WorldWideScience

Sample records for snp genotypic variation

  1. SNP genotyping technologies

    DEFF Research Database (Denmark)

    Studer, Bruno; Kölliker, Roland

    2013-01-01

    In the recent years, single nucleotide polymorphism (SNP) markers have emerged as the marker technology of choice for plant genetics and breeding applications. Besides the efficient technologies available for SNP discovery even in complex genomes, one of the main reasons for this is the availabil...

  2. High-density SNP genotyping of tomato (Solanum lycopersicum L. reveals patterns of genetic variation due to breeding.

    Directory of Open Access Journals (Sweden)

    Sung-Chur Sim

    Full Text Available The effects of selection on genome variation were investigated and visualized in tomato using a high-density single nucleotide polymorphism (SNP array. 7,720 SNPs were genotyped on a collection of 426 tomato accessions (410 inbreds and 16 hybrids and over 97% of the markers were polymorphic in the entire collection. Principal component analysis (PCA and pairwise estimates of F(st supported that the inbred accessions represented seven sub-populations including processing, large-fruited fresh market, large-fruited vintage, cultivated cherry, landrace, wild cherry, and S. pimpinellifolium. Further divisions were found within both the contemporary processing and fresh market sub-populations. These sub-populations showed higher levels of genetic diversity relative to the vintage sub-population. The array provided a large number of polymorphic SNP markers across each sub-population, ranging from 3,159 in the vintage accessions to 6,234 in the cultivated cherry accessions. Visualization of minor allele frequency revealed regions of the genome that distinguished three representative sub-populations of cultivated tomato (processing, fresh market, and vintage, particularly on chromosomes 2, 4, 5, 6, and 11. The PCA loadings and F(st outlier analysis between these three sub-populations identified a large number of candidate loci under positive selection on chromosomes 4, 5, and 11. The extent of linkage disequilibrium (LD was examined within each chromosome for these sub-populations. LD decay varied between chromosomes and sub-populations, with large differences reflective of breeding history. For example, on chromosome 11, decay occurred over 0.8 cM for processing accessions and over 19.7 cM for fresh market accessions. The observed SNP variation and LD decay suggest that different patterns of genetic variation in cultivated tomato are due to introgression from wild species and selection for market specialization.

  3. Forensic SNP genotyping with SNaPshot

    DEFF Research Database (Denmark)

    Fondevila, M; Børsting, C; Phillips, C

    2017-01-01

    to routine STR profiling, use of SNaPshot is an important part of the development of SNP sets for a wide range of forensic applications with these markers, from genotyping highly degraded DNA with very short amplicons to the introduction of SNPs to ascertain the ancestry and physical characteristics......This review explores the key factors that influence the optimization, routine use, and profile interpretation of the SNaPshot single-base extension (SBE) system applied to forensic single-nucleotide polymorphism (SNP) genotyping. Despite being a mainly complimentary DNA genotyping technique...... of an unidentified contact trace donor. However, this technology, as resourceful as it is, displays several features that depart from the usual STR genotyping far enough to demand a certain degree of expertise from the forensic analyst before tackling the complex casework on which SNaPshot application provides...

  4. A SNP Genotyping Array for Hexaploid Oat

    Directory of Open Access Journals (Sweden)

    Nicholas A. Tinker

    2014-11-01

    Full Text Available Recognizing a need in cultivated hexaploid oat ( L. for a reliable set of reference single nucleotide polymorphisms (SNPs, we have developed a 6000 (6K BeadChip design containing 257 Infinium I and 5486 Infinium II designs corresponding to 5743 SNPs. Of those, 4975 SNPs yielded successful assays after array manufacturing. These SNPs were discovered based on a variety of bioinformatics pipelines in complementary DNA (cDNA and genomic DNA originating from 20 or more diverse oat cultivars. The array was validated in 1100 samples from six recombinant inbred line (RIL mapping populations and sets of diverse oat cultivars and breeding lines, and provided approximately 3500 discernible Mendelian polymorphisms. Here, we present an annotation of these SNPs, including methods of discovery, gene identification and orthology, population-genetic characteristics, and tentative positions on an oat consensus map. We also evaluate a new cluster-based method of calling SNPs. The SNP design sequences are made publicly available, and the full SNP genotyping platform is available for commercial purchase from an independent third party.

  5. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping

    Directory of Open Access Journals (Sweden)

    Chang Hsueh-Wei

    2010-04-01

    Full Text Available Abstract Background PCR-restriction fragment length polymorphism (RFLP assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. Results The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels, gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. Conclusions The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2.

  6. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping.

    Science.gov (United States)

    Chang, Hsueh-Wei; Cheng, Yu-Huei; Chuang, Li-Yeh; Yang, Cheng-Hong

    2010-04-08

    PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2.

  7. SNP marker detection and genotyping in tilapia

    NARCIS (Netherlands)

    Bers, van N.E.M.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Dibbits, B.W.; Komen, J.

    2012-01-01

    We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the

  8. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many ...

  9. Analysis of Genome-Wide Copy Number Variations in Chinese Indigenous and Western Pig Breeds by 60 K SNP Genotyping Arrays

    Science.gov (United States)

    Sun, Yaqi; Wang, Hongyang; Wang, Chao; Yu, Shaobo; Liu, Jing; Zhang, Yu; Fan, Bin; Li, Kui; Liu, Bang

    2014-01-01

    Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs. PMID:25198154

  10. Differential growth of Mycobacterium leprae strains (SNP genotypes) in armadillos.

    Science.gov (United States)

    Sharma, Rahul; Singh, Pushpendra; Pena, Maria; Subramanian, Ramesh; Chouljenko, Vladmir; Kim, Joohyun; Kim, Nayong; Caskey, John; Baudena, Marie A; Adams, Linda B; Truman, Richard W

    2018-04-14

    Leprosy (Hansen's Disease) has occurred throughout human history, and persists today at a low prevalence in most populations. Caused by Mycobacterium leprae, the infection primarily involves the skin, mucosa and peripheral nerves. The susceptible host range for Mycobacterium leprae is quite narrow. Besides humans, nine banded armadillos (Dasypus novemcinctus) and red squirrels (Sciurus vulgaris) are the only other natural hosts for M. leprae, but only armadillos recapitulate the disease as seen in humans. Armadillos across the Southern United States harbor a single predominant genotypic strain (SNP Type-3I) of M. leprae, which is also implicated in the zoonotic transmission of leprosy. We investigated, whether the zoonotic strain (3I) has any notable growth advantages in armadillos over another genetically distant strain-type (SNP Type-4P) of M. leprae, and if M. leprae strains manifest any notably different pathology among armadillos. We co-infected armadillos (n = 6) with 2 × 10 9 highly viable M. leprae of both strains and assessed the relative growth and dissemination of each strain in the animals. We also analyzed 12 additional armadillos, 6 each individually infected with the same quantity of either strain. The infections were allowed to fulminate and the clinical manifestations of the disease were noted. Animals were humanely sacrificed at the terminal stage of infection and the number of bacilli per gram of liver, spleen and lymph node tissue were enumerated by Q-PCR assay. The growth of M. leprae strain 4P was significantly higher (P leprae strains within armadillos suggest there are notable pathological variations between M. leprae strain-types. Copyright © 2018. Published by Elsevier B.V.

  11. Vitis phylogenomics: hybridization intensities from a SNP array outperform genotype calls.

    Directory of Open Access Journals (Sweden)

    Allison J Miller

    Full Text Available Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera

  12. Dynamic variable selection in SNP genotype autocalling from APEX microarray data

    Directory of Open Access Journals (Sweden)

    Zamar Ruben H

    2006-11-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are DNA sequence variations, occurring when a single nucleotide – adenine (A, thymine (T, cytosine (C or guanine (G – is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX. This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias. Results Using a set of 32 Coriell DNA samples plus three negative PCR controls as a training data set, we have developed a fully-automated genotyping algorithm based on simple linear discriminant analysis (LDA using dynamic variable selection. The algorithm combines separate analyses based on the multiple probe sets to give a final posterior probability for each candidate genotype. We have tested our algorithm on a completely independent data set of 270 DNA samples, with validated genotypes, from patients admitted to the intensive care unit (ICU of St. Paul's Hospital (plus one negative PCR control sample. Our method achieves a concordance rate of 98.9% with a 99.6% call rate for a set of 96 SNPs. By adjusting the threshold value for the final posterior probability of the called genotype, the call rate reduces to 94.9% with a higher concordance rate of 99.6%. We also reversed the two independent data sets in their training and testing roles, achieving a concordance rate up to 99.8%. Conclusion The strength of this APEX chemistry-based platform is its unique redundancy having multiple probes for a single SNP. Our

  13. Development and characterization of a high density SNP genotyping assay for cattle.

    Directory of Open Access Journals (Sweden)

    Lakshmi K Matukumalli

    Full Text Available The success of genome-wide association (GWA studies for the detection of sequence variation affecting complex traits in human has spurred interest in the use of large-scale high-density single nucleotide polymorphism (SNP genotyping for the identification of quantitative trait loci (QTL and for marker-assisted selection in model and agricultural species. A cost-effective and efficient approach for the development of a custom genotyping assay interrogating 54,001 SNP loci to support GWA applications in cattle is described. A novel algorithm for achieving a compressed inter-marker interval distribution proved remarkably successful, with median interval of 37 kb and maximum predicted gap of <350 kb. The assay was tested on a panel of 576 animals from 21 cattle breeds and six outgroup species and revealed that from 39,765 to 46,492 SNP are polymorphic within individual breeds (average minor allele frequency (MAF ranging from 0.24 to 0.27. The assay also identified 79 putative copy number variants in cattle. Utility for GWA was demonstrated by localizing known variation for coat color and the presence/absence of horns to their correct genomic locations. The combination of SNP selection and the novel spacing algorithm allows an efficient approach for the development of high-density genotyping platforms in species having full or even moderate quality draft sequence. Aspects of the approach can be exploited in species which lack an available genome sequence. The BovineSNP50 assay described here is commercially available from Illumina and provides a robust platform for mapping disease genes and QTL in cattle.

  14. UPD detection using homozygosity profiling with a SNP genotyping microarray.

    Science.gov (United States)

    Papenhausen, Peter; Schwartz, Stuart; Risheg, Hiba; Keitges, Elisabeth; Gadi, Inder; Burnside, Rachel D; Jaswaney, Vikram; Pappas, John; Pasion, Romela; Friedman, Kenneth; Tepperberg, James

    2011-04-01

    Single nucleotide polymorphism (SNP) based chromosome microarrays provide both a high-density whole genome analysis of copy number and genotype. In the past 21 months we have analyzed over 13,000 samples primarily referred for developmental delay using the Affymetrix SNP/CN 6.0 version array platform. In addition to copy number, we have focused on the relative distribution of allele homozygosity (HZ) throughout the genome to confirm a strong association of uniparental disomy (UPD) with regions of isoallelism found in most confirmed cases of UPD. We sought to determine whether a long contiguous stretch of HZ (LCSH) greater than a threshold value found only in a single chromosome would correlate with UPD of that chromosome. Nine confirmed UPD cases were retrospectively analyzed with the array in the study, each showing the anticipated LCSH with the smallest 13.5 Mb in length. This length is well above the average longest run of HZ in a set of control patients and was then set as the prospective threshold for reporting possible UPD correlation. Ninety-two cases qualified at that threshold, 46 of those had molecular UPD testing and 29 were positive. Including retrospective cases, 16 showed complete HZ across the chromosome, consistent with total isoUPD. The average size LCSH in the 19 cases that were not completely HZ was 46.3 Mb with a range of 13.5-127.8 Mb. Three patients showed only segmental UPD. Both the size and location of the LCSH are relevant to correlation with UPD. Further studies will continue to delineate an optimal threshold for LCSH/UPD correlation. Copyright © 2011 Wiley-Liss, Inc.

  15. Genotyping-By-Sequencing for Plant Genetic Diversity Analysis: A Lab Guide for SNP Genotyping

    Directory of Open Access Journals (Sweden)

    Gregory W. Peterson

    2014-10-01

    Full Text Available Genotyping-by-sequencing (GBS has recently emerged as a promising genomic approach for exploring plant genetic diversity on a genome-wide scale. However, many uncertainties and challenges remain in the application of GBS, particularly in non-model species. Here, we present a GBS protocol we developed and use for plant genetic diversity analysis. It uses two restriction enzymes to reduce genome complexity, applies Illumina multiplexing indexes for barcoding and has a custom bioinformatics pipeline for genotyping. This genetic diversity-focused GBS (gd-GBS protocol can serve as an easy-to-follow lab guide to assist a researcher through every step of a GBS application with five main components: sample preparation, library assembly, sequencing, SNP calling and diversity analysis. Specifically, in this presentation, we provide a brief overview of the GBS approach, describe the gd-GBS procedures, illustrate it with an application to analyze genetic diversity in 20 flax (Linum usitatissimum L. accessions and discuss related issues in GBS application. Following these lab bench procedures and using the custom bioinformatics pipeline, one could generate genome-wide SNP genotype data for a conventional genetic diversity analysis of a non-model plant species.

  16. SNP genotyping by DNA photoligation: application to SNP detection of genes from food crops

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Yoshinaga; Ohtake, Tomoko; Okada, Hajime; Fujimoto, Kenzo [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Ami, Takehiro [Innovation Plaza Ishikawa, Japan Science and Technology Agency, 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Tsukaguchi, Tadashi, E-mail: kenzo@jaist.ac.j [Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836 (Japan)

    2009-06-15

    We describe a simple and inexpensive single-nucleotide polymorphism (SNP) typing method, using DNA photoligation with 5-carboxyvinyl-2'-deoxyuridine and two fluorophores. This SNP-typing method facilitates qualitative determination of genes from indica and japonica rice, and showed a high degree of single nucleotide specificity up to 10 000. This method can be used in the SNP typing of actual genomic DNA samples from food crops.

  17. SNP genotyping by DNA photoligation: application to SNP detection of genes from food crops

    Directory of Open Access Journals (Sweden)

    Yoshinaga Yoshimura, Tomoko Ohtake, Hajime Okada, Takehiro Ami, Tadashi Tsukaguchi and Kenzo Fujimoto

    2009-01-01

    Full Text Available We describe a simple and inexpensive single-nucleotide polymorphism (SNP typing method, using DNA photoligation with 5-carboxyvinyl-2'-deoxyuridine and two fluorophores. This SNP-typing method facilitates qualitative determination of genes from indica and japonica rice, and showed a high degree of single nucleotide specificity up to 10 000. This method can be used in the SNP typing of actual genomic DNA samples from food crops.

  18. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)

    Science.gov (United States)

    2014-01-01

    Background Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. Results SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. Conclusions This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in

  19. Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    Directory of Open Access Journals (Sweden)

    Dinesen Lotte C

    2009-01-01

    Full Text Available Abstract Background Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. Methods We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110 from individuals with celiac disease – a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90, and performed a meta-analysis to increase power to detect non-tissue specific effects. Results In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (cis expression quantitative trait loci, eQTLs. 135 of the detected SNP-probe effects (reflecting 51 unique probes were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. Conclusion In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.

  20. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes.

    Science.gov (United States)

    Fu, Yong-Bi; Peterson, Gregory W; Dong, Yibo

    2016-04-07

    Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for exploring genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a substantial amount of missing data. These technical features would limit the power of various GBS-based genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and report a new set of 21 restriction enzyme combinations that can be applied to enhance GBS applications. These enzyme combinations were developed through an application of IgCoverage on 22 plant, animal, and fungus species with sequenced genomes, and some of them were empirically evaluated with different runs of Illumina MiSeq sequencing in 12 plant species. The in silico analysis of 22 organisms revealed up to eight times more genome coverage for the new combinations consisted of pairing four- or five-cutter restriction enzymes than the commonly used enzyme combination PstI + MspI. The empirical evaluation of the new enzyme combination (HinfI + HpyCH4IV) in 12 plant species showed 1.7-6 times more genome coverage than PstI + MspI, and 2.3 times more genome coverage in dicots than monocots. Also, the SNP genotyping in 12 Arabidopsis and 12 rice plants revealed that HinfI + HpyCH4IV generated 7 and 1.3 times more SNPs (with 0-16.7% missing observations) than PstI + MspI, respectively. These findings demonstrate that these novel enzyme combinations can be utilized to increase genome sampling and improve SNP genotyping in various GBS applications. Copyright © 2016 Fu et al.

  1. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP Array

    Directory of Open Access Journals (Sweden)

    Qian You

    2018-02-01

    Full Text Available Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1 discussed the pros and cons of SNP array in general for high throughput genotyping, (2 presented the challenges of and solutions to SNP calling in polyploid species, (3 summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4 illustrated SNP array applications in several different polyploid crop species, then (5 discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6 provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.

  2. SNP high-throughput screening in grapevine using the SNPlex™ genotyping system

    Directory of Open Access Journals (Sweden)

    Velasco Riccardo

    2008-01-01

    Full Text Available Abstract Background Until recently, only a small number of low- and mid-throughput methods have been used for single nucleotide polymorphism (SNP discovery and genotyping in grapevine (Vitis vinifera L.. However, following completion of the sequence of the highly heterozygous genome of Pinot Noir, it has been possible to identify millions of electronic SNPs (eSNPs thus providing a valuable source for high-throughput genotyping methods. Results Herein we report the first application of the SNPlex™ genotyping system in grapevine aiming at the anchoring of an eukaryotic genome. This approach combines robust SNP detection with automated assay readout and data analysis. 813 candidate eSNPs were developed from non-repetitive contigs of the assembled genome of Pinot Noir and tested in 90 progeny of Syrah × Pinot Noir cross. 563 new SNP-based markers were obtained and mapped. The efficiency rate of 69% was enhanced to 80% when multiple displacement amplification (MDA methods were used for preparation of genomic DNA for the SNPlex assay. Conclusion Unlike other SNP genotyping methods used to investigate thousands of SNPs in a few genotypes, or a few SNPs in around a thousand genotypes, the SNPlex genotyping system represents a good compromise to investigate several hundred SNPs in a hundred or more samples simultaneously. Therefore, the use of the SNPlex assay, coupled with whole genome amplification (WGA, is a good solution for future applications in well-equipped laboratories.

  3. Interactions Between SNP Alleles at Multiple Loci and Variation in Skin Pigmentation in 122 Caucasians

    Directory of Open Access Journals (Sweden)

    Sumiko Anno

    2007-01-01

    Full Text Available This study was undertaken to clarify the molecular basis for human skin color variation and the environmental adaptability to ultraviolet irradiation, with the ultimate goal of predicting the impact of changes in future environments on human health risk. One hundred twenty-two Caucasians living in Toledo, Ohio participated. Back and cheek skin were assayed for melanin as a quantitative trait marker. Buccal cell samples were collected and used for DNA extraction. DNA was used for SNP genotyping using the Masscode™ system, which entails two-step PCR amplification and a platform chemistry which allows cleavable mass spectrometry tags. The results show gene-gene interaction between SNP alleles at multiple loci (not necessarily on the same chromosome contributes to inter-individual skin color variation while suggesting a high probability of linkage disequilibrium. Confirmation of these findings requires further study with other ethic groups to analyze the associations between SNP alleles at multiple loci and human skin color variation. Our overarching goal is to use remote sensing data to clarify the interaction between atmospheric environments and SNP allelic frequency and investigate human adaptability to ultraviolet irradiation. Such information should greatly assist in the prediction of the health effects of future environmental changes such as ozone depletion and increased ultraviolet exposure. If such health effects are to some extent predictable, it might be possible to prepare for such changes in advance and thus reduce the extent of their impact.

  4. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... in human has been paralleled by the simultaneous develop- ment of ... In crop plants, the development of large genotyping arrays started much ..... via deep resequencing of reduced representation libraries with the Illumina ...

  5. Typing of 48 autosomal SNPs and amelogenin with GenPlex SNP genotyping system in forensic genetics

    DEFF Research Database (Denmark)

    Tomas Mas, Carmen; Stangegaard, Michael; Børsting, Claus

    2008-01-01

    , Somalia and Greenland were investigated with GenPlex using a Biomek 3000 (Beckman Coulter) robot. The results were compared to results obtained with an ISO 17025 accredited SNP typing assay based on single base extension (SBE). With the GenPlex SNP genotyping system, full SNP profiles were obtained in 97.......6% of the investigations. Perfect concordance was obtained in duplicate investigations and the SNP genotypes obtained with the GenPlex system were concordant with those of the accredited SBE based SNP typing system except for one result in rs901398 in one of 286 individuals most likely due to a mutation 6 bp downstream...

  6. Imputation of microsatellite alleles from dense SNP genotypes for parental verification

    Directory of Open Access Journals (Sweden)

    Matthew eMcclure

    2012-08-01

    Full Text Available Microsatellite (MS markers have recently been used for parental verification and are still the international standard despite higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP-based assays. Despite domestic and international interest from producers and research communities, no viable means currently exist to verify parentage for an individual unless all familial connections were analyzed using the same DNA marker type (MS or SNP. A simple and cost-effective method was devised to impute MS alleles from SNP haplotypes within breeds. For some MS, imputation results may allow inference across breeds. A total of 347 dairy cattle representing 4 dairy breeds (Brown Swiss, Guernsey, Holstein, and Jersey were used to generate reference haplotypes. This approach has been verified (>98% accurate for imputing the International Society of Animal Genetics (ISAG recommended panel of 12 MS for cattle parentage verification across a validation set of 1,307 dairy animals.. Implementation of this method will allow producers and breed associations to transition to SNP-based parentage verification utilizing MS genotypes from historical data on parents where SNP genotypes are missing. This approach may be applicable to additional cattle breeds and other species that wish to migrate from MS- to SNP- based parental verification.

  7. SNP calling using genotype model selection on high-throughput sequencing data

    KAUST Repository

    You, Na; Murillo, Gabriel; Su, Xiaoquan; Zeng, Xiaowei; Xu, Jian; Ning, Kang; Zhang, ShouDong; Zhu, Jian-Kang; Cui, Xinping

    2012-01-01

    calling SNPs. Thus, errors not involved in base-calling or alignment, such as those in genomic sample preparation, are not accounted for.Results: A novel method of consensus and SNP calling, Genotype Model Selection (GeMS), is given which accounts

  8. Combinations of SNP genotypes from the Wellcome Trust Case Control Study of bipolar patients

    DEFF Research Database (Denmark)

    Mellerup, Erling; Jørgensen, Martin Balslev; Dam, Henrik

    2018-01-01

    Objectives: Combinations of genetic variants are the basis for polygenic disorders. We examined combinations of SNP genotypes taken from the 446 729 SNPs in The Wellcome Trust Case Control Study of bipolar patients. Methods: Parallel computing by graphics processing units, cloud computing, and data...

  9. [Restriction endonuclease digest - melting curve analysis: a new SNP genotyping and its application in traditional Chinese medicine authentication].

    Science.gov (United States)

    Jiang, Chao; Huang, Lu-Qi; Yuan, Yuan; Chen, Min; Hou, Jing-Yi; Wu, Zhi-Gang; Lin, Shu-Fang

    2014-04-01

    Single nucleotide polymorphisms (SNP) is an important molecular marker in traditional Chinese medicine research, and it is widely used in TCM authentication. The present study created a new genotyping method by combining restriction endonuclease digesting with melting curve analysis, which is a stable, rapid and easy doing SNP genotyping method. The new method analyzed SNP genotyping of two chloroplast SNP which was located in or out of the endonuclease recognition site, the results showed that when attaching a 14 bp GC-clamp (cggcgggagggcgg) to 5' end of the primer and selecting suited endonuclease to digest the amplification products, the melting curve of Lonicera japonica and Atractylodes macrocephala were all of double peaks and the adulterants Shan-yin-hua and A. lancea were of single peaks. The results indicated that the method had good stability and reproducibility for identifying authentic medicines from its adulterants. It is a potential SNP genotyping method and named restriction endonuclease digest - melting curve analysis.

  10. Low cost, low tech SNP genotyping tools for resource-limited areas: Plague in Madagascar as a model.

    Science.gov (United States)

    Mitchell, Cedar L; Andrianaivoarimanana, Voahangy; Colman, Rebecca E; Busch, Joseph; Hornstra-O'Neill, Heidie; Keim, Paul S; Wagner, David M; Rajerison, Minoarisoa; Birdsell, Dawn N

    2017-12-01

    Genetic analysis of pathogenic organisms is a useful tool for linking human cases together and/or to potential environmental sources. The resulting data can also provide information on evolutionary patterns within a targeted species and phenotypic traits. However, the instruments often used to generate genotyping data, such as single nucleotide polymorphisms (SNPs), can be expensive and sometimes require advanced technologies to implement. This places many genotyping tools out of reach for laboratories that do not specialize in genetic studies and/or lack the requisite financial and technological resources. To address this issue, we developed a low cost and low tech genotyping system, termed agarose-MAMA, which combines traditional PCR and agarose gel electrophoresis to target phylogenetically informative SNPs. To demonstrate the utility of this approach for generating genotype data in a resource-constrained area (Madagascar), we designed an agarose-MAMA system targeting previously characterized SNPs within Yersinia pestis, the causative agent of plague. We then used this system to genetically type pathogenic strains of Y. pestis in a Malagasy laboratory not specialized in genetic studies, the Institut Pasteur de Madagascar (IPM). We conducted rigorous assay performance validations to assess potential variation introduced by differing research facilities, reagents, and personnel and found no difference in SNP genotyping results. These agarose-MAMA PCR assays are currently employed as an investigative tool at IPM, providing Malagasy researchers a means to improve the value of their plague epidemiological investigations by linking outbreaks to potential sources through genetic characterization of isolates and to improve understanding of disease ecology that may contribute to a long-term control effort. The success of our study demonstrates that the SNP-based genotyping capacity of laboratories in developing countries can be expanded with manageable financial cost for

  11. SNP Discovery and Development of a High-Density Genotyping Array for Sunflower

    Science.gov (United States)

    Bachlava, Eleni; Taylor, Christopher A.; Tang, Shunxue; Bowers, John E.; Mandel, Jennifer R.; Burke, John M.; Knapp, Steven J.

    2012-01-01

    Recent advances in next-generation DNA sequencing technologies have made possible the development of high-throughput SNP genotyping platforms that allow for the simultaneous interrogation of thousands of single-nucleotide polymorphisms (SNPs). Such resources have the potential to facilitate the rapid development of high-density genetic maps, and to enable genome-wide association studies as well as molecular breeding approaches in a variety of taxa. Herein, we describe the development of a SNP genotyping resource for use in sunflower (Helianthus annuus L.). This work involved the development of a reference transcriptome assembly for sunflower, the discovery of thousands of high quality SNPs based on the generation and analysis of ca. 6 Gb of transcriptome re-sequencing data derived from multiple genotypes, the selection of 10,640 SNPs for inclusion in the genotyping array, and the use of the resulting array to screen a diverse panel of sunflower accessions as well as related wild species. The results of this work revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, greater than 95% of successful SNP assays revealed polymorphism, and more than 90% of these assays could be successfully transferred to related wild species. Analysis of the polymorphism data revealed patterns of genetic differentiation that were largely congruent with the evolutionary history of sunflower, though the large number of markers allowed for finer resolution than has previously been possible. PMID:22238659

  12. SNP calling using genotype model selection on high-throughput sequencing data

    KAUST Repository

    You, Na

    2012-01-16

    Motivation: A review of the available single nucleotide polymorphism (SNP) calling procedures for Illumina high-throughput sequencing (HTS) platform data reveals that most rely mainly on base-calling and mapping qualities as sources of error when calling SNPs. Thus, errors not involved in base-calling or alignment, such as those in genomic sample preparation, are not accounted for.Results: A novel method of consensus and SNP calling, Genotype Model Selection (GeMS), is given which accounts for the errors that occur during the preparation of the genomic sample. Simulations and real data analyses indicate that GeMS has the best performance balance of sensitivity and positive predictive value among the tested SNP callers. © The Author 2012. Published by Oxford University Press. All rights reserved.

  13. Transcriptomic SNP discovery for custom genotyping arrays: impacts of sequence data, SNP calling method and genotyping technology on the probability of validation success.

    Science.gov (United States)

    Humble, Emily; Thorne, Michael A S; Forcada, Jaume; Hoffman, Joseph I

    2016-08-26

    Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the number of 'putative' SNPs discovered from a sequence resource may not provide a reliable indication of the number that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discovered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina Infinium iSelect HD and Affymetrix Axiom arrays. Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concordance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also consistently better for Affymetrix Axiom arrays. Our results suggest that focusing on SNPs called by more than one method could potentially improve validation outcomes. They also highlight possible differences between alternative genotyping technologies that could be

  14. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping.

    Science.gov (United States)

    Esteras, Cristina; Gómez, Pedro; Monforte, Antonio J; Blanca, José; Vicente-Dólera, Nelly; Roig, Cristina; Nuez, Fernando; Picó, Belén

    2012-02-22

    Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species.The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most of these markers are located in

  15. HRM and SNaPshot as alternative forensic SNP genotyping methods.

    Science.gov (United States)

    Mehta, Bhavik; Daniel, Runa; McNevin, Dennis

    2017-09-01

    Single nucleotide polymorphisms (SNPs) have been widely used in forensics for prediction of identity, biogeographical ancestry (BGA) and externally visible characteristics (EVCs). Single base extension (SBE) assays, most notably SNaPshot® (Thermo Fisher Scientific), are commonly used for forensic SNP genotyping as they can be employed on standard instrumentation in forensic laboratories (e.g. capillary electrophoresis). High resolution melt (HRM) analysis is an alternative method and is a simple, fast, single tube assay for low throughput SNP typing. This study compares HRM and SNaPshot®. HRM produced reproducible and concordant genotypes at 500 pg, however, difficulties were encountered when genotyping SNPs with high GC content in flanking regions and differentiating variants of symmetrical SNPs. SNaPshot® was reproducible at 100 pg and is less dependent on SNP choice. HRM has a shorter processing time in comparison to SNaPshot®, avoids post PCR contamination risk and has potential as a screening tool for many forensic applications.

  16. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species.

    Science.gov (United States)

    Geraldes, A; Difazio, S P; Slavov, G T; Ranjan, P; Muchero, W; Hannemann, J; Gunter, L E; Wymore, A M; Grassa, C J; Farzaneh, N; Porth, I; McKown, A D; Skyba, O; Li, E; Fujita, M; Klápště, J; Martin, J; Schackwitz, W; Pennacchio, C; Rokhsar, D; Friedmann, M C; Wasteneys, G O; Guy, R D; El-Kassaby, Y A; Mansfield, S D; Cronk, Q C B; Ehlting, J; Douglas, C J; Tuskan, G A

    2013-03-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids. © 2013 Blackwell Publishing Ltd.

  17. Use of Sequenom sample ID Plus® SNP genotyping in identification of FFPE tumor samples.

    Directory of Open Access Journals (Sweden)

    Jessica K Miller

    Full Text Available Short tandem repeat (STR analysis, such as the AmpFlSTR® Identifiler® Plus kit, is a standard, PCR-based human genotyping method used in the field of forensics. Misidentification of cell line and tissue DNA can be costly if not detected early; therefore it is necessary to have quality control measures such as STR profiling in place. A major issue in large-scale research studies involving archival formalin-fixed paraffin embedded (FFPE tissues is that varying levels of DNA degradation can result in failure to correctly identify samples using STR genotyping. PCR amplification of STRs of several hundred base pairs is not always possible when DNA is degraded. The Sample ID Plus® panel from Sequenom allows for human DNA identification and authentication using SNP genotyping. In comparison to lengthy STR amplicons, this multiplexing PCR assay requires amplification of only 76-139 base pairs, and utilizes 47 SNPs to discriminate between individual samples. In this study, we evaluated both STR and SNP genotyping methods of sample identification, with a focus on paired FFPE tumor/normal DNA samples intended for next-generation sequencing (NGS. The ability to successfully validate the identity of FFPE samples can enable cost savings by reducing rework.

  18. Reducing Bias of Allele Frequency Estimates by Modeling SNP Genotype Data with Informative Missingness

    Directory of Open Access Journals (Sweden)

    Wan-Yu eLin

    2012-06-01

    Full Text Available The presence of missing single-nucleotide polymorphism (SNP genotypes is common in genetic data. For studies with low-density SNPs, the most commonly used approach to deal with genotype missingness is to simply remove the observations with missing genotypes from the analyses. This naïve method is straightforward but is appropriate only when the missingness is random. However, a given assay often has a different capability in genotyping heterozygotes and homozygotes, causing the phenomenon of ‘differential dropout’ in the sense that the missing rates of heterozygotes and homozygotes are different. In practice, differential dropout among genotypes exists in even carefully designed studies, such as the data from the HapMap project and the Wellcome Trust Case Control Consortium. In this study, we propose a statistical method to model the differential dropout among different genotypes. Compared with the naïve method, our method provides more accurate allele frequency estimates when the differential dropout is present. To demonstrate its practical use, we further apply our method to the HapMap data and a scleroderma data set.

  19. Low cost, low tech SNP genotyping tools for resource-limited areas: Plague in Madagascar as a model.

    Directory of Open Access Journals (Sweden)

    Cedar L Mitchell

    2017-12-01

    Full Text Available Genetic analysis of pathogenic organisms is a useful tool for linking human cases together and/or to potential environmental sources. The resulting data can also provide information on evolutionary patterns within a targeted species and phenotypic traits. However, the instruments often used to generate genotyping data, such as single nucleotide polymorphisms (SNPs, can be expensive and sometimes require advanced technologies to implement. This places many genotyping tools out of reach for laboratories that do not specialize in genetic studies and/or lack the requisite financial and technological resources. To address this issue, we developed a low cost and low tech genotyping system, termed agarose-MAMA, which combines traditional PCR and agarose gel electrophoresis to target phylogenetically informative SNPs.To demonstrate the utility of this approach for generating genotype data in a resource-constrained area (Madagascar, we designed an agarose-MAMA system targeting previously characterized SNPs within Yersinia pestis, the causative agent of plague. We then used this system to genetically type pathogenic strains of Y. pestis in a Malagasy laboratory not specialized in genetic studies, the Institut Pasteur de Madagascar (IPM. We conducted rigorous assay performance validations to assess potential variation introduced by differing research facilities, reagents, and personnel and found no difference in SNP genotyping results. These agarose-MAMA PCR assays are currently employed as an investigative tool at IPM, providing Malagasy researchers a means to improve the value of their plague epidemiological investigations by linking outbreaks to potential sources through genetic characterization of isolates and to improve understanding of disease ecology that may contribute to a long-term control effort.The success of our study demonstrates that the SNP-based genotyping capacity of laboratories in developing countries can be expanded with manageable

  20. Biomek®-3000 and GenPlex SNP Genotyping in Forensic Genetics

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Tomas, Carmen; Hansen, Anders J.

    2008-01-01

    Single nucleotide polymorphism genotyping provides a supplement for conventional short tandem repeats-based kits currently used for human identification. GenPlex (Applied Biosystems (AB), Foster City, CA) is an SNP-genotyping kit based on a multiplex of 48 informative, autosomal SNPs from...... the SNPforID Consortium. Our objective was to setup, implement, and validate a small and affordable automated liquid-handling robot for forensic casework samples (buccal swaps on FTA-paper and Qiagen purified blood). The reaction scheme consisted of numerous steps and was cumbersome to perform consistently...... manually. Automation was accomplished with a Biomek-3000 (Beckmann Coulter) laboratory-automated workstation using five in-house-developed methods. All methods allowed the user to select the number of subsequent injections to the capillary electrophoresis instrument (ABI 3130xl, AB) enabling processing...

  1. Comparison of SNP Variation and Distribution in Indigenous Ethiopian and Korean Cattle (Hanwoo Populations

    Directory of Open Access Journals (Sweden)

    Zewdu Edea

    2012-09-01

    Full Text Available Although a large number of single nucleotide polymorphisms (SNPs have been identified from the bovine genome-sequencing project, few of these have been validated at large in Bos indicus breeds. We have genotyped 192 animals, representing 5 cattle populations of Ethiopia, with the Illumina Bovine 8K SNP BeadChip. These include 1 Sanga (Danakil, 3 zebu (Borana, Arsi and Ambo, and 1 zebu × Sanga intermediate (Horro breeds. The Hanwoo (Bos taurus was included for comparison purposes. Analysis of 7,045 SNP markers revealed that the mean minor allele frequency (MAF was 0.23, 0.22, 0.21, 0.21, 0.23, and 0.29 for Ambo, Arsi, Borana, Danakil, Horro, and Hanwoo, respectively. Significant differences of MAF were observed between the indigenous Ethiopian cattle populations and Hanwoo breed (p < 0.001. Across the Ethiopian cattle populations, a common variant MAF (≥0.10 and ≤0.5 accounted for an overall estimated 73.79% of the 7,045 SNPs. The Hanwoo displayed a higher proportion of common variant SNPs (90%. Investigation within Ethiopian cattle populations showed that on average, 16.64% of the markers were monomorphic, but in the Hanwoo breed, only 6% of the markers were monomorphic. Across the sampled Ethiopian cattle populations, the mean observed and expected heterozygosities were 0.314 and 0.313, respectively. The level of SNP variation identified in this particular study highlights that these markers can be potentially used for genetic studies in African cattle breeds.

  2. Evaluation of Bovine High-Density SNP Genotyping Array in Indigenous Dairy Cattle Breeds.

    Science.gov (United States)

    Dash, S; Singh, A; Bhatia, A K; Jayakumar, S; Sharma, A; Singh, S; Ganguly, I; Dixit, S P

    2018-04-03

    In total 52 samples of Sahiwal ( 19 ), Tharparkar ( 17 ), and Gir ( 16 ) were genotyped by using BovineHD SNP chip to analyze minor allele frequency (MAF), genetic diversity, and linkage disequilibrium among these cattle. The common SNPs of BovineHD and 54K SNP Chips were also extracted and evaluated for their performance. Only 40%-50% SNPs of these arrays was found informative for genetic analysis in these cattle breeds. The overall mean of MAF for SNPs of BovineHD SNPChip was 0.248 ± 0.006, 0.241 ± 0.007, and 0.242 ± 0.009 in Sahiwal, Tharparkar and Gir, respectively, while that for 54K SNPs was on lower side. The average Reynold's genetic distance between breeds ranged from 0.042 to 0.055 based on BovineHD Beadchip, and from 0.052 to 0.084 based on 54K SNP Chip. The estimates of genetic diversity based on HD and 54K chips were almost same and, hence, low density chip seems to be good enough to decipher genetic diversity of these cattle breeds. The linkage disequilibrium started decaying (r 2  < 0.2) at 140 kb inter-marker distance and, hence, a 20K low density customized SNP array from HD chip could be designed for genomic selection in these cattle else the 54K Bead Chip as such will be useful.

  3. Improving accuracy of genomic prediction in Brangus cattle by adding animals with imputed low-density SNP genotypes.

    Science.gov (United States)

    Lopes, F B; Wu, X-L; Li, H; Xu, J; Perkins, T; Genho, J; Ferretti, R; Tait, R G; Bauck, S; Rosa, G J M

    2018-02-01

    Reliable genomic prediction of breeding values for quantitative traits requires the availability of sufficient number of animals with genotypes and phenotypes in the training set. As of 31 October 2016, there were 3,797 Brangus animals with genotypes and phenotypes. These Brangus animals were genotyped using different commercial SNP chips. Of them, the largest group consisted of 1,535 animals genotyped by the GGP-LDV4 SNP chip. The remaining 2,262 genotypes were imputed to the SNP content of the GGP-LDV4 chip, so that the number of animals available for training the genomic prediction models was more than doubled. The present study showed that the pooling of animals with both original or imputed 40K SNP genotypes substantially increased genomic prediction accuracies on the ten traits. By supplementing imputed genotypes, the relative gains in genomic prediction accuracies on estimated breeding values (EBV) were from 12.60% to 31.27%, and the relative gain in genomic prediction accuracies on de-regressed EBV was slightly small (i.e. 0.87%-18.75%). The present study also compared the performance of five genomic prediction models and two cross-validation methods. The five genomic models predicted EBV and de-regressed EBV of the ten traits similarly well. Of the two cross-validation methods, leave-one-out cross-validation maximized the number of animals at the stage of training for genomic prediction. Genomic prediction accuracy (GPA) on the ten quantitative traits was validated in 1,106 newly genotyped Brangus animals based on the SNP effects estimated in the previous set of 3,797 Brangus animals, and they were slightly lower than GPA in the original data. The present study was the first to leverage currently available genotype and phenotype resources in order to harness genomic prediction in Brangus beef cattle. © 2018 Blackwell Verlag GmbH.

  4. Genotyping of single spore isolates of a Pasteuria penetrans population occurring in Florida using SNP-based markers.

    Science.gov (United States)

    Joseph, S; Schmidt, L M; Danquah, W B; Timper, P; Mekete, T

    2017-02-01

    To generate single spore lines of a population of bacterial parasite of root-knot nematode (RKN), Pasteuria penetrans, isolated from Florida and examine genotypic variation and virulence characteristics exist within the population. Six single spore lines (SSP), 16SSP, 17SSP, 18SSP, 25SSP, 26SSP and 30SSP were generated. Genetic variability was evaluated by comparing single-nucleotide polymorphisms (SNPs) in six protein-coding genes and the 16S rRNA gene. An average of one SNP was observed for every 69 bp in the 16S rRNA, whereas no SNPs were observed in the protein-coding sequences. Hierarchical cluster analysis of 16S rRNA sequences placed the clones into three distinct clades. Bio-efficacy analysis revealed significant heterogeneity in the level virulence and host specificity between the individual clones. The SNP markers developed to the 5' hypervariable region of the 16S rRNA gene may be useful in biotype differentiation within a population of P. penetrans. This study demonstrates an efficient method for generating single spore lines of P. penetrans and gives a deep insight into genetic heterogeneity and varying level of virulence exists within a population parasitizing a specific Meloidogyne sp. host. The results also suggest that the application of generalist spore lines in nematode management may achieve broad RKN control. © 2016 The Society for Applied Microbiology.

  5. Publishing SNP genotypes of human embryonic stem cell lines: policy statement of the International Stem Cell Forum Ethics Working Party.

    Science.gov (United States)

    Knoppers, Bartha M; Isasi, Rosario; Benvenisty, Nissim; Kim, Ock-Joo; Lomax, Geoffrey; Morris, Clive; Murray, Thomas H; Lee, Eng Hin; Perry, Margery; Richardson, Genevra; Sipp, Douglas; Tanner, Klaus; Wahlström, Jan; de Wert, Guido; Zeng, Fanyi

    2011-09-01

    Novel methods and associated tools permitting individual identification in publicly accessible SNP databases have become a debatable issue. There is growing concern that current technical and ethical safeguards to protect the identities of donors could be insufficient. In the context of human embryonic stem cell research, there are no studies focusing on the probability that an hESC line donor could be identified by analyzing published SNP profiles and associated genotypic and phenotypic information. We present the International Stem Cell Forum (ISCF) Ethics Working Party's Policy Statement on "Publishing SNP Genotypes of Human Embryonic Stem Cell Lines (hESC)". The Statement prospectively addresses issues surrounding the publication of genotypic data and associated annotations of hESC lines in open access databases. It proposes a balanced approach between the goals of open science and data sharing with the respect for fundamental bioethical principles (autonomy, privacy, beneficence, justice and research merit and integrity).

  6. Olive oil DNA fingerprinting by multiplex SNP genotyping on fluorescent microspheres.

    Science.gov (United States)

    Kalogianni, Despina P; Bazakos, Christos; Boutsika, Lemonia M; Targem, Mehdi Ben; Christopoulos, Theodore K; Kalaitzis, Panagiotis; Ioannou, Penelope C

    2015-04-01

    Olive oil cultivar verification is of primary importance for the competitiveness of the product and the protection of consumers and producers from fraudulence. Single-nucleotide polymorphisms (SNPs) have emerged as excellent DNA markers for authenticity testing. This paper reports the first multiplex SNP genotyping assay for olive oil cultivar identification that is performed on a suspension of fluorescence-encoded microspheres. Up to 100 sets of microspheres, with unique "fluorescence signatures", are available. Allele discrimination was accomplished by primer extension reaction. The reaction products were captured via hybridization on the microspheres and analyzed, within seconds, by a flow cytometer. The "fluorescence signature" of each microsphere is assigned to a specific allele, whereas the signal from a reporter fluorophore denotes the presence of the allele. As a model, a panel of three SNPs was chosen that enabled identification of five common Greek olive cultivars (Adramytini, Chondrolia Chalkidikis, Kalamon, Koroneiki, and Valanolia).

  7. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    Science.gov (United States)

    2011-01-01

    Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across

  8. Improved technique that allows the performance of large-scale SNP genotyping on DNA immobilized by FTA technology.

    Science.gov (United States)

    He, Hongbin; Argiro, Laurent; Dessein, Helia; Chevillard, Christophe

    2007-01-01

    FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. The number of punches that can normally be obtained from a single specimen card are often however, insufficient for the testing of the large numbers of loci required to identify genetic factors that control human susceptibility or resistance to multifactorial diseases. In this study, we propose an improved technique to perform large-scale SNP genotyping. We applied a whole genome amplification method to amplify DNA from buccal cell samples stabilized using FTA technology. The results show that using the improved technique it is possible to perform up to 15,000 genotypes from one buccal cell sample. Furthermore, the procedure is simple. We consider this improved technique to be a promising methods for performing large-scale SNP genotyping because the FTA technology simplifies the collection, shipment, archiving and purification of DNA, while whole genome amplification of FTA card bound DNA produces sufficient material for the determination of thousands of SNP genotypes.

  9. Development and validation of the Axiom(®) Apple480K SNP genotyping array.

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Linsmith, Gareth; Muranty, Hélène; Denancé, Caroline; Théron, Anthony; Poncet, Charles; Micheletti, Diego; Kerschbamer, Emanuela; Di Pierro, Erica A; Larger, Simone; Pindo, Massimo; Van de Weg, Eric; Davassi, Alessandro; Laurens, François; Velasco, Riccardo; Durel, Charles-Eric; Troggio, Michela

    2016-04-01

    Cultivated apple (Malus × domestica Borkh.) is one of the most important fruit crops in temperate regions, and has great economic and cultural value. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid linkage disequilibrium decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. The SNPs were chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359 994 or 74%) fell in the stringent class of poly high resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Genomic variation in myeloma: design, content, and initial application of the Bank On A Cure SNP Panel to detect associations with progression-free survival

    Directory of Open Access Journals (Sweden)

    Fang Gang

    2008-09-01

    Full Text Available Abstract Background We have engaged in an international program designated the Bank On A Cure, which has established DNA banks from multiple cooperative and institutional clinical trials, and a platform for examining the association of genetic variations with disease risk and outcomes in multiple myeloma. We describe the development and content of a novel custom SNP panel that contains 3404 SNPs in 983 genes, representing cellular functions and pathways that may influence disease severity at diagnosis, toxicity, progression or other treatment outcomes. A systematic search of national databases was used to identify non-synonymous coding SNPs and SNPs within transcriptional regulatory regions. To explore SNP associations with PFS we compared SNP profiles of short term (less than 1 year, n = 70 versus long term progression-free survivors (greater than 3 years, n = 73 in two phase III clinical trials. Results Quality controls were established, demonstrating an accurate and robust screening panel for genetic variations, and some initial racial comparisons of allelic variation were done. A variety of analytical approaches, including machine learning tools for data mining and recursive partitioning analyses, demonstrated predictive value of the SNP panel in survival. While the entire SNP panel showed genotype predictive association with PFS, some SNP subsets were identified within drug response, cellular signaling and cell cycle genes. Conclusion A targeted gene approach was undertaken to develop an SNP panel that can test for associations with clinical outcomes in myeloma. The initial analysis provided some predictive power, demonstrating that genetic variations in the myeloma patient population may influence PFS.

  11. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.

    Science.gov (United States)

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-10-23

    Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.

  12. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping

    DEFF Research Database (Denmark)

    Zhan, Bujie; Fadista, João; Thomsen, Bo

    2011-01-01

    Background Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes. Results We report the integration of the whole genome...... of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation...

  13. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species.

    Directory of Open Access Journals (Sweden)

    Brant K Peterson

    Full Text Available The ability to efficiently and accurately determine genotypes is a keystone technology in modern genetics, crucial to studies ranging from clinical diagnostics, to genotype-phenotype association, to reconstruction of ancestry and the detection of selection. To date, high capacity, low cost genotyping has been largely achieved via "SNP chip" microarray-based platforms which require substantial prior knowledge of both genome sequence and variability, and once designed are suitable only for those targeted variable nucleotide sites. This method introduces substantial ascertainment bias and inherently precludes detection of rare or population-specific variants, a major source of information for both population history and genotype-phenotype association. Recent developments in reduced-representation genome sequencing experiments on massively parallel sequencers (commonly referred to as RAD-tag or RADseq have brought direct sequencing to the problem of population genotyping, but increased cost and procedural and analytical complexity have limited their widespread adoption. Here, we describe a complete laboratory protocol, including a custom combinatorial indexing method, and accompanying software tools to facilitate genotyping across large numbers (hundreds or more of individuals for a range of markers (hundreds to hundreds of thousands. Our method requires no prior genomic knowledge and achieves per-site and per-individual costs below that of current SNP chip technology, while requiring similar hands-on time investment, comparable amounts of input DNA, and downstream analysis times on the order of hours. Finally, we provide empirical results from the application of this method to both genotyping in a laboratory cross and in wild populations. Because of its flexibility, this modified RADseq approach promises to be applicable to a diversity of biological questions in a wide range of organisms.

  14. Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis.

    Science.gov (United States)

    Waterfall, C M; Cobb, B D

    2001-12-01

    Allele-specific amplification (ASA) is a generally applicable technique for the detection of known single nucleotide polymorphisms (SNPs), deletions, insertions and other sequence variations. Conventionally, two reactions are required to determine the zygosity of DNA in a two-allele system, along with significant upstream optimisation to define the specific test conditions. Here, we combine single tube bi-directional ASA with a 'matrix-based' optimisation strategy, speeding up the whole process in a reduced reaction set. We use sickle cell anaemia as our model SNP system, a genetic disease that is currently screened using ASA methods. Discriminatory conditions were rapidly optimised enabling the unambiguous identification of DNA from homozygous sickle cell patients (HbS/S), heterozygous carriers (HbA/S) or normal DNA in a single tube. Simple downstream mathematical analyses based on product yield across the optimisation set allow an insight into the important aspects of priming competition and component interactions in this competitive PCR. This strategy can be applied to any polymorphism, defining specific conditions using a multifactorial approach. The inherent simplicity and low cost of this PCR-based method validates bi-directional ASA as an effective tool in future clinical screening and pharmacogenomic research where more expensive fluorescence-based approaches may not be desirable.

  15. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage

    2009-01-01

    genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC......To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1...... region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein...

  16. TNF-alpha 308 SNP Rs3091256 GG Genotype is Strongly Associated with Fibrosis in Patients with Chronic Hepatitis C

    Directory of Open Access Journals (Sweden)

    Özgür GÜNAL

    2017-12-01

    Full Text Available Objective: We aimed to review the influence of host genetic factors on the clinical course, treatment response as well as fibrosis progression in patients with viral hepatitis C genotype 1. Materials and Methods: Ninety-five patients with chronic hepatitis C virus (HCV infection and 97 controls were enrolled. The patients received pegylated interferon (Peg-IFN+ribavirin therapy for 48 weeks and were followed up for the next 48 weeks. Aspartat aminotransferase/platelet ratio (APRI was used to detect liver fibrosis DNA specimens were extracted from the peripheral blood mononuclear cells and the tumor necrosis factor-alpha (TNF-α 308 rs3091256 was genotyped by the polymerase chain reaction-restriction fragment length polymorphism method. Results: All patients included in the study were infected with HCV genotype 1. of the 95 HCV-positive patients, spontaneous viral clearence was observed in 25.5%, rapid viral response in 44.2%, early viral response in 91.8%, and sustained viral response was found in 73.3% of patients. The allele and genotype were not significant between patients and controls. There was no significant difference in virologic response as well. However, TNF-α-308 single nucleotide polymorphisms (SNP rs3091256 GG genotype was strongly associated with fibrosis and alanine aminotransferase (ALT levels (p=0.006 and p=0.017, respectively. Conclusion: TNF-α-308 polymorphisms may reveal different results among countries. Patients having SNP rs3091256 GG are prone to have higher ALT levels and fibrosis score but have better treatment outcome.

  17. Comparison of three PCR-based assays for SNP genotyping in sugar beet

    Science.gov (United States)

    Background: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved t...

  18. Advanced statistical tools for SNP arrays : signal calibration, copy number estimation and single array genotyping

    NARCIS (Netherlands)

    Rippe, Ralph Christian Alexander

    2012-01-01

    Fluorescence bias in in signals from individual SNP arrays can be calibrated using linear models. Given the data, the system of equations is very large, so a specialized symbolic algorithm was developed. These models are also used to illustrate that genomic waves do not exist, but are merely an

  19. Copy number variation identification and analysis of the chicken genome using a 60K SNP BeadChip.

    Science.gov (United States)

    Rao, Y S; Li, J; Zhang, R; Lin, X R; Xu, J G; Xie, L; Xu, Z Q; Wang, L; Gan, J K; Xie, X J; He, J; Zhang, X Q

    2016-08-01

    Copy number variation (CNV) is an important source of genetic variation in organisms and a main factor that affects phenotypic variation. A comprehensive study of chicken CNV can provide valuable information on genetic diversity and facilitate future analyses of associations between CNV and economically important traits in chickens. In the present study, an F2 full-sib chicken population (554 individuals), established from a cross between Xinghua and White Recessive Rock chickens, was used to explore CNV in the chicken genome. Genotyping was performed using a chicken 60K SNP BeadChip. A total of 1,875 CNV were detected with the PennCNV algorithm, and the average number of CNV was 3.42 per individual. The CNV were distributed across 383 independent CNV regions (CNVR) and covered 41 megabases (3.97%) of the chicken genome. Seven CNVR in 108 individuals were validated by quantitative real-time PCR, and 81 of these individuals (75%) also were detected with the PennCNV algorithm. In total, 274 CNVR (71.54%) identified in the current study were previously reported. Of these, 147 (38.38%) were reported in at least 2 studies. Additionally, 109 of the CNVR (28.46%) discovered here are novel. A total of 709 genes within or overlapping with the CNVR was retrieved. Out of the 2,742 quantitative trait loci (QTL) collected in the chicken QTL database, 43 QTL had confidence intervals overlapping with the CNVR, and 32 CNVR encompassed one or more functional genes. The functional genes located in the CNVR are likely to be the QTG that are associated with underlying economic traits. This study considerably expands our insight into the structural variation in the genome of chickens and provides an important resource for genomic variation, especially for genomic structural variation related to economic traits in chickens. © 2016 Poultry Science Association Inc.

  20. Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3.

    Science.gov (United States)

    McClure, Matthew C; Bickhart, Derek; Null, Dan; Vanraden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B; Van Tassell, Curtis P; Sonstegard, Tad S

    2014-01-01

    The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.

  1. Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3.

    Directory of Open Access Journals (Sweden)

    Matthew C McClure

    Full Text Available The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3 by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3, while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2 on Chromosome 8 at position 95,410,507 (UMD3.1. This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.

  2. Phenotypic and genotypic variation in Iranian Pistachios

    Directory of Open Access Journals (Sweden)

    Somayeh Tayefeh Aliakbarkhani

    2015-12-01

    Full Text Available As Iran is one of the richest pistachio germplasms a few studies have been conducted on different sexes of pistachio trees, in areas where this crop emerged. To this end, 40 male and female Iranian pistachio genotypes from Feizabad region, Khorasan, Iran; were evaluated using morphological characters and randomly amplified polymorphic DNA (RAPD markers. For morphological assessments, 54 variables were considered to investigate similarities between and among the studied genotypes. Morphological data indicated relative superiority in some female genotypes (such as Sefid 1, Sefid Sabuni 2, Garmesiah, and Ghermezdorosht Z regarding characters such as halfcrackedness, the percentages of protein and fat content. 115 polymorphic bands were recorded with 92.83% average polymorphism among all primers. The total resolving power (Rp of the primers was 74.54. The range of genetic similarity varied from about 0.31 to about 0.70. Genotypes were segregated into eight groups at the similarity limit of 0.41. Results of present investigation could be helpful for strategic decisions for maintaining Iranian pistachio genotypes.

  3. Genotyping single spore isolates of a Pasteuria penetrans population occurring in Florida using SNP-based markers

    Science.gov (United States)

    The aim of this study was to examine genotypic variation and virulence characteristics of a population of bacterial parasite of root-knot nematode (RKN), Pasteuria penetrans, isolated from Florida. Six single spore lines (ssp), 16ssp, 17ssp, 18ssp, 25ssp, 26ssp, and 30ssp were generated by infecting...

  4. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    Directory of Open Access Journals (Sweden)

    Wagner Mark C

    2005-05-01

    Full Text Available Abstract Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As

  5. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    Full Text Available The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  6. A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate.

    Science.gov (United States)

    Messmer, Amber M; Leong, Jong S; Rondeau, Eric B; Mueller, Anita; Despins, Cody A; Minkley, David R; Kent, Matthew P; Lien, Sigbjørn; Boyce, Brad; Morrison, Diane; Fast, Mark D; Norman, Joseph D; Danzmann, Roy G; Koop, Ben F

    2018-04-16

    Antiparasitic drugs such as emamectin benzoate (EMB) are relied upon to reduce the parasite load, particularly of the sea louse Lepeophtheirus salmonis, on farmed salmon. The decline in EMB treatment efficacy for this purpose is an important issue for salmon producers around the world, and particularly for those in the Atlantic Ocean where widespread EMB tolerance in sea lice is recognized as a significant problem. Salmon farms in the Northeast Pacific Ocean have not historically experienced the same issues with treatment efficacy, possibly due to the relatively large population of endemic salmonid hosts that serve to both redistribute surviving lice and dilute populations potentially under selection by introducing naïve lice to farms. Frequent migration of lice among farmed and wild hosts should limit the effect of farm-specific selection pressures on changes to the overall allele frequencies of sea lice in the Pacific Ocean. A previous study using microsatellites examined L. salmonis oncorhynchi from 10 Pacific locations from wild and farmed hosts and found no population structure. Recently however, a farm population of sea lice was detected where EMB bioassay exposure tolerance was abnormally elevated. In response, we have developed a Pacific louse draft genome that complements the previously-released Atlantic louse sequence. These genomes were combined with whole-genome re-sequencing data to design a highly sensitive 201,279 marker SNP array applicable for both subspecies (90,827 validated Pacific loci; 153,569 validated Atlantic loci). Notably, kmer spectrum analysis of the re-sequenced samples indicated that Pacific lice exhibit a large within-individual heterozygosity rate (average of 1 in every 72 bases) that is markedly higher than that of Atlantic individuals (1 in every 173 bases). The SNP chip was used to produce a high-density map for Atlantic sea louse linkage group 5 that was previously shown to be associated with EMB tolerance in Atlantic lice

  7. SNP variation in the promoter of the PRKAG3 gene and association with meat quality traits in pig.

    Science.gov (United States)

    Ryan, Marion T; Hamill, Ruth M; O'Halloran, Aisling M; Davey, Grace C; McBryan, Jean; Mullen, Anne M; McGee, Chris; Gispert, Marina; Southwood, Olwen I; Sweeney, Torres

    2012-07-25

    The PRKAG3 gene encodes the γ3 subunit of adenosine monophosphate activated protein kinase (AMPK), a protein that plays a key role in energy metabolism in skeletal muscle. Non-synonymous single nucleotide polymorphisms (SNPs) in this gene such as I199V are associated with important pork quality traits. The objective of this study was to investigate the relationship between gene expression of the PRKAG3 gene, SNP variation in the PRKAG3 promoter and meat quality phenotypes in pork. PRKAG3 gene expression was found to correlate with a number of traits relating to glycolytic potential (GP) and intramuscular fat (IMF) in three phenotypically diverse F1 crosses comprising of 31 Large White, 23 Duroc and 32 Pietrain sire breeds. The majority of associations were observed in the Large White cross. There was a significant association between genotype at the g.-311A>G locus and PRKAG3 gene expression in the Large White cross. In the same population, ten novel SNPs were identified within a 1.3 kb region spanning the promoter and from this three major haplotypes were inferred. Two tagging SNPs (g.-995A>G and g.-311A>G) characterised the haplotypes within the promoter region being studied. These two SNPs were subsequently genotyped in larger populations consisting of Large White (n = 98), Duroc (n = 99) and Pietrain (n = 98) purebreds. Four major haplotypes including promoter SNP's g.-995A>G and g.-311A>G and I199V were inferred. In the Large White breed, HAP1 was associated with IMF% in the M. longissmus thoracis et lumborum (LTL) and driploss%. HAP2 was associated with IMFL% GP-influenced traits pH at 24 hr in LTL (pHULT), pH at 45 min in LTL (pH(45)LT) and pH at 45 min in the M. semimembranosus muscle (pH(45)SM). HAP3 was associated with driploss%, pHULT pH(45)LT and b* Minolta. In the Duroc breed, associations were observed between HAP1 and driploss% and pHUSM. No associations were observed with the remaining haplotypes (HAP2, HAP3 and HAP4) in the Duroc breed. The

  8. Refining QTL with high-density SNP genotyping and whole genome sequence in three cattle breeds

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2012-01-01

    Genome-wide association study was carried out in Nordic Holsteins, Nordic Red and Jersey breeds for functional traits using BovineHD Genotyping BreadChip (Illumina, San Diego, CA). The association analyses were carried out using both linear mixed model approach and a Bayesian variable selection...... method. Principal components were used to account for population structure. The QTL segregating in all three breeds were selected and a few of the most significant ones were followed in further analyses. The polymorphisms in the identified QTL regions were imputed using 90 whole genome sequences...

  9. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

    Science.gov (United States)

    Ramos, Antonio M.; Crooijmans, Richard P. M. A.; Affara, Nabeel A.; Amaral, Andreia J.; Archibald, Alan L.; Beever, Jonathan E.; Bendixen, Christian; Churcher, Carol; Clark, Richard; Dehais, Patrick; Hansen, Mark S.; Hedegaard, Jakob; Hu, Zhi-Liang; Kerstens, Hindrik H.; Law, Andy S.; Megens, Hendrik-Jan; Milan, Denis; Nonneman, Danny J.; Rohrer, Gary A.; Rothschild, Max F.; Smith, Tim P. L.; Schnabel, Robert D.; Van Tassell, Curt P.; Taylor, Jeremy F.; Wiedmann, Ralph T.; Schook, Lawrence B.; Groenen, Martien A. M.

    2009-01-01

    Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs. PMID:19654876

  10. [SNP-19 genotypic variants of CAPN10 gene and its relation to diabetes mellitus type 2 in a population of Ciudad Juarez, Mexico].

    Science.gov (United States)

    Loya Méndez, Yolanda; Reyes Leal, Gilberto; Sánchez González, Adriana; Portillo Reyes, Verónica; Reyes Ruvalcaba, David; Bojórquez Rangel, Guillermo

    2014-09-28

    Diabetes Mellitus (DM) type 2 is a common pathology with multifactorial etiology, which exact genetic bases remain unknown. Some studies suggest that single nucleotides polymorphisms (SNPs) in the CAPN10 gene (Locus 2q37.3) could be associated with the development of this disease, including the insertion/deletion polymorphism SNP-19 (2R→3R). The present study determined the association between the SNP-19 and the risk of developing DM type 2 in Ciudad Juarez population. For this study 107 participants were selected: 43 diabetics type 2 (cases) and 64 non diabetics with no family history of DM type 2 in first grade (control). Anthropometric studies were realized as well as lipids, lipoproteins and serum glucose biochemical profiles. The genotypification of SNP-19 was performed using peripheral blood lymphocytes DNA, polymerase chain reactions (PCR), and electrophoretic analysis in agarose gels. Once obtained the genotypic and allelic frequencies, the Hardy-Weinberg equilibrium test (GenAlEx 6.4) was also performed. Using the X² analysis it was identified the genotypic differences between cases and control with higher frequency of the homozygous genotype 3R of SNP- 19 in the cases group (0.418) compared to control group (0.265). Also, it was observed an association between genotype 2R/3R with elevated weight, body mass index, and waist and hip circumferences, but only in the diabetic group (P=< 0.05). The findings in this study suggest that SNP-19 in CAPN10 may participate in the development of DM type 2 in the studied population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  11. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array.

    Science.gov (United States)

    Antanaviciute, Laima; Fernández-Fernández, Felicidad; Jansen, Johannes; Banchi, Elisa; Evans, Katherine M; Viola, Roberto; Velasco, Riccardo; Dunwell, Jim M; Troggio, Michela; Sargent, Daniel J

    2012-05-25

    A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Of the 7,867 Malus SNP markers on the array, 1,823 (23.2%) were heterozygous in one of the two parents of the progeny, 1,007 (12.8%) were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the 'Golden Delicious' genome sequence. A total of 311 markers (13.7% of all mapped markers) mapped to positions that conflicted with their predicted positions on the 'Golden Delicious' pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been

  12. A SNP panel and online tool for checking genotype concordance through comparing QR codes.

    Directory of Open Access Journals (Sweden)

    Yonghong Du

    Full Text Available In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech, nicknamed QRC (for QR code based Concordance check, which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine.

  13. A SNP panel and online tool for checking genotype concordance through comparing QR codes.

    Science.gov (United States)

    Du, Yonghong; Martin, Joshua S; McGee, John; Yang, Yuchen; Liu, Eric Yi; Sun, Yingrui; Geihs, Matthias; Kong, Xuejun; Zhou, Eric Lingfeng; Li, Yun; Huang, Jie

    2017-01-01

    In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine.

  14. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  15. Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    NARCIS (Netherlands)

    Heap, Graham A.; Trynka, Gosia; Jansen, Ritsert C.; Bruinenberg, Marcel; Swertz, Morris A.; Dinesen, Lotte C.; Hunt, Karen A.; Wijmenga, Cisca; vanHeel, David A.; Franke, Lude; Heel, David A van

    2009-01-01

    Background: Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. Methods: We correlated gene expression and genetic variation in untouched

  16. Genotyping by Sequencing in Almond: SNP Discovery, Linkage Mapping, and Marker Design

    Directory of Open Access Journals (Sweden)

    Shashi N. Goonetilleke

    2018-01-01

    Full Text Available In crop plant genetics, linkage maps provide the basis for the mapping of loci that affect important traits and for the selection of markers to be applied in crop improvement. In outcrossing species such as almond (Prunus dulcis Mill. D. A. Webb, application of a double pseudotestcross mapping approach to the F1 progeny of a biparental cross leads to the construction of a linkage map for each parent. Here, we report on the application of genotyping by sequencing to discover and map single nucleotide polymorphisms in the almond cultivars “Nonpareil” and “Lauranne.” Allele-specific marker assays were developed for 309 tag pairs. Application of these assays to 231 Nonpareil × Lauranne F1 progeny provided robust linkage maps for each parent. Analysis of phenotypic data for shell hardness demonstrated the utility of these maps for quantitative trait locus mapping. Comparison of these maps to the peach genome assembly confirmed high synteny and collinearity between the peach and almond genomes. The marker assays were applied to progeny from several other Nonpareil crosses, providing the basis for a composite linkage map of Nonpareil. Applications of the assays to a panel of almond clones and a panel of rootstocks used for almond production demonstrated the broad applicability of the markers and provide subsets of markers that could be used to discriminate among accessions. The sequence-based linkage maps and single nucleotide polymorphism assays presented here could be useful resources for the genetic analysis and genetic improvement of almond.

  17. SNP variation in the promoter of the PRKAG3 gene and association with meat quality traits in pig

    Directory of Open Access Journals (Sweden)

    Ryan Marion T

    2012-07-01

    Full Text Available Abstract Background The PRKAG3 gene encodes the γ3 subunit of adenosine monophosphate activated protein kinase (AMPK, a protein that plays a key role in energy metabolism in skeletal muscle. Non-synonymous single nucleotide polymorphisms (SNPs in this gene such as I199V are associated with important pork quality traits. The objective of this study was to investigate the relationship between gene expression of the PRKAG3 gene, SNP variation in the PRKAG3 promoter and meat quality phenotypes in pork. Results PRKAG3 gene expression was found to correlate with a number of traits relating to glycolytic potential (GP and intramuscular fat (IMF in three phenotypically diverse F1 crosses comprising of 31 Large White, 23 Duroc and 32 Pietrain sire breeds. The majority of associations were observed in the Large White cross. There was a significant association between genotype at the g.-311A>G locus and PRKAG3 gene expression in the Large White cross. In the same population, ten novel SNPs were identified within a 1.3 kb region spanning the promoter and from this three major haplotypes were inferred. Two tagging SNPs (g.-995A>G and g.-311A>G characterised the haplotypes within the promoter region being studied. These two SNPs were subsequently genotyped in larger populations consisting of Large White (n = 98, Duroc (n = 99 and Pietrain (n = 98 purebreds. Four major haplotypes including promoter SNP’s g.-995A>G and g.-311A>G and I199V were inferred. In the Large White breed, HAP1 was associated with IMF% in the M. longissmus thoracis et lumborum (LTL and driploss%. HAP2 was associated with IMFL% GP-influenced traits pH at 24 hr in LTL (pHULT, pH at 45 min in LTL (pH45LT and pH at 45 min in the M. semimembranosus muscle (pH45SM. HAP3 was associated with driploss%, pHULT pH45LT and b* Minolta. In the Duroc breed, associations were observed between HAP1 and driploss% and pHUSM. No associations were observed with the remaining haplotypes (HAP2

  18. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection.

    Directory of Open Access Journals (Sweden)

    Charlotte Tollenaere

    Full Text Available Molecular tools may greatly improve our understanding of pathogen evolution and epidemiology but technical constraints have hindered the development of genetic resources for parasites compared to free-living organisms. This study aims at developing molecular tools for Podosphaera plantaginis, an obligate fungal pathogen of Plantago lanceolata. This interaction has been intensively studied in the Åland archipelago of Finland with epidemiological data collected from over 4,000 host populations annually since year 2001.A cDNA library of a pooled sample of fungal conidia was sequenced on the 454 GS-FLX platform. Over 549,411 reads were obtained and annotated into 45,245 contigs. Annotation data was acquired for 65.2% of the assembled sequences. The transcriptome assembly was screened for SNP loci, as well as for functionally important genes (mating-type genes and potential effector proteins. A genotyping assay of 27 SNP loci was designed and tested on 380 infected leaf samples from 80 populations within the Åland archipelago. With this panel we identified 85 multilocus genotypes (MLG with uneven frequencies across the pathogen metapopulation. Approximately half of the sampled populations contain polymorphism. Our genotyping protocol revealed mixed-genotype infection within a single host leaf to be common. Mixed infection has been proposed as one of the main drivers of pathogen evolution, and hence may be an important process in this pathosystem.The developed SNP panel offers exciting research perspectives for future studies in this well-characterized pathosystem. Also, the transcriptome provides an invaluable novel genomic resource for powdery mildews, which cause significant yield losses on commercially important crops annually. Furthermore, the features that render genetic studies in this system a challenge are shared with the majority of obligate parasitic species, and hence our results provide methodological insights from SNP calling to field

  19. Geographical parthenogenesis: General purpose genotypes and frozen niche variation

    DEFF Research Database (Denmark)

    Vrijenhoek, Robert C.; Parker, Dave

    2009-01-01

    hypotheses concerning the evolution of niche breadth in asexual species - the "general-purpose genotype" (GPG) and "frozen niche-variation" (FNV) models. The two models are often portrayed as mutually exclusive, respectively viewing clonal lineages as generalists versus specialists. Nonetheless...

  20. Maintenance of Chronic Fatigue Syndrome (CFS in Young CFS Patients Is Associated with the 5-HTTLPR and SNP rs25531 A > G Genotype.

    Directory of Open Access Journals (Sweden)

    Benedicte Meyer

    Full Text Available Earlier studies have shown that genetic variability in the SLC6A4 gene encoding the serotonin transporter (5-HTT may be important for the re-uptake of serotonin (5-HT in the central nervous system. In the present study we investigated how the 5-HTT genotype i.e. the short (S versus long (L 5-HTTLPR allele and the SNP rs25531 A > G affect the physical and psychosocial functioning in patients with chronic fatigue syndrome (CFS. All 120 patients were recruited from The Department of Paediatrics at Oslo University Hospital, Norway, a national referral center for young CFS patients (12-18 years. Main outcomes were number of steps per day obtained by an accelerometer and disability scored by the Functional Disability Inventory (FDI. Patients with the 5-HTT SS or SLG genotype had a significantly lower number of steps per day than patients with the 5-HTT LALG, SLA or LALA genotype. Patients with the 5-HTT SS or SLG genotype also had a significantly higher FDI score than patients with the 5-HTT LALG, SLA or LALA genotype. Thus, CFS patients with the 5-HTT SS or SLG genotype had worse 30 weeks outcome than CFS patients with the 5-HTT LALG, SLA or LALA genotype. The present study suggests that the 5-HTT genotype may be a factor that contributes to maintenance of CFS.

  1. Development of high-throughput SNP-based genotyping in Acacia auriculiformis x A. mangium hybrids using short-read transcriptome data

    Directory of Open Access Journals (Sweden)

    Wong Melissa ML

    2012-12-01

    Full Text Available Abstract Background Next Generation Sequencing has provided comprehensive, affordable and high-throughput DNA sequences for Single Nucleotide Polymorphism (SNP discovery in Acacia auriculiformis and Acacia mangium. Like other non-model species, SNP detection and genotyping in Acacia are challenging due to lack of genome sequences. The main objective of this study is to develop the first high-throughput SNP genotyping assay for linkage map construction of A. auriculiformis x A. mangium hybrids. Results We identified a total of 37,786 putative SNPs by aligning short read transcriptome data from four parents of two Acacia hybrid mapping populations using Bowtie against 7,839 de novo transcriptome contigs. Given a set of 10 validated SNPs from two lignin genes, our in silico SNP detection approach is highly accurate (100% compared to the traditional in vitro approach (44%. Further validation of 96 SNPs using Illumina GoldenGate Assay gave an overall assay success rate of 89.6% and conversion rate of 37.5%. We explored possible factors lowering assay success rate by predicting exon-intron boundaries and paralogous genes of Acacia contigs using Medicago truncatula genome as reference. This assessment revealed that presence of exon-intron boundary is the main cause (50% of assay failure. Subsequent SNPs filtering and improved assay design resulted in assay success and conversion rate of 92.4% and 57.4%, respectively based on 768 SNPs genotyping. Analysis of clustering patterns revealed that 27.6% of the assays were not reproducible and flanking sequence might play a role in determining cluster compression. In addition, we identified a total of 258 and 319 polymorphic SNPs in A. auriculiformis and A. mangium natural germplasms, respectively. Conclusion We have successfully discovered a large number of SNP markers in A. auriculiformis x A. mangium hybrids using next generation transcriptome sequencing. By using a reference genome from the most closely

  2. New Insights into the Geographic Distribution of Mycobacterium leprae SNP Genotypes Determined for Isolates from Leprosy Cases Diagnosed in Metropolitan France and French Territories.

    Science.gov (United States)

    Reibel, Florence; Chauffour, Aurélie; Brossier, Florence; Jarlier, Vincent; Cambau, Emmanuelle; Aubry, Alexandra

    2015-01-01

    Between 20 and 30 bacteriologically confirmed cases of leprosy are diagnosed each year at the French National Reference Center for mycobacteria. Patients are mainly immigrants from various endemic countries or living in French overseas territories. We aimed at expanding data regarding the geographical distribution of the SNP genotypes of the M. leprae isolates from these patients. Skin biopsies were obtained from 71 leprosy patients diagnosed between January 2009 and December 2013. Data regarding age, sex and place of birth and residence were also collected. Diagnosis of leprosy was confirmed by microscopic detection of acid-fast bacilli and/or amplification by PCR of the M. leprae-specific RLEP region. Single nucleotide polymorphisms (SNP), present in the M. leprae genome at positions 14 676, 1 642 875 and 2 935 685, were determined with an efficiency of 94% (67/71). Almost all patients were from countries other than France where leprosy is still prevalent (n = 31) or from French overseas territories (n = 36) where leprosy is not totally eradicated, while only a minority (n = 4) was born in metropolitan France but have lived in other countries. SNP type 1 was predominant (n = 33), followed by type 3 (n = 17), type 4 (n = 11) and type 2 (n = 6). SNP types were concordant with those previously reported as prevalent in the patients' countries of birth. SNP types found in patients born in countries other than France (Comoros, Haiti, Benin, Congo, Sri Lanka) and French overseas territories (French Polynesia, Mayotte and La Réunion) not covered by previous work correlated well with geographical location and history of human settlements. The phylogenic analysis of M. leprae strains isolated in France strongly suggests that French leprosy cases are caused by SNP types that are (a) concordant with the geographic origin or residence of the patients (non-French countries, French overseas territories, metropolitan France) or (b) more likely random in regions where diverse

  3. Leveraging ethnic group incidence variation to investigate genetic susceptibility to glioma: A novel candidate SNP approach

    Directory of Open Access Journals (Sweden)

    Daniel Ian Jacobs

    2012-10-01

    Full Text Available Objectives: Using a novel candidate SNP approach, we aimed to identify a possible genetic basis for the higher glioma incidence in Whites relative to East Asians and African-Americans. Methods: We hypothesized that genetic regions containing SNPs with extreme differences in allele frequencies across ethnicities are most likely to harbor susceptibility variants. We used International HapMap Project data to identify 3,961 candidate SNPs with the largest allele frequency differences in Whites compared to East Asians and Africans and tested these SNPs for association with glioma risk in a set of White cases and controls. Top SNPs identified in the discovery dataset were tested for association with glioma in five independent replication datasets. Results: No SNP achieved statistical significance in either the discovery or replication datasets after accounting for multiple testing. However, the most strongly associated SNP, rs879471, was found to be in linkage disequilibrium with a previously identified risk SNP, rs6010620, in RTEL1. We estimate rs6010620 to account for a glioma incidence rate ratio of 1.34 for Whites relative to East Asians. Conclusions: We explored genetic susceptibility to glioma using a novel candidate SNP method which may be applicable to other diseases with appropriate epidemiologic patterns.

  4. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhang

    2017-09-01

    Full Text Available Objective The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. Methods In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin (VRTN gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. Results The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20 was smaller than that in Texel sheep (17 to 21. The individuals with 19 thoracolumbar vertebrae (T13L6 were dominant in Kazakh sheep (79.2%. The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP (rs426367238 was suggested to associate with thoracic vertebral number statistically. Conclusion The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238 with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  5. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep.

    Science.gov (United States)

    Zhang, Zhifeng; Sun, Yawei; Du, Wei; He, Sangang; Liu, Mingjun; Tian, Changyan

    2017-09-01

    The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin ( VRTN ) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  6. Validated context-dependent associations of coronary heart disease risk with genotype variation in the chromosome 9p21 region

    DEFF Research Database (Denmark)

    Lusk, Christine M; Dyson, Greg; Clark, Andrew G

    2014-01-01

    identified by the CARDIoGRAMplusC4D Consortium study, of which ARIC was a part. We then tested each marker SNP genotype effect on prediction of CHD within sub-groups of the ARIC sample defined by traditional CHD risk factors by applying a novel multi-model strategy, PRIM. We observed that the effects of SNP...

  7. Forensic assays of ricin: development of snp assays to generate precise genetic signatures for mixed genotypes found in ricin preparations

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Paul J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hill, Karen K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-11-09

    The results outlined in this report provide the information for needed to apply a SNP-based forensic analysis to diverse ricin preparations. The same methods could be useful in castor breeding programs that seek to reduce or eliminate ricin in oil-producing R. communis cultivars.

  8. Development of highly reliable in silico SNP resource and genotyping assay from exome capture and sequencing: an example from black spruce (Picea mariana).

    Science.gov (United States)

    Pavy, Nathalie; Gagnon, France; Deschênes, Astrid; Boyle, Brian; Beaulieu, Jean; Bousquet, Jean

    2016-03-01

    Picea mariana is a widely distributed boreal conifer across Canada and the subject of advanced breeding programmes for which population genomics and genomic selection approaches are being developed. Targeted sequencing was achieved after capturing P. mariana exome with probes designed from the sequenced transcriptome of Picea glauca, a distant relative. A high capture efficiency of 75.9% was reached although spruce has a complex and large genome including gene sequences interspersed by some long introns. The results confirmed the relevance of using probes from congeneric species to perform successfully interspecific exome capture in the genus Picea. A bioinformatics pipeline was developed including stringent criteria that helped detect a set of 97,075 highly reliable in silico SNPs. These SNPs were distributed across 14,909 genes. Part of an Infinium iSelect array was used to estimate the rate of true positives by validating 4267 of the predicted in silico SNPs by genotyping trees from P. mariana populations. The true positive rate was 96.2% for in silico SNPs, compared to a genotyping success rate of 96.7% for a set 1115 P. mariana control SNPs recycled from previous genotyping arrays. These results indicate the high success rate of the genotyping array and the relevance of the selection criteria used to delineate the new P. mariana in silico SNP resource. Furthermore, in silico SNPs were generally of medium to high frequency in natural populations, thus providing high informative value for future population genomics applications. © 2015 John Wiley & Sons Ltd.

  9. Genotypic variation of nitrogen use efficiency in Indian mustard

    International Nuclear Information System (INIS)

    Ahmad, Altaf; Khan, Ishrat; Abrol, Yash P.; Iqbal, Muhammad

    2008-01-01

    This experiment was conducted to investigate the variation of nitrogen efficiency (NE), nitrogen uptake efficiency (UE), physiological nitrogen use efficiency (PUE) among Indian mustard genotypes, grown under N-insufficient and N-sufficient conditions. Nitrogen efficiency varied from 52.7 to 92.8. Seed yield varied from 1.14 t ha -1 to 3.21 t ha -1 under N-insufficient condition, while 2.14 t ha -1 -3.33 t ha -1 under N-sufficient condition. Physiological basis of this difference was explained in terms of nitrogen uptake efficiency and physiological nitrogen use efficiency, and their relationship with the growth and yield characteristics. While nitrogen uptake efficiency was positively correlated with plant biomass (0.793**), leaf area index (0.664*), and leaf nitrogen content (0.783**), physiological nitrogen use efficiency is positively correlated with photosynthetic rate (0.689**) and yield (0.814**). This study suggests that genotype having high nitrogen uptake efficiency and high physiological nitrogen use efficiency might help in reducing the nitrogen load on soil without any penalty on the yield. - Nitrogen efficient crop plants may help in reducing environmental contamination of nitrate without any penalty on seed yield

  10. Genotyping by Sequencing for SNP-Based Linkage Map Construction and QTL Analysis of Chilling Requirement and Bloom Date in Peach [Prunus persica (L. Batsch].

    Directory of Open Access Journals (Sweden)

    Douglas Gary Bielenberg

    Full Text Available Low-cost, high throughput genotyping methods are crucial to marker discovery and marker-assisted breeding efforts, but have not been available for many 'specialty crops' such as fruit and nut trees. Here we apply the Genotyping-By-Sequencing (GBS method developed for cereals to the discovery of single nucleotide polymorphisms (SNPs in a peach F2 mapping population. Peach is a genetic and genomic model within the Rosaceae and will provide a template for the use of this method with other members of this family. Our F2 mapping population of 57 genotypes segregates for bloom time (BD and chilling requirement (CR and we have extensively phenotyped this population. The population derives from a selfed F1 progeny of a cross between 'Hakuho' (high CR and 'UFGold' (low CR. We were able to successfully employ GBS and the TASSEL GBS pipeline without modification of the original methodology using the ApeKI restriction enzyme and multiplexing at an equivalent of 96 samples per Illumina HiSeq 2000 lane. We obtained hundreds of SNP markers which were then used to construct a genetic linkage map and identify quantitative trait loci (QTL for BD and CR.

  11. Phylogenetic relationships among the European and American bison and seven cattle breeds recon structed using the Bovine SNP50 Illumina Genotyping BeadChip

    DEFF Research Database (Denmark)

    Pertoldi, Cino; Wójcik, Jan M; Kawalko, Agata

    2010-01-01

    amongst bison subspecies and cattle, and (3) de tect loci under positive or stabilizing selection. A Bayesian clustering procedure (STRUCTURE) detected ten genetically distinct clusters, with separation among all seven cattle breeds and European and American bison, but no separation be tween plain......Here we present the first at tempt to use the BovineSNP50 Illumina genotyping BeadChip for genome-wide screening of European bison Bisonbonasus bonasus (EB), two subspecies of American bison: the plains bison (EB), two sub species of American bison: the plains bison Bison bison bison (PB), the wood...... bison Bi on bison athabascae (WB) and seven (PB), the wood bison (WB) and seven cattle Bostaurus breeds. Our aims were to (1) reconstruct their evolutionary relationships, (2) detect any genetic signature of past bottlenecks and to quantify the con sequences of bottle necks on the genetic distances...

  12. The role of biochemical variations and genotype testing in determining the virological response of patients infected with hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Abid Shoukat

    2018-01-01

    Full Text Available Background: In hepatitis C virus (HCV, infection viral and IL28B genotype along with many clinical and biochemical factors can influence response rates to pegylated interferon plus ribavirin (Peg-IFN-a/R therapy and progression to chronic hepatitis C (CHC. Aims: The present study was conducted to determine the effect of biochemical and risk factors on treatment outcome in CHC patients in relation to their viral and host genotype. Settings and Design: The present study was a prospective Pe- IFN efficacy study consisting of Peg-IFN-a/R therapy for 24–48 weeks including 250 HCV infected patients. Materials and Methods: Biochemical parameters were determined by Beckman Coulter AU680 automated analyzer. HCV and Interleukin 28B (IL28B genotyping were carried out by polymerase chain reaction-restriction fragment length polymorphism and viral load was determined by quantitative real-time PCR. Results: Wild outnumbered the variant genotypes in rs 12979860, rs 12980275, and rs 8099917 SNP of IL28B gene. Sustained virological response (SVR SVR and viral genotype were significantly associated with age, hepatic steatosis, low-grade varices, and serum aspartate transaminase levels (at the end of treatment (P < 0.05. In addition, SVR was significantly influenced by body mass index (BMI, insulin resistance, serum low-density lipoprotein , and ferritin levels (P < 0.05. Viral genotype 1 infected patients had higher serum cholesterol and triglyceride levels (P < 0.05. Conclusions: Although the IL28B sequence variation is the major factor that can influence response rates to antiviral therapy, viral and biochemical factors also have a definite role to play in the diagnosis, etiology, and treatment outcome in HCV-infected patients.

  13. A Fast Method for DEFB1-44C/G SNP Genotyping in Brazilian Patients with Periodontitis

    Directory of Open Access Journals (Sweden)

    Rafael Rafael Amorim Cavalcanti de Siqueira

    2014-01-01

    Full Text Available Aim: Defensins are cationic antimicrobial peptides expressed in epithelial cells. Such peptides exhibit antibacterial, antifungal and antiviral properties, and are a component of the innate immune response. It has been suggested that they have a protective role in the oral cavity. This study evaluated the DEFB1 polymorphism in diabetic patients with or without periodontitis in comparison to healthy controls. Material and Methods: We used Hairpin-Shaped Primer (HP assay to study the distribution of the -44 C/G SNP (rs1800972 in 119 human DNAs obtained from diabetic patients and healthy control patients. Results: The results indicate that there are no differences in distribution between groups and that in diabetic periodontitis patients the homozygous mutant could be found more frequently. Conclusion: Further studies are necessary in order to investigate the role of DEFB1 polymorphisms in diabetic periodontitis patients and the influence of the peptide in periodontal pathogens.

  14. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  15. Development and validation of a 20K single nucleotide polymorphism (SNP whole genome genotyping array for apple (Malus × domestica Borkh.

    Directory of Open Access Journals (Sweden)

    Luca Bianco

    Full Text Available High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus. A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs. Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  16. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088

  17. Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array.

    Science.gov (United States)

    Schönhals, Elske Maria; Ding, Jia; Ritter, Enrique; Paulo, Maria João; Cara, Nicolás; Tacke, Ekhard; Hofferbert, Hans-Reinhard; Lübeck, Jens; Strahwald, Josef; Gebhardt, Christiane

    2017-08-22

    Tuber yield and starch content of the cultivated potato are complex traits of decisive importance for breeding improved varieties. Natural variation of tuber yield and starch content depends on the environment and on multiple, mostly unknown genetic factors. Dissection and molecular identification of the genes and their natural allelic variants controlling these complex traits will lead to the development of diagnostic DNA-based markers, by which precision and efficiency of selection can be increased (precision breeding). Three case-control populations were assembled from tetraploid potato cultivars based on maximizing the differences between high and low tuber yield (TY), starch content (TSC) and starch yield (TSY, arithmetic product of TY and TSC). The case-control populations were genotyped by restriction-site associated DNA sequencing (RADseq) and the 8.3 k SolCAP SNP genotyping array. The allele frequencies of single nucleotide polymorphisms (SNPs) were compared between cases and controls. RADseq identified, depending on data filtering criteria, between 6664 and 450 genes with one or more differential SNPs for one, two or all three traits. Differential SNPs in 275 genes were detected using the SolCAP array. A genome wide association study using the SolCAP array on an independent, unselected population identified SNPs associated with tuber starch content in 117 genes. Physical mapping of the genes containing differential or associated SNPs, and comparisons between the two genome wide genotyping methods and two different populations identified genome segments on all twelve potato chromosomes harboring one or more quantitative trait loci (QTL) for TY, TSC and TSY. Several hundred genes control tuber yield and starch content in potato. They are unequally distributed on all potato chromosomes, forming clusters between 0.5-4 Mbp width. The largest fraction of these genes had unknown function, followed by genes with putative signalling and regulatory functions. The

  18. Melt analysis of mismatch amplification mutation assays (Melt-MAMA: a functional study of a cost-effective SNP genotyping assay in bacterial models.

    Directory of Open Access Journals (Sweden)

    Dawn N Birdsell

    Full Text Available Single nucleotide polymorphisms (SNPs are abundant in genomes of all species and biologically informative markers extensively used across broad scientific disciplines. Newly identified SNP markers are publicly available at an ever-increasing rate due to advancements in sequencing technologies. Efficient, cost-effective SNP genotyping methods to screen sample populations are in great demand in well-equipped laboratories, but also in developing world situations. Dual Probe TaqMan assays are robust but can be cost-prohibitive and require specialized equipment. The Mismatch Amplification Mutation Assay, coupled with melt analysis (Melt-MAMA, is flexible, efficient and cost-effective. However, Melt-MAMA traditionally suffers from high rates of assay design failures and knowledge gaps on assay robustness and sensitivity. In this study, we identified strategies that improved the success of Melt-MAMA. We examined the performance of 185 Melt-MAMAs across eight different pathogens using various optimization parameters. We evaluated the effects of genome size and %GC content on assay development. When used collectively, specific strategies markedly improved the rate of successful assays at the first design attempt from ~50% to ~80%. We observed that Melt-MAMA accurately genotypes across a broad DNA range (~100 ng to ~0.1 pg. Genomic size and %GC content influence the rate of successful assay design in an independent manner. Finally, we demonstrated the versatility of these assays by the creation of a duplex Melt-MAMA real-time PCR (two SNPs and conversion to a size-based genotyping system, which uses agarose gel electrophoresis. Melt-MAMA is comparable to Dual Probe TaqMan assays in terms of design success rate and accuracy. Although sensitivity is less robust than Dual Probe TaqMan assays, Melt-MAMA is superior in terms of cost-effectiveness, speed of development and versatility. We detail the parameters most important for the successful application of

  19. dbSNP

    Data.gov (United States)

    U.S. Department of Health & Human Services — dbSNP is a database of single nucleotide polymorphisms (SNPs) and multiple small-scale variations that include insertions/deletions, microsatellites, and...

  20. Variation of meat quality traits among five genotypes of chicken.

    Science.gov (United States)

    Tang, H; Gong, Y Z; Wu, C X; Jiang, J; Wang, Y; Li, K

    2009-10-01

    The main objective of this study was to examine the diversity of meat quality traits among 5 chicken genotypes. The genotypes included 2 Chinese native breeds (Wenchang,WCH, and Xianju), 1 commercial broiler line (Avian, AV), 1 commercial layer line (Hy-Line Brown, HLB), and 1 Chinese commercial broiler line (Lingnanhuang, LNH) synthesized by exotic and native breeds, which were slaughtered at their market ages: 16, 7, 16, and 8 wk, respectively. The effects of genotype, muscle type, and sex on meat quality traits were examined. Birds from slow-growing genotypes (WCH, Xianju, and HLB) exhibited higher shear value, inosine-5'-monophosphate concentration, lower cook loss, and more fat than those from fast-growing genotypes (AV and LNH). Chickens from WCH possessed the lowest expressible moisture, cook loss, and the highest lipid (%) among the 3 slow-growing genotypes. The HLB birds were intermediate in expressible moisture and cook loss and lowest in lipid among all genotypes. The LNH cross birds were similar to AV broilers in most meat quality parameters, although they had a lower shear force value and higher fat content than AV broilers. Breast muscle had higher expressible moisture, shear force, protein (%), inosine-5'-monophosphate content, lower cook loss, and lipid (%) than leg muscle. Muscles from male chickens had higher expressible moisture than those from the females. Variability of meat quality characteristics is mainly related to genotype and muscle type differences.

  1. Genetic variation of response to water deficit in parental genotypes ...

    African Journals Online (AJOL)

    dgomi

    In this study, we investigated morphological and photosynthetic responses to water deficit in parental genotypes of M. ... for adaptation to water deficit in legumes is a prerequisite for any research aiming to improve legume yields. ...... tolerant genotypes in rainfed lowland rice. Field Crop. Res. 99:48-58. Rouached A, Slama I, ...

  2. Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey.

    Science.gov (United States)

    Hess, Jon E; Campbell, Nathan R; Docker, Margaret F; Baker, Cyndi; Jackson, Aaron; Lampman, Ralph; McIlraith, Brian; Moser, Mary L; Statler, David P; Young, William P; Wildbill, Andrew J; Narum, Shawn R

    2015-01-01

    Next-generation sequencing data can be mined for highly informative single nucleotide polymorphisms (SNPs) to develop high-throughput genomic assays for nonmodel organisms. However, choosing a set of SNPs to address a variety of objectives can be difficult because SNPs are often not equally informative. We developed an optimal combination of 96 high-throughput SNP assays from a total of 4439 SNPs identified in a previous study of Pacific lamprey (Entosphenus tridentatus) and used them to address four disparate objectives: parentage analysis, species identification and characterization of neutral and adaptive variation. Nine of these SNPs are FST outliers, and five of these outliers are localized within genes and significantly associated with geography, run-timing and dwarf life history. Two of the 96 SNPs were diagnostic for two other lamprey species that were morphologically indistinguishable at early larval stages and were sympatric in the Pacific Northwest. The majority (85) of SNPs in the panel were highly informative for parentage analysis, that is, putatively neutral with high minor allele frequency across the species' range. Results from three case studies are presented to demonstrate the broad utility of this panel of SNP markers in this species. As Pacific lamprey populations are undergoing rapid decline, these SNPs provide an important resource to address critical uncertainties associated with the conservation and recovery of this imperiled species. © 2014 John Wiley & Sons Ltd.

  3. Genetic variation in Pythium myriotylum based on SNP typing and development of a PCR-RFLP detection of isolates recovered from Pythium soft rot ginger.

    Science.gov (United States)

    Le, D P; Smith, M K; Aitken, E A B

    2017-10-01

    Pythium myriotylum is responsible for severe losses in both capsicum and ginger crops in Australia under different regimes. Intraspecific genomic variation within the pathogen might explain the differences in aggressiveness and pathogenicity on diverse hosts. In this study, whole genome data of four P. myriotylum isolates recovered from three hosts and one Pythium zingiberis isolate were derived and analysed for sequence diversity based on single nucleotide polymorphisms (SNPs). A higher number of true and unique SNPs occurred in P. myriotylum isolates obtained from ginger with symptoms of Pythium soft rot (PSR) in Australia compared to other P. myriotylum isolates. Overall, SNPs were discovered more in the mitochondrial genome than those in the nuclear genome. Among the SNPs, a single substitution from the cytosine (C) to the thymine (T) in the partially sequenced CoxII gene of 14 representatives of PSR P. myriotylum isolates was within a restriction site of HinP1I enzyme which was used in the PCR-RFLP for detection and identification of the isolates without sequencing. The PCR-RFLP was also sensitive to detect PSR P. myriotylum strains from artificially infected ginger without the need for isolation for pure cultures. This is the first study of intraspecific variants of Pythium myriotylum isolates recovered from different hosts and origins based on single nucleotide polymorphism (SNP) genotyping of multiple genes. The SNPs discovered provide valuable makers for detection and identification of P. myriotylum strains initially isolated from Pythium soft rot (PSR) ginger by using PCR-RFLP of the CoxII locus. The PCR-RFLP was also sensitive to detect P. myriotylum directly from PSR ginger sampled from pot trials without the need of isolation for pure cultures. © 2017 The Society for Applied Microbiology.

  4. Genotypic Variation of Early Maturing Soybean Genotypes for Phosphorus Utilization Efficiency under Field Grown Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abaidoo, R. C. [Kwame Nkrumah University of Technology, Kumasi (Ghana); International Institute of Tropical Agriculture, Ibadan (Nigeria); Opoku, A.; Boahen, S. [Kwame Nkrumah University of Technology, Kumasi (Ghana); Dare, M. O. [Federal University of Agriculture, Abeokuta (Nigeria)

    2013-11-15

    Variability in the utilization of phosphorus (P) by 64 early-maturing soybean (Glycine max L. Merr.) genotypes under low-P soil conditions were evaluated in 2009 and 2010 at Shika, Nigeria. Fifteen phenotypic variables; number of nodules, nodule dry weight, grain yield, plant biomass, total biomass, biomass N and P content, Phosphorus Utilization Index (PUI), shoot P Utilization efficiency (PUIS), grain P Utilization efficiency (PUIG), Harvest Index (HI), Biological N fixed (BNF), total N fixed and N and P uptake were measured. The four clusters revealed by cluster analysis were basically divided along (1) plant biomass and uptake, (2) nutrient acquisition and utilization and (3) nodulation components. Three early maturing genotypes, TGx1842-14E, TGx1912-11F and TGx1913-5F, were identified as having high P utilization index and low P uptake. These genotypes could be a potential source for breeding for P use efficiency in early maturing soybean genotypes. (author)

  5. Salt and genotype impact on plant physiology and root proteome variations in tomato.

    Science.gov (United States)

    Manaa, Arafet; Ben Ahmed, Hela; Valot, Benoît; Bouchet, Jean-Paul; Aschi-Smiti, Samira; Causse, Mathilde; Faurobert, Mireille

    2011-05-01

    To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one. Roma and Supermarmande exhibited intermediary behaviours. Among the 1300 protein spots reproducibly detected by two-dimensional electrophoresis, 90 exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. A common set of proteins (nine spots), up- or down-regulated by salt-stress whatever the genotype, was detected. But the impact of the tomato genotype on the proteome variations was much higher than the salt effect: 33 spots that were not variable with salt stress varied with the genotype. The remaining number of variable spots (48) exhibited combined effects of the genotype and the salt factors, putatively linked to the degrees of genotype tolerance. The carbon metabolism and energy-related proteins were mainly up-regulated by salt stress and exhibited most-tolerant versus most-sensitive abundance variations. Unexpectedly, some antioxidant and defence proteins were also down-regulated, while some proteins putatively involved in osmoprotectant synthesis and cell wall reinforcement were up-regulated by salt stress mainly in tolerant genotypes. The results showed the effect of 14 d stress on the tomato root proteome and underlined significant genotype differences, suggesting the importance of making use of genetic variability.

  6. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    Science.gov (United States)

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  7. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple.

    Directory of Open Access Journals (Sweden)

    David Chagné

    Full Text Available As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional, and genomic selection in apple.

  8. Bovine Exome Sequence Analysis and Targeted SNP Genotyping of Recessive Fertility Defects BH1, HH2, and HH3 Reveal a Putative Causative Mutation in SMC2 for HH3

    OpenAIRE

    McClure, Matthew C.; Bickhart, Derek; Null, Dan; VanRaden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B.; Van Tassell, Curtis P.; Sonstegard, Tad S.

    2014-01-01

    The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next gener...

  9. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L. reveals patterns of SNP variation associated with breeding

    Directory of Open Access Journals (Sweden)

    Zhu Tong

    2009-10-01

    Full Text Available Abstract Background Cultivated tomato (Solanum lycopersicum L. has narrow genetic diversity that makes it difficult to identify polymorphisms between elite germplasm. We explored array-based single feature polymorphism (SFP discovery as a high-throughput approach for marker development in cultivated tomato. Results Three varieties, FL7600 (fresh-market, OH9242 (processing, and PI114490 (cherry were used as a source of genomic DNA for hybridization to oligonucleotide arrays. Identification of SFPs was based on outlier detection using regression analysis of normalized hybridization data within a probe set for each gene. A subset of 189 putative SFPs was sequenced for validation. The rate of validation depended on the desired level of significance (α used to define the confidence interval (CI, and ranged from 76% for polymorphisms identified at α ≤ 10-6 to 60% for those identified at α ≤ 10-2. Validation percentage reached a plateau between α ≤ 10-4 and α ≤ 10-7, but failure to identify known SFPs (Type II error increased dramatically at α ≤ 10-6. Trough sequence validation, we identified 279 SNPs and 27 InDels in 111 loci. Sixty loci contained ≥ 2 SNPs per locus. We used a subset of validated SNPs for genetic diversity analysis of 92 tomato varieties and accessions. Pairwise estimation of θ (Fst suggested significant differentiation between collections of fresh-market, processing, vintage, Latin American (landrace, and S. pimpinellifolium accessions. The fresh-market and processing groups displayed high genetic diversity relative to vintage and landrace groups. Furthermore, the patterns of SNP variation indicated that domestication and early breeding practices have led to progressive genetic bottlenecks while modern breeding practices have reintroduced genetic variation into the crop from wild species. Finally, we examined the ratio of non-synonymous (Ka to synonymous substitutions (Ks for 20 loci with multiple SNPs (≥ 4 per

  10. Genome-Wide SNP Discovery, Genotyping and Their Preliminary Applications for Population Genetic Inference in Spotted Sea Bass (Lateolabrax maculatus.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE for 30 individuals from two populations. The nucleotide diversity (π for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001 and the putatively neutral SNPs (FST = 0.0347, P < 0.001. However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001. Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40% significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus.

  11. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.

    Science.gov (United States)

    Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula

    2011-01-01

    Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.

  12. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    Science.gov (United States)

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  13. Genotyping common and rare variation using overlapping pool sequencing

    Directory of Open Access Journals (Sweden)

    Pasaniuc Bogdan

    2011-07-01

    Full Text Available Abstract Background Recent advances in sequencing technologies set the stage for large, population based studies, in which the ANA or RNA of thousands of individuals will be sequenced. Currently, however, such studies are still infeasible using a straightforward sequencing approach; as a result, recently a few multiplexing schemes have been suggested, in which a small number of ANA pools are sequenced, and the results are then deconvoluted using compressed sensing or similar approaches. These methods, however, are limited to the detection of rare variants. Results In this paper we provide a new algorithm for the deconvolution of DNA pools multiplexing schemes. The presented algorithm utilizes a likelihood model and linear programming. The approach allows for the addition of external data, particularly imputation data, resulting in a flexible environment that is suitable for different applications. Conclusions Particularly, we demonstrate that both low and high allele frequency SNPs can be accurately genotyped when the DNA pooling scheme is performed in conjunction with microarray genotyping and imputation. Additionally, we demonstrate the use of our framework for the detection of cancer fusion genes from RNA sequences.

  14. Polygenic analysis of genome-wide SNP data identifies common variants on allergic rhinitis

    DEFF Research Database (Denmark)

    Mohammadnejad, Afsaneh; Brasch-Andersen, Charlotte; Haagerup, Annette

    Background: Allergic Rhinitis (AR) is a complex disorder that affects many people around the world. There is a high genetic contribution to the development of the AR, as twins and family studies have estimated heritability of more than 33%. Due to the complex nature of the disease, single SNP...... analysis has limited power in identifying the genetic variations for AR. We combined genome-wide association analysis (GWAS) with polygenic risk score (PRS) in exploring the genetic basis underlying the disease. Methods: We collected clinical data on 631 Danish subjects with AR cases consisting of 434...... sibling pairs and unrelated individuals and control subjects of 197 unrelated individuals. SNP genotyping was done by Affymetrix Genome-Wide Human SNP Array 5.0. SNP imputation was performed using "IMPUTE2". Using additive effect model, GWAS was conducted in discovery sample, the genotypes...

  15. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  16. Genotype variation in bark texture drives lichen community assembly across multiple environments.

    Science.gov (United States)

    Lamit, L J; Lau, M K; Naesborg, R Reese; Wojtowicz, T; Whitham, T G; Gehring, C A

    2015-04-01

    A major goal of community genetics is to understand the influence of genetic variation within a species on ecological communities. Although well-documented for some organisms, additional research is necessary to understand the relative and interactive effects of genotype and environment on biodiversity, identify mechanisms through which tree genotype influences communities, and connect this emerging field with existing themes in ecology. We employ an underutilized but ecologically significant group of organisms, epiphytic bark lichens, to understand the relative importance of Populus angustifolia (narrowleaf cottonwood) genotype and environment on associated organisms within the context of community assembly and host ontogeny. Several key findings emerged. (1) In a single common garden, tree genotype explained 18-33% and 51% of the variation in lichen community variables and rough bark cover, respectively. (2) Across replicated common gardens, tree genotype affected lichen species richness, total lichen cover, lichen species composition, and rough bark cover, whereas environment only influenced composition and there were no genotype by environment interactions. (3) Rough bark cover was positively correlated with total lichen cover and richness, and was associated with a shift in species composition; these patterns occurred with variation in rough bark cover among tree genotypes of the same age in common gardens and with increasing rough bark cover along a -40 year tree age gradient in a natural riparian stand. (4) In a common garden, 20-year-old parent trees with smooth bark had poorly developed lichen communities, similar to their 10-year-old ramets (root suckers) growing in close proximity, while parent trees with high rough bark cover had more developed communities than their ramets. These findings indicate that epiphytic lichens are influenced by host genotype, an effect that is robust across divergent environments. Furthermore, the response to tree genotype is

  17. Genotype variation in grain yield response to basal N fertilizer ...

    African Journals Online (AJOL)

    user

    2012-07-24

    Jul 24, 2012 ... identify the variation of grain yield response to basal fertilizer among 199 rice varieties with different genetic background, and finally choose the suitable rice varieties for us to ... proper timing, rate, placement, and use of modified forms ... sowed in seedling-bed with uniform nutritional conditions until 3-leaf.

  18. Genotypic variation in tree growth and selected flavonoids in leaves ...

    African Journals Online (AJOL)

    Growth and flavonoid content varied significantly among different families, and isoquercitrin was the main component of the individual flavonoids, followed by kaempferol and quercetin. Both total and individual flavonoids showed seasonal variation, with the mean highest contents of quercetin and isoquercitrin in July but the ...

  19. Presence of sequence and SNP variation in the IRF6 gene in healthy residents of Guangdong Province

    Directory of Open Access Journals (Sweden)

    Wu Wenli

    2016-01-01

    Full Text Available This study was to investigate the single nucleotide polymorphism (SNP in the interferon regulatory factor 6 (IRF6 gene in healthy residents of Guangdong Province, China, for further analysis of their associations with the development of cleft lip with or without palate (CL/P.

  20. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    Science.gov (United States)

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.

  1. Genotypic variation in transpiration efficiency due to differences in photosynthetic capacity among sugarcane-related clones.

    Science.gov (United States)

    Li, Chunjia; Jackson, Phillip; Lu, Xin; Xu, Chaohua; Cai, Qing; Basnayake, Jayapathi; Lakshmanan, Prakash; Ghannoum, Oula; Fan, Yuanhong

    2017-04-01

    Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is not offset by negative impacts from reduced conductance and growth rates. This study was conducted to partition genotypic variation in TEi among a sample of diverse clones from the Chinese collection of sugarcane-related germplasm into that due to variation in stomatal conductance versus that due to variation in photosynthetic capacity. A secondary goal was to define protocols for optimized larger-scale screening of germplasm collections. Genotypic variation in TEi was attributed to significant variation in both stomatal and photosynthetic components. A number of genotypes were found to possess high TEi as a result of high photosynthetic capacity. This trait combination is expected to be of significant breeding value. It was determined that a small number of observations (16) is sufficient for efficiently screening TEi in larger populations of sugarcane genotypes The research methodology and results reported are encouraging in supporting a larger-scale screening and introgression of high transpiration efficiency in sugarcane breeding. However, further research is required to quantify narrow sense heritability as well as the leaf-to-field translational potential of genotypic variation in transpiration efficiency-related traits observed in this study. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Design and Characterization of a 52K SNP Chip for Goats

    NARCIS (Netherlands)

    Tosser-klopp, G.; Bardou, P.; Bouchez, O.; Cabau, C.; Crooijmans, R.P.M.A.; Dong, Y.; Donnadieu-Tonon, C.; Eggen, A.; Heuven, H.C.M.; Jamli, S.; Jiken, A.J.; Klopp, C.; Lawley, C.T.; McEwen, J.; Martin, P.; Moreno, C.R.; Mulsant, P.; Nabihoudine, I.; Pailhoux, E.; Palhiere, I.; Rupp, R.; Sarry, J.; Sayre, B.L.; Tircazes, A.; Wang, J.; Wang, W.; Zhang, W.G.

    2014-01-01

    The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a

  3. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  4. SNP-PHAGE – High throughput SNP discovery pipeline

    Directory of Open Access Journals (Sweden)

    Cregan Perry B

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs as defined here are single base sequence changes or short insertion/deletions between or within individuals of a given species. As a result of their abundance and the availability of high throughput analysis technologies SNP markers have begun to replace other traditional markers such as restriction fragment length polymorphisms (RFLPs, amplified fragment length polymorphisms (AFLPs and simple sequence repeats (SSRs or microsatellite markers for fine mapping and association studies in several species. For SNP discovery from chromatogram data, several bioinformatics programs have to be combined to generate an analysis pipeline. Results have to be stored in a relational database to facilitate interrogation through queries or to generate data for further analyses such as determination of linkage disequilibrium and identification of common haplotypes. Although these tasks are routinely performed by several groups, an integrated open source SNP discovery pipeline that can be easily adapted by new groups interested in SNP marker development is currently unavailable. Results We developed SNP-PHAGE (SNP discovery Pipeline with additional features for identification of common haplotypes within a sequence tagged site (Haplotype Analysis and GenBank (-dbSNP submissions. This tool was applied for analyzing sequence traces from diverse soybean genotypes to discover over 10,000 SNPs. This package was developed on UNIX/Linux platform, written in Perl and uses a MySQL database. Scripts to generate a user-friendly web interface are also provided with common queries for preliminary data analysis. A machine learning tool developed by this group for increasing the efficiency of SNP discovery is integrated as a part of this package as an optional feature. The SNP-PHAGE package is being made available open source at http://bfgl.anri.barc.usda.gov/ML/snp-phage/. Conclusion SNP-PHAGE provides a bioinformatics

  5. A SNP-Based Molecular Barcode for Characterization of Common Wheat.

    Directory of Open Access Journals (Sweden)

    LiFeng Gao

    Full Text Available Wheat is grown as a staple crop worldwide. It is important to develop an effective genotyping tool for this cereal grain both to identify germplasm diversity and to protect the rights of breeders. Single-nucleotide polymorphism (SNP genotyping provides a means for developing a practical, rapid, inexpensive and high-throughput assay. Here, we investigated SNPs as robust markers of genetic variation for typing wheat cultivars. We identified SNPs from an array of 9000 across a collection of 429 well-known wheat cultivars grown in China, of which 43 SNP markers with high minor allele frequency and variations discriminated the selected wheat varieties and their wild ancestors. This SNP-based barcode will allow for the rapid and precise identification of wheat germplasm resources and newly released varieties and will further assist in the wheat breeding program.

  6. Towards a molecular taxonomic key of the Aurantioideae subfamily using chloroplastic SNP diagnostic markers of the main clades genotyped by competitive allele-specific PCR.

    Science.gov (United States)

    Oueslati, Amel; Ollitrault, Frederique; Baraket, Ghada; Salhi-Hannachi, Amel; Navarro, Luis; Ollitrault, Patrick

    2016-08-18

    Chloroplast DNA is a primary source of molecular variations for phylogenetic analysis of photosynthetic eukaryotes. However, the sequencing and analysis of multiple chloroplastic regions is difficult to apply to large collections or large samples of natural populations. The objective of our work was to demonstrate that a molecular taxonomic key based on easy, scalable and low-cost genotyping method should be developed from a set of Single Nucleotide Polymorphisms (SNPs) diagnostic of well-established clades. It was applied to the Aurantioideae subfamily, the largest group of the Rutaceae family that includes the cultivated citrus species. The publicly available nucleotide sequences of eight plastid genomic regions were compared for 79 accessions of the Aurantioideae subfamily to search for SNPs revealing taxonomic differentiation at the inter-tribe, inter-subtribe, inter-genus and interspecific levels. Diagnostic SNPs (DSNPs) were found for 46 of the 54 clade levels analysed. Forty DSNPs were selected to develop KASPar markers and their taxonomic value was tested by genotyping 108 accessions of the Aurantioideae subfamily. Twenty-seven markers diagnostic of 24 clades were validated and they displayed a very high rate of transferability in the Aurantioideae subfamily (only 1.2 % of missing data on average). The UPGMA from the validated markers produced a cladistic organisation that was highly coherent with the previous phylogenetic analysis based on the sequence data of the eight plasmid regions. In particular, the monophyletic origin of the "true citrus" genera plus Oxanthera was validated. However, some clarification remains necessary regarding the organisation of the other wild species of the Citreae tribe. We validated the concept that with well-established clades, DSNPs can be selected and efficiently transformed into competitive allele-specific PCR markers (KASPar method) allowing cost-effective highly efficient cladistic analysis in large collections at

  7. Genotypic variation for salinity tolerance in Cenchrus ciliaris L

    Directory of Open Access Journals (Sweden)

    M. Iftikhar Hussain

    2016-07-01

    Full Text Available Scarcity of irrigation water and increasing soil salinization has threatened the sustainability of forage production in arid and semi-arid region around the globe. Introduction of salt-tolerant perennial species is a promising alternative to overcome forage deficit to meet future livestock needs in salt-affected areas. This study presents the results of a salinity tolerance screening trial which was carried out in plastic pots buried in the open field for 160 buffelgrass (Cenchrus ciliaris L. accessions for three consecutive years (2003-2005. The plastic pots were filled with sand, organic, and peat moss mix and were irrigated with four different quality water (EC 0, 10, 15, and 20 dS m-1. The results indicate that the average annual dry weights (DW were in the range from 122.5 – 148.9 g pot-1 in control; 96.4 – 133.8 g pot-1 at 10 dS m-1; 65.6 – 80.4 g pot-1 at 15 dS m-1, and 55.4- 65.6 g pot-1 at 20 dS m-1. The highest DW (148.9 g pot-1 was found with accession 49 and the lowest with accession 23. Principle component analysis shows that PC-1 contributed 81.8 % of the total variability, while PC-2 depicted 11.7% of the total variation among C. ciliaris accessions for DW. Hierarchical cluster analysis revealed that a number of accessions collected from diverse regions could be grouped into a single cluster. Accessions 3, 133, 159, 30, 23, 142, 141, 95, 49, 129, 124, and 127 were stable, salt tolerant, and produced good dry biomass yield. These accessions demonstrate sufficient salinity tolerance potential for promotion in marginal land and arid regions to enhance farm productivity and reduce rural poverty.

  8. Design and characterization of a 52K SNP chip for goats.

    Directory of Open Access Journals (Sweden)

    Gwenola Tosser-Klopp

    Full Text Available The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50-60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed: Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes, sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.

  9. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice

    International Nuclear Information System (INIS)

    Zeng Fanrong; Mao Ying; Cheng Wangda; Wu Feibo; Zhang Guoping

    2008-01-01

    Genotypic and environmental variation in Cr, Cd and Pb concentrations of rice grains and the interaction between these metals were investigated by using 138 rice genotypes grown in three contaminated soils. There were significant genotypic differences in the three heavy metal concentrations of rice grains, with the absolute difference among 138 genotypes in grain Cr, Cd and Pb concentrations being 24.5-, 9.1- and 23.8-folds, respectively, under the slightly contaminated soil (containing 4.61 mg kg -1 Cr, 1.09 mg kg -1 Cd and Pb 28.28 mg kg -1 , respectively). A highly significant interaction occurred between genotype and environment (soil type) in the heavy metal concentrations of rice grains. Cr concentration in rice grains was not correlated with Cd and Pb concentration. However, there was a significant correlation between Cd and Pb in slightly and highly contaminated soils. The results suggest the possibility to develop the rice cultivars with low Cd and Pb concentrations in grain. - Some rice genotypes had consistently low grain Cr, Cd and Pb concentrations under the soil with differently contaminated levels

  10. SV2: accurate structural variation genotyping and de novo mutation detection from whole genomes.

    Science.gov (United States)

    Antaki, Danny; Brandler, William M; Sebat, Jonathan

    2018-05-15

    Structural variation (SV) detection from short-read whole genome sequencing is error prone, presenting significant challenges for population or family-based studies of disease. Here, we describe SV2, a machine-learning algorithm for genotyping deletions and duplications from paired-end sequencing data. SV2 can rapidly integrate variant calls from multiple structural variant discovery algorithms into a unified call set with high genotyping accuracy and capability to detect de novo mutations. SV2 is freely available on GitHub (https://github.com/dantaki/SV2). jsebat@ucsd.edu. Supplementary data are available at Bioinformatics online.

  11. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques.

    Directory of Open Access Journals (Sweden)

    Valentina di Rienzo

    Full Text Available In tomato, resistance to Tomato spotted wilt virus (TSWV is conferred by the dominant gene, designated Sw-5. Virulent Sw-5 resistance breaking (SRB mutants of TSWV have been reported on Sw-5 tomato cultivars. Two different PCR-based allelic discrimination techniques, namely Custom TaqMan™ SNP Genotyping and high-resolution melting (HRM assays, were developed and compared for their ability to distinguish between avirulent (Sw-5 non-infecting, SNI and SRB biotypes. TaqMan assays proved to be more sensitive (threshold of detection in a range of 50-70 TSWV RNA copies and more reliable than HRM, assigning 25 TSWV isolates to their correct genotype with an accuracy of 100%. Moreover, the TaqMan SNP assays were further improved developing a rapid and simple protocol that included crude leaf extraction for RNA template preparations. On the other hand, HRM assays showed higher levels of sensitivity than TaqMan when used to co-detect both biotypes in different artificial mixtures. These diagnostic assays contributed to gain preliminary information on the epidemiology of TSWV isolates in open field conditions. In fact, the presented data suggest that SRB isolates are present as stable populations established year round, persisting on both winter (globe artichoke and summer (tomato crops, in the same cultivated areas of Southern Italy.

  12. SNP8NRG433E1006 NEUREGULIN-1 GENETIC VARIATION IN BATAKS ETHNIC WITH SCHIZOPHRENIA PARANOID AND HEALTHY CONTROL

    Directory of Open Access Journals (Sweden)

    Elmeida Effendy

    2014-05-01

    Full Text Available The neuregulin 1 (NRG1 gene which influences the development of white matter connectivity has been associated with schizophrenia. It influences neuronal migration, synaptogenesis, gliogenesis, neuron-glia communication, myelination, and neurotransmission in the brain and others. NRG1 is located in 8p13, and it is frequently replicated in schizphrenia. SNP8NRG433E1006 gene NRG1 is one of core at risk haplotype of schizphrenia. This study looked forward differences SNP8NRG433E1006 neuregulin 1 between Bataks ethnic with schizophrenia paranoid and Bataks ethnic healthy control. Methods: Batak ethnic with schizophrenia paranoid were recruited and interviewed with semi-structured MINI ICD-X to establish the diagnosis. All the eligible subjects were requested their permission for blood sampling. Healthy Batak ethnic were also recruited by mathcing the age and gender. The blood samples went through DNA isolation, Nested PCR, and DNA sequencing. Results: Ninety three subjects were recruited, but only 74 blood samples were succesfully sequenced. We found three types of polymorphisms, i.e. G/A allele at base pair (bp 76, G/T allele at bp 112, and deletion at bp 110 in Batak ethnic with schizophrenia. There were two kind sequences at bp 113-116 in Batak ethnics, and Batak ethnics with ATCG were at higher risk for having schizophrenia. This study support that NRG1 is a schizophrenia-susceptibility gene.

  13. Detecting genotypic variation among the single spore isolates of Pasteuria penetrans population occuring in Florida using SNP-based markers

    Science.gov (United States)

    Pasteuria penetrans is a naturally occurring soil-borne endospore-forming bacterium, which functions as a castrating parasite of plant-parasitic nematodes belonging to the genus Meloidogyne. Pasteuria penetrans is established as an effective biological control agent for control and management o...

  14. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice.

    Science.gov (United States)

    Zeng, Fanrong; Mao, Ying; Cheng, Wangda; Wu, Feibo; Zhang, Guoping

    2008-05-01

    Genotypic and environmental variation in Cr, Cd and Pb concentrations of rice grains and the interaction between these metals were investigated by using 138 rice genotypes grown in three contaminated soils. There were significant genotypic differences in the three heavy metal concentrations of rice grains, with the absolute difference among 138 genotypes in grain Cr, Cd and Pb concentrations being 24.5-, 9.1- and 23.8-folds, respectively, under the slightly contaminated soil (containing 4.61mgkg(-1) Cr, 1.09mgkg(-1) Cd and Pb 28.28mgkg(-1), respectively). A highly significant interaction occurred between genotype and environment (soil type) in the heavy metal concentrations of rice grains. Cr concentration in rice grains was not correlated with Cd and Pb concentration. However, there was a significant correlation between Cd and Pb in slightly and highly contaminated soils. The results suggest the possibility to develop the rice cultivars with low Cd and Pb concentrations in grain.

  15. Genotypic variation influences reproductive success and thermal stress tolerance in the reef building coral, Acropora palmata

    Science.gov (United States)

    Baums, I. B.; Devlin-Durante, M. K.; Polato, N. R.; Xu, D.; Giri, S.; Altman, N. S.; Ruiz, D.; Parkinson, J. E.; Boulay, J. N.

    2013-09-01

    The branching coral Acropora palmata is a foundation species of Caribbean reefs that has been decimated in recent decades by anthropogenic and natural stressors. Declines in population density and genotypic diversity likely reduce successful sexual reproduction in this self-incompatible hermaphrodite and might impede recovery. We investigated variation among genotypes in larval development under thermally stressful conditions. Six two-parent crosses and three four-parent batches were reared under three temperatures and sampled over time. Fertilization rates differed widely with two-parent crosses having lower fertilization rates (5-56 %, mean 22 % ± 22 SD) than batches (from 31 to 87 %, mean 59 % ± 28 SD). Parentage analysis of larvae in batch cultures showed differences in gamete compatibility among parents, coinciding with significant variation in both sperm morphology and egg size. While all larval batches developed more rapidly at increased water temperatures, rate of progression through developmental stages varied among batches, as did swimming speed. Together, these results indicate that loss of genotypic diversity exacerbates already severe limitations in sexual reproductive success of A. palmata. Nevertheless, surviving parental genotypes produce larvae that do vary in their phenotypic response to thermal stress, with implications for adaptation, larval dispersal and population connectivity in the face of warming sea surface temperatures.

  16. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    OpenAIRE

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic variation for yield, leaf area index, period of maximum soil cover, sensitivity for N-shortage and nitrogen efficiency under low input circumstances was found. However, in these experiments varietie...

  17. A database and API for variation, dense genotyping and resequencing data

    Directory of Open Access Journals (Sweden)

    Flicek Paul

    2010-05-01

    Full Text Available Abstract Background Advances in sequencing and genotyping technologies are leading to the widespread availability of multi-species variation data, dense genotype data and large-scale resequencing projects. The 1000 Genomes Project and similar efforts in other species are challenging the methods previously used for storage and manipulation of such data necessitating the redesign of existing genome-wide bioinformatics resources. Results Ensembl has created a database and software library to support data storage, analysis and access to the existing and emerging variation data from large mammalian and vertebrate genomes. These tools scale to thousands of individual genome sequences and are integrated into the Ensembl infrastructure for genome annotation and visualisation. The database and software system is easily expanded to integrate both public and non-public data sources in the context of an Ensembl software installation and is already being used outside of the Ensembl project in a number of database and application environments. Conclusions Ensembl's powerful, flexible and open source infrastructure for the management of variation, genotyping and resequencing data is freely available at http://www.ensembl.org.

  18. Ethnic and geographic variations in HPV prevalence and genotype distribution in north-western Yunnan, China.

    Science.gov (United States)

    Baloch, Zulqarnain; Yuan, Tao; Wang, Binghui; Tai, Wenlin; Feng, Yue; Liu, Yanqing; Li, Xiao; Feng, Yue; Liu, Li; Zhang, A-mei; Wu, Xiaomei; Xia, Xueshan

    2016-03-01

    The prevalence and genotype distribution of human papillomavirus (HPV) vary throughout the world. To assess the prevalence and genotype distribution of HPV among three ethnic groups in two geographic locations in north-western Yunnan, we recruited 522 women in Shangri-le (n = 255) and Lijiang (n = 267). PCR amplification of HPV DNA was performed on cervical cells from these women using two consensus primer systems (MY09/11 and GP5/6). Amplified-HPV DNA was genotyped using the HPV GenoArray test. Geographically, the HPV prevalence was significantly higher (P = 0.002) among Shangri-le women than among Lijiang women. Infections with high-risk (HR)-HPV and with multiple HPV genotypes were also significantly more common (P = 0.001) among women in Shangri-le than women in Lijiang. Additionally, the prevalence of overall, HR-HPV, and single genotype HPV infections was significantly higher (P = 0.001) among Tibetan women than among Naxi and Han women. HPV-16 and HPV-33 were significantly more frequent in Shangri-le women compared with Lijiang (P = 0.006) women. In addition, HPV-16 (9.81%) and HPV-33 (5.88%) were significantly more prevalent in Tibetan women than in Naxi and Han women. Here, for the first time, we highlight the significant variation in the prevalence and genotype distribution of HPV in various populations in the north-western region of Yunnan Province. © 2015 Wiley Periodicals, Inc.

  19. Variation for N Uptake System in Maize: Genotypic Response to N Supply

    KAUST Repository

    Garnett, Trevor

    2015-11-09

    An understanding of the adaptations made by plants in their nitrogen (N) uptake systems in response to reduced N supply is important to the development of cereals with enhanced N uptake efficiency (NUpE). Twenty seven diverse genotypes of maize (Zea mays, L.) were grown in hydroponics for 3 weeks with limiting or adequate N supply. Genotypic response to N was assessed on the basis of biomass characteristics and the activities of the nitrate (NO−3) and ammonium (NH+4) high-affinity transport systems. Genotypes differed greatly for the ability to maintain biomass with reduced N. Although, the N response in underlying biomass and N transport related characteristics was less than that for biomass, there were clear relationships, most importantly, lines that maintained biomass at reduced N maintained net N uptake with no change in size of the root relative to the shoot. The root uptake capacity for both NO−3 and NH+4 increased with reduced N. Transcript levels of putative NO−3 and NH+4 transporter genes in the root tissue of a subset of the genotypes revealed that predominately ZmNRT2 transcript levels responded to N treatments. The correlation between the ratio of transcripts of ZmNRT2.2 between the two N levels and a genotype\\'s ability to maintain biomass with reduced N suggests a role for these transporters in enhancing NUpE. The observed variation in the ability to capture N at low N provides scope for both improving NUpE in maize and also to better understand the N uptake system in cereals.

  20. A large-scale chromosome-specific SNP discovery guideline.

    Science.gov (United States)

    Akpinar, Bala Ani; Lucas, Stuart; Budak, Hikmet

    2017-01-01

    Single-nucleotide polymorphisms (SNPs) are the most prevalent type of variation in genomes that are increasingly being used as molecular markers in diversity analyses, mapping and cloning of genes, and germplasm characterization. However, only a few studies reported large-scale SNP discovery in Aegilops tauschii, restricting their potential use as markers for the low-polymorphic D genome. Here, we report 68,592 SNPs found on the gene-related sequences of the 5D chromosome of Ae. tauschii genotype MvGB589 using genomic and transcriptomic sequences from seven Ae. tauschii accessions, including AL8/78, the only genotype for which a draft genome sequence is available at present. We also suggest a workflow to compare SNP positions in homologous regions on the 5D chromosome of Triticum aestivum, bread wheat, to mark single nucleotide variations between these closely related species. Overall, the identified SNPs define a density of 4.49 SNPs per kilobyte, among the highest reported for the genic regions of Ae. tauschii so far. To our knowledge, this study also presents the first chromosome-specific SNP catalog in Ae. tauschii that should facilitate the association of these SNPs with morphological traits on chromosome 5D to be ultimately targeted for wheat improvement.

  1. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories.

    Science.gov (United States)

    Borg, Asa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-10-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.

  2. Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients.

    Science.gov (United States)

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Jiménez-Velasco, Antonio; Dolz, Sandra; Ibáñez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Óscar; Oltra, Silvestre; Moscardó, Federico; Martínez-Cuadrón, David; Senent, M Leonor; Gascón, Adriana; Montesinos, Pau; Martín, Guillermo; Bolufer, Pascual; Sanz, Miguel A

    2012-12-01

    The single nucleotide polymorphism (SNP) rs16754 of the WT1 gene has been previously described as a possible prognostic marker in normal karyotype acute myeloid leukemia (AML) patients. Nevertheless, the findings in this field are not always reproducible in different series. One hundred and seventy-five adult de novo AML patients were screened with two different methods for the detection of SNP rs16754: high-resolution melting (HRM) and FRET hybridization probes. Direct sequencing was used to validate both techniques. The SNP was detected in 52 out of 175 patients (30 %), both by HRM and hybridization probes. Direct sequencing confirmed that every positive sample in the screening methods had a variation in the DNA sequence. Patients with the wild-type genotype (WT1(AA)) for the SNP rs16754 were significantly younger than those with the heterozygous WT1(AG) genotype. No other difference was observed for baseline characteristic or outcome between patients with or without the SNP. Both techniques are equally reliable and reproducible as screening methods for the detection of the SNP rs16754, allowing for the selection of those samples that will need to be sequenced. We were unable to confirm the suggested favorable outcome of SNP rs16754 in de novo AML.

  3. The frequency of genotypes for the SNP Ser/Ser in the studied population of Albanian women is higher in the Balkan region

    Directory of Open Access Journals (Sweden)

    Zafer Gashi

    2016-08-01

    Full Text Available In women undergoing natural cycles, just one oocyte is usually selected for ovulation, yet routine clinical techniques to support the development of multiple follicles using additional gonadotrophins result in numerous ovulations. Several parameters have been postulated as predictors of ovarian response (inhibin B, 17-β-estradiol and antiMüllerian hormone. Nevertheless, the FSH level on the day 3 of menstrual cycle remains, the most widely used biomarker due to its low cost, although, the genetic background of individuals seems to determine the response of patients to rFSH stimulation better than the stimulation design. Consequently, the variants of FSHR were explored and they may be involved in the role of FSH receptor in mediated signal transduction and with ovarian response in infertile women submitted to ovarian stimulation. In this study we examined, for the first time, the prevalence of genotype variants Asn680Ser in population Albanian women from Kosovo Dukagjin region who took part in IVF / ICSI program. The frequencies of the Asn680Ser genotype variants were as follows: Asn/Asn 22.1%, Asn/Ser 47.1%, and Ser/Ser 30.8%, respectively (Table 1. bE2 levels between the three genotype variants showed slight but statistically significant difference (p= 0.0308. No difference was also found between the genotype groups either in terms of AFC, amount of the FSH required for ovulation induction, stimulation length days, number of dominant follicles, oocyte retrieval number or endometrial thickness (Table 2. BMI was significantly higher in the Ser/Ser group as compared to those from the Asn/Ser or the Asn/Asn group (p= 0.0010 (Table 2. In the study population of Albanian women Dukagjin region of Kosovo had a higher incidence of Ser / SER genotype compared to Asn / Asn genotype. Our research results in the Albanian population differ from published data for other ethnic groups in the Balkans.

  4. Variation for N Uptake System in Maize: Genotypic Response to N Supply

    KAUST Repository

    Garnett, Trevor; Plett, Darren; Conn, Vanessa; Conn, Simon; Rabie, Huwaida; Rafalski, J. Antoni; Dhugga, Kanwarpal; Tester, Mark A.; Kaiser, Brent N.

    2015-01-01

    An understanding of the adaptations made by plants in their nitrogen (N) uptake systems in response to reduced N supply is important to the development of cereals with enhanced N uptake efficiency (NUpE). Twenty seven diverse genotypes of maize (Zea mays, L.) were grown in hydroponics for 3 weeks with limiting or adequate N supply. Genotypic response to N was assessed on the basis of biomass characteristics and the activities of the nitrate (NO−3) and ammonium (NH+4) high-affinity transport systems. Genotypes differed greatly for the ability to maintain biomass with reduced N. Although, the N response in underlying biomass and N transport related characteristics was less than that for biomass, there were clear relationships, most importantly, lines that maintained biomass at reduced N maintained net N uptake with no change in size of the root relative to the shoot. The root uptake capacity for both NO−3 and NH+4 increased with reduced N. Transcript levels of putative NO−3 and NH+4 transporter genes in the root tissue of a subset of the genotypes revealed that predominately ZmNRT2 transcript levels responded to N treatments. The correlation between the ratio of transcripts of ZmNRT2.2 between the two N levels and a genotype's ability to maintain biomass with reduced N suggests a role for these transporters in enhancing NUpE. The observed variation in the ability to capture N at low N provides scope for both improving NUpE in maize and also to better understand the N uptake system in cereals.

  5. Genetic variation and relationships of old maize genotypes (Zea mays l. detected using SDS-page

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2016-11-01

    Full Text Available The assessment of genetic diversity among the members of a species is of vital importance for successful breeding and adaptability. In the present study 40 old genotypes of maize from Hungary, Union of Soviet Socialist Republics, Poland, Czechoslovakia, Yugoslavia and Slovak Republic  were evaluated for the total seed storage proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE through vertical slab unit. The number of total scorable protein bands was twentythree as a result of SDS-PAGE technique but those that were not cosistent in reproducibility and showed occasional variation in sharpness and density were not considered. Out of twentythree polypeptide bands, 6 (31% were commonly present in all accessions and considered as monomorphic, while 17 (65% showed variations and considered as polymorphic. On the basis of banding profiles of proteins of different kDa, gel was divided into zones A, B and C. The major protein bands were lied in zones A and B, while minor bands were present in zones C. In zone A out of 10 protein bands, 1 were monomorphic and 9 were polymorphic. In zone B out of 8 protein bands, 3 was monomorphic and 5 was polymorphic and in zone C out of 5 protein bands, 2 were monomorphic whereas 3 polymorphic. The dendrogram tree demonstrated the relationship among the forty registered old maize genotypes according to the similarity index, using UPGMA cluster analysis. The dendrogram was divided into two main clusters. The first one contained eleven genotypes from maize, while the second cluster contained the twentynine genotypes of maize. Similarly the present study of genetic variability in the seed storage polypeptide determined by SDS-PAGE technique proved that it is fruitful to identify genetic diversity among accessions of maize. 

  6. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2014-12-01

    Full Text Available Copy number variation (CNV or single nucleotide phlyorphism (SNP is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i the enrichment of genome contents in CNV; ii the physical distribution of CNV or SNP on chromosomes; iii the distribution of log2 ratio of CNVs with criteria of interested; iv the number of CNV or SNP per binning unit; v the distribution of homozygosity of SNP genotype; and vi cytomap of genes within CNV or SNP region.

  7. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.)

    Science.gov (United States)

    Marker-assisted selection (MAS) in stone fruit (Prunus species) breeding is currently difficult to achieve due to the polygenic nature of themost relevant agronomic traits linked to fruit quality. Genotyping by sequencing (GBS), however, provides a large quantity of useful data suitable for finemapp...

  8. Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations

    NARCIS (Netherlands)

    Simko, I.; Eujayl, I.; Hintum, van T.J.L.

    2012-01-01

    Dominant and co-dominant molecular markers are routinely used in plant genetic research. In the present study we assessed the success-rate of three marker-systems for estimating genotypic diversity, clustering varieties into populations, and assigning a single variety into the expected population. A

  9. Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations

    Science.gov (United States)

    Dominant and co-dominant molecular markers are routinely used in plant genetic diversity research. In the present study we assessed the success-rate of three marker-systems for estimating genotypic diversity, clustering varieties into populations, and assigning a single variety into the expected pop...

  10. Detecting imbalanced expression of SNP alleles by minisequencing on microarrays

    Directory of Open Access Journals (Sweden)

    Dahlgren Andreas

    2004-10-01

    Full Text Available Abstract Background Each of the human genes or transcriptional units is likely to contain single nucleotide polymorphisms that may give rise to sequence variation between individuals and tissues on the level of RNA. Based on recent studies, differential expression of the two alleles of heterozygous coding single nucleotide polymorphisms (SNPs may be frequent for human genes. Methods with high accuracy to be used in a high throughput setting are needed for systematic surveys of expressed sequence variation. In this study we evaluated two formats of multiplexed, microarray based minisequencing for quantitative detection of imbalanced expression of SNP alleles. We used a panel of ten SNPs located in five genes known to be expressed in two endothelial cell lines as our model system. Results The accuracy and sensitivity of quantitative detection of allelic imbalance was assessed for each SNP by constructing regression lines using a dilution series of mixed samples from individuals of different genotype. Accurate quantification of SNP alleles by both assay formats was evidenced for by R2 values > 0.95 for the majority of the regression lines. According to a two sample t-test, we were able to distinguish 1–9% of a minority SNP allele from a homozygous genotype, with larger variation between SNPs than between assay formats. Six of the SNPs, heterozygous in either of the two cell lines, were genotyped in RNA extracted from the endothelial cells. The coefficient of variation between the fluorescent signals from five parallel reactions was similar for cDNA and genomic DNA. The fluorescence signal intensity ratios measured in the cDNA samples were compared to those in genomic DNA to determine the relative expression levels of the two alleles of each SNP. Four of the six SNPs tested displayed a higher than 1.4-fold difference in allelic ratios between cDNA and genomic DNA. The results were verified by allele-specific oligonucleotide hybridisation and

  11. Fine-scaled human genetic structure revealed by SNP microarrays.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  12. SNP in TXNRD2 Associated With Radiation-Induced Fibrosis: A Study of Genetic Variation in Reactive Oxygen Species Metabolism and Signaling

    International Nuclear Information System (INIS)

    Edvardsen, Hege; Landmark-Høyvik, Hege; Reinertsen, Kristin V.; Zhao, Xi; Grenaker-Alnæs, Grethe Irene; Nebdal, Daniel; Syvänen, Ann-Christine; Rødningen, Olaug; Alsner, Jan; Overgaard, Jens; Borresen-Dale, Anne-Lise; Fosså, Sophie D.; Kristensen, Vessela N.

    2013-01-01

    Purpose: The aim of the study was to identify noninvasive markers of treatment-induced side effects. Reactive oxygen species (ROS) are generated after irradiation, and genetic variation in genes related to ROS metabolism might influence the level of radiation-induced adverse effects (AEs). Methods and Materials: 92 breast cancer (BC) survivors previously treated with hypofractionated radiation therapy were assessed for the AEs subcutaneous atrophy and fibrosis, costal fractures, lung fibrosis, pleural thickening, and telangiectasias (median follow-up time 17.1 years). Single-nucleotide polymorphisms (SNPs) in 203 genes were analyzed for association to AE grade. SNPs associated with subcutaneous fibrosis were validated in an independent BC survivor material (n=283). The influence of the studied genetic variation on messenger ribonucleic acid (mRNA) expression level of 18 genes previously associated with fibrosis was assessed in fibroblast cell lines from BC patients. Results: Subcutaneous fibrosis and atrophy had the highest correlation (r=0.76) of all assessed AEs. The nonsynonymous SNP rs1139793 in TXNRD2 was associated with grade of subcutaneous fibrosis, the reference T-allele being more prevalent in the group experiencing severe levels of fibrosis. This was confirmed in another sample cohort of 283 BC survivors, and rs1139793 was found significantly associated with mRNA expression level of TXNRD2 in blood. Genetic variation in 24 ROS-related genes, including EGFR, CENPE, APEX1, and GSTP1, was associated with mRNA expression of 14 genes previously linked to fibrosis (P≤.005). Conclusion: Development of subcutaneous fibrosis can be associated with genetic variation in the mitochondrial enzyme TXNRD2, critically involved in removal of ROS, and maintenance of the intracellular redox balance

  13. Lack of evidence to support the association of a single IL28B genotype SNP rs12979860 with the HTLV-1 clinical outcomes and proviral load

    Directory of Open Access Journals (Sweden)

    Sanabani Sabri Saeed

    2012-12-01

    Full Text Available Abstract Background The Interleukin 28B (IL28B rs12979860 polymorphisms was recently reported to be associated with the human T-cell leukemia virus type 1 (HTLV-1 proviral load (PvL and the development of the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. Methods In an attempt to examine this hypothesis, we assessed the association of the rs12979860 genotypes with HTLV-1 PvL levels and clinical status in 112 unrelated Brazilian subjects (81 HTLV-1 asymptomatic carriers, 24 individuals with HAM/TSP and 7 with Adult T cell Leukemia/Lymphoma (ATLL. Results All 112 samples were successfully genotyped and their PvLs compared. Neither the homozygote TT nor the heterozygote CT mutations nor the combination genotypes (TT/CT were associated with a greater PvL. We also observed no significant difference in allele distribution between asymptomatic carriers and patients with HTLV-1 associated HAM/TSP. Conclusions Our study failed to support the previously reported positive association between the IL28B rs12979860 polymorphisms and an increased risk of developing HAM/TSP in the Brazilian population.

  14. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    Science.gov (United States)

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Variation in genotype and higher virulence of a strain of Sporothrix schenckii causing disseminated cutaneous sporotrichosis.

    Science.gov (United States)

    Zhang, Zhenying; Liu, Xiaoming; Lv, Xuelian; Lin, Jingrong

    2011-12-01

    Sporotrichosis is usually a localized, lymphocutaneous disease, but its disseminated type was rarely reported. The main objective of this study was to identify specific DNA sequence variation and virulence of a strain of Sporothrix schenckii isolated from the lesion of disseminated cutaneous sporotrichosis. We confirmed this strain to be S. schenckii by(®) tubulin and chitin synthase gene sequence analysis in addition to the routine mycological and partial ITS and NTS sequencing. We found a 10-bp deletion in the ribosomal NTS region of this strain, in reference to the sequence of control strains isolated from fixed cutaneous sporotrichosis. After inoculated into immunosuppressed mice, this strain caused more extensive system involvement and showed stronger virulence than the control strain isolated from a fixed cutaneous sporotrichosis. Our study thus suggests that different clinical manifestation of sporotrichosis may be associated with variation in genotype and virulence of the strain, independent of effects due to the immune status of the host.

  16. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies

    International Nuclear Information System (INIS)

    Condon, A.G.; Farquhar, G.D.; Richards, R.A.

    1990-01-01

    The relationship between carbon isotope discrimination, Δ, measured in plant dry matter and the ratio of intercellular to atmospheric partial pressures of CO 2 ,p i /p a , in leaves was examined in two glasshouse experiments using 14 wheat genotypes selected on the basis of variation in Δ of dry matter. Genotypic variation in Δ was similar in both experiments, with an average range of 1.8 x 10 -3 . Δ measured in dry matter and p i /p a measured in flag leaves were positively correlated. Variation among genotypes in p i /p a was attributed, approximately equally, to variation in leaf conductance and in photosynthetic capacity. The relationship between plant transpiration efficiency, W * (the amount of above-ground dry matter produced per unit water transpired) and Δ was was also examined. The results indicate that genotypic variation in Δ, measured in dry matter, should provide a reasonable measure of genotypic variation in long-term mean leaf p i /p a in wheat. 42 refs., 2 tabs., 5 figs

  17. Effect of Tryptophan Hydroxylase-2 rs7305115 SNP on suicide attempts risk in major depression

    Directory of Open Access Journals (Sweden)

    Zhang Yuqi

    2010-08-01

    Full Text Available Abstract Background Suicide and major depressive disorders (MDD are strongly associated, and genetic factors are responsible for at least part of the variability in suicide risk. We investigated whether variation at the tryptophan hydroxylase-2 (TPH2 gene rs7305115 SNP may predispose to suicide attempts in MDD. Methods We genotyped TPH2 gene rs7305115 SNP in 215 MDD patients with suicide and matched MDD patients without suicide. Differences in behavioral and personality traits according to genotypic variation were investigated by logistic regression analysis. Results There were no significant differences between MDD patients with suicide and controls in genotypic (AG and GG frequencies for rs7305115 SNP, but the distribution of AA genotype differed significantly (14.4% vs. 29.3%, p p p Conclusions The study suggested that hopelessness, negative life events and family history of suicide were risk factors of attempted suicide in MDD while the TPH2 rs7305115A remained a significant protective predictor of suicide attempts.

  18. SNP in Chalcone Synthase gene is associated with variation of 6-gingerol content in contrasting landraces of Zingiber officinale.Roscoe.

    Science.gov (United States)

    Ghosh, Subhabrata; Mandi, Swati Sen

    2015-07-25

    Zingiber officinale, medicinally the most important species within Zingiber genus, contains 6-gingerol as the active principle. This compound obtained from rhizomes of Z.officinale, has immense medicinal importance and is used in various herbal drug formulations. Our record of variation in content of this active principle, viz. 6-gingerol, in land races of this drug plant collected from different locations correlated with our Gene expression studies exhibiting high Chalcone Synthase gene (Chalcone Synthase is the rate limiting enzyme of 6-gingerol biosynthesis pathway) expression in high 6-gingerol containing landraces than in the low 6-gingerol containing landraces. Sequencing of Chalcone Synthase cDNA and subsequent multiple sequence alignment revealed seven SNPs between these contrasting genotypes. Converting this nucleotide sequence to amino acid sequence, alteration of two amino acids becomes evident; one amino acid change (asparagine to serine at position 336) is associated with base change (A→G) and another change (serine to leucine at position 142) is associated with the base change (C→T). Since asparagine at position 336 is one of the critical amino acids of the catalytic triad of Chalcone Synthase enzyme, responsible for substrate binding, our study suggests that landraces with a specific amino acid change viz. Asparagine (found in high 6-gingerol containing landraces) to serine causes low 6-gingerol content. This is probably due to a weak enzyme substrate association caused by the absence of asparagine in the catalytic triad. Detailed study of this finding could also help to understand molecular mechanism associated with variation in 6-gingerol content in Z.officinale genotypes and thereby strategies for developing elite genotypes containing high 6-gingerol content. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. SNP Variation in MicroRNA Biogenesis Pathway Genes as a New Innovation Strategy for Alzheimer Disease Diagnostics: A Study of 10 Candidate Genes in an Understudied Population From the Eastern Mediterranean.

    Science.gov (United States)

    Görücü Yilmaz, Şenay; Erdal, Mehmet E; Avci Özge, Aynur; Sungur, Mehmet A

    2016-01-01

    Alzheimer disease (AD) is a common complex neurodegenerative disorder accounting for nearly 50% to 70% of dementias worldwide. Yet the current diagnostic options for AD are limited. New diagnostic innovation strategies focusing on novel molecules and pathways are sorely needed. In this connection, microRNAs (miRNAs) are conserved small noncoding RNAs that regulate posttranscriptional gene expression and are vital for neuronal development and its functional sustainability. Conceivably, biological pathways responsible for the biogenesis of miRNAs represent a veritable set of upstream candidate genes that can be potentially associated with the AD pathophysiology. Notably, whereas functional single-nucleotide polymorphisms (SNPs) in miRNA biogenesis pathway genes have been studied in other complex diseases, surprisingly, virtually no such study has been conducted on their relevance in AD. Moreover, novel diagnostics identified in easily accessible peripheral tissues such as the whole blood samples represent the initial entry or gateway points on the biomarker discovery critical path for AD. To the best of our knowledge, we report here the first association study of functional SNPs, as measured by real-time PCR in 10 "upstream" candidate genes critically situated on the miRNA biogenesis pathway, in a large sample of AD patients (N=172) and healthy controls (N=109) in a hitherto understudied world population from the Mersin region of the Eastern Mediterranean. We observed a significant association between 2 candidate genes and AD, TARBP2 rs784567 genotype and AD (χ=6.292, P=0.043), and a trend for RNASEN rs10719 genotype (χ=4.528, P=0.104) and allele (P=0.035). Functional SNP variations in the other 8 candidate genes (DGCR8, XPO5, RAN, DICER1, AGO1, AGO2, GEMIN3, and GEMIN4) did not associate with AD in our sample. Given the putative biological importance of miRNA biogenesis pathways, these emerging data can provide a new foundation to stimulate future debate and

  20. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties.

    Directory of Open Access Journals (Sweden)

    Nivedita Singh

    Full Text Available Simple sequence repeat (SSR and Single Nucleotide Polymorphic (SNP, the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis.

  1. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties.

    Science.gov (United States)

    Singh, Nivedita; Choudhury, Debjani Roy; Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R K; Singh, N K; Singh, Rakesh

    2013-01-01

    Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis.

  2. Variation of nutrients and antioxidant activity in seed and exocarp layer of some Persian pistachio genotypes

    Directory of Open Access Journals (Sweden)

    Somayeh Tayefeh Aliakbarkhani

    2017-06-01

    Full Text Available Pistachio nuts are rich sources of nutrients which are essential for human wellbeing. In the present study we investigate the variation of oil, protein, total phenol, mineral contents, and antioxidant activity of twenty rare Persian pistachio nuts and exocarp layer. Among the 20 pistachio genotypes, in seeds Mn concentration was varied from 5.73 to 17.33 mg/kg; Fe ranged from 17 to 62.4 mg/kg; Zn varied from 6.76 to 30.3 mg/kg; Na ranged from 0.06 to 0.126%; K varied from 0.68 to 1.35%; P varied from 0.42 to 0.73%; N ranged from 2.6 to 4.29%; Mg varied from 0.11 to 0.17%, Ca varied from 0.23 to 0.47%, oil ranged from 47.94 to 57.29% and protein ranged from 16.26 to 25.5%. The G3 genotype had the highest total phenol content (35.64 mg GAEs/g and antioxidant activity (90.55% in exocarp layer and oil content in seeds (57.29%. The highest phosphorus (0.73% in exocarp layer and phenol (4.2 mg GAEs/g contents in seeds were observed in G19. According to the correlation analysis, there were a correlation between total phenol (in exocarp layer and oil contents gain with some values; these two values had a significant correlation with PC1. Cluster analysis separated the genotypes into three groups considering all measured Values.

  3. Antioxidant phytochemicals in fresh produce: exploitation of genotype variation and advancements in analytical protocols

    Science.gov (United States)

    Manganaris, George A.; Goulas, Vlasios; Mellidou, Ifigeneia; Drogoudi, Pavlina

    2017-12-01

    Horticultural commodities (fruit and vegetables) are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, towards the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivar/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e. small tomato of Santorini island (cv. ‘Tomataki Santorinis’) possesses appreciably high amounts of ascorbic acid. The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier ‘gene pool’ as the basis of future adaptation. Towards this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy, electrochemical and chemometric methods, flow injection analysis (FIA), optical sensors and high resolution screening (HRS). Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop “omics” platforms (i.e. metabolomics, foodomics) is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of cheap and rapid optical sensors and IR spectroscopy is recommended to

  4. Antioxidant Phytochemicals in Fresh Produce: Exploitation of Genotype Variation and Advancements in Analytical Protocols

    Directory of Open Access Journals (Sweden)

    George A. Manganaris

    2018-02-01

    Full Text Available Horticultural commodities (fruit and vegetables are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, toward the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivars/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e., small tomato of Santorini island (cv. “Tomataki Santorinis” possesses appreciably high amounts of ascorbic acid (AsA. The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier “gene pool” as the basis of future adaptation. Toward this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR and infrared (IR spectroscopy, electrochemical, and chemometric methods, flow injection analysis (FIA, optical sensors, and high resolution screening (HRS. Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop “omics” platforms (i.e., metabolomics, foodomics is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of optical sensors and IR spectroscopy is recommended to

  5. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation.

    Science.gov (United States)

    Howe, Glenn T; Yu, Jianbin; Knaus, Brian; Cronn, Richard; Kolpak, Scott; Dolan, Peter; Lorenz, W Walter; Dean, Jeffrey F D

    2013-02-28

    Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array-more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to

  6. Genomic Variants Revealed by Invariably Missing Genotypes in Nelore Cattle.

    Directory of Open Access Journals (Sweden)

    Joaquim Manoel da Silva

    Full Text Available High density genotyping panels have been used in a wide range of applications. From population genetics to genome-wide association studies, this technology still offers the lowest cost and the most consistent solution for generating SNP data. However, in spite of the application, part of the generated data is always discarded from final datasets based on quality control criteria used to remove unreliable markers. Some discarded data consists of markers that failed to generate genotypes, labeled as missing genotypes. A subset of missing genotypes that occur in the whole population under study may be caused by technical issues but can also be explained by the presence of genomic variations that are in the vicinity of the assayed SNP and that prevent genotyping probes from annealing. The latter case may contain relevant information because these missing genotypes might be used to identify population-specific genomic variants. In order to assess which case is more prevalent, we used Illumina HD Bovine chip genotypes from 1,709 Nelore (Bos indicus samples. We found 3,200 missing genotypes among the whole population. NGS re-sequencing data from 8 sires were used to verify the presence of genomic variations within their flanking regions in 81.56% of these missing genotypes. Furthermore, we discovered 3,300 novel SNPs/Indels, 31% of which are located in genes that may affect traits of importance for the genetic improvement of cattle production.

  7. SNPdetector: a software tool for sensitive and accurate SNP detection.

    Directory of Open Access Journals (Sweden)

    Jinghui Zhang

    2005-10-01

    Full Text Available Identification of single nucleotide polymorphisms (SNPs and mutations is important for the discovery of genetic predisposition to complex diseases. PCR resequencing is the method of choice for de novo SNP discovery. However, manual curation of putative SNPs has been a major bottleneck in the application of this method to high-throughput screening. Therefore it is critical to develop a more sensitive and accurate computational method for automated SNP detection. We developed a software tool, SNPdetector, for automated identification of SNPs and mutations in fluorescence-based resequencing reads. SNPdetector was designed to model the process of human visual inspection and has a very low false positive and false negative rate. We demonstrate the superior performance of SNPdetector in SNP and mutation analysis by comparing its results with those derived by human inspection, PolyPhred (a popular SNP detection tool, and independent genotype assays in three large-scale investigations. The first study identified and validated inter- and intra-subspecies variations in 4,650 traces of 25 inbred mouse strains that belong to either the Mus musculus species or the M. spretus species. Unexpected heterozygosity in CAST/Ei strain was observed in two out of 1,167 mouse SNPs. The second study identified 11,241 candidate SNPs in five ENCODE regions of the human genome covering 2.5 Mb of genomic sequence. Approximately 50% of the candidate SNPs were selected for experimental genotyping; the validation rate exceeded 95%. The third study detected ENU-induced mutations (at 0.04% allele frequency in 64,896 traces of 1,236 zebra fish. Our analysis of three large and diverse test datasets demonstrated that SNPdetector is an effective tool for genome-scale research and for large-sample clinical studies. SNPdetector runs on Unix/Linux platform and is available publicly (http://lpg.nci.nih.gov.

  8. Effect modification of air pollution on Urinary 8-Hydroxy-2'-Deoxyguanosine by genotypes: an application of the multiple testing procedure to identify significant SNP interactions

    Directory of Open Access Journals (Sweden)

    Christiani David C

    2010-12-01

    Full Text Available Abstract Background Air pollution is associated with adverse human health, but mechanisms through which pollution exerts effects remain to be clarified. One suggested pathway is that pollution causes oxidative stress. If so, oxidative stress-related genotypes may modify the oxidative response defenses to pollution exposure. Methods We explored the potential pathway by examining whether an array of oxidative stress-related genes (twenty single nucleotide polymorphisms, SNPs in nine genes modified associations of pollutants (organic carbon (OC, ozone and sulfate with urinary 8-hydroxy-2-deoxygunosine (8-OHdG, a biomarker of oxidative stress among the 320 aging men. We used a Multiple Testing Procedure in R modified by our team to identify the significance of the candidate genes adjusting for a priori covariates. Results We found that glutathione S-tranferase P1 (GSTP1, rs1799811, M1 and catalase (rs2284367 and group-specific component (GC, rs2282679, rs1155563 significantly or marginally significantly modified effects of OC and/or sulfate with larger effects among those carrying the wild type of GSTP1, catalase, non-wild type of GC and the non-null of GSTM1. Conclusions Polymorphisms of oxidative stress-related genes modified effects of OC and/or sulfate on 8-OHdG, suggesting that effects of OC or sulfate on 8-OHdG and other endpoints may be through the oxidative stress pathway.

  9. Genotypic variations in the dynamics of metal concentrations in poplar leaves: A field study with a perspective on phytoremediation

    International Nuclear Information System (INIS)

    Pottier, Mathieu; García de la Torre, Vanesa S.; Victor, Cindy; David, Laure C.; Chalot, Michel; Thomine, Sébastien

    2015-01-01

    Poplar is commonly used for phytoremediation of metal polluted soils. However, the high concentrations of trace elements present in leaves may return to soil upon leaf abscission. To investigate the mechanisms controlling leaf metal content, metal concentrations and expression levels of genes involved in metal transport were monitored at different developmental stages on leaves from different poplar genotypes growing on a contaminated field. Large differences in leaf metal concentrations were observed among genotypes. Whereas Mg was remobilized during senescence, Zn and Cd accumulation continued until leaf abscission in all genotypes. A positive correlation between Natural Resistance Associated Macrophage Protein 1 (NRAMP1) expression levels and Zn bio-concentration factors was observed. Principal component analyses of metal concentrations and gene expression levels clearly discriminated poplar genotypes. This study highlights a general absence of trace element remobilization from poplar leaves despite genotype specificities in the control of leaf metal homeostasis. - Highlights: • Poplar genotypes display large variations in leaf metal concentrations. • Trace elements are not remobilized during poplar leaf senescence. • Distinct transporter genes control metal homeostasis at different leaf stages. • Poplar genotypes use distinct mechanisms to control leaf metal homeostasis. • NRAMP1 metal transporter could contribute to Zn and Cd accumulation in poplar leaves. - In order to improve metal phytoextraction using poplars, this work provides new insights on the control of leaf metal concentrations through principal component and correlative analyses

  10. Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing.

    Directory of Open Access Journals (Sweden)

    ShiGang Yu

    Full Text Available Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV or low estimated breeding value (LEBV. A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the

  11. Genotypic Variation in Phosphorus Use Efficiency for Symbiotic Nitrogen Fixation in Voandzou (Vigna Subterranea)

    Energy Technology Data Exchange (ETDEWEB)

    Andriamananjara, A.; Rabeharisoa, L. [Laboratoire des Radio-isotopes, Universite d' Antananarivo, Antananarivo (Madagascar); Abdou, M. Malam [Laboratoire Banques de genes CERRA / KOLLO, Institut National de Recherche Agronomique du Niger (INRAN), Niamey (Niger); Masse, D. [Institut de Recherche pour le Developpement, UMR Eco and Sols, Montpellier, (France); Amenc, L.; Pernot, C.; Drevon, J. J. [Institut National de la Recherche Agronomique, UMR Eco and Sols, Montpellier (France)

    2013-11-15

    Vigna subterranea, known as voandzou or Bambara groundnut as an African indigenous crop which is often neglected or under-used in African subsistence agriculture. Preliminary research and country perceptions have shown its agronomic and nutritional properties, in particular under atypical climates of arid and tropical areas, and in saline soils. There is a high potential to increase the production by optimizing symbiotic nitrogen fixation (SNF) through effective inoculation even in nitrate-rich environments. In this study, Vigna subterranea inoculated with the reference strain of Bradyrhizobium sp. Vigna CB756 was studied in order to assess the symbiotic fixation potential of different cultivars and landraces of Madagascar, Niger and Mali under low-P and sufficient-P conditions. Six voandzou cultivars inoculated with Bradyrhizobium sp. Vigna CB756, were grown under hydroaeroponic culture for 6 weeks supplied with four phosphorus levels of 15, 30, 75 and 250 {mu}mol plant{sup -1} week{sup -1} in order to establish the response curve of voandzou to P supply, and to induce P deficient and sufficient levels. In another experiment five tolerant cultivars with high SNF and five sensitive cultivars with low SNF were chosen after a preliminary screening of 54 voandzou genotypes, including 50 landraces from Madagascar, Niger and Mali supplied with 2 P levels as P deficient and P sufficient (30 and 75 {mu}mol plant{sup -1} week{sup -1} ) under hydroaeroponic conditions. Genotypic variation in SFN for the high phosphorus use efficiency (PUE) was observed among the 54 cultivars and landraces. Variability was especially related to the nodule and shoot biomass, nodule permeability, nodule respiration and gene phytase expression. Contrasting cultivars and landraces in terms of PUE for SNF were selected for further evaluation under field conditions. (author)

  12. Examining genotypic variation in autism spectrum disorder and its relationship to parental age and phenotype

    Directory of Open Access Journals (Sweden)

    Geier DA

    2016-07-01

    Full Text Available David A Geier,1,2 Janet K Kern,1,3 Lisa K Sykes,2 Mark R Geier1,2 1Research Department, The Institute of Chronic Illnesses, Inc, 2Research Department, CoMeD, Inc, Silver Spring, MD, 3Research Department, CONEM US Autism Research Group, Allen, TX, USA Background: Previous studies on genetic testing of chromosomal abnormalities in individuals diagnosed with autism spectrum disorder (ASD found that ~80% have negative genetic test results (NGTRs and ~20% have positive genetic test results (PGTRs, of which ~7% were probable de novo mutations (PDNMs. Research suggests that parental age is a risk factor for an ASD diagnosis. This study examined genotypic variation in ASD and its relationship to parental age and phenotype.Methods: Phenotype was derived from detailed clinical information, and genotype was derived from high-resolution blood chromosome and blood whole-genome copy number variant genetic testing on a consecutive cohort (born: 1983–2009 of subjects diagnosed with ASD (N=218.Results: Among the subjects examined, 80.3% had NGTRs and 19.7% had PGTRs, of which 6.9% had PDNMs. NGTR subjects were born more recently (the risk of PDNMs decreasing by 12% per more recent birth year and tended to have an increased male–female ratio compared to PDNM subjects. PDNM subjects had significantly increased mean parental age and paternal age at subject’s birth (the risk of a PDNM increasing by 7%–8% per year of parental or paternal age compared to NGTR subjects. PGTR and NGTR subjects showed significant improvements in speech/language/communication with increasing age. PGTR subjects showed significant improvements in sociability, a core feature of an ASD diagnosis, with increasing age, whereas NGTR subjects showed significant worsening in sociability with increasing age.Conclusion: This study helps to elucidate different phenotypic ASD subtypes and may even indicate the need for differential diagnostic classifications. Keywords: genotype, phenotype

  13. Variations in the growth, oil quantity and quality, and mineral nutrients of chamomile genotypes under salinity stress

    Directory of Open Access Journals (Sweden)

    Omid Askari-Khorasgani

    2017-03-01

    Full Text Available Understanding how plants respond to salinity, which severely restricts plant growth, productivity, and survival, is highly important in agriculture. Using three genotypes of Matricaria recutita L. (Shiraz, Ahvaz, and Isfahan with different sensitivity to NaCl, the effect of long-term (about 110 days NaCl treatments (2.5, 6, 9, and 12 dS*m-1 on crop growth, oil quality and quantity, and nutrient variations were investigated to underpin its agricultural management in the future. The adaptation strategy and plant responses were influenced by salinity level, genotype, and genotype × salinity interactions. With higher productivity compared to the Isfahan genotype, the Shiraz and Ahvaz genotypes had efficient Na+ exclusion at root surface as an avoidance strategy; however, under higher NaCl concentration, their higher performance were mainly attributed to the Na+ sequestration in root vacuoles and higher Ca2+/Na+, Mg2+/Na+, and root/shoot ratios as tolerance strategies. The higher oil yield and chamazulene percentage in the Isfahan genotype were not affected by salinity level and were only genotype dependent. Under 12 dS*m-1 NaCl, roots of the Shiraz and Ahvaz genotypes accumulated markedly higher Ca2+ (2.5% and 1.5% respectively and Mg2+ (1.6% and 1.3% respectively, required for membrane stability and chlorophyll synthesis, respectively, more than the Isfahan genotype (0.2% Ca and 0.1% Mg2+ and considerably more than the control plants to keep low concentrations of ion toxicity of Na2+ and Cl- in shoots. Overall, greater salt tolerance found in the Shiraz and Ahvaz genotypes could be due to a variety of mechanisms, including higher efficiency of nutrient uptake (Ca2+, Mg2+, and Zn2+, utilization (N, P, Ca2+, and Mg2+, compartmentation (Na in roots, and maintenance of higher root/shoot ratios. Taking flower and oil yield as well as chamazulene percentage into consideration, the findings recommended cultivation of the Ahvaz genotype in the absence of

  14. V-MitoSNP: visualization of human mitochondrial SNPs

    Directory of Open Access Journals (Sweden)

    Tsui Ke-Hung

    2006-08-01

    Full Text Available Abstract Background Mitochondrial single nucleotide polymorphisms (mtSNPs constitute important data when trying to shed some light on human diseases and cancers. Unfortunately, providing relevant mtSNP genotyping information in mtDNA databases in a neatly organized and transparent visual manner still remains a challenge. Amongst the many methods reported for SNP genotyping, determining the restriction fragment length polymorphisms (RFLPs is still one of the most convenient and cost-saving methods. In this study, we prepared the visualization of the mtDNA genome in a way, which integrates the RFLP genotyping information with mitochondria related cancers and diseases in a user-friendly, intuitive and interactive manner. The inherent problem associated with mtDNA sequences in BLAST of the NCBI database was also solved. Description V-MitoSNP provides complete mtSNP information for four different kinds of inputs: (1 color-coded visual input by selecting genes of interest on the genome graph, (2 keyword search by locus, disease and mtSNP rs# ID, (3 visualized input of nucleotide range by clicking the selected region of the mtDNA sequence, and (4 sequences mtBLAST. The V-MitoSNP output provides 500 bp (base pairs flanking sequences for each SNP coupled with the RFLP enzyme and the corresponding natural or mismatched primer sets. The output format enables users to see the SNP genotype pattern of the RFLP by virtual electrophoresis of each mtSNP. The rate of successful design of enzymes and primers for RFLPs in all mtSNPs was 99.1%. The RFLP information was validated by actual agarose electrophoresis and showed successful results for all mtSNPs tested. The mtBLAST function in V-MitoSNP provides the gene information within the input sequence rather than providing the complete mitochondrial chromosome as in the NCBI BLAST database. All mtSNPs with rs number entries in NCBI are integrated in the corresponding SNP in V-MitoSNP. Conclusion V-MitoSNP is a web

  15. Genotypic Variation in Phosphorus Use Efficiency for Symbiotic Nitrogen Fixation in Cowpea (Vigna Unguiculata)

    Energy Technology Data Exchange (ETDEWEB)

    Andriamananjara, A. [LRI-SRA, Laboratoire des Radio-isotopes, Universite d' Antananarivo, Antananarivo (Madagascar); Abdou, M. Malam [Laboratoire Banques de genes CERRA / KOLLO, Institut National de Recherche Agronomique du Niger (INRAN), Niamey (Niger); Pernot, C.; Drevon, J. J. [Institut National de la Recherche Agronomique, UMR Eco and Sols, Montpellier (France)

    2013-11-15

    Cowpea (Vigna unguiculata L. Walp) is an important food legume. In Africa, it is mostly cultivated under such environmental constraints as drought and pest, and nutrient deficiency. In particular low soil phosphorus strongly limits crop production for the poor farmers with limited access to P fertilizers. Therefore breeding cowpea for the tolerance to P deficiency is considered as an alternative to increase the productivity of traditional cowpea-cereal cropping systems in soils with low P availability. This paper reports cowpea genotypic-variation in P use efficiency for symbiotic nitrogen fixation as a contribution to select tolerant cowpea lines under P deficiency. Eighty cowpea cultivars inoculated with the reference strain of Bradyrhizobium sp. Vigna CB756 were pre-screened as a single replicate under hydroaeroponic culture for 6 weeks under P deficiency versus P sufficiency, namely 15 vs 30 {mu}mol plant{sup -1} week{sup -1}. Large variability in nodule number per plant, and in shoot growth as a function of nodule mass, was observed among the diversity of cowpea lines. From this pre-screening experiment, the 40 cowpea lines showing the highest SNF-potential, i.e. high nodulation linked with high N{sub 2}-dependent growth under P sufficiency, and the most contrasting tolerance to P deficiency, i.e. highest vs lowest N{sub 2}-dependent growth under P deficiency, were grown again in glasshouse hydroaeroponics with 6 replicates. As an illustration of the most contrasting lines, the nodulation was decreased under P deficiency by less than 20% for IT82E-18 whereas by more than 80% for IT95K-1105-5 or SUVITA 2. The variations in nodulation were correlated with variations in growth with mean value of additional growth per unit increase in nodule biomass of 23 g shoot DW g-1 nodule DW under P sufficiency, showing 3 lines showing exceptionally high potential for symbiotic nitrogen fixation, versus 28 g shoot DW g{sup -1} nodule DW showing large variation among lines

  16. Morphological and Genotypic Variations among the Species of the Subgenus Adlerius (Diptera: Psychodidae, Phlebotomus) in Iran.

    Science.gov (United States)

    Zahraei-Ramazani, Alireza; Kumar, Dinesh; Mirhendi, Hossein; Sundar, Shyam; Mishra, Rajnikan; Moin-Vaziri, Vahideh; Soleimani, Hassan; Shirzadi, Mohammad Reza; Jafari, Reza; Hanafi-Bojd, Ahmad Ali; Shahraky, Sodabe Hamedi; Yaghoobi-Ershadi, Mohammad Reza

    2015-06-01

    Female sand flies of subgenus Adlerius are considered as probable vectors of visceral leishmaniasis in Iran. The objective of this study was to determine the morphological and genotypic variations in the populations of this subgenus in the country. Sand flies collected using sticky traps from 17 provinces during 2008-2010. The morphometric measurements were conducted with an Ocular Micrometer. Data was analyzed by SPSS. The Cytb gene was used to estimate population genetic diversity and identify the female specimens. UPGMA phenetic tree was used for DNA haplotypes of Cytb gene. Six species of subgenus Adlerius identified from which one species, P. (Adlerius) kabulensis, is new record. The identification key is provided for males. Results revealed the molecular systematic in the species of subgenus Adlerius and determine the relationship of three females of P. comatus, P. balcanicus and P. halepensis. The positions of three females and the males in the UPGMA tree are correct and the similarities among them confirm our results. The branches of each species are not genetically distinct which justify the overlapping morphological characters among them. Molecular sequencing of Cytb-mtDNA haplotypes can be used for female identification for different species of subgenus Adlerius in Iran.

  17. Morphological and Genotypic Variations among the Species of the Subgenus Adlerius (Diptera: Psychodidae, Phlebotomus in Iran

    Directory of Open Access Journals (Sweden)

    Alireza Zahraei-Ramazani

    2015-10-01

    Full Text Available Background: Female sand flies of subgenus Adlerius are considered as probable vectors of visceral leishmaniasis in Iran. The objective of this study was to determine the morphological and genotypic variations in the populations of this subgenus in the country.Methods: Sand flies collected using sticky traps from 17 provinces during 2008–2010. The morphometric measurements were conducted with an Ocular Micrometer. Data was analyzed by SPSS. The Cytb gene was used to estimate population genetic diversity and identify the female specimens. UPGMA phenetic tree was used for DNA haplotypes of Cytb gene.Results: Six species of subgenus Adlerius identified from which one species, P. (Adlerius kabulensis, is new record. The identification key is provided for males. Results revealed the molecular systematic in the species of subgenus Adlerius and determine the relationship of three females of P. comatus, P. balcanicus and P. halepensis.Conclusion: The positions of three females and the males in the UPGMA tree are correct and the similarities among them confirm our results. The branches of each species are not genetically distinct which justify the overlapping morphological characters among them. Molecular sequencing of Cytb-mtDNA haplotypes can be used for female identification for different species of subgenus Adlerius in Iran.

  18. Evaluation of genotypic variation of broccoli (Brassica oleracea var. italic) in response to selenium treatment.

    Science.gov (United States)

    Ramos, Silvio J; Yuan, Youxi; Faquin, Valdemar; Guilherme, Luiz Roberto G; Li, Li

    2011-04-27

    Broccoli (Brassica oleracea var. italic) fortified with selenium (Se) has been promoted as a functional food. Here, we evaluated 38 broccoli accessions for their capacity to accumulate Se and for their responses to selenate treatment in terms of nutritional qualities and sulfur gene expresion. We found that the total Se content varied with over 2-fold difference among the leaf tissues of broccoli accessions when the plants were treated with 20 μM Na(2)SeO(4). Approximately half of total Se accumulated in leaves was Se-methylselenocysteine and selenomethionine. Transcriptional regulation of adenosine 5'-phosphosulfate sulfurylase and selenocysteine Se-methyltransferase gene expression might contribute to the different levels of Se accumulation in broccoli. Total glucosinolate contents were not affected by the concentration of selenate application for the majority of broccoli accessions. Essential micronutrients (i.e., Fe, Zn, Cu, and Mn) remained unchanged among half of the germplasm. Moreover, the total antioxidant capacity was greatly stimulated by selenate in over half of the accessions. The diverse genotypic variation in Se, glucosinolate, and antioxidant contents among accessions provides the opportunity to breed broccoli cultivars that simultaneously accumulate Se and other health benefit compounds.

  19. Genotype-phenotype variations in five Spanish families with Norrie disease or X-linked FEVR.

    Science.gov (United States)

    Riveiro-Alvarez, Rosa; Trujillo-Tiebas, Maria José; Gimenez-Pardo, Ascension; Garcia-Hoyos, Maria; Cantalapiedra, Diego; Lorda-Sanchez, Isabel; Rodriguez de Alba, Marta; Ramos, Carmen; Ayuso, Carmen

    2005-09-02

    Norrie disease (OMIM 310600) is a rare X-linked disorder characterized by congenital blindness in males. Approximately 40 to 50% of the cases develop deafness and mental retardation. X-linked familial exudative vitreoretinopathy (XL-FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. Both X-linked disorders are due to mutations in the NDP gene, which encodes a 133 amino acid protein called Norrin, but autosomal recessive (AR) and autosomal dominant (AD) forms of FEVR have also been described. In this study, we report the molecular findings and the related phenotype in five Spanish families affected with Norrie disease or XL-FEVR due to mutations of the NDP gene. The study was conducted in 45 subjects from five Spanish families. These families were clinically diagnosed with Norrie disease or similar conditions. The three exons of the NDP gene were analyzed by automatic DNA sequencing. Haplotype analyses were also performed. Two new nonsense mutations, apart from other mutations previously described in the NDP gene, were found in those patients affected with ND or X-linked FEVR. An important genotype-phenotype variation was found in relation to the different mutations of the NDP gene. In fact, the same mutation may be responsible for different phenotypes. We speculate that there might be other molecular factors that interact in the retina with Norrin, which contribute to the resultant phenotypes.

  20. Variations in cerebrospinal fluid viral loads among enterovirus genotypes in patients hospitalized with laboratory-confirmed meningitis due to enterovirus.

    Science.gov (United States)

    Volle, Romain; Bailly, Jean-Luc; Mirand, Audrey; Pereira, Bruno; Marque-Juillet, Stéphanie; Chambon, Martine; Regagnon, Christel; Brebion, Amélie; Henquell, Cécile; Peigue-Lafeuille, Hélène; Archimbaud, Christine

    2014-08-15

    Acute enterovirus (EV) meningitis is a major cause of hospitalization among adults and children. It is caused by multiple EV genotypes assigned to 4 species (EV-A, EV-B, EV-C, and EV-D). We determined viral loads in the cerebrospinal fluid (CSF) of 156 patients of all ages with EV meningitis during a 5-year observational prospective study. The virus strains were genotyped, and their time origin was determined with Bayesian phylogenetic methods. The CSF viral loads ranged between 3.4 and 7.5 log10 copies/mL (median, 4.9 log10 copies/mL). They were higher in neonates than in infants and children (P = .02) but were comparable in adults. Viral loads were associated with EV genotypes (P < .001). The EV strains were identified in 152 of 156 patients and assigned to 23 genotypes within the EV-A and EV-B species. The most frequent genotypes, echoviruses 6 and 30, were associated with different viral loads (P < .001). The highest viral loads were in meningitis cases caused by coxsackievirus A9, B4, and B5 genotypes. Most patients infected by a same genotype were infected by a major virus variant of recent emergence. The variations in CSF viral loads in patients at the onset of EV meningitis are related to genotypic differences in the virus strains involved. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Genetic variation of european maize genotypes (zea mays l. Detected using ssr markers

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2017-01-01

    Full Text Available The SSR molecular markers were used to assess genetic diversity in 40 old European maize genotypes. Ten SSR primers revealed a total of 65 alleles ranging from 4 (UMC1060 to 8 (UMC2002 and UMC1155 alleles per locus with a mean value of 6.50 alleles per locus. The PIC values ranged from 0.713 (UMC1060 to 0.842 (UMC2002 with an average value of 0.810 and the DI value ranged from 0.734 (UMC1060 to 0.848 (UMC2002 with an average value of 0.819. 100% of used SSR markers had PIC and DI values higher than 0.7 that means high polymorphism of chosen markers used for analysis. Probability of identity (PI was low ranged from 0.004 (UMC1072 to 0.022 (UMC1060 with an average of 0.008. A dendrogram was constructed from a genetic distance matrix based on profiles of the 10 maize SSR loci using the unweighted pair-group method with the arithmetic average (UPGMA. According to analysis, the collection of 40 diverse accessions of maize was clustered into four clusters. The first cluster contained nine genotypes of maize, while the second cluster contained the four genotypes of maize. The third cluster contained 5 maize genotypes. Cluster 4 contained five genotypes from Hungary (22.73%, two genotypes from Poland (9.10%, seven genotypes of maize from Union of Soviet Socialist Republics (31.81%, six genotypes from Czechoslovakia (27.27%, one genotype from Slovak Republic (4.55% and one genotype of maize is from Yugoslavia (4.55%. We could not distinguish 4 maize genotypes grouped in cluster 4, (Voroneskaja and Kocovska Skora and 2 Hungarian maize genotypes - Feheres Sarga Filleres and Mindszentpusztai Feher, which are genetically the closest.

  2. The effects of stabilizing and directional selection on phenotypic and genotypic variation in a population of RNA enzymes.

    Science.gov (United States)

    Hayden, Eric J; Bratulic, Sinisa; Koenig, Iwo; Ferrada, Evandro; Wagner, Andreas

    2014-02-01

    The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it determines a population's response to natural selection. Unfortunately, existing theory makes conflicting predictions about how selection shapes these distributions, and very little pertinent experimental evidence exists. Here we study a simple genetic system, an evolving RNA enzyme (ribozyme) in which a combination of high throughput genotyping and measurement of a biochemical phenotype allow us to address this question. We show that directional selection, compared to stabilizing selection, increases the genotypic diversity of an evolving ribozyme population. In contrast, it leaves the variance in the phenotypic trait unchanged.

  3. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    Science.gov (United States)

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions

  4. The vigour of glasshouse roses : scion - rootstock relationships : effects of phenotypic and genotypic variation

    NARCIS (Netherlands)

    Vries, de D.P.

    1993-01-01

    Glasshouse roses commonly are combination plants, consisting of a scion variety and a rootstock of different genotypes. In this study, various environmental and genotypic factors have been investigated that influence the vigour of rootstocks and scion varieties, separately and in graft

  5. Variation in the resistance of some faba bean genotypes to orobanche crenata

    International Nuclear Information System (INIS)

    Abbes, Z.; Sellami, F.; Amri, M.; Kharrat, M.

    2011-01-01

    Four faba bean (Vicia faba L.) genotypes were tested for their reaction to Orobanche crenata Forsk., infestation. Evaluation was carried out for two cropping seasons at the Ariana research station, Tunisia in a field naturally infested with O. crenata and in pot experiments. At maturity, the genotypes Baraca, Giza 429 and the breeding line Bader carried 2-6 times less of number of emerged parasites and 3-7 less of dry weight of emerged parasites than the susceptible cv. Bader. The average yield observed for the three resistant genotypes was two to four-fold higher than the one observed for the susceptible genotype. These resistant genotypes seemed to flower earlier and to show late orobanche establishment which gave them an advantage over the parasite. The genotype Bader, which was selected for its resistance to O. foetida, was resistant to O. crenata, showing that selecting for O. foetida resistance can protect against O. crenata infection. Besides, the two genotypes Baraca and Giza 429 selected for their resistance to O. crenata in Spain and Egypt respectively, do not present tubercle necrosis on their roots, showing that they do not respond similarly to the Tunisian population of O. crenata. These partially resistant genotypes may provide breeders with additional sources of resistance to O. crenata, and can form appropriate material for an integrated control package. (author)

  6. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Genotyping and annotation of Affymetrix SNP arrays

    DEFF Research Database (Denmark)

    Lamy, Philippe; Andersen, Claus Lindbjerg; Wikman, Friedrik

    2006-01-01

    it is indicated that our method is likely to be correct in majority of these cases. In addition, we demonstrate that our method produces more SNPs that are in concordance with Hardy-Weinberg equilibrium than the method by Affymetrix. Finally, we have validated our method on HapMap data and shown...

  8. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Ning; Hua, Hanbai; Eneji, A Egrinya; Li, Zhaohu; Duan, Liusheng; Tian, Xiaoli

    2012-05-02

    A hydroponic culture experiment was conducted to determine genotypic variation in photosynthetic rate and the associated physiological changes in response to potassium (K) deficiency in cotton (Gossypium hirsutum L.) seedlings with contrasting two cotton cultivars in K efficiency. The K-efficient Liaomian18 produced 66.7% more biomass than the K-inefficient NuCOTN99(B) under K deficiency, despite their similar biomass under K sufficiency. Compared with NuCOTN99(B), Liaomian18 showed 19.4% higher net photosynthetic rate (P(n), per unit leaf area) under K deficient solutions and this was associated with higher photochemical efficiency and faster export of soluble sugars from the phloem. The lower net P(n) of NuCOTN99(B) was attributed to higher capacity for nitrate assimilation and lower export of soluble sugars. Furthermore, NuCOTN99(B) showed 38.4% greater ETR/P(n) than Liaomian18 under K deficiency, indicating that more electrons were driven to other sinks. Higher superoxide dismutase (SOD) and lower catalase (CAT) and ascorbate peroxidase (APX) activities resulted in higher levels of reactive oxygen species (ROS; e.g. O(2)(-)and H(2)O(2)) in NuCOTN99(B) relative to Liaomian18. Thus, the K inefficiency of NuCOTN99(B), indicated by lower biomass and net P(n) under K deficiency, was associated with excessively high nitrogen assimilation, lower export of carbon assimilates, and greater ROS accumulation in the leaf. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Elevated temperature is more effective than elevated [CO2 ] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change.

    Science.gov (United States)

    Huang, Guomin; Rymer, Paul D; Duan, Honglang; Smith, Renee A; Tissue, David T

    2015-10-01

    Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. © 2015 John Wiley & Sons Ltd.

  10. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression.

    Directory of Open Access Journals (Sweden)

    Jordan Khankhet

    Full Text Available Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition--dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America.

  11. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression.

    Science.gov (United States)

    Khankhet, Jordan; Vanderwolf, Karen J; McAlpine, Donald F; McBurney, Scott; Overy, David P; Slavic, Durda; Xu, Jianping

    2014-01-01

    Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition--dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America.

  12. SNP interaction pattern identifier (SIPI)

    DEFF Research Database (Denmark)

    Lin, Hui Yi; Chen, Dung Tsa; Huang, Po Yu

    2017-01-01

    Motivation: Testing SNP-SNP interactions is considered as a key for overcoming bottlenecks of genetic association studies. However, related statistical methods for testing SNP-SNP interactions are underdeveloped. Results: We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45...

  13. Expression of Hepatitis B virus surface antigen (HBsAg from genotypes A, D and F and influence of amino acid variations related or not to genotypes on HBsAg detection

    Directory of Open Access Journals (Sweden)

    Natalia M. Araujo

    Full Text Available The impact of hepatitis B virus (HBV genotypes on the sensitivity of surface antigen (HBsAg detection assays has been poorly investigated. Here, plasmids carrying consensus or variant coding sequences for HBV surface proteins from genotypes A, D and F, were constructed. HBsAg levels were evaluated in medium and extracts of transfected CHO cells by a commercial polyclonal-based assay. We show that HBsAg detection values of consensus forms from genotypes D and F were, respectively, 37% and 30% lower than those obtained by genotype A. However, the presence of two single variations, T143M in genotype A, and T125M in genotype D, produced a decrease of 44% and an increase of 34%, respectively, on HBsAg mean values in comparison with their consensus forms. In conclusion, HBsAg detection levels varied among HBV genotypes. However, unique amino acid substitutions not linked to genotypes, such as T125M and T143M described here, should have more implications in HBV immunological diagnostics than the set of variations characteristic of each HBV genotype.

  14. Variation in activity of root extracellular phytase between genotypes of barley

    DEFF Research Database (Denmark)

    Asmar, Mohammad Farouq

    1997-01-01

    Barley genotypes grown in nutrient solution under P nutrient stress and sterile conditions were compared in activity of root-associated and root-released extracellular phytase. The activity of root-associated phytase of all genotypes was about 10 times higher than that of root-released phytase...... and the genotypes performed differently with regard to the activity of the enzymes. The winter barley genotype, Marinka had the highest activity of root-associated extracellular phytase which differed significantly from Alexis and Senate, but not from Regatta. Alexis showed the lowest activity of root......-released extracellular phytase which differed significantly from those of Marinka and Regatta, but not from Senate. Generally, there was a significant correlation between the activity of root-associated and released extracellular phytase....

  15. Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study.

    Science.gov (United States)

    Ansari, Mohd Kafeel Ahmad; Ahmad, Altaf; Umar, Shahid; Zia, Munir Hussain; Iqbal, Muhammad; Owens, Gary

    2015-01-01

    Ten Indian mustard (Brassica juncea L.) genotypes were screened for their nickel (Ni) phytoremediation potential under controlled environmental conditions. All ten genotypes were grown hydroponically in aqueous solution containing Ni concentrations (as nickel chloride) ranging from 0 to 50 μM and changes in plant growth, biomass and total Ni uptake were evaluated. Of the ten genotypes (viz. Agrini, BTO, Kranti, Pusa Basant, Pusa Jai Kisan, Pusa Bahar, Pusa Bold, Vardhan, Varuna, and Vaibhav), Pusa Jai Kisan was the most Ni tolerant genotype accumulating up to 1.7 μg Ni g(-1) dry weight (DW) in its aerial parts. Thus Pusa Jai Kisan had the greatest potential to become a viable candidate in the development of practical phytoremediation technologies for Ni contaminated sites.

  16. Evaluation of the OvineSNP50 chip for use in four South African ...

    African Journals Online (AJOL)

    Relatively rapid and cost-effective genotyping using the OvineSNP50 chip holds great promise for the South African sheep industry and research partners. However, SNP ascertainment bias may influence inferences from the genotyping results of South African sheep breeds. Therefore, samples from Dorper, Namaqua ...

  17. Correlation of maturity groups with seed composition in soybeans, as influenced by genotypic variation.

    Directory of Open Access Journals (Sweden)

    Maestri, Damián M.

    1998-12-01

    Full Text Available Seeds of 19 soybean cultivars (Glycine max (L. Merrill with maturity groups V, VI or VII were analyzed for proximate composition, fatty acids and sterols. Protein, oil, carbohydrate and ash contents varied between 344-463 g kg-1, 178-233 g kg-1, 234-338 g kg-1, and 40.0-49.3 g kg-1 of dry matter, respectively. Fatty acid profiles revealed that the major acids were palmitic (9.2-12.5%, oleic (17.7-22.1% and linoleic (53.6-56.9%. Linolenic acid ranged from 8.6 to 10.4%. Sitosterol (48.1-56.8% was the main component of the sterol fraction, followed by campesterol (18.4-21.7% and stigmasterol (13.4-18.0%. Statistically significant differences between genotypes were found for the majority of parameters evaluated, but there are not significant variations among maturity groups.

    Se analizaron la humedad, contenido en proteínas, carbohidratos, grasas y cenizas, y las composiciones en ácidos grasos y esteróles de las semillas de 19 cultivares de soja (Glycine max (L. Merrill con grupos de madurez V, VI o VIl. Los contenidos de proteínas, aceites, carbohidratos y cenizas variaron entre 344-463 g kg-1, 178-233 g kg-1, 234-338 g kg-1 y 40.0-49.3 g kg-1 de materia seca, respectivamente. Los ácidos grasos mayoritarios fueron palmítico (9.2-12.5%, oleico (17.7-22.1% y linoleico (53.6-56.9%. El porcentaje de ácido linolénico varió desde 8.6 hasta 10.4%. El principal componente de la fracción de esteroles del aceite fue el sitosterol (48.1-56.8%, seguido por el campesterol (18.4-21.7% y el estigmasterol (13.4-18.0%. Se encontraron diferencias estadísticamente significativas entre los genotipos para la mayoría de los parámetros evaluados, pero no hubo variaciones significativas entre grupos de madurez.

  18. Genotypic variation in transpiration efficiency, carbon-isotope discrimination and carbon allocation during early growth in sunflower

    International Nuclear Information System (INIS)

    Virgona, J.M.; Farquhar, G.D.; Hubick, K.T.; Rawson, H.M.; Downes, R.W.

    1990-01-01

    Transpiration efficiency of dry matter production (W), carbon-isotope discrimination (Δ) and dry matter partitioning were measured on six sunflower (Helianthus annuus L.) genotypes grown for 32 days in a glasshouse. Two watering regimes, one well watered (HW) and the other delivering half the water used by the HW plants (LW), were imposed. Four major results emerged from this study: Three was significant genotypic variation in W in sunflower and this was closely reflected in Δ for both watering treatments; the low watering regime caused a decrease in Δ but no change in W; nonetheless the genotypic ranking for either Δ or W was not significantly altered by water stress; a positive correlation between W and biomass accumulation occurred among genotypes of HW plants; ρ, the ratio of total plant carbon content to leaf area, was positively correlated with W and negatively correlated with Δ. These results are discussed with reference to the connection between transpiration efficiency and plant growth, indicating that Δ can be used to select for W among young sunflower plants. However, selection for W may be accompanied by changes in other important plant growth characteristics such as ρ. 19 refs., 4 figs

  19. Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Haigang Qi

    Full Text Available Single nucleotide polymorphisms (SNPs are widely used in genetics and genomics research. The Pacific oyster (Crassostrea gigas is an economically and ecologically important marine bivalve, and it possesses one of the highest levels of genomic DNA variation among animal species. Pacific oyster SNPs have been extensively investigated; however, the mechanisms by which these SNPs may be used in a high-throughput, transferable, and economical manner remain to be elucidated. Here, we constructed an oyster 190K SNP array using Affymetrix Axiom genotyping technology. We designed 190,420 SNPs on the chip; these SNPs were selected from 54 million SNPs identified through re-sequencing of 472 Pacific oysters collected in China, Japan, Korea, and Canada. Our genotyping results indicated that 133,984 (70.4% SNPs were polymorphic and successfully converted on the chip. The SNPs were distributed evenly throughout the oyster genome, located in 3,595 scaffolds with a length of ~509.4 million; the average interval spacing was 4,210 bp. In addition, 111,158 SNPs were distributed in 21,050 coding genes, with an average of 5.3 SNPs per gene. In comparison with genotypes obtained through re-sequencing, ~69% of the converted SNPs had a concordance rate of >0.971; the mean concordance rate was 0.966. Evaluation based on genotypes of full-sib family individuals revealed that the average genotyping accuracy rate was 0.975. Carrying 133 K polymorphic SNPs, our oyster 190K SNP array is the first commercially available high-density SNP chip for mollusks, with the highest throughput. It represents a valuable tool for oyster genome-wide association studies, fine linkage mapping, and population genetics.

  20. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    Science.gov (United States)

    Roffler, Gretchen H.; Amish, Stephen J.; Smith, Seth; Cosart, Ted F.; Kardos, Marty; Schwartz, Michael K.; Luikart, Gordon

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.

  1. Increased risk of polycystic ovary syndrome (PCOS) associated with CC genotype of miR-146a gene variation.

    Science.gov (United States)

    Ebrahimi, Seyed Omar; Reiisi, Somayeh; Parchami Barjui, Shahrbanou

    2018-04-11

    Polycystic ovary syndrome (PCOS) is an endocrinopathy in reproductive-age women believed to be affected by several genetics and environmental factors or both. Different miRNAs are one of such genetic factors that their associations with PCOS have been implicated. For instance, miR-146a that is well known for strongly regulating the immune response and inflammation was upregulated in serum plasma, follicular fluid and granulosa cells of PCOS patients. Different studies have shown that genetic changes in pre-miRNA can cause change in the expression or biological function of mature miRNA. Therefore, the main aim of this study was to investigate the association of miR-146a gene variation (rs2910164) with the susceptibility to PCOS. This study consists of 180 patients with PCOS and 192 healthy women matched by age and geographical region. Genotyping were determined by using PCR-RFLP in all subjects. The genotype frequency and allele distributions of all subjects were evaluated using Fisher's exact test directed by SPSS v.20. The genotype and allele frequencies of the miR-146a polymorphism (rs2910164) significantly differ between PCOS and healthy controls. The frequencies of CC genotype (p = .054) and 'C' allele (p = .0001) of the miR-146a variant indicated a significant incidence in cases compared to controls. Such association was obtained in co-dominant (OR = 3.16) and dominant (OR = 2.29) models. Result of this study can be proposed that women with miR-146a variation are at a higher risk for developing PCOS, which can be due to up-regulation of miR-146a.

  2. Density and depth variations of Daphnia multilocus genotypes during a summer period in Lake Maarsseveen

    NARCIS (Netherlands)

    Ringelberg, J.; van Gool, E.; Brehm, Michaela

    2004-01-01

    The genotype composition of a Daphnia population complex during a summer period in Lake Maarsseveen (The Netherlands) was determined by allozyme analysis. The depth distribution, diel vertical migration and several parameters of the total population were measured. Young-of-the-year (0+) perch (Perca

  3. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    NARCIS (Netherlands)

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic

  4. Effect of gamma irradiation in vitro bulbiets storage ability and genetic variation of six garlic genotypes

    International Nuclear Information System (INIS)

    El-Sayed, S.F.; Gharib, A.A.; El-Shamy, M.R.; Abd El-Wadod, N.A.

    2010-01-01

    This investigation was carried out in the Tissue Culture Laboratory of Potato and Vegetatively Propagated Crops, Vegetable Research Department, Agricultural Research Center (A.R.C.), during the period of 2005-2008 to study the effect of different doses of gamma rays (0, 3, 5, 8, 10, 12 and 14 Gy) on the in vitro bulblets production from shoot basal plate (Sbp) explants of six garlic genotypes including three cultivars (Balady, American and Omani) and three clones (Sids-40, EgaSeedl and EgaSeed2) on a bulblets production medium (MS + 120 g/1 sucrose + 5 g/l activated charcoal + 0.1 mg BA/1). The present investigation also studied the storage ability of the in vitro produced bulblets stored in a growth chamber at 25° C during four months of storage. The random amplified polumorphic DNA (RAPD) analysis confirmed the genetic background of irradiated garlic genotypes. All garlic genotypes were able to produce bulblets from Sbp explants. At the end of storage period (4 months) the bulblets were healthy and suitable for cultivation in the field. RAPD analysis indicated that the six garlic genotypes are different in the number of bands and this was attributed to the gamma ray doses

  5. Genotype variation and capsular serotypes of Porphyromonas gingivalis from chronic periodontitis and periodontal abscesses

    NARCIS (Netherlands)

    Yoshino, Takashi; Laine, Marja L.; van Winkelhoff, Arie Jan; Dahlen, Gunnar

    2007-01-01

    Porphyromonas gingivalis is considered an important pathogen in periodontal disease. While this organism expresses a number of virulence factors, no study combining different virulence polymorphisms has, so far, been conducted. The occurrence of combined virulence (Cv) genotypes in 62 isolates of P.

  6. A High-Density SNP Genetic Linkage Map and QTL Analysis of Growth-Related Traits in a Hybrid Family of Oysters (Crassostrea gigas × Crassostrea angulata Using Genotyping-by-Sequencing

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    2016-05-01

    Full Text Available Oysters are among the most important species in global aquaculture. Crassostrea gigas, and its subspecies C. angulata, are the major cultured species. To determine the genetic basis of growth-related traits in oysters, we constructed a second-generation linkage map from 3367 single-nucleotide polymorphisms (SNPs based on genotyping-by-sequencing, genotyped from a C. gigas × C. angulata hybrid family. These 3367 SNPs were distributed on 1695 markers, which were assigned to 10 linkage groups. The genetic linkage map had a total length of 1084.3 cM, with an average of 0.8 cM between markers; it thus represents the densest genetic map constructed for oysters to date. Twenty-seven quantitative trait loci (QTL for five growth-related traits were detected. These QTL could explain 4.2–7.7% (mean = 5.4% of the phenotypic variation. In total, 50.8% of phenotypic variance for shell width, 7.7% for mass weight, and 34.1% for soft tissue weight were explained. The detected QTL were distributed among eight linkage groups, and more than half (16 were concentrated within narrow regions in their respective linkage groups. Thirty-eight annotated genes were identified within the QTL regions, two of which are key genes for carbohydrate metabolism. Other genes were found to participate in assembly and regulation of the actin cytoskeleton, signal transduction, and regulation of cell differentiation and development. The newly developed high-density genetic map, and the QTL and candidate genes identified provide a valuable genetic resource and a basis for marker-assisted selection for C. gigas and C. angulata.

  7. Study on genotypic variation for ethanol production from sweet sorghum juice

    Energy Technology Data Exchange (ETDEWEB)

    Ratnavathi, C.V.; Suresh, K.; Kumar, B.S. Vijay; Pallavi, M.; Komala, V.V.; Seetharama, N. [Directorate of Sorghum Research, Rajendranagar, Hyderabad 500030, Andhra Pradesh (India)

    2010-07-15

    Sugarcane molasses is the main source for ethanol production in India. Sweet sorghum with its juicy stem containing sugars equivalent to that of sugarcane is a very good alternative for bio-ethanol production to meet the energy needs of the country. Sweet sorghum is drought resistant, water logging resistant and saline-alkaline tolerant. Growing sweet sorghum for ethanol production is relatively easy and economical and ethanol produced from sweet sorghum is eco-friendly. In view of this, it is important to identify superior genotypes for ethanol production in terms of percent juice brix, juice extractability, total fermentable sugars, ethanol yield and fermentation efficiency. This paper presents the study on the variability observed for the production of ethanol by various sweet sorghum genotypes in a laboratory fermentor. Five Sweet Sorghum (Sorghum bicolor L. Moench) genotypes were evaluated for ethanol production from stalk juice (Keller, SSV 84, Wray, NSSH 104 and BJ 248). Sweet sorghum juice differs from cane juice mainly in its higher content of starch and aconitic acid. Data were collected for biomass yield; stalk sugar yield and ethanol production in five genotypes. Maximum ethanol production of 9.0%w/v ethanol was obtained with Keller variety (20% sugar concentration was used), and decreased for other genotypes. A distiller's strain of Saccharomyces cerevisiae (gifted by Seagram Distilleries Ltd.) was employed for fermentation. The fermentation efficiency (FE) was 94.7% for this strain. High biomass of yeast was obtained with BJ 248 variety. When the similar experiments were conducted with unsterile sweet sorghum juice (15% sugar concentration) 6.47%w/v ethanol was produced. (author)

  8. A Set of Plastid Loci for Use in Multiplex Fragment Length Genotyping for Intraspecific Variation in Pinus (Pinaceae

    Directory of Open Access Journals (Sweden)

    Austin M. Wofford

    2014-04-01

    Full Text Available Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences ofycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group.

  9. A set of plastid loci for use in multiplex fragment length genotyping for intraspecific variation in Pinus (Pinaceae)1

    Science.gov (United States)

    Wofford, Austin M.; Finch, Kristen; Bigott, Adam; Willyard, Ann

    2014-01-01

    • Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR) loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. • Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences of ycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. • Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. • Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group. PMID:25202625

  10. SNP-SNP interactions in breast cancer susceptibility

    International Nuclear Information System (INIS)

    Onay, Venüs Ümmiye; Ozcelik, Hilmi; Briollais, Laurent; Knight, Julia A; Shi, Ellen; Wang, Yuanyuan; Wells, Sean; Li, Hong; Rajendram, Isaac; Andrulis, Irene L

    2006-01-01

    Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described

  11. SNP-SNP interactions in breast cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Wang Yuanyuan

    2006-05-01

    Full Text Available Abstract Background Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2 are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. Methods In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR principle. Results None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082A], cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val], cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln], and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val] pathways. Conclusion The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their

  12. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance.

    Science.gov (United States)

    Ohsumi, Akihiro; Hamasaki, Akihiro; Nakagawa, Hiroshi; Yoshida, Hiroe; Shiraiwa, Tatsuhiko; Horie, Takeshi

    2007-02-01

    Identification of physiological traits associated with leaf photosynthetic rate (Pn) is important for improving potential productivity of rice (Oryza sativa). The objectives of this study were to develop a model which can explain genotypic variation and ontogenetic change of Pn in rice under optimal conditions as a function of leaf nitrogen content per unit area (N) and stomatal conductance (g(s)), and to quantify the effects of interaction between N and g(s) on the variation of Pn. Pn, N and g(s) were measured at different developmental stages for the topmost fully expanded leaves in ten rice genotypes with diverse backgrounds grown in pots (2002) and in the field (2001 and 2002). A model of Pn that accounts for carboxylation and CO diffusion processes, and assumes that the ratio of internal conductance to g(s) is constant, was constructed, and its goodness of fit was examined. Considerable genotypic differences in Pn were evident for rice throughout development in both the pot and field experiments. The genotypic variation of Pn was correlated with that of g(s) at a given stage, and the change of Pn with plant development was closely related to the change of N. The variation of g(s) among genotypes was independent of that of N. The model explained well the variation in Pn of the ten genotypes grown under different conditions at different developmental stages. Conclusions The response of Pn to increased N differs with g(s), and the increase in Pn of genotypes with low g(s) is smaller than that of genotypes with high g(s). Therefore, simultaneous improvements of these two traits are essential for an effective breeding of rice genotypes with increased Pn.

  13. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  14. Genotypic variation in response to salinity in a new sexual germplasm of Cenchrus ciliaris L.

    Science.gov (United States)

    Quiroga, Mariana; Tommasino, Exequiel; Griffa, Sabrina; Ribotta, Andrea; Colomba, Eliana López; Carloni, Edgardo; Grunberg, Karina

    2016-05-01

    As part of a breeding program for new salt-tolerant sexual genotypes of Cenchrus ciliaris L., here we evaluated the salt-stress response of two new sexual hybrids, obtained by controlled crosses, at seedling and germination stages. A seedling hydroponic experiment with 300 mM NaCl was performed and physiological variables and growth components were evaluated. While salt-treated sexual material did not show a decrease in productivity with respect to control plants, a differential response in some physiological characteristics was observed. Sexual hybrid 1-9-1 did not suffer oxidative damage and its proline content did not differ from that of control treatment. By contrast, sexual hybrid 1-7-11 suffered oxidative damage and accumulated proline, maintaining its growth under saline stress. At the germination stage, sexual hybrid 1-9-1 presented the highest Germination Rate Index at the maximum NaCl concentration assayed, suggesting an ecological advantage in this genotype. These new sexual resources are promising maternal parental with differential response to salt and could be incorporated in a breeding program of C. ciliaris in the search of new genotypes tolerant to salinity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. SNP Data Quality Control in a National Beef and Dairy Cattle System and Highly Accurate SNP Based Parentage Verification and Identification

    Directory of Open Access Journals (Sweden)

    Matthew C. McClure

    2018-03-01

    Full Text Available A major use of genetic data is parentage verification and identification as inaccurate pedigrees negatively affect genetic gain. Since 2012 the international standard for single nucleotide polymorphism (SNP verification in Bos taurus cattle has been the ISAG SNP panels. While these ISAG panels provide an increased level of parentage accuracy over microsatellite markers (MS, they can validate the wrong parent at ≤1% misconcordance rate levels, indicating that more SNP are needed if a more accurate pedigree is required. With rapidly increasing numbers of cattle being genotyped in Ireland that represent 61 B. taurus breeds from a wide range of farm types: beef/dairy, AI/pedigree/commercial, purebred/crossbred, and large to small herd size the Irish Cattle Breeding Federation (ICBF analyzed different SNP densities to determine that at a minimum ≥500 SNP are needed to consistently predict only one set of parents at a ≤1% misconcordance rate. For parentage validation and prediction ICBF uses 800 SNP (ICBF800 selected based on SNP clustering quality, ISAG200 inclusion, call rate (CR, and minor allele frequency (MAF in the Irish cattle population. Large datasets require sample and SNP quality control (QC. Most publications only deal with SNP QC via CR, MAF, parent-progeny conflicts, and Hardy-Weinberg deviation, but not sample QC. We report here parentage, SNP QC, and a genomic sample QC pipelines to deal with the unique challenges of >1 million genotypes from a national herd such as SNP genotype errors from mis-tagging of animals, lab errors, farm errors, and multiple other issues that can arise. We divide the pipeline into two parts: a Genotype QC and an Animal QC pipeline. The Genotype QC identifies samples with low call rate, missing or mixed genotype classes (no BB genotype or ABTG alleles present, and low genotype frequencies. The Animal QC handles situations where the genotype might not belong to the listed individual by identifying: >1 non

  16. Phenotypic and genotypic variation of Phragmites australis: Comparison of populations in two human-made lakes of different age and history

    Czech Academy of Sciences Publication Activity Database

    Čurn, V.; Kubátová, B.; Vávřová, P.; Křiváčková; Suchá, O.; Čížková, Hana

    2007-01-01

    Roč. 86, - (2007), s. 321-330 ISSN 0304-3770 R&D Projects: GA ČR(CZ) GA526/06/0276 Institutional research plan: CEZ:AV0Z60870520 Keywords : Phragmites * Phenotypic variation * Genotypic variation * Lake * Clone Subject RIV: EF - Botanics Impact factor: 1.497, year: 2007

  17. Genotypic variations in photosynthetic rate and respiratory losses in some grain legumes

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, R K; Saxena, M C; Kalubarme, M H; Singh, V B; Prasad, V V.S.S. [Gobind Ballabh Pant Univ. of Agriculture and Technology, Pantnagar (India)

    1976-01-01

    The relative rate of photosynthesis in 12 genotypes of Cajanus cajan as measured by /sup 14/CO/sub 2/ fixation, ranged from 100 percent in Pant A-2 to 126 percent in UPA 120. /sup 14/CO/sub 2/ fixation was not related to specific leaf weight. Respiratory losses in the 20-day period after exposure were 63 and 51 percent respectively, in seedlings of UPA-120 and Prabhat cultivars. The relative rate of photosynthesis in 13 genotypes of Vigna aureus ranged from 100 percent in LM-646 to 196 percent in LM-205. PS-16 also showed high photosynthetic rate. The translocation of /sup 14/C from leaves, stems and petioles to reproductive organs was also determined. Baisakhi accumulated larger proportion of total /sup 14/C in grain and showed lower respiratory loss than PS-16. The relative rate of photosynthesis in 20 Cicer arietinum cultivars ranged from 100 percent in S-330-1 to 224 percent in L-550. There was a considerable contribution from pod and stem towards total photosynthesis.

  18. Association between SNP and haplotypes in PPARGCl and adiponectin genes and bone mineral density in Chinese nuclear families

    Institute of Scientific and Technical Information of China (English)

    Zhen-lin ZHANG; Jin-wei HE; Yue-juan QIN; Yun-qiu HU; Miao LI; Yu-juan LIU; Hao ZHANG; Wei-wei HU

    2007-01-01

    Aim: To assess the contribution of single nucleotide polymorphisms (SNP) and haplotypes in the peroxisome proliferator-activated receptor-γ co-activator-1(PPARGC1) and adiponectin genes to normal bone mineral density (BMD) variation in healthy Chinese women and men. Methods: We performed population-based (ANOVA) and family-based (quantitative trait locus transmission disequi-librium test) association studies of PPARGC1 and adiponectin genes. SNP in the 2 genes were genotyped. BMD was measured using dual-energy X-ray absorptiometry in the lumbar spine and hip in 401 nuclear families with a total of1260 subjects, including 458 premenopausal women, 20-40 years of age; 401 post-menopausal women (mothers), 43-74 years of age; and 401 men (fathers), 49-76years of age. Results: Significant within-family association was found between the Thr394Thr polymorphism in the PPGAGC1 gene and peak BMD in the femoral neck (P=0.026). Subsequent permutations were in agreement with this significant within-family association result (P=0.016), but Thr394Thr SNP only accounted for0.7% of the variation in femoral neck peak BMD. However, no significant within-family association was detected between each SNP in the adiponect in gene and peak BMD. Although no significant association was found between BMD and SNP in the PPARGC1 and adiponectin genes in both men and postmenopausal women, haplotype 2 (T-T) in the adiponect in gene was associated with lumbar spine BMD in postmenopausal women (P=0.019). Conclusion: Our findings sug-gest that Thr394Thr SNP in the PPARGC1 gene was associated with peak BMD in the femoral neck in Chinese women. Confirmation of our results is needed in other populations and with more functional markers within and flanking the PPARGC1 or adiponectin genes region.

  19. Population structure of Atlantic Mackerel inferred from RAD-seq derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection

    KAUST Repository

    Rodrí guez-Ezpeleta, Naiara; Bradbury, Ian R.; Mendibil, Iñ aki; Á lvarez, Paula; Cotano, Unai; Irigoien, Xabier

    2016-01-01

    : the maximum number of mismatches allowed to merge reads into a locus and the relatedness of the individuals used for genotype calling and SNP selection. Our study resolves the population structure of the Atlantic mackerel, but, most importantly, provides

  20. Compression and fast retrieval of SNP data.

    Science.gov (United States)

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-11-01

    The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

    Science.gov (United States)

    da Costa, Ricardo M F; Lee, Scott J; Allison, Gordon G; Hazen, Samuel P; Winters, Ana; Bosch, Maurice

    2014-10-01

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample

  2. Effects of COMT, DRD2, BDNF, and APOE Genotypic Variation on Treatment Efficacy and Cognitive Side Effects of Electroconvulsive Therapy.

    Science.gov (United States)

    Bousman, Chad A; Katalinic, Natalie; Martin, Donel M; Smith, Deidre J; Ingram, Anna; Dowling, Nathan; Ng, Chee; Loo, Colleen K

    2015-06-01

    The aim of this study was to explore the main and interaction effects of the COMT Val158Met, DRD2 C957T, BDNF Val66Met, and APOE polymorphisms on treatment efficacy and cognitive side effects of electroconvulsive therapy (ECT). A total of 117 adult inpatients with a diagnosis of major depressive disorder recruited from 3 hospitals were administered the Montgomery-Äsberg Depression Rating Scale and a cognitive battery assessing global cognition, anterograde memory, executive function, speed and concentration, as well as retrograde memory at baseline and after ECT treatment. DRD2 C957T heterozygotes had 3.7 (95% confidence interval, 1.13-12.25; P = 0.032) greater odds of remission compared with CC homozygotes. Among the men, COMT Val/Val carriers had greater depressive symptom reduction compared with Met/Met carriers (Montgomery-Äsberg Depression Rating Scale percentage of reduction, 76% vs 35%; P = 0.020) but not among the women (P = 0.903) after ECT. For cognitive outcomes, an interaction effect on anterograde memory was observed between the DRD2 and BDNF polymorphisms (P = 0.016), in which carriers of the DRD2 TT and BDNF Val/Val genotypes had significantly less decline in anterograde performance than those that carried the TC and Met-allele (P = 0.001) or CC and Met-allele (P = 0.003) genotypes. However, no results withstood correction for multiple comparisons. These observations provide preliminary evidence supporting an association between common functional genotypic variation and ECT efficacy as well as anterograde memory side effects after ECT. Validation of these findings is required before firm conclusions can be made and clinical utility can be assessed.

  3. Variation in the vernalization response of a geographically diverse collection of timothy genotypes

    DEFF Research Database (Denmark)

    Fiil, Alice; Jensen, Louise Bach; Fjellheim, Siri

    2011-01-01

    Timothy (Phleum pratense L.) has earlier been characterized as a long-day plant, which neither requires vernalization to induce flowering nor shows a vernalization response. Variation in flowering time of timothy has thus been ascribed to differences in critical photoperiods. We studied vernaliza......Timothy (Phleum pratense L.) has earlier been characterized as a long-day plant, which neither requires vernalization to induce flowering nor shows a vernalization response. Variation in flowering time of timothy has thus been ascribed to differences in critical photoperiods. We studied...

  4. Study on Climatic Variation and Its Effect on Vegetable Type Soybean Genotypes at Khumaltar, Lalitpur in the Last Ten Years

    Directory of Open Access Journals (Sweden)

    Santosh Raj Tripathi

    2015-04-01

    Full Text Available Soybean (Glycine max L. Merril is widely grown in the mid hills as intercrop with maize or in paddy bunds, while it is gaining popularity as sole crop in terai and inner terai. Mean temperature at Khumaltar during soybean growing period was mostly fluctuating; but we observed an increasing trend in temperature. Amount of rainfall was not changed dramatically but number of rainy days was decreased during study period. Rainfall during germination time increase soil moisture which also increase germination and found higher early stand. Days from sowing to 50% flowering and 90% maturity were short in the case of higher minimum temperature and low rainfall. Among the genotypes, AGS-377, AGS-378, AGS-379 and Tarkari Bhattmas-1 were more sensitive. However, seed yield decreased in the case of higher temperatures and low rainfall. Cool night temperatures and high moisture increased disease incidence in soybean which, eventually reduced yield. In last three years, plant suffered from moisture stress during early vegetative stage and high moisture during late vegetative stage which reduced seed yield and seed weight. In conclusion, we found that genotypes like AGS- 360, Sathiya and Tarkari Bhatmas-1 are very sensitive to climatic variation.

  5. Phenotypic and Genotypic Variation in Czech Forage, Ornamental and Wild Populations of Reed Canarygrass

    Czech Academy of Sciences Publication Activity Database

    Anderson, N. O.; Kávová, T.; Bastlová, D.; Curn, V.; Kubátová, B.; Edwards, K. R.; Januš, V.; Květ, Jan

    2016-01-01

    Roč. 56, č. 5 (2016), s. 2421-2435 ISSN 0011-183X Institutional support: RVO:86652079 Keywords : grass phalaris-arundinacea * invasive grass * constructed wetlands * genetic-variation * north-america * growth * plants * l. * competition * vegetation Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.629, year: 2016

  6. Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation

    Science.gov (United States)

    Harrison, Abby; Lemey, Philippe; Hurles, Matthew; Moyes, Chris; Horn, Susanne; Pryor, Jan; Malani, Joji; Supuri, Mathias; Masta, Andrew; Teriboriki, Burentau; Toatu, Tebuka; Penny, David; Rambaut, Andrew; Shapiro, Beth

    2011-01-01

    Hepatitis B virus (HBV) genomes are small, semi-double-stranded DNA circular genomes that contain alternating overlapping reading frames and replicate through an RNA intermediary phase. This complex biology has presented a challenge to estimating an evolutionary rate for HBV, leading to difficulties resolving the evolutionary and epidemiological history of the virus. Here, we re-examine rates of HBV evolution using a novel data set of 112 within-host, transmission history (pedigree) and among-host genomes isolated over 20 years from the indigenous peoples of the South Pacific, combined with 313 previously published HBV genomes. We employ Bayesian phylogenetic approaches to examine several potential causes and consequences of evolutionary rate variation in HBV. Our results reveal rate variation both between genotypes and across the genome, as well as strikingly slower rates when genomes are sampled in the Hepatitis B e antigen positive state, compared to the e antigen negative state. This Hepatitis B e antigen rate variation was found to be largely attributable to changes during the course of infection in the preCore and Core genes and their regulatory elements. PMID:21765983

  7. Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.).

    Science.gov (United States)

    Kalt, W; Ryan, D A; Duy, J C; Prior, R L; Ehlenfeldt, M K; Vander Kloet, S P

    2001-10-01

    Recent interest in the possible protective effects of dietary antioxidant compounds against human degenerative disease has prompted investigation of foods such as blueberries (Vaccinium sp.), which have a high antioxidant capacity. Fruit obtained from genotypes of highbush blueberries (Vaccinium corymbosum L.) and lowbush blueberries (Vaccinium angustifolium Aiton) were analyzed for their antioxidant capacity, their content of anthocyanins, and total phenolic compounds, to evaluate the intraspecific and interspecific variation in these parameters. The method of extraction influenced the composition of fruit extracts; the highest anthocyanin and total phenolic contents and antioxidant capacity were found in extracts obtained using a solvent of acidified aqueous methanol. Regardless of the method, lowbush blueberries were consistently higher in anthocyanins, total phenolics, and antioxidant capacity, compared with highbush blueberries. There was no relationship between fruit size and anthocyanin content in either species.

  8. Two-temperature LATE-PCR endpoint genotyping

    Directory of Open Access Journals (Sweden)

    Reis Arthur H

    2006-12-01

    Full Text Available Abstract Background In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic composition. The resulting method corrects for product yield variations among replicate amplification reactions, permits resolution of homozygous and heterozygous genotypes based on endpoint fluorescence signal intensities, and readily identifies imbalanced allele ratios equivalent to those arising from gene/chromosomal duplications. Furthermore, the use of only a single colored probe for genotyping enhances the multiplex detection capacity of the assay. Results Two-Temperature LATE-PCR endpoint genotyping combines Linear-After-The-Exponential (LATE-PCR (an advanced form of asymmetric PCR that efficiently generates single-stranded DNA and mismatch-tolerant probes capable of detecting allele-specific targets at high temperature and total single-stranded amplicons at a lower temperature in the same reaction. The method is demonstrated here for genotyping single-nucleotide alleles of the human HEXA gene responsible for Tay-Sachs disease and for genotyping SNP alleles near the human p53 tumor suppressor gene. In each case, the final probe signals were normalized against total single-stranded DNA generated in the same reaction. Normalization reduces the coefficient of variation among replicates from 17.22% to as little as 2.78% and permits endpoint genotyping with >99.7% accuracy. These assays are robust because they are consistent over a wide range of input DNA concentrations and give the same results regardless of how many cycles of linear amplification have elapsed. The method is also sufficiently powerful to distinguish between samples with a 1:1 ratio of two alleles from samples comprised of

  9. Global Variation of Human Papillomavirus Genotypes and Selected Genes Involved in Cervical Malignancies.

    Science.gov (United States)

    Husain, R S Akram; Ramakrishnan, V

    2015-01-01

    Carcinoma of the cervix is ranked second among the top 5 cancers affecting women globally. Parallel to other cancers, it is also a complex disease involving numerous factors such as human papillomavirus (HPV) infection followed by the activity of oncogenes and environmental factors. The incidence rate of the disease remains high in developing countries due to lack of awareness, followed by mass screening programs, various socioeconomic issues, and low usage of preventive vaccines. Over the past 3 decades, extensive research has taken place in cervical malignancy to elucidate the role of host genes in the pathogenesis of the disease, yet it remains one of the most prevalent diseases. It is imperative that recent genome-wide techniques be used to determine whether carcinogenesis of oncogenes is associated with cervical cancer at the molecular level and to translate that knowledge into developing diagnostic and therapeutic tools. The aim of this study was to discuss HPV predominance with their genotype distribution worldwide, and in India, as well as to discuss the newly identified oncogenes related to cervical cancer in current scenario. Using data from various databases and robust technologies, oncogenes associated with cervical malignancies were identified and are explained in concise manner. Due to the advent of recent technologies, new candidate genes are explored and can be used as precise biomarkers for screening and developing drug targets. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Identification of Mendelian inconsistencies between SNP and pedigree Information of Sibs

    NARCIS (Netherlands)

    Calus, M.P.L.; Mulder, H.A.; Bastiaansen, J.W.M.

    2011-01-01

    Background Using SNP genotypes to apply genomic selection in breeding programs is becoming common practice. Tools to edit and check the quality of genotype data are required. Checking for Mendelian inconsistencies makes it possible to identify animals for which pedigree information and genotype

  11. MDM2 SNP309 and SNP285 Act as Negative Prognostic Markers for Non-small Cell Lung Cancer Adenocarcinoma Patients

    Science.gov (United States)

    Deben, Christophe; Op de Beeck, Ken; Van den Bossche, Jolien; Jacobs, Julie; Lardon, Filip; Wouters, An; Peeters, Marc; Van Camp, Guy; Rolfo, Christian; Deschoolmeester, Vanessa; Pauwels, Patrick

    2017-01-01

    Objectives: Two functional polymorphisms in the MDM2 promoter region, SNP309T>G and SNP285G>C, have been shown to impact MDM2 expression and cancer risk. Currently available data on the prognostic value of MDM2 SNP309 in non-small cell lung cancer (NSCLC) is contradictory and unavailable for SNP285. The goal of this study was to clarify the role of these MDM2 SNPs in the outcome of NSCLC patients. Materials and Methods: In this study we genotyped SNP309 and SNP285 in 98 NSCLC adenocarcinoma patients and determined MDM2 mRNA and protein levels. In addition, we assessed the prognostic value of these common SNPs on overall and progression free survival, taking into account the TP53 status of the tumor. Results and Conclusion: We found that the SNP285C allele, but not the SNP309G allele, was significantly associated with increased MDM2 mRNA expression levels (p = 0.025). However, we did not observe an association with MDM2 protein levels for SNP285. The SNP309G allele was significantly associated with the presence of wild type TP53 (p = 0.047) and showed a strong trend towards increased MDM2 protein levels (p = 0.068). In addition, patients harboring the SNP309G allele showed a worse overall survival, but only in the presence of wild type TP53. The SNP285C allele was significantly associated with an early age of diagnosis and metastasis. Additionally, the SNP285C allele acted as an independent predictor for worse progression free survival (HR = 3.97; 95% CI = 1.51 - 10.42; p = 0.005). Our data showed that both SNP309 (in the presence of wild type TP53) and SNP285 act as negative prognostic markers for NSCLC patients, implicating a prominent role for these variants in the outcome of these patients. PMID:28819417

  12. Variation of Polyphenols and Betaines in Aerial Parts of Young, Field-Grown Amaranthus Genotypes

    DEFF Research Database (Denmark)

    Steffensen, Stine Krogh; Pedersen, H. A.; Labouriau, R.

    2011-01-01

    -trans-feruloyltyramine, N-trans-feruloyl-4-O-methyldopamine), and betaines (glycinebetaine, trigonelline) were determined. The variation in phytochemical content due to species and cultivation site was analyzed utilizing the multivariate statistical methods of principal component analysis (PCA) and graphical model (GM...... primarily by a higher content of trigonelline and the two hydroxycinnamyl amides in A. mantegazzianus. The GM showed that the quantities of the different analytes within each compound group were intercorrelated except in the case of the betaines. The betaines carried no information on each other...

  13. Selecting sagebrush seed sources for restoration in a variable climate: ecophysiological variation among genotypes

    Science.gov (United States)

    Germino, Matthew J.

    2012-01-01

    Big sagebrush (Artemisia tridentata) communities dominate a large fraction of the United States and provide critical habitat for a number of wildlife species of concern. Loss of big sagebrush due to fire followed by poor restoration success continues to reduce ecological potential of this ecosystem type, particularly in the Great Basin. Choice of appropriate seed sources for restoration efforts is currently unguided due to knowledge gaps on genetic variation and local adaptation as they relate to a changing landscape. We are assessing ecophysiological responses of big sagebrush to climate variation, comparing plants that germinated from ~20 geographically distinct populations of each of the three subspecies of big sagebrush. Seedlings were previously planted into common gardens by US Forest Service collaborators Drs. B. Richardson and N. Shaw, (USFS Rocky Mountain Research Station, Provo, Utah and Boise, Idaho) as part of the Great Basin Native Plant Selection and Increase Project. Seed sources spanned all states in the conterminous Western United States. Germination, establishment, growth and ecophysiological responses are being linked to genomics and foliar palatability. New information is being produced to aid choice of appropriate seed sources by Bureau of Land Management and USFS field offices when they are planning seed acquisitions for emergency post-fire rehabilitation projects while considering climate variability and wildlife needs.

  14. Grouping and clustering of maize Lancaster germplasm inbreds according to the results of SNP-analysis

    Directory of Open Access Journals (Sweden)

    K. V. Derkach

    2017-08-01

    Full Text Available The objective of this article is the grouping and clustering of maize inbred lines based on the results of SNP-genotyping for the verification of a separate cluster of Lancaster germplasm inbred lines. As material for the study, we used 91 maize (Zea mays L. inbred lines, including 31 Lancaster germplasm lines and 60 inbred lines of other germplasms (23 Iodent inbreds, 15 Reid inbreds, 7 Lacon inbreds, 12 Mix inbreds and 3 exotic inbreds. The majority of the given inbred lines are included in the Dnipro breeding programme. The SNP-genotyping of these inbred lines was conducted using BDI-III panel of 384 SNP-markers developed by BioDiagnostics, Inc. (USA on the base of Illumina VeraCode Bead Plate. The SNP-markers of this panel are biallelic and are located on all 10 maize chromosomes. Their range of conductivity was >0.6. The SNP-analysis was made in completely automated regime on Illumina BeadStation equipment at BioDiagnostics, Inc. (USA. A principal component analysis was applied to group a general set of 91 inbreds according to allelic states of SNP-markers and to identify a cluster of Lancaster inbreds. The clustering and determining hierarchy in 31 Lancaster germplasm inbreds used quantitative cluster analysis. The share of monomorphic markers in the studied set of 91 inbred lines equaled 0.7%, and the share of dimorphic markers equaled 99.3%. Minor allele frequency (MAF > 0.2 was observed for 80.6% of dimorphic markers, the average index of shift of gene diversity equaled 0.2984, PIC on average reached 0.3144. The index of gene diversity of markers varied from 0.1701 to 0.1901, pairwise genetic distances between inbred lines ranged from 0.0316–0.8000, the frequencies of major alleles of SNP-markers were within 0.5085–0.9821, and the frequencies of minor alleles were within 0.0179–0.4915. The average homozygosity of inbred lines was 98.8%. The principal component analysis of SNP-distances confirmed the isolation of the Lancaster

  15. Development and application of a 20K SNP array in potato

    NARCIS (Netherlands)

    Vos, Peter

    2016-01-01

    In this thesis the results are described of investigations of various application of genome wide SNP (single nucleotide polymorphism) markers. The set of SNP markers was identified by GBS (genotyping by sequencing) strategy. The resulting dataset of 129,156 SNPs across 83 tetraploid varieties was

  16. MDM2 gene SNP309 T/G and p53 gene SNP72 G/C do not influence diffuse large B-cell non-Hodgkin lymphoma onset or survival in central European Caucasians

    Directory of Open Access Journals (Sweden)

    Landt Olfert

    2008-04-01

    Full Text Available Abstract Background SNP309 T/G (rs2279744 causes higher levels of MDM2, the most important negative regulator of the p53 tumor suppressor. SNP72 G/C (rs1042522 gives rise to a p53 protein with a greatly reduced capacity to induce apoptosis. Both polymorphisms have been implicated in cancer. The SNP309 G-allele has recently been reported to accelerate diffuse large B-cell lymphoma (DLBCL formation in pre-menopausal women and suggested to constitute a genetic basis for estrogen affecting human tumorigenesis. Here we asked whether SNP309 and SNP72 are associated with DLBCL in women and are correlated with age of onset, diagnosis, or patient's survival. Methods SNP309 and SNP72 were PCR-genotyped in a case-control study that included 512 controls and 311 patients diagnosed with aggressive NHL. Of these, 205 were diagnosed with DLBCL. Results The age of onset was similar in men and women. The control and patients group showed similar SNP309 and SNP72 genotype frequencies. Importantly and in contrast to the previous findings, similar genotype frequencies were observed in female patients diagnosed by 51 years of age and those diagnosed later. Specifically, 3/20 female DLBCL patients diagnosed by 51 years of age were homozygous for SNP309 G and 2/20 DLBCL females in that age group were homozygous for SNP72 C. Neither SNP309 nor SNP72 had a significant influence on event-free and overall survival in multivariate analyses. Conclusion In contrast to the previous study on Ashkenazi Jewish Caucasians, DLBCL in pre-menopausal women of central European Caucasian ethnicity was not associated with SNP309 G. Neither SNP309 nor SNP72 seem to be correlated with age of onset, diagnosis, or survival of patients.

  17. Wnt signaling pathway involvement in genotypic and phenotypic variations in Waardenburg syndrome type 2 with MITF mutations.

    Science.gov (United States)

    Wang, Xue-Ping; Liu, Ya-Lan; Mei, Ling-Yun; He, Chu-Feng; Niu, Zhi-Jie; Sun, Jie; Zhao, Yu-Lin; Feng, Yong; Zhang, Hua

    2018-05-01

    Mutation in the gene encoding microphthalmia-associated transcription factor (MITF) lead to Waardenburg syndrome 2 (WS2), an autosomal dominantly inherited syndrome with auditory-pigmentary abnormalities, which is clinically and genetically heterogeneous. Haploinsufficiency may be the underlying mechanism for WS2. However, the mechanisms explaining the genotypic and phenotypic variations in WS2 caused by MITF mutations are unclear. A previous study revealed that MITF interacts with LEF-1, an important factor in the Wnt signaling pathway, to regulate its own transcription through LEF-1-binding sites on the MITF promoter. In this study, four different WS2-associated MITF mutations (p.R217I, p.R217G, p.R255X, p.R217del) that are associated with highly variable clinical features were chosen. According to the results, LEF-1 can activate the expression of MITF on its own, but MITF proteins inhibited the activation. This inhibition weakens when the dosage of MITF is reduced. Except for p.R217I, p.R255X, p.R217G, and p.R217del lose the ability to activate TYR completely and do not inhibit the LEF-1-mediated activation of the MITF-M promoter, and the haploinsufficiency created by mutant MITF can be overcome; correspondingly, the mutants' associated phenotypes are less severe than that of p.R217I. The dominant negative of p.R217del made it have a second-most severe phenotype. This study's data imply that MITF has a negative feedback loop of regulation to stabilize MITF gene dosage that involves the Wnt signaling pathway and that the interaction of MITF mutants with this pathway drives the genotypic and phenotypic differences observed in Waardenburg syndrome type 2 associated with MITF mutations.

  18. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation

    Science.gov (United States)

    Michael J. Aspinwall; John S. King; Steven E. McKeand; Jean-Christophe Domec

    2011-01-01

    Variation in leaf-level gas exchange among widely planted genetically improved loblolly pine (Pinus taeda L.) genotypes could impact stand-level water use, carbon assimilation, biomass production, C allocation, ecosystem sustainability and biogeochemical cycling under changing environmental conditions. We examined uniformity in leaf-level light-saturated photosynthesis...

  19. Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes

    Science.gov (United States)

    The information on genotypic variation for inulin content, inulin yield and water use efficiency of inulin yield (WUEi) in response to drought is limited. This study was to investigate the genetic variability in inulin content, inulin yield and WUEi of Jerusalem artichoke (Helianthus tuberosus L.) ...

  20. GENOTYPIC AND PLASTIC VARIATION IN PLANT SIZE - EFFECTS ON FECUNDITY AND ALLOCATION PATTERNS IN LYCHNIS-FLOS-CUCULI ALONG A GRADIENT OF NATURAL SOIL FERTILITY

    NARCIS (Netherlands)

    BIERE, A

    1 Genotypic and plastic variation in plant size, and trade-offs among components of reproduction were studied using cloned individuals from 24 parental plants of the perennial hay-meadow species Lychnis-flos-cuculi, planted in four sites along a gradient of natural soil fertility. 2 Plant biomass,

  1. Pacifiplex: an ancestry-informative SNP panel centred on Australia and the Pacific region.

    Science.gov (United States)

    Santos, Carla; Phillips, Christopher; Fondevila, Manuel; Daniel, Runa; van Oorschot, Roland A H; Burchard, Esteban G; Schanfield, Moses S; Souto, Luis; Uacyisrael, Jolame; Via, Marc; Carracedo, Ángel; Lareu, Maria V

    2016-01-01

    The analysis of human population variation is an area of considerable interest in the forensic, medical genetics and anthropological fields. Several forensic single nucleotide polymorphism (SNP) assays provide ancestry-informative genotypes in sensitive tests designed to work with limited DNA samples, including a 34-SNP multiplex differentiating African, European and East Asian ancestries. Although assays capable of differentiating Oceanian ancestry at a global scale have become available, this study describes markers compiled specifically for differentiation of Oceanian populations. A sensitive multiplex assay, termed Pacifiplex, was developed and optimized in a small-scale test applicable to forensic analyses. The Pacifiplex assay comprises 29 ancestry-informative marker SNPs (AIM-SNPs) selected to complement the 34-plex test, that in a combined set distinguish Africans, Europeans, East Asians and Oceanians. Nine Pacific region study populations were genotyped with both SNP assays, then compared to four reference population groups from the HGDP-CEPH human diversity panel. STRUCTURE analyses estimated population cluster membership proportions that aligned with the patterns of variation suggested for each study population's currently inferred demographic histories. Aboriginal Taiwanese and Philippine samples indicated high East Asian ancestry components, Papua New Guinean and Aboriginal Australians samples were predominantly Oceanian, while other populations displayed cluster patterns explained by the distribution of divergence amongst Melanesians, Polynesians and Micronesians. Genotype data from Pacifiplex and 34-plex tests is particularly well suited to analysis of Australian Aboriginal populations and when combined with Y and mitochondrial DNA variation will provide a powerful set of markers for ancestry inference applied to modern Australian demographic profiles. On a broader geographic scale, Pacifiplex adds highly informative data for inferring the ancestry

  2. QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species

    Directory of Open Access Journals (Sweden)

    Voorrips Roeland E

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only. Results We have developed a new algorithm to detect reliable SNPs and insertions/deletions (indels in EST data, both with and without quality files. Implemented in a pipeline called QualitySNP, it uses three filters for the identification of reliable SNPs. Filter 1 screens for all potential SNPs and identifies variation between or within genotypes. Filter 2 is the core filter that uses a haplotype-based strategy to detect reliable SNPs. Clusters with potential paralogs as well as false SNPs caused by sequencing errors are identified. Filter 3 screens SNPs by calculating a confidence score, based upon sequence redundancy and quality. Non-synonymous SNPs are subsequently identified by detecting open reading frames of consensus sequences (contigs with SNPs. The pipeline includes a data storage and retrieval system for haplotypes, SNPs and alignments. QualitySNP's versatility is demonstrated by the identification of SNPs in EST datasets from potato, chicken and humans. Conclusion QualitySNP is an efficient tool for SNP detection, storage and retrieval in diploid as well as polyploid species. It is available for running on Linux or UNIX systems. The program, test data, and user manual are available at

  3. Essential Oil Variation from Twenty Two Genotypes of Citrus in Brazil-Chemometric Approach and Repellency Against Diaphorina citri Kuwayama.

    Science.gov (United States)

    Andrade, Moacir Dos Santos; Ribeiro, Leandro do Prado; Borgoni, Paulo Cesar; Silva, Maria Fátima das Graças Fernandes da; Forim, Moacir Rossi; Fernandes, João Batista; Vieira, Paulo Cezar; Vendramin, José Djair; Machado, Marcos Antônio

    2016-06-22

    The chemical composition of volatile oils from 22 genotypes of Citrus and related genera was poorly differentiated, but chemometric techniques have clarified the relationships between the 22 genotypes, and allowed us to understand their resistance to D. citri. The most convincing similarities include the synthesis of (Z)-β-ocimene and (E)-caryophyllene for all 11 genotypes of group A. Genotypes of group B are not uniformly characterized by essential oil compounds. When stimulated with odor sources of 22 genotypes in a Y-tube olfactometer D. citri preferentially entered the arm containing the volatile oils of Murraya paniculata, confirming orange jasmine as its best host. C. reticulata × C. sinensis was the least preferred genotype, and is characterized by the presence of phytol, (Z)-β-ocimene, and β-elemene, which were not found in the most preferred genotype. We speculate that these three compounds may act as a repellent, making these oils less attractive to D. citri.

  4. Phenotypic and genotypic variations among three allopatric populations of Lutzomyia umbratilis, main vector of Leishmania guyanensis.

    Science.gov (United States)

    de Souza Freitas, Moises Thiago; Ríos-Velasquez, Claudia Maria; Costa, César Raimundo Lima; Figueirêdo, Carlos Alberto Santiago; Aragão, Nádia Consuelo; da Silva, Lidiane Gomes; de Aragão Batista, Marcus Vinicius; Balbino, Teresa Cristina Leal; Pessoa, Felipe Arley Costa; de Queiroz Balbino, Valdir

    2015-09-04

    In South America, Lutzomyia umbratilis is the main vector of Leishmania guyanensis, one of the species involved in the transmission of American tegumentary leishmaniasis. In Brazil, L. umbratilis has been recorded in the Amazon region, and in the state of Pernambuco, Northeastern region, where an isolated population has been identified. This study assessed the phylogeographic structure and size and shape differences of the wing of three Brazilian populations. Samples of L. umbratilis were collected from Rio Preto da Eva (north of the Amazon River, Amazonas), from Manacapuru (south of the Amazon River), and from the isolated population in Recife, Pernambuco state. These samples were processed to obtain sequences of the Cytochrome Oxidase I mitochondrial gene. Geometrics morphometry analysis of the right wing shape of the three populations was made using discriminate canonical analysis. Phylogenetic analysis revealed the presence of two distinct monophyletic clades: one clade comprised of the Recife and Rio Preto da Eva samples, and the other clade comprised of the Manacapuru samples. Comparing the Manacapuru population with the Recife and Rio Preto da Eva populations generated high indices of interpopulational divergence. Geometric morphometry analysis indicated two distinct groups between the studied populations. Canonical variate analysis of wing shape indicated that Rio Preto da Eva population is significantly closer to Recife population, and both populations were genetically distant from Manacapuru. The polymorphic sites and geometric morphometry analysis indicate that the distance, lack of continuity and environmental differences have not modified the ancestral relationship between Recife and Rio Preto da Eva populations. The genetic and morphological similarities shared by the Recife and Rio Preto da Eva populations suggest that these populations are more closely related evolutionarily. These results confirm the existence of an L. umbratilis species complex in

  5. SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation

    DEFF Research Database (Denmark)

    Panitz, Frank; Stengaard, Henrik; Hornshoj, Henrik

    2007-01-01

    MOTIVATION: Single nucleotide polymorphisms (SNPs) analysis is an important means to study genetic variation. A fast and cost-efficient approach to identify large numbers of novel candidates is the SNP mining of large scale sequencing projects. The increasing availability of sequence trace data...... manual annotation, which is immediately accessible and can be easily shared with external collaborators. RESULTS: Large-scale SNP mining of polymorphisms bases on porcine EST sequences yielded more than 7900 candidate SNPs in coding regions (cSNPs), which were annotated relative to the human genome. Non...

  6. Carcass and physical meat characteristics of thin tail sheep (TTS based on calpastatin gene (CAST (Locus intron 5 – exon 6 genotypes variation

    Directory of Open Access Journals (Sweden)

    Muhammad Ihsan Andi Dagong

    2012-03-01

    Full Text Available The quality of sheep carcass is mostly determined by the total lean meat production, meat distribution on the carcass and the quality of meat. Calpastatin gene (CAST is known to have an association with carcass and meat quality traits. The objective of this research was to identify the association between CAST polymorphisms and carcass characteristics in Thin Tail Sheep (TTS. Thirty three heads of sheep representing three genotypes of CAST (CAST-11, CAST-12 and CAST-22 were identified for carcass and meat characterisation. There was no significant difference between CAST polymorphisms with meat tenderness, pH, water holding capacity and cooking loss, neither with carcass weight and dressing percentage among genotypes. Shoulder proportion of CAST-11 genotype was larger than that of CAST-12 or CAST-22, but the lean meat proportion of CAST-22 genotype in shoulder, rack and loin were higher than those of CAST-11 but not different from CAST-12. The fat percentage of CAST-11 was the highest among the genotypes. CAST-22 genotype has higher lean meat percentage than the CAST-11. Variation in CAST gene could be used as marker assisted selection in sheep for higher lean meat proportion.

  7. Combining target enrichment with barcode multiplexing for high throughput SNP discovery

    Directory of Open Access Journals (Sweden)

    Lunke Sebastian

    2010-11-01

    Full Text Available Abstract Background The primary goal of genetic linkage analysis is to identify genes affecting a phenotypic trait. After localisation of the linkage region, efficient genetic dissection of the disease linked loci requires that functional variants are identified across the loci. These functional variations are difficult to detect due to extent of genetic diversity and, to date, incomplete cataloguing of the large number of variants present both within and between populations. Massively parallel sequencing platforms offer unprecedented capacity for variant discovery, however the number of samples analysed are still limited by cost per sample. Some progress has been made in reducing the cost of resequencing using either multiplexing methodologies or through the utilisation of targeted enrichment technologies which provide the ability to resequence genomic areas of interest rather that full genome sequencing. Results We developed a method that combines current multiplexing methodologies with a solution-based target enrichment method to further reduce the cost of resequencing where region-specific sequencing is required. Our multiplex/enrichment strategy produced high quality data with nominal reduction of sequencing depth. We undertook a genotyping study and were successful in the discovery of novel SNP alleles in all samples at uniplex, duplex and pentaplex levels. Conclusion Our work describes the successful combination of a targeted enrichment method and index barcode multiplexing to reduce costs, time and labour associated with processing large sample sets. Furthermore, we have shown that the sequencing depth obtained is adequate for credible SNP genotyping analysis at uniplex, duplex and pentaplex levels.

  8. Genotypes of Brassica rapa respond differently to plant-induced variation in air CO2 concentration in growth chambers with standard and enhanced venting.

    Science.gov (United States)

    Edwards, Christine E; Haselhorst, Monia S H; McKnite, Autumn M; Ewers, Brent E; Williams, David G; Weinig, Cynthia

    2009-10-01

    Growth chambers allow measurement of phenotypic differences among genotypes under controlled environment conditions. However, unintended variation in growth chamber air CO2 concentration ([CO2]) may affect the expression of diverse phenotypic traits, and genotypes may differ in their response to variation in [CO2]. We monitored [CO2] and quantified phenotypic responses of 22 Brassica rapa genotypes in growth chambers with either standard or enhanced venting. [CO2] in chambers with standard venting dropped to 280 micromol mol(-1) during the period of maximum canopy development, approximately 80 micromol mol(-1) lower than in chambers with enhanced venting. The stable carbon isotope ratio of CO2 in chamber air (delta13C(air)) was negatively correlated with [CO2], suggesting that photosynthesis caused observed [CO2] decreases. Significant genotype x chamber-venting interactions were detected for 12 of 20 traits, likely due to differences in the extent to which [CO2] changed in relation to genotypes' phenology or differential sensitivity of genotypes to low [CO2]. One trait, 13C discrimination (delta13C), was particularly influenced by unaccounted-for fluctuations in delta13C(air) and [CO2]. Observed responses to [CO2] suggest that genetic variance components estimated in poorly vented growth chambers may be influenced by the expression of genes involved in CO2 stress responses; genotypic values estimated in these chambers may likewise be misleading such that some mapped quantitative trait loci may regulate responses to CO2 stress rather than a response to the environmental factor of interest. These results underscore the importance of monitoring, and where possible, controlling [CO2].

  9. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    Science.gov (United States)

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  10. A customized pigmentation SNP array identifies a novel SNP associated with melanoma predisposition in the SLC45A2 gene.

    Directory of Open Access Journals (Sweden)

    Maider Ibarrola-Villava

    Full Text Available As the incidence of Malignant Melanoma (MM reflects an interaction between skin colour and UV exposure, variations in genes implicated in pigmentation and tanning response to UV may be associated with susceptibility to MM. In this study, 363 SNPs in 65 gene regions belonging to the pigmentation pathway have been successfully genotyped using a SNP array. Five hundred and ninety MM cases and 507 controls were analyzed in a discovery phase I. Ten candidate SNPs based on a p-value threshold of 0.01 were identified. Two of them, rs35414 (SLC45A2 and rs2069398 (SILV/CKD2, were statistically significant after conservative Bonferroni correction. The best six SNPs were further tested in an independent Spanish series (624 MM cases and 789 controls. A novel SNP located on the SLC45A2 gene (rs35414 was found to be significantly associated with melanoma in both phase I and phase II (P<0.0001. None of the other five SNPs were replicated in this second phase of the study. However, three SNPs in TYR, SILV/CDK2 and ADAMTS20 genes (rs17793678, rs2069398 and rs1510521 respectively had an overall p-value<0.05 when considering the whole DNA collection (1214 MM cases and 1296 controls. Both the SLC45A2 and the SILV/CDK2 variants behave as protective alleles, while the TYR and ADAMTS20 variants seem to function as risk alleles. Cumulative effects were detected when these four variants were considered together. Furthermore, individuals carrying two or more mutations in MC1R, a well-known low penetrance melanoma-predisposing gene, had a decreased MM risk if concurrently bearing the SLC45A2 protective variant. To our knowledge, this is the largest study on Spanish sporadic MM cases to date.

  11. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster).

    Science.gov (United States)

    Plomion, C; Bartholomé, J; Lesur, I; Boury, C; Rodríguez-Quilón, I; Lagraulet, H; Ehrenmann, F; Bouffier, L; Gion, J M; Grivet, D; de Miguel, M; de María, N; Cervera, M T; Bagnoli, F; Isik, F; Vendramin, G G; González-Martínez, S C

    2016-03-01

    Maritime pine provides essential ecosystem services in the south-western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three-generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene-based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies. © 2015 John Wiley & Sons Ltd.

  12. Assessment of Genetic Variation and Population Structure of Diverse Rice Genotypes Adapted to Lowland and Upland Ecologies in Africa Using SNPs

    Directory of Open Access Journals (Sweden)

    Marie Noelle Ndjiondjop

    2018-04-01

    Full Text Available Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several ‘New Rice for Africa (NERICA’ improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as ‘Advanced Rice for Africa (ARICA’. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs. A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica, and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT-based sequencing (DArTseq platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance > 0.400 was the largest within NERICAs (35.1% of the pairs followed by ARICAs (18.2%, japonica (17.4%, and indica (5.6%. We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by <2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs and upland (japonica and upland NERICAs growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation (FST = 0.688 between the

  13. Assessment of Genetic Variation and Population Structure of Diverse Rice Genotypes Adapted to Lowland and Upland Ecologies in Africa Using SNPs.

    Science.gov (United States)

    Ndjiondjop, Marie Noelle; Semagn, Kassa; Sow, Mounirou; Manneh, Baboucarr; Gouda, Arnaud C; Kpeki, Sèdjro B; Pegalepo, Esther; Wambugu, Peterson; Sié, Moussa; Warburton, Marilyn L

    2018-01-01

    Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several 'New Rice for Africa (NERICA)' improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as 'Advanced Rice for Africa (ARICA)'. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs). A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica , and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT)-based sequencing (DArTseq) platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance > 0.400 was the largest within NERICAs (35.1% of the pairs) followed by ARICAs (18.2%), japonica (17.4%), and indica (5.6%). We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by <2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs) and upland (japonica and upland NERICAs) growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation ( F ST = 0.688) between the lowland and upland

  14. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes.

    Science.gov (United States)

    Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H; Cavallini, Andrea; Natali, Lucia

    2015-11-24

    The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes--7 wild accessions and 8 cultivars--of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Identification of SNP barcode biomarkers for genes associated with facial emotion perception using particle swarm optimization algorithm.

    Science.gov (United States)

    Chuang, Li-Yeh; Lane, Hsien-Yuan; Lin, Yu-Da; Lin, Ming-Teng; Yang, Cheng-Hong; Chang, Hsueh-Wei

    2014-01-01

    Facial emotion perception (FEP) can affect social function. We previously reported that parts of five tested single-nucleotide polymorphisms (SNPs) in the MET and AKT1 genes may individually affect FEP performance. However, the effects of SNP-SNP interactions on FEP performance remain unclear. This study compared patients with high and low FEP performances (n = 89 and 93, respectively). A particle swarm optimization (PSO) algorithm was used to identify the best SNP barcodes (i.e., the SNP combinations and genotypes that revealed the largest differences between the high and low FEP groups). The analyses of individual SNPs showed no significant differences between the high and low FEP groups. However, comparisons of multiple SNP-SNP interactions involving different combinations of two to five SNPs showed that the best PSO-generated SNP barcodes were significantly associated with high FEP score. The analyses of the joint effects of the best SNP barcodes for two to five interacting SNPs also showed that the best SNP barcodes had significantly higher odds ratios (2.119 to 3.138; P < 0.05) compared to other SNP barcodes. In conclusion, the proposed PSO algorithm effectively identifies the best SNP barcodes that have the strongest associations with FEP performance. This study also proposes a computational methodology for analyzing complex SNP-SNP interactions in social cognition domains such as recognition of facial emotion.

  16. Lack of genetic variation in tree ring delta13C suggests a uniform, stomatally-driven response to drought stress across Pinus radiata genotypes.

    Science.gov (United States)

    Rowell, Douglas M; Ades, Peter K; Tausz, Michael; Arndt, Stefan K; Adams, Mark A

    2009-02-01

    We assessed the variation in delta(13)C signatures of Pinus radiata D. Don stemwood taken from three genetic trials in southern Australia. We sought to determine the potential of using delta(13)C signatures as selection criteria for drought tolerance. Increment cores were taken from P. radiata and were used to determine the basal area increment and the delta(13)C signature of extracted cellulose. Both growth increment and cellulose delta(13)C were affected by water availability. Growth increment and delta(13)C were negatively correlated suggesting that growth was water-limited. While there was significant genetic variation in growth, there was no significant genetic variation in cellulose delta(13)C of tree rings. This suggests that different genotypes of P. radiata display significant differences in growth and yet respond similarly to drought stress. The delta(13)C response to drought stress was more due to changes in stomatal conductance than to the variation in photosynthetic capacity, and this may explain the lack of genetic variation in delta(13)C. The lack of genetic variation in cellulose delta(13)C of tree rings precludes its use as a selection criterion for drought tolerance among P. radiata genotypes.

  17. Cryptosporidium and Giardia in Danish organic pig farms: seasonal and age-related variation in prevalence, infection intensity and species/genotypes

    DEFF Research Database (Denmark)

    Petersen, Heidi Huus; Jianmin, Wang; Katakam, Kiran K.

    2015-01-01

    Although pigs are commonly infected with Cryptosporidium spp. and Giardia duodenalis, including potentially zoonotic species or genotypes, little is known about age-related infection levels, seasonal differences and genetic variation in naturally infected pigs raised in organic management systems....... Therefore, the current study was conducted to assess seasonal and age-related variations in prevalence and infection intensity of Cryptosporidium and Giardia, evaluate zoonotic potential and uncover correlations between species/genotypes, infection intensity and faecal consistency. Shedding of oocysts...... and cysts ((oo-) cysts) was monitored at quarterly intervals (September 2011 to June 2012) in piglets (n=152), starter pigs (n=234), fatteners (n=230) and sows (n=240) from three organic farms in Denmark. (Oo-) cysts were quantified by immunofluorescence microscopy; and 56/75 subsamples from Cryptosporidium...

  18. Genotype-dependent variation in the transpiration efficiency of plants and photosynthetic activity of flag leaves in spring barley under varied nutrition.

    Science.gov (United States)

    Krzemińska, Anetta; Górny, Andrzej G

    2003-01-01

    In the study, spring barley genotypes of various origin and breeding history were found to show a broad genetic variation in the vegetative and generative measures of the whole-plant transpiration efficiency (TE), photosynthesis (A) and transpiration (E) rates of flag leaves, leaf efficiency of gas exchange (A/E) and stress tolerance (T) when grown till maturity in soil-pots under high and reduced NPK supplies. Broad-sense heritabilities for the characteristics ranged from 0.61 to 0.87. Significant genotype-nutrition interactions were noticed, constituting 19-23% of the total variance in TE measures. The results suggest that at least some 'exotic' accessions from Ethiopia, Syria, Morocco and/or Tibet may serve as attractive genetic sources of novel variations in TE, T and A for the breeding of barleys of improved adaptation to less favourable fertilisation.

  19. Essential Oil Variation from Twenty Two Genotypes of Citrus in Brazil—Chemometric Approach and Repellency Against Diaphorina citri Kuwayama

    Directory of Open Access Journals (Sweden)

    Moacir dos Santos Andrade

    2016-06-01

    Full Text Available The chemical composition of volatile oils from 22 genotypes of Citrus and related genera was poorly differentiated, but chemometric techniques have clarified the relationships between the 22 genotypes, and allowed us to understand their resistance to D. citri. The most convincing similarities include the synthesis of (Z-β-ocimene and (E-caryophyllene for all 11 genotypes of group A. Genotypes of group B are not uniformly characterized by essential oil compounds. When stimulated with odor sources of 22 genotypes in a Y-tube olfactometer D. citri preferentially entered the arm containing the volatile oils of Murraya paniculata, confirming orange jasmine as its best host. C. reticulata × C. sinensis was the least preferred genotype, and is characterized by the presence of phytol, (Z-β-ocimene, and β-elemene, which were not found in the most preferred genotype. We speculate that these three compounds may act as a repellent, making these oils less attractive to D. citri.

  20. SAQC: SNP Array Quality Control

    Directory of Open Access Journals (Sweden)

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  1. Multiplex target enrichment using DNA indexing for ultra-high throughput SNP detection.

    LENUS (Irish Health Repository)

    Kenny, Elaine M

    2011-02-01

    Screening large numbers of target regions in multiple DNA samples for sequence variation is an important application of next-generation sequencing but an efficient method to enrich the samples in parallel has yet to be reported. We describe an advanced method that combines DNA samples using indexes or barcodes prior to target enrichment to facilitate this type of experiment. Sequencing libraries for multiple individual DNA samples, each incorporating a unique 6-bp index, are combined in equal quantities, enriched using a single in-solution target enrichment assay and sequenced in a single reaction. Sequence reads are parsed based on the index, allowing sequence analysis of individual samples. We show that the use of indexed samples does not impact on the efficiency of the enrichment reaction. For three- and nine-indexed HapMap DNA samples, the method was found to be highly accurate for SNP identification. Even with sequence coverage as low as 8x, 99% of sequence SNP calls were concordant with known genotypes. Within a single experiment, this method can sequence the exonic regions of hundreds of genes in tens of samples for sequence and structural variation using as little as 1 μg of input DNA per sample.

  2. Sample-to-SNP kit: a reliable, easy and fast tool for the detection of HFE p.H63D and p.C282Y variations associated to hereditary hemochromatosis.

    Science.gov (United States)

    Nielsen, Peter B; Petersen, Maja S; Ystaas, Viviana; Andersen, Rolf V; Hansen, Karin M; Blaabjerg, Vibeke; Refstrup, Mette

    2012-10-01

    Classical hereditary hemochromatosis involves the HFE-gene and diagnostic analysis of the DNA variants HFE p.C282Y (c.845G>A; rs1800562) and HFE p.H63D (c.187C>G; rs1799945). The affected protein alters the iron homeostasis resulting in iron overload in various tissues. The aim of this study was to validate the TaqMan-based Sample-to-SNP protocol for the analysis of the HFE-p.C282Y and p.H63D variants with regard to accuracy, usefulness and reproducibility compared to an existing SNP protocol. The Sample-to-SNP protocol uses an approach where the DNA template is made accessible from a cell lysate followed by TaqMan analysis. Besides the HFE-SNPs other eight SNPs were used as well. These SNPs were: Coagulation factor II-gene F2 c.20210G>A, Coagulation factor V-gene F5 p.R506Q (c.1517G>A; rs121917732), Mitochondria SNP: mt7028 G>A, Mitochondria SNP: mt12308 A>G, Proprotein convertase subtilisin/kexin type 9-gene PCSK9 p.R46L (c.137G>T), Plutathione S-transferase pi 1-gene GSTP1 p.I105V (c313A>G; rs1695), LXR g.-171 A>G, ZNF202 g.-118 G>T. In conclusion the Sample-to-SNP kit proved to be an accurate, reliable, robust, easy to use and rapid TaqMan-based SNP detection protocol, which could be quickly implemented in a routine diagnostic or research facility. Copyright © 2012. Published by Elsevier B.V.

  3. Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers.

    Directory of Open Access Journals (Sweden)

    Manish Roorkiwal

    Full Text Available To estimate genetic diversity within and between 10 interfertile Cicer species (94 genotypes from the primary, secondary and tertiary gene pool, we analysed 5,257 DArT markers and 651 KASPar SNP markers. Based on successful allele calling in the tertiary gene pool, 2,763 DArT and 624 SNP markers that are polymorphic between genotypes from the gene pools were analyzed further. STRUCTURE analyses were consistent with 3 cultivated populations, representing kabuli, desi and pea-shaped seed types, with substantial admixture among these groups, while two wild populations were observed using DArT markers. AMOVA was used to partition variance among hierarchical sets of landraces and wild species at both the geographical and species level, with 61% of the variation found between species, and 39% within species. Molecular variance among the wild species was high (39% compared to the variation present in cultivated material (10%. Observed heterozygosity was higher in wild species than the cultivated species for each linkage group. Our results support the Fertile Crescent both as the center of domestication and diversification of chickpea. The collection used in the present study covers all the three regions of historical chickpea cultivation, with the highest diversity in the Fertile Crescent region. Shared alleles between different gene pools suggest the possibility of gene flow among these species or incomplete lineage sorting and could indicate complicated patterns of divergence and fusion of wild chickpea taxa in the past.

  4. Validation of Genotyping-By-Sequencing Analysis in Populations of Tetraploid Alfalfa by 454 Sequencing

    Science.gov (United States)

    Rocher, Solen; Jean, Martine; Castonguay, Yves; Belzile, François

    2015-01-01

    Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids. PMID:26115486

  5. Short communication: relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle.

    Science.gov (United States)

    Cooper, T A; Wiggans, G R; VanRaden, P M

    2013-05-01

    Call rates on both a single nucleotide polymorphism (SNP) basis and an animal basis are used as measures of data quality and as screening tools for genomic studies and evaluations of dairy cattle. To investigate the relationship of SNP call rate and genotype accuracy for individual SNP, the correlation between percentages of missing genotypes and parent-progeny conflicts for each SNP was calculated for 103,313 Holsteins. Correlations ranged from 0.14 to 0.38 for the BovineSNP50 and BovineLD (Illumina Inc., San Diego, CA) and GeneSeek Genomic Profiler (Neogen Corp., Lincoln, NE) chips, with lower correlations for newer chips. For US genomic evaluations, genotypes are excluded for animals with a call rate of call rate for 220,175 Holstein, Jersey, and Brown Swiss genotypes was 99.6%. Animal genotypes with a call rate of ≤99% were examined from the US Department of Agriculture genotype database to determine how genotype call rate is related to accuracy of calls on an animal basis. Animal call rate was determined from SNP used in genomic evaluation and is the number of called autosomal and X-specific SNP genotypes divided by the number of SNP from that type of chip. To investigate the relationship of animal call rate and parentage validation, conflicts between a genotyped animal and its sire or dam were determined through a duo test (opposite homozygous SNP genotypes between sire and progeny; 1,374 animal genotypes) and a trio test (also including conflicts with dam and heterozygous SNP genotype for the animal when both parents are the same homozygote; 482 animal genotypes). When animal call rate was ≤ 80%, parentage validation was no longer reliable with the duo test. With the trio test, parentage validation was no longer reliable when animal call rate was ≤ 90%. To investigate how animal call rate was related to genotyping accuracy for animals with multiple genotypes, concordance between genotypes for 1,216 animals that had a genotype with a call rate of ≤ 99

  6. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties.

    Science.gov (United States)

    Tian, Hong-Li; Wang, Feng-Ge; Zhao, Jiu-Ran; Yi, Hong-Mei; Wang, Lu; Wang, Rui; Yang, Yang; Song, Wei

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the maize ( Zea mays L.) genome. SNPs have several advantages over simple sequence repeats, such as ease of data comparison and integration, high-throughput processing of loci, and identification of associated phenotypes. SNPs are thus ideal for DNA fingerprinting, genetic diversity analysis, and marker-assisted breeding. Here, we developed a high-throughput and compatible SNP array, maizeSNP3072, containing 3072 SNPs developed from the maizeSNP50 array. To improve genotyping efficiency, a high-quality cluster file, maizeSNP3072_GT.egt, was constructed. All 3072 SNP loci were localized within different genes, where they were distributed in exons (43 %), promoters (21 %), 3' untranslated regions (UTRs; 22 %), 5' UTRs (9 %), and introns (5 %). The average genotyping failure rate using these SNPs was only 6 %, or 3 % using the cluster file to call genotypes. The genotype consistency of repeat sample analysis on Illumina GoldenGate versus Infinium platforms exceeded 96.4 %. The minor allele frequency (MAF) of the SNPs averaged 0.37 based on data from 309 inbred lines. The 3072 SNPs were highly effective for distinguishing among 276 examined hybrids. Comparative analysis using Chinese varieties revealed that the 3072SNP array showed a better marker success rate and higher average MAF values, evaluation scores, and variety-distinguishing efficiency than the maizeSNP50K array. The maizeSNP3072 array thus can be successfully used in DNA fingerprinting identification of Chinese maize varieties and shows potential as a useful tool for germplasm resource evaluation and molecular marker-assisted breeding.

  7. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems.

    Directory of Open Access Journals (Sweden)

    Len J Wade

    Full Text Available The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7-40.7 Mb and on chromosome 8 (20.3-21.9 Mb. Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.

  8. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery

    Directory of Open Access Journals (Sweden)

    Stothard Paul

    2011-11-01

    Full Text Available Abstract Background One of the goals of livestock genomics research is to identify the genetic differences responsible for variation in phenotypic traits, particularly those of economic importance. Characterizing the genetic variation in livestock species is an important step towards linking genes or genomic regions with phenotypes. The completion of the bovine genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of the genetic variations present in cattle. Here we describe the whole-genome resequencing of two Bos taurus bulls from distinct breeds for the purpose of identifying and annotating novel forms of genetic variation in cattle. Results The genomes of a Black Angus bull and a Holstein bull were sequenced to 22-fold and 19-fold coverage, respectively, using the ABI SOLiD system. Comparisons of the sequences with the Btau4.0 reference assembly yielded 7 million single nucleotide polymorphisms (SNPs, 24% of which were identified in both animals. Of the total SNPs found in Holstein, Black Angus, and in both animals, 81%, 81%, and 75% respectively are novel. In-depth annotations of the data identified more than 16 thousand distinct non-synonymous SNPs (85% novel between the two datasets. Alignments between the SNP-altered proteins and orthologues from numerous species indicate that many of the SNPs alter well-conserved amino acids. Several SNPs predicted to create or remove stop codons were also found. A comparison between the sequencing SNPs and genotyping results from the BovineHD high-density genotyping chip indicates a detection rate of 91% for homozygous SNPs and 81% for heterozygous SNPs. The false positive rate is estimated to be about 2% for both the Black Angus and Holstein SNP sets, based on follow-up genotyping of 422 and 427 SNPs, respectively. Comparisons of read depth between the two bulls along the reference assembly identified 790 putative copy-number variations (CNVs. Ten

  9. Genotypic variation in the sulfur assimilation and metabolism of onion (Allium cepa L.) I. Plant composition and transcript accumulation

    KAUST Repository

    McCallum, John A.; Thomas, Ludivine; Shaw, Martin L.; Pither-Joyce, Meeghan D.; Leung, Susanna; Cumming, Mathew; McManus, Michael T.

    2011-01-01

    Organosulfur compounds are major sinks for assimilated sulfate in onion (Allium cepa L.) and accumulation varies widely due to plant genotype and sulfur nutrition. In order to better characterise sulfur metabolism phenotypes and identify potential

  10. Clinical significance of SNP (rs2596542 in histocompatibility complex class I-related gene A promoter region among hepatitis C virus related hepatocellular carcinoma cases

    Directory of Open Access Journals (Sweden)

    Amal A. Mohamed

    2017-07-01

    Full Text Available The major histocompatibility complex class I-related gene A (MICA is an antigen induced by stress and performs an integral role in immune responses as an anti-infectious and antitumor agent. This work was designed to investigate whether (SNP rs2596542C/T in MICA promoter region is predictive of liver cirrhosis (LC and hepatocellular carcinoma (HCC or not. Forty-seven healthy controls and 94 HCV-infected patients, subdivided into 47 LC and 47 HCC subjects were enrolled in this study. SNP association was studied using real time PCR and soluble serum MICA concentration was measured using ELISA. Results showed that heterozygous genotype rs2596542CT was significantly (P = 0.022 distributed between HCC and LC related CHC patients. The sMICA was significantly higher (P = 0.0001 among HCC and LC. No significant association (P = 0.56 between rs2596542CT genotypes and sMICA levels was observed. Studying SNP rs2596542C/T association with HCC and LC susceptibility revealed that statistical significant differences (P = 0.013, P = 0.027 were only observed between SNP rs2596542C/T and each of HCC and LC, respectively, versus healthy controls, indicating that the rs2596542C/T genetic variation is not a significant contributor to HCC development in LC patients. Moreover, the T allele was considered a risk factor for HCC and LC vulnerability in HCV patients (OR = 1.93 and 2.1, respectively, while the C allele contributes to decreasing HCC risk. Therefore, SNP (rs2596542C/T in MICA promoter region and sMICA levels might be potential useful markers in the assessment of liver disease progression to LC and HCC.

  11. Genotypic variation in the sulfur assimilation and metabolism of onion (Allium cepa L.) I. Plant composition and transcript accumulation

    KAUST Repository

    McCallum, John A.

    2011-06-01

    Organosulfur compounds are major sinks for assimilated sulfate in onion (Allium cepa L.) and accumulation varies widely due to plant genotype and sulfur nutrition. In order to better characterise sulfur metabolism phenotypes and identify potential control points we compared plant composition and transcript accumulation of the primary sulfur assimilation pathway in the high pungency genotype \\'W202A\\' and the low pungency genotype \\'Texas Grano 438\\' grown hydroponically under S deficient (S-) and S-sufficient (S+) conditions. Accumulation of total S and alk(en)yl cysteine sulfoxide flavour precursors was significantly higher under S+ conditions and in \\'W202A\\' in agreement with previous studies. Leaf sulfate and cysteine levels were significantly higher in \\'W202A\\' and under S+. Glutathione levels were reduced by S- treatment but were not affected by genotype, suggesting that thiol pool sizes are regulated differently in mild and pungent onions. The only significant treatment effect observed on transcript accumulation in leaves was an elevated accumulation of O-acetyl serine thiol-lyase under S-. By contrast, transcript accumulation of all genes in roots was influenced by one or more treatments. APS reductase transcript level was not affected by genotype but was strongly increased by S-. Significant genotype × S treatment effects were observed in a root high affinity-sulfur transporter and ferredoxin-sulfite reductase. ATP sulfurylase transcript levels were significantly higher under S+ and in \\'W202A\\'. © 2011 Elsevier Ltd. All rights reserved.

  12. Genotype variations in cadmium and lead accumulations of leafy lettuce (Lactuca sativa L.) and screening for pollution-safe cultivars for food safety.

    Science.gov (United States)

    Zhang, Kun; Yuan, Jiangang; Kong, Wei; Yang, Zhongyi

    2013-06-01

    Heavy-metals in polluted soils can accumulate in plants and threaten crop safety. To evaluate the risk of heavy-metal pollution in leafy lettuce (Lactuca sativa L.), two pot experiments were conducted to investigate Cd and Pb accumulation and transfer potential in 28 cultivars of lettuce and to screen for low-Cd and low-Pb accumulative cultivars. In the three treatments, 5.2-fold, 4.8-fold and 4.8-fold differences in the shoot Cd concentration were observed between the cultivars with the highest and the lowest Cd concentrations, respectively. This genotype variation was sufficiently large to identify low-Cd accumulative genotypes to reduce Cd contamination in food. Cadmium accumulation in the low-Cd accumulative genotypes was significantly positively correlated with Pb accumulation. At the cultivar level, Cd and Pb accumulation in lettuce was stable and genotype-dependent. High Pb soil levels did not affect shoot Cd accumulation in lettuce. Lettuce was concluded to be at high risk for Cd pollution and low risk for Pb pollution. Among the tested cultivars, cvs. SJGT, YLGC, N518, and KR17 had the lowest Cd and Pb accumulation abilities in shoots and are thus important parental material for breeding pollution-safe cultivars to minimize Cd and Pb accumulation.

  13. Functional SNP associated with birth weight in independent populations identified with a permutation step added to GBLUP-GWAS

    Science.gov (United States)

    This study was conducted as an initial assessment of a newly available genotyping assay containing about 34,000 common SNP included on previous SNP chips, and 199,000 sequence variants predicted to affect gene function. Objectives were to identify functional variants associated with birth weight in...

  14. Ascertainment biases in SNP chips affect measures of population divergence

    DEFF Research Database (Denmark)

    Albrechtsen, Anders; Nielsen, Finn Cilius; Nielsen, Rasmus

    2010-01-01

    Chip-based high-throughput genotyping has facilitated genome-wide studies of genetic diversity. Many studies have utilized these large data sets to make inferences about the demographic history of human populations using measures of genetic differentiation such as F(ST) or principal component...... on direct sequencing. In addition, we also analyze publicly available genome-wide data. We demonstrate that the ascertainment biases will distort measures of human diversity and possibly change conclusions drawn from these measures in some times unexpected ways. We also show that details of the genotyping...... analyses. However, the single nucleotide polymorphism (SNP) chip data suffer from ascertainment biases caused by the SNP discovery process in which a small number of individuals from selected populations are used as discovery panels. In this study, we investigate the effect of the ascertainment bias...

  15. Farm-by-farm analysis of microsatellite, mtDNA and SNP genotype data reveals inbreeding and crossbreeding as threats to the survival of a native Spanish pig breed.

    Science.gov (United States)

    Herrero-Medrano, J M; Megens, H J; Crooijmans, R P; Abellaneda, J M; Ramis, G

    2013-06-01

    The Chato Murciano (CM), a pig breed from the Murcia region in the southeastern region of Spain, is a good model for endangered livestock populations. The remaining populations are bred on approximately 15 small farms, and no herdbook exists. To assess the genetic threats to the integrity and survival of the CM breed, and to aid in designing a conservation program, three genetic marker systems - microsatellites, SNPs and mtDNA - were applied across the majority of the total breeding stock. In addition, mtDNA and SNPs were genotyped in breeds that likely contributed genetically to the current CM gene pool. The analyses revealed the levels of genetic diversity within the range of other European local breeds (H(e) = 0.53). However, when the eight farms that rear at least 10 CM pigs were independently analyzed, high levels of inbreeding were found in some. Despite the evidence for recent crossbreeding with commercial breeds on a few farms, the entire breeding stock remains readily identifiable as CM, facilitating the design of traceability assays. The genetic management of the breed is consistent with farm size, farm owner and presence of other pig breeds on the farm, demonstrating the highly ad hoc nature of current CM breeding. The results of genetic diversity and substructure of the entire breed, as well as admixture and crossbreeding obtained in the present study, provide a benchmark to develop future conservation strategies. Furthermore, this study demonstrates that identifying farm-based practices and farm-based breeding stocks can aid in the design of a sustainable breeding program for minority breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  16. SNP markers retrieval for a non-model species: a practical approach

    Directory of Open Access Journals (Sweden)

    Shahin Arwa

    2012-01-01

    Full Text Available Abstract Background SNP (Single Nucleotide Polymorphism markers are rapidly becoming the markers of choice for applications in breeding because of next generation sequencing technology developments. For SNP development by NGS technologies, correct assembly of the huge amounts of sequence data generated is essential. Little is known about assembler's performance, especially when dealing with highly heterogeneous species that show a high genome complexity and what the possible consequences are of differences in assemblies on SNP retrieval. This study tested two assemblers (CAP3 and CLC on 454 data from four lily genotypes and compared results with respect to SNP retrieval. Results CAP3 assembly resulted in higher numbers of contigs, lower numbers of reads per contig, and shorter average read lengths compared to CLC. Blast comparisons showed that CAP3 contigs were highly redundant. Contrastingly, CLC in rare cases combined paralogs in one contig. Redundant and chimeric contigs may lead to erroneous SNPs. Filtering for redundancy can be done by blasting selected SNP markers to the contigs and discarding all the SNP markers that show more than one blast hit. Results on chimeric contigs showed that only four out of 2,421 SNP markers were selected from chimeric contigs. Conclusion In practice, CLC performs better in assembling highly heterogeneous genome sequences compared to CAP3, and consequently SNP retrieval is more efficient. Additionally a simple flow scheme is suggested for SNP marker retrieval that can be valid for all non-model species.

  17. Comparison of three boosting methods in parent-offspring trios for genotype imputation using simulation study

    Directory of Open Access Journals (Sweden)

    Abbas Mikhchi

    2016-01-01

    Full Text Available Abstract Background Genotype imputation is an important process of predicting unknown genotypes, which uses reference population with dense genotypes to predict missing genotypes for both human and animal genetic variations at a low cost. Machine learning methods specially boosting methods have been used in genetic studies to explore the underlying genetic profile of disease and build models capable of predicting missing values of a marker. Methods In this study strategies and factors affecting the imputation accuracy of parent-offspring trios compared from lower-density SNP panels (5 K to high density (10 K SNP panel using three different Boosting methods namely TotalBoost (TB, LogitBoost (LB and AdaBoost (AB. The methods employed using simulated data to impute the un-typed SNPs in parent-offspring trios. Four different datasets of G1 (100 trios with 5 k SNPs, G2 (100 trios with 10 k SNPs, G3 (500 trios with 5 k SNPs, and G4 (500 trio with 10 k SNPs were simulated. In four datasets all parents were genotyped completely, and offspring genotyped with a lower density panel. Results Comparison of the three methods for imputation showed that the LB outperformed AB and TB for imputation accuracy. The time of computation were different between methods. The AB was the fastest algorithm. The higher SNP densities resulted the increase of the accuracy of imputation. Larger trios (i.e. 500 was better for performance of LB and TB. Conclusions The conclusion is that the three methods do well in terms of imputation accuracy also the dense chip is recommended for imputation of parent-offspring trios.

  18. Genetic variation within clonal lineages of Phytophthora infestans revealed through genotyping-by-sequencing, and implications for late blight epidemiology

    Science.gov (United States)

    Genotyping-by-sequencing (GBS) was performed on 257 Phytophthora infestans isolates belonging to four clonal lineages to study within-lineage diversity. The four lineages used in the study included US-8 (n=28), US-11 (n=27), US-23 (n=166), and US-24 (n=36), with isolates originating from 23 of the U...

  19. Differential transcript abundance and genotypic variation of four putative allergen-encoding gene families in melting peach

    NARCIS (Netherlands)

    Yang, Z.; Ma, Y.; Chen, L.; Xie, R.; Zhang, X.; Zhang, B.; Lu, M.; Wu, S.; Gilissen, L.J.W.J.; Ree, van R.; Gao, Z.

    2011-01-01

    We analysed the temporal and spatial transcript expression of the panel of 18 putative isoallergens from four gene families (Pru p 1–4) in the peach fruit, anther and leaf of two melting cultivars, to gain insight into their expression profiles and to identify the key family members. Genotypic

  20. Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology

    Directory of Open Access Journals (Sweden)

    Chao Shiaoman

    2011-01-01

    Full Text Available Abstract Background Genetic markers are pivotal to modern genomics research; however, discovery and genotyping of molecular markers in oat has been hindered by the size and complexity of the genome, and by a scarcity of sequence data. The purpose of this study was to generate oat expressed sequence tag (EST information, develop a bioinformatics pipeline for SNP discovery, and establish a method for rapid, cost-effective, and straightforward genotyping of SNP markers in complex polyploid genomes such as oat. Results Based on cDNA libraries of four cultivated oat genotypes, approximately 127,000 contigs were assembled from approximately one million Roche 454 sequence reads. Contigs were filtered through a novel bioinformatics pipeline to eliminate ambiguous polymorphism caused by subgenome homology, and 96 in silico SNPs were selected from 9,448 candidate loci for validation using high-resolution melting (HRM analysis. Of these, 52 (54% were polymorphic between parents of the Ogle1040 × TAM O-301 (OT mapping population, with 48 segregating as single Mendelian loci, and 44 being placed on the existing OT linkage map. Ogle and TAM amplicons from 12 primers were sequenced for SNP validation, revealing complex polymorphism in seven amplicons but general sequence conservation within SNP loci. Whole-amplicon interrogation with HRM revealed insertions, deletions, and heterozygotes in secondary oat germplasm pools, generating multiple alleles at some primer targets. To validate marker utility, 36 SNP assays were used to evaluate the genetic diversity of 34 diverse oat genotypes. Dendrogram clusters corresponded generally to known genome composition and genetic ancestry. Conclusions The high-throughput SNP discovery pipeline presented here is a rapid and effective method for identification of polymorphic SNP alleles in the oat genome. The current-generation HRM system is a simple and highly-informative platform for SNP genotyping. These techniques provide

  1. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T in the equine myostatin (MSTN gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses

    Directory of Open Access Journals (Sweden)

    Whiston Ronan

    2010-10-01

    Full Text Available Abstract Background Thoroughbred horses have been selected for traits contributing to speed and stamina for centuries. It is widely recognized that inherited variation in physical and physiological characteristics is responsible for variation in individual aptitude for race distance, and that muscle phenotypes in particular are important. Results A genome-wide SNP-association study for optimum racing distance was performed using the EquineSNP50 Bead Chip genotyping array in a cohort of n = 118 elite Thoroughbred racehorses divergent for race distance aptitude. In a cohort-based association test we evaluated genotypic variation at 40,977 SNPs between horses suited to short distance (≤ 8 f and middle-long distance (> 8 f races. The most significant SNP was located on chromosome 18: BIEC2-417495 ~690 kb from the gene encoding myostatin (MSTN [Punadj. = 6.96 × 10-6]. Considering best race distance as a quantitative phenotype, a peak of association on chromosome 18 (chr18:65809482-67545806 comprising eight SNPs encompassing a 1.7 Mb region was observed. Again, similar to the cohort-based analysis, the most significant SNP was BIEC2-417495 (Punadj. = 1.61 × 10-9; PBonf. = 6.58 × 10-5. In a candidate gene study we have previously reported a SNP (g.66493737C>T in MSTN associated with best race distance in Thoroughbreds; however, its functional and genome-wide relevance were uncertain. Additional re-sequencing in the flanking regions of the MSTN gene revealed four novel 3' UTR SNPs and a 227 bp SINE insertion polymorphism in the 5' UTR promoter sequence. Linkage disequilibrium was highest between g.66493737C>T and BIEC2-417495 (r2 = 0.86. Conclusions Comparative association tests consistently demonstrated the g.66493737C>T SNP as the superior variant in the prediction of distance aptitude in racehorses (g.66493737C>T, P = 1.02 × 10-10; BIEC2-417495, Punadj. = 1.61 × 10-9. Functional investigations will be required to determine whether this

  2. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C-4 grass Miscanthus xgiganteus

    Energy Technology Data Exchange (ETDEWEB)

    Glowacka, K; Adhikari, S; Peng, JH; Gifford, J; Juvik, JA; Long, SP; Sacks, EJ

    2014-09-08

    The goal of this study was to identify cold-tolerant genotypes within two species of Miscanthus related to the exceptionally chilling-tolerant C-4 biomass crop accession: M. xgiganteus 'Illinois' (Mxg) as well as in other Mxg genotypes. The ratio of leaf elongation at 10 degrees C/5 degrees C to that at 25 degrees C/25 degrees C was used to identify initially the 13 most promising Miscanthus genotypes out of 51 studied. Net leaf CO2 uptake (A(sat)) and the maximum operating efficiency of photosystem II (Phi(PSII)) were measured in warm conditions (25 degrees C/20 degrees C), and then during and following a chilling treatment of 10 degrees C/5 degrees C for 11 d. Accessions of M. sacchariflorus (Msa) showed the smallest decline in leaf elongation on transfer to chilling conditions and did not differ significantly from Mxg, indicating greater chilling tolerance than diploid M. sinensis (Msi). Msa also showed the smallest reductions in A(sat) and Phi(PSII), and greater chilling-tolerant photosynthesis than Msi, and three other forms of Mxg, including new triploid accessions and a hexaploid Mxg 'Illinois'. Tetraploid Msa 'PF30153' collected in Gifu Prefecture in Honshu, Japan did not differ significantly from Mxg 'Illinois' in leaf elongation and photosynthesis at low temperature, but was significantly superior to all other forms of Mxg tested. The results suggested that the exceptional chilling tolerance of Mxg 'Illinois' cannot be explained simply by the hybrid vigour of this intraspecific allotriploid. Selection of chilling-tolerant accessions from both of Mxg's parental species, Msi and Msa, would be advisable for breeding new highly chilling-tolerant Mxg genotypes.

  3. HOMA, BMI, and Serum Leptin Levels Variations during Antiviral Treatment Suggest Virus-Related Insulin Resistance in Noncirrhotic, Nonobese, and Nondiabetic Chronic Hepatitis C Genotype 1 Patients

    Directory of Open Access Journals (Sweden)

    Alessandro Grasso

    2015-01-01

    Full Text Available Objective. To investigate the relationship between insulin resistance and viral load decay in nondiabetic and noncirrhotic genotype 1 chronic HCV patients during peginterferon and ribavirin treatment and the possible influence of BMI and leptin as metabolic confounders. Methods. 75 consecutive noncirrhotic, nonobese, and nondiabetic patients with genotype 1 chronic hepatitis C treated with peginterferon alpha 2a plus ribavirin were evaluated. HOMA-IR, serum leptin, and BMI were measured in all patients at baseline and at weeks 12 and 48, whereas viral load was measured at the same time points and then 24 weeks after the end of treatment. Results. HOMA-IR was significantly associated with both BMI and leptin at baseline. During peginterferon plus ribavirin treatment, there was a significant reduction of HOMA-IR at weeks 12 and 48 from baseline (P=0.033 and 0.048, resp. in patients who achieved an early viral load decay (EVR, a trend not observed in patients who not achieved EVR. No variations during treatment were observed regarding BMI and leptin irrespective of EVR. Conclusion. The early reduction of HOMA-IR but not of BMI and leptin during antiviral treatment in noncirrhotic, chronic hepatitis C genotype 1 patients who achieved EVR suggests a viral genesis of insulin resistance in patients with nonmetabolic phenotype.

  4. HOMA, BMI, and Serum Leptin Levels Variations during Antiviral Treatment Suggest Virus-Related Insulin Resistance in Noncirrhotic, Nonobese, and Nondiabetic Chronic Hepatitis C Genotype 1 Patients.

    Science.gov (United States)

    Grasso, Alessandro; Malfatti, Federica; Andraghetti, Gabriella; Marenco, Simona; Mazzucchelli, Chiara; Labanca, Sara; Cordera, Renzo; Testa, Roberto; Picciotto, Antonino

    2015-01-01

    Objective. To investigate the relationship between insulin resistance and viral load decay in nondiabetic and noncirrhotic genotype 1 chronic HCV patients during peginterferon and ribavirin treatment and the possible influence of BMI and leptin as metabolic confounders. Methods. 75 consecutive noncirrhotic, nonobese, and nondiabetic patients with genotype 1 chronic hepatitis C treated with peginterferon alpha 2a plus ribavirin were evaluated. HOMA-IR, serum leptin, and BMI were measured in all patients at baseline and at weeks 12 and 48, whereas viral load was measured at the same time points and then 24 weeks after the end of treatment. Results. HOMA-IR was significantly associated with both BMI and leptin at baseline. During peginterferon plus ribavirin treatment, there was a significant reduction of HOMA-IR at weeks 12 and 48 from baseline (P = 0.033 and 0.048, resp.) in patients who achieved an early viral load decay (EVR), a trend not observed in patients who not achieved EVR. No variations during treatment were observed regarding BMI and leptin irrespective of EVR. Conclusion. The early reduction of HOMA-IR but not of BMI and leptin during antiviral treatment in noncirrhotic, chronic hepatitis C genotype 1 patients who achieved EVR suggests a viral genesis of insulin resistance in patients with nonmetabolic phenotype.

  5. Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity-photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.).

    Science.gov (United States)

    Reddy, Kanubothula Sitarami; Sekhar, Kalva Madhana; Reddy, Attipalli Ramachandra

    2017-07-01

    Hydraulic conductivity quantifies the efficiency of a plant to transport water from root to shoot and is a major constriction on leaf gas exchange physiology. Mulberry (Morus spp.) is the most economically important crop for sericulture industry. In this study, we demonstrate a finely coordinated control of hydraulic dynamics on leaf gas exchange characteristics in 1-year-old field-grown mulberry genotypes (Selection-13 (S13); Kollegal Local (KL) and Kanva-2 (K2)) subjected to water stress by withholding water for 20 days and subsequent recovery for 7 days. Significant variations among three mulberry genotypes have been recorded in net photosynthetic rates (Pn), stomatal conductance and sap flow rate, as well as hydraulic conductivity in stem (KS) and leaf (KL). Among three genotypes, S13 showed significantly high rates of Pn, KS and KL both in control as well as during drought stress (DS) and recovery, providing evidence for superior drought-adaptive strategies. The plant water hydraulics-photosynthesis interplay was finely coordinated with the expression of certain key aquaporins (AQPs) in roots and leaves. Our data clearly demonstrate that expression of certain AQPs play a crucial role in hydraulic dynamics and photosynthetic carbon assimilation during DS and recovery, which could be effectively targeted towards mulberry improvement programs for drought adaptation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Variation in seed mineral elements profile and yield in field bean (Vicia faba L. var. minor genotypes

    Directory of Open Access Journals (Sweden)

    Sara Lombardo

    2016-12-01

    Full Text Available Field bean (Vicia faba L. var. minor is one of the major leguminous crops cultivated in the world and mainly destined for animal feed. Although its seed is generally recognised as a good protein source, little is known about its mineral elements profile, which is an important aspect for a balanced animal diet. Therefore, the aim of the present work was to assess the seed mineral elements composition, along with some key production parameters, in eight field bean genotypes grown in a Mediterranean environment, without intensive management, over two years (2009/10 and 2010/11. Independently of the year, the seed of Chiaro di Torre Lama was the richest in phosphorus (P, magnesium, calcium and iron contents, while that of Sint 6 and Motta Chiaro 69 were the most effective accumulators of potassium and zinc, respectively. While all the genotypes yielded better in the second year (with more rainfall, the seasonal effect on seed mineral elements composition depended on the genotype. Indeed, the P content was 46% lower in Chiaro di Torre Lama, Motta Chiaro 69 and Sint 6 in the second year, while there was only a negligible seasonal effect for Sint 8 with respect to Fe content. Overall, this crop is reasonably productive under a low management regime and its seed can supply significant amounts of certain minerals (particularly P in feed formulations. Both aspects are important in a perspective of optimising field bean production in the Mediterranean area and, hence, improving farmers’ income.

  7. In silico characterization of functional SNP within the oestrogen ...

    Indian Academy of Sciences (India)

    MAHA REBAÕ

    (polyphen-2, SNAP), as well as by the ESEfinder program, and one nonsense nsSNP was found. For noncoding ... mon type of genetic variation in the human genome that are ...... polymorphisms in type 2 diabetes mellitus and in android type.

  8. Partitioning of copy-number genotypes in pedigrees

    Directory of Open Access Journals (Sweden)

    Andelfinger Gregor U

    2010-05-01

    Full Text Available Abstract Background Copy number variations (CNVs and polymorphisms (CNPs have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in Birdsuite and PLINK for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data. Results We have developed CNGen, a new software for the partitioning of copy number polymorphism using the integrated genotypes from Birdsuite with the Affymetrix platform. The algorithm applied to familial trios or extended pedigrees can produce partitioned copy number genotypes with distinct parental alleles. We have validated the algorithm using simulations on a complex pedigree structure using frequencies calculated from a real dataset of 300 genotyped samples from 42 pedigrees segregating a congenital heart defect phenotype. Conclusions CNGen is the first published software for the partitioning of copy number genotypes in pedigrees, making possible the use CNPs and CNVs for linkage analysis. It was implemented with the Python interpreter version 2.5.2. It was successfully tested on current Linux, Windows and Mac OS workstations.

  9. Reliable Single Chip Genotyping with Semi-Parametric Log-Concave Mixtures

    NARCIS (Netherlands)

    R.C.A. Rippe (Ralph); J.J. Meulman (Jacqueline); P.H.C. Eilers (Paul)

    2012-01-01

    textabstractThe common approach to SNP genotyping is to use (model-based) clustering per individual SNP, on a set of arrays. Genotyping all SNPs on a single array is much more attractive, in terms of flexibility, stability and applicability, when developing new chips. A new semi-parametric method,

  10. The Brachyury Gly177Asp SNP Is not Associated with a Risk of Skull Base Chordoma in the Chinese Population

    Directory of Open Access Journals (Sweden)

    Zhen Wu

    2013-10-01

    Full Text Available A recent chordoma cancer genotyping study reveals that the rs2305089, a single nucleotide polymorphism (SNP located in brachyury gene and a key gene in the development of notochord, is significantly associated with chordoma risk. The brachyury gene is believed to be one of the key genes involved in the pathogenesis of chordoma, a rare primary bone tumor originating along the spinal column or at the base of the skull. The association between the brachyury Gly177Asp single nucleotide polymorphism (SNP and the risk of skull base chordoma in Chinese populations is currently unknown. We investigated the genotype distribution of this SNP in 65 skull-base chordoma cases and 120 healthy subjects. Comparisons of the genotype distributions and allele frequencies did not reveal any significant difference between the groups. Our data suggest that the brachyury Gly177Asp SNP is not involved in the risks of skull-base chordoma, at least in the Chinese population.

  11. Exploring genotypic variations for improved oil content and healthy fatty acids composition in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Ishaq, Muhammad; Razi, Raziuddin; Khan, Sabaz Ali

    2017-04-01

    Development of new genotypes having high oil content and desirable levels of fatty acid compositions is a major objective of rapeseed breeding programmes. In the current study combining ability was determined for oil, protein, glucosinolates and various fatty acids content using 8 × 8 full diallel in rapeseed (Brassica napus). Highly significant genotypic differences were observed for oil, protein, glucosinolates, oleic acid, linolenic acid and erucic acid content. Mean squares due to general combining ability (GCA), specific combining ability (SCA) and reciprocal combining ability (RCA) were highly significant (P ≤ 0.01) for biochemical traits. Parental line AUP-17 for high oil content and low glucosinolates, genotype AUP-2 for high protein and oleic acids, and AUP-18 for low lenolenic and erucic acid were best general combiners. Based on desirable SCA effects, F 1 hybrids AUP-17 × AUP-20; AUP-2 × AUP-8; AUP-7 × AUP-14; AUP-2 × AUP-9; AUP-7 × AUP-14 and AUP-2 × AUP-9 were found superior involving at least one best general combiner. F 1 hybrids AUP-17 × AUP-20 (for oil content); AUP-2 × AUP-8 (for protein content); AUP-7 × AUP-14 (for glucosinolates); AUP-2 × AUP-9 (for oleic acid); AUP-7 × AUP-14 (for linolenic acid) and AUP-2 × AUP-9 (for erucic acid) were found superior involving at least one best general combiner. As reciprocal crosses of AUP-14 with AUP-7 and AUP-8 were superior had low × low and low × high GCA effects for glucosinolates and oleic acid, respectively therefore, these could be exploited in future rapeseed breeding programmes to develop new lines with good quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Genetic variation for seed yield and some of agro-morphological traits in faba bean (Vicia faba L. genotypes

    Directory of Open Access Journals (Sweden)

    Peyman SHARIFI

    2015-11-01

    Full Text Available  An investigation was carried out to select the most successful faba bean genotype(s and to estimate the heritability for seed yield and some of agro-morphological traits. The results of analysis of variance indicated that the studied genotypes differed significantly for all of the traits. For 100-seed weight, two north's of Iran landraces (G1 and G2 and two improved breeding cultivars containing France (G4 and Barrakat (G10 possessed the heaviest seed weight, 161.33, 139, 119.67 and 166 g, respectively. G1 and G10 presented the highest values for dry seed weight (473.98 and 495.44 g m-2, respectively. G1 and G10 showed significantly higher magnitude values of the other traits. Broad sense heritability (h2 estimates were generally high to moderate for all of the studied traits. The highest estimates of broad sense heritability was inscribed as 98 % for pod length, dry seed length and dry seed width and 0.95 for hundred seed weight. The estimated broad-sense heritability was 0.80 for dry seed yield per m2. These results suggested that the environmental factors had a small effect on the inheritance of traits with high heritability. High estimates of heritability indicated that selection based on mean would be successful in improving of these traits. High heritability indicate an additive gene action for the traits, and hence, possible trait improvement through selection. Path coefficient analysis indicated that the traits containing day to harvesting, pod length, hundred seed weight and number of stems per plant play major role in seed yield determination of faba bean. Attention should be paid to these characters for augmentation of seed yield and these traits could be used as selection criteria in faba bean breeding programs. These findings indicate that selection for each or full of the above traits would be accompanied by high yielding ability under such conditions. 

  13. fcGENE: a versatile tool for processing and transforming SNP datasets.

    Directory of Open Access Journals (Sweden)

    Nab Raj Roshyara

    Full Text Available Modern analysis of high-dimensional SNP data requires a number of biometrical and statistical methods such as pre-processing, analysis of population structure, association analysis and genotype imputation. Software used for these purposes often rely on specific and incompatible input and output data formats. Therefore extensive data management including multiple format conversions is necessary during analyses.In order to support fast and efficient management and bio-statistical quality control of high-dimensional SNP data, we developed the publically available software fcGENE using C++ object-oriented programming language. This software simplifies and automates the use of different existing analysis packages, especially during the workflow of genotype imputations and corresponding analyses.fcGENE transforms SNP data and imputation results into different formats required for a large variety of analysis packages such as PLINK, SNPTEST, HAPLOVIEW, EIGENSOFT, GenABEL and tools used for genotype imputation such as MaCH, IMPUTE, BEAGLE and others. Data Management tasks like merging, splitting, extracting SNP and pedigree information can be performed. fcGENE also supports a number of bio-statistical quality control processes and quality based filtering processes at SNP- and sample-wise level. The tool also generates templates of commands required to run specific software packages, especially those required for genotype imputation. We demonstrate the functionality of fcGENE by example workflows of SNP data analyses and provide a comprehensive manual of commands, options and applications.We have developed a user-friendly open-source software fcGENE, which comprehensively supports SNP data management, quality control and analysis workflows. Download statistics and corresponding feedbacks indicate that software is highly recognised and extensively applied by the scientific community.

  14. SNP detection for massively parallel whole-genome resequencing

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Fang, Xiaodong

    2009-01-01

    -genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All...... of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.......25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered...

  15. Expression Level of the DREB2-Type Gene, Identified with Amplifluor SNP Markers, Correlates with Performance, and Tolerance to Dehydration in Bread Wheat Cultivars from Northern Kazakhstan

    Science.gov (United States)

    Shavrukov, Yuri; Zhumalin, Aibek; Serikbay, Dauren; Botayeva, Makpal; Otemisova, Ainur; Absattarova, Aiman; Sereda, Grigoriy; Sereda, Sergey; Shvidchenko, Vladimir; Turbekova, Arysgul; Jatayev, Satyvaldy; Lopato, Sergiy; Soole, Kathleen; Langridge, Peter

    2016-01-01

    A panel of 89 local commercial cultivars of bread wheat was tested in field trials in the dry conditions of Northern Kazakhstan. Two distinct groups of cultivars (six cultivars in each group), which had the highest and the lowest grain yield under drought were selected for further experiments. A dehydration test conducted on detached leaves indicated a strong association between rates of water loss in plants from the first group with highest grain yield production in the dry environment relative to the second group. Modern high-throughput Amplifluor Single Nucleotide Polymorphism (SNP) technology was applied to study allelic variations in a series of drought-responsive genes using 19 SNP markers. Genotyping of an SNP in the TaDREB5 (DREB2-type) gene using the Amplifluor SNP marker KATU48 revealed clear allele distribution across the entire panel of wheat accessions, and distinguished between the two groups of cultivars with high and low yield under drought. Significant differences in expression levels of TaDREB5 were revealed by qRT-PCR. Most wheat plants from the first group of cultivars with high grain yield showed slight up-regulation in the TaDREB5 transcript in dehydrated leaves. In contrast, expression of TaDREB5 in plants from the second group of cultivars with low grain yield was significantly down-regulated. It was found that SNPs did not alter the amino acid sequence of TaDREB5 protein. Thus, a possible explanation is that alternative splicing and up-stream regulation of TaDREB5 may be affected by SNP, but these hypotheses require additional analysis (and will be the focus of future studies). PMID:27917186

  16. Expression level of the DREB2-type gene, identified with Amplifluor SNP markers, correlates with performance and tolerance to dehydration in bread wheat cultivars from Northern Kazakhstan

    Directory of Open Access Journals (Sweden)

    Yuri Shavrukov

    2016-11-01

    Full Text Available A panel of 89 local commercial cultivars of bread wheat was tested in field trials in the dry conditions of Northern Kazakhstan. Two distinct groups of cultivars (six cultivars in each group, which had the highest and the lowest grain yield under drought were selected for further experiments. A dehydration test conducted on detached leaves indicated a strong association between rates of water loss in plants from the first group with highest grain yield production in the dry environment relative to the second group. Modern high-throughput Amplifluor SNP technology was applied to study allelic variations in a series of drought-responsive genes using 19 SNP markers. Genotyping of an SNP in the TaDREB5 (DREB2-type gene using the Amplifluor SNP marker KATU48 revealed clear allele distribution across the entire panel of wheat accessions, and distinguished between the two groups of cultivars with high and low yield under drought. Significant differences in expression levels of TaDREB5 were revealed by qRT-PCR. Most wheat plants from the first group of cultivars with high grain yield showed strong up-regulation of TaDREB5 transcript in dehydrated leaves. In contrast, expression of TaDREB5 in plants from the second group of cultivars with low grain yield was significantly down-regulated. It was found that SNPs did not alter the amino acid sequence of TaDREB5 protein. Thus, a possible explanation is that alternative splicing and up-stream regulation of TaDREB5 may be affected by SNP, but these hypotheses require additional analysis (and will be the focus of future studies.

  17. Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought

    Science.gov (United States)

    Xu, Pei; Moshelion, Menachem; Wu, XiaoHua; Halperin, Ofer; Wang, BaoGen; Luo, Jie; Wallach, Rony; Wu, Xinyi; Lu, Zhongfu; Li, Guojing

    2015-01-01

    Asparagus bean (Vigna unguiculata ssp. sesquipedalis) is the Asian subspecies of cowpea, a drought-resistant legume crop native to Africa. In order to explore the genetic variation of drought responses in asparagus bean, we conducted multi-year phenotyping of drought resistance traits across the Chinese asparagus bean mini-core. The phenotypic distribution indicated that the ssp. sesquipedalis subgene pool has maintained high natural variation in drought responses despite known domestic bottleneck. Thirty-nine SNP loci were found to show an association with drought resistance via a genome-wide association study (GWAS). Whole-plant water relations were compared among four genotypes by lysimetric assay. Apparent genotypic differences in transpiration patterns and the critical soil water threshold in relation to dehydration avoidance were observed, indicating a delicate adaptive mechanism for each genotype to its own climate. Microarray gene expression analyses revealed that known drought resistance pathways such as the ABA and phosphate lipid signaling pathways are conserved between different genotypes, while differential regulation of certain aquaporin genes and hormonal genes may be important for the genotypic differences. Our results suggest that divergent sensitivity to soil water content is an important mechanism configuring the genotypic specific responses to water deficit. The SNP markers identified provide useful resources for marker-assisted breeding. PMID:26579145

  18. Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought

    Directory of Open Access Journals (Sweden)

    Pei eXu

    2015-10-01

    Full Text Available Asparagus bean (Vigna unguiculata ssp. sesquipedalis is the Asian subspecies of cowpea, a drought-resistant legume crop native to Africa. In order to explore the genetic variation of drought responses in asparagus bean, we conducted multi-year phenotyping of drought resistance traits across the Chinese asparagus bean mini-core. The phenotypic distribution indicated that the ssp. sesquipedalis subgene pool has maintained high natural variation in drought responses despite known domestic bottleneck. Thirty-nine SNP loci were found to show an association with drought resistance via a genome-wide association study (GWAS. Whole-plant water relations were compared among four genotypes by lysimetric assay. Apparent genotypic differences in transpiration patterns and the critical soil water threshold in relation to dehydration avoidance were observed, indicating a delicate adaptive mechanism for each genotype to its own climate. Microarray gene expression analyses revealed that known drought resistance pathways such as the ABA and phosphate lipid signaling pathways are conserved between genotypes, while differential regulation of certain aquaporin genes and hormonal genes may be important for the genotypic differences. Our results suggest that divergent sensitivity to soil water content is an important mechanism configuring the genotypic specific responses to water deficit. The SNP markers identified provide useful resources for marker-assisted breeding.

  19. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits.

    Directory of Open Access Journals (Sweden)

    Benjamin F Voight

    Full Text Available Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the "Metabochip," a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.

  20. Prediction of a deletion copy number variant by a dense SNP panel

    NARCIS (Netherlands)

    Kadri, N.K.; Koks, P.D.; Meuwissen, T.H.E.

    2012-01-01

    Background: A newly recognized type of genetic variation, Copy Number Variation (CNV), is detected in mammalian genomes, e.g. the cattle genome. This form of variation can potentially cause phenotypic variation. Our objective was to determine whether dense SNP (single nucleotide polymorphisms)

  1. An improved PSO algorithm for generating protective SNP barcodes in breast cancer.

    Directory of Open Access Journals (Sweden)

    Li-Yeh Chuang

    Full Text Available BACKGROUND: Possible single nucleotide polymorphism (SNP interactions in breast cancer are usually not investigated in genome-wide association studies. Previously, we proposed a particle swarm optimization (PSO method to compute these kinds of SNP interactions. However, this PSO does not guarantee to find the best result in every implement, especially when high-dimensional data is investigated for SNP-SNP interactions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we propose IPSO algorithm to improve the reliability of PSO for the identification of the best protective SNP barcodes (SNP combinations and genotypes with maximum difference between cases and controls associated with breast cancer. SNP barcodes containing different numbers of SNPs were computed. The top five SNP barcode results are retained for computing the next SNP barcode with a one-SNP-increase for each processing step. Based on the simulated data for 23 SNPs of six steroid hormone metabolisms and signalling-related genes, the performance of our proposed IPSO algorithm is evaluated. Among 23 SNPs, 13 SNPs displayed significant odds ratio (OR values (1.268 to 0.848; p<0.05 for breast cancer. Based on IPSO algorithm, the jointed effect in terms of SNP barcodes with two to seven SNPs show significantly decreasing OR values (0.84 to 0.57; p<0.05 to 0.001. Using PSO algorithm, two to four SNPs show significantly decreasing OR values (0.84 to 0.77; p<0.05 to 0.001. Based on the results of 20 simulations, medians of the maximum differences for each SNP barcode generated by IPSO are higher than by PSO. The interquartile ranges of the boxplot, as well as the upper and lower hinges for each n-SNP barcode (n = 3∼10 are more narrow in IPSO than in PSO, suggesting that IPSO is highly reliable for SNP barcode identification. CONCLUSIONS/SIGNIFICANCE: Overall, the proposed IPSO algorithm is robust to provide exact identification of the best protective SNP barcodes for breast cancer.

  2. Report on ISFG SNP Panel Discussion

    DEFF Research Database (Denmark)

    Butler, John M.; Budowle, B.; Gill, P.

    2008-01-01

    Six scientists presented their views and experience with single nucleotide polymorphism (SNP) markers, multiplexes, and methods regarding their potential application in forensic identity and relationship testing. Benefits and limitations of SNPs were reviewed, as were different SNP marker...

  3. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    Science.gov (United States)

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  4. New generation pharmacogenomic tools: a SNP linkage disequilibrium Map, validated SNP assay resource, and high-throughput instrumentation system for large-scale genetic studies.

    Science.gov (United States)

    De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A

    2002-06-01

    Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.

  5. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables

    International Nuclear Information System (INIS)

    Alexander, P.D.; Alloway, B.J.; Dourado, A.M.

    2006-01-01

    Metal contaminants in garden and allotment soils could possibly affect human health through a variety of pathways. This study focused on the potential pathway of consumption of vegetables grown on contaminated soil. Five cultivars each of six common vegetables were grown in a control and in a soil spiked with Cd, Cu, Pb and Zn. Highly significant differences in metal content were evident between cultivars of a number of vegetables for several of the contaminants. Carrot and pea cultivars exhibited significant differences in accumulated concentrations of Cd and Cu with carrot cultivars also exhibiting significant differences in Zn. Distinctive differences were also identified when comparing one vegetable to another, legumes (Leguminosae) tending to be low accumulators, root vegetables (Umbelliferae and Liliaceae) tending to be moderate accumulators and leafy vegetables (Compositae and Chenopodiaceae) being high accumulators. - Genotypic differences between cultivars of vegetable species can be important in determining the extent of accumulation of metals from contaminated soil

  6. DRD2 genotype-based variation of default mode network activity and of its relationship with striatal DAT binding.

    Science.gov (United States)

    Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2013-01-01

    The default mode network (DMN) comprises a set of brain regions with "increased" activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([(123)I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling.

  7. Detecting selection signatures between Duroc and Duroc synthetic pig populations using high-density SNP chip.

    Science.gov (United States)

    Edea, Z; Hong, J-K; Jung, J-H; Kim, D-W; Kim, Y-M; Kim, E-S; Shin, S S; Jung, Y C; Kim, K-S

    2017-08-01

    The development of high throughput genotyping techniques has facilitated the identification of selection signatures of pigs. The detection of genomic selection signals in a population subjected to differential selection pressures may provide insights into the genes associated with economically and biologically important traits. To identify genomic regions under selection, we genotyped 488 Duroc (D) pigs and 155 D × Korean native pigs (DKNPs) using the Porcine SNP70K BeadChip. By applying the F ST and extended haplotype homozygosity (EHH-Rsb) methods, we detected genes under directional selection associated with growth/stature (DOCK7, PLCB4, HS2ST1, FBP2 and TG), carcass and meat quality (TG, COL14A1, FBXO5, NR3C1, SNX7, ARHGAP26 and DPYD), number of teats (LOC100153159 and LRRC1), pigmentation (MME) and ear morphology (SOX5), which are all mostly near or at fixation. These results could be a basis for investigating the underlying mutations associated with observed phenotypic variation. Validation using genome-wide association analysis would also facilitate the inclusion of some of these markers in genetic evaluation programs. © 2017 Stichting International Foundation for Animal Genetics.

  8. Clonal diversity analysis using SNP microarray: a new prognostic tool for chronic lymphocytic leukemia.

    Science.gov (United States)

    Zhang, Linsheng; Znoyko, Iya; Costa, Luciano J; Conlin, Laura K; Daber, Robert D; Self, Sally E; Wolff, Daynna J

    2011-12-01

    Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. The methods currently used for monitoring CLL and determining conditions for treatment are limited in their ability to predict disease progression, patient survival, and response to therapy. Although clonal diversity and the acquisition of new chromosomal abnormalities during the disease course (clonal evolution) have been associated with disease progression, their prognostic potential has been underappreciated because cytogenetic and fluorescence in situ hybridization (FISH) studies have a restricted ability to detect genomic abnormalities and clonal evolution. We hypothesized that whole genome analysis using high resolution single nucleotide polymorphism (SNP) microarrays would be useful to detect diversity and infer clonal evolution to offer prognostic information. In this study, we used the Infinium Omni1 BeadChip (Illumina, San Diego, CA) array for the analysis of genetic variation and percent mosaicism in 25 non-selected CLL patients to explore the prognostic value of the assessment of clonal diversity in patients with CLL. We calculated the percentage of mosaicism for each abnormality by applying a mathematical algorithm to the genotype frequency data and by manual determination using the Simulated DNA Copy Number (SiDCoN) tool, which was developed from a computer model of mosaicism. At least one genetic abnormality was identified in each case, and the SNP data was 98% concordant with FISH results. Clonal diversity, defined as the presence of two or more genetic abnormalities with differing percentages of mosaicism, was observed in 12 patients (48%), and the diversity correlated with the disease stage. Clonal diversity was present in most cases of advanced disease (Rai stages III and IV) or those with previous treatment, whereas 9 of 13 patients without detected clonal diversity were asymptomatic or clinically stable. In conclusion, SNP microarray studies with simultaneous evaluation

  9. SNP discovery in nonmodel organisms: strand bias and base-substitution errors reduce conversion rates.

    Science.gov (United States)

    Gonçalves da Silva, Anders; Barendse, William; Kijas, James W; Barris, Wes C; McWilliam, Sean; Bunch, Rowan J; McCullough, Russell; Harrison, Blair; Hoelzel, A Rus; England, Phillip R

    2015-07-01

    Single nucleotide polymorphisms (SNPs) have become the marker of choice for genetic studies in organisms of conservation, commercial or biological interest. Most SNP discovery projects in nonmodel organisms apply a strategy for identifying putative SNPs based on filtering rules that account for random sequencing errors. Here, we analyse data used to develop 4723 novel SNPs for the commercially important deep-sea fish, orange roughy (Hoplostethus atlanticus), to assess the impact of not accounting for systematic sequencing errors when filtering identified polymorphisms when discovering SNPs. We used SAMtools to identify polymorphisms in a velvet assembly of genomic DNA sequence data from seven individuals. The resulting set of polymorphisms were filtered to minimize 'bycatch'-polymorphisms caused by sequencing or assembly error. An Illumina Infinium SNP chip was used to genotype a final set of 7714 polymorphisms across 1734 individuals. Five predictors were examined for their effect on the probability of obtaining an assayable SNP: depth of coverage, number of reads that support a variant, polymorphism type (e.g. A/C), strand-bias and Illumina SNP probe design score. Our results indicate that filtering out systematic sequencing errors could substantially improve the efficiency of SNP discovery. We show that BLASTX can be used as an efficient tool to identify single-copy genomic regions in the absence of a reference genome. The results have implications for research aiming to identify assayable SNPs and build SNP genotyping assays for nonmodel organisms. © 2014 John Wiley & Sons Ltd.

  10. Effect of diurnal variation, CYP2B6 genotype and age on the pharmacokinetics of nevirapine in African children

    NARCIS (Netherlands)

    Bienczak, A.; Cook, A.; Wiesner, L.; Mulenga, V.; Kityo, C.; Kekitiinwa, A.; Walker, A.S.; Owen, A.; Gibb, D.M.; Burger, D.M.; McIlleron, H.; Denti, P.

    2017-01-01

    OBJECTIVES: To characterize the effects of CYP2B6 polymorphisms, diurnal variation and demographic factors on nevirapine pharmacokinetics in African children. METHODS: Non-linear mixed-effects modelling conducted in NONMEM 7.3 described nevirapine plasma concentration-time data from 414 children

  11. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale

    DEFF Research Database (Denmark)

    Liu, Siyang; Huang, Shujia; Rao, Junhua

    2015-01-01

    present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome......) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We...... assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction...

  12. Relationship between ureB Sequence Diversity, Urease Activity and Genotypic Variations of Different Helicobacter pylori Strains in Patients with Gastric Disorders.

    Science.gov (United States)

    Ghalehnoei, Hossein; Ahmadzadeh, Alireza; Farzi, Nastaran; Alebouyeh, Masoud; Aghdaei, Hamid Asadzadeh; Azimzadeh, Pendram; Molaei, Mahsa; Zali, Mohammad Reza

    2016-01-01

    Association of the severity of Helicobacter pylori induced diseases with virulence entity of the colonized strains was proven in some studies. Urease has been demonstrated as a potent virulence factor for H. pylori. The main aim of this study was investigation of the relationships of ureB sequence diversity, urease activity and virulence genotypes of different H. pylori strains with histopathological changes of gastric tissue in infected patients suffering from different gastric disorders. Analysis of the virulence genotypes in the isolated strains indicated significant associations between the presence of severe active gastritis and cagA+ (P = 0.039) or cagA/iceA1 genotypes (P = 0.026), and intestinal metaplasia and vacA m1 (P = 0.008) or vacA s1/m2 (P = 0.001) genotypes. Our results showed a 2.4-fold increased risk of peptic ulcer (95% CI: 0.483-11.93), compared with gastritis, in the infected patients who had dupA positive strains; however this association was not statistically significant. The results of urease activity showed a significant mean difference between the isolated strains from patients with PUD and NUD (P = 0.034). This activity was relatively higher among patients with intestinal metaplasia. Also a significant association was found between the lack of cagA and increased urease activity among the isolated strains (P = 0.036). While the greatest sequence variation of ureB was detected in a strain from a patient with intestinal metaplasia, the sole determined amino acid change in UreB sequence (Ala201Thr, 30%), showed no influence on urease activity. In conclusion, the supposed role of H. pylori urease to form peptic ulcer and advancing of intestinal metaplasia was postulated in this study. Higher urease activity in the colonizing H. pylori strains that present specific virulence factors was indicated as a risk factor for promotion of histopathological changes of gastric tissue that advance gastric malignancy.

  13. Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fangbin; Wang, Runfeng [Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058 (China); Cheng, Wangda [Jiaxing Academy of Agricultural Sciences, Jiaxing 314016 (China); Zeng, Fanrong; Ahmed, Imrul Mosaddek; Hu, Xinna; Zhang, Guoping [Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058 (China); Wu, Feibo, E-mail: wufeibo@zju.edu.cn [Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058 (China)

    2014-10-15

    The field scale trials revealed significant genotypic and environmental differences in grain heavy metal (HM) concentrations of 158 newly developed rice varieties grown in twelve locations of Zhejiang province of China. Grain Pb and Cd contents in 5.3% and 0.4% samples, respectively, were above the maximum permissible concentration (MPC); none of samples had Cr/Cu exceeding MPC. Stepwise multiple linear regression analysis estimated soil HM critical levels for safe rice production. Low grain HM accumulation cultivars such as Xiushui817, Jiayou08-1 and Chunyou689 were recommended as suitable cultivars for planting in slight/medium HM contaminated soils. The alleviating regulator (AR) of (NH{sub 4}){sub 2}SO{sub 4} as N fertilizer coupled with foliar spray of a mixture containing glutathione (GSH), Si, Zn and Se significantly decreased grain Cd, Cr, Cu and Pb concentrations grown in HM contaminated fields with no effect on yield, indicating a promising measurement for further reducing grain HM content to guarantee safe food production. - Highlights: • Field trials evaluated situation of grain HM in main rice growing areas of Zhejiang. • Forecasting index system to predict rice grain HM concentration was achieved. • Hybrid rice holds higher grain Cd concentration than conventional cultivars. • Low grain HM accumulation rice cultivars were successfully identified. • Developed alleviating regulator which effectively reduced grain toxic HM.

  14. Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation

    International Nuclear Information System (INIS)

    Cao, Fangbin; Wang, Runfeng; Cheng, Wangda; Zeng, Fanrong; Ahmed, Imrul Mosaddek; Hu, Xinna; Zhang, Guoping; Wu, Feibo

    2014-01-01

    The field scale trials revealed significant genotypic and environmental differences in grain heavy metal (HM) concentrations of 158 newly developed rice varieties grown in twelve locations of Zhejiang province of China. Grain Pb and Cd contents in 5.3% and 0.4% samples, respectively, were above the maximum permissible concentration (MPC); none of samples had Cr/Cu exceeding MPC. Stepwise multiple linear regression analysis estimated soil HM critical levels for safe rice production. Low grain HM accumulation cultivars such as Xiushui817, Jiayou08-1 and Chunyou689 were recommended as suitable cultivars for planting in slight/medium HM contaminated soils. The alleviating regulator (AR) of (NH 4 ) 2 SO 4 as N fertilizer coupled with foliar spray of a mixture containing glutathione (GSH), Si, Zn and Se significantly decreased grain Cd, Cr, Cu and Pb concentrations grown in HM contaminated fields with no effect on yield, indicating a promising measurement for further reducing grain HM content to guarantee safe food production. - Highlights: • Field trials evaluated situation of grain HM in main rice growing areas of Zhejiang. • Forecasting index system to predict rice grain HM concentration was achieved. • Hybrid rice holds higher grain Cd concentration than conventional cultivars. • Low grain HM accumulation rice cultivars were successfully identified. • Developed alleviating regulator which effectively reduced grain toxic HM

  15. Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation.

    Science.gov (United States)

    Cao, Fangbin; Wang, Runfeng; Cheng, Wangda; Zeng, Fanrong; Ahmed, Imrul Mosaddek; Hu, Xinna; Zhang, Guoping; Wu, Feibo

    2014-10-15

    The field scale trials revealed significant genotypic and environmental differences in grain heavy metal (HM) concentrations of 158 newly developed rice varieties grown in twelve locations of Zhejiang province of China. Grain Pb and Cd contents in 5.3% and 0.4% samples, respectively, were above the maximum permissible concentration (MPC); none of samples had Cr/Cu exceeding MPC. Stepwise multiple linear regression analysis estimated soil HM critical levels for safe rice production. Low grain HM accumulation cultivars such as Xiushui817, Jiayou08-1 and Chunyou689 were recommended as suitable cultivars for planting in slight/medium HM contaminated soils. The alleviating regulator (AR) of (NH₄)₂SO₄ as N fertilizer coupled with foliar spray of a mixture containing glutathione (GSH), Si, Zn and Se significantly decreased grain Cd, Cr, Cu and Pb concentrations grown in HM contaminated fields with no effect on yield, indicating a promising measurement for further reducing grain HM content to guarantee safe food production. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  17. Genetic Polymorphism of MDM2 SNP309 in Patients with Helicobacter Pylori-Associated Gastritis.

    Science.gov (United States)

    Tongtawee, Taweesak; Dechsukhum, Chavaboon; Leeanansaksiri, Wilairat; Kaewpitoon, Soraya; Kaewpitoon, Natthawut; Loyd, Ryan A; Matrakool, Likit; Panpimanmas, Sukij

    2015-01-01

    Helicobacter pylori plays an important role in gastric cancer, which has a relatively low inciduence in Thailand. MDM2 is a major negative regulator of p53, the key tumor suppressor involved in tumorigenesis of the majority of human cancers. Whether its expression might explain the relative lack of gastric cancer in Thailand was assessed here. This single-center study was conducted in the northeast region of Thailand. Gastric mucosa from 100 patients with Helicobacter pylori associated gastritis was analyzed for MDM2 SNP309 using real-time PCR hybridization (light-cycler) probes. In the total 100 Helicobacter pylori associated gastritis cases the incidence of SNP 309 T/T homozygous was 78 % with SNP309 G/T heterozygous found in 19% and SNP309 G/G homozygous in 3%. The result show SNP 309 T/T and SNP 309 G/T to be rather common in the Thai population. Our study indicates that the MDM2 SNP309 G/G homozygous genotype might be a risk factor for gastric cancer in Thailand and the fact that it is infrequent could explain to some extent the low incidence of gastric cancer in the Thai population.

  18. Applying SNP marker technology in the cacao breeding program at the Cocoa Research Institute of Ghana

    Science.gov (United States)

    In this investigation 45 parental cacao plants and five progeny derived from the parental stock studied were genotyped using six SNP markers to determine off-types or mislabeled clones and to authenticate crosses made in the Cocoa Research Institute of Ghana (CRIG) breeding program. Investigation wa...

  19. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses

    NARCIS (Netherlands)

    Orr, J.L.; Back, W.; Gu, J.; Leegwater, P.H.; Govindarajan, P.; Conroy, J.; Ducro, B.J.; Arendonk, van J.A.M.

    2010-01-01

    The recent completion of the horse genome and commercial availability of an equine SNP genotyping array has facilitated the mapping of disease genes. We report putative localization of the gene responsible for dwarfism, a trait in Friesian horses that is thought to have a recessive mode of

  20. Association test based on SNP set: logistic kernel machine based test vs. principal component analysis.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available GWAS has facilitated greatly the discovery of risk SNPs associated with complex diseases. Traditional methods analyze SNP individually and are limited by low power and reproducibility since correction for multiple comparisons is necessary. Several methods have been proposed based on grouping SNPs into SNP sets using biological knowledge and/or genomic features. In this article, we compare the linear kernel machine based test (LKM and principal components analysis based approach (PCA using simulated datasets under the scenarios of 0 to 3 causal SNPs, as well as simple and complex linkage disequilibrium (LD structures of the simulated regions. Our simulation study demonstrates that both LKM and PCA can control the type I error at the significance level of 0.05. If the causal SNP is in strong LD with the genotyped SNPs, both the PCA with a small number of principal components (PCs and the LKM with kernel of linear or identical-by-state function are valid tests. However, if the LD structure is complex, such as several LD blocks in the SNP set, or when the causal SNP is not in the LD block in which most of the genotyped SNPs reside, more PCs should be included to capture the information of the causal SNP. Simulation studies also demonstrate the ability of LKM and PCA to combine information from multiple causal SNPs and to provide increased power over individual SNP analysis. We also apply LKM and PCA to analyze two SNP sets extracted from an actual GWAS dataset on non-small cell lung cancer.

  1. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...... the sensor bias current to magnetize magnetic beads in the vicinity of the sensor. The method allows for real-time measurements of the specific bead binding to the sensor surface during DNA hybridization and washing. Compared to other magnetic biosensing platforms, our approach eliminates the need...... for external electromagnets and thus allows for miniaturization of the sensor platform....

  2. Mycobacterium leprae in Colombia described by SNP7614 in gyrA, two minisatellites and geography

    Science.gov (United States)

    Cardona-Castro, Nora; Beltrán-Alzate, Juan Camilo; Romero-Montoya, Irma Marcela; Li, Wei; Brennan, Patrick J; Vissa, Varalakshmi

    2013-01-01

    New cases of leprosy are still being detected in Colombia after the country declared achievement of the WHO defined ‘elimination’ status. To study the ecology of leprosy in endemic regions, a combination of geographic and molecular tools were applied for a group of 201 multibacillary patients including six multi-case families from eleven departments. The location (latitude and longitude) of patient residences were mapped. Slit skin smears and/or skin biopsies were collected and DNA was extracted. Standard agarose gel electrophoresis following a multiplex PCR-was developed for rapid and inexpensive strain typing of M. leprae based on copy numbers of two VNTR minisatellite loci 27-5 and 12-5. A SNP (C/T) in gyrA (SNP7614) was mapped by introducing a novel PCR-RFLP into an ongoing drug resistance surveillance effort. Multiple genotypes were detected combining the three molecular markers. The two frequent genotypes in Colombia were SNP7614(C)/27-5(5)/12-5(4) [C54] predominantly distributed in the Atlantic departments and SNP7614 (T)/27-5(4)/12-5(5) [T45] associated with the Andean departments. A novel genotype SNP7614 (C)/27-5(6)/12-5(4) [C64] was detected in cities along the Magdalena river which separates the Andean from Atlantic departments; a subset was further characterized showing association with a rare allele of minisatellite 23-3 and the SNP type 1 of M. leprae. The genotypes within intra-family cases were conserved. Overall, this is the first large scale study that utilized simple and rapid assay formats for identification of major strain types and their distribution in Colombia. It provides the framework for further strain type discrimination and geographic information systems as tools for tracing transmission of leprosy. PMID:23291420

  3. Mycobacterium leprae in Colombia described by SNP7614 in gyrA, two minisatellites and geography.

    Science.gov (United States)

    Cardona-Castro, Nora; Beltrán-Alzate, Juan Camilo; Romero-Montoya, Irma Marcela; Li, Wei; Brennan, Patrick J; Vissa, Varalakshmi

    2013-03-01

    New cases of leprosy are still being detected in Colombia after the country declared achievement of the WHO defined 'elimination' status. To study the ecology of leprosy in endemic regions, a combination of geographic and molecular tools were applied for a group of 201 multibacillary patients including six multi-case families from eleven departments. The location (latitude and longitude) of patient residences were mapped. Slit skin smears and/or skin biopsies were collected and DNA was extracted. Standard agarose gel electrophoresis following a multiplex PCR-was developed for rapid and inexpensive strain typing of Mycobacterium leprae based on copy numbers of two VNTR minisatellite loci 27-5 and 12-5. A SNP (C/T) in gyrA (SNP7614) was mapped by introducing a novel PCR-RFLP into an ongoing drug resistance surveillance effort. Multiple genotypes were detected combining the three molecular markers. The two frequent genotypes in Colombia were SNP7614(C)/27-5(5)/12-5(4) [C54] predominantly distributed in the Atlantic departments and SNP7614 (T)/27-5(4)/12-5(5) [T45] associated with the Andean departments. A novel genotype SNP7614 (C)/27-5(6)/12-5(4) [C64] was detected in cities along the Magdalena river which separates the Andean from Atlantic departments; a subset was further characterized showing association with a rare allele of minisatellite 23-3 and the SNP type 1 of M. leprae. The genotypes within intra-family cases were conserved. Overall, this is the first large scale study that utilized simple and rapid assay formats for identification of major strain types and their distribution in Colombia. It provides the framework for further strain type discrimination and geographic information systems as tools for tracing transmission of leprosy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Development of a genotype-by-sequencing immunogenetic assay as exemplified by screening for variation in red fox with and without endemic rabies exposure.

    Science.gov (United States)

    Donaldson, Michael E; Rico, Yessica; Hueffer, Karsten; Rando, Halie M; Kukekova, Anna V; Kyle, Christopher J

    2018-01-01

    Pathogens are recognized as major drivers of local adaptation in wildlife systems. By determining which gene variants are favored in local interactions among populations with and without disease, spatially explicit adaptive responses to pathogens can be elucidated. Much of our current understanding of host responses to disease comes from a small number of genes associated with an immune response. High-throughput sequencing (HTS) technologies, such as genotype-by-sequencing (GBS), facilitate expanded explorations of genomic variation among populations. Hybridization-based GBS techniques can be leveraged in systems not well characterized for specific variants associated with disease outcome to "capture" specific genes and regulatory regions known to influence expression and disease outcome. We developed a multiplexed, sequence capture assay for red foxes to simultaneously assess ~300-kbp of genomic sequence from 116 adaptive, intrinsic, and innate immunity genes of predicted adaptive significance and their putative upstream regulatory regions along with 23 neutral microsatellite regions to control for demographic effects. The assay was applied to 45 fox DNA samples from Alaska, where three arctic rabies strains are geographically restricted and endemic to coastal tundra regions, yet absent from the boreal interior. The assay provided 61.5% on-target enrichment with relatively even sequence coverage across all targeted loci and samples (mean = 50×), which allowed us to elucidate genetic variation across introns, exons, and potential regulatory regions (4,819 SNPs). Challenges remained in accurately describing microsatellite variation using this technique; however, longer-read HTS technologies should overcome these issues. We used these data to conduct preliminary analyses and detected genetic structure in a subset of red fox immune-related genes between regions with and without endemic arctic rabies. This assay provides a template to assess immunogenetic variation

  5. MitoLSDB: a comprehensive resource to study genotype to phenotype correlations in human mitochondrial DNA variations.

    Directory of Open Access Journals (Sweden)

    Shamnamole K

    Full Text Available Human mitochondrial DNA (mtDNA encodes a set of 37 genes which are essential structural and functional components of the electron transport chain. Variations in these genes have been implicated in a broad spectrum of diseases and are extensively reported in literature and various databases. In this study, we describe MitoLSDB, an integrated platform to catalogue disease association studies on mtDNA (http://mitolsdb.igib.res.in. The main goal of MitoLSDB is to provide a central platform for direct submissions of novel variants that can be curated by the Mitochondrial Research Community. MitoLSDB provides access to standardized and annotated data from literature and databases encompassing information from 5231 individuals, 675 populations and 27 phenotypes. This platform is developed using the Leiden Open (source Variation Database (LOVD software. MitoLSDB houses information on all 37 genes in each population amounting to 132397 variants, 5147 unique variants. For each variant its genomic location as per the Revised Cambridge Reference Sequence, codon and amino acid change for variations in protein-coding regions, frequency, disease/phenotype, population, reference and remarks are also listed. MitoLSDB curators have also reported errors documented in literature which includes 94 phantom mutations, 10 NUMTs, six documentation errors and one artefactual recombination. MitoLSDB is the largest repository of mtDNA variants systematically standardized and presented using the LOVD platform. We believe that this is a good starting resource to curate mtDNA variants and will facilitate direct submissions enhancing data coverage, annotation in context of pathogenesis and quality control by ensuring non-redundancy in reporting novel disease associated variants.

  6. The evolution of polyandry: patterns of genotypic variation in female mating frequency, male fertilization success and a test of the sexy-sperm hypothesis.

    Science.gov (United States)

    Simmons, L W

    2003-07-01

    The sexy-sperm hypothesis predicts that females obtain indirect benefits for their offspring via polyandy, in the form of increased fertilization success for their sons. I use a quantitative genetic approach to test the sexy-sperm hypothesis using the field cricket Teleogryllus oceanicus. Previous studies of this species have shown considerable phenotypic variation in fertilization success when two or more males compete. There were high broad-sense heritabilities for both paternity and polyandry. Patterns of genotypic variance were consistent with X-linked inheritance and/or maternal effects on these traits. The genetic architecture therefore precludes the evolution of polyandry via a sexy-sperm process. Thus the positive genetic correlation between paternity in sons and polyandry in daughters predicted by the sexy-sperm hypothesis was absent. There was significant heritable variation in the investment by females in ovaries and by males in the accessory gland. Surprisingly there was a very strong genetic correlation between these two traits. The significance of this genetic correlation for the coevolution of male seminal products and polyandry is discussed.

  7. Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L

    Science.gov (United States)

    Clarke, Wayne E.; Parkin, Isobel A.; Gajardo, Humberto A.; Gerhardt, Daniel J.; Higgins, Erin; Sidebottom, Christine; Sharpe, Andrew G.; Snowdon, Rod J.; Federico, Maria L.; Iniguez-Luy, Federico L.

    2013-01-01

    Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species. PMID:24312619

  8. Revision of the SNPforID 34-plex forensic ancestry test: Assay enhancements, standard reference sample genotypes and extended population studies.

    Science.gov (United States)

    Fondevila, M; Phillips, C; Santos, C; Freire Aradas, A; Vallone, P M; Butler, J M; Lareu, M V; Carracedo, A

    2013-01-01

    A revision of an established 34 SNP forensic ancestry test has been made by swapping the under-performing rs727811 component SNP with the highly informative rs3827760 that shows a near-fixed East Asian specific allele. We collated SNP variability data for the revised SNP set in 66 reference populations from 1000 Genomes and HGDP-CEPH panels and used this as reference data to analyse four U.S. populations showing a range of admixture patterns. The U.S. Hispanics sample in particular displayed heterogeneous values of co-ancestry between European, Native American and African contributors, likely to reflect in part, the way this disparate group is defined using cultural as well as population genetic parameters. The genotyping of over 700 U.S. population samples also provided the opportunity to thoroughly gauge peak mobility variation and peak height ratios observed from routine use of the single base extension chemistry of the 34-plex test. Finally, the genotyping of the widely used DNA profiling Standard Reference Material samples plus other control DNAs completes the audit of the 34-plex assay to allow forensic practitioners to apply this test more readily in their own laboratories. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. CYP1A2 Genotype Variations Do Not Modify the Benefits and Drawbacks of Caffeine during Exercise: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Juan J. Salinero

    2017-03-01

    Full Text Available Previous investigations have determined that some individuals have minimal or even ergolytic performance effects after caffeine ingestion. The aim of this study was to analyze the influence of the genetic variations of the CYP1A2 gene on the performance enhancement effects of ingesting a moderate dose of caffeine. In a double-blind randomized experimental design, 21 healthy active participants (29.3 ± 7.7 years ingested 3 mg of caffeine per kg of body mass or a placebo in testing sessions separated by one week. Performance in the 30 s Wingate test, visual attention, and side effects were evaluated. DNA was obtained from whole blood samples and the CYP1A2 polymorphism was analyzed (rs762551. We obtained two groups: AA homozygotes (n = 5 and C-allele carriers (n = 16. Caffeine ingestion increased peak power (682 ± 140 vs. 667 ± 137 W; p = 0.008 and mean power during the Wingate test (527 ± 111 vs. 518 ± 111 W; p < 0.001 with no differences between AA homozygotes and C-allele carriers (p > 0.05. Reaction times were similar between caffeine and placebo conditions (276 ± 31 vs. 269 ± 71 milliseconds; p = 0.681 with no differences between AA homozygotes and C-allele carriers. However, 31.3% of the C-allele carriers reported increased nervousness after caffeine ingestion, while none of the AA homozygotes perceived this side effect. Genetic variations of the CYP1A2 polymorphism did not affect the ergogenic effects and drawbacks derived from the ingestion of a moderate dose of caffeine.

  10. CYP1A2 Genotype Variations Do Not Modify the Benefits and Drawbacks of Caffeine during Exercise: A Pilot Study.

    Science.gov (United States)

    Salinero, Juan J; Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Puente-Torres, Carlos; Gallo-Salazar, César; Pascual, Teodoro; Del Coso, Juan

    2017-03-11

    Previous investigations have determined that some individuals have minimal or even ergolytic performance effects after caffeine ingestion. The aim of this study was to analyze the influence of the genetic variations of the CYP1A2 gene on the performance enhancement effects of ingesting a moderate dose of caffeine. In a double-blind randomized experimental design, 21 healthy active participants (29.3 ± 7.7 years) ingested 3 mg of caffeine per kg of body mass or a placebo in testing sessions separated by one week. Performance in the 30 s Wingate test, visual attention, and side effects were evaluated. DNA was obtained from whole blood samples and the CYP1A2 polymorphism was analyzed (rs762551). We obtained two groups: AA homozygotes ( n = 5) and C-allele carriers ( n = 16). Caffeine ingestion increased peak power (682 ± 140 vs. 667 ± 137 W; p = 0.008) and mean power during the Wingate test (527 ± 111 vs. 518 ± 111 W; p 0.05). Reaction times were similar between caffeine and placebo conditions (276 ± 31 vs. 269 ± 71 milliseconds; p = 0.681) with no differences between AA homozygotes and C-allele carriers. However, 31.3% of the C-allele carriers reported increased nervousness after caffeine ingestion, while none of the AA homozygotes perceived this side effect. Genetic variations of the CYP1A2 polymorphism did not affect the ergogenic effects and drawbacks derived from the ingestion of a moderate dose of caffeine.

  11. Effect of Myostatin SNP on muscle fiber properties in male Thoroughbred horses during training period.

    Science.gov (United States)

    Miyata, Hirofumi; Itoh, Rika; Sato, Fumio; Takebe, Naoya; Hada, Tetsuro; Tozaki, Teruaki

    2017-10-20

    Variants of the Myostatin gene have been shown to have an influence on muscle hypertrophy phenotypes in a wide range of mammalian species. Recently, a Thoroughbred horse with a C-Allele at the g.66493737C/T single-nucleotide polymorphism (SNP) has been reported to be suited to short-distance racing. In this study, we examined the effect of the Myostatin SNP on muscle fiber properties in young Thoroughbred horses during a training period. To investigate the effect of the Myostatin SNP on muscle fiber before training, several mRNA expressions were relatively quantified in biopsy samples from the middle gluteal muscle of 27 untrained male Thoroughbred horses (1.5 years old) using real-time RT-PCR analysis. The remaining muscle samples were used for immunohistochemical analysis to determine the population and area of each fiber type. All measurements were revaluated in biopsy samples of the same horses after a 5-month period of conventional training. Although the expressions of Myostatin mRNA decreased in all SNP genotypes, a significant decrease was found in only the C/C genotype after training. While, expression of VEGFa, PGC1α, and SDHa mRNAs, which relate to the biogenesis of mitochondria and capillaries, was significantly higher (54-82%) in the T/T than the C/C genotypes after training. It is suggested that hypertrophy of muscle fiber is directly associated with a decrease in Myostatin mRNA expression in the C/C genotype, and that increased expressions of VEGFa, PGC1α, and SDHa in the T/T genotype might be indirectly caused by the Myostatin SNP.

  12. Identification of Mendelian inconsistencies between SNP and pedigree information of sibs

    Directory of Open Access Journals (Sweden)

    Calus Mario PL

    2011-10-01

    Full Text Available Abstract Background Using SNP genotypes to apply genomic selection in breeding programs is becoming common practice. Tools to edit and check the quality of genotype data are required. Checking for Mendelian inconsistencies makes it possible to identify animals for which pedigree information and genotype information are not in agreement. Methods Straightforward tests to detect Mendelian inconsistencies exist that count the number of opposing homozygous marker (e.g. SNP genotypes between parent and offspring (PAR-OFF. Here, we develop two tests to identify Mendelian inconsistencies between sibs. The first test counts SNP with opposing homozygous genotypes between sib pairs (SIBCOUNT. The second test compares pedigree and SNP-based relationships (SIBREL. All tests iteratively remove animals based on decreasing numbers of inconsistent parents and offspring or sibs. The PAR-OFF test, followed by either SIB test, was applied to a dataset comprising 2,078 genotyped cows and 211 genotyped sires. Theoretical expectations for distributions of test statistics of all three tests were calculated and compared to empirically derived values. Type I and II error rates were calculated after applying the tests to the edited data, while Mendelian inconsistencies were introduced by permuting pedigree against genotype data for various proportions of animals. Results Both SIB tests identified animal pairs for which pedigree and genomic relationships could be considered as inconsistent by visual inspection of a scatter plot of pairwise pedigree and SNP-based relationships. After removal of 235 animals with the PAR-OFF test, SIBCOUNT (SIBREL identified 18 (22 additional inconsistent animals. Seventeen animals were identified by both methods. The numbers of incorrectly deleted animals (Type I error, were equally low for both methods, while the numbers of incorrectly non-deleted animals (Type II error, were considerably higher for SIBREL compared to SIBCOUNT. Conclusions

  13. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings

    Directory of Open Access Journals (Sweden)

    Daoqian eChen

    2016-01-01

    Full Text Available Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of ten maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714**, but not to drought resistance (r = 0.332. Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874*** and Fv/Fm (r = 0.626* under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes.

  14. Classification of Cryptococcus neoformans and yeast-like fungus isolates from pigeon droppings by colony phenotyping and ITS genotyping and their seasonal variations in Korea.

    Science.gov (United States)

    Chae, H S; Jang, G E; Kim, N H; Son, H R; Lee, J H; Kim, S H; Park, G N; Jo, H J; Kim, J T; Chang, K S

    2012-03-01

    Cryptococcus neoformans (C neoformans) is a frequent cause of invasive fungal disease in immunocompromised human hosts. Ninety-eight samples of pigeon droppings were collected from the pigeon shelters in Seoul, and cultured on birdseed agar (BSA) and Sabouraud dextrose agar (SDA). One hundred yeast-like colonies were selected and identified via phenotype characteristics, such as colony morphology and biochemical characteristics. This was then followed with genotyping via sequencing of the internal transcribed spacer (ITS) region. The colonies were classified into four kinds of colony color types: brown type (BrT), beige type (BeT), pink type (PT), and white type (WT). Numbers of isolated BrT, BeT, PT, and WT colonies were 22 (22%), 30 (30%), 19 (19%), and 39 (39%), respectively. All BrT colonies were identified as C neoformans. BeT were identified as 19 isolates of Cryptococcus laurentii, 10 isolates of Malassezia furfur, and 1 isolate of Cryptococcus uniguttulatus. PT was divided into two colony color types: light-PT (l-PT) and deep-PT (d-PT). Eighteen of l-PT and one of d-PT were identified as Rhodotorula glutinis and Rhodotorula mucilaginosa, respectively. WT were identified as 34 isolates of Cryptococcus guilliermondii, 3 isolates of Cryptococcus zeylanoides, 1 isolate of Cryptococcus sake, and 1 isolate of Stephanoascus ciferrii. Most strains were classified identically with the use of either phenotype or genotyping techniques, but C uniguttulatus and C sake classified by phenotyping were Pseudozyma aphidis and Cryptococcus famata by genotyping. This rapid screening technique of pathogenic yeast-like fungi by only colony characteristics is also expected to be very useful for primary yeast screening. Additionally, we investigated the seasonal variations of C neoformans and other yeast-like fungi from 379 pigeon-dropping samples that were collected from February 2011 to March 2011. We isolated 685 yeast-like fungi from the samples. Almost all C neoformans and

  15. Cloning and Characterization of a Flavonol Synthase Gene From Litchi chinensis and Its Variation Among Litchi Cultivars With Different Fruit Maturation Periods

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2018-04-01

    Full Text Available Litchi (Litchi chinensis is an important subtropical fruit tree with high commercial value. However, the short and centralized fruit maturation period of litchi cultivars represents a bottleneck for litchi production. Therefore, the development of novel cultivars with extremely early fruit maturation period is critical. Previously, we showed that the genotypes of extremely early-maturing (EEM, early-maturing (EM, and middle-to-late-maturing (MLM cultivars at a specific locus SNP51 (substitution type C/T were consistent with their respective genetic background at the whole-genome level; a homozygous C/C genotype at SNP51 systematically differentiated EEM cultivars from others. The litchi gene on which SNP51 was located was annotated as flavonol synthase (FLS, which catalyzes the formation of flavonols. Here, we further elucidate the variation of the FLS gene from L. chinensis (LcFLS among EEM, EM, and MLM cultivars. EEM cultivars with a homozygous C/C genotype at SNP51 all contained the same 2,199-bp sequence of the LcFLS gene. For MLM cultivars with a homozygous T/T genotype at SNP51, the sequence lengths of the LcFLS gene were 2,202–2,222 bp. EM cultivars with heterozygous C/T genotypes at SNP51 contained two different alleles of the LcFLS gene: a 2,199-bp sequence identical to that in EEM cultivars and a 2,205-bp sequence identical to that in MLM cultivar ‘Heiye.’ Moreover, the coding regions of LcFLS genes of other MLM cultivars were almost identical to that of ‘Heiye.’ Therefore, the LcFLS gene coding region may be used as a source of diagnostic SNP markers to discriminate or identify genotypes with the EEM trait. The expression pattern of the LcFLS gene and accumulation pattern of flavonol from EEM, EM, and MLM cultivars were analyzed and compared using quantitative real-time PCR (qRT-PCR and high-performance liquid chromatography (HPLC for mature leaves, flower buds, and fruits, 15, 30, 45, and 60 days after anthesis. Flavonol

  16. Development of a set of SNP markers present in expressed genes of the apple.

    Science.gov (United States)

    Chagné, David; Gasic, Ksenija; Crowhurst, Ross N; Han, Yuepeng; Bassett, Heather C; Bowatte, Deepa R; Lawrence, Timothy J; Rikkerink, Erik H A; Gardiner, Susan E; Korban, Schuyler S

    2008-11-01

    Molecular markers associated with gene coding regions are useful tools for bridging functional and structural genomics. Due to their high abundance in plant genomes, single nucleotide polymorphisms (SNPs) are present within virtually all genomic regions, including most coding sequences. The objective of this study was to develop a set of SNPs for the apple by taking advantage of the wealth of genomics resources available for the apple, including a large collection of expressed sequenced tags (ESTs). Using bioinformatics tools, a search for SNPs within an EST database of approximately 350,000 sequences developed from a variety of apple accessions was conducted. This resulted in the identification of a total of 71,482 putative SNPs. As the apple genome is reported to be an ancient polyploid, attempts were made to verify whether those SNPs detected in silico were attributable either to allelic polymorphisms or to gene duplication or paralogous or homeologous sequence variations. To this end, a set of 464 PCR primer pairs was designed, PCR was amplified using two subsets of plants, and the PCR products were sequenced. The SNPs retrieved from these sequences were then mapped onto apple genetic maps, including a newly constructed map of a Royal Gala x A689-24 cross and a Malling 9 x Robusta 5, map using a bin mapping strategy. The SNP genotyping was performed using the high-resolution melting (HRM) technique. A total of 93 new markers containing 210 coding SNPs were successfully mapped. This new set of SNP markers for the apple offers new opportunities for understanding the genetic control of important horticultural traits using quantitative trait loci (QTL) or linkage disequilibrium analysis. These also serve as useful markers for aligning physical and genetic maps, and as potential transferable markers across the Rosaceae family.

  17. Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples.

    Science.gov (United States)

    Westen, Antoinette A; Matai, Anuska S; Laros, Jeroen F J; Meiland, Hugo C; Jasper, Mandy; de Leeuw, Wiljo J F; de Knijff, Peter; Sijen, Titia

    2009-09-01

    For the analysis of degraded DNA in disaster victim identification (DVI) and criminal investigations, single nucleotide polymorphisms (SNPs) have been recognized as promising markers mainly because they can be analyzed in short sized amplicons. Most SNPs are bi-allelic and are thereby ineffective to detect mixtures, which may lead to incorrect genotyping. We developed an algorithm to find non-binary (i.e. tri-allelic or tetra-allelic) SNPs in the NCBI dbSNP database. We selected 31 potential tri-allelic SNPs with a minor allele frequency of at least 10%. The tri-allelic nature was confirmed for 15 SNPs residing on 14 different chromosomes. Multiplex SNaPshot assays were developed, and the allele frequencies of 16 SNPs were determined among 153 Dutch and 111 Netherlands Antilles reference samples. Using these multiplex SNP assays, the presence of a mixture of two DNA samples in a ratio up to 1:8 could be recognized reliably. Furthermore, we compared the genotyping efficiency of the tri-allelic SNP markers and short tandem repeat (STR) markers by analyzing artificially degraded DNA and DNA from 30 approximately 500-year-old bone and molar samples. In both types of degraded DNA samples, the larger sized STR amplicons failed to amplify whereas the tri-allelic SNP markers still provided valuable information. In conclusion, tri-allelic SNP markers are suited for the analysis of degraded DNA and enable the detection of a second DNA source in a sample.

  18. Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Jie Guo

    2018-02-01

    Full Text Available Abstract Background Yield improvement is an ever-important objective of wheat breeding. Studying and understanding the phenotypes and genotypes of yield-related traits has potential for genetic improvement of crops. Results The genotypes of 215 wheat cultivars including 11 founder parents and 106 derivatives were analyzed by the 9 K wheat SNP iSelect assay. A total of 4138 polymorphic single nucleotide polymorphism (SNP loci were detected on 21 chromosomes, of which 3792 were mapped to single chromosome locations. All genotypes were phenotyped for six yield-related traits including plant height (PH, spike length (SL, spikelet number per spike (SNPS, kernel number per spike (KNPS, kernel weight per spike (KWPS, and thousand kernel weight (TKW in six irrigated environments. Genome-wide association analysis detected 117 significant associations of 76 SNPs on 15 chromosomes with phenotypic explanation rates (R 2 ranging from 2.03 to 12.76%. In comparing allelic variation between founder parents and their derivatives (106 and other cultivars (98 using the 76 associated SNPs, we found that the region 116.0–133.2 cM on chromosome 5A in founder parents and derivatives carried alleles positively influencing kernel weight per spike (KWPS, rarely found in other cultivars. Conclusion The identified favorable alleles could mark important chromosome regions in derivatives that were inherited from founder parents. Our results unravel the genetic of yield in founder genotypes, and provide tools for marker-assisted selection for yield improvement.

  19. Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    Directory of Open Access Journals (Sweden)

    Garnier-Géré Pauline

    2011-07-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait., the main conifer used for commercial plantation in southwestern Europe. Results We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels. Offspring from three-generation outbred (G2 and inbred (F2 pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. Conclusions Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using

  20. Population genetic analysis of ascertained SNP data

    Directory of Open Access Journals (Sweden)

    Nielsen Rasmus

    2004-03-01

    Full Text Available Abstract The large single nucleotide polymorphism (SNP typing projects have provided an invaluable data resource for human population geneticists. Almost all of the available SNP loci, however, have been identified through a SNP discovery protocol that will influence the allelic distributions in the sampled loci. Standard methods for population genetic analysis based on the available SNP data will, therefore, be biased. This paper discusses the effect of this ascertainment bias on allelic distributions and on methods for quantifying linkage disequilibrium and estimating demographic parameters. Several recently developed methods for correcting for the ascertainment bias will also be discussed.

  1. Involvement of Sodium Nitroprusside (SNP in the Mechanism That Delays Stem Bending of Different Gerbera Cultivars

    Directory of Open Access Journals (Sweden)

    Aung H. Naing

    2017-11-01

    Full Text Available Longevity of cut flowers of many gerbera cultivars (Gerbera jamesonii is typically short because of stem bending; hence, stem bending that occurs during the early vase life period is a major problem in gerbera. Here, we investigated the effects of sodium nitroprusside (SNP on the delay of stem bending in the gerbera cultivars, Alliance, Rosalin, and Bintang, by examining relative fresh weight, bacterial density in the vase solution, transcriptional analysis of a lignin biosynthesis gene, antioxidant activity, and xylem blockage. All three gerbera cultivars responded to SNP by delaying stem bending, compared to the controls; however, the responses were dose- and cultivar-dependent. Among the treatments, SNP at 20 mg L-1 was the best to delay stem bending in Alliance, while dosages of 10 and 5 mg L-1 were the best for Rosalin and Bintang, respectively. However, stem bending in Alliance and Rosalin was faster than in Bintang, indicating a discrepancy influenced by genotype. According to our analysis of the role of SNP in the delay of stem bending, the results revealed that SNP treatment inhibited bacterial growth and xylem blockage, enhanced expression levels of a lignin biosynthesis gene, and maintained antioxidant activities. Therefore, it is suggested that the cause of stem bending is associated with the above-mentioned parameters and SNP is involved in the mechanism that delays stem bending in the different gerbera cultivars.

  2. Quantitative analysis of low-density SNP data for parentage assignment and estimation of family contributions to pooled samples.

    Science.gov (United States)

    Henshall, John M; Dierens, Leanne; Sellars, Melony J

    2014-09-02

    While much attention has focused on the development of high-density single nucleotide polymorphism (SNP) assays, the costs of developing and running low-density assays have fallen dramatically. This makes it feasible to develop and apply SNP assays for agricultural species beyond the major livestock species. Although low-cost low-density assays may not have the accuracy of the high-density assays widely used in human and livestock species, we show that when combined with statistical analysis approaches that use quantitative instead of discrete genotypes, their utility may be improved. The data used in this study are from a 63-SNP marker Sequenom® iPLEX Platinum panel for the Black Tiger shrimp, for which high-density SNP assays are not currently available. For quantitative genotypes that could be estimated, in 5% of cases the most likely genotype for an individual at a SNP had a probability of less than 0.99. Matrix formulations of maximum likelihood equations for parentage assignment were developed for the quantitative genotypes and also for discrete genotypes perturbed by an assumed error term. Assignment rates that were based on maximum likelihood with quantitative genotypes were similar to those based on maximum likelihood with perturbed genotypes but, for more than 50% of cases, the two methods resulted in individuals being assigned to different families. Treating genotypes as quantitative values allows the same analysis framework to be used for pooled samples of DNA from multiple individuals. Resulting correlations between allele frequency estimates from pooled DNA and individual samples were consistently greater than 0.90, and as high as 0.97 for some pools. Estimates of family contributions to the pools based on quantitative genotypes in pooled DNA had a correlation of 0.85 with estimates of contributions from DNA-derived pedigree. Even with low numbers of SNPs of variable quality, parentage testing and family assignment from pooled samples are

  3. The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chu, Jan-Show [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shu-Pin [Department of Urology, Kaohsiung Medical University Hospital, College of Medicine Kaohsiung Medical University, Kaohsiung, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Yang, Hsiu-Yuan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2011-12-15

    Our recent study demonstrated the increased risk of renal cell carcinoma (RCC) associated with high urinary total arsenic levels among people living in a low arsenic exposure area. Genomic instability is important in arsenic carcinogenesis. This study evaluated the relationship between the polymorphisms of p53, p21, and MDM2, which plays a role in gene stability, and the arsenic-related RCC risk. Here, we found that p53 Pro/Pro genotype and MDM2 SNP309 GG genotype significantly increased RCC risk compared to the p53 Arg/Arg genotype and MDM2 SNP309 TT genotype. RCC patients with the p53Arg/Arg genotype had a signicantly low percentage of inorganic arsenic, a low percentage of monomethylarsonic acid (MMA), and a high percentage of dimethylarsinic acid (DMA), which indicates efcient arsenic methylation capacity. Subjects with the p53 Arg/Pro + Pro/Pro genotype or MDM2 SNP309 TG + GG genotype, in conjunction with high urinary total arsenic ({>=} 14.02 {mu}g/L), had a signicantly higher RCC risk than those with the p53 Arg/Arg or MDM2 SNP309 TT genotypes and low urinary total arsenic. Taken together, this is the first study to show that a variant genotype of p53 Arg{sup 72}Pro or MDM2 SNP309 may modify the arsenic-related RCC risk even in a non-obvious arsenic exposure area. -- Highlights: Black-Right-Pointing-Pointer Subjects with p53 Pro/Pro or MDM2 GG genotype significantly increased RCC risk. Black-Right-Pointing-Pointer A significant multiplicative joint effect of p53 and p21 on RCC risk. Black-Right-Pointing-Pointer RCC patients with p53 Arg/Arg genotype had efficient arsenic methylation capacity. Black-Right-Pointing-Pointer Joint effect of p53 or MDM2 genotype and high urinary total arsenic on RCC risk.

  4. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.

    Directory of Open Access Journals (Sweden)

    Xiao-Lin Wu

    Full Text Available Low-density (LD single nucleotide polymorphism (SNP arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD or high-density (HD SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE or haplotype-averaged Shannon entropy (HASE and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus

  5. Direct inference of SNP heterozygosity rates and resolution of LOH detection.

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    2007-11-01

    Full Text Available Single nucleotide polymorphisms (SNPs have been increasingly utilized to investigate somatic genetic abnormalities in premalignancy and cancer. LOH is a common alteration observed during cancer development, and SNP assays have been used to identify LOH at specific chromosomal regions. The design of such studies requires consideration of the resolution for detecting LOH throughout the genome and identification of the number and location of SNPs required to detect genetic alterations in specific genomic regions. Our study evaluated SNP distribution patterns and used probability models, Monte Carlo simulation, and real human subject genotype data to investigate the relationships between the number of SNPs, SNP HET rates, and the sensitivity (resolution for detecting LOH. We report that variances of SNP heterozygosity rate in dbSNP are high for a large proportion of SNPs. Two statistical methods proposed for directly inferring SNP heterozygosity rates require much smaller sample sizes (intermediate sizes and are feasible for practical use in SNP selection or verification. Using HapMap data, we showed that a region of LOH greater than 200 kb can be reliably detected, with losses smaller than 50 kb having a substantially lower detection probability when using all SNPs currently in the HapMap database. Higher densities of SNPs may exist in certain local chromosomal regions that provide some opportunities for reliably detecting LOH of segment sizes smaller than 50 kb. These results suggest that the interpretation of the results from genome-wide scans for LOH using commercial arrays need to consider the relationships among inter-SNP distance, detection probability, and sample size for a specific study. New experimental designs for LOH studies would also benefit from considering the power of detection and sample sizes required to accomplish the proposed aims.

  6. Molecular Characterization of Bovine SMO Gene and Effects of Its Genetic Variations on Body Size Traits in Qinchuan Cattle (Bos taurus).

    Science.gov (United States)

    Zhang, Ya-Ran; Gui, Lin-Sheng; Li, Yao-Kun; Jiang, Bi-Jie; Wang, Hong-Cheng; Zhang, Ying-Ying; Zan, Lin-Sen

    2015-07-27

    Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1-8) were identified and genotyped via direct sequencing covering most of the coding region and 3'UTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3'UTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs.

  7. Two combinatorial optimization problems for SNP discovery using base-specific cleavage and mass spectrometry.

    Science.gov (United States)

    Chen, Xin; Wu, Qiong; Sun, Ruimin; Zhang, Louxin

    2012-01-01

    The discovery of single-nucleotide polymorphisms (SNPs) has important implications in a variety of genetic studies on human diseases and biological functions. One valuable approach proposed for SNP discovery is based on base-specific cleavage and mass spectrometry. However, it is still very challenging to achieve the full potential of this SNP discovery approach. In this study, we formulate two new combinatorial optimization problems. While both problems are aimed at reconstructing the sample sequence that would attain the minimum number of SNPs, they search over different candidate sequence spaces. The first problem, denoted as SNP - MSP, limits its search to sequences whose in silico predicted mass spectra have all their signals contained in the measured mass spectra. In contrast, the second problem, denoted as SNP - MSQ, limits its search to sequences whose in silico predicted mass spectra instead contain all the signals of the measured mass spectra. We present an exact dynamic programming algorithm for solving the SNP - MSP problem and also show that the SNP - MSQ problem is NP-hard by a reduction from a restricted variation of the 3-partition problem. We believe that an efficient solution to either problem above could offer a seamless integration of information in four complementary base-specific cleavage reactions, thereby improving the capability of the underlying biotechnology for sensitive and accurate SNP discovery.

  8. Alternative SNP detection platforms, HRM and biosensors, for varietal identification in Vitis vinifera L. using F3H and LDOX genes.

    Science.gov (United States)

    Gomes, Sónia; Castro, Cláudia; Barrias, Sara; Pereira, Leonor; Jorge, Pedro; Fernandes, José R; Martins-Lopes, Paula

    2018-04-11

    The wine sector requires quick and reliable methods for Vitis vinifera L. varietal identification. The number of V. vinifera varieties is estimated in about 5,000 worldwide. Single Nucleotide Polymorphisms (SNPs) represent the most basic and abundant form of genetic sequence variation, being adequate for varietal discrimination. The aim of this work was to develop DNA-based assays suitable to detect SNP variation in V. vinifera, allowing varietal discrimination. Genotyping by sequencing allowed the detection of eleven SNPs on two genes of the anthocyanin pathway, the flavanone 3-hydroxylase (F3H, EC: 1.14.11.9), and the leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19; synonym anthocyanidin synthase, ANS) in twenty V. vinifera varieties. Three High Resolution Melting (HRM) assays were designed based on the sequencing information, discriminating five of the 20 varieties: Alicante Bouschet, Donzelinho Tinto, Merlot, Moscatel Galego and Tinta Roriz. Sanger sequencing of the HRM assay products confirmed the HRM profiles. Three probes, with different lengths and sequences, were used as bio-recognition elements in an optical biosensor platform based on a long period grating (LPG) fiber optic sensor. The label free platform detected a difference of a single SNP using genomic DNA samples. The two different platforms were successfully applied for grapevine varietal identification.

  9. SNPranker 2.0: a gene-centric data mining tool for diseases associated SNP prioritization in GWAS.

    Science.gov (United States)

    Merelli, Ivan; Calabria, Andrea; Cozzi, Paolo; Viti, Federica; Mosca, Ettore; Milanesi, Luciano

    2013-01-01

    The capability of correlating specific genotypes with human diseases is a complex issue in spite of all advantages arisen from high-throughput technologies, such as Genome Wide Association Studies (GWAS). New tools for genetic variants interpretation and for Single Nucleotide Polymorphisms (SNPs) prioritization are actually needed. Given a list of the most relevant SNPs statistically associated to a specific pathology as result of a genotype study, a critical issue is the identification of genes that are effectively related to the disease by re-scoring the importance of the identified genetic variations. Vice versa, given a list of genes, it can be of great importance to predict which SNPs can be involved in the onset of a particular disease, in order to focus the research on their effects. We propose a new bioinformatics approach to support biological data mining in the analysis and interpretation of SNPs associated to pathologies. This system can be employed to design custom genotyping chips for disease-oriented studies and to re-score GWAS results. The proposed method relies (1) on the data integration of public resources using a gene-centric database design, (2) on the evaluation of a set of static biomolecular annotations, defined as features, and (3) on the SNP scoring function, which computes SNP scores using parameters and weights set by users. We employed a machine learning classifier to set default feature weights and an ontological annotation layer to enable the enrichment of the input gene set. We implemented our method as a web tool called SNPranker 2.0 (http://www.itb.cnr.it/snpranker), improving our first published release of this system. A user-friendly interface allows the input of a list of genes, SNPs or a biological process, and to customize the features set with relative weights. As result, SNPranker 2.0 returns a list of SNPs, localized within input and ontologically enriched genes, combined with their prioritization scores. Different

  10. Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes.

    Directory of Open Access Journals (Sweden)

    Joseph Evans

    Full Text Available Sorghum genotypes currently used for grain production in the United States were developed from African landraces that were imported starting in the mid-to-late 19(th century. Farmers and plant breeders selected genotypes for grain production with reduced plant height, early flowering, increased grain yield, adaptation to drought, and improved resistance to lodging, diseases and pests. DNA polymorphisms that distinguish three historically important grain sorghum genotypes, BTx623, BTx642 and Tx7000, were characterized by genome sequencing, genotyping by sequencing, genetic mapping, and pedigree-based haplotype analysis. The distribution and density of DNA polymorphisms in the sequenced genomes varied widely, in part because the lines were derived through breeding and selection from diverse Kafir, Durra, and Caudatum race accessions. Genomic DNA spanning dw1 (SBI-09 and dw3 (SBI-07 had identical haplotypes due to selection for reduced height. Lower SNP density in genes located in pericentromeric regions compared with genes located in euchromatic regions is consistent with background selection in these regions of low recombination. SNP density was higher in euchromatic DNA and varied >100-fold in contiguous intervals that spanned up to 300 Kbp. The localized variation in DNA polymorphism density occurred throughout euchromatic regions where recombination is elevated, however, polymorphism density was not correlated with gene density or DNA methylation. Overall, sorghum chromosomes contain distal euchromatic regions characterized by extensive, localized variation in DNA polymorphism density, and large pericentromeric regions of low gene density, diversity, and recombination.

  11. Hepatitis C Virus: Virology and Genotypes

    KAUST Repository

    Abdelaziz, Ahmed

    2017-01-01

    Hepatitis C virus (HCV) is a major causative agent of chronic liver disease worldwide. HCV is characterized by genetic heterogeneity, with at least six genotypes identified. The geographic distribution of genotypes has shown variations in different

  12. FunctSNP: an R package to link SNPs to functional knowledge and dbAutoMaker: a suite of Perl scripts to build SNP databases

    Directory of Open Access Journals (Sweden)

    Watson-Haigh Nathan S

    2010-06-01

    Full Text Available Abstract Background Whole genome association studies using highly dense single nucleotide polymorphisms (SNPs are a set of methods to identify DNA markers associated with variation in a particular complex trait of interest. One of the main outcomes from these studies is a subset of statistically significant SNPs. Finding the potential biological functions of such SNPs can be an important step towards further use in human and agricultural populations (e.g., for identifying genes related to susceptibility to complex diseases or genes playing key roles in development or performance. The current challenge is that the information holding the clues to SNP functions is distributed across many different databases. Efficient bioinformatics tools are therefore needed to seamlessly integrate up-to-date functional information on SNPs. Many web services have arisen to meet the challenge but most work only within the framework of human medical research. Although we acknowledge the importance of human research, we identify there is a need for SNP annotation tools for other organisms. Description We introduce an R package called FunctSNP, which is the user interface to custom built species-specific databases. The local relational databases contain SNP data together with functional annotations extracted from online resources. FunctSNP provides a unified bioinformatics resource to link SNPs with functional knowledge (e.g., genes, pathways, ontologies. We also introduce dbAutoMaker, a suite of Perl scripts, which can be scheduled to run periodically to automatically create/update the customised SNP databases. We illustrate the use of FunctSNP with a livestock example, but the approach and software tools presented here can be applied also to human and other organisms. Conclusions Finding the potential functional significance of SNPs is important when further using the outcomes from whole genome association studies. FunctSNP is unique in that it is the only R

  13. [Association Between SNP rs6007897 of CELSR1 and Acute Ischemic Stroke in Western China Han Population: a Case-control Study].

    Science.gov (United States)

    Qin, Feng-qin; Yu, Li-hua; Hu, Wen-ting; Guo, Jian; Chen, Ning; Guo, Jiang; Fang, Jing-huan; He, Li

    2015-07-01

    To investigate the relationship between single nucleotide polymorphism (SNP) rs6007897 of CELSR1 and acute ischemic stroke in Western China Han population. All subjects (759 acute ischemic stroke patients and 786 controls) were genotyped using ligation detection reaction (LDR). We analyzed the differences between SNP rs6007897 genotypes and allele frequencies between two groups. Two genotypes (AA, AG) of rs6007897 were found in both stroke and control group. There was no statistically significance between two groups about genotype and allele frequency. After adjusting for risk factors, we found there was no significant association between rs6007897 and ischemic stroke CP = 0.797, odds ratio (OR) = 0.886, 95% confidence interval (CI) = 0.352-2.227). SNP rs6007897 of CELSR1 was not significantly associated with ischemic stroke in Western China Han population.

  14. Genome-wide SNP identification in multiple morphotypes of allohexaploid tall fescue (Festuca arundinacea Schreb

    Directory of Open Access Journals (Sweden)

    Hand Melanie L

    2012-06-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs provide essential tools for the advancement of research in plant genomics, and the development of SNP resources for many species has been accelerated by the capabilities of second-generation sequencing technologies. The current study aimed to develop and use a novel bioinformatic pipeline to generate a comprehensive collection of SNP markers within the agriculturally important pasture grass tall fescue; an outbreeding allopolyploid species displaying three distinct morphotypes: Continental, Mediterranean and rhizomatous. Results A bioinformatic pipeline was developed that successfully identified SNPs within genotypes from distinct tall fescue morphotypes, following the sequencing of 414 polymerase chain reaction (PCR – generated amplicons using 454 GS FLX technology. Equivalent amplicon sets were derived from representative genotypes of each morphotype, including six Continental, five Mediterranean and one rhizomatous. A total of 8,584 and 2,292 SNPs were identified with high confidence within the Continental and Mediterranean morphotypes respectively. The success of the bioinformatic approach was demonstrated through validation (at a rate of 70% of a subset of 141 SNPs using both SNaPshot™ and GoldenGate™ assay chemistries. Furthermore, the quantitative genotyping capability of the GoldenGate™ assay revealed that approximately 30% of the putative SNPs were accessible to co-dominant scoring, despite the hexaploid genome structure. The sub-genome-specific origin of each SNP validated from Continental tall fescue was predicted using a phylogenetic approach based on comparison with orthologous sequences from predicted progenitor species. Conclusions Using the appropriate bioinformatic approach, amplicon resequencing based on 454 GS FLX technology is an effective method for the identification of polymorphic SNPs within the genomes of Continental and Mediterranean tall fescue. The

  15. Functional characterization of the Thr946Ala SNP at the type 1 diabetes IFIH1 locus.

    Science.gov (United States)

    Zouk, Hana; Marchand, Luc; Li, Quan; Polychronakos, Constantin

    2014-02-01

    The Thr allele at the Thr946Ala non-synonymous single-nucleotide polymorphism (nsSNP) in the IFIH1 gene confers risk for type 1 diabetes (T1D). IFIH1 binds viral double-stranded RNA (dsRNA), inducing a type I interferon (IFN) response. Reports of this nsSNP's role in IFIH1 expression regulation have produced conflicting results and a study evaluating transfected Thr946Ala protein alleles in an artificial system overexpressing IFIH1 shows that the SNP does not affect IFH1 function. In this study, we examine the effects of the Thr946Ala polymorphism on IFN-α response in a cell line that endogenously expresses physiological levels of IFIH1. Eleven lymphoblastoid cell lines (LCLs) homozygous for the major predisposing allele (Thr/Thr) and 6 LCLs homozygous for the minor protective allele (Ala/Ala) were electroporated with the viral dsRNA mimic, poly I:C, in three independent experiments. Media were collected 24 hours later and measured for IFN-α production by ELISA. Basal IFN response is minimal in mock-transfected cells from both genotypes and increases by about 8-fold in cells treated with poly I:C. LCLs with the Ala/Ala genotype have slightly higher IFN-α levels than their Thr/Thr counterparts but this did not reach statistical significance because of the large variability of the IFN response, due mostly to two high outliers (biological, not technical). A larger sample size would be needed to determine whether the Thr946Ala SNP affects the poly I:C-driven IFN-α response. Additionally, the possibility that this nsSNP recognizes viral dsRNA specificities cannot be ruled out. Thus, the mechanism of the observed association of this SNP with T1D remains to be determined.

  16. Temperature Switch PCR (TSP: Robust assay design for reliable amplification and genotyping of SNPs

    Directory of Open Access Journals (Sweden)

    Mather Diane E

    2009-12-01

    Full Text Available Abstract Background Many research and diagnostic applications rely upon the assay of individual single nucleotide polymorphisms (SNPs. Thus, methods to improve the speed and efficiency for single-marker SNP genotyping are highly desirable. Here, we describe the method of temperature-switch PCR (TSP, a biphasic four-primer PCR system with a universal primer design that permits amplification of the target locus in the first phase of thermal cycling before switching to the detection of the alleles. TSP can simplify assay design for a range of commonly used single-marker SNP genotyping methods, and reduce the requirement for individual assay optimization and operator expertise in the deployment of SNP assays. Results We demonstrate the utility of TSP for the rapid construction of robust and convenient endpoint SNP genotyping assays based on allele-specific PCR and high resolution melt analysis by generating a total of 11,232 data points. The TSP assays were performed under standardised reaction conditions, requiring minimal optimization of individual assays. High genotyping accuracy was verified by 100% concordance of TSP genotypes in a blinded study with an independent genotyping method. Conclusion Theoretically, TSP can be directly incorporated into the design of assays for most current single-marker SNP genotyping methods. TSP provides several technological advances for single-marker SNP genotyping including simplified assay design and development, increased assay specificity and genotyping accuracy, and opportunities for assay automation. By reducing the requirement for operator expertise, TSP provides opportunities to deploy a wider range of single-marker SNP genotyping methods in the laboratory. TSP has broad applications and can be deployed in any animal and plant species.

  17. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification

    Directory of Open Access Journals (Sweden)

    Sun Zhenyu

    2001-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. Results SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. Conclusions Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring.

  18. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  19. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains

    KAUST Repository

    Coll, Francesc

    2014-09-01

    Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ∼92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ∼7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type. © 2014 Macmillan Publishers Limited.

  20. Interleukin 28B gene variation at rs12979860 determines early viral kinetics during treatment in patients carrying genotypes 2 or 3 of hepatitis C virus

    DEFF Research Database (Denmark)

    Lindh, Magnus; Lagging, Martin; Färkkilä, Martti

    2011-01-01

    Single-nucleotide polymorphisms upstream of the interleukin 28B (interferon λ3) gene (IL28B) strongly influence treatment efficacy in patients carrying hepatitis C virus (HCV) of genotype 1. In patients receiving 12 or 24 weeks of interferon-ribavirin therapy for infection with genotype 2 or 3 (n...... = 341), we found that rs12979860 strikingly determined the first phase of viral elimination (P

  1. Influence of the MDM2 single nucleotide polymorphism SNP309 on tumour development in BRCA1 mutation carriers

    Directory of Open Access Journals (Sweden)

    Johnson Peter W

    2006-03-01

    Full Text Available Abstract Background The MDM2 gene encodes a negative regulator of the p53 tumour suppressor protein. A single nucleotide polymorphism (SNP in the MDM2 promoter (a T to G exchange at nucleotide 309 has been reported to produce accelerated tumour formation in individuals with inherited p53 mutations. We have investigated the effect of the MDM2 SNP309 on clinical outcome in a cohort of patients with germline mutations of BRCA1. Methods Genomic DNA was obtained for 102 healthy controls and 116 patients with established pathogenic mutations of BRCA1 and Pyrosequencing technology™ was used to determine the genotype at the MDM2 SNP309 locus. Results The polymorphism was present in 52.9% of the controls (G/T in 37.3% and G/G in 15.6% and 58.6% of the BRCA1 mutation carriers (47.4% G/T and 11.2% G/G. Incidence of malignancy in female BRCA1 carriers was not significantly higher in SNP309 carriers than in wildtype (T/T individuals (72.7% vs. 75.6%, p = 1.00. Mean age of diagnosis of first breast cancer was 41.2 years in the SNP309 G/G genotype carriers, 38.6 years in those with the SNP309 G/T genotype and 39.0 years in wildtype subjects (p = 0.80. Conclusion We found no evidence that the MDM2 SNP309 accelerates tumour development in carriers of known pathogenic germline mutations of BRCA1.

  2. Obesity and Cardiovascular Risk: Variations in Visfatin Gene Can Modify the Obesity Associated Cardiovascular Risk. Results from the Segovia Population Based-Study. Spain.

    Directory of Open Access Journals (Sweden)

    María Teresa Martínez Larrad

    Full Text Available Our aim was to investigate if genetic variations in the visfatin gene (SNPs rs7789066/ rs11977021/rs4730153 could modify the cardiovascular-risk (CV-risk despite the metabolic phenotype (obesity and glucose tolerance. In addition, we investigated the relationship between insulin sensitivity and variations in visfatin gene.A population-based study in rural and urban areas of the Province of Segovia, Spain, was carried out in the period of 2001-2003 years. A total of 587 individuals were included, 25.4% subjects were defined as obese (BMI ≥30 Kg/m2.Plasma visfatin levels were significantly higher in obese subjects with DM2 than in other categories of glucose tolerance. The genotype AA of the rs4730153 SNP was significantly associated with fasting glucose, fasting insulin and HOMA-IR (Homeostasis model assessment-insulin resistance after adjustment for gender, age, BMI and waist circumference. The obese individuals carrying the CC genotype of the rs11977021 SNP showed higher circulating levels of fasting proinsulin after adjustment for the same variables. The genotype AA of the rs4730153 SNP seems to be protective from CV-risk either estimated by Framingham or SCORE charts in general population; and in obese and non-obese individuals. No associations with CV-risk were observed for other studied SNPs (rs11977021/rs7789066.In summary, this is the first study which concludes that the genotype AA of the rs4730153 SNP appear to protect against CV-risk in obese and non-obese individuals, estimated by Framingham and SCORE charts. Our results confirm that the different polymorphisms in the visfatin gene might be influencing the glucose homeostasis in obese individuals.

  3. Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries

    Directory of Open Access Journals (Sweden)

    Kumar Santosh

    2012-12-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. is a significant fibre and oilseed crop. Current flax molecular markers, including isozymes, RAPDs, AFLPs and SSRs are of limited use in the construction of high density linkage maps and for association mapping applications due to factors such as low reproducibility, intense labour requirements and/or limited numbers. We report here on the use of a reduced representation library strategy combined with next generation Illumina sequencing for rapid and large scale discovery of SNPs in eight flax genotypes. SNP discovery was performed through in silico analysis of the sequencing data against the whole genome shotgun sequence assembly of flax genotype CDC Bethune. Genotyping-by-sequencing of an F6-derived recombinant inbred line population provided validation of the SNPs. Results Reduced representation libraries of eight flax genotypes were sequenced on the Illumina sequencing platform resulting in sequence coverage ranging from 4.33 to 15.64X (genome equivalents. Depending on the relatedness of the genotypes and the number and length of the reads, between 78% and 93% of the reads mapped onto the CDC Bethune whole genome shotgun sequence assembly. A total of 55,465 SNPs were discovered with the largest number of SNPs belonging to the genotypes with the highest mapping coverage percentage. Approximately 84% of the SNPs discovered were identified in a single genotype, 13% were shared between any two genotypes and the remaining 3% in three or more. Nearly a quarter of the SNPs were found in genic regions. A total of 4,706 out of 4,863 SNPs discovered in Macbeth were validated using genotyping-by-sequencing of 96 F6 individuals from a recombinant inbred line population derived from a cross between CDC Bethune and Macbeth, corresponding to a validation rate of 96.8%. Conclusions Next generation sequencing of reduced representation libraries was successfully implemented for genome-wide SNP discovery from

  4. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis

    Directory of Open Access Journals (Sweden)

    Zhao Patrick X

    2011-07-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common type of sequence variation among plants and are often functionally important. We describe the use of 454 technology and high resolution melting analysis (HRM for high throughput SNP discovery in tetraploid alfalfa (Medicago sativa L., a species with high economic value but limited genomic resources. Results The alfalfa genotypes selected from M. sativa subsp. sativa var. 'Chilean' and M. sativa subsp. falcata var. 'Wisfal', which differ in water stress sensitivity, were used to prepare cDNA from tissue of clonally-propagated plants grown under either well-watered or water-stressed conditions, and then pooled for 454 sequencing. Based on 125.2 Mb of raw sequence, a total of 54,216 unique sequences were obtained including 24,144 tentative consensus (TCs sequences and 30,072 singletons, ranging from 100 bp to 6,662 bp in length, with an average length of 541 bp. We identified 40,661 candidate SNPs distributed throughout the genome. A sample of candidate SNPs were evaluated and validated using high resolution melting (HRM analysis. A total of 3,491 TCs harboring 20,270 candidate SNPs were located on the M. truncatula (MT 3.5.1 chromosomes. Gene Ontology assignments indicate that sequences obtained cover a broad range of GO categories. Conclusions We describe an efficient method to identify thousands of SNPs distributed throughout the alfalfa genome covering a broad range of GO categories. Validated SNPs represent valuable molecular marker resources that can be used to enhance marker density in linkage maps, identify potential factors involved in heterosis and genetic variation, and as tools for association mapping and genomic selection in alfalfa.

  5. Kernel machine SNP set analysis provides new insight into the association between obesity and polymorphisms located on the chromosomal 16q.12.2 region: Tehran Lipid and Glucose Study.

    Science.gov (United States)

    Javanrouh, Niloufar; Daneshpour, Maryam S; Soltanian, Ali Reza; Tapak, Leili

    2018-06-05

    Obesity is a serious health problem that leads to low quality of life and early mortality. To the purpose of prevention and gene therapy for such a worldwide disease, genome wide association study is a powerful tool for finding SNPs associated with increased risk of obesity. To conduct an association analysis, kernel machine regression is a generalized regression method, has an advantage of considering the epistasis effects as well as the correlation between individuals due to unknown factors. In this study, information of the people who participated in Tehran cardio-metabolic genetic study was used. They were genotyped for the chromosomal region, evaluation 986 variations located at 16q12.2; build 38hg. Kernel machine regression and single SNP analysis were used to assess the association between obesity and SNPs genotyped data. We found that associated SNP sets with obesity, were almost in the FTO (P = 0.01), AIKTIP (P = 0.02) and MMP2 (P = 0.02) genes. Moreover, two SNPs, i.e., rs10521296 and rs11647470, showed significant association with obesity using kernel regression (P = 0.02). In conclusion, significant sets were randomly distributed throughout the region with more density around the FTO, AIKTIP and MMP2 genes. Furthermore, two intergenic SNPs showed significant association after using kernel machine regression. Therefore, more studies have to be conducted to assess their functionality or precise mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression.

    Science.gov (United States)

    Ruiz-Carrasco, Karina; Antognoni, Fabiana; Coulibaly, Amadou Konotie; Lizardi, Susana; Covarrubias, Adriana; Martínez, Enrique A; Molina-Montenegro, Marco A; Biondi, Stefania; Zurita-Silva, Andrés

    2011-11-01

    Chenopodium quinoa (Willd.) is an Andean plant showing a remarkable tolerance to abiotic stresses. In Chile, quinoa populations display a high degree of genetic distancing, and variable tolerance to salinity. To investigate which tolerance mechanisms might account for these differences, four genotypes from coastal central and southern regions were compared for their growth, physiological, and molecular responses to NaCl at seedling stage. Seeds were sown on agar plates supplemented with 0, 150 or 300mM NaCl. Germination was significantly reduced by NaCl only in accession BO78. Shoot length was reduced by 150mM NaCl in three out of four genotypes, and by over 60% at 300mM (except BO78 which remained more similar to controls). Root length was hardly affected or even enhanced at 150mM in all four genotypes, but inhibited, especially in BO78, by 300mM NaCl. Thus, the root/shoot ratio was differentially affected by salt, with the highest values in PRJ, and the lowest in BO78. Biomass was also less affected in PRJ than in the other accessions, the genotype with the highest increment in proline concentration upon salt treatment. Free putrescine declined dramatically in all genotypes under 300mM NaCl; however (spermidine+spermine)/putrescine ratios were higher in PRJ than BO78. Quantitative RT-PCR analyses of two sodium transporter genes, CqSOS1 and CqNHX, revealed that their expression was differentially induced at the shoot and root level, and between genotypes, by 300mM NaCl. Expression data are discussed in relation to the degree of salt tolerance in the different accessions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Genotype x environment interaction and optimum resource ...

    African Journals Online (AJOL)

    ... x E) interaction and to determine the optimum resource allocation for cassava yield trials. The effects of environment, genotype and G x E interaction were highly significant for all yield traits. Variations due to G x E interaction were greater than those due to genotypic differences for all yield traits. Genotype x location x year ...

  8. BDNF rs6265 methylation and genotype interact on risk for schizophrenia.

    Science.gov (United States)

    Ursini, Gianluca; Cavalleri, Tommaso; Fazio, Leonardo; Angrisano, Tiziana; Iacovelli, Luisa; Porcelli, Annamaria; Maddalena, Giancarlo; Punzi, Giovanna; Mancini, Marina; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Calabrese, Francesca; Rampino, Antonio; Taurisano, Paolo; Di Giorgio, Annabella; Keller, Simona; Tarantini, Letizia; Sinibaldi, Lorenzo; Quarto, Tiziana; Popolizio, Teresa; Caforio, Grazia; Blasi, Giuseppe; Riva, Marco A; De Blasi, Antonio; Chiariotti, Lorenzo; Bollati, Valentina; Bertolino, Alessandro

    2016-01-01

    Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val(66)Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes.

  9. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    NARCIS (Netherlands)

    Chagné, D.; Crowhurst, R.N.; Troggio, M.; Davey, M.W.; Gilmore, B.; Lawley, C.; Vanderzande, S.; Hellens, R.P.; Kumar, S.; Cestaro, A.; Velasco, R.; Main, D.; Rees, J.D.; Iezzoni, A.F.; Mockler, T.; Wilhelm, L.; Weg, van de W.E.; Gardiner, S.E.; Bassil, N.; Peace, C.

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide

  10. A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking

    Directory of Open Access Journals (Sweden)

    Rosen David

    2008-10-01

    Full Text Available Abstract Background Single nucleotide polymorphism (SNP genotyping provides the means to develop a practical, rapid, inexpensive assay that will uniquely identify any Plasmodium falciparum parasite using a small amount of DNA. Such an assay could be used to distinguish recrudescence from re-infection in drug trials, to monitor the frequency and distribution of specific parasites in a patient population undergoing drug treatment or vaccine challenge, or for tracking samples and determining purity of isolates in the laboratory during culture adaptation and sub-cloning, as well as routine passage. Methods A panel of twenty-four SNP markers has been identified that exhibit a high minor allele frequency (average MAF > 35%, for which robust TaqMan genotyping assays were constructed. All SNPs were identified through whole genome sequencing and MAF was estimated through Affymetrix array-based genotyping of a worldwide collection of parasites. These assays create a "molecular barcode" to uniquely identify a parasite genome. Results Using 24 such markers no two parasites known to be of independent origin have yet been found to have the same allele signature. The TaqMan genotyping assays can be performed on a variety of samples including cultured parasites, frozen whole blood, or whole blood spotted onto filter paper with a success rate > 99%. Less than 5 ng of parasite DNA is needed to complete a panel of 24 markers. The ability of this SNP panel to detect and identify parasites was compared to the standard molecular methods, MSP-1 and MSP-2 typing. Conclusion This work provides a facile field-deployable genotyping tool that can be used without special skills with standard lab equipment, and at reasonable cost that will unambiguously identify and track P. falciparum parasites both from patient samples and in the laboratory.

  11. Sex-specific association of rs16996148 SNP in the NCAN/CILP2/PBX4 and serum lipid levels in the Mulao and Han populations

    Directory of Open Access Journals (Sweden)

    Yan Ting-Ting

    2011-12-01

    Full Text Available Abstract Background The association of rs16996148 single nucleotide polymorphism (SNP in NCAN/CILP2/PBX4 and serum lipid levels is inconsistent. Furthermore, little is known about the association of rs16996148 SNP and serum lipid levels in the Chinese population. We therefore aimed to detect the association of rs16996148 SNP and several environmental factors with serum lipid levels in the Guangxi Mulao and Han populations. Method A total of 712 subjects of Mulao nationality and 736 participants of Han nationality were randomly selected from our stratified randomized cluster samples. Genotyping of the rs16996148 SNP was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of apolipoprotein (Apo B were higher in Mulao than in Han (P P 0.05; respectively. The frequencies of GG, GT and TT genotypes were 76.0%, 22.5% and 1.5% in Mulao, and 81.2%, 17.4% and 1.4% in Han (P 0.05; respectively. There were no significant differences in the genotypic and allelic frequencies between males and females in both ethnic groups. The levels of HDL-C, ApoAI, and the ratio of ApoAI to ApoB in Mulao were different between the GG and GT/TT genotypes in males but not in females (P P P P P Conclusions The genotypic and allelic frequencies of rs16996148 SNP and the associations of the SNP and serum lipid levels are different in the Mulao and Han populations. Sex (male-specific association of rs16996148 SNP in the NCAN/CILP2/PBX4 and serum lipid levels is also observed in the both ethnic groups.

  12. SNP discovery in the bovine milk transcriptome using RNA-Seq technology.

    Science.gov (United States)

    Cánovas, Angela; Rincon, Gonzalo; Islas-Trejo, Alma; Wickramasinghe, Saumya; Medrano, Juan F

    2010-12-01

    High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. However, it also is an efficient way to discover coding SNPs. The objective of this study was to perform a SNP discovery analysis in the milk transcriptome using RNA-Seq. Seven milk samples from Holstein cows were analyzed by sequencing cDNAs using the Illumina Genome Analyzer system. We detected 19,175 genes expressed in milk samples corresponding to approximately 70% of the total number of genes analyzed. The SNP detection analysis revealed 100,734 SNPs in Holstein samples, and a large number of those corresponded to differences between the Holstein breed and the Hereford bovine genome assembly Btau4.0. The number of polymorphic SNPs within Holstein cows was 33,045. The accuracy of RNA-Seq SNP discovery was tested by comparing SNPs detected in a set of 42 candidate genes expressed in milk that had been resequenced earlier using Sanger sequencing technology. Seventy of 86 SNPs were detected using both RNA-Seq and Sanger sequencing technologies. The KASPar Genotyping System was used to validate unique SNPs found by RNA-Seq but not observed by Sanger technology. Our results confirm that analyzing the transcriptome using RNA-Seq technology is an efficient and cost-effective method to identify SNPs in transcribed regions. This study creates guidelines to maximize the accuracy of SNP discovery and prevention of false-positive SNP detection, and provides more than 33,000 SNPs located in coding regions of genes expressed during lactation that can be used to develop genotyping platforms to perform marker-trait association studies in Holstein cattle.

  13. Relationship Between Genotype Variants Follicle-stimulating Hormone Receptor Gene Polymorphisms (FSHR) and Morphology of Oocytes Prior to ICSI Procedures

    Science.gov (United States)

    Gashi, Zafer; Elezaj, Shkelzen; Zeqiraj, Afrim; Grabanica, Driton; Shabani, Isak; Gruda, Bujar; Gashi, Fitore

    2016-01-01

    Introduction: This study investigated association of Asn680Ser FSHR polymorphism with the ovarian response in 104 women of Albanian ethnic population enrolled in ICSI program. The reason of infertility in all cases has been identified as male factor. Methods: Analysis of the Asn680Ser polymorphism was performed using TaqMan® SNP Genotyping Assay. Clinical and endocrinologic parameters were analyzed based on the genotype, age, BMI, oocyte yield, number of transferred embryos and pregnancy rate. Results: The frequencies of the Asn680 Ser genotype variants were as follows: Asn/Asn 22.1%, Asn/Ser 47.1%, and Ser/Ser 30.8%, respectively. BMI was significantly higher in the Ser/Ser group as compared to those from the Asn/Ser or the Asn/Asn group (p= 0.0010). The genotype variants Ser/Ser indicates a higher rate of oocyte retrieval (25.9%) in the immature form, metaphase I (MI) as opposed to the other two groups (Asn/Asn 23.7 % vs. Asn/Ser 21.9%), which was statistically significant (p = 0.3020). Conclusions: FSH receptor polymorphism is associated with different ovarian response to controlled ovarian stimulation (COS), but is not an important factor in increasing the degree of pregnancy. Polymorphisms of the FSH receptor is associated with normal morphology and genetic maturation (metaphase II) oocytes in dependence of genotypic variation polymorphisms. PMID:27994298

  14. GACT: a Genome build and Allele definition Conversion Tool for SNP imputation and meta-analysis in genetic association studies.

    Science.gov (United States)

    Sulovari, Arvis; Li, Dawei

    2014-07-19

    Genome-wide association studies (GWAS) have successfully identified genes associated with complex human diseases. Although much of the heritability remains unexplained, combining single nucleotide polymorphism (SNP) genotypes from multiple studies for meta-analysis will increase the statistical power to identify new disease-associated variants. Meta-analysis requires same allele definition (nomenclature) and genome build among individual studies. Similarly, imputation, commonly-used prior to meta-analysis, requires the same consistency. However, the genotypes from various GWAS are generated using different genotyping platforms, arrays or SNP-calling approaches, resulting in use of different genome builds and allele definitions. Incorrect assumptions of identical allele definition among combined GWAS lead to a large portion of discarded genotypes or incorrect association findings. There is no published tool that predicts and converts among all major allele definitions. In this study, we have developed a tool, GACT, which stands for Genome build and Allele definition Conversion Tool, that predicts and inter-converts between any of the common SNP allele definitions and between the major genome builds. In addition, we assessed several factors that may affect imputation quality, and our results indicated that inclusion of singletons in the reference had detrimental effects while ambiguous SNPs had no measurable effect. Unexpectedly, exclusion of genotypes with missing rate > 0.001 (40% of study SNPs) showed no significant decrease of imputation quality (even significantly higher when compared to the imputation with singletons in the reference), especially for rare SNPs. GACT is a new, powerful, and user-friendly tool with both command-line and interactive online versions that can accurately predict, and convert between any of the common allele definitions and between genome builds for genome-wide meta-analysis and imputation of genotypes from SNP-arrays or deep

  15. Identification, Characterization, and Mapping of a Novel SNP Associated with Body Color Transparency in Juvenile Red Sea Bream (Pagrus major).

    Science.gov (United States)

    Sawayama, Eitaro; Noguchi, Daiki; Nakayama, Kei; Takagi, Motohiro

    2018-03-23

    We previously reported a body color deformity in juvenile red sea bream, which shows transparency in the juvenile stage because of delayed chromatophore development compared with normal individuals, and this finding suggested a genetic cause based on parentage assessments. To conduct marker-assisted selection to eliminate broodstock inheriting the causative gene, developing DNA markers associated with the phenotype was needed. We first conducted SNP mining based on AFLP analysis using bulked-DNA from normal and transparent individuals. One SNP was identified from a transparent-specific AFLP fragment, which significantly associated with transparent individuals. Two alleles (A/G) were observed in this locus, and the genotype G/G was dominantly observed in the transparent groups (97.1%) collected from several production lots produced from different broodstock populations. A few normal individuals inherited the G/G genotype (5.0%), but the A/A and A/G genotypes were dominantly observed in the normal groups. The homologs region of the SNP was searched using a medaka genome database, and intron 12 of the Nell2a gene (located on chromosome 6 of the medaka genome) was highly matched. We also mapped the red sea bream Nell2a gene on the previously developed linkage maps, and this gene was mapped on a male linkage group, LG4-M. The newly found SNP was useful in eliminating broodstock possessing the causative gene of the body color transparency observed in juvenile stage of red sea bream.

  16. Population-genetic properties of differentiated copy number variations in cattle.

    Science.gov (United States)

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Zhou, Yang; Hay, El Hamidi Abdel; Song, Jiuzhou; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George E

    2016-03-23

    While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.

  17. Supplementing High-Density SNP Microarrays for Additional Coverage of Disease-Related Genes: Addiction as a Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    SacconePhD, Scott F [Washington University, St. Louis; Chesler, Elissa J [ORNL; Bierut, Laura J [Washington University, St. Louis; Kalivas, Peter J [Medical College of South Carolina, Charleston; Lerman, Caryn [University of Pennsylvania; Saccone, Nancy L [Washington University, St. Louis; Uhl, George R [Johns Hopkins University; Li, Chuan-Yun [Peking University; Philip, Vivek M [ORNL; Edenberg, Howard [Indiana University; Sherry, Steven [National Center for Biotechnology Information; Feolo, Michael [National Center for Biotechnology Information; Moyzis, Robert K [Johns Hopkins University; Rutter, Joni L [National Institute of Drug Abuse

    2009-01-01

    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.

  18. OpenADAM: an open source genome-wide association data management system for Affymetrix SNP arrays

    Directory of Open Access Journals (Sweden)

    Sham P C

    2008-12-01

    Full Text Available Abstract Background Large scale genome-wide association studies have become popular since the introduction of high throughput genotyping platforms. Efficient management of the vast array of data generated poses many challenges. Description We have developed an open source web-based data management system for the large amount of genotype data generated from the Affymetrix GeneChip® Mapping Array and Affymetrix Genome-Wide Human SNP Array platforms. The database supports genotype calling using DM, BRLMM, BRLMM-P or Birdseed algorithms provided by the Affymetrix Power Tools. The genotype and corresponding pedigree data are stored in a relational database for efficient downstream data manipulation and analysis, such as calculation of allele and genotype frequencies, sample identity checking, and export of genotype data in various file formats for analysis using commonly-available software. A novel method for genotyping error estimation is implemented using linkage disequilibrium information from the HapMap project. All functionalities are accessible via a web-based user interface. Conclusion OpenADAM provides an open source database system for management of Affymetrix genome-wide association SNP data.

  19. Analysis of Single Nucleotide Polymorphism (SNP rs22114085 Associated with Canine Atopic Dermatitis by PCR-RFLP Method

    Directory of Open Access Journals (Sweden)

    Martina Miluchová

    2012-05-01

    Full Text Available Canine atopic dermatitis (cAD is a common inflammatory skin disease that is considered to be a naturally occurring, spontaneous model of human atopic dermatitis (eczema. The aim of the paper was to identify of the SNP rs22114085 in different dog breeds. The material involved 52 dogs from 5 different breeds. Canine genomic DNA was isolated from saliva by modified method with using DNAzol® and linear polyacrylamide (LPA carrier and from blood by using commercial kit NucleospinBlood and used in order to estimate rs22114085 SNP genotypes by PCR-RFLP method. The PCR products were digested with DdeI restriction enzyme. The C allele was distributed in Czech Pointer, Chihuahua, German Wirehaired Pointer with an allele frequency ranging from 0.4545 to 1.00. In the population of Czech Pointer we detected all genotypes CC, CT and TT with frequency in male 0.25, 0.5833 and 0.1667, and in female 0.2728, 0.3636 and 0.3636, subsequently. In German Wirehaired Pointer was detected homozygote genotype CC in male and heterozygote genotype CT in female with frequency 1 and 1. In Chihuahua was observed homozygote genotype CC and heterozygote genotype CT with frequency 0.3333 and 0.6667, subsequently. In Golden retriever and Pincher we detected genotype TT with frequency 1.

  20. Array-based genotyping and genetic dissimilarity analysis of a set of maize inbred lines belonging to different heterotic groups

    Directory of Open Access Journals (Sweden)

    Jambrović Antun

    2014-01-01

    Full Text Available Here we describe the results of the detailed array-based genotyping obtained by using the Illumina MaizeSNP50 BeadChip of eleven inbred lines belonging to different heterotic groups relevant for maize breeding in Southeast Europe - European Corn Belt. The objectives of this study were to assess the utility of the MaizeSNP50 BeadChip platform by determining its descriptive power and to assess genetic dissimilarity of the inbred lines. The distribution of the SNPs was found not completely uniform among chromosomes, but average call rate was very high (97.9% and number of polymorphic loci was 33200 out of 50074 SNPs with known mapping position indicating descriptive power of the MaizeSNP50 BeadChip. The dendrogram obtained from UPGMA cluster analysis as well as principal component analysis (PCA confirmed pedigree information, undoubtedly distinguishing lines according to their background in two population varieties of Reid Yellow Dent and Lancaster Sure Crop. Dissimilarity analysis showed that all of the inbred lines could be distinguished from each other. Whereas cluster analysis did not definitely differentiate Mo17 and Ohio inbred lines, PCA revealed clear genetic differences between them. The studied inbred lines were confirmed to be genetically diverse, representing a large proportion of the genetic variation occurring in two maize heterotic groups.

  1. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.

    Science.gov (United States)

    Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B

    2018-05-31

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018 Ovenden et al.

  2. EvoSNP-DB: A database of genetic diversity in East Asian populations.

    Science.gov (United States)

    Kim, Young Uk; Kim, Young Jin; Lee, Jong-Young; Park, Kiejung

    2013-08-01

    Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/].

  3. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion.

    Science.gov (United States)

    Qin, Sisi; Ingle, James N; Liu, Mohan; Yu, Jia; Wickerham, D Lawrence; Kubo, Michiaki; Weinshilboum, Richard M; Wang, Liewei

    2017-08-18

    We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.

  4. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio).

    Science.gov (United States)

    Xu, Jian; Zhao, Zixia; Zhang, Xiaofeng; Zheng, Xianhu; Li, Jiongtang; Jiang, Yanliang; Kuang, Youyi; Zhang, Yan; Feng, Jianxin; Li, Chuangju; Yu, Juhua; Li, Qiang; Zhu, Yuanyuan; Liu, Yuanyuan; Xu, Peng; Sun, Xiaowen

    2014-04-24

    A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio. The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster. The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species.

  5. Snap: an integrated SNP annotation platform

    DEFF Research Database (Denmark)

    Li, Shengting; Ma, Lijia; Li, Heng

    2007-01-01

    Snap (Single Nucleotide Polymorphism Annotation Platform) is a server designed to comprehensively analyze single genes and relationships between genes basing on SNPs in the human genome. The aim of the platform is to facilitate the study of SNP finding and analysis within the framework of medical...

  6. Desmanthus GENOTYPES

    Directory of Open Access Journals (Sweden)

    JOSÉ HENRIQUE DE ALBUQUERQUE RANGEL

    2015-01-01

    Full Text Available Desmanthus is a genus of forage legumes with potential to improve pastures and livestock produc-tion on clay soils of dry tropical and subtropical regions such as the existing in Brazil and Australia. Despite this patterns of natural or enforced after-ripening of Desmanthus seeds have not been well established. Four year old seed banks of nine Desmanthus genotypes at James Cook University were accessed for their patterns of seed softe-ning in response to a range of temperatures. Persistent seed banks were found to exist under all of the studied ge-notypes. The largest seeds banks were found in the genotypes CPI 78373 and CPI 78382 and the smallest in the genotypes CPI’s 37143, 67643, and 83563. An increase in the percentage of softened seeds was correlated with higher temperatures, in two patterns of response: in some accessions seeds were not significantly affected by tempe-ratures below 80º C; and in others, seeds become soft when temperature rose to as little as 60 ºC. At 80 °C the heat started to depress germination. High seed production of Desmanthus associated with dependence of seeds on eleva-ted temperatures to softening can be a very important strategy for plants to survive in dry tropical regions.

  7. Whole-genome single-nucleotide polymorphism (SNP marker discovery and association analysis with the eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content in Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Shijun Xiao

    2016-12-01

    Full Text Available Whole-genome single-nucleotide polymorphism (SNP markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms.

  8. Inter-laboratory evaluation of the EUROFORGEN Global ancestry-informative SNP panel by massively parallel sequencing using the Ion PGM™.

    Science.gov (United States)

    Eduardoff, M; Gross, T E; Santos, C; de la Puente, M; Ballard, D; Strobl, C; Børsting, C; Morling, N; Fusco, L; Hussing, C; Egyed, B; Souto, L; Uacyisrael, J; Syndercombe Court, D; Carracedo, Á; Lareu, M V; Schneider, P M; Parson, W; Phillips, C; Parson, W; Phillips, C

    2016-07-01

    The EUROFORGEN Global ancestry-informative SNP (AIM-SNPs) panel is a forensic multiplex of 128 markers designed to differentiate an individual's ancestry from amongst the five continental population groups of Africa, Europe, East Asia, Native America, and Oceania. A custom multiplex of AmpliSeq™ PCR primers was designed for the Global AIM-SNPs to perform massively parallel sequencing using the Ion PGM™ system. This study assessed individual SNP genotyping precision using the Ion PGM™, the forensic sensitivity of the multiplex using dilution series, degraded DNA plus simple mixtures, and the ancestry differentiation power of the final panel design, which required substitution of three original ancestry-informative SNPs with alternatives. Fourteen populations that had not been previously analyzed were genotyped using the custom multiplex and these studies allowed assessment of genotyping performance by comparison of data across five laboratories. Results indicate a low level of genotyping error can still occur from sequence misalignment caused by homopolymeric tracts close to the target SNP, despite careful scrutiny of candidate SNPs at the design stage. Such sequence misalignment required the exclusion of component SNP rs2080161 from the Global AIM-SNPs panel. However, the overall genotyping precision and sensitivity of this custom multiplex indicates the Ion PGM™ assay for the Global AIM-SNPs is highly suitable for forensic ancestry analysis with massively parallel sequencing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of abhydrolase domain containing 5 gene (ABHD5) expression and variations on chicken fat metabolism.

    Science.gov (United States)

    Ouyang, Hongjia; Liu, Qing; Xu, Jiguo; Zeng, Fang; Pang, Xiaolin; Jebessa, Endashaw; Liang, Shaodong; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    Abhydrolase domain containing 5 gene (ABHD5), also known as comparative gene identification 58 (CGI-58), is a member of the α/β-hydrolase family as a protein cofactor of ATGL stimulating its triacylglycerol hydrolase activity. In this study, we aim to characterize the expression and variations of ABHD5 and to study their functions in chicken fat metabolism. We compared the ABHD5 expression level in various tissues and under different nutrition conditions, identified the variations of ABHD5, and associated them with production traits in an F2 resource population of chickens. Overexpression analysis with two different genotypes and siRNA interfering analysis of ABHD5 were performed in chicken preadipocytes. Chicken ABDH5 was expressed widely and most predominantly in adipose tissue. Five SNPs of the ABHD5 gene were identified and genotyped in the F2 resource population. The c.490C > T SNP was associated with subcutaneous fat thickness (P  C SNP was also associated with chicken body weight (P chicken preadipocytes, overexpression of wild type ABDH5 did not affect the mRNA level of ATGL (adipose triglyceride lipase) but markedly decreased (P chickens with a high fat diet. These results suggest that expression and variations of ABHD5 may affect fat metabolism through regulating the activity of ATGL in chickens. © 2015 Poultry Science Association Inc.

  10. Integrating milk metabolite profile information for the prediction of traditional milk traits based on SNP information for Holstein cows.

    Directory of Open Access Journals (Sweden)

    Nina Melzer

    Full Text Available In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach. To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317 SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype.

  11. Mining and Analysis of SNP in Response to Salinity Stress in Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wang, Xiaoge; Lu, Xuke; Wang, Junjuan; Wang, Delong; Yin, Zujun; Fan, Weili; Wang, Shuai; Ye, Wuwei

    2016-01-01

    Salinity stress is a major abiotic factor that affects crop output, and as a pioneer crop in saline and alkaline land, salt tolerance study of cotton is particularly important. In our experiment, four salt-tolerance varieties with different salt tolerance indexes including CRI35 (65.04%), Kanghuanwei164 (56.19%), Zhong9807 (55.20%) and CRI44 (50.50%), as well as four salt-sensitive cotton varieties including Hengmian3 (48.21%), GK50 (40.20%), Xinyan96-48 (34.90%), ZhongS9612 (24.80%) were used as the materials. These materials were divided into salt-tolerant group (ST) and salt-sensitive group (SS). Illumina Cotton SNP 70K Chip was used to detect SNP in different cotton varieties. SNPv (SNP variation of the same seedling pre- and after- salt stress) in different varieties were screened; polymorphic SNP and SNPr (SNP related to salt tolerance) were obtained. Annotation and analysis of these SNPs showed that (1) the induction efficiency of salinity stress on SNPv of cotton materials with different salt tolerance index was different, in which the induction efficiency on salt-sensitive materials was significantly higher than that on salt-tolerant materials. The induction of salt stress on SNPv was obviously biased. (2) SNPv induced by salt stress may be related to the methylation changes under salt stress. (3) SNPr may influence salt tolerance of plants by affecting the expression of salt-tolerance related genes.

  12. Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array.

    Science.gov (United States)

    van Geest, Geert; Voorrips, Roeland E; Esselink, Danny; Post, Aike; Visser, Richard Gf; Arens, Paul

    2017-08-07

    Cultivated chrysanthemum is an outcrossing hexaploid (2n = 6× = 54) with a disputed mode of inheritance. In this paper, we present a single nucleotide polymorphism (SNP) selection pipeline that was used to design an Affymetrix Axiom array with 183 k SNPs from RNA sequencing data (1). With this array, we genotyped four bi-parental populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum (4), and to make an inference on allelic expression bias (5). With use of the mixture model approach, we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated in the large bi-parental population (n = 405). Analysis of segregation of duplex x nulliplex SNPs resulted in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We present the success rate of SNP discovery out of RNA sequencing data as affected by different selection steps, among which SNP coverage over genotypes and use of different types of sequence read mapping software. Genomic dosage highly correlated with relative allele coverage from the RNA sequencing data, indicating that most alleles are expressed according to their genomic dosage. The large population, genotyped with a very large number of markers, is a unique framework for extensive genetic analyses in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide hexasomic inheritance.

  13. Genotype Analysis of Bacillus anthracis Strains Circulating in Bangladesh.

    Science.gov (United States)

    Rume, Farzana Islam; Affuso, Alessia; Serrecchia, Luigina; Rondinone, Valeria; Manzulli, Viviana; Campese, Emanuele; Di Taranto, Pietro; Biswas, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Yasmin, Mahmuda; Fasanella, Antonio; Hugh-Jones, Martin

    2016-01-01

    In Bangladesh, anthrax, caused by the bacterium Bacillus anthracis, is considered an endemic disease affecting ruminants with sporadic zoonotic occurrences in humans. Due to the lack of knowledge about risks from an incorrect removal of infected carcasses, the disease is not properly monitored, and because of the socio-economic conditions, the situation is under-reported and under-diagnosed. For sensitive species, anthrax represents a fatal outcome with sudden death and sometimes bleeding from natural orifices. The most common source of infection for ruminants is ingestion of spores during grazing in contaminated pastures or through grass and water contaminated with anthrax spores. Domestic cattle, sheep and goats can also become infected through contaminated bone meal (used as feed) originating from anthrax-infected carcasses. The present investigation was conducted to isolate B. anthracis organisms from 169 samples (73 soil, 1 tissue, 4 bone and 91 bone meal samples) collected from 12 different districts of Bangladesh. The sampling was carried out from 2012 to 2015. Twelve samples resulted positive for B. anthracis. Biomolecular analyses were conducted starting from the Canonical Single Nucleotide Polymorphism (CanSNP) to analyze the phylogenetic origin of strains. The analysis of genotype, obtained through the Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) with the analysis of 15 Variable Number Tandem Repeats (VNTR), demonstrated four different genotypes: two of them were previously identified in the district of Sirajganj. The sub-genotyping, conducted with Single Nucleotide Repeats analysis, revealed the presence of eight subgenotypes. The data of the present study concluded that there was no observed correlation between imported cattle feed and anthrax occurrence in Bangladesh and that the remarkable genetic variations of B. anthracis were found in the soil of numerous outbreaks in this country.

  14. Genotype Analysis of Bacillus anthracis Strains Circulating in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Farzana Islam Rume

    Full Text Available In Bangladesh, anthrax, caused by the bacterium Bacillus anthracis, is considered an endemic disease affecting ruminants with sporadic zoonotic occurrences in humans. Due to the lack of knowledge about risks from an incorrect removal of infected carcasses, the disease is not properly monitored, and because of the socio-economic conditions, the situation is under-reported and under-diagnosed. For sensitive species, anthrax represents a fatal outcome with sudden death and sometimes bleeding from natural orifices. The most common source of infection for ruminants is ingestion of spores during grazing in contaminated pastures or through grass and water contaminated with anthrax spores. Domestic cattle, sheep and goats can also become infected through contaminated bone meal (used as feed originating from anthrax-infected carcasses. The present investigation was conducted to isolate B. anthracis organisms from 169 samples (73 soil, 1 tissue, 4 bone and 91 bone meal samples collected from 12 different districts of Bangladesh. The sampling was carried out from 2012 to 2015. Twelve samples resulted positive for B. anthracis. Biomolecular analyses were conducted starting from the Canonical Single Nucleotide Polymorphism (CanSNP to analyze the phylogenetic origin of strains. The analysis of genotype, obtained through the Multiple Locus Variable Number Tandem Repeat Analysis (MLVA with the analysis of 15 Variable Number Tandem Repeats (VNTR, demonstrated four different genotypes: two of them were previously identified in the district of Sirajganj. The sub-genotyping, conducted with Single Nucleotide Repeats analysis, revealed the presence of eight subgenotypes. The data of the present study concluded that there was no observed correlation between imported cattle feed and anthrax occurrence in Bangladesh and that the remarkable genetic variations of B. anthracis were found in the soil of numerous outbreaks in this country.

  15. An Improved Opposition-Based Learning Particle Swarm Optimization for the Detection of SNP-SNP Interactions

    Science.gov (United States)

    Shang, Junliang; Sun, Yan; Li, Shengjun; Liu, Jin-Xing; Zheng, Chun-Hou; Zhang, Junying

    2015-01-01

    SNP-SNP interactions have been receiving increasing attention in understanding the mechanism underlying susceptibility to complex diseases. Though many works have been done for the detection of SNP-SNP interactions, the algorithmic development is still ongoing. In this study, an improved opposition-based learning particle swarm optimization (IOBLPSO) is proposed for the detection of SNP-SNP interactions. Highlights of IOBLPSO are the introduction of three strategies, namely, opposition-based learning, dynamic inertia weight, and a postprocedure. Opposition-based learning not only enhances the global explorative ability, but also avoids premature convergence. Dynamic inertia weight allows particles to cover a wider search space when the considered SNP is likely to be a random one and converges on promising regions of the search space while capturing a highly suspected SNP. The postprocedure is used to carry out a deep search in highly suspected SNP sets. Experiments of IOBLPSO are performed on both simulation data sets and a real data set of age-related macular degeneration, results of which demonstrate that IOBLPSO is promising in detecting SNP-SNP interactions. IOBLPSO might be an alternative to existing methods for detecting SNP-SNP interactions. PMID:26236727

  16. Echinococcus granulosus genotypes in Iran

    Science.gov (United States)

    Sharafi, Seyedeh Maryam; Rostami-Nejad, Mohammad; Moazeni, Mohammad; Yousefi, Morteza; Saneie, Behnam; Hosseini-Safa, Ahmad

    2014-01-01

    Hydatidosis, caused by Echinococcus granulosus is one of the most important zoonotic diseases, throughout most parts of the world. Hydatidosis is endemic in Iran and responsible for approximately 1% of admission to surgical wards. There are extensive genetic variations within E. granulosus and 10 different genotypes (G1–G10) within this parasite have been reported. Identification of strains is important for improvement of control and prevention of the disease. No new review article presented the situation of Echinococcus granulosus genotypes in Iran in the recent years; therefore in this paper we reviewed the different studies regarding Echinococcus granulosus genotypes in Iran. PMID:24834298

  17. A SNP uncoupling Mina expression from the TGFβ signaling pathway.

    Science.gov (United States)

    Lian, Shang L; Mihi, Belgacem; Koyanagi, Madoka; Nakayama, Toshinori; Bix, Mark

    2018-03-01

    Mina is a JmjC family 2-oxoglutarate oxygenase with pleiotropic roles in cell proliferation, cancer, T cell differentiation, pulmonary inflammation, and intestinal parasite expulsion. Although Mina expression varies according to cell-type, developmental stage and activation state, its transcriptional regulation is poorly understood. Across inbred mouse strains, Mina protein level exhibits a bimodal distribution, correlating with inheritance of a biallelic haplotype block comprising 21 promoter/intron 1-region SNPs. We previously showed that heritable differences in Mina protein level are transcriptionally regulated. Accordingly, we decided to test the hypothesis that at least one of the promoter/intron 1-region SNPs perturbs a Mina cis-regulatory element (CRE). Here, we have comprehensively scanned for CREs across a Mina locus-spanning 26-kilobase genomic interval. We discovered 8 potential CREs and functionally validated 4 of these, the strongest of which (E2), residing in intron 1, contained a SNP whose BALB/c-but not C57Bl/6 allele-abolished both Smad3 binding and transforming growth factor beta (TGFβ) responsiveness. Our results demonstrate the TGFβ signaling pathway plays a critical role in regulating Mina expression and SNP rs4191790 controls heritable variation in Mina expression level, raising important questions regarding the evolution of an allele that uncouples Mina expression from the TGFβ signaling pathway. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  18. Genotyping of white spot syndrome virus on wild and farm crustaceans from Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    González-Galaviz José Reyes

    2013-01-01

    Full Text Available White spot syndrome is a viral disease affecting wild and farm crustaceans that serve as reservoirs. Previous reports have demonstrated high genomic variation in WSS viruses (WSSV isolated from distinct geographical regions. In this study, we collected wild shrimps (Litopenaeus stylirostris, crabs (Callinectes arcuatus and farmed shrimp (L. vannamei in Sonora, Mexico, between 2008 and 2010. DNA was extracted, and the variable regions and transposase genes were subjected to PCR and sequencing. Compared to strains of WSSV from other sites, Mexican samples exhibited a distinct number of repeat units (RUs in ORF94, ORF75 and ORF125, which ranged between 1-11, 3-15, and 8-11 RUs respectively, and a unique single nucleotide polymorphism (SNP at position 48 of ORF94. A total of six Mexican genotypes were found in organism from shrimp farm and natural environment.

  19. Molecular Characterization of Bovine SMO Gene and Effects of Its Genetic Variations on Body Size Traits in Qinchuan Cattle (Bos taurus)

    Science.gov (United States)

    Zhang, Ya-Ran; Gui, Lin-Sheng; Li, Yao-Kun; Jiang, Bi-Jie; Wang, Hong-Cheng; Zhang, Ying-Ying; Zan, Lin-Sen

    2015-01-01

    Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1–8) were identified and genotyped via direct sequencing covering most of the coding region and 3ʹUTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3ʹUTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p < 0.05) greater body length than those with Hap2/Hap2. Our results indicate that variations in the SMO gene could affect body size traits of Qinchuan cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs. PMID:26225956

  20. Light whole genome sequence for SNP discovery across domestic cat breeds

    Directory of Open Access Journals (Sweden)

    Driscoll Carlos

    2010-06-01

    Full Text Available Abstract Background The domestic cat has offered enormous genomic potential in the veterinary description of over 250 hereditary disease models as well as the occurrence of several deadly feline viruses (feline leukemia virus -- FeLV, feline coronavirus -- FECV, feline immunodeficiency virus - FIV that are homologues to human scourges (cancer, SARS, and AIDS respectively. However, to realize this bio-medical potential, a high density single nucleotide polymorphism (SNP map is required in order to accomplish disease and phenotype association discovery. Description To remedy this, we generated 3,178,297 paired fosmid-end Sanger sequence reads from seven cats, and combined these data with the publicly available 2X cat whole genome sequence. All sequence reads were assembled together to form a 3X whole genome assembly allowing the discovery of over three million SNPs. To reduce potential false positive SNPs due to the low coverage assembly, a low upper-limit was placed on sequence coverage and a high lower-limit on the quality of the discrepant bases at a potential variant site. In all domestic cats of different breeds: female Abyssinian, female American shorthair, male Cornish Rex, female European Burmese, female Persian, female Siamese, a male Ragdoll and a female African wildcat were sequenced lightly. We report a total of 964 k common SNPs suitable for a domestic cat SNP genotyping array and an additional 900 k SNPs detected between African wildcat and domestic cats breeds. An empirical sampling of 94 discovered SNPs were tested in the sequenced cats resulting in a SNP validation rate of 99%. Conclusions These data provide a large collection of mapped feline SNPs across the cat genome that will allow for the development of SNP genotyping platforms for mapping feline diseases.

  1. Haplotype-Based Genotyping in Polyploids

    Directory of Open Access Journals (Sweden)

    Josh P. Clevenger

    2018-04-01

    Full Text Available Accurate identification of polymorphisms from sequence data is crucial to unlocking the potential of high throughput sequencing for genomics. Single nucleotide polymorphisms (SNPs are difficult to accurately identify in polyploid crops due to the duplicative nature of polyploid genomes leading to low confidence in the true alignment of short reads. Implementing a haplotype-based method in contrasting subgenome-specific sequences leads to higher accuracy of SNP identification in polyploids. To test this method, a large-scale 48K SNP array (Axiom Arachis2 was developed for Arachis hypogaea (peanut, an allotetraploid, in which 1,674 haplotype-based SNPs were included. Results of the array show that 74% of the haplotype-based SNP markers could be validated, which is considerably higher than previous methods used for peanut. The haplotype method has been implemented in a standalone program, HAPLOSWEEP, which takes as input bam files and a vcf file and identifies haplotype-based markers. Haplotype discovery can be made within single reads or span paired reads, and can leverage long read technology by targeting any length of haplotype. Haplotype-based genotyping is applicable in all allopolyploid genomes and provides confidence in marker identification and in silico-based genotyping for polyploid genomics.

  2. Hepatitis C Virus: Virology and Genotypes

    KAUST Repository

    Abdelaziz, Ahmed

    2017-12-01

    Hepatitis C virus (HCV) is a major causative agent of chronic liver disease worldwide. HCV is characterized by genetic heterogeneity, with at least six genotypes identified. The geographic distribution of genotypes has shown variations in different parts of the world over the past decade because of variations in population structure, immigration, and routes of transmission. Genotype differences are of epidemiologic interest and help the study of viral transmission dynamics to trace the source of HCV infection in a given population. HCV genotypes are also of considerable clinical importance because they affect response to antiviral therapy and represent a challenging obstacle for vaccine development.

  3. Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias

    Directory of Open Access Journals (Sweden)

    Didion John P

    2012-01-01

    Full Text Available Abstract Background High-density genotyping arrays that measure hybridization of genomic DNA fragments to allele-specific oligonucleotide probes are widely used to genotype single nucleotide polymorphisms (SNPs in genetic studies, including human genome-wide association studies. Hybridization intensities are converted to genotype calls by clustering algorithms that assign each sample to a genotype class at each SNP. Data for SNP probes that do not conform to the expected pattern of clustering are often discarded, contributing to ascertainment bias and resulting in lost information - as much as 50% in a recent genome-wide association study in dogs. Results We identified atypical patterns of hybridization intensities that were highly reproducible and demonstrated that these patterns represent genetic variants that were not accounted for in the design of the array platform. We characterized variable intensity oligonucleotide (VINO probes that display such patterns and are found in all hybridization-based genotyping platforms, including those developed for human, dog, cattle, and mouse. When recognized and properly interpreted, VINOs recovered a substantial fraction of discarded probes and counteracted SNP ascertainment bias. We developed software (MouseDivGeno that identifies VINOs and improves the accuracy of genotype calling. MouseDivGeno produced highly concordant genotype calls when compared with other methods but it uniquely identified more than 786000 VINOs in 351 mouse samples. We used whole-genome sequence from 14 mouse strains to confirm the presence of novel variants explaining 28000 VINOs in those strains. We also identified VINOs in human HapMap 3 samples, many of which were specific to an African population. Incorporating VINOs in phylogenetic analyses substantially improved the accuracy of a Mus species tree and local haplotype assignment in laboratory mouse strains. Conclusion The problems of ascertainment bias and missing

  4. SNP discovery in the transcriptome of white Pacific shrimp Litopenaeus vannamei by next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available The application of next generation sequencing technology has greatly facilitated high throughput single nucleotide polymorphism (SNP discovery and genotyping in genetic research. In the present study, SNPs were discovered based on two transcriptomes of Litopenaeus vannamei (L. vannamei generated from Illumina sequencing platform HiSeq 2000. One transcriptome of L. vannamei was obtained through sequencing on the RNA from larvae at mysis stage and its reference sequence was de novo assembled. The data from another transcriptome were downloaded from NCBI and the reads of the two transcriptomes were mapped separately to the assembled reference by BWA. SNP calling was performed using SAMtools. A total of 58,717 and 36,277 SNPs with high quality were predicted from the two transcriptomes, respectively. SNP calling was also performed using the reads of two transcriptomes together, and a total of 96,040 SNPs with high quality were predicted. Among these 96,040 SNPs, 5,242 and 29,129 were predicted as non-synonymous and synonymous SNPs respectively. Characterization analysis of the predicted SNPs in L. vannamei showed that the estimated SNP frequency was 0.21% (one SNP per 476 bp and the estimated ratio for transition to transversion was 2.0. Fifty SNPs were randomly selected for validation by Sanger sequencing after PCR amplification and 76% of SNPs were confirmed, which indicated that the SNPs predicted in this study were reliable. These SNPs will be very useful for genetic study in L. vannamei, especially for the high density linkage map construction and genome-wide association studies.

  5. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    Science.gov (United States)

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  6. [C677T-SNP of methylenetetrahydrofolate reductase gene and breast cancer in Mexican women].

    Science.gov (United States)

    Calderón-Garcidueñas, Ana Laura; Cerda-Flores, Ricardo Martín; Castruita-Ávila, Ana Lilia; González-Guerrero, Juan Francisco; Barrera-Saldaña, Hugo Alberto

    2017-01-01

    Low-penetrance susceptibility genes such as 5,10-methylenetetrahydrofolate reductase gene (MTHFR) have been considered in the progression of breast cancer (BC). Cancer is a result of genetic, environmental and epigenetic interactions; therefore, these genes should be studied in environmental context, because the results can vary between populations and even within the same country. The objective was to analyze the allelic and genotypic frequencies of the MTHFR C667T SNP in Mexican Mestizo patients with BC and controls from Northeastern Mexico. 243 patients and 118 healthy women were studied. The analysis of the polymorphism was performed with a DNA microarray. Once the frequency of the polymorphism was obtained, Hardy-Weinberg equilibrium test was carried out for the genotypes. Chi square test was used to compare the distribution of frequencies. The allele frequency in patients was: C = 0.5406; T = 0.4594 and in controls C = 0.5678, T = 0.4322. Genotype in BC patients was: C / C = 29.9%, C / T = 48.3% and T / T = 21.8. The distribution in controls was: C / C = 31.4%, C / T = 50.8%, T / T = 17.8% (chi squared 0.77, p = 0.6801). Northeastern Mexican women in this study showed no association between MTFHR C667T SNP and the risk of BC. It seems that the contribution of this polymorphism to BC in Mexico varies depending on various factors, both genetic and environmental.

  7. Tag SNP selection via a genetic algorithm.

    Science.gov (United States)

    Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh

    2010-10-01

    Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.

  8. CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data

    Directory of Open Access Journals (Sweden)

    Steve Davis

    2015-08-01

    Full Text Available The analysis of next-generation sequence (NGS data is often a fragmented step-wise process. For example, multiple pieces of software are typically needed to map NGS reads, extract variant sites, and construct a DNA sequence matrix containing only single nucleotide polymorphisms (i.e., a SNP matrix for a set of individuals. The management and chaining of these software pieces and their outputs can often be a cumbersome and difficult task. Here, we present CFSAN SNP Pipeline, which combines into a single package the mapping of NGS reads to a reference genome with Bowtie2, processing of those mapping (BAM files using SAMtools, identification of variant sites using VarScan, and production of a SNP matrix using custom Python scripts. We also introduce a Python package (CFSAN SNP Mutator that when given a reference genome will generate variants of known position against which we validate our pipeline. We created 1,000 simulated Salmonella enterica sp. enterica Serovar Agona genomes at 100× and 20× coverage, each containing 500 SNPs, 20 single-base insertions and 20 single-base deletions. For the 100× dataset, the CFSAN SNP Pipeline recovered 98.9% of the introduced SNPs and had a false positive rate of 1.04 × 10−6; for the 20× dataset 98.8% of SNPs were recovered and the false positive rate was 8.34 × 10−7. Based on these results, CFSAN SNP Pipeline is a robust and accurate tool that it is among the first to combine into a single executable the myriad steps required to produce a SNP matrix from NGS data. Such a tool is useful to those working in an applied setting (e.g., food safety traceback investigations as well as for those interested in evolutionary questions.

  9. Exhaustive Genome-Wide Search for SNP-SNP Interactions Across 10 Human Diseases

    Directory of Open Access Journals (Sweden)

    William Murk

    2016-07-01

    Full Text Available The identification of statistical SNP-SNP interactions may help explain the genetic etiology of many human diseases, but exhaustive genome-wide searches for these interactions have been difficult, due to a lack of power in most datasets. We aimed to use data from the Resource for Genetic Epidemiology Research on Adult Health and Aging (GERA study to search for SNP-SNP interactions associated with 10 common diseases. FastEpistasis and BOOST were used to evaluate all pairwise interactions among approximately N = 300,000 single nucleotide polymorphisms (SNPs with minor allele frequency (MAF ≥ 0.15, for the dichotomous outcomes of allergic rhinitis, asthma, cardiac disease, depression, dermatophytosis, type 2 diabetes, dyslipidemia, hemorrhoids, hypertensive disease, and osteoarthritis. A total of N = 45,171 subjects were included after quality control steps were applied. These data were divided into discovery and replication subsets; the discovery subset had > 80% power, under selected models, to detect genome-wide significant interactions (P < 10−12. Interactions were also evaluated for enrichment in particular SNP features, including functionality, prior disease relevancy, and marginal effects. No interaction in any disease was significant in both the discovery and replication subsets. Enrichment analysis suggested that, for some outcomes, interactions involving SNPs with marginal effects were more likely to be nominally replicated, compared to interactions without marginal effects. If SNP-SNP interactions play a role in the etiology of the studied conditions, they likely have weak effect sizes, involve lower-frequency variants, and/or involve complex models of interaction that are not captured well by the methods that were utilized.

  10. Grouping preprocess for haplotype inference from SNP and CNV data

    International Nuclear Information System (INIS)

    Shindo, Hiroyuki; Chigira, Hiroshi; Nagaoka, Tomoyo; Inoue, Masato; Kamatani, Naoyuki

    2009-01-01

    The method of statistical haplotype inference is an indispensable technique in the field of medical science. The authors previously reported Hardy-Weinberg equilibrium-based haplotype inference that could manage single nucleotide polymorphism (SNP) data. We recently extended the method to cover copy number variation (CNV) data. Haplotype inference from mixed data is important because SNPs and CNVs are occasionally in linkage disequilibrium. The idea underlying the proposed method is simple, but the algorithm for it needs to be quite elaborate to reduce the calculation cost. Consequently, we have focused on the details on the algorithm in this study. Although the main advantage of the method is accuracy, in that it does not use any approximation, its main disadvantage is still the calculation cost, which is sometimes intractable for large data sets with missing values.

  11. Grouping preprocess for haplotype inference from SNP and CNV data

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Hiroyuki; Chigira, Hiroshi; Nagaoka, Tomoyo; Inoue, Masato [Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Kamatani, Naoyuki, E-mail: masato.inoue@eb.waseda.ac.j [Institute of Rheumatology, Tokyo Women' s Medical University, 10-22, Kawada-cho, Shinjuku-ku, Tokyo 162-0054 (Japan)

    2009-12-01

    The method of statistical haplotype inference is an indispensable technique in the field of medical science. The authors previously reported Hardy-Weinberg equilibrium-based haplotype inference that could manage single nucleotide polymorphism (SNP) data. We recently extended the method to cover copy number variation (CNV) data. Haplotype inference from mixed data is important because SNPs and CNVs are occasionally in linkage disequilibrium. The idea underlying the proposed method is simple, but the algorithm for it needs to be quite elaborate to reduce the calculation cost. Consequently, we have focused on the details on the algorithm in this study. Although the main advantage of the method is accuracy, in that it does not use any approximation, its main disadvantage is still the calculation cost, which is sometimes intractable for large data sets with missing values.

  12. Frequency of alpha- and beta-haemolysin in Staphylococcus aureus of bovine and human origin - A comparison between pheno- and genotype and variation in phenotypic expression

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Larsen, H.D.; Eriksen, N.H.R.

    1999-01-01

    The phenotypic expression of haemolysins and the presence of genes encoding alpha and beta-haemolysin were determined in 105 Sraphylococcus aureus isolates from bovine mastitis, 100 isolates from the nostrils of healthy humans, and 60 isolates from septicaemia in humans. Furthermore, the possible...... change in expression of haemolysins after subcultivation in human and bovine blood and milk was studied in selected isolates. alpha-haemolysin was expressed phenotypically in 39 (37%) of the bovine isolates, in 59 (59%) of the human carrier isolates, and in 40 (67%) of the isolates from septicaemia. beta......-haemolysin was expressed in 76 (72%) bovine, 11 (11%) carrier, and 8 (13%) septicaemia isolates. Significantly more bovine than human isolates expressed beta-haemolysin and significantly fewer expressed alpha-haemolysin. Genotypically, the gene encoding alpha-haemolysin was detected in all isolates. A significant...

  13. Genotyping of Brucella species using clade specific SNPs

    Directory of Open Access Journals (Sweden)

    Foster Jeffrey T

    2012-06-01

    Full Text Available Abstract Background Brucellosis is a worldwide disease of mammals caused by Alphaproteobacteria in the genus Brucella. The genus is genetically monomorphic, requiring extensive genotyping to differentiate isolates. We utilized two different genotyping strategies to characterize isolates. First, we developed a microarray-based assay based on 1000 single nucleotide polymorphisms (SNPs that were identified from whole genome comparisons of two B. abortus isolates , one B. melitensis, and one B. suis. We then genotyped a diverse collection of 85 Brucella strains at these SNP loci and generated a phylogenetic tree of relationships. Second, we developed a selective primer-extension assay system using capillary electrophoresis that targeted 17 high value SNPs across 8 major branches of the phylogeny and determined their genotypes in a large collection ( n = 340 of diverse isolates. Results Our 1000 SNP microarray readily distinguished B. abortus, B. melitensis, and B. suis, differentiating B. melitensis and B. suis into two clades each. Brucella abortus was divided into four major clades. Our capillary-based SNP genotyping confirmed all major branches from the microarray assay and assigned all samples to defined lineages. Isolates from these lineages and closely related isolates, among the most commonly encountered lineages worldwide, can now be quickly and easily identified and genetically characterized. Conclusions We have identified clade-specific SNPs in Brucella that can be used for rapid assignment into major groups below the species level in the three main Brucella species. Our assays represent SNP genotyping approaches that can reliably determine the evolutionary relationships of bacterial isolates without the need for whole genome sequencing of all isolates.

  14. Inference of haplotypic phase and missing genotypes in polyploid organisms and variable copy number genomic regions

    Directory of Open Access Journals (Sweden)

    Balding David J

    2008-12-01

    Full Text Available Abstract Background The power of haplotype-based methods for association studies, identification of regions under selection, and ancestral inference, is well-established for diploid organisms. For polyploids, however, the difficulty of determining phase has limited such approaches. Polyploidy is common in plants and is also observed in animals. Partial polyploidy is sometimes observed in humans (e.g. trisomy 21; Down's syndrome, and it arises more frequently in some human tissues. Local changes in ploidy, known as copy number variations (CNV, arise throughout the genome. Here we present a method, implemented in the software polyHap, for the inference of haplotype phase and missing observations from polyploid genotypes. PolyHap allows each individual to have a different ploidy, but ploidy cannot vary over the genomic region analysed. It employs a hidden Markov model (HMM and a sampling algorithm to infer haplotypes jointly in multiple individuals and to obtain a measure of uncertainty in its inferences. Results In the simulation study, we combine real haplotype data to create artificial diploid, triploid, and tetraploid genotypes, and use these to demonstrate that polyHap performs well, in terms of both switch error rate in recovering phase and imputation error rate for missing genotypes. To our knowledge, there is no comparable software for phasing a large, densely genotyped region of chromosome from triploids and tetraploids, while for diploids we found polyHap to be more accurate than fastPhase. We also compare the results of polyHap to SATlotyper on an experimentally haplotyped tetraploid dataset of 12 SNPs, and show that polyHap is more accurate. Conclusion With the availability of large SNP data in polyploids and CNV regions, we believe that polyHap, our proposed method for inferring haplotypic phase from genotype data, will be useful in enabling researchers analysing such data to exploit the power of haplotype-based analyses.

  15. Development and Evaluation of a Barley 50k iSelect SNP Array

    Directory of Open Access Journals (Sweden)

    Micha M. Bayer

    2017-10-01

    Full Text Available High-throughput genotyping arrays continue to be an attractive, cost-effective alternative to sequencing based approaches. We have developed a new 50k Illumina Infinium iSelect genotyping array for barley, a cereal crop species of major international importance. The majority of SNPs on the array have been extracted from variants called in exome capture data of a wide range of European barley germplasm. We used the recently published barley pseudomolecule assembly to map the exome capture data, which allowed us to generate markers with accurate physical positions and detailed gene annotation. Markers from an existing and widely used barley 9k Infinium iSelect array were carried over onto the 50k chip for backward compatibility. The array design featured 49,267 SNP markers that converted into 44,040 working assays, of which 43,461 were scorable in GenomeStudio. Of the working assays, 6,251 are from the 9k iSelect platform. We validated the SNPs by comparing the genotype calls from the new array to legacy datasets. Rates of agreement averaged 98.1 and 93.9% respectively for the legacy 9k iSelect SNP set (Comadran et al., 2012 and the exome capture SNPs. To test the utility of the 50k chip for genetic mapping, we genotyped a segregating population derived from a Golden Promise × Morex cross (Liu et al., 2014 and mapped over 14,000 SNPs to genetic positions which showed a near exact correspondence to their known physical positions. Manual adjustment of the cluster files used by the interpreting software for genotype scoring improved results substantially, but migration of cluster files between sites led to a deterioration of results, suggesting that local adjustment of cluster files is required on a site-per-site basis. Information relating to the markers on the chip is available online at https://ics.hutton.ac.uk/50k.

  16. SNPServer: a real-time SNP discovery tool.

    Science.gov (United States)

    Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-07-01

    SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.

  17. RS-SNP: a random-set method for genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Mukherjee Sayan

    2011-03-01

    Full Text Available Abstract Background The typical objective of Genome-wide association (GWA studies is to identify single-nucleotide polymorphisms (SNPs and corresponding genes with the strongest evidence of association (the 'most-significant SNPs/genes' approach. Borrowing ideas from micro-array data analysis, we propose a new method, named RS-SNP, for detecting sets of genes enriched in SNPs moderately associated to the phenotype. RS-SNP assesses whether the number of significant SNPs, with p-value P ≤ α, belonging to a given SNP set is statistically significant. The rationale of proposed method is that two kinds of null hypotheses are taken into account simultaneously. In the first null model the genotype and the phenotype are assumed to be independent random variables and the null distribution is the probability of the number of significant SNPs in greater than observed by chance. The second null model assumes the number of significant SNPs in depends on the size of and not on the identity of the SNPs in . Statistical significance is assessed using non-parametric permutation tests. Results We applied RS-SNP to the Crohn's disease (CD data set collected by the Wellcome Trust Case Control Consortium (WTCCC and compared the results with GENGEN, an approach recently proposed in literature. The enrichment analysis using RS-SNP and the set of pathways contained in the MSigDB C2 CP pathway collection highlighted 86 pathways rich in SNPs weakly associated to CD. Of these, 47 were also indicated to be significant by GENGEN. Similar results were obtained using the MSigDB C5 pathway collection. Many of the pathways found to be enriched by RS-SNP have a well-known connection to CD and often with inflammatory diseases. Conclusions The proposed method is a valuable alternative to other techniques for enrichment analysis of SNP sets. It is well founded from a theoretical and statistical perspective. Moreover, the experimental comparison with GENGEN highlights that it is

  18. Genomewide high-density SNP linkage analysis of non-BRCA1/2 breast cancer families identifies various candidate regions and has greater power than microsatellite studies

    NARCIS (Netherlands)

    A. González-Neira (Anna); J.M. Rosa-Rosa; A. Osorio (Ana); E. Gonzalez (Emilio); M.C. Southey (Melissa); O. Sinilnikova (Olga); H. Lynch (Henry); R.A. Oldenburg (Rogier); C.J. van Asperen (Christi); N. Hoogerbrugge (Nicoline); G. Pita (Guillermo); P. Devilee (Peter); D. Goldgar (David); J. Benítez (Javier)

    2007-01-01

    textabstractBackground: The recent development of new high-throughput technologies for SNP genotyping has opened the possibility of taking a genome-wide linkage approach to the search for new candidate genes involved in heredity diseases. The two major breast cancer susceptibility genes BRCA1 and

  19. Inter-laboratory evaluation of the EUROFORGEN Global ancestry-informative SNP panel by massively parallel sequencing using the Ion PGM™

    DEFF Research Database (Denmark)

    Eduardoff, M; Gross, T E; Santos, C

    2016-01-01

    Seq™ PCR primers was designed for the Global AIM-SNPs to perform massively parallel sequencing using the Ion PGM™ system. This study assessed individual SNP genotyping precision using the Ion PGM™, the forensic sensitivity of the multiplex using dilution series, degraded DNA plus simple mixtures...

  20. Overlap in genomic variation associated with milk fat composition in Holstein Friesian and Dutch native dual-purpose breeds.

    Science.gov (United States)

    Maurice-Van Eijndhoven, M H T; Bovenhuis, H; Veerkamp, R F; Calus, M P L

    2015-09-01

    The aim of this study was to identify if genomic variations associated with fatty acid (FA) composition are similar between the Holstein-Friesian (HF) and native dual-purpose breeds used in the Dutch dairy industry. Phenotypic and genotypic information were available for the breeds Meuse-Rhine-Yssel (MRY), Dutch Friesian (DF), Groningen White Headed (GWH), and HF. First, the reliability of genomic breeding values of the native Dutch dual-purpose cattle breeds MRY, DF, and GWH was evaluated using single nucleotide polymorphism (SNP) effects estimated in HF, including all SNP or subsets with stronger associations in HF. Second, the genomic variation of the regions associated with FA composition in HF (regions on Bos taurus autosome 5, 14, and 26), were studied in the different breeds. Finally, similarities in genotype and allele frequencies between MRY, DF, GWH, and HF breeds were assessed for specific regions associated with FA composition. On average across the traits, the highest reliabilities of genomic prediction were estimated for GWH (0.158) and DF (0.116) when the 8 to 22 SNP with the strongest association in HF were included. With the same set of SNP, GEBV for MRY were the least reliable (0.022). This indicates that on average only 2 (MRY) to 16% (GWH) of the genomic variation in HF is shared with the native Dutch dual-purpose breeds. The comparison of predicted variances of different regions associated with milk and milk fat composition showed that breeds clearly differed in genomic variation within these regions. Finally, the correlations of allele frequencies between breeds across the 8 to 22 SNP with the strongest association in HF were around 0.8 between the Dutch native dual-purpose breeds, whereas the correlations between the native breeds and HF were clearly lower and around 0.5. There was no consistent relationship between the reliabilities of genomic prediction for a specific breed and the correlation between the allele frequencies of this breed

  1. Indicator 1.07. Number and geographic distribution of forest-associated species at risk of losing genetic variation and locally adapted genotypes

    Science.gov (United States)

    C. H. Flather; M. S Knowles; C. H. Sieg

    2011-01-01

    This indicator provides information on the number and distribution of forest-associated species at risk of losing genetic variation across their geographic range. Comparing a species' current geographic distribution with its historic distribution is the basis for identifying those species whose range has contracted significantly. Human activities are accelerating...

  2. Assessment of Cultivar Distinctness in Alfalfa: A Comparison of Genotyping-by-Sequencing, Simple-Sequence Repeat Marker, and Morphophysiological Observations

    Directory of Open Access Journals (Sweden)

    Paolo Annicchiarico

    2016-07-01

    Full Text Available Cultivar registration agencies typically require morphophysiological trait-based distinctness of candidate cultivars. This requirement is difficult to achieve for cultivars of major perennial forages because of their genetic structure and ever-increasing number of registered material, leading to possible rejection of agronomically valuable cultivars. This study aimed to explore the value of molecular markers applied to replicated bulked plants (three bulks of 100 independent plants each per cultivar to assess alfalfa ( L. subsp. cultivar distinctness. We compared genotyping-by-sequencing information based on 2902 polymorphic single-nucleotide polymorphism (SNP markers (>30 reads per DNA sample with morphophysiological information based on 11 traits and with simple-sequence repeat (SSR marker information from 41 polymorphic markers for their ability to distinguish 11 alfalfa landraces representative of the germplasm from northern Italy. Three molecular criteria, one based on cultivar differences for individual SSR bands and two based on overall SNP marker variation assessed either by statistically significant cultivar differences on principal component axes or discriminant analysis, distinctly outperformed the morphophysiological criterion. Combining the morphophysiological criterion with either molecular marker method increased discrimination among cultivars, since morphophysiological diversity was unrelated to SSR marker-based diversity ( = 0.04 and poorly related to SNP marker-based diversity ( = 0.23, < 0.15. The criterion based on statistically significant SNP allele frequency differences was less discriminating than morphophysiological variation. Marker-based distinctness, which can be assessed at low cost and without interactions with testing conditions, could validly substitute for (or complement morphophysiological distinctness in alfalfa cultivar registration schemes. It also has interest in sui generis registration systems aimed at

  3. TPH2 -703G/T SNP may have important effect on susceptibility to suicidal behavior in major depression.

    Science.gov (United States)

    Yoon, Ho-Kyoung; Kim, Yong-Ku

    2009-04-30

    Serotonergic system-related genes can be good candidate genes for both major depressive disorder (MDD) and suicidal behavior. In this study, we aimed to investigate the association of serotonin 2A receptor gene -1438A/G SNP (HTR2A -1438A/G), tryptophan hydroxylase 2 gene -703G/T SNP (TPH2 -703G/T) and serotonin 1A receptor C-1019G (HTR1A C-1019G) with suicidal behavior. One hundred and eighty one suicidal depressed patients and 143 non-suicidal depressed patients who met DSM-IV criteria for major depressive disorder were recruited from patients who were admitted to Korea University Ansan Hospital. One hundred seventy six normal controls were healthy volunteers who were recruited by local advertisement. Patients and normal controls were genotyped for HTR2A -1438A/G, TPH2 -703G/T and 5-HT1A C-1019G. The suicidal depressed patients were evaluated by the lethality of individual suicide attempts using Weisman and Worden's risk-rescue rating (RRR) and the Lethality Suicide Attempt Rating Scale-updated (LSARS-II). In order to assess the severity of depressive symptoms of patients, Hamilton's Depression Rating Scale (HDRS) was administered. Genotype and allele frequencies were compared between groups by chi(2) statistics. Association of genotype of the candidate genes with the lethality of suicidal behavior was examined with ANOVA by comparing the mean scores of LSARS and RRR according to the genotype. There were statistically significant differences in the genotype distributions and allele frequencies of TPH2 -703G/T between the suicidal depressive group and the normal control group. The homozygous allele G (G/G genotype) frequency was significantly higher in suicidal depressed patients than in controls. However, no differences in either genotype distribution or in allele frequencies of HTR2A -1438A/G and HTR1A C-1019G were observed between the suicidal depressed patients, the non-suicidal depressed patients, and the normal controls. There were no differences in the

  4. saSNP Approach for Scalable SNP Analyses of Multiple Bacterial or Viral Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Shea [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-07-27

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs. The method is fast to compute, finding SNPs and building a SNP phylogeny in seconds to hours. We use it to identify thousands of putative SNPs from all publicly available Filoviridae, Poxviridae, foot-and-mouth disease virus, Bacillus, and Escherichia coli genomes and plasmids. The SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle as input hundreds of gigabases of sequence in a single run. The algorithm is based on k-mer analysis using a suffix array, so we call it saSNP.

  5. Analysis of single nucleotide polymorphism (SNP RS23472497 associated with canine atopic dermatitis by ACRS-PCR method

    Directory of Open Access Journals (Sweden)

    Martina Miluchová

    2014-05-01

    Full Text Available The aim of the paper was to identify of the SNP rs23472497 associated with canine atopic dermatitis (cAD. cAD is a common inflammatory skin disease that is considered to be a naturally occurring, spontaneous model of human atopic dermatitis (eczema. The material involved 60 dogs from 6 different breeds. Canine genomic DNA was isolated from saliva by modified method with using DNAzol® and linear polyacrylamide (LPA carrier and from blood by using commercial kit NucleospinBlood and used in order to estimate rs23472497 SNP genotypes by ACRS-PCR method. The PCR products were digested with NlaIII restriction enzyme. In the population of Czech Pointer and Slovak Wirehaired Pointer we detected all genotypes AA, AG and GG with frequency 0.0732, 0.5122 and 0.4146 for Czech Pointer and 0.1818, 0.5455 and 0.2727 for Slovak Wirehaired Pointer. In Border Collie was observed heterozygote genotype AG and homozygote genotype GG with frequency 0.6667 and 0.3333, subsequently. In German Wirehaired Pointer, Australian Shepherd dog and American Staffordshire terrier we detected only genotype AG with frequency 1. The A allele was distributed with an allele frequency ranging from 0.3293 to 0.5. The G allele was distributed with an allele frequency ranging from 0.5 to 0.6707.

  6. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS for 6-week body weight in broiler chickens

    Directory of Open Access Journals (Sweden)

    Huiyu eWang

    2014-05-01

    Full Text Available The purpose of this study was to compare results obtained from various methodologies for genome-wide association studies, when applied to real data, in terms of number and commonality of regions identified and their genetic variance explained, computational speed, and possible pitfalls in interpretations of results. Methodologies include: two iteratively reweighted single-step genomic BLUP procedures (ssGWAS1 and ssGWAS2, a single-marker model (CGWAS, and BayesB. The ssGWAS methods utilize genomic breeding values (GEBVs based on combined pedigree, genomic and phenotypic information, while CGWAS and BayesB only utilize phenotypes from genotyped animals or pseudo-phenotypes. In this study, ssGWAS was performed by converting GEBVs to SNP marker effects. Unequal variances for markers were incorporated for calculating weights into a new genomic relationship matrix. SNP weights were refined iteratively. The data was body weight at 6 weeks on 274,776 broiler chickens, of which 4553 were genotyped using a 60k SNP chip. Comparison of genomic regions was based on genetic variances explained by local SNP regions (20 SNPs. After 3 iterations, the noise was greatly reduced of ssGWAS1 and results are similar to that of CGWAS, with 4 out of the top 10 regions in common. In contrast, for BayesB, the plot was dominated by a single region explaining 23.1% of the genetic variance. This same region was found by ssGWAS1 with the same rank, but the amount of genetic variation attributed to the region was only 3%. These finding emphasize the need for caution when comparing and interpreting results from various methods, and highlight that detected associations, and strength of association, strongly depends on methodologies and details of implementations. BayesB appears to overly shrink regions to zero, while overestimating the amount of genetic variation attributed to the remaining SNP effects. The real world is most likely a compromise between methods and remains to

  7. Multiple-strand displacement and identification of single nucleotide polymorphisms as markers of genotypic variation of Pasteuria penetrans biotypes infecting root-knot nematodes.

    Science.gov (United States)

    Nong, Guang; Chow, Virginia; Schmidt, Liesbeth M; Dickson, Don W; Preston, James F

    2007-08-01

    Pasteuria species are endospore-forming obligate bacterial parasites of soil-inhabiting nematodes and water-inhabiting cladocerans, e.g. water fleas, and are closely related to Bacillus spp. by 16S rRNA gene sequence. As naturally occurring bacteria, biotypes of Pasteuria penetrans are attractive candidates for the biocontrol of various Meloidogyne spp. (root-knot nematodes). Failure to culture these bacteria outside their hosts has prevented isolation of genomic DNA in quantities sufficient for identification of genes associated with host recognition and virulence. We have applied multiple-strand displacement amplification (MDA) to generate DNA for comparative genomics of biotypes exhibiting different host preferences. Using the genome of Bacillus subtilis as a paradigm, MDA allowed quantitative detection and sequencing of 12 marker genes from 2000 cells. Meloidogyne spp. infected with P. penetrans P20 or B4 contained single nucleotide polymorphisms (SNPs) in the spoIIAB gene that did not change the amino acid sequence, or that substituted amino acids with similar chemical properties. Individual nematodes infected with P. penetrans P20 or B4 contained SNPs in the spoIIAB gene sequenced in MDA-generated products. Detection of SNPs in the spoIIAB gene in a nematode indicates infection by more than one genotype, supporting the need to sequence genomes of Pasteuria spp. derived from single spore isolates.

  8. Cathepsin D SNP associated with increased risk of variant Creutzfeldt-Jakob disease

    Directory of Open Access Journals (Sweden)

    Sanchez-Juan Pascual

    2008-04-01

    Full Text Available Abstract Background Variant Creutzfeldt-Jakob disease (vCJD originally resulted from the consumption of foodstuffs contaminated by bovine spongiform encephalopathy (BSE material, with 163 confirmed cases in the UK to date. Many thousands are likely to have been exposed to dietary infection and so it is important (for surveillance, epidemic modelling, public health and understanding pathogenesis to identify genetic factors that may affect individual susceptibility to infection. This study looked at a polymorphism in the cathepsin D gene (refSNP ID: rs17571 previously examined in Alzheimer's disease (AD. Methods Blood samples taken from 110 vCJD patients were tested for the C-T base change, and genotype data were compared with published frequencies for a control population using multiple logistic regression. Results There was a significant excess of the cathepsin D polymorphism TT genotype in the vCJD cohort compared to controls. The TT genotype was found to have a 9.75 fold increase in risk of vCJD compared to the CT genotype and a 10.92 fold increase compared to the CC genotype. Conclusion This mutation event has been observed to alter the protease activity of the cathepsin D protein and has been linked to an increase in amyloid beta plaque formation in AD. vCJD neuropathology is characterised by the presence of amyloid plaques, formed from the prion protein, and therefore alterations in the amyloid processing activity of cathepsin D may affect the neuropathogenesis of this disease.

  9. Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer

    International Nuclear Information System (INIS)

    Sun, Ying-Fang; Leu, Jyh-Der; Chen, Su-Mei; Lin, I-Feng; Lee, Yi-Jang

    2009-01-01

    It has been suggested that the single nucleotide polymorphism 309 (SNP309, T -> G) in the promoter region of the MDM2 gene is important for tumor development; however, with regards to breast cancer, inconsistent associations have been reported worldwide. It is speculated that these conflicting results may have arisen due to different patient subgroups and ethnicities studied. For the first time, this study explores the effect of the MDM2 SNP309 genotype on Taiwanese breast cancer patients. Genomic DNA was obtained from the whole blood of 124 breast cancer patients and 97 cancer-free healthy women living in Taiwan. MDM2 SNP309 genotyping was carried out by restriction fragment length polymorphism (RFLP) assay. The multivariate logistic regression and the Kaplan-Meier method were used for analyzing the risk association and significance of age at diagnosis among different MDM2 SNP309 genotypes, respectively. Compared to the TT genotype, an increased risk association with breast cancer was apparent for the GG genotype (OR = 3.05, 95% CI = 1.04 to 8.95), and for the TG genotype (OR = 2.12, 95% CI = 0.90 to 5.00) after adjusting for age, cardiovascular disease/diabetes, oral contraceptive usage, and body mass index, which exhibits significant difference between cases and controls. Furthermore, the average ages at diagnosis for breast cancer patients were 53.6, 52 and 47 years for those harboring TT, TG and GG genotypes, respectively. A significant difference in median age of onset for breast cancer between GG and TT+TG genotypes was obtained by the log-rank test (p = 0.0067). Findings based on the current sample size suggest that the MDM2 SNP309 GG genotype may be associated with both the risk of breast cancer and an earlier age of onset in Taiwanese women

  10. Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance

    Directory of Open Access Journals (Sweden)

    Haque Kashif A

    2005-09-01

    Full Text Available Abstract Background Whole genome amplification (WGA promises to eliminate practical molecular genetic analysis limitations associated with genomic DNA (gDNA quantity. We evaluated the performance of multiple displacement amplification (MDA WGA using gDNA extracted from lymphoblastoid cell lines (N = 27 with a range of starting gDNA input of 1–200 ng into the WGA reaction. Yield and composition analysis of whole genome amplified DNA (wgaDNA was performed using three DNA quantification methods (OD, PicoGreen® and RT-PCR. Two panels of N = 15 STR (using the AmpFlSTR® Identifiler® panel and N = 49 SNP (TaqMan® genotyping assays were performed on each gDNA and wgaDNA sample in duplicate. gDNA and wgaDNA masses of 1, 4 and 20 ng were used in the SNP assays to evaluate the effects of DNA mass on SNP genotyping assay performance. A total of N = 6,880 STR and N = 56,448 SNP genotype attempts provided adequate power to detect differences in STR and SNP genotyping performance between gDNA and wgaDNA, and among wgaDNA produced from a range of gDNA templates inputs. Results The proportion of double-stranded wgaDNA and human-specific PCR amplifiable wgaDNA increased with increased gDNA input into the WGA reaction. Increased amounts of gDNA input into the WGA reaction improved wgaDNA genotyping performance. Genotype completion or genotype concordance rates of wgaDNA produced from all gDNA input levels were observed to be reduced compared to gDNA, although the reduction was not always statistically significant. Reduced wgaDNA genotyping performance was primarily due to the increased variance of allelic amplification, resulting in loss of heterozygosity or increased undetermined genotypes. MDA WGA produces wgaDNA from no template control samples; such samples exhibited substantial false-positive genotyping rates. Conclusion The amount of gDNA input into the MDA WGA reaction is a critical determinant of genotyping performance of wgaDNA. At least 10 ng of

  11. Effect of MDM2 SNP309 and p53 codon 72 polymorphisms on lung cancer risk and survival among non-smoking Chinese women in Singapore

    Directory of Open Access Journals (Sweden)

    Sabapathy Kanaga

    2010-03-01

    Full Text Available Abstract Background Single nucleotide polymorphism (SNP 309 resulting in a T or G allele in the promoter of MDM2, the negative regulator of p53, has been suggested to affect cancer predisposition and age of onset, primarily in females. However, findings have been inconsistent in various cancers, and ethnicity appears to be a critical factor influencing the effects of the SNP on cancer risk. An increasing trend has been observed in the prevalence of lung cancers in non-smokers, especially females, though the underlying genetic basis is unclear. Methods We therefore examined the role of the SNPs in the p53 pathway (p53 codon 72 and MDM2 SNP309 on lung cancer risk and prognosis of a life-time non-smoking female Chinese population, in a hospital-based case-control study of 123 cases and 159 age-matched controls, by PCR analysis. Results Our findings reveal that the risk of lung cancer among individuals with the MDM2 SNP309 TT genotype was 2.1 (95% CI 1.01-4.36 relative to the GG genotype, contrary to initial expectations that the GG genotype with elevated MDM2 levels will increase cancer risk. Those who had this genotype in combination with the p53 Pro allele had a risk of 2.5 (95% CI 1.2-5.0. There was however no effect of either polymorphism on age at diagnosis of lung cancer or on overall survival. Conclusions The results thus demonstrate that the MDM2 SNP309 TT rather than the GG genotype is associated with increased risk of lung cancer in this population, suggesting that other mechanisms independent of increased MDM2 levels can influence cancer susceptibility.

  12. Finding the right coverage : The impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates

    NARCIS (Netherlands)

    Fountain, Emily D.; Pauli, Jonathan N.; Reid, Brendan N.; Palsboll, Per J.; Peery, M. Zachariah

    Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown.

  13. Genetic relationship among Musa genotypes revealed by ...

    African Journals Online (AJOL)

    enoh

    2012-03-29

    Mar 29, 2012 ... A banana germplasm was established containing 44 Musa genotypes collected from various locations in Malaysia. To detect their genetic variation and to rule out duplicates among cultivar, microsatellite markers were used in their analysis. The microsatellite profiles of 44 Musa genotypes of various origins.

  14. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    Science.gov (United States)

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-08-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  15. Casein SNP in Norwegian goats: additive and dominance effects on milk composition and quality

    Science.gov (United States)

    2011-01-01

    Background The four casein proteins in goat milk are encoded by four closely linked casein loci (CSN1S1, CSN2, CSN1S2 and CSN3) within 250 kb on caprine chromosome 6. A deletion in exon 12 of CSN1S1, so far reported only in Norwegian goats, has been found at high frequency (0.73). Such a high frequency is difficult to explain because the national breeding goal selects against the variant's effect. Methods In this study, 575 goats were genotyped for 38 Single Nucleotide Polymorphisms (SNP) located within the four casein genes. Milk production records of these goats were obtained from the Norwegian Dairy Goat Control. Test-day mixed models with additive and dominance fixed effects of single SNP were fitted in a model including polygenic effects. Results Significant additive effects of single SNP within CSN1S1 and CSN3 were found for fat % and protein %, milk yield and milk taste. The allele with the deletion showed additive and dominance effects on protein % and fat %, and overdominance effects on milk quantity (kg) and lactose %. At its current frequency, the observed dominance (overdominance) effects of the deletion allele reduced its substitution effect (and additive genetic variance available for selection) in the population substantially. Conclusions The selection pressure of conventional breeding on the allele with the deletion is limited due to the observed dominance (overdominance) effects. Inclusion of molecular information in the national breeding scheme will reduce the frequency of this deletion in the population. PMID:21864407

  16. Application of LogitBoost Classifier for Traceability Using SNP Chip Data.

    Science.gov (United States)

    Kim, Kwondo; Seo, Minseok; Kang, Hyunsung; Cho, Seoae; Kim, Heebal; Seo, Kang-Seok

    2015-01-01

    Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability.

  17. Genetic variation in alcohol metabolizing enzymes among Inuit and its relation to drinking patterns.

    Science.gov (United States)

    Bjerregaard, Peter; Mikkelsen, Stine Schou; Becker, Ulrik; Hansen, Torben; Tolstrup, Janne S

    2014-11-01

    Variation in genes involved in alcohol metabolism is associated with drinking patterns worldwide. We compared variation in these genes among the Inuit with published results from the general population of Denmark and, due to the Asian ancestry of the Inuit, with Han Chinese. We analyzed the association between gene variations and drinking patterns among the Inuit. We genotyped 4162 Inuit participants from two population health surveys. Information on drinking patterns was available for 3560. Seven single nucleotide polymorphisms (SNPs) were examined: ADH1B arg48his, ADH1C ile350val, ADH1C arg272gln, ALDH2 glu504lys, ALDH2 5'-UTR A-357G, ALDH1B1 ala86val and ALDH1B1 arg107leu. The allele distribution differed significantly between Inuit and the general population of Denmark. A protective effect on heavy drinking was found for the TT genotype of the ALDH1B1 arg107leu SNP (OR=0.59; 95% CI 0.37-0.92), present in 3% of pure Inuit and 37% of Danes. The ADH1C GG genotype was associated with heavy drinking and a positive CAGE test (OR 1.34; 95% CI 1.05-1.72). It was present in 27% of Inuit and 18% of Danes. The Asian genotype pattern with a high frequency of the ADH1B A allele and an ALDH2 gene coding for an inactive enzyme was not present in Greenland. ADH1C and ALDH1B1 arg107leu SNPs play a role in the shaping of drinking patterns among the Inuit in Greenland. A low frequency of the ALDH1B1 arg107leu TT genotype compared with the general population in Denmark deserves further study. This genotype was protective of heavy drinking among the Inuit. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival

    DEFF Research Database (Denmark)

    Jamshidi, Maral; Fagerholm, Rainer; Khan, Sofia

    2015-01-01

    of SNP pairs without and with an interaction term. We found two interacting pairs associating with prognosis: patients simultaneously homozygous for the rare alleles of rs5996080 and rs7973914 had worse survival (HRinteraction 6.98, 95% CI=3.3-14.4, P=1.42E-07), and patients carrying at least one rare...

  19. A Whole Genome Association Study on Meat Quality Traits Using High Density SNP Chips in a Cross between Korean Native Pig and Landrace

    Directory of Open Access Journals (Sweden)

    K.-T Lee

    2012-11-01

    Full Text Available A whole genome association (WGA study was performed to detect significant polymorphisms for meat quality traits in an F2 cross population (N = 478 that were generated with Korean native pig sires and Landrace dams in National Livestock Research Institute, Songwhan, Korea. The animals were genotyped using Illumina porcine 60k SNP beadchips, in which a set of 46,865 SNPs were available for the WGA analyses on ten carcass quality traits; live weight, crude protein, crude lipids, crude ash, water holding capacity, drip loss, shear force, CIE L, CIE a and CIE b. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model, after adjusting for sex, sire and slaughter stage as fixed effects. With the significant SNPs for each trait (p<0.001, a stepwise regression procedure was applied to determine the best set of SNPs with the additive and/or dominance effects. A total of 106 SNPs, or quantitative trait loci (QTL were detected, and about 32 to 66% of the total phenotypic variation was explained by the significant SNPs for each trait. The QTL were identified in most porcine chromosomes (SSCs, in which majority of the QTL were detected in SSCs 1, 2, 12, 13, 14 and 16. Several QTL clusters were identified on SSCs 12, 16 and 17, and a cluster of QTL influencing crude protein, crude lipid, drip loss, shear force, CIE a and CIE b were located between 20 and 29 Mb of SSC12. A pleiotropic QTL for drip loss, CIE L and CIE b was also detected on SSC16. These QTL need to be validated in commercial pig populations for genetic improvement in meat quality via marker-assisted selection.

  20. Welcome to the neighbourhood: interspecific genotype by genotype interactions in Solidago influence above- and belowground biomass and associated communities.

    Science.gov (United States)

    Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A

    2012-01-01

    Intra- and interspecific plant-plant interactions are fundamental to patterns of community assembly and to the mixture effects observed in biodiversity studies. Although much research has been conducted at the species level, very little is understood about how genetic variation within and among interacting species may drive these processes. Using clones of both Solidago altissima and Solidago gigantea, we found that genotypic variation in a plant's neighbours affected both above- and belowground plant traits, and that genotype by genotype interactions between neighbouring plants impacted associated pollinator communities. The traits for which focal plant genotypic variation explained the most variation varied by plant species, whereas neighbour genotypic variation explained the most variation in coarse root biomass. Our results provide new insight into genotypic and species diversity effects in plant-neighbour interactions, the extended consequences of diversity effects, and the potential for evolution in response to competitive or to facilitative plant-neighbour interactions. © 2011 Blackwell Publishing Ltd/CNRS.

  1. Interaction between a novel TGFB1 haplotype and CFTR genotype is associated with improved lung function in cystic fibrosis.

    Science.gov (United States)

    Bremer, Lindsay A; Blackman, Scott M; Vanscoy, Lori L; McDougal, Kathryn E; Bowers, Amanda; Naughton, Kathleen M; Cutler, David J; Cutting, Garry R

    2008-07-15

    Cystic fibrosis (CF), the most common lethal single gene disorder in Caucasians, is due to mutations in the CFTR gene. Twin and sibling analysis indicates that modifier genes, rather than allelic variation in CFTR, are responsible for most of the variability in severity of lung disease, the major cause of mortality in CF patients. We used a family-based approach to test for association between lung function and two functional SNPs (rs1800469, '-509' and rs1982073, 'codon 10') in the 5' region of transforming growth factor-beta1 (TGFB1), a putative CF modifier gene. Quantitative transmission disequilibrium testing of 472 CF patient-parent-parent trios revealed that both TGFB1 SNPs showed significant transmission distortion when patients were stratified by CFTR genotype. Although lung function and nutritional status are correlated in CF patients, there was no evidence of association between the TGFB1 SNPs and variation in nutritional status. Additional tagging SNPs (rs8179181, rs2278422, rs8110090, rs4803455 and rs1982072) that capture most of the diversity in TGFB1 were also typed but none showed association with variation in lung function. However, a haplotype composed of the -509 C and codon 10 T alleles along with the C allele of the 3' SNP rs8179181 was highly associated with increased lung function in patients grouped by CFTR genotype. These results demonstrate that TGFB1 is a modifier of CF lung disease and reveal a previously unrecognized beneficial effect of TGFB1 variants upon the pulmonary phenotype.

  2. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    2015-08-01

    Full Text Available Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed SNP markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNASeq-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups. Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri.

  3. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality.

    Science.gov (United States)

    Ali, Shahin S; Shao, Jonathan; Strem, Mary D; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W; Bailey, Bryan A

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNA sequencing (RNASeq)-derived SNP v