Image Synthesis”, Academic Press, San Francisco [3] Sillion, Francois X. and Puech, Claude, 1994, “ Radiosity and Global Illumination

  6. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity.

    Science.gov (United States)

    Ali, Omar; Cerjak, Diana; Kent, Jack W; James, Roland; Blangero, John; Carless, Melanie A; Zhang, Yi

    2016-09-01

    Epigenetic mechanisms, including DNA methylation, mediate the interaction between gene and environment and may play an important role in the obesity epidemic. We assessed the relationship between DNA methylation and obesity in peripheral blood mononuclear cells (PBMCs) at 485,000 CpG sites across the genome in family members (8-90 y of age) using a discovery cohort (192 individuals) and a validation cohort (1,052 individuals) of Northern European ancestry. After Bonferroni-correction (P α=0.05 = 1.31 × 10 -7 ) for genome-wide significance, we identified 3 loci, cg18181703 (SOCS3), cg04502490 (ZNF771), and cg02988947 (LIMD2), where methylation status was associated with body mass index percentile (BMI%), a clinical index for obesity in children, adolescents, and adults. These sites were also associated with multiple metabolic syndrome (MetS) traits, including central obesity, fat depots, insulin responsiveness, and plasma lipids. The SOCS3 methylation locus was also associated with the clinical definition of MetS. In the validation cohort, SOCS3 methylation status was found to be inversely associated with BMI% (P = 1.75 × 10 -6 ), waist to height ratio (P = 4.18 × 10 -7 ), triglycerides (P = 4.01 × 10 -4 ), and MetS (P = 4.01 × 10 -7 ), and positively correlated with HDL-c (P = 4.57 × 10 -8 ). Functional analysis in a sub cohort (333 individuals) demonstrated SOCS3 methylation and gene expression in PBMCs were inversely correlated (P = 2.93 × 10 -4 ) and expression of SOCS3 was positively correlated with status of MetS (P = 0.012). We conclude that epigenetic modulation of SOCS3, a gene involved in leptin and insulin signaling, may play an important role in obesity and MetS.

  7. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat

    2014-04-01

    This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.

  8. Space Gravity Spectroscopy - determination of the Earth’s gravitational field by means of Newton interpolated LEO ephemeris Case studies on dynamic (CHAMP Rapid Science Orbit and kinematic orbits

    Directory of Open Access Journals (Sweden)

    T. Reubelt

    2003-01-01

    Full Text Available An algorithm for the (kinematic orbit analysis of a Low Earth Orbiting (LEO GPS tracked satellite to determine the spherical harmonic coefficients of the terrestrial gravitational field is presented. A contribution to existing long wavelength gravity field models is expected since the kinematic orbit of a LEO satellite can nowadays be determined with very high accuracy in the range of a few centimeters. To demonstrate the applicability of the proposed method, first results from the analysis of real CHAMP Rapid Science (dynamic Orbits (RSO and kinematic orbits are illustrated. In particular, we take advantage of Newton’s Law of Motion which balances the acceleration vector and the gradient of the gravitational potential with respect to an Inertial Frame of Reference (IRF. The satellite’s acceleration vector is determined by means of the second order functional of Newton’s Interpolation Formula from relative satellite ephemeris (baselines with respect to the IRF. Therefore the satellite ephemeris, which are normally given in a Body fixed Frame of Reference (BRF have to be transformed into the IRF. Subsequently the Newton interpolated accelerations have to be reduced for disturbing gravitational and non-gravitational accelerations in order to obtain the accelerations caused by the Earth’s gravitational field. For a first insight in real data processing these reductions have been neglected. The gradient of the gravitational potential, conventionally expressed in vector-valued spherical harmonics and given in a Body Fixed Frame of Reference, must be transformed from BRF to IRF by means of the polar motion matrix, the precession-nutation matrices and the Greenwich Siderial Time Angle (GAST. The resulting linear system of equations is solved by means of a least squares adjustment in terms of a Gauss-Markov model in order to estimate the spherical harmonics coefficients of the Earth’s gravitational field.Key words. space gravity spectroscopy

  9. PCVs Estimation and their Impacts on Precise Orbit Determination of LEOs

    Science.gov (United States)

    Chunmei, Z.; WANG, X.

    2017-12-01

    In the last decade the precise orbit determination (POD) based on GNSS, such as GPS, has been considered as one of the efficient methods to derive orbits of Low Earth Orbiters (LEOs) that demand accuracy requirements. The Earth gravity field recovery and its related researches require precise dynamic orbits of LEOs. With the improvements of GNSS satellites' orbit and clock accuracy, the algorithm optimization and the refinement of perturbation force models, the antenna phase-center variations (PCVs) of space-borne GNSS receiver have become an increasingly important factor that affects POD accuracy. A series of LEOs such as HY-2, ZY-3 and FY-3 with homebred space-borne GNSS receivers have been launched in the past several years in China. Some of these LEOs load dual-mode GNSS receivers of GPS and BDS signals. The reliable performance of these space-borne receivers has been establishing an important foundation for the future launches of China gravity satellites. Therefore, we first evaluate the data quality of on-board GNSS measurement by examining integrity, multipath error, cycle slip ratio and other quality indices. Then we determine the orbits of several LEOs at different altitudes by the reduced dynamic orbit determination method. The corresponding ionosphere-free carrier phase post-fit residual time series are obtained. And then we establish the PCVs model by the ionosphere-free residual approach and analyze the effects of antenna phase-center variation on orbits. It is shown that orbit accuracy of LEO satellites is greatly improved after in-flight PCV calibration. Finally, focus on the dual-mode receiver of FY-3 satellite we analyze the quality of onboard BDS data and then evaluate the accuracy of the FY-3 orbit determined using only BDS measurement onboard. The accuracy of LEO satellites orbit based on BDS would be well improved with the global completion of BDS by 2020.

  10. Space Station fluid management logistics

    Science.gov (United States)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  11. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  12. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  13. Paving the Way for Small Satellite Access to Orbit: Cyclops' Deployment of SpinSat, the Largest Satellite Ever Deployed from the International Space Station

    Science.gov (United States)

    Hershey, Matthew P.; Newswander, Daniel R.; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2015-01-01

    The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, successfully deployed the largest satellite ever (SpinSat) from the ISS on November 28, 2014. Cyclops, a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense Space Test Program (DoD STP) communities, is a dedicated 10-100 kg class ISS small satellite deployment system. This paper will showcase the successful deployment of SpinSat from the ISS. It will also outline the concept of operations, interfaces, requirements, and processes for satellites to utilize the Cyclops satellite deployment system.

  14. AA, closed orbit observation pickup

    CERN Multimedia

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. See also 8001372, 8010042, 8010045

  15. The analytic gradient with a reduced molecular orbital space for the equation-of-motion coupled-cluster theory: systematic study of the magnitudes and trends in simple molecules

    International Nuclear Information System (INIS)

    Baeck, Kyoung K.; Jeon, Sang Il

    2000-01-01

    The analytic gradient method for the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) energy has been extended to employ a reduced molecular orbital (MO) space. Not only the innermost core MO s but also some of the outermost virtual MO s can be dropped in the reduced MO space, and a substantial amount of computation time can be reduced without deteriorating the results. In order to study the magnitudes and trends of the effects of the dropped MO s , the geometries and vibrational properties of the ground and excited states of BF, CO, CN, N 2 , AlCl, SiS, P 2 , BCl, AlF, CS, SiO, PN and GeSe are calculated with different sizes of molecular orbital space. The 6-31G and the aug-cc-pVTZ basis sets are employed for all molecules except GeSe for which the 6-311 G and the TZV+f basis sets are used. It is shown that the magnitudes of the drop MO effects are about 0.005 A in bond lengths and about 1% on harmonic frequencies and IR intensities provided that the dropped MO s correspond to (1s), (1s,2s,2p), and (1s,2s,2p,3s,3p) atomic orbitals of the first, the second, and the third row atoms, respectively. The geometries and vibrational properties of the first and the second excited states of HCN and HCN are calculated by using a drastically reduced virtual MO space as well as with the well defined frozen core MO space. The results suggest the possibility of using a very small MO space for qualitative study of valence excited states

  16. Potential Operating Orbits for the SAFE-400

    International Nuclear Information System (INIS)

    Houts, Mike; Kos, Larry; Poston, David

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp > 3000 s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially non-radioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into nonradioactive isotopes. Operational constraints required to ensure safety can thus be quantified. (authors)

  17. Space Shuttle Orbiter AFT heat shield seal

    Science.gov (United States)

    Walkover, L. J.

    1979-01-01

    The evolution of the orbiter aft heat shield seal (AHSS) design, which involved advancing mechanical seal technology in severe thermal environment is discussed. The baseline design, various improvements for engine access, and technical problem solution are presented. It is a structure and mechanism at the three main propulsion system (MPS) engine interfaces to the aft compartment structure. Access to each MPS engine requires disassembly and removal of the AHSS. Each AHSS accommodates the engine movement, is exposed to an extremely high temperature environment, and is part of the venting control of the aft compartment.

  18. Retrieval of RTG'S in earth orbit

    International Nuclear Information System (INIS)

    Raab, B.; Frieder, M.A.; Skrabek, A.

    1982-01-01

    Since 1961, some ten Radioisotope Thermoelectric Generators (RTG's) have been placed into a variety of spacecraft which are now in earth orbit. All of these spacecraft are in orbits with lifetimes in excess of 100 years and pose no risk. However, since most of these spacecraft are no longer being actively used, these may be subject to an active removal program to reduce the population of objects in space. Therefore, a study was undertaken to evaluate the feasibility of retrieving or disposing of spacecraft with RTGs on board. Intervention scenarios are developed and an orbital rendezvous vehicle is conceptualized. The costs of RTG retrieval are derived and compared to the costs of RTG disposal, i.e., boost to a higher, multi-millenium-lifetime orbit, and are found to be not significantly different

  19. Pengaruh Variasi Jumlah Tembakan Nanosecond Pulsed Electric Fields (Nspefs Terhadap Ekspresi Gen Socs3 pada Sel Kanker Serviks Hela S3

    Directory of Open Access Journals (Sweden)

    Martina Kurnia Rohmah

    2017-12-01

    Abstract Nanosecond Pulsed Electric Fields (NsPEFs is bioelectric that was developed by electroporation technology. NsPEFs use high intensity in short time exposure (1 – 300 nanosecond. NsPEFs have biological effect and was developed in cancer therapy. In cervical cancer, viral protein of HPV depresses some tumor suppressors like Socs3 gene. This research aims to investigate the effect of short variation in Socs3 gene expression. HeLa S3 cells were cultured in α-MEM with FBS 10%. NsPEFs as much as 20 kV/cm and 80 nano seconds was exposure over HeLa S3 cell in 4 mm cuvette. Wave of NsPEFs was detected by high voltage probe in oscilloscope. NsPEFs was exposure at 0 (control, 5, 10, 20, 30, 40, 50, and 60 shots. Socs3 gene expression was analyzed using real time PCR and RT-PCR. Quantitative data was analyzed by Kolmogorov-Smirnov, Anova, and HSD Tuker (p<0.05. This research show that NsPEFs is significantly increase Socs3 gene expression (p=0.000. The optimal shot 20 and 30 shots increase Socs3 gene expression subsequently = 2.779 and = 3.105 times. This expression decrease in higher than 30 shots of NsPEFs exposure.   Keywords: NsPEFs, shot, expression, Socs3

  20. 2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels.

    Science.gov (United States)

    Fazal, Irfan M; Ahmed, Nisar; Wang, Jian; Yang, Jeng-Yuan; Yan, Yan; Shamee, Bishara; Huang, Hao; Yue, Yang; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2012-11-15

    We demonstrate a 2 Tbit/s free-space data link using two orthogonal orbital angular momentum beams each carrying 25 different wavelength-division-multiplexing channels. We measure the performance for different modulation formats, including directly detected 40 Gbit/s nonreturn-to-zero (NRZ) differential phase-shift keying, 40 Gbit/s NRZ on-off keying, and coherently-detected 10 Gbaud NRZ quadrature phase-shift keying, and achieve low bit error rates with penalties less than 5 dB.

  1. Space transportation and destination considerations for extraterrestrial disposal of radioactive waste

    Science.gov (United States)

    Zimmerman, A. V.; Thompson, R. L.; Lubick, R. J.

    1973-01-01

    A feasibility study is summarized of extraterrestrial (space) disposal of radioactive waste. The initial work on the evaluation and comparison of possible space destinations and launch vehicles is reported. Only current or planned space transportation systems were considered. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles, by about a factor of two. The space shuttle will require a third stage to perform the disposal missions. Depending on the particular mission this could be either a reusable space tug or an expendable stage such as a Centaur. Of the destinations considered, high earth orbits (between geostationary and lunar orbit altitudes), solar orbits (such as a 0.90 AU circular solar orbit) or a direct injection to solar system escape appear to be the best candidates. Both earth orbits and solar orbits have uncertainties regarding orbit stability and waste package integrity for times on the order of a million years.

  2. Cubature on Wiener Space: Pathwise Convergence

    International Nuclear Information System (INIS)

    Bayer, Christian; Friz, Peter K.

    2013-01-01

    Cubature on Wiener space (Lyons and Victoir in Proc. R. Soc. Lond. A 460(2041):169–198, 2004) provides a powerful alternative to Monte Carlo simulation for the integration of certain functionals on Wiener space. More specifically, and in the language of mathematical finance, cubature allows for fast computation of European option prices in generic diffusion models.We give a random walk interpretation of cubature and similar (e.g. the Ninomiya–Victoir) weak approximation schemes. By using rough path analysis, we are able to establish weak convergence for general path-dependent option prices.

  3. An overview of online implementable SOC estimation methods for Lithium-ion batteries

    DEFF Research Database (Denmark)

    Jinhao, Meng; Ricco, Mattia; Guangzhao, Luo

    2017-01-01

    With the popularity of Electrical Vehicles (EVs), Lithium-ion battery industry is also developing rapidly. To ensure the battery safety usage and reduce the average lifecycle cost, accurate State Of Charge (SOC) tracking algorithms for real-time implementation are required in different applications...

  4. Rock-Eval analysis of French forest soils: the influence of depth, soil and vegetation types on SOC thermal stability and bulk chemistry

    Science.gov (United States)

    Soucemarianadin, Laure; Cécillon, Lauric; Baudin, François; Cecchini, Sébastien; Chenu, Claire; Mériguet, Jacques; Nicolas, Manuel; Savignac, Florence; Barré, Pierre

    2017-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and SOM degradation has multiple consequences on key ecosystem properties like nutrients cycling, soil emissions of greenhouse gases or carbon sequestration potential. With the strong feedbacks between SOM and climate change, it becomes particularly urgent to develop reliable routine methodologies capable of indicating the turnover time of soil organic carbon (SOC) stocks. Thermal analyses have been used to characterize SOM and among them, Rock-Eval 6 (RE6) analysis of soil has shown promising results in the determination of in-situ SOC biogeochemical stability. This technique combines a phase of pyrolysis followed by a phase of oxidation to provide information on both the SOC bulk chemistry and thermal stability. We analyzed with RE6 a set of 495 soils samples from 102 permanent forest sites of the French national network for the long-term monitoring of forest ecosystems (''RENECOFOR'' network). Along with covering pedoclimatic variability at a national level, these samples include a range of 5 depths up to 1 meter (0-10 cm, 10-20 cm, 20-40 cm, 40-80 cm and 80-100 cm). Using RE6 parameters that were previously shown to be correlated to short-term (hydrogen index, HI; T50 CH pyrolysis) or long-term (T50 CO2 oxidation and HI) SOC persistence, and that characterize SOM bulk chemical composition (oxygen index, OI and HI), we tested the influence of depth (n = 5), soil class (n = 6) and vegetation type (n = 3; deciduous, coniferous-fir, coniferous-pine) on SOM thermal stability and bulk chemistry. Results showed that depth was the dominant discriminating factor, affecting significantly all RE6 parameters. With depth, we observed a decrease of the thermally labile SOC pool and an increase of the thermally stable SOC pool, along with an oxidation and a depletion of hydrogen-rich moieties of the SOC. Soil class and vegetation type had contrasted effects on the RE6 parameters but both affected significantly T

  5. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  6. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    Science.gov (United States)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  7. Homoclinic orbits around spinning black holes. I. Exact solution for the Kerr separatrix

    International Nuclear Information System (INIS)

    Levin, Janna; Perez-Giz, Gabe

    2009-01-01

    For equatorial Kerr orbits, we show that each separatrix between bound and plunging geodesics is a homoclinic orbit--an orbit that asymptotes to an energetically-bound, unstable circular orbit. We derive exact expressions for these trajectories in terms of elementary functions. We also clarify the formal connection between the separatrix and zoom-whirl orbits and show that, contrary to popular belief, zoom-whirl behavior is not intrinsically a near-separatrix phenomenon. This paper focuses on homoclinic behavior in physical space, while in a companion paper we paint the complementary phase space portrait. Although they refer to geodesic motion, the exact solutions for the Kerr separatrix could be useful for analytic or numerical studies of eccentric transitions from orbital to plunging motion under the dissipative effects of gravitational radiation.

  8. Failure analysis of satellite subsystems to define suitable de-orbit devices

    Science.gov (United States)

    Palla, Chiara; Peroni, Moreno; Kingston, Jennifer

    2016-11-01

    Space missions in Low Earth Orbit (LEO) are severely affected by the build-up of orbital debris. A key practice, to be compliant with IADC (Inter-Agency Space Debris Coordination Committee) mitigation guidelines, is the removal of space systems that interfere with the LEO region not later than 25 years after the End of Mission. It is important to note that the current guidelines are not generally legally binding, even if different Space Agencies are now looking at the compliance for their missions. If the guidelines will change in law, it will be mandatory to have a postmission disposal strategy for all satellites, including micro and smaller classes. A potential increased number of these satellites is confirmed by different projections, in particular in the commercial sector. Micro and smaller spacecraft are, in general, not provided with propulsion capabilities to achieve a controlled re-entry, so they need different de-orbit disposal methods. When considering the utility of different debris mitigation methods, it is useful to understand which spacecraft subsystems are most likely to fail and how this may affect the operation of a de-orbit system. This also helps the consideration of which components are the most relevant or should be redundant depending on the satellite mass class. This work is based on a sample of LEO and MEO satellites launched between January 2000 and December 2014 with mass lower than 1000 kg. Failure analysis of satellite subsystems is performed by means of the Kaplan-Meier survival analysis; the parametric fits are conducted with Weibull distributions. The study is carried out by using the satellite database SpaceTrak™ which provides anomalies, failures, and trends information for spacecraft subsystems and launch vehicles. The database identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). The results obtained can guide the identification of the

  9. Generating Animated Displays of Spacecraft Orbits

    Science.gov (United States)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  10. Precise GPS orbits for geodesy

    Science.gov (United States)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  11. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  12. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles QFW, at maximum dispersion. See also 8001372, 8001383, 8010045

  13. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles, QFW, at maximum dispersion. See also 8001372,8001383, 8010042

  14. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. Werner Sax contemplates his achievement. See also 8001383, 8010042, 8010045.

  15. Orbital Debris: Past, Present, and Future

    Science.gov (United States)

    Stansbery, Gene; Johnson, Nicholas

    2013-01-01

    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  16. Properties of the nuclei and comae of 10 ecliptic comets from Hubble Space Telescope multi-orbit observations

    Science.gov (United States)

    Lamy, P. L.; Toth, I.; Weaver, H. A.; A'Hearn, M. F.; Jorda, L.

    2011-04-01

    We report on our on-going effort to detect and characterize cometary nuclei with the Hubble Space Telescope (HST). During cycle 9 (2000 July to 2001 June), we performed multi-orbit observations of 10 ecliptic comets with the Wide Field Planetary Camera 2. Nominally, eight contiguous orbits covering a time interval of ˜11 h were devoted to each comet but a few orbits were occasionally lost. In addition to the standard R band, we could additionally observe four of them in the V band and the two brightest ones in the B band. Time series photometry was used to constrain the size, shape and rotational period of the 10 nuclei. Assuming a geometric albedo of 0.04 for the R band, a linear phase law with a coefficient of 0.04 mag deg-1 and an opposition effect similar to that of comet 19P/Borrelly, we determined the following mean values of the effective radii 47P/Ashbrook-Jackson: 2.86±0.08 km, 61P/Shajn-Schaldach: 0.62±0.02 km, 70P/Kojima: 1.83±0.05 km, 74P/Smirnova-Chernykh: 2.23±0.04 km, 76P/West-Kohoutek-Ikemura: 0.30±0.02 km, 82P/Gehrels 3: 0.69±0.02 km, 86P/Wild 3: 0.41±0.03 km, 87P/Bus: 0.270.01 km, 110P/Hartley 3: 2.15±0.04 km and 147P/Kushida-Muramatsu: 0.21±0.01 km. Because of the limited time coverage (˜11 h), the rotational periods could not be accurately determined, multiple solutions were sometime found and three periods were not constrained at all. Our estimates range from ˜5 to ˜32 h. The lower limits for the ratio a/b of the semi-axis of the equivalent spheroids range from 1.10 (70P) to 2.20 (87P). The four nuclei for which we could measure (V-R) are all significantly redder than the Sun, with 86P/Wild 3 (V-R) = 0.86 ± 0.10 appearing as an ultrared object. We finally determined the dust activity parameter Afρ of their coma in the R band, the colour indices and the reflectivity spectra of four of them. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at Space Telescope Science Institute, which is operated by the

  17. Quantum incommensurate skyrmion crystals and commensurate to in-commensurate transitions in cold atoms and materials with spin-orbit couplings in a Zeeman field

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-08-01

    In this work, we study strongly interacting spinor atoms in a lattice subject to a two dimensional (2d) anisotropic Rashba type of spin orbital coupling (SOC) and an Zeeman field. We find the interplay between the Zeeman field and the SOC provides a new platform to host rich and novel classes of quantum commensurate and in-commensurate phases, excitations and phase transitions. These commensurate phases include two collinear states at low and high Zeeman field, two co-planar canted states at mirror reflected SOC parameters respectively. Most importantly, there are non-coplanar incommensurate Skyrmion (IC-SkX) crystal phases surrounded by the four commensurate phases. New excitation spectra above all the five phases, especially on the IC-SKX phase are computed. Three different classes of quantum commensurate to in-commensurate transitions from the IC-SKX to its four neighboring commensurate phases are identified. Finite temperature behaviors and transitions are discussed. The critical temperatures of all the phases can be raised above that reachable by current cold atom cooling techniques simply by tuning the number of atoms N per site. In view of recent impressive experimental advances in generating 2d SOC for cold atoms in optical lattices, these new many-body phenomena can be explored in the current and near future cold atom experiments. Applications to various materials such as MnSi, {Fe}}0.5 {Co}}0.5Si, especially the complex incommensurate magnetic ordering in Li2IrO3 are given.

  18. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS C3VP V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Satellite Simulated Orbits C3VP dataset is available in the Orbital database, which takes account for the atmospheric profiles, the...

  19. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Satellite Simulated Orbits MC3E dataset is available in the Orbital database , which takes account for the atmospheric profiles, the...

  20. On-Orbit Verification of Luminance Based Target Tracking and Faint Body Extractions by a Small Telescope on the World's First Micro-Interplanetary Space Probe

    OpenAIRE

    Ariu, Kaito; Ikari, Satoshi; Kawabata, Yosuke; Nagata, Kazutaka; Matsuguma, Toshihiro; Inamori, Takaya; Miyamura, Norihide; Funase, Ryu; Nakasuka, Shinichi

    2016-01-01

    In recent years, low cost and quick development of very small satellites ranging from CubeSats of 1 kg to micro-satellites of approximately 50 kg have allowed advances in space development and application. Although most of these satellites are in Earth orbits, a small spacecraft for deep-space missions has been developed and launched for the first time in the world. The Proximate Object Close Flyby with Optical Navigation (PROCYON) micro-interplanetary spacecraft, developed by the University ...